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Abstract

Mixing time for the Ising model and random walks

by

Jian Ding

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Yuval Peres, Co-chair

Professor Elchanan Mossel, Co-chair

In this thesis we study the mixing times of Markov chains, e.g., the rate of convergence

of Markov chains to stationary measures. We focus on Glauber dynamics for the (classical)

Ising model as well as random walks on random graphs.

We first provide a complete picture for the evolution of the mixing times and spectral gaps

for the mean-field Ising model. In particular, we pin down the scaling window, and prove a

cutoff phenomenon at high temperatures, as well as confirm the power law at criticality. We

then move to the critical Ising model at Bethe lattice (regular trees), where the criticality

corresponds to the reconstruction threshold. We establish that the mixing time and the

spectral gap are polynomial in the surface area, which is the height of the tree in this special

case. Afterwards, we show that the mixing time of Glauber dynamics for the (ferromagnetic)

Ising model on an arbitrary n-vertex graph at any temperature has a lower bound of n log n/4,

confirming a folklore theorem in the special case of Ising model.

In the second part, we study the random walk on the largest component of the near-

supcritical Erdös-Rényi graph. Using a complete characterization of the structure for the

near-supercritical random graph, as well as various techniques to bound the mixing times

in terms of spectral profile, we obtain the correct order for the mixing time in this regime,

which demonstrates a smooth interpolation between the critical and the supercritical regime.
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Chapter 1

Introduction

The whole thesis deals with the mixing time for Markov chains. In order to describe the

mixing-time of the chain (Xt), we require several definitions. For any two distributions φ, ψ

on Ω, the total-variation distance of φ and ψ is defined to be

‖φ− ψ‖TV := sup
A⊂Ω

|φ(A)− ψ(A)| =
1

2

∑
σ∈Ω

|φ(σ)− ψ(σ)| .

The (worst-case) total-variation distance of (Xt) to stationarity at time t is

dn(t) := max
σ∈Ω

‖Pσ(Xt ∈ ·)− µn‖TV ,

where Pσ denotes the probability given that X0 = σ. The total-variation mixing-time of

(Xt), denoted by tmix(ε) for 0 < ε < 1, is defined to be

tmix(ε) := min {t : dn(t) ≤ ε} .

A related notion is the spectral-gap of the chain, gap := 1 − λ, where λ is the largest

absolute-value of all nontrivial eigenvalues of the transition kernel.

Consider an infinite family of chains (X
(n)
t ), each with its corresponding worst-distance

from stationarity dn(t), its mixing-times t
(n)
mix, etc. We say that (X

(n)
t ) exhibits cutoff iff for

some sequence wn = o
(
t
(n)
mix(1

4
)
)

we have the following: for any 0 < ε < 1 there exists some

cε > 0, such that

t
(n)
mix(ε)− t

(n)
mix(1− ε) ≤ cεwn for all n . (1.0.1)

That is, there is a sharp transition in the convergence of the given chains to equilibrium

at time (1 + o(1))t
(n)
mix(1

4
). In this case, the sequence wn is called a cutoff window, and the
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sequence t
(n)
mix(1

4
) is called a cutoff point.

We mainly study two kinds of Markov chains in this thesis: Glauber dynamics for the

Ising model and random walks on graphs. We have a short discussion on both topics in what

follows.

1.1 Glauber dynamics for the Ising model

The (ferromagnetic)Ising Model on a finite graph G = (V,E) with parameter β ≥ 0 and no

external magnetic field is defined as follows. Its set of possible configurations is Ω = {1,−1}V ,

where each configuration σ ∈ Ω assigns positive or negatives spins to the vertices of the

graph. The probability that the system is at a given configuration σ is given by the Gibbs

distribution The Ising Model on a finite graph G = (V,E) at inverse temperature β with

interaction strengths J = {Juv ≥ 0 : uv ∈ E} and external field H = {Hu : u ∈ V }, is a

probability measure µG on the configuration space Ω = {±1}V , defined as follows. For each

σ ∈ Ω,

µG(σ) =
1

Z(J, β,H)
exp

(
β
∑
uv∈E

Juvσ(u)σ(v) +
∑
u

Huσu

)
, (1.1.1)

where Z(J, β,H) is a normalizing constant called the partition function. The measure µG is

also called the Gibbs measure. Usually, we consider the case where J ≡ 1 and H ≡ 0 (i.e.,

with no external field). When there is no ambiguity regarding the base graph, we sometimes

write µ for µG.

The heat-bath Glauber dynamics for the distribution µn is the following Markov Chain,

denoted by (Xt). Its state space is Ω, and at each step, a vertex x ∈ V is chosen uniformly at

random, and its spin is updated as follows. The new spin of x is randomly chosen according

to µn conditioned on the spins of all the other vertices. It can easily be shown that (Xt) is

an aperiodic irreducible chain, which is reversible with respect to the stationary distribution

µn.

We carefully study the mixing time for Glauber dynamics where the underlying graph

are complete graphs and regular trees, and we also establish a general lower bound for the

mixing time when the underlying graph is arbitrary. We summarize our main results as

follows.

• An exhaustive analysis on the evolution for the mixing time of Glauber dynamics for

the Curie-Weiss model (i.e., the Ising model with underlying graph being complete),

as laid out in Chapter 2. Notably, we pin down the scaling window, demonstrate a

cutoff phenomenon, as well as prove a power law at criticality. Chapter 2 is largely

based on a joint work with Eyal Lubetzky and Yuval Peres [25].
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• We study the Ising model on regular trees in Chapter 3, and we establish the power

law for the mixing time as well as the inverse-gap at criticality. Chapter 3 is largely

based on a joint work with Eyal Lubetzky and Yuval Peres [24].

• Chapter 4 is devoted to the lower bound on the mixing time in general. We show

that for ferromagnetic Ising model on arbitrary graphs, the mixing time is necessarily

bounded by n log n/4. Chapter 4 is largely based on a joint work with Yuval Peres

[29].

1.2 Random walks on random graphs

There is a rich interplay between geometric properties of a graph and the behavior of a

random walk on it (see, e.g., [3]). A particularly important parameter is the mixing time,

which measures the rate of convergence to stationarity. In this paper we focus on random

walks on the classical Erdős-Rényi random graph G(n, p).

The geometry of G(n, p) has been studied extensively since its introduction in 1959 by

Erdős and Rényi [35]. A well-known phenomenon exhibited by this model, typical in second-

order phase transitions of mean-field models, is the double jump: For p = c/n with c fixed,

the largest component C1 has size O(log n) with high probability (w.h.p.), when c < 1, it

is w.h.p. linear in n for c > 1, and for c = 1 its size has order n2/3 (the latter was proved

by Bollobás [11] and  Luczak [60]). Bollobás discovered that the critical behavior extends

throughout p = (1± ε)/n for ε = O(n−1/3), a regime known as the critical window.

Only in recent years were the tools of Markov chain analysis and the understanding of the

random graph sufficiently developed to enable estimating mixing times on C1. Fountoulakis

and Reed [38] showed that, in the strictly supercritical regime (p = c/n with fixed c > 1), the

mixing time of random walk on C1 w.h.p. has order log2 n. Their proof exploited fairly simple

geometric properties of G(n, p), while the key to their analysis was a refined bound [37] on

the mixing time of a general Markov chain. The same result was obtained independently

by Benjamini, Kozma and Wormald [6]. There, the main innovation was a decomposition

theorem for the giant component. However, the methods of these two papers do not yield

the right order of the mixing time when c is allowed to tend to 1.

Nachmias and Peres [70] proved that throughout the critical window the mixing time on

C1 is of order n. The proof there used branching process arguments, which were effective

since the critical C1 is close to a tree.

It was unclear how to interpolate between these results, and estimate the mixing time

as the giant component emerges from the critical window, since the methods used for the

supercritical and the critical case were so different. The focus of this paper is primarily
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on the emerging supercritical regime, where p = (1 + ε)/n with ε3n → ∞ and ε = o(1).

In this regime, the largest component is significantly larger than the others, yet its size

is still sublinear. Understanding the geometry of C1 in this regime has been challenging:

Indeed, even the asymptotics of its diameter were only recently obtained by Riordan and

Wormald [78], as well as in [23].

In Part II, we determine the order of the mixing time throughout the emerging supercrit-

ical regime (see Subsection 5.1.3 for a formal definition of mixing time). This part is largely

based on joint work with Eyal Lubetzky and Yuval Peres [28].

Theorem 1 (supercritical regime). Let C1 be the largest component of G(n, p) for p = 1+ε
n

,

where ε→ 0 and ε3n→∞. With high probability, the mixing time of the lazy random walk

on C1 is of order ε−3 log2(ε3n).

While the second largest component C2 has a mixing time of smaller order (it is w.h.p. a

tree, and given that event, it is a uniform tree on its vertices and as such has tmix � |C2|3/2
(see e.g. [70]), that is tmix � ε−3 log3/2(ε3n) as |C2| � ε−2 log(ε3n) w.h.p.), it turns out that

w.h.p. there exists an even smaller component, whose mixing time is of the same order as

on C1. This is captured by our second theorem, which also handles the subcritical regime.

Theorem 2 (controlling all components). Let G ∼ G(n, p) for p = (1± ε)/n, where ε → 0

and ε3n → ∞. Let C? be the component of G that maximizes the mixing time of the lazy

random walk on it, denoted by t?mix. Then with high probability, t?mix has order ε−3 log2(ε3n).

This also holds when maximizing only over tree components.

In the area of random walk on random graphs, the following two regimes have been

analyzed extensively.

• The supercritical regime, where tmix � (diam)2 with diam denoting the intrinsic diameter

in the percolation cluster. Besides G(n, c
n
) for c > 1, this also holds in the torus Zd

n by [7]

and [67].

• The critical regime on a high dimensional torus, where tmix � (diam)3. As mentioned

above, for critical percolation on the complete graph, this was shown in [70]. For high

dimensional tori, this is a consequence of [43].

To the best of our knowledge, our result is the first interpolation for the mixing time between

these two different powers of the diameter.
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Part I

Mixing time for the Ising model
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Chapter 2

Mixing evolution of the mean-field

Ising model

2.1 Introduction

The Curie-Weiss model is a special case of the Ising model (as in (1.1.1)) where the un-

derlying geometry is the complete graph on n vertices. The study of this model (see, e.g.,

[31],[33],[34],[53]) is motivated by the fact that its behavior approximates that of the Ising

model on high-dimensional tori. Throughout the chapter, we let J ≡ 1 and H ≡ 0 unless

otherwise specified. It is convenient in this case to re-scale the parameter β, so that the

stationary measure µn satisfies

µn(σ) ∝ exp
(β
n

∑
x<y

σ(x)σ(y)
)
. (2.1.1)

It is well known that for any fixed β > 1, the Glauber dynamics (Xt) mixes in exponential

time (cf., e.g., [41]), whereas for any fixed β < 1 (high temperature) the mixing time has

order n log n (see [1] and also [12]). Recently, Levin, Luczak and Peres [53] established that

the mixing-time at the critical point β = 1 has order n3/2, and that for fixed 0 < β < 1 there

is cutoff at time 1
2(1−β)

n log n with window n. It is therefore natural to ask how the phase

transition between these states occurs around the critical βc = 1: abrupt mixing at time

( 1
2(1−β)

+ o(1))n log n changes to a mixing-time of Θ(n3/2) steps, and finally to exponentially

slow mixing.

In this chapter, we determine this phase transition, and characterize the mixing-time of

the dynamics as a function of the parameter β, as it approaches its critical value βc = 1

both from below and from above. The scaling window around the critical temperature βc
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1
2
(n/δ) log(δ2n)

n3/2

(n/δ)e
1
2n

∫
ζ

0
log( 1+g(x)

1−g(x) )dx

(n/δ)e
3
4 δ2n

O(1/
√

n)

1
β

Figure 2.1: Illustration of the mixing time evolution as a function of the inverse-temperature
β, with a scaling window of order 1/

√
n around the critical point. We write δ = |β − 1|

and let ζ be the unique positive root of g(x) := tanh(βx)−x
1−x tanh(βx)

. Cutoff only occurs at high

temperature.

has order 1/
√
n, as formulated by the following theorems, and illustrated in Figure 2.1.

Theorem 3 (Subcritical regime). Let δ = δ(n) > 0 be such that δ2n → ∞ with n. The

Glauber dynamics for the mean-field Ising model with parameter β = 1− δ exhibits cutoff at

time 1
2
(n/δ) log(δ2n) with window size n/δ. In addition, the spectral gap of the dynamics in

this regime is (1 + o(1))δ/n, where the o(1)-term tends to 0 as n→∞.

Theorem 4 (Critical window). Let δ = δ(n) satisfy δ = O(1/
√
n). The mixing time of the

Glauber dynamics for the mean-field Ising model with parameter β = 1 ± δ has order n3/2,

and does not exhibit cutoff. In addition, the spectral gap of the dynamics in this regime has

order n−3/2.

Theorem 5 (Supercritical regime). Let δ = δ(n) > 0 be such that δ2n → ∞ with n. The

mixing-time of the Glauber dynamics for the mean-field Ising model with parameter β = 1+δ

does not exhibit cutoff, and has order

texp(n) :=
n

δ
exp

(
n

2

∫ ζ

0

log

(
1 + g(x)

1− g(x)

)
dx

)
,

where g(x) := (tanh(βx)− x) / (1− x tanh(βx)), and ζ is the unique positive root of g. In

particular, in the special case δ → 0, the order of the mixing time is n
δ

exp
(
(3

4
+ o(1))δ2n

)
,
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where the o(1)-term tends to 0 as n → ∞. In addition, the spectral gap of the dynamics in

this regime has order 1/texp(n).

As we further explain in Section 2.2, the key element in the proofs of the above theorems

is understanding the behavior of the sum of all spins (known as the magnetization chain) at

different temperatures. This function of the dynamics turns out to be an ergodic Markov

chain as well, and namely a birth-and-death chain (a one-dimensional chain, where only moves

between neighboring positions are permitted). In fact, the reason for the exponential mixing

at low-temperature is essentially that this magnetization chain has two centers of mass, ±ζn
(where ζ is as defined in Theorem 5), with an exponential commute time between them.

Recalling Theorem 3, the above confirms that there is a symmetric scaling window of

order 1/
√
n around the critical temperature, beyond which there is cutoff both at high and

at low temperatures, with the same order of mixing-time (yet with a different constant),

cutoff window and spectral gap.

The rest of this chapter is organized as follows. Section 2.2 contains a brief outline

of the proofs of the main theorems. Several preliminary facts on the Curie-Weiss model

and on one-dimensional chains appear in Section 5.1. Sections 2.4, 2.5 and 2.6 address the

high temperature regime (Theorem 3), critical temperature regime (Theorem 4) and low

temperature regime (Theorem 5) respectively.

2.2 Outline of proof

In what follows, we present a sketch of the main ideas and arguments used in the proofs of

the main theorems. We note that the analysis of the critical window relies on arguments

similar to those used for the subcritical and supercritical regimes. Namely, to obtain the

order of the mixing-time in Theorem 4 (critical window), we study the magnetization chain

using the arguments that appear in the proof of Theorem 3 (high temperature regime). It is

then straightforward to show that the mixing-time of the entire Glauber dynamics has the

very same order. In turn, the spectral-gap in the critical window is obtained using arguments

similar to those used in the proof of Theorem 5 (low temperature regime). In light of this,

the following sketch will focus on the two non-critical temperature regimes.

2.2.1 High temperature regime

Upper bound for mixing

As mentioned above, a key element in the proof is the analysis of the normalized magnetiza-

tion chain, (St), which is the average spin in the system. That is, for a given configuration σ,
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we define S(σ) to be 1
n

∑
i σ(i), and it is easy to verify that this function of the dynamics is

an irreducible and aperiodic Markov chain. Clearly, a necessary condition for the mixing of

the dynamics is the mixing of its magnetization, but interestingly, in our case the converse

essentially holds as well. For instance, as we later explain, in the special case where the

starting state is the all-plus configuration, by symmetry these two chains have precisely the

same total variation distance from equilibrium at any given time.

In order to determine the behavior of the chain (St), we first keep track of its expected

value along the Glauber dynamics. To simplify the sketch of the argument, suppose that

our starting configuration is somewhere near the all-plus configuration. In this case, one

can show that ESt is monotone decreasing in t, and drops to order
√

1/δn precisely at the

cutoff point. Moreover, if we allow the dynamics to perform another Θ(n/δ) steps (our

cutoff window), then the magnetization will hit 0 (or 1
n
, depending on the parity of n) with

probability arbitrarily close to 1. At that point, we essentially achieve the mixing of the

magnetization chain.

It remains to extend the mixing of the magnetization chain to the mixing of the entire

Glauber dynamics. Roughly, keeping in mind the above comment on the symmetric case

of the all-plus starting configuration, one can apply a similar argument to an arbitrary

starting configuration σ, by separately treating the set of spins which were initially positive

and those which were initially negative. Indeed, it was shown in [53] that the following

holds for β < 1 fixed (strictly subcritical regime). After a “burn-in” period of order n

steps, the magnetization typically becomes not too biased. Next, if one runs two instances

of the dynamics, from two such starting configurations (where the magnetization is not

too biased), then by the time it takes their magnetization chains to coalesce, the entire

configurations become relatively similar. This was established by a so-called Two Coordinate

Chain analysis, where the two coordinates correspond to the current sum of spins along the

set of sites which were initially either positive or negative respectively.

By extending the above Two Coordinate Chain Theorem to the case of β = 1 − δ

where δ = δ(n) satisfies δ2n → ∞, and combining it with second moment arguments and

some additional ideas, we were able to show that the above behavior holds throughout this

mildly subcritical regime. The burn-in time required for the typical magnetization to become

“balanced” now has order n/δ, and so does the time it takes the full dynamics of two chains

to coalesce once their magnetization chains have coalesced. Thus, these two periods are

conveniently absorbed in our cutoff window, making the cutoff of the magnetization chain

the dominant factor in the mixing of the entire Glauber dynamics.
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Lower bound for mixing

While the above mentioned Two Coordinate Chain analysis was required in order to show

that the entire Glauber dynamics mixes fairly quickly once its magnetization chain reaches

equilibrium, the converse is immediate. Thus, we will deduce the lower bound on the mixing

time of the dynamics solely from its magnetization chain.

The upper bound in this regime relied on an analysis of the first and second moments of

the magnetization chain, however this approach is too coarse to provide a precise lower bound

for the cutoff. We therefore resort to establishing an upper bound on the third moment of

the magnetization chain, using which we are able to fine-tune our analysis of how its first

moment changes along time. Examining the state of the system order n/δ steps before

the alleged cutoff point, using concentration inequalities, we show that the magnetization

chain is typically substantially far from 0. This implies a lower bound on the total variation

distance of the magnetization chain to stationarity, as required.

Spectral gap analysis

In the previous arguments, we stated that the magnetization chain essentially dominates the

mixing-time of the entire dynamics. An even stronger statement holds for the spectral gap:

the Glauber dynamics and its magnetization chain have precisely the same spectral gap, and

it is in both cases attained by the second largest eigenvalue. We therefore turn to establish

the spectral gap of (St).

The lower bound follows directly from the contraction properties of the chain in this

regime. To obtain a matching upper bound, we use the Dirichlet representation for the spec-

tral gap, combined with an appropriate bound on the fourth moment of the magnetization

chain.

2.2.2 Low temperature regime

Exponential mixing

As mentioned above, the exponential mixing in this regime follows directly from the behavior

of the magnetization chain, which has a bottleneck between ±ζ. To show this, we analyze

the effective resistance between these two centers of mass, and obtain the precise order of

the commute time between them. Additional arguments show that the mixing time of the

entire Glauber dynamics in this regime has the same order.
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Spectral gap analysis

In the above mentioned proof of the exponential mixing, we establish that the commute time

of the magnetization chain between 0 and ζ has the same order as the hitting time from 1 to

0. We can therefore apply a recent result of [25] for general birth-and-death chains, which

implies that in this case the inverse of the spectral-gap (known as the relaxation-time) and

the mixing-time must have the same order.

2.3 Preliminaries

2.3.1 The magnetization chain

The normalized magnetization of a configuration σ ∈ Ω, denoted by S(σ), is defined as

S(σ) :=
1

n

n∑
i=1

σ(i) .

Suppose that the current state of the Glauber dynamics is σ, and that site i has been selected

to have its spin updated. By definition, the probability of updating this site to a positive

spin is given by p+ (S(σ)− σ(i)/n), where

p+(s) :=
eβs

eβs + e−βs
=

1 + tanh(βs)

2
. (2.3.1)

Similarly, the probability of updating the spin of site i to a negative one is given by

p− (S(σ)− σ(i)/n), where

p−(s) :=
e−βs

eβs + e−βs
=

1− tanh(βs)

2
. (2.3.2)

It follows that the (normalized) magnetization of the Glauber dynamics at each step is a

Markov chain, (St), with the following transition kernel:

PM(s, s′) =


1+s
2
p−(s− n−1) if s′ = s− 2

n
,

1−s
2
p+(s+ n−1) if s′ = s+ 2

n
,

1− 1+s
2
p−(s− n−1)− 1−s

2
p+(s+ n−1) if s′ = s .

(2.3.3)

An immediate important property that the above reveals is the symmetry of St: the distri-

bution of (St+1 | St = s) is precisely that of (−St+1 | St = −s).
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As evident from the above transition rules, the behavior of the Hyperbolic tangent will

be useful in many arguments. This is illustrated in the following simple calculation, showing

that the minimum over the holding probabilities of the magnetization chain is nearly 1
2
.

Indeed, since the derivative of tanh(x) is bounded away from 0 and 1 for all x ∈ [0, β] and

any β = O(1), the Mean Value Theorem gives

PM(s, s+ 2
n
) = 1−s

4
(1 + tanh(βs)) +O(n−1) ,

PM(s, s− 2
n
) = 1+s

4
(1− tanh(βs)) +O(n−1) ,

PM(s, s) = 1
2

(1 + s tanh(βs))−O(n−1) .

(2.3.4)

Therefore, the holding probability in state s is at least 1
2
− O

(
1
n

)
. In fact, since tanh(x) is

monotone increasing, PM(s, s) ≤ 1
2

+ 1
2
s tanh(βs) for all s, hence these probability are also

bounded from above by 1
2
(1 + tanh(β)) < 1.

Using the above fact, the next lemma will provide an upper bound for the coalescence

time of two magnetization chains, St and S̃t, in terms of the hitting time τ0, defined as

τ0 := min{t : |St| ≤ n−1}.

Lemma 2.3.1. Let (St) and (S̃t) denote two magnetization chains, started from two arbitrary

states. Then for any ε > 0 there exists some cε > 0, such that the following holds: if T > 0

satisfies P1(τ0 ≥ T ) < ε then St and S̃t can be coupled in a way such that they coalesce

within at most cεT steps with probability at least 1− ε.

Proof. Assume without loss of generality that |S̃0| < |S0|, and by symmetry, that σ = |S0| ≥
0. Define

τ := min
{
t : |St| ≤ |S̃t|+ 2

n

}
.

Recalling the definition of τ0, clearly we must have τ < τ0. Next, since the holding probability

of St at any state s is bounded away from 0 and 1 for large n (by the discussion preceding

the lemma), there clearly exists a constant 0 < b < 1 such that

P
(
St+1 = S̃t+1

∣∣ |St − S̃t| ≤ 2
n

)
> b > 0

(for instance, one may choose b = 1
10

(1− tanh(β)) for a sufficiently large n). It therefore

follows that |Sτ+1| = |S̃τ+1| with probability at least b.

Condition on this event. We claim that in this case, the coalescence of (St) and (S̃t)

(rather than just their absolute values) occurs at some t ≤ τ0 + 1 with probability at least b.

The case Sτ+1 = S̃τ+1 is immediate, and it remains to deal with the case Sτ+1 = −S̃τ+1. Let

us couple (St) and (S̃t) so that the property St = −S̃t is maintained henceforth. Thus, at

time t = τ0 we obtain |St − S̃t| = 2|St| ≤ 2
n
, and with probability b this yields St+1 = S̃t+1.
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Clearly, our assumption on T and the fact that 0 ≤ σ ≤ 1 together give

Pσ(τ0 ≥ T ) ≤ P1(τ0 ≥ T ) < ε .

Thus, with probability at least (1− ε)b2, the coalescence time of (St) and (S̃t) is at most T .

Repeating this experiment a sufficiently large number of times then completes the proof. �

In order to establish cutoff for the magnetization chain (St), we will need to carefully

track its moments along the Glauber dynamics. By definition (see (2.3.3)), the behavior

of these moments is governed by the Hyperbolic tangent function, as demonstrated by the

following useful form for the conditional expectation of St+1 given St (see also [53, (2.13)]).

E [St+1 | St = s] =
(
s+ 2

n

)
PM
(
s, s+ 2

n

)
+ sPM(s, s) +

(
s− 2

n

)
PM
(
s, s− 2

n

)
= (1− n−1)s+ ϕ(s)− ψ(s) , (2.3.5)

where

ϕ(s) = ϕ(s, β, n) :=
1

2n

[
tanh

(
β(s+ n−1)

)
+ tanh

(
β(s− n−1)

)]
,

ψ(s) = ψ(s, β, n) :=
s

2n

[
tanh

(
β(s+ n−1)

)
− tanh

(
β(s− n−1)

)]
.

2.3.2 From magnetization equilibrium to full mixing

The motivation for studying the magnetization chain is that its mixing essentially dominates

the full mixing of the Glauber dynamics. This is demonstrated by the next straightforward

lemma (see also [53, Lemma 3.4]), which shows that in the special case where the starting

point is the all-plus configuration, the mixing of the magnetization is precisely equivalent to

that of the entire dynamics.

Lemma 2.3.2. Let (Xt) be an instance of the Glauber dynamics for the mean field Ising

model starting from the all-plus configuration, namely, σ0 = 1, and let St = S(Xt) be its

magnetization chain. Then

‖P1(Xt ∈ ·)− µn‖TV = ‖P1(St ∈ ·)− πn‖TV , (2.3.6)

where πn is the stationary distribution of the magnetization chain.

Proof. For any s ∈ {−1,−1 + 2
n
, . . . , 1 − 2

n
, 1}, let Ωs := {σ ∈ Ω : S(σ) = s}. Since by

symmetry, both µn(· | Ωs) and P1(Xt ∈ · | St = s) are uniformly distributed over Ωs, the
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following holds:

‖P1(Xt ∈ ·)− µn‖TV =
1

2

∑
s

∑
σ∈Ωs

|P1(Xt = σ)− µn(σ)|

=
1

2

∑
s

∑
σ∈Ωs

∣∣∣P1(St = s)

|Ωs|
− µn(Ωs)

|Ωs|

∣∣∣
= ‖P1(St ∈ ·)− πn‖TV . �

In the general case where the Glauber dynamics starts from an arbitrary configuration σ0,

though the above equivalence (2.3.6) no longer holds, the magnetization still dominates the

full mixing of the dynamics in the following sense. The full coalescence of two instances of

the dynamics occurs within order n log n steps once the magnetization chains have coalesced.

Lemma 2.3.3 ([53, Lemma 2.9]). Let σ, σ̃ ∈ Ω be such that S(σ) = S(σ̃). For a coupling

(Xt, X̃t), define the coupling time τX,X̃ := min{t ≥ 0 : Xt = X̃t}. Then for a sufficiently large

c0 > 0 there exists a coupling (Xt, X̃t) of the Glauber dynamics with initial states X0 = σ

and X̃0 = σ̃ such that

lim sup
n→∞

Pσ,σ̃

(
τX,X̃ > c0n log n

)
= 0 .

Though Lemma 2.3.3 holds for any temperature, it will only prove useful in the critical

and low temperature regimes. At high temperature, using more delicate arguments, we will

establish full mixing within order of n
δ

steps once the magnetization chains have coalesced.

That is, the extra steps required to achieve full mixing, once the magnetization chain cutoff

had occurred, are absorbed in the cutoff window. Thus, in this regime, the entire dynamics

has cutoff precisely when its magnetization chain does (with the same window).

2.3.3 Contraction and one-dimensional Markov chains

We say that a Markov chain, assuming values in R, is contracting, if the expected distance

between two chains after a single step decreases by some factor bounded away from 0. As

we later show, the magnetization chain is contracting at high temperatures, a fact which

will have several useful consequences. One example of this is the following straightforward

lemma of [53], which provides a bound on the variance of the chain. Here and throughout the

chapter, the notation Pz, Ez and Varz will denote the probability, expectation and variance

respectively given that the starting state is z.

Lemma 2.3.4 ([53, Lemma 2.6]). Let (Zt) be a Markov chain taking values in R and with

transition matrix P . Suppose that there is some 0 < ρ < 1 such that for all pairs of starting
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states (z, z̃),

|Ez[Zt]− Ez̃[Zt] | ≤ ρt|z − z̃|. (2.3.7)

Then vt := supz0 Varz0(Zt) satisfies vt ≤ v1 min {t, 1/ (1− ρ2)}.

Remark. By following the original proof of the above lemma, one can readily extend it to

the case ρ ≥ 1 and get the following bound:

vt ≤ v1 · ρ2t min
{
t, 1/

(
ρ2 − 1

)}
. (2.3.8)

This bound will prove to be effective for reasonably small values of t in the critical window,

where although the magnetization chain is not contracting, ρ is only slightly larger than 1.

Another useful property of the magnetization chain in the high temperature regime is its

drift towards 0. As we later show, in this regime, for any s > 0 we have E [St+1|St = s] < s,

and with probability bounded below by a constant we have St+1 < St. We thus refer to the

following lemma of [54]:

Lemma 2.3.5 ([54, Chapter 18]). Let (Wt)t≥0 be a non-negative supermartingale and τ be

a stopping time such

(i) W0 = k,

(ii) Wt+1 −Wt ≤ B,

(iii) Var(Wt+1 | Ft) > σ2 > 0 on the event τ > t .

If u > 4B2/(3σ2), then Pk(τ > u) ≤ 4k
σ
√
u
.

This lemma, together with the above mentioned properties of (St), yields the following

immediate corollary:

Corollary 2.3.6 ([53, Lemma 2.5]). Let β ≤ 1, and suppose that n is even. There exists a

constant c such that, for all s and for all u, t ≥ 0,

P( |Su| > 0, . . . , |Su+t| > 0 | Su = s) ≤ cn|s|√
t
. (2.3.9)

Finally, our analysis of the spectral gap of the magnetization chain will require several

results concerning birth-and-death chains from [25]. In what follows and throughout the

chapter, the relaxation-time of a chain, trel, is defined to be gap−1, where gap denotes its

spectral-gap. We say that a chain is b-lazy if all its holding probabilities are at least b, or

simply lazy for the useful case of b = 1
2
. Finally, given an ergodic birth-and-death chain on
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X = {0, 1, . . . , n} with stationary distribution π, the quantile state Q(α), for 0 < α < 1, is

defined to be the smallest i ∈ X such that π({0, . . . , i}) ≥ α.

Lemma 2.3.7 ([25, Lemma 2.9]). Let X(t) be a lazy irreducible birth-and-death chain on

{0, 1, . . . , n}, and suppose that for some 0 < ε < 1
16

we have trel < ε4 · E0τQ(1−ε). Then for

any fixed ε ≤ α < β ≤ 1− ε:

EQ(α)τQ(β) ≤
3

2ε

√
trel · E0τQ( 1

2
) . (2.3.10)

Lemma 2.3.8 ([25, Lemma 2.3]). For any fixed 0 < ε < 1 and lazy irreducible birth-and-

death chain X, the following holds for any t:

‖P t(0, ·)− π‖TV ≤ P0(τQ(1−ε) > t) + ε , (2.3.11)

and for all k ∈ Ω,

‖P t(k, ·)− π‖TV ≤ Pk(max{τQ(ε), τQ(1−ε)} > t) + 2ε . (2.3.12)

Remark. As argued in [25] (see Theorem 3.1 and its proof), the above two lemmas also hold

for the case where the birth-and-death chain is not lazy but rather b-lazy for some constant

b > 0. The formulation for this more general case incurs a cost of a slightly different constant

in (2.3.10), and replacing t with t/C (for some constant C) in (2.3.11) and (2.3.12). As we

already established (recall (2.3.4)), the magnetization chain is indeed b-lazy for any constant

b < 1
2

and a sufficiently large n.

2.3.4 Monotone coupling

A useful tool throughout our arguments is the monotone coupling of two instances of the

Glauber dynamics (Xt) and (X̃t), which maintains a coordinate-wise inequality between the

corresponding configurations. That is, given two configurations σ ≥ σ̃ (i.e., σ(i) ≥ σ̃(i) for

all i), it is possible to generate the next two states σ′ and σ̃′ by updating the same site in

both, in a manner that ensures that σ′ ≥ σ̃′. More precisely, we draw a random variable I

uniformly over {1, 2, . . . , n} and independently draw another random variable U uniformly

over [0, 1]. To generate σ′ from σ, we update site I to +1 if U ≤ p+
(
S(σ)− σ(I)

n

)
, otherwise

σ′(I) = −1. We perform an analogous process in order to generate σ̃′ from σ̃, using the same

I and U as before. The monotonicity of the function p+ guarantees that σ′ ≥ σ̃′, and by

repeating this process, we obtain a coupling of the two instances of the Glauber dynamics

that always maintains monotonicity.
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Clearly, the above coupling induces a monotone coupling for the two corresponding mag-

netization chains. We say that a birth-and-death chain with a transition kernel P and a

state-space X = {0, 1, . . . , n} is monotone if P (i, i + 1) + P (i + 1, i) ≤ 1 for every i < n. It

is easy to verify that this condition is equivalent to the existence of a monotone coupling,

and that for such a chain, if f : X → R is a monotone increasing (decreasing) function then

so is Pf (see, e.g., [25, Lemma 4.1]).

2.3.5 The spectral gap of the dynamics and its magnetization

chain

To analyze the spectral gap of the Glauber dynamics, we establish the following lemma which

reduces this problem to determining the spectral-gap of the one-dimensional magnetization

chain. Its proof relies on increasing eigenfunctions, following the ideas of [71].

Proposition 2.3.9. The Glauber dynamics for the mean-field Ising model and its one-

dimensional magnetization chain have the same spectral gap. Furthermore, both gaps are

attained by the largest nontrivial eigenvalue.

Proof. We will first show that the one-dimensional magnetization chain has an increasing

eigenfunction, corresponding to the second eigenvalue.

Recalling that St assumes values in X := {−1,−1 + 2
n
, . . . , 1 − 2

n
, 1}, let M denote its

transition matrix, and let π denote its stationary distribution. Let 1 = θ0 ≥ θ1 ≥ . . . ≥
θn be the n + 1 eigenvalues of M , corresponding to the eigenfunctions f0 ≡ 1, f1, . . . , fn.

Define θ = max{θ1, |θn|}, and notice that, as St is aperiodic and irreducible, 0 < θ < 1.

Furthermore, by the existence of the monotone coupling for St and the discussion in the

previous subsection, whenever a function f : X → R is increasing so is Mf .

Define f : I → R by f := f1 + fn + K1, where 1 is the identity function and K > 0

is sufficiently large to ensure that f is monotone increasing (e.g., K = n
2
‖f1 + fn‖L∞ easily

suffices). Notice that, by symmetry of St, π(x) = π(−x) for all x ∈ X , and in particular∑
x∈X xπ(x) = 0, that is to say, 〈1, f0〉L2(π) = 0. Recalling that for all i 6= j we have

〈fi, fj〉L2(π) = 0, it follows that for some q1, . . . , qn ∈ R we have f =
∑n

i=1 qifi with q1 6= 0

and qn 6= 0, and thus (
θ−1M

)m
f =

n∑
i=1

qi(θi/θ)
mfi .

Next, define

g =

{
q1f1 if θ = θ1

0 otherwise
, and h =

{
qnfn if θ = −θn
0 otherwise

,
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and notice that

lim
m→∞

(
θ−1M

)2m
f = g + h , and lim

m→∞

(
θ−1M

)2m+1
f = g − h .

As stated above, Mmf is increasing for all m, and thus so are the two limits g+h and g−h
above, as well as their sum. We deduce that g is an increasing function, and next claim that

g 6≡ 0. Indeed, if g ≡ 0 then both h and −h are increasing functions, hence necessarily h ≡ 0

as well; this would imply that q1 = qn = 0, thus contradicting our construction of f .

We deduce that g is an increasing eigenfunction corresponding to θ1 = θ, and next wish

to show that it is strictly increasing. Recall that for all x ∈ X ,

(Mg)(x) = M
(
x, x− 2

n

)
g
(
x− 2

n

)
+M(x, x)g(x) +M

(
x, x+

2

n

)
g
(
x+

2

n

)
.

Therefore, if for some x ∈ X we had g(x− 2
n
) = g(x) ≥ 0, the fact that g is increasing would

imply that

θ1g(x) = (Mg)(x) ≥ g(x) ≥ 0 ,

and analogously, if g(x) = g(x+ 2
n
) ≤ 0 we could write

θ1g(x) = (Mg)(x) ≤ g(x) ≤ 0 .

In either case, since 0 < θ1 < 1 (recall that θ1 = θ) this would in turn lead to g(x) = 0. By

inductively substituting this fact in the above equation for (Mg)(x), we would immediately

get g ≡ 0, a contradiction.

Let 1 = λ0 ≥ λ1 ≥ . . . ≥ λ|Ω|−1 denote the eigenvalues of the Glauber dynamics, and let

λ := max{λ1, |λ2n−1|}. We translate g into a function G : Ω → R in the obvious manner:

G(σ) := g(S(σ)) = g
( 1

n

n∑
i=1

σ(i)
)
.

One can verify that G is indeed an eigenfunction of the Glauber dynamics corresponding

to the eigenvalue θ1, and clearly G is strictly increasing with respect to the coordinate-wise

partial order on Ω. At this point, we refer to the following lemma of [71]:

Lemma 2.3.10 ([71, Lemma 4]). Let P be the transition matrix of the Glauber dynamics,

and let λ1 be its second largest eigenvalue. If P has a strictly increasing eigenfunction f ,

then f corresponds to λ1.

The above lemma immediately implies that G corresponds to the second eigenvalue of

Glauber dynamics, which we denote by λ1, and thus λ1 = θ1.
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It remains to show that λ = λ1. To see this, first recall that all the holding probabilities

of St are bounded away from 0, and the same applies to the entire Glauber dynamics by

definition (the magnetization remains the same if and only if the configuration remains the

same). Therefore, both θn and λ2n−1 are bounded away from −1, and it remains to show

that gap = o(1) for the Glauber dynamics (and hence also for its magnetization chain).

To see this, suppose P is the transition kernel of the Glauber dynamics, and recall the

Dirichlet representation for the second eigenvalue of a reversible chain (see [54, Lemma 13.7],

and also [3, Chapter 3]):

1− λ1 = min
{ E(f)

〈f, f〉µn

: f 6≡ 0 , Eµn(f) = 0
}
, (2.3.13)

where Eµn(f) denotes 〈1, f〉µn
, and

E(f) = 〈(I − P )f, f〉µn
=

1

2

∑
σ,σ′∈Ω

[f(σ)− f(σ′)]
2
µn(σ)P (σ, σ′) .

By considering the sum of spins, h(σ) =
∑n

i=1 σ(i), we get E(h) ≤ 2, and since the spins are

positively correlated, Varµn

∑
i σ(i) ≥ n. It follows that

1− λ1 ≤ 2/n ,

and thus gap = 1− λ1 = 1− θ1 for both the Glauber dynamics and its magnetization chain,

as required. �

2.4 High temperature regime

In this section we prove Theorem 3. Subsection 2.4.1 establishes the cutoff of the magne-

tization chain, which immediately provides a lower bound on the mixing time of the entire

dynamics. The matching upper bound, which completes the proof of cutoff for the Glauber

dynamics, is given in Subsection 2.4.2. The spectral gap analysis appears in Subsection 2.4.3.

Unless stated otherwise, assume throughout this section that β = 1− δ where δ2n→∞.

2.4.1 Cutoff for the magnetization chain

Clearly, the mixing of the Glauber dynamics ensures the mixing of its magnetization. Inter-

estingly, the converse is also essentially true, as the mixing of the magnetization turns out

to be the most significant part in the mixing of the full Glauber dynamics. We thus wish to
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prove the following cutoff result:

Theorem 2.4.1. Let β = 1 − δ, where δ > 0 satisfies δ2n → ∞. Then the corresponding

magnetization chain (St) exhibits cutoff at time 1
2
· n
δ

log(δ2n) with a window of order n/δ.

Notice that Lemma 2.3.2 then gives the following corollary for the special case where the

initial state of the dynamics is the all-plus configuration:

Corollary 2.4.2. Let δ = δ(n) > 0 be such that δ2n → ∞ with n, and let (Xt) denote the

Glauber dynamics for the mean-field Ising model with parameter β = 1− δ, started from the

all-plus configuration. Then (Xt) exhibits cutoff at time 1
2
(n/δ) log(δ2n) with window size

n/δ.

Upper bound

Our goal in this subsection is to show the following:

lim
γ→∞

lim sup
n→∞

dn

(
1

2
· n
δ

log(δ2n) + γ
n

δ

)
= 0 , (2.4.1)

where dn(·) is with respect to the magnetization chain (St) and its stationary distribution.

This will be obtained using an upper bound on the coalescence time of two instances of the

magnetization chain. Given the properties of its stationary distribution (see Figure ??), we

will mainly be interested in the time it takes this chain to hit near 0. The following theorem

provides an upper bound for that hitting time.

Theorem 2.4.3. For 0 < β < 1 +O(n−1/2), consider the magnetization chain started from

some arbitrary state s0, and let τ0 = min{t : |St| ≤ n−1}. Write β = 1 − δ, and for γ > 0

define

tn(γ) =


n

2δ
log(δ2n) + (γ + 3)

n

δ
δ2n→∞ ,(

200 + 6γ
(

1 + 6
√
δ2n
))

n3/2 δ2n = O(1) .
(2.4.2)

Then there exists some c > 0 such that Ps0(τ0 > tn(γ)) ≤ c/
√
γ .

Proof. For any t ≥ 1, define:

st := Es0

[
|St|1{τ0>t}

]
.

Suppose s > 0. Recalling (2.3.5) and bearing in mind the concavity of the Hyperbolic

tangent and the fact that ψ(s) ≥ 0, we obtain that

E(St+1

∣∣St = s) ≤ s+
1

n

(
tanh(βs)− s

)
.
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Using symmetry for the case s < 0, we can then deduce that

E
[
|St+1|

∣∣St] ≤ |St|+
1

n

(
tanh(β|St|)− |St|

)
for any t < τ0 . (2.4.3)

Hence, combining the concavity of the Hyperbolic tangent together with Jensen’s inequality

yields

st+1 ≤
(

1− 1

n

)
st +

1

n
tanh(βst) . (2.4.4)

Since the Taylor expansion of tanh(x) is

tanh(x) = x− x3

3
+

2x5

15
− 17x7

315
+O(x9) , (2.4.5)

we have tanh(x) ≤ x− x3

5
for 0 ≤ x ≤ 1, giving

st+1 ≤
(

1− 1

n

)
st +

1

n
tanh(βst) ≤

(
1− 1

n

)
st +

1

n
βst −

(st)
3

5n

= st −
δ

n
st −

(st)
3

5n
. (2.4.6)

For some 1 < a ≤ 2 to be defined later, set

bi = a−i/4 , and ui = min{t : st ≤ bi} .

Notice that st is decreasing in t by (2.4.6), thus for every t ∈ [ui, ui+1] we have

bi/a = bi+1 ≤ st ≤ bi .

It follows that

st+1 ≤ st −
δ

n
· bi
a
− b3i

5a3n
,

and

ui+1 − ui ≤
(
a− 1

a
bi

)
/

(
δ

n

bi
a

+
b3i

5a3n

)
≤ 5(a− 1)a2n

5δa2 + b2i
. (2.4.7)

For the case δ2n→∞, define:

i0 = min{i : bi ≤ 1/
√
δn} .
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The following holds:

i0∑
i=1

(ui+1 − ui) ≤
i0∑
i=1

5(a− 1)a2n

5δa2 + b2i
≤
∑
i≤i0
b2i>δ

5(a− 1)a2n

b2i
+
∑
i≤i0
b2i≤δ

5(a− 1)a2n

5δa2

≤ 5na2

δ(a+ 1)
+
a− 1

2 log a
· n
δ

log(δ2n) ,

where in the last inequality we used the fact that the series {b−2
i } is a geometric series with

a ratio a2, and that, as b2i ≥ 1/(δn) for all i ≤ i0, the number of summands such that b2i ≤ δ

is at most loga(
√
δ2n). Therefore, choosing a = 1 + n−1, we deduce that:

i0∑
i=1

(ui+1 − ui) ≤
(

5

2
+O(n−1)

)
n

δ
+

(
1

2
+O(n−1)

)
n

δ
log(δ2n)

≤ 3
n

δ
+
n

2δ
log(δ2n) , (2.4.8)

where the last inequality holds for any sufficiently large n. Combining the above inequality

and the definition of i0, we deduce that

( stn(0) = ) Es0

[
|Stn(0)|1{τ0>tn(0)}

]
≤ 1/

√
δn . (2.4.9)

Thus, by Corollary 2.3.6 (after taking expectation), for some fixed c > 0

P(τ0 > tn(γ)) ≤ c/
√
γ .

For the case δ2n = O(1), choose a = 2, that is, bi = 2−(i+2), and define

i1 = min{i : bi ≤ n−1/4 ∨ 5
√
|δ|} . (2.4.10)

Substituting a = 2 in (2.4.7), while noting that δ > − 1
25
b2i for all i < i1, gives

i1∑
i=1

(ui+1 − ui) ≤
i1∑
i=1

20n

20δ + b2i
≤ 100

i1∑
i=1

n

b2i
≤ 200

n

b2i1

≤
(

200n3/2 ∧ 8
n

|δ|

)
≤ 200n3/2 .

where the last inequality in the first line incorporated the geometric sum over {b−2
i }. By
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(2.4.10),

bi1 ≤ n−1/4 ∨ 5
√
|δ| ≤ n−1/4

(
1 + 5(δ2n)1/4

)
,

and as in the subcritical case, we now combine the above results with an application of

Corollary 2.3.6 (after taking expectation), and deduce that for some absolute constant c > 0,

P(τ0 > tn(γ)) ≤ c/
√
γ ,

as required. �

Apart from drifting toward 0, and as we had previously mentioned, the magnetization

chain at high temperatures is in fact contracting; this is a special case of the following lemma.

Lemma 2.4.4. Let (St) and (S̃t) be the corresponding magnetization chains of two instances

of the Glauber dynamics for some β = 1 − δ (where δ is not necessarily positive), and put

Dt := St − S̃t. The following then holds:

E[Dt+1 −Dt | Dt] ≤ − δ
n
Dt +

|Dt|
n2

+O(n−4) . (2.4.11)

Proof. By definition (recall (2.3.5)), we have

E[Dt+1 −Dt | Dt] = E[St+1 − St + S̃t − S̃t+1 | Dt]

=
S̃t − St
n

+
[
ϕ(St)− ϕ(S̃t)

]
−
[
ψ(St)− ψ(S̃t)

]
.

The Mean Value Theorem implies that

ϕ(St)− ϕ(S̃t) ≤
β

n
(St − S̃t) ,

and applying Taylor expansions on tanh(x) around βSt and βS̃t, we deduce that

ψ(St)− ψ(S̃t) =
St

n2 cosh2(βSt)
− S̃t

n2 cosh2(βS̃t)
+O

( 1

n4

)
.

Since the derivative of the function x/ cosh2(βx) is bounded by 1, another application of the

Mean Value Theorem gives∣∣∣ψ(St)− ψ(S̃t)
∣∣∣ ≤ |St − S̃t|

n2
+O

( 1

n4

)
.

Altogether, we obtain (2.4.11), as required. �
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Indeed, the above lemma ensures that in the high temperature regime, β = 1− δ where

δ > 0, the magnetization chain is contracting:

E
[
|Dt+1|

∣∣Dt

]
≤
(

1− δ

2n

)
|Dt| for any sufficiently large n . (2.4.12)

We are now ready to prove that hitting near 0 essentially ensures the mixing of the magne-

tization.

Lemma 2.4.5. Let β = 1 − δ for δ > 0 with δ2n → ∞, (Xt) and (X̃t) be two instances of

the dynamics started from arbitrary states σ0 and σ̃0 respectively, and (St) and (S̃t) be their

corresponding magnetization chains. Let τmag denote the coalescence time τmag := min{t :

St = S̃t}, and tn(γ) be as defined in Theorem 2.4.3. Then there exists some constant c > 0

such that

P (τmag > tn(3γ)) ≤ c/
√
γ for all γ > 0 . (2.4.13)

Proof. Set T = tn(γ). We claim that the following holds for large n:

|ESt| ≤
2√
δn

and |ES̃t| ≤
2√
δn

for all t ≥ T . (2.4.14)

To see this, first consider the case where n is even. The above inequality then follows

directly from (2.4.9) and the decreasing property of st (see (2.4.6)), combined with the fact

that E0St = 0 (and thus ESt = 0 for all t ≥ τ0). In fact, in case n is even, |ESt| and

|ES̃t| are both at most 1/
√
δn for all t ≥ T . For the case of n odd (where there is no 0

state for the magnetization chain, and τ0 is the hitting time to ± 1
n
), a simple way to show

that (2.4.14) holds is to bound |E 1
n
St|. By definition, PM( 1

n
, 1
n
) ≥ PM( 1

n
,− 1

n
) (see (2.3.3)).

Combined with the symmetry of the positive and negative parts of the magnetization chain,

one can then verify by induction that P t
M( 1

n
, k
n
) ≥ P t

M( 1
n
,− k

n
) for any odd k > 0 and any t.

Therefore, by symmetry as well as the fact that Es0St ≤ s0 for positive s0, we conclude that

|E 1
n
St| is decreasing with t, and thus is bounded by 1

n
. This implies that (2.4.14) holds for

odd n as well.

Combining (2.4.14) with the Cauchy-Schwartz inequality we obtain that for any t ≥ T

E|St − S̃t| ≤ E|St|+ E|S̃t| ≤
√

Var(St) +
4

δn
+

√
Var(S̃t) +

4

δn
.

Now, combining Lemma 2.3.4 and Lemma 2.4.4 (and in particular, (2.4.12)), we deduce that
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VarSt ≤ 4
δn

, and plugging this into the above inequality gives

E|St − S̃t| ≤
10√
δn

for any t ≥ T .

We next wish to show that within 2γn/δ additional steps, St and S̃t coalesce with probability

at least 1− c/
√
γ for some constant c > 0.

Consider time T , and let Dt := St − S̃t. Recall that we have already established that

EDT ≤ 10/
√
δn , (2.4.15)

and assume without loss of generality that DT > 0. We now run the magnetization chains

St and S̃t independently for T ≤ t ≤ τ1, where

τ1 := min
{
t ≥ T : Dt ∈ {0,− 2

n
}
}
,

and let Ft be the σ-field generated by these two chains up to time t. By Lemma 2.4.4, we

deduce that for sufficiently large values of n, if Dt > 0 then

E[Dt+1 −Dt | Ft] ≤ − δ

2n
Dt ≤ 0 , (2.4.16)

and Dt is a supermartingale with respect to Ft. Hence, so is

Wt := DT+t ·
n

2
1{τ1>t} ,

and it is easy to verify that Wt satisfies the conditions of Lemma 2.3.5 (recall the upper

bound on the holding probability of the magnetization chain, as well as the fact that at most

one spin is updated at any given step). Therefore, for some constant c > 0,

P (τ1 > tn(2γ) | DT ) = P(W0 > 0,W1 > 0, . . . ,Wtn(2γ)−T > 0 | DT )

≤ cnDT√
γn/δ

.

Taking expectation and plugging in (2.4.15), we get that for some constant c′,

P (τ1 > tn(2γ)) ≤ c′
√
γ
. (2.4.17)

From time τ1 and onward, we couple St and S̃t using a monotone coupling, thus Dt becomes
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a non-negative supermartingale with Dτ1 ≤ 2
n
. By (2.4.16),

E [Dt+1 −Dt | Ft] ≤ − δ

n2
for τ1 ≤ t < τmag ,

and therefore, the Optional Stopping Theorem for non-negative supermartingales implies

that, for some constant c′′,

P (τmag − τ1 ≥ n/δ) ≤ E(τmag − τ1)

n/δ
≤ c′′

γ
. (2.4.18)

Combining (2.4.17) and (2.4.18) we deduce that for some constant c,

P (τmag > tn(3γ)) ≤ c
√
γ
,

completing the proof. �

Lower bound

We need to prove that the following statement holds for the distance of the magnetization

at time t from stationarity:

lim
γ→∞

lim inf
n→∞

dn

(
1

2
· n
δ

log(δ2n)− γ
n

δ

)
= 1 . (2.4.19)

The idea is to show that, at time 1
2
·n
δ

log(δ2n)−γ n
δ
, the expected magnetization remains large.

Standard concentration inequalities will then imply that the magnetization will typically be

significantly far from 0, unlike its stationary distribution.

To this end, we shall first analyze the third moment of the magnetization chain. Recalling

the transition rule (2.3.3) of St under the notations (2.3.1),(2.3.2)

p+(s) =
1 + tanh(βs)

2
, p−(s) =

1− tanh(βs)

2
,
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the following holds:

E
[
S3
t+1 | St = s

]
=

1 + s

2
p−(s− n−1)

(
s− 2

n

)3

+
1− s

2
p+(s+ n−1)

(
s+

2

n

)3

+

(
1− 1 + s

2
p−(s− n−1)− 1− s

2
p+(s+ n−1)

)
s3

= s3 +
6s2

n
· 1

4

(
− 2s+ tanh

(
β(s− n−1)

)
+ tanh

(
β(s+ n−1)

)
+ s

(
tanh

(
β(s− n−1)

)
− tanh

(
β(s+ n−1

)) )
+ c1

s

n2
+
c2
n3

. (2.4.20)

As tanh(x) ≤ x for x ≥ 0, for every s > 0 we get

E
[
S3
t+1 | St = s

]
≤ s3 +

3s2

2n

(
−2s+ β(s− n−1) + β(s+ n−1)

)
+ c1

s

n2
+
c2
n3

= s3 − 3
δ

n
s3 +

c1
n2
s+

c2
n3

. (2.4.21)

If s = 0, the above also holds, since in that case |St+1|3 ≤ (2/n)3. Finally, by symmetry, if

s < 0 then the distribution of |S3
t+1| = −S3

t+1 given St = s is the same as that of S3
t+1 given

St = |s|, and altogether we get:

E
[
|St+1|3 | St = s

]
≤ |s|3 − 3

δ

n
|s|3 +

c1
n2
|s|+ c2

n3
.

We deduce that

E|St+1|3 ≤ E

(
|St|3 − 3

δ

n
|St|3 +

c1
n2
|St|+

c2
n3

)
≤
(

1− 3δ

n

)
E|St|3 +

c1
n2

E|St|+
c2
n3

. (2.4.22)

Note that the following statement holds for the first moment of St:

Es0 [|St|] ≤
√

(Es0St)
2 + Vars0(St)

≤
√

(st)2 +
16

δn
≤
(

1− δ

n

)t
|s0|+

4√
δn

.
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Hence,

Es0|St+1|3 ≤
(

1− 3δ

n

)
Es0|St|3 +

c1
n2

(
1− δ

n

)t
|s0|+

2

n2
√
δn

+
c2
n3

= η3Es0|St|3 + ηt
c1
n2
|s0|+

4

n2
√
δn

+
c′2δ

2

n2
,

where η = 1 − δ/n, and the extra error term involving c′2 absorbs the change of coefficient

of Es0|St|3 and also the 1/n3 term. Iterating, we obtain

Es0|St+1|3 ≤ η3t|s0|3 + ηt
c1
n2
|s0|

t∑
j=0

η2j +

(
c′1

n2
√
δn

+
c′2δ

2

n2

) t∑
j=0

η3j

≤ η3t|s0|3 + ηt
c1
n2
· |s0|

1− η2
+

(
c′1

n2
√
δn

+
c′2δ

2

n2

)
· 1

1− η3

≤ η3t|s0|3 + ηt
c1
δn
|s0|+

c′1
(δn)3/2

+
c′2δ

n
. (2.4.23)

Define Zt := |St|η−t, whence Z0 = |S0| = |s0|. Recalling (2.3.5), and combining the Taylor

expansion of tanh(x) given in (2.4.5) with the fact that |ψ(s)| = O (s/n2), we get that for

s > 0

E
[
|St+1|

∣∣St = s
]
≥ ηs− s3

2n
− s

n2
.

By symmetry, an analogous statement holds for s < 0, and altogether we obtain that

E
[
|St+1|

∣∣St] ≥ η|St| −
|St|3

2n
− |St|

n2
. (2.4.24)

Remark. Note that (2.4.24) in fact holds for any temperature, having followed from the

basic definition of the transition rule of (St), rather than from any special properties that

this chain may have in the high temperature regime.

Rearranging the terms and multiplying by η−(t+1), we obtain that for any sufficiently

large n,

E
[(

1− 2

n2

)
Zt − Zt+1 | St

]
≤ 1

n
η−t|St|3 ,

where we used the fact that η−1 ≤ 2. Taking expectation and plugging in (2.4.23), we deduce
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that

Es0

[(
1− 2

n2

)
Zt − Zt+1

]
≤ 1

n

(
η2t|s0|3 +

c1
δn
|s0|+ η−t

(
c′1

(δn)3/2
+
c′2δ

n

))
. (2.4.25)

Set

t =
n

2δ
log(δ2n)− γn/δ ,

and notice that when n is sufficiently large,
(
1− 2

n2

)−(t+1) ≤ 2 for any t ≤ t. Therefore,

multiplying (2.4.25) by (1− 2
n2 )−(t+1) and summing over gives:

|s0| − 2Es0Zt ≤
2|s0|3

n(1− η2)
+ t

c1
δn2

|s0|+
2η−t

n(1− η)

(
c′1

(δn)3/2
+
c′2δ

n

)
≤ 2|s0|3

δ
+
c1 log(δ2n)

2δ2n
|s0|+

c′1
δ3/2n

+
c2

δn3/2
+
c′2δ√
n

=
2|s0|3

δ
+ o(

√
δ + |s0|) ,

where the last inequality follows from the assumption δ2n→∞. We now select s0 =
√
δ/3,

which gives √
δ/3− 2Es0Zt ≤ 2

√
δ/27 + o(

√
δ) ,

and for a sufficiently large n we get

Es0Zt ≥
√
δ/9 .

Recalling the definition of Zt, and using the well known fact that (1−x) ≥ exp(−x/(1−x))

for 0 < x < 1, we get that for a sufficiently large n,

Es0|St| ≥ ηt
√
δ/9 ≥ eγ/2

10
√
δn

=: L . (2.4.26)

Lemma 2.3.4 implies that max{Vars0(St),Varµn(S̃t)} ≤ 16/δn. Therefore, recalling that

EµnS̃t = 0, Chebyshev’s inequality gives

Ps0(|St| ≤ L/2) ≤ Ps0(||St| − Es0|St|| ≥ L/2) ≤ 16/(δn)

L2/4
= ce−γ ,

Pµn(|S̃t| ≥ L/2) ≤ 16/(δn)

L2/4
= ce−γ .
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Hence, letting π denote the stationary distribution of St, and AL denote the set
[
−L

2
, L

2

]
, we

obtain that

‖Ps0(St ∈ ·)− π‖TV ≥ π(AL)−Ps0(|St| ∈ AL) ≥ 1− 2ce−γ ,

which immediately gives (2.4.19). �

2.4.2 Full Mixing of the Glauber dynamics

In order to boost the mixing of the magnetization into the full mixing of the configurations,

we will need the following result, which was implicitly proved in [53, Sections 3.3, 3.4] using

a Two Coordinate Chain analysis. Although the authors of [53] were considering the case

of 0 < β < 1 fixed, one can follow the same arguments and extend this result to any β < 1.

Following is this generalization of their result:

Theorem 2.4.6 ([53]). Let (Xt) be an instance of the Glauber dynamics and µn the station-

ary distribution of the dynamics. Suppose X0 is supported by

Ω0 := {σ ∈ Ω : |S(σ)| ≤ 1/2} .

For any σ0 ∈ Ω0 and σ̃ ∈ Ω, we consider the dynamics (Xt) starting from σ0 and an

additional Glauber dynamics (X̃t) starting from σ̃, and define:

τmag := min{t : S(Xt) = S(X̃t)} ,
U(σ) := |{i : σ(i) = σ0(i) = 1}| , V (σ) := |{i : σ(i) = σ0(i) = −1}| ,
Ξ := {σ : min{U(σ), U(σ0)− U(σ), V (σ), V (σ0)− V (σ))} ≥ n/20} ,

R(t) :=
∣∣∣U(Xt)− U(X̃t)

∣∣∣ ,
H1(t) := {τmag ≤ t} , H2(t1, t2) := ∩t2i=t1{Xi ∈ Ξ ∧ X̃i ∈ Ξ} .

Then for any possible coupling of Xt and X̃t, the following holds:

max
σ0∈Ω0

‖Pσ0(Xr2 ∈ ·)− µn‖TV ≤ max
σ0∈Ω0

σ̃∈Ω

[
Pσ0,σ̃(H1(r1))

+ Pσ0,σ̃(Rr1 > α
√
n/δ) + Pσ0,σ̃(H2(r1, r2)) +

αc1√
r2 − r1

·
√
n

δ

]
, (2.4.27)

where r1 < r2 and α > 0.

The rest of this subsection will be devoted to establishing a series of properties satisfied



31

by the magnetization throughout the mildly subcritical case, in order to ultimately apply

the above theorem.

First, we shall show that any instance of the Glauber dynamics concentrates on Ω0 once

it performs an initial burn-in period of n/δ steps. It suffices to show this for the dynamics

started from s0 = 1: to see this, consider a monotone-coupling of the dynamics (Xt) starting

from an arbitrary configuration, together with two additional instances of the dynamics,

(X+
t ) starting from s0 = 1 (from above) and (X−

t ) starting from s0 = −1 (from below). By

definition of the monotone-coupling, the chains (X+
t ) and (X−

t ) “trap” the chain (Xt), and

by symmetry it indeed remains to show that

P1(|St0| ≤ 1/2) = 1− o(1) , where t0 = n/δ .

Recalling (2.4.4), we have st+1 ≤ (1− δ
n
)st where st = E

[
|St|1{τ0>t}

]
, thus

E1

[
|St0|1{τ0>t0}

]
≤ e−1 .

Adding this to the fact that E1St01{τ0 ≤ t0} = 0, which follows immediately from symmetry,

we conclude that E1St0 ≤ e−1. Next, applying Lemma 2.3.4 to our case and noting that

(2.3.7) holds for ρ′ = 1− 1
n

(
1− n tanh(β

n
)
)
≤ 1− δ

n
, we conclude that

Var(St) ≤ ν1
n

δ
≤
(

4

n

)2
n

δ
=

16

δn
for all t .

Hence, Chebyshev’s inequality gives that |St0| ≤ 1/2 with high probability. We may therefore

assume henceforth that our initial configuration already belongs to some good state σ0 ∈ Ω0.

Next, set:

T := tn(γ) , r0 := tn(2γ) , r1 := tn(3γ) , r2 := tn(4γ) .

We will next bound the terms in the righthand side of (2.4.27) in order. First, recall that

Lemma 2.4.5 already provided us with a bound on the probability of H1(r1), by stating there

for constant c > 0

P(τmag > r1) ≤
c
√
γ
. (2.4.28)

Our next task is to provide an upper bound on Rr1 , and namely, to show that it typically

has order at most
√
n/δ. In order to obtain such a bound, we will analyze the sum of the
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spins over the set B := {i : σ0(i) = 1}. Define

Mt(B) :=
1

2

∑
i∈B

Xt(i) ,

and consider the monotone-coupling of (Xt) with the chains (X+
t ) and (X−

t ) starting from

the all-plus and all-minus positions respectively, such that X−
t ≤ Xt ≤ X+

t . By defining M+
t

and M−
t accordingly, we get that

E(Mt(B))2 ≤ E(M+
t (B))2 + E(M−

t (B))2 = 2E(M+
t (B))2 .

By (2.4.14), we immediately get that for t ≥ T , |EM+
t (B)| ≤

√
n
δ
. We will next bound the

variance of M+
t (B), by considering the following two cases:

(i) If every pair of spins of X+
t is positively correlated (since X+

0 is the all-plus configura-

tion, by symmetry, the covariances of each pair of spins is the same), then we can infer

that

Var(M+
t (B)) ≤ Var

(1

2

∑
i∈[n]

X+
t (i)

)
=
n2

4
Var

(
S(X+

t )
)
≤ 4n

δ
.

(ii) Otherwise, every pair of spins of X+
t is negatively correlated, and it follows that

Var(M+
t (B)) ≤

∑
i∈B

Var
(1

2
X+
t (i)

)
≤ n

4
.

Altogether, we conclude that for all t ≥ T ,

E|Mt(B)| ≤
√

E (Mt(B))2 ≤
√

2 Var(M+
t (B) + 2 (EMt(B))2

≤
√

8n

δ
+

2n

δ
≤ 8

√
n

δ
. (2.4.29)

This immediately implies that

ERr1 = E|Mr1(B)− M̃r1(B)| ≤ E|Mr1(B)|+ E|M̃r1(B)| ≤ 16

√
n

δ
,

and an application of Markov’s inequality now gives

P(Rr1 ≥ α

√
n

δ
) ≤ 16

α
. (2.4.30)
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It remains to bound the probability of H2(r1, r2). Define:

Y :=
∑

r1≤t≤r2

1{|Mt(B)| > n/64} ,

and notice that

P

( r2⋃
t=r1

{|Mt(B)| ≥ n/32}
)
≤ P(Y > n/64) ≤ c0E[Y ]

n
.

Recall that the second inequality of (2.4.29) actually gives E|Mt(B)|2 ≤ 5n
δ

. Hence, a

standard second moment argument gives

P(|Mt(B)| > n/64) = O

(
1

δn

)
.

Altogether, Eσ0Y = O(1/δ2) and

Pσ0

( r2⋃
t=r1

{|Mt(B)| ≥ n/32}
)

= O

(
1

δ2n

)
.

Applying an analogous argument to the chain (X̃t), we obtain that

Pσ̃

( r2⋃
t=r1

{
|M̃t(B)| ≥ n/32

})
= O

(
1

δ2n

)
,

and combining the last two inequalities, we conclude that

Pσ0,σ̃

(
H2(r1, r2)

)
= O

(
1

δ2n

)
. (2.4.31)

Finally, we have established all the properties needed in order to apply Theorem 2.4.6.

At the cost of a negligible number of burn-in steps, the state of (Xt) with high probability

belongs to Ω0. We may thus plug in (2.4.28), (2.4.30) and (2.4.31) into Theorem 2.4.6,

choosing α =
√
γ, to obtain (2.4.1).

2.4.3 Spectral gap Analysis

By Proposition 2.3.9, it suffices to determine the spectral gap of the magnetization chain.

The lower bound will follow from the next lemma of [17] (see also [54, Theorem 13.1]) along
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with the contraction properties of the magnetization chain.

Lemma 2.4.7 ([17]). Suppose Ω is a metric space with distance ρ. Let P be a transition

matrix for a Markov chain, not necessarily reversible. Suppose there exists a constant θ < 1

and for each x, y ∈ Ω, there is a coupling (X1, Y1) of P (x, ·) and P (y, ·) satisfying

Ex,y(ρ(X1, Y1)) ≤ θρ(x, y) .

If λ is an eigenvalue of P different from 1, then |λ| ≤ θ. In particular, the spectral gap

satisfies gap ≥ 1− θ.

Recalling (2.4.12), the monotone coupling of St and S̃t implies that

Es,s̃

∣∣S1 − S̃1

∣∣ ≤ (1− δ

n
+ o
( δ
n

))
|s− s̃| .

Therefore, Lemma 3.4.8 ensures that gap ≥ (1 + o(1)) δ
n
.

It remains to show a matching upper bound on gap, the spectral gap of the magnetization

chain. Let M be the transition kernel of this chain, and π be its stationary distribution.

Similar to our final argument in Proposition 2.3.9 (recall (3.2.1)), we apply the Dirichlet

representation for the spectral gap (as given in [54, Lemma 13.7]) with respect to the function

f being the identity map 1 on the space of normalized magnetization, we obtain that

gap ≤ E(1)

〈1,1〉π
=
〈(I −M)1,1〉π

〈1,1〉π
= 1− Eπ [E [StSt+1 | St]]

EπS2
t

, (2.4.32)

where EπS
k
t is the k-th moment of the stationary magnetization chain (St). Recall (2.4.24)

(where η = 1− δ
n
), and notice that the following slightly stronger inequality in fact holds:

E
[
sign(St)St+1

∣∣St] ≥ η|St| −
|St|3

2n
− |St|

n2
.

(to see this, one needs to apply the same argument that led to (2.4.24), then verify the

special cases St ∈ {0, 1
n
}). It thus follows that

E
[
StSt+1

∣∣St] ≥ ηS2
t −

S4
t

2n
− S2

t

n2
,

and plugging the above into (2.4.32) we get

gap ≤ δ

n
+

1

2n
· EπS

4
t

EπS2
t

+
1

n2
. (2.4.33)
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In order to bound the second term in (2.4.33), we need to give an upper bound for the

fourth moment in terms of the second moment. The next argument is similar to the one

used earlier to bound the third moment of the magnetization chain (see (2.4.20)), and hence

will be described in a more concise manner.

For convenience, we use the abbreviations h+ := tanh (β(s+ n−1)) and h− := tanh (β(s− n−1)).

By definition (see (2.3.3)) the following then holds:

E[S4
t+1 | St = s] = s4 +

2

n
s3
(
−2s+ h− + h+ + sh− − h+

)
+

6

n2
s2
(
2 + h+ − h− − sh− + h+

)
+

8

n3
s3
(
−2s+ h− + h+ + sh− − h+

)
+

4

n4

(
2 + h+ − h− − sh− + h+

)
≤
(

1− 4δ

n

)
s4 +

12

n2
s2 +

16

n4
.

Now, taking expectation and letting the St be distributed according to π, we obtain that

EπS
4
t ≤

3

δn
EπS

2
t +

4

δn3
.

Recalling that, as the spins are positively correlated, Varπ(St) ≥ 1
n
, we get

EπS
4
t ≤

(
3 +

4

n

)
EπS

2
t

nδ
. (2.4.34)

Plugging (2.4.34) into (2.4.33), we conclude that

gap ≤ δ

n

(
1 +O

( 1

δ2n

))
= (1 + o(1))

δ

n
.

2.5 The critical window

In this section we prove Theorem 4, which establishes that the critical window has a mixing-

time of order n3/2 without a cutoff, as well as a spectral-gap of order n−3/2.
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2.5.1 Upper bound

Let (Xt) denote the Glauber dynamics, started from an arbitrary configuration σ, and let

(X̃t) denote the dynamics started from the stationary distribution µn. As usual, let (St) and

(S̃t) denote the (normalized) magnetization chains of (Xt) and (X̃t) respectively.

Let ε > 0. The case δ2n = O(1) of Theorem 2.4.3 implies that, for a sufficiently large

γ > 0, Pσ

(
τ0 ≥ γn3/2

)
< ε. Plugging this into Lemma 2.3.1, we deduce that there exists

some cε > 0, such that the chains St and S̃t coalesce after at most cεn
3/2 steps with probability

at least 1− ε.

At this point, Lemma 2.3.3 implies that (Xt) and (X̃t) coalesce after at most O(n3/2) +

O(n log n) = O(n3/2) additional steps with probability arbitrarily close to 1, as required.

2.5.2 Lower bound

Throughout this argument, recall that δ is possibly negative, yet satisfies δ2n = O(1). By

(2.4.22),

E|St+1|3 ≤ E

(
|St|3 − 3

δ

n
|St|3 +

c1
n2
|St|+

c2
n3

)
≤
(

1− 3δ

n

)
E|St|3 +

c1
n2

E|St|+
c2
n3

.

Recalling Lemma 2.4.4, and plugging the fact that δ = O(n−1/2) in (2.4.11), the following

holds. If St and S̃t are the magnetization chains corresponding to two instances of the

Glauber dynamics, then for some constant c > 0 and any sufficiently large n,

Es,s̃|S1 − S̃1| ≤ (1 + cn−3/2)|s− s̃| . (2.5.1)

Combining this with the extended form of Lemma 2.3.4, as given in (2.3.8), we deduce that

if t ≤ εn3/2 for some small fixed ε > 0, then Vars0 St ≤ 4t/n2. Therefore,

Es0 [|St|] ≤
√
|Es0St|2 + Vars0 St ≤

(
1− δ

n

)t
|s0|+

2
√
t

n
.
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Therefore,

Es0|St+1|3 ≤
(

1− 3δ

n

)
Es0|St|3 +

c1
n2

(
1− δ

n

)t
|s0|+

c′1
√
t

n3

≤ η3Es0|St|3 + ηt
c1
n2
|s0|+

c′1
√
t

n3
,

where again η = 1− δ/n. Iterating, we obtain

Es0|St+1|3 ≤ η3t|s0|3 + ηt
c1
n2
|s0|

t∑
j=0

η2j +
c′1
√
t

n3

t∑
j=0

η3j

≤ η3t|s0|3 + ηt
c1
n2
· η

2t−1 − 1

η2 − 1
|s0|+

c′1
√
t

n3
· η

3t − 1

η3 − 1

≤ η3t|s0|3 + ηt
c1
n2
· 2t|s0|+

c′1
√
t

n3
· 3t , (2.5.2)

where the last inequality holds for sufficiently large n and t ≤ εn3/2 with ε > 0 small

enough (such a choice ensures that ηt will be suitably small). Define Zt := |St|η−t, whence

Z0 = |S0| = |s0|. Applying (2.4.24) (recall that it holds for any temperature) and using the

fact that η−1 ≤ 2, we get

E[Zt+1 | St] ≥ Zt −
1

n

(
η−t|St|3 +O(1/n)

)
,

for n large enough, hence

E[Zt − Zt+1 | St] ≤
1

n

(
η−t|St|3 +O(1/n)

)
.

Taking expectation and plugging in (2.4.23),

Es0 [Zt − Zt+1] ≤
1

n

(
η2t|s0|3 +

c2t

n2
|s0|+ η−t

c′2t
3/2

n3
+O(1/n)

)
. (2.5.3)
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Set t = n3/2/A4 for some large constant A such that 1
2
≤ ηt ≤ 2. Summing over (2.5.3) we

obtain that

|s0| − Es0Zt ≤
1− η2t

n(1− η2)
|s0|3 + t

2 c2
n3
|s0|+ 2η−t · t5/2/n4 +O(t/n2)

≤ 2

A4

√
n|s0|3 +

c2
A8
|s0|+

2

A10
e
√
δ2n/A4

n−1/4 +O(n−1/2) .

We now select s0 = An−1/4 for some large constant A; this gives

An−1/4 − Es0Zt ≤
(

2

A
+
c2
A7

+
2

A10
e
√
δ2n/A4

)
n−1/4 +O(n−1/2) .

Choosing A large enough to swallow the constant c2 as well as the term δ2n (using the fact

that δ2n is bounded), we obtain that

Es0Zt ≥
1

2
An−1/4 .

Translating Zt back to |St|, we obtain

Es0|St| ≥ ηt · 1

2
An−1/4 ≥

√
An−1/4 =: B , (2.5.4)

provided that A is sufficiently large (once again, using the fact that ηt is bounded, this time

from below). Since

Vars0(St) ≤ 16t/n2 =
16

A4
n−1/2 , (2.5.5)

the following concentration result on the stationary chain (S̃t) will complete the proof:

Pµn(|S̃t| ≥ An−1/4)} ≤ ε(A) , and lim
A→∞

ε(A) = 0 . (2.5.6)

Indeed, combining the above two statements, Chebyshev’s inequality implies that

‖Ps0(St ∈ ·)− π‖TV ≥ π([−B/2, B/2])−Ps0(|St| ≤ B/2)

≥ 1− 64

A5
− ε(

√
A) . (2.5.7)

It remains to prove (2.5.6). Since we are proving a lower bound for the mixing-time, it suffices

to consider a sub-sequence of the δn-s such that δn
√
n converges to some constant (possibly

0). The following result establishes the limiting stationary distribution of the magnetization
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chain in this case.

Theorem 2.5.1. Suppose that limn→∞ δn
√
n = α ∈ R. The following holds:

Sµn

n−1/4
→ exp

(
− s

4

12
− α

s2

2

)
. (2.5.8)

Proof. We need the following theorem:

Theorem 2.5.2 ([33, Theorem 3.9]). Let ρ denote some probability measure, and let Sn(ρ) =
1
n

∑n
j=1Xj(ρ), where the {Xj(ρ) : j ∈ [n]} have joint distribution

1

Zn
exp

[
(x1 + . . .+ xn)2

2n

]
n∏
j=1

dρ(xj) ,

and Zn is a normalization constant. Suppose that {ρn : n = 1, 2, . . .} are measures satisfying

exp(x2/2)dρn → exp(x2/2)dρ . (2.5.9)

Suppose further that ρ has the following properties:

1. Pure: the function

Gρ(s) :=
s2

2
− log

∫
esxdρ(x)

has a unique global minimum.

2. Centered at m: let m denote the location of the above global minimum.

3. Strength δ and type k: the parameters k, δ > 0 are such that

Gρ(s) = Gρ(m) + δ
(s−m)2k

(2k)!
+ o((s−m)2k) ,

where the o(·)-term tends to 0 as s→ m.

If, for some real numbers α1, . . . , α2k−1 we have

G(j)
ρn

(m) =
αj

n1−j/2k + o(n−1+j/2k) , j = 1, 2, . . . , 2k − 1 , n→∞ ,

then the following holds:

Sn(ρn) → 1{s 6=m}
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and

Sn(ρn)−m

n−1/2k
→


N

(
−α1

δ
,
1

δ
− 1

)
, if k = 1 ,

exp

(
−δ s

2k

(2k)!
−

2k−1∑
j=1

αj
sj

j!

)
, if k ≥ 2 .

,

where δ−1 − 1 > 0 for k = 1.

Let ρ denote the two-point uniform measure on {−1, 1}, and let ρn denote the two-point

uniform measure on {−βn, βn}. As |1 − βn| = δn = O(1/
√
n), the convergence requirement

(2.5.9) of the measures ρn is clearly satisfied. We proceed to verify the properties of ρ:

Gρ(s) =
s2

2
− log

∫
esxdρ(x) =

s2

2
− log cosh(s) =

s4

12
− s6

45
+O(s8) .

This implies that Gρ has a unique global minimum at m = 0, type k = 2 and strength δ = 2.

As δn
√
n→ α, we deduce that the Gρn-s satisfy

Gρn(s) =
s2

2
− log cosh(βns) ,

G(1)
ρn

(0) = G(3)
ρn

(0) = 0 ,

G(2)
ρn

(0) = 1− β2
n = δn(2− δn) =

2α√
n

+ o(n−1/2) .

This completes the verification of the conditions of the theorem, and we obtain that

Sn(ρn)

n−1/4
→ exp

(
− s

4

12
− α

s2

2

)
. (2.5.10)

Recalling that, if xi = ±1 is the i-th spin,

µn(x1, . . . , xn) =
1

Z(β)
exp

(β
n

∑
1≤i<j≤n

xixj

)
, (2.5.11)

clearly Sn(ρn) has the same distribution as Sµn for any n. This completes the proof of the

theorem. �

Remark. One can verify that the above analysis of the mixing time in the critical window

holds also for the censored dynamics (where the magnetization is restricted to be non-

negative, by flipping all spins whenever it becomes negative). Indeed, the upper bound

immediately holds as the censored dynamics is a function of the original Glauber dynamics.
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For the lower bound, notice that our argument tracked the absolute value of the magne-

tization chain, and hence can readily be applied to the censored case as-well. Altogether,

the censored dynamics has a mixing time of order n3/2 in the critical window 1 ± δ for

δ = O(1/
√
n).

2.5.3 Spectral gap analysis

The spectral gap bound in the critical temperature regime is obtained by combining the

above analysis with results of [25] on birth-and-death chains.

The lower bound on gap is a direct consequence of the fact that the mixing time has order

n3/2, and that the inequality trel ≤ tmix

(
1
4

)
always holds. It remains to prove the matching

bound tmix

(
1
4

)
= O(trel). Suppose that this is false, that is, trel = o

(
tmix

(
1
4

))
.

Let A be some large constant, and let s0 = An−1/4. Notice that the case δ2n = O(1) in

Theorem 2.4.3 implies that E1τ0 = O(n3/2). Furthermore, by Theorem 2.5.2, there exists a

strictly positive function of A, ε(A), such that limA→∞ ε(A) = 0 and

1

2
ε(A) ≤ π(S ≥ s0) ≤ 2ε(A)

for sufficiently large n. Applying Lemma 2.3.7 with α = π(S ≥ s0) and β = 1
2

gives Es0τ0 =

o(n3/2). As in Subsection 2.5.2, set t̄ = n3/2/A4 for some large constant A. Combining

Lemma 2.3.8 with Markov’s inequality gives the following total variation bound for this

birth-and-death chain:

‖Ps0(St̄ ∈ ·)− π‖TV ≤ 4ε(A) + o(1) . (2.5.12)

However, the lower bound (2.5.7) obtained in Subsection 2.5.2 implies that:

‖Ps0(St̄ ∈ ·)− π‖TV ≥ 1− 4ε(
√
A/2)− 64/A5 . (2.5.13)

Choosing a sufficiently large constant A, (2.5.12) and (2.5.13) together lead to a contradiction

for large n. We conclude that gap = O(n−3/2), completing the proof.

Note that, as the condition gap · tmix(1
4
) → ∞ is necessary for cutoff in any family of

ergodic reversible finite Markov chains (see, e.g., [25]), we immediately deduce that there is

no cutoff in this regime.

Remark. It is worth noting that the order of the spectral gap at βc = 1 follows from a simpler

argument. Indeed, in that case, the upper bound on gap can alternatively be derived from its

Dirichlet representation, similar to the argument that appeared in the proof of Proposition

2.3.9 (where we substitute the identity function, i.e., the sum of spins in the Dirichlet form).
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For this argument, one needs a lower bound for the variance of the stationary magnetization.

Such a bound is known for βc = 1 (see [34]), rather than throughout the critical window.

2.6 Low temperature regime

In this section we prove Theorem 5, which establishes the order of the mixing time and the

spectral gap in the super critical regime (where the mixing of the dynamics is exponentially

slow and there is no cutoff).

2.6.1 Exponential mixing

Recall that the normalized magnetization chain St is a birth-and-death chain on the space

X = {−1,−1 + 2
n
, . . . , 1 − 2

n
, 1}, and for simplicity, assume throughout the proof that n is

even (this is convenient since in this case we can refer to the 0 state. Whenever n is odd,

the same proof holds by letting 1
n

take the role of the 0 state).

The following notation will be useful. We define

X [a, b] := {x ∈ X : a ≤ x ≤ b} ,

and similarly define X (a, b), etc. accordingly. For all x ∈ X , let px, qx, hx denote the

transition probabilities of St to the right, to the left and to itself from the state x, that is:

px := PM
(
x, x+ 2

n

)
=

1− x

2
· 1 + tanh(β(x+ n−1))

2
,

qx := PM
(
x, x− 2

n

)
=

1 + x

2
· 1− tanh(β(x− n−1))

2
,

hx := PM (x, x) = 1− px − qx .

By well known results on birth-and-death chains (see, e.g., [54]), the resistance rx and con-

ductance cx of the edge (x, x+ 2/n), and the conductance c′x of the self-loop of vertex x for

x ∈ X [0, 1] are (the negative parts can be obtained immediately by symmetry)

rx =
∏

y∈X (0,x]

qy
py

, cx =
∏

y∈X (0,x]

py
qy

, c′x =
hx

px + qx
(cx−2/n + cx) , (2.6.1)

and the commute-time between x and y, Cx,y for x < y (the minimal time it takes the chain,
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starting from x, to hit y then return to x) satisfies

ECx,y = 2cSR(x↔ y) , (2.6.2)

where

cS :=
∑
x∈X

(cx + c′x) and R(x↔ y) :=
∑

z∈X [x,y)

rz .

Our first goal is to estimate the expected commute time between 0 and ζ. This is incorporated

in the next lemma.

Lemma 2.6.1. The expected commute time between 0 and ζ has order

texp :=
n

δ
exp

(
n

2

∫ ζ

0

log
1 + g(x)

1− g(x)

)
dx , (2.6.3)

where g(x) := (tanh(βx)− x) / (1− x tanh(βx)). In particular, in the special case δ → 0 we

have EC0,ζ = n
δ

exp
(
(3

4
+ o(1))δ2n

)
, where the o(1)-term tends to 0 as n→∞.

Remark. If ζ 6∈ X , instead we simply choose a state in X which is the nearest possible to

ζ. For a sufficiently large n, such a negligible adjustment would keep our calculations and

arguments in tact. For the convenience of notation, let ζ denote the mentioned state in this

case as well.

To prove Lemma 2.6.1, we need the following two lemmas, which establish the order of

the total conductance and effective resistance respectively.

Lemma 2.6.2. The total conductance satisfies

cS = Θ

(√
n

δ
exp

(
n

2

∫ ζ

0

log

(
1 + g(x)

1− g(x)

)
dx

))
.

Lemma 2.6.3. The effective resistance between 0 and ζ satisfies

R(0 ↔ ζ) = Θ(
√
n/δ) .

Proof of Lemma 2.6.2. Notice that for any x ∈ X , the holding probability hx is uniformly

bounded from below, and thus c′x can be uniformly bounded from above by (cx + cx−2/n).

It therefore follows that cS = Θ(c̃S) where c̃S :=
∑

x∈X cx, and it remains to determine c̃S.

We first locate the maximal edge conductance and determine its order, by means of classical
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analysis.

log cx =
∑

y∈X (0,x]

log
py
qy

=
∑

y∈X (0,x]

log

(
1− y

1 + y
· 1 + tanh(β(y + n−1))

1− tanh(β(y − n−1))

)

=
∑

y∈X (0,x]

log

(
1 + g(y)

1− g(y)
+O(1/n)

)
=

∑
y∈X (0,x]

log

(
1 + g(y)

1− g(y)

)
+O(x) (2.6.4)

Note that g(x) has a unique positive root at x = ζ, and satisfies g(x) > 0 for x ∈ (0, ζ) and

g(x) < 0 for x > ζ. Therefore,

log cx ≤ log cζ +O(x) ≤ log cζ +O(1) ,

thus we move to estimate cζ . As log cζ is simply a Riemann sum (after an appropriate

rescaling), we deduce that

log cζ =
∑

x∈X (0,ζ]

log

(
1 + g(x)

1− g(x)

)
+O(1) =

n

2

∫ ζ

0

log

(
1 + g(x)

1− g(x)

)
dx+O(1) ,

and therefore

cζ = Θ

(
exp

(
n

2

∫ ζ

0

log

(
1 + g(x)

1− g(x)

)
dx

))
, (2.6.5)

cx = O(cζ) . (2.6.6)

Next, consider the ratio cx+2/n/cx; whenever x ≤ ζ, g(x) ≥ 0, hence we have

cx+2/n

cx
=
px+2/n

qx+2/n

≥ 1 + g(x)

1− g(x)
−O(1/n) ≥ 1 + 2g(x)−O(1/n) .

Whenever 1√
δn
≤ x ≤ ζ − 1√

δn
(using the Taylor expansions around 0 and around ζ) we

obtain that tanh(βx)−x ≥ 1
2

√
δ/n. Combining this with the fact that x tanh(βx) is always

non-negative, we obtain that for any such x, 2g(x) ≥
√
δ/n. Therefore, setting

ξ1 :=

√
1

δn
, ξ2 := ζ −

√
1

δn
, ξ3 := ζ +

√
1

δn
, (2.6.7)
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we get

cx+2/n

cx
≥ 1 +

√
δ

n
−O(1/n) for any x ∈ X [ξ1, ξ2] . (2.6.8)

Using the fact that δ2n → ∞, the sum of cx-s in the above range is at most the sum of a

geometric series with a quotient 1/(1 + 1
2

√
δ/n) and an initial position cζ :

∑
x∈X [ξ1,ξ2]

cx ≤ 3

√
n

δ
· cζ . (2.6.9)

We now treat x ≥ ξ3; since g(ζ) = 0 and g(x) is decreasing for any x ≥ ζ, then in particular

whenever ζ +
√
δ/n ≤ x ≤ 1 we have −1 = g(1) ≤ g(x) ≤ 0, and therefore

cx+2/n

cx
=
px+2/n

qx+2/n

≤ 1 + g(x) +O(1/n) .

Furthermore, for any ζ +
√
δ/n ≤ x ≤ 1 (using Taylor expansion around ζ) we have

tanh(βx)− x ≤ −
√
δ/n, and hence g(x) ≤ −

√
δ/n. We deduce that

cx+2/n

cx
≤ 1−

√
δ

n
+O(1/n) for any x ∈ X [ξ3, 1] ,

and therefore ∑
x∈X [ξ3,1]

cx ≤ 2

√
n

δ
· cζ . (2.6.10)

Combining (2.6.9) and (2.6.10) together, and recalling (2.6.6), we obtain that

c̃S =
∑
x∈X

cx ≤ 2
(
|X [0, ξ1]|+ 5

√
n/δ + |X [ξ2, ξ3]|

)
cζ = O

(√
n

δ
cζ

)
.

Finally, consider x ∈ X [ξ2, ξ3]; an argument similar to the ones above (i.e., perform Taylor

expansion around ζ and bound the ratio of cx+2/n/cx) shows that cx is of order cζ in this

region. This implies that for some constant b > 0

c̃S ≥
∑

x∈X [ξ2,ξ2]

cx ≥ b|X [ξ2, ξ3]|cζ ≥ b

√
n

δ
cζ , (2.6.11)
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and altogether, plugging in (2.6.5), we get

c̃S = Θ

(√
n

δ
exp

(
n

2

∫ ζ

0

log

(
1 + g(x)

1− g(x)

)
dx

))
. (2.6.12)

�

Proof of Lemma 2.6.3. Translating the conductances, as given in (2.6.8), to resistances,

we get
rx+2/n

rx
≤ 1−

√
δ

n
−O(1/n) for any x ∈ X [ξ1, ξ2] ,

and hence ∑
x∈X [ξ1,ξ2]

rx ≤ rξ12
√
n/δ ≤ 2

√
n/δ ,

where in the last inequality we used the fact that rx ≤ rx−2/n (≤ r0 = 1) for all x ∈ X [0, ζ],

which holds since qx ≤ px for such x. Altogether, we have the following upper bound:

R(0 ↔ ζ) =
∑

x∈X [0,ξ1]

rx +
∑

x∈X [ξ1,ξ2]

rx +
∑

x∈X [ξ2,ζ]

rx

≤ |X [0, ξ1]|+ 2

√
n

δ
+ |X [ξ2, ζ]| ≤ 4

√
n/δ . (2.6.13)

For a lower bound, consider x ∈ X [0, ξ1]. Clearly, for any x ≤ 1√
δn

we have g(x) =
tanh(βx−x)

1−x tanh(βx)
≤ 2δx, and hence

rx+2/n

rx
=

1− g(x)

1 + g(x)
+O(1/n) ≥ 1− 5xδ ≥ exp(−6xδ) ,

yielding that

rξ1 ≥ exp
(
−3δn · ξ2

1

)
≥ e−3 .

Altogether,

R(0 ↔ ζ) ≥ e−3|X [0, ξ1]| ≥ e−4
√
n/δ ,

and combining this with (2.6.13) we deduce that R(0 ↔ ζ) = Θ(
√
n/δ). �

Proof of Lemma 2.6.1. Plugging in the estimates for c̃S and R(0 ↔ ζ) in (2.6.2), we get

EC0,ζ = Θ

(
n

δ
exp

(
n

2

∫ ζ

0

log

(
1 + g(x)

1− g(x)

)
dx

))
. (2.6.14)
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This completes the proof of the lemma 2.6.1. �

Note that by symmetry, the expected hitting time from ζ to −ζ is exactly the expected

commute time between 0 and ζ. Hence,

Eζ [τ−ζ ] = Θ(texp) . (2.6.15)

In order to show that the above hitting time is the leading order term in the mixing-time

at low temperatures, we need the following lemma, which addresses the order of the hitting

time from 1 to ζ.

Lemma 2.6.4. The normalized magnetization chain St in the low temperature regimes sat-

isfies E1τζ = o(texp) .

Proof. First consider the case where δ is bounded below by some constant. Notice that,

as px ≤ qx for all x ≥ ζ, in this region St is a supermartingale. Therefore, Lemma 2.3.5

(or simply standard results on the simple random walk, which dominates our chain in this

case) implies that E1τζ = O(n2). Combining this with the fact that texp ≥ exp(cn) for some

constant c in this case, we immediately obtain that E1τζ = o(texp).

Next, assume that δ = o(1). Note that in this case, the Taylor expansion tanh(βx) =

βx− 1
3
(βx)3 +O((βx)5) implies that

ζ =
√

3δ/β3 −O((βζ))5 =
√

3δ +O(δ3/2) . (2.6.16)

Recalling that E[St+1 | St = s] ≤ s+ 1
n
(tanh(βs)− s) (as s ≥ 0), Jensen’s inequality (using

the concavity of the Hyperbolic tangent) gives

E[St+1 − St] = E(E[St+1 − St | St]) ≤
1

n
(E tanh(βSt)− ESt)

≤ 1

n
(tanh(βESt)− ESt) . (2.6.17)

Further note that the function tanh(βs) has the following Taylor expansion around ζ (for

some ξ between s and ζ):

tanh(βs) = ζ + β(1− ζ2)(s− ζ) + β2(−1 + ζ2)ζ(s− ζ)2

+
β3

3
(−1 + 4ζ2 − ζ4)(s− ζ)3 +

tanh(4)(ξ)

4!
(s− ζ)4 . (2.6.18)

Since tanh(4)(x) < 5 for any x ≥ 0, (2.6.18) implies that for a sufficiently large n the term

−1
3
(s−ζ)3 absorbs the last term in the expansion (2.6.18). Together with (2.6.16), we obtain
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that

tanh(βs) ≤ ζ + β(1− ζ2)(s− ζ) + β2(−1 + ζ2)
√
δ(s− ζ)2 .

Therefore, (2.6.17) follows:

E[St+1 − St] ≤ −
√
δ

2n
(ESt − ζ)2 . (2.6.19)

Set

bi = 2−i , i2 = min{i : bi <
√
δ} and ui = min{t : ESt − ζ < bi} ,

noting that this gives bi/2 ≤ ESt − ζ ≤ bi for any t ∈ [ui, ui+1]. It follows that

ui+1 − ui ≤
bi/2

√
δ

2n
( bi

2
)2

=
4n√
δbi

,

and hence

i2∑
i=1

ui+1 − ui ≤
∑
i:b2i>δ

4n√
δbi

= O(n/δ) ,

where we used the fact that the series {b−1
i } is geometric with ratio 2. We claim that this

implies the required bound on E1τζ . To see this, recall (2.6.19), according to which Wt :=

n(St− ζ)1{τζ>t} is a supermartingale with bounded increments, whose variance is uniformly

bounded from below on the event τζ > t (as the holding probabilities of (St) are uniformly

bounded from above, see (2.3.4)). Moreover, the above argument gives EWt ≤ n
√
δ for

some t = O(n/δ). Thus, applying Lemma 2.3.5 and taking expectation, we deduce that

E1τζ = O(n/δ + δn2) = O(δn2), which in turns gives E1τζ = o(texp). �

Remark. With additional effort, we can establish that E0τ±ζ = o(texp) (for more details,

see [26]), where τ±ζ = min{t : |St| ≥ ζ}. By combining this with the of St symmetry and

applying the geometric trial method, we can obtain the expected commute time between 0

and ζ:

Eζτ0 = (1
2

+ o(1))EC0,ζ = Θ(texp) ,

and therefore conclude that E1τ0 = Θ(texp).
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Upper bound for mixing

Combining Lemma 2.6.4 and (2.6.15), we conclude that E1τ−ζ = Θ(texp) and hence E1τ0 =

O(texp). Together with Lemma 2.3.1, this implies that the magnetization chain will coales-

cence in O(texp) steps with probability arbitrarily close to 1. At this point, Lemma 2.3.3

immediately gives that the Glauber dynamics achieves full mixing within O(n log n) addi-

tional steps. The following simple lemma thus completes the proof of the upper bound for

the mixing time.

Lemma 2.6.5. Let texp be as defined in Lemma 2.6.1. Then n log n = o(texp).

Proof. In case δ ≥ c > 0 for some constant c, we have texp ≥ n exp(c′n) for some constant

c′ > 0 and hence n log n = o(texp). It remains to treat the case δ = o(1).

Suppose first that δ = o(1) and δ ≥ cn−1/3 for some constant c > 0. In this case, we

have texp = n
δ

exp
(
(3

4
+ o(1))δ2n

)
and thus n exp(1

2
n1/3) = O(texp), giving n log n = o(texp).

Finally, if δ = o(n−1/3), we can simply conclude that n4/3 = O(texp) and hence n log n =

o(texp). �

Lower bound for mixing

The lower bound will follow from showing that the probability of hitting −ζ within εtexp

steps is small, for some small ε > 0 to be chosen later. To this end, we need the following

simple lemma:

Lemma 2.6.6. Let X denote a Markov chain over some finite state space Ω, y ∈ Ω denote

a target state, and T be an integer. Further let x ∈ Ω denote the state with the smallest

probability of hitting y after at most T steps, i.e., x minimizes Px(τy ≤ T ). The following

holds:

Px(τy ≤ T ) ≤ T

Exτy
.

Proof. Set p = Px(τy ≤ T ). By definition, Pz(τy ≤ T ) ≥ p for all z ∈ Ω, hence the hitting

time from x to y is stochastically dominated by a geometric random variable with success

probability p, multiplied by T . That is, we have Exτy ≤ T/p, completing the proof. �

The final fact we would require is that the stationary probability of X [−1,−ζ] is strictly

positive. This is stated by the following lemma.

Lemma 2.6.7. There exists some absolute constant 0 < Cπ < 1 such that

Cπ ≤ π(X [ζ, 1]) ( = π(X [−1,−ζ]) ) .
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Proof. Repeating the derivation of (2.6.11), we can easily get

cX [ζ,1] :=
∑

x∈X [ζ,1]

(cx + c′x) ≥ Θ

(√
n

δ
exp

(
n

2

∫ ζ

0

log
1 + g(x)

1− g(x)

)
dx

)
.

Combining the above bound with (2.6.12), we conclude that there exists some Cπ > 0, such

that π(X [ζ, 1]) ≥ Cπ. �

Plugging in the target state −ζ into Lemma 2.6.6, and recalling that the monotone-

coupling implies that, for any T , the initial state s0 = 1 has the smallest probability (among

all initial states) of hitting −ζ within T steps, we deduce that, for a sufficiently small ε > 0,

P1(τ−ζ ≤ εtexp) ≤ 1

2
Cπ .

This implies that

texp = O
(
tmix

(1

2
Cπ

))
,

which in turn gives

texp = O
(
tmix

(
1
4

))
.

2.6.2 Spectral gap analysis

The lower bound is straightforward (as the relaxation time is always at most the mixing time)

and we turn to prove the upper bound. Note that, by Lemma 2.6.7, we have π(X [ζ, 1]) ≥
Cπ > 0. Suppose first that gap · tmix(1

4
) →∞. In this case, one can apply Lemma 2.3.7 onto

the birth-and-death chain (St), with a choice of α = π(X [ζ, 1]) and β = 1−π(X [ζ, 1]) (recall

that tmix(1
4
) = Θ(E1τ−ζ)). It follows that

Eζτ−ζ = o (E1τ−ζ) .

However, as both quantities above should have the same order as tmix(1
4
), this leads to a

contradiction. We therefore have gap · tmix(1
4
) = O(1), completing the proof of the upper

bound.
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Chapter 3

Mixing for the Ising-model on regular

trees at criticality

3.1 Introduction

In the classical Ising model, the underlying geometry is the d-dimensional lattice, and there is

a critical inverse-temperature βc where the static Gibbs measure exhibits a phase transition

with respect to long-range correlations between spins. While the main focus of the physics

community is on critical behavior (see the 20 volumes of [30]), so far, most of the rigorous

mathematical analysis was confined to the non-critical regimes.

Supported by many experiments and studies in the theory of dynamical critical phe-

nomena, physicists believe that the spectral-gap of the continuous-time dynamics on lattices

has the following critical slowing down behavior (e.g., [44,50,64,84]): At high temperatures

(β < βc) the inverse-gap is O(1), at the critical βc it is polynomial in the surface-area and

at low temperatures it is exponential in it. This is known for Z2 except at the critical βc,

and establishing the order of the gap at criticality seems extremely challenging. In fact,

the only underlying geometry, where the critical behavior of the spectral-gap has been fully

established, is the complete graph (see [25]).

The important case of the Ising model on a regular tree, known as the Bethe lattice, has

been intensively studied (e.g., [8, 9, 13–15, 36, 45, 46, 62, 66, 73]). We recall the definition for

the Ising model as in (1.1.1), and we assume J ≡ 1 throughout the chapter. On this canonical

example of a non-amenable graph (one whose boundary is proportional to its volume), the

model exhibits a rich behavior. For example, it has two distinct critical inverse-temperatures:

one for uniqueness of the Gibbs state, and another for the purity of the free-boundary state.

The latter, βc, coincides with the critical spin-glass parameter.
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As we later describe, previous results on the Ising model on a regular tree imply that the

correct parameter to play the role of the surface-area is the tree-height h: It was shown that

the inverse-gap is O(1) for β < βc and exponential in h for β > βc, yet its critical behavior

remained unknown.

In this chapter, we complete the picture of the spectral-gap of the dynamics for the

critical Ising model on a regular tree, by establishing that it is indeed polynomial in h.

Furthermore, this holds under any boundary condition, and an analogous result is obtained

for the L1 (total-variation) mixing time, denoted by tmix (formally defined in Subsection

3.2.1).

Theorem 6. Fix b ≥ 2 and let βc = arctanh(1/
√
b) denote the critical inverse-temperature

for the Ising model on the b-ary tree of height h. Then there exists some constant c > 0

independent of b, so that the following holds: For any boundary condition τ , the continuous-

time Glauber dynamics for the above critical Ising model satisfies gap−1 ≤ tmix = O(hc).

One of the main obstacles in proving the above result is the arbitrary boundary condition,

due to which the spin system loses its symmetry (and the task of analyzing the dynamics

becomes considerably more involved). Note that, although boundary conditions are believed

to only accelerate the mixing of the dynamics, even tracking the effect of the (symmetric)

all-plus boundary on lattices for β > βc is a formidable open problem (see [65]).

In light of the above theorem and the known fact that the inverse-gap is exponential in h

at low temperatures (β > βc fixed), it is natural to ask how the transition between these two

phases occurs, and in particular, what the critical exponent of β − βc is. This is answered

by the following theorem, which establishes that log(gap−1) � (β − βc)h + log h for small

β − βc. Moreover, this result also holds for β = βc + o(1), and thus pinpoints the transition

to a polynomial inverse-gap at β − βc � log h
h

.

Theorem 7. For some ε0 > 0, any b ≥ 2 fixed and all βc < β < βc + ε0, where βc =

arctanh(1/
√
b) is the critical spin-glass parameter, the following holds: The continuous-time

Glauber dynamics for the Ising model on a b-ary tree with inverse-temperature β and free

boundary satisfies

gap−1 = hΘ(1) if β = βc +O( log h
h

) ,

gap−1 = exp [Θ ((β − βc)h)] otherwise.
(3.1.1)

Furthermore, both upper bounds hold under any boundary condition τ , and (3.1.1) remains

valid if gap−1 is replaced by tmix.

In the above theorem and in what follows, the notation f = Θ(g) stands for f = O(g)

and g = O(f).
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Finally, our results include new lower bounds on the critical inverse-gap and the total-

variation mixing-time (see Theorem 8). The lower bound on gap−1 refutes a conjecture of

[8], according to which the continuous-time inverse-gap is linear in h. Our lower bound on

tmix is of independent interest: Although in our setting the ratio between tmix and gap−1 is

at most poly-logarithmic in n, the number of sites, we were able to provide a lower bound

of order log n on this ratio without resorting to eigenfunction analysis.

3.1.1 Background

The thoroughly studied question of whether the free boundary state is pure (or extremal)

in the Ising model on the Bethe lattice can be formulated as follows: Does the effect that

a typical boundary has on the spin at the root vanish as the size of the tree tends to

infinity? It is well-known that one can sample a configuration for the tree according to the

Gibbs distribution with free boundary by propagating spins along the tree (from a site to

its children) with an appropriate bias (see Subsection 3.2.2 for details). Hence, the above

question is equivalent to asking wether the spin at the root can be reconstructed from its

leaves, and as such has applications in Information Theory and Phylogeny (see [36] for further

details).

In sufficiently high temperatures, there is a unique Gibbs state for the Ising model on a

b-ary tree (b ≥ 2), hence in particular the free boundary state is pure. The phase-transition

with respect to the uniqueness of the Gibbs distribution occurs at the inverse-temperature

βu = arctanh(1/b), as established in 1974 by Preston [77].

In [14], the authors studied the critical spin-glass model on the Bethe lattice (see also

[13, 15]), i.e., the Ising model with a boundary of i.i.d. uniform spins. Following that work,

it was finally shown in [9] that the phase-transition in the free-boundary extremality has the

same critical inverse-temperature as in the spin-glass model, βc = arctanh(1/
√
b). That is,

the free-boundary state is pure iff β ≤ βc. This was later reproved in [45,46].

The inverse-gap of the Glauber dynamics for the Ising model on a graph G was related

in [8] to the cut-width of the graph, ξ(G), defined as follows: It is the minimum integer m,

such that for some labeling of the vertices {v1, . . . , vn} and any k ∈ [n], there are at most

m edges between {v1, . . . , vk} and {vk+1, . . . , vn}. The authors of [8] proved that for any

bounded degree graph G, the continuous-time gap satisfies gap−1 = exp[O(ξ(G)β)].

Recalling the aforementioned picture of the phase-transition of the gap, this supports the

claim that the cut-width is the correct extension of the surface-area to general graphs. One

can easily verify that for Zd
L (the d-dimensional box of side-length L) the cut-width has the

same order as the surface-area Ld−1, while for a regular tree of height h it is of order h.

Indeed, for the Ising model on a b-ary tree with h levels and free boundary, it was shown
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in [8] that the inverse-gap is O(1) for all β < βc, whereas for β > βc it satisfies log gap−1 � h

(with constants that depend on b and β). The behavior of the gap at criticality was left

as an open problem: it is proved in [8] that the critical gap−1 is at least linear in h and

conjectured that this is tight. A weaker conjecture of [8] states that gap−1 = exp(o(h)).

Further results on the dynamics were obtained in [66], showing that the log-Sobolev

constant αs (defined in Section 5.1) is uniformly bounded away from zero for β < βc in

the free-boundary case, as well as for any β under the all-plus boundary condition. While

this implies that gap−1 = O(1) in these regimes, it sheds no new light on the behavior

of the parameters gap, αs in our setting of the critical Ising model on a regular tree with

free-boundary.

3.1.2 The critical inverse-gap and mixing-time

Theorems 6,7, stated above, establish that on a regular tree of height h, the critical and

near-critical continuous-time gap−1 and tmix are polynomial in h. In particular, this confirms

the conjecture of [8] that the critical inverse-gap is exp(o(h)).

Moreover, our upper bounds hold for any boundary condition, while matching the be-

havior of the free-boundary case: Indeed, in this case the critical inverse-gap is polyno-

mial in h (as [8] showed it is at least linear), and for β − βc > 0 small we do have that

log(gap−1) � (β − βc)h. For comparison, recall that under the all-plus boundary condition,

[66] showed that gap−1 = O(1) at all temperatures.

We next address the conjecture of [8] that the critical inverse-gap is in fact linear in h. The

proof that the critical gap−1 has order at least h uses the same argument that gives a tight

lower bound at high temperatures: Applying the Dirichlet form (see Subsection 3.2.4) to the

sum of spins at the leaves as a test-function. Hence, the idea behind the above conjecture

is that the sum of spins at the boundary (that can be thought of as the magnetization)

approximates the second eigenfunction also for β = βc.

The following theorem refutes this conjecture, and en-route also implies that αs = o(1) at

criticality. In addition, this theorem provides a nontrivial lower bound on tmix that separates

it from gap−1 (thus far, our bounds in Theorems 6,7 applied to both parameters as one).

Theorem 8. Fix b ≥ 2 and let βc = arctanh(1/
√
b) be the critical inverse-temperature for the

Ising model on the b-ary tree with n vertices. Then the corresponding discrete-time Glauber

dynamics with free boundary satisfies:

gap−1 ≥ c1 n (log n)2 , (3.1.2)

tmix ≥ c2 n (log n)3 , (3.1.3)
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for some c1, c2 > 0. Furthermore, tmix ≥ c gap−1 log n for some c > 0.

Indeed, the above theorem implies that in continuous-time, gap−1 has order at least h2

and tmix has order at-least h3, where h is again the height of the tree. By known facts on the

log-Sobolev constant (see Section 5.1, Corollary 3.2.4), in our setting we have tmix = O(α−1
s h),

and it then follows that αs = O(h−2) = o(1).

We note that by related results on the log-Sobolev constant, it follows that in the Ising

model on a regular tree, for any temperature and with any boundary condition we have

tmix = O(gap−1 log2 n). In light of this, establishing a lower bound of order log n on the

ratio between tmix and gap−1 is quite delicate (e.g., proving such a bound usually involves

constructing a distinguishing statistic via a suitable eigenfunction (Wilson’s method [85])).

3.1.3 Techniques and proof ideas

To prove the main theorem, our general approach is a recursive analysis of the spectral-

gap via an appropriate block-dynamics (roughly put, multiple sites comprising a block are

updated simultaneously in each step of this dynamics; see Subsection 3.2.5 for a formal

definition). This provides an estimate of the spectral-gap of the single-site dynamics in terms

of those of the individual blocks and the block-dynamics chain itself (see [64]). However,

as opposed to most applications of the block-dynamics method, where the blocks are of

relatively small size, in our setting we must partition a tree of height h to subtrees of height

linear in h. This imposes arbitrary boundary conditions on the individual blocks, and highly

complicates the analysis of the block-dynamics chain.

In order to estimate the gap of the block-dynamics chain, we apply the method of Decom-

position of Markov chains, introduced in [48] (for details on this method see Subsection 3.2.6).

Combining this method with a few other ideas (such as establishing contraction and control-

ling the external field in certain chains), the proof of Theorem 6 is reduced into the following

spatial-mixing/reconstruction type problem. Consider the procedure, where we assign the

spins of the boundary given the value at the root of the tree, then reconstruct the root from

the values at the boundary. The key quantity required in our setting is the difference in the

expected outcome of the root, comparing the cases where its initial spin was either positive

or negative.

This quantity was studied by [73] in the free-boundary case, where it was related to

capacity-type parameters of the tree (see [36] for a related result corresponding to the high

temperature regime). Unfortunately, in our case we have an arbitrary boundary condition,

imposed by the block-dynamics. This eliminates the symmetry of the system, which was

a crucial part of the arguments of [73]. The most delicate step in the proof of Theorem 6

is the extension of these results of [73] to any boundary condition. This is achieved by
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carefully tracking down the effect of the boundary on the expected reconstruction result in

each site, combined with correlation inequalities and an analytical study of the corresponding

log-likelihood-ratio function.

The lower bound on the critical inverse-gap reflects the change in the structure of the

dominant eigenfunctions between high and low temperatures. At high temperatures, the

sum of spins on the boundary gives the correct order of the gap. At low temperatures, a

useful lower bound on gap−1 was shown in [8] via the recursive-majority function (intuitively,

this reflects the behavior at the root: Although this spin may occasionally flip its value, at

low temperature it constantly tends to revert to its biased state). Our results show that at

criticality, a lower bound improving upon that of [8] is obtained by essentially merging the

above two functions into a weighted sum of spins, where the weight of a spin is determined

by its tree level.

To establish a lower bound on tmix of order gap−1h, we consider a certain speed-up version

of the dynamics: a block-dynamics, whose blocks are a mixture of singletons and large

subtrees. The key ingredient here is the Censoring Inequality of Peres and Winkler [75],

that shows that this dynamics indeed mixes as fast as the usual (single-site) one. We then

consider a series of modified versions of this dynamics, and study their mixing with respect

to the total-variation and Hellinger distances. In the end, we arrive at a product chain,

whose components are each the single-site dynamics on a subtree of height linear in h. This

latter chain provides the required lower bound on tmix.

3.1.4 Organization

The rest of this chapter is organized as follows. Section 5.1 contains several preliminary facts

and definitions. In Section 3.3 we prove a spatial-mixing type result on the critical and near-

critical Ising model on a tree with an arbitrary boundary condition. This then serves as one of

the key ingredients in the proof of the main result, Theorem 6, which appears in Section 3.4.

In Section 3.5 we prove Theorem 8, providing the lower bounds for the critical inverse-gap

and mixing-time. Section 3.6 contains the proof of Theorem 7, addressing the near-critical

behavior of gap−1 and tmix. The final section, Section 3.7, is devoted to concluding remarks

and open problems.
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3.2 Preliminaries

3.2.1 Total-variation mixing

Let (Xt) be an aperiodic irreducible Markov chain on a finite state space Ω, with stationary

distribution π. For any two distributions φ, ψ on Ω, the total-variation distance of φ and ψ

is defined as

‖φ− ψ‖TV := sup
A⊂Ω

|φ(A)− ψ(A)| =
1

2

∑
x∈Ω

|φ(x)− ψ(x)| .

The (worst-case) total-variation mixing-time of (Xt), denoted by tmix(ε) for 0 < ε < 1, is

defined to be

tmix(ε) := min
{
t : max

x∈Ω
‖Px(Xt ∈ ·)− π‖TV ≤ ε

}
,

where Px denotes the probability given that X0 = x. As it is easy and well known (cf., e.g.,

[3, Chapter 4]) that the spectral-gap of (Xt) satisfies gap−1 ≤ tmix (1/e), it will be convenient

to use the abbreviation

tmix := tmix (1/e) .

Analogously, for a continuous-time chain on Ω with heat-kernel Ht, we define tmix as the

minimum t such that maxx∈Ω ‖Ht(x, ·)− π‖TV ≤ 1/e.

3.2.2 The Ising model on trees

When the underlying geometry of the Ising model is a tree with free boundary condition,

the Gibbs measure has a natural constructive representation. This appears in the following

well known claim (see, e.g., [36] for more details).

Claim 3.2.1. Consider the Ising model on a tree T rooted at ρ with free boundary condition

and at the inverse-temperature β. For all e ∈ E(T ), let ηe ∈ {±1} be i.i.d. random variables

with P(ηe = 1) = (1 + tanh β)/2. Furthermore, let σ(ρ) be a uniform spin, independent of

{ηe}, and for v 6= ρ,

σ(v) = σ(ρ)
∏

e∈P(ρ,v)

ηe , where P(ρ, v) is the simple path from ρ to v.

Then the distribution of the resulting σ is the corresponding Gibbs measure.

In light of the above claim, one is able to sample a configuration according to Gibbs

distribution on a tree with free boundary condition using the following simple scheme: Assign

a uniform spin at the root ρ, then scan the tree from top to bottom, successively assigning
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each site with a spin according to the value at its parent. More precisely, a vertex is assigned

the same spin as its parent with probability (1 + tanh β)/2, and the opposite one otherwise.

Equivalently, a vertex inherits the spin of its parent with probability tanh β, and otherwise

it receives an independent uniform spin. Finally, for the conditional Gibbs distribution given

a plus spin at the root ρ, we assign ρ a plus spin rather than a uniform spin, and carry on

as above.

However, notice that the above does not hold for the Ising model in the presence of a

boundary condition, which may impose a different external influence on different sites.

3.2.3 L2-capacity

The authors of [73] studied certain spatial mixing properties of the Ising model on trees (with

free or all-plus boundary conditions), and related them to the Lp-capacity of the underlying

tree. In Section 3.3, we extend some of the results of [73] to the (highly asymmetric) case

of a tree with an arbitrary boundary condition, and relate a certain “decay of correlation”

property to the L2-capacity of the tree, defined as follows.

Let T be a tree rooted at ρ, denote its leaves by ∂T , and throughout the chapter, write

(u, v) ∈ E(T ) for the directed edge between a vertex u and its child v. We further define

dist(u, v) as the length (in edges) of the simple path connecting u and v in T .

For each e ∈ E(T ), assign the resistance Re ≥ 0 to the edge e. We say that a non-

negative function f : E(T ) → R is a flow on T if the following holds for all (u, v) ∈ E(T )

with v 6∈ ∂T :

f(u, v) =
∑

(v,w)∈E(T )

f(v, w) ,

that is, the incoming flow equals the outgoing flow on each internal vertex v in T . For any

flow f , define its strength |f | and voltage V (f) by

|f | :=
∑

(ρ,v)∈E(T )

f(ρ, v) , V (f) := sup

{ ∑
e∈P(ρ,w)

f(e)Re : w ∈ ∂T
}
,

where P(ρ, w) denotes the simple path from ρ to w. Given these definitions, we now define

the L2-capacity cap2(T ) to be

cap2(T ) := sup{|f | : f is a flow with V (f) ≤ 1} .

For results on the L2-capacity of general networks (and more generally, Lp-capacities, where

the expression f(e)Re in the above definition of V (f) is replaced by its (p−1) power), as part

of Discrete Nonlinear Potential Theory, cf., e.g., [68], [81], [82] and the references therein.
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For our proofs, we will use the well-known fact that the L2-capacity of the tree T is

precisely the effective conductance between the root ρ and the leaves ∂T , denoted by Ceff(ρ↔
∂T ). See, e.g., [63] for further information on electrical networks.

3.2.4 Spectral gap and log-Sobolev constant

Our bound on the mixing time of Glauber dynamics for the Ising model on trees will be

derived from a recursive analysis of the spectral gap of this chain. This analysis uses spatial-

mixing type results (and their relation to the above mentioned L2 capacity) as a building

block. We next describe how the mixing-time can be bounded via the spectral-gap in our

setting.

The spectral gap and log-Sobolev constant of a reversible Markov chain with stationary

distribution π are given by the following Dirichlet forms (see, e.g., [3, Chapter 3,8]):

gap = inf
f

E(f)

Varπ(f)
, αs = inf

f

E(f)

Ent(f)
, (3.2.1)

where

E(f) = 〈(I − P )f, f〉π =
1

2

∑
x,y∈Ω

[f(x)− f(y)]2 π(x)P (x, y) , (3.2.2)

Entπ(f) = Eπ

(
f 2 log(f 2/Eπf

2)
)
. (3.2.3)

By bounding the log-Sobolev constant, one may obtain remarkably sharp upper bounds on

the L2 mixing-time: cf., e.g., [18–21, 79]. The following result of Diaconis and Saloff-Coste

[20, Theorem 3.7] (see also [79, Corollary 2.2.7]) demonstrates this powerful method; its

next formulation for discrete-time appears in [3, Chapter 8]. As we are interested in total-

variation mixing, we write this bound in terms of tmix, though it in fact holds also for the

(larger) L2 mixing-time.

Theorem 3.2.2 ([20], [79], reformulated). For any reversible finite Markov chain with sta-

tionary distribution π,

tmix(1/e) ≤ 1

4
α−1
s (log log(1/π∗) + 4) ,

where π∗ = minx π(x).

We can then apply a result of [66], which provides a useful bound on αs in terms of gap

in our setting, and obtain an upper bound on the mixing-time.
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Theorem 3.2.3 ([66, Theorem 5.7]). There exists some c > 0 such that the Ising model on

the b-ary tree with n vertices satisfies αs ≥ c · gap/ log n.

Note that the proof of the last theorem holds for any β and under any boundary condi-

tion. Combining Theorems 3.2.2 and 3.2.3, and noticing that π∗ ≥ 2−n exp(−2βn) (as there

are 2n configurations, and the ratio between the maximum and minimum probability of a

configuration is at most exp(2βn)), we obtain the following corollary:

Corollary 3.2.4. The Glauber dynamics for the Ising model on a b-ary tree with n vertices

satisfies tmix = O (α−1
s log n) = O

(
gap−1 log2 n

)
for any β and any boundary condition.

The above corollary reduces the task of obtaining an upper bound for the mixing-time

into establishing a suitable lower bound on the spectral gap. This will be achieved using a

block dynamics analysis.

3.2.5 From single site dynamics to block dynamics

Consider a cover of V by a collection of subsets {B1, . . . , Bk}, which we will refer to as

“blocks”. The block dynamics corresponding to B1, . . . , Bk is the Markov chain, where at

each step a uniformly chosen block is updated according to the stationary distribution given

the rest of the system. That is, the entire set of spins of the chosen block is updated

simultaneously, whereas all other spins remain unchanged. One can verify that the block

dynamics is reversible with respect to the Gibbs distribution µn.

Recall that, given a subset of the sites U ⊂ V , a boundary condition η imposed on U is

the restriction of the sites U c = V \U to all agree with η throughout the dynamics, i.e., only

sites in U are considered for updates. It will sometimes be useful to consider η ∈ Ω (rather

than a configuration of the sites U c), in which case only its restriction to U c is accounted

for.

The following theorem shows the useful connection between the single-site dynamics and

the block dynamics. This theorem appears in [64] in a more general setting, and following

is its reformulation for the special case of Glauber dynamics for the Ising model on a finite

graph with an arbitrary boundary condition. Though the original theorem is stated for the

continuous-time dynamics, its proof naturally extends to the discrete-time case; we provide

its details for completeness.

Proposition 3.2.5 ([64, Proposition 3.4], restated). Consider the discrete time Glauber

dynamics on a b-ary tree with boundary condition η. Let gap
η
U be the spectral-gap of the

single-site dynamics on a subset U ⊂ V of the sites, and gap
η
B be the spectral-gap of the
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block dynamics corresponding to B1, . . . , Bk, an arbitrary cover of a vertex set W ⊂ V . The

following holds:

gap
η
W ≥ k

|W |
gap

η
B inf

i
inf
ϕ
|Bi|gapϕBi

(
sup
x∈W

#{i : Bi 3 x}
)−1

.

Proof. Let P denote the transition kernel of the above Glauber dynamics. Defining

g := inf
i

inf
ϕ
|Bi|gapϕBi

,

the Dirichlet form (3.2.1) gives that, for any function f ,

VarϕBi
(f) ≤

EϕBi
(f)

gap
ϕ
Bi

≤ |Bi|
g
EϕBi

(f) .

Combining this with definition (3.2.2) of E(·),

EηB(f) =
1

k

∑
ϕ∈Ω

µηW (ϕ)
∑
i

VarϕBi
(f) ≤ 1

kg

∑
ϕ∈Ω

µηW (ϕ)
∑
i

|Bi|EϕBi
(f) .

On the other hand, definition (3.2.2) again implies that∑
ϕ∈Ω

µηW (ϕ)
∑
i

|Bi|EϕBi
(f)

=
∑
ϕ∈Ω

µηW (ϕ)
1

2

∑
σ∈Ω

∑
i

∑
x∈Bi

µϕBi
(σ)|Bi|Pϕ

Bi
(σ, σx)[f(σ)− f(σx)]2

≤ 1

2
sup
x∈W

#{i : Bi 3 x}
∑
σ∈Ω

µηW (σ)
∑
x∈W

|W |P σ
W (σ, σx)[f(σ)− f(σx)]2

= |W | sup
x∈W

#{i : Bi 3 x}EηW (f) ,

where σx is the configuration obtained from σ by flipping the spin at x, and we used the fact

that

|Bi|P σ
Bi

(σ, σx) = |W |P σ
W (σ, σx) for any i ∈ [k] and x ∈ Bi .

Altogether, we obtain that

EηB(f) ≤ |W |
kg

sup
x∈W

#{i : Bi 3 x}EηW (f) .
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Recalling that the single-site dynamics and the block-dynamics have the same stationary

measure,
EηB(f)

VarηW (f)
=

EηB(f)

VarηB(f)
≥ gap

η
B

(where we again applied inequality (3.2.1)), thus

EηW (f)

VarηW (f)
≥ k

|W |
g
(

sup
x∈W

#{i : Bi 3 x}
)−1

gap
η
B .

The proof is now completed by choosing f to be the eigenfunction that corresponds to the

second eigenvalue of P η
W (achieving gap

η
W ), with a final application of (3.2.1). �

The above proposition can be applied, as part of the spectral gap analysis, to reduce the

size of the base graph (though with an arbitrary boundary condition), provided that one can

estimate the gap of the corresponding block dynamics chain.

3.2.6 Decomposition of Markov chains

In order to bound the spectral gap of the block dynamics, we require a result of [48], which

analyzes the spectral gap of a Markov chain via its decomposition into a projection chain

and a restriction chain.

Consider an ergodic Markov chain on a finite state space Ω with transition kernel P :

Ω×Ω → [0, 1] and stationary distribution π : Ω → [0, 1]. We assume that the Markov chain

is time-reversible, that is to say, it satisfies the detailed balance condition

π(x)P (x, y) = π(y)P (y, x) for all x, y ∈ Ω .

Let Ω = Ω0 ∪ . . .∪Ωm−1 be a decomposition of the state space into m disjoint sets. Writing

[m] := {0, . . . ,m− 1}, we define π̄ : [m] → [0, 1] as

π̄(i) := π(Ωi) =
∑
x∈Ωi

π(x)

and define P̄ : [m]× [m] → [0, 1] to be

P̄ (i, j) :=
1

π̄(i)

∑
x∈Ωi,y∈Ωj

π(x)P (x, y) .

The Markov chain on the state space [m] whose transition kernel is P̄ is called the projection

chain, induced by the partition Ω0, . . . ,Ωm−1. It is easy to verify that, as the original Markov
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chain is reversible with respect to π, the projection chain is reversible with respect to the

stationary distribution π̄.

In addition, each Ωi induces a restriction chain, whose transition kernel Pi : Ωi × Ωi →
[0, 1] is given by

Pi(x, y) =

{
P (x, y), if x 6= y,

1−
∑

z∈Ωi\{x} P (x, z), if x = y .

Again, the restriction chain inherits its reversibility from the original chain, and has a sta-

tionary measure πi, which is simply π restricted to Ωi:

πi(x) := π(x)/π̄(i) for all x ∈ Ωi .

In most applications, the projection chain and the different restriction chains are all irre-

ducible, and thus the various stationary distributions π̄ and π0, . . . , πm−1 are all unique.

The following result provides a lower bound on the spectral gap of the original Markov

chain given its above described decomposition:

Theorem 3.2.6 ([48, Theorem 1]). Let P be the transition kernel of a finite reversible

Markov chain, and let gap denote its spectral gap. Consider the decomposition of the chain

into a projection chain and m restriction chains, and denote their corresponding spectral

gaps by ¯gap and gap0, . . . , gapm−1. Define

gapmin := min
i∈[m]

gapi , γ := max
i∈[m]

max
x∈Ωi

∑
y∈Ω\Ωi

P (x, y) .

Then gap, the spectral gap of the original Markov chain, satisfies:

gap ≥ ¯gap

3
∧ ¯gap · gapmin

3γ + ¯gap
.

The main part of Section 3.4 will be devoted to the analysis of the projection chain, in

an effort to bound the spectral gap of our block dynamics via the above theorem.

3.3 Spatial mixing of Ising model on trees

In this section, we will establish a spatial-mixing type result for the Ising model on a general

(not necessarily regular) finite tree under an arbitrary boundary condition. This result

(namely, Proposition 3.3.1) will later serve as the main ingredient in the proof of Theorem

6 (see Section 3.4). Throughout this section, let β > 0 be an arbitrary inverse-temperature
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and θ = tanh β.

We begin with a few notations. Let T be a tree rooted at ρ with a boundary condition

τ ∈ {±1}∂T on its leaves, and µτ be the corresponding Gibbs measure.

For any v ∈ T , denote by Tv the subtree of T containing v and its all descendants. In

addition, for any B ⊂ A ⊂ T and σ ∈ {±1}A, denote by σB the restriction of σ to the sites

of B. We then write µτv for the Gibbs measure on the subtree Tv given the boundary τ∂Tv .

Consider T̂ ⊂ T \ ∂T , a subtree of T that contains the root ρ, and write T̂v = Tv ∩ T̂ .

Similar to the above definitions for T , we denote by µ̂ξ the Gibbs measure on T̂ given the

boundary condition ξ ∈ {±1}∂T̂ , and let µ̂ξv be the Gibbs measure on T̂v given the boundary

ξ∂T̂v
.

The following two measures are the conditional distributions of µτv on the boundary of

the subtree T̂v given the spin at its root v:

Q+
v (ξ) := µτv

(
σ∂T̂v

= ξ∂T̂v
| σ(v) = 1

)
for ξ ∈ {±1}∂T̂ ,

Q−
v (ξ) := µτv

(
σ∂T̂v

= ξ∂T̂v
| σ(v) = −1

)
for ξ ∈ {±1}∂T̂ .

We can now state the main result of this section, which addresses the problem of recon-

structing the spin at the root of the tree from its boundary.

Proposition 3.3.1. Let T̂ be as above, let 0 < θ ≤ 3
4

and define

∆ :=

∫
µ̂ξ(σ(ρ) = 1)dQ+

ρ (ξ)−
∫
µ̂ξ(σ(ρ) = 1)dQ−

ρ (ξ) .

Then there exists an absolute constant κ > 1
100

such that

∆ ≤ cap2(T̂ )

κ(1− θ)
,

where the resistances are assigned to be R(u,v) = θ−2dist(ρ,v). Furthermore, this also holds for

any external field h ∈ R on the root ρ.

To prove the above theorem, we consider the notion of the log-likelihood ratio at a vertex

v with respect to T̂v given the boundary ξ∂T̂v
:

xξv = log

(
µ̂ξv(σ(v) = +1)

µ̂ξv(σ(v) = −1)

)
, (3.3.1)
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as well as the following quantity, analogous to ∆ (defined in Proposition 3.3.1):

mv :=

∫
xξvdQ

+
v −

∫
xξvdQ

−
v . (3.3.2)

As we will later explain, mv ≥ 0 for any v ∈ T , and we seek an upper bound on this quantity.

One of the main results of [73] was such an estimate for the case of free boundary condition,

yet in our setting we have an arbitrary boundary condition (adding a considerable amount

of difficulties to the analysis). The following theorem extends the upper bound on mρ to

any boundary; to avoid confusion, we formulate this bound in terms of the same absolute

constant κ given in Proposition 3.3.1.

Theorem 3.3.2. Let T̂ and mρ be as above, and let 0 < θ ≤ 3
4
. Then there exists an absolute

constant κ > 1
100

such that

mρ ≤
cap2(T̂ )

κ(1− θ)/4
,

where the resistances are assigned to be R(u,v) = θ−2dist(ρ,v).

Proof of Theorem 3.3.2

As mentioned above, the novelty (and also the main challenge) in the result stated in The-

orem 3.3.2 is the presence of the arbitrary boundary condition τ , which eliminates most of

the symmetry that one has in the free boundary case. Note that this symmetry was a crucial

ingredient in the proof of [73] for the free boundary case (namely, in that case Q+
v and Q−

v

are naturally symmetric).

In order to tackle this obstacle, we need to track down the precise influence of the

boundary condition τ on each vertex v ∈ T . We then incorporate this information in the

recursive analysis that appeared (in a slightly different form) in [62]. This enables us to

relate the recursion relation of the mv-s to that of the L2-capacity.

The following quantity captures the above mentioned influence of τ on a given vertex

v ∈ T :

x∗v = log

(
µτv(σ(v) = 1)

µτv(σ(v) = −1)

)
. (3.3.3)

Notice that x∗v has a similar form to xξv (defined in (3.3.1)), and is essentially the log-likelihood

ratio at v induced by the boundary condition τ . The quantity xξv is then the log-likelihood

ratio that in addition considers the extra constraints imposed by ξ. Also note that a free

boundary condition corresponds to the case where x∗v = 0 for all v ∈ T .

To witness the effect of x∗v, consider the probabilities of propagating a spin from a parent
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v to its child w, formally defined by

pτv,w(1, 1) := µτv(σ(w) = 1 | σ(v) = 1) ,

pτv,w(1,−1) := µτv(σ(w) = −1 | σ(v) = 1) ;

we define pτv,w(−1, 1) and pτv,w(−1,−1) analogously. The next simple lemma shows the rela-

tion between x∗v and these probabilities.

Lemma 3.3.3. The following holds for any (v, w) ∈ T :

pτv,w(1, 1)− pτv,w(−1, 1) = D∗
wθ ,

where D∗
w := (cosh β)2/

(
cosh2 β + cosh2(x∗w/2)− 1

)
.

Proof. Recalling definition (3.3.3) of x∗v, we can translate the boundary condition τ into an

external field x∗w/2 on the vertex w when studying the distribution of its spin. Hence,

pτv,w(1, 1)− pτv,w(−1, 1) =
eβ+x∗w/2

eβ+x∗w/2 + e−β−x∗w/2
− e−β+x∗w/2

e−β+x∗w/2 + eβ−x∗w/2

=
e2β − e−2β

ex∗w + e−x∗w + e2β + e−2β

=
cosh2 β

cosh2 β + cosh2(x∗w/2)− 1
tanh β ,

as required. �

Remark 1. In the free boundary case, we have pv,w(1, 1)− pv,w(−1, 1) = θ. For a boundary

condition τ , the coefficient 0 < D∗
w ≤ 1 represents the contribution of this boundary to the

propagation probability.

We now turn our attention to mv. As mentioned before, the fact that mv ≥ 0 follows

from its definition (3.3.2). Indeed, the monotonicity of the Ising model implies that the

measure Q+
v stochastically dominates the measure Q−

v (with respect to the natural partial

order on the configurations of ∂T̂v). For instance, it is easy to see this by propagating 1

and −1 spins from the root to the bottom, and applying a monotone coupling on these two

processes. Finally, xξv is monotone increasing in ξ (again by the monotonicity of the Ising

model), thus mv ≥ 0.

The first step in establishing the recursion relation of mv (that would lead to the desired

upper bound) would be to relate mv to some quantities associated with its children, as stated

next.
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Lemma 3.3.4. For any v ∈ T̂ \ ∂T̂ , we have that

mv = θ
∑

w:(v,w)∈T̂

D∗
w

(∫
f(xξw)dQ+

w(ξ)−
∫
f(Xξ

w)dQ−
w(ξ)

)
,

where

f(x) = log

(
cosh(x/2) + θ sinh(x/2)

cosh(x/2)− θ sinh(x/2)

)
. (3.3.4)

Proof. We need the following well-known lemma, that appeared in [62] in a slightly different

form; see also [5] and [73, Lemma 4.1].

Lemma 3.3.5 ([62],[73] (reformulated)). Let f be as in (3.3.4). For all v ∈ T̂ \ ∂T̂ and

ξ ∈ {±1}∂T̂ , the following holds: xξv =
∑

w:(v,w)∈T̂ f(xξw).

According to this lemma, we obtain that

mv =
∑

w:(v,w)∈T̂

(∫
f(xξw)dQ+

v (ξ)−
∫
f(xξw)dQ−

v (ξ)
)
. (3.3.5)

Noting that xξw is actually a function of ξ∂T̂w
, we get that∫

f(xξw)dQ+
v (ξ) =

∫
f(xξw)d(pτv,w(1, 1)Q+

w(ξ) + pτv,w(1,−1)Q−
w(ξ)) ,

and similarly, we have∫
f(xξw)dQ−

v (ξ) =

∫
f(xξw)d(pτv,w(−1, 1)Q+

w(ξ) + pτv,w(−1,−1)Q−
w(ξ)) .

Combining these two equalities, we deduce that∫
f(xξw)dQ+

v (ξ)−
∫
f(xξw)dQ−

v (ξ)

= (pτv,w(1, 1)− pτv,w(−1, 1))
(∫

f(xξw)dQ+
w(ξ)−

∫
f(xξw)dQ−

w(ξ)
)

= θD∗
w

(∫
f(xξw)dQ+

w(ξ)−
∫
f(xξw)dQ−

w(ξ)
)
, (3.3.6)

where in the last inequality we applied Lemma 3.3.3. Plugging (3.3.6) into (3.3.5) now

completes the proof of the lemma. �

Observe that in the free boundary case, Q+
v (ξ) = Q−

v (−ξ) for any ξ. Unfortunately, the
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presence of the boundary τ breaks this symmetry, causing the distributions Q+
v and Q−

v to

become skewed. Nevertheless, we can still relate these two distributions through the help of

x∗v, as formulated by the following lemma.

Lemma 3.3.6. For v ∈ T , let Qv be the following distribution over {±1}∂T̂ :

Qv(ξ) = Qτ
v(ξ) := µτv

(
σ∂T̂v

= ξ∂T̂v

)
.

Then for all ξ ∈ {±1}∂T̂ , we have

Q+
v (ξ)−Q−

v (ξ) = C∗
v

(
tanh

xξv
2
− tanh

x∗v
2

)
Qv(ξ) ,

where C∗
v = 2 cosh2(x∗v/2).

Proof. It is clear from the definitions of Q+
v , Q−

v and Qv that

Q+
v (ξ) =

Qv(ξ)µ
τ
v(σ(v) = 1

∣∣ ξ)
µτv(σ(v) = 1)

=
1 + tanh(xξv/2)

1 + tanh(x∗v/2)
Qv(ξ) ,

Q−
v (ξ) =

Qv(ξ)µ
τ
v(σ(v) = −1

∣∣ ξ)
µτv(σ(v) = −1)

=
1− tanh(xξv/2)

1− tanh(x∗v/2)
Qv(ξ) .

Hence, a straightforward calculation gives that

Q+
v (ξ)−Q−

v (ξ) =
2
(

tanh(xξv/2)− tanh(x∗v/2)
)

(1 + tanh(x∗v/2))(1− tanh(x∗v/2))
Qv(ξ)

= 2 cosh2
(x∗v

2

)(
tanh

xξv
2
− tanh

x∗v
2

)
Qv(ξ) ,

as required. �

The following technical lemma will allow us to combine Lemmas 3.3.4, 3.3.6 and obtain

an upper bound on mv in terms of {mw : (v, w) ∈ T̂}. Note that the constant κ mentioned

next is in fact the absolute constant κ in the statement of Theorem 3.3.2.

Lemma 3.3.7. Let f be defined as in (3.3.4) for some 0 < θ ≤ 3
4
. Then

|f(x)− f(y)| ≤ 2f(|x− y|/2) for any x, y ∈ R , (3.3.7)

and there exists a universal constant κ > 1
100

such that for any two constants C1, C2 ≥ 1 with



69

C2 ≥ 1 +
(

1
2
C1 − 1

)
(1− θ2) and any δ > 0 we have

f(δ) (1 + 4κ(1− θ)C1δ tanh(δ/2)) ≤ C2θδ . (3.3.8)

Proof. We first show (3.3.7). Put δ = |x− y|, and define

h(δ) = sup
t
|f(t+ δ)− f(t)| .

We claim that

h(δ) = f(δ/2)− f(−δ/2) = 2f(δ/2) . (3.3.9)

The second equality follows from the fact that f(x) is an odd function. To establish the first

equality, a straightforward calculation gives that

f ′(x) =
θ

1 + (1− θ2) sinh2(x/2)
,

and it follows that f ′(x) is an even non-negative function which is decreasing in x ≥ 0. The

following simple claim therefore immediately implies (3.3.9):

Claim 3.3.8. Let g(t) ≥ 0 be an even function that is decreasing in t ≥ 0. Then G(t) =∫ t
0
g(x)dx has G(t+ δ)−G(t) ≤ 2G(δ/2) for any t and δ > 0.

Proof. Fix δ > 0 and define F (t) as follows:

F (t) = G(t+ δ)−G(t) .

We therefore have F ′(t) = g(t+ δ)− g(t). Noticing that{
|t+ δ| ≥ |t| if t ≥ − δ

2

|t+ δ| ≤ |t| otherwise
,

the assumption on g now gives that F ′(t) ≤ 0 while t ≥ − δ
2

and otherwise F ′(t) ≥ 0.

Altogether, we deduce that

F (t) ≤ F
(
− δ

2

)
= G

(
δ
2

)
−G

(
− δ

2

)
= 2G

(
δ
2

)
,

as required. �

It remains to show that (3.3.8) holds for some κ = κ(θ0) > 0. Clearly, it suffices to

establish this statement for C2 =
[
1 +

(
1
2
C1 − 1

)
(1− θ2)

]
∨ 1 and any C1 ≥ 1. Rearranging
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(3.3.8), we are interested in a lower bound on

inf
θ≤θ0 , t>0 , C1≥1

[(
1 +

(
C1

2
− 1
)

(1− θ2)
)
∨ 1
]
θt− f(t)

4C1(1− θ)tf(t) tanh( t
2
)

. (3.3.10)

First, consider the case 1 ≤ C1 < 2. We then have C2 = 1, and the expression being

minimized in (3.3.10) takes the form:

θt− f(t)

4C1(1− θ)tf(t) tanh( t
2
)
>

θt− f(t)

8(1− θ)tf(t) tanh( t
2
)

:= Γ(t, θ) ,

where the inequality is by our assumption that C1 < 2. We therefore have that infθ≤θ0 , t>0 Γ(t, θ)

minimizes (3.3.10) for C1 < 2, and will next show that this is also the case for C1 ≥ 2 under

a certain condition. Indeed, letting

g(t, θ, C1) :=

[
1 +

(
C1

2
− 1
)

(1− θ2)
]
θt− f(t)

4C1(1− θ)tf(t) tanh(t/2)
,

it is easy to verify that the following holds:

∂g

∂C1

=
f(t)− θ3t

4C2
1(1− θ)tf(t) tanh( t

2
)
,

hence g is increasing in C1 for every θ, t such that f(t) > θ3t. Therefore,

g(t, θ, C1) ≥ g(t, θ, 2) = Γ(t, θ) for all t, θ such that f(t) > θ3t .

Before analyzing Γ(t, θ), we will treat the values of θ, t such that f(t) ≤ θ3t. Assume that

the case, and notice that the numerator of g then satisfies[
1 +

(C1

2
− 1
)

(1− θ2)
]
θt− f(t)

≥
[
1 +

(
C1

2
− 1

)
(1− θ2)− θ2

]
θt = θ(1− θ2)t

C1

2
,

and thereby the dependency on C1 vanishes:

g(t, θ, C1) ≥
θ(1− θ2)t/2

4(1− θ)tf(t) tanh(t/2)
=

θ(1 + θ)

8f(t) tanh(t/2)
.

Since both tanh(t/2) and f(t) are monotone increasing in t and are bounded from above by
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1 and log
(

1+θ
1−θ

)
respectively, we get

g(t, θ, C1) ≥
θ(1 + θ)

8 log
(

1+θ
1−θ

) ≥ θ(1 + θ)

8 2θ
1−θ

=
1− θ2

16
>

1

40
, (3.3.11)

where the second inequality is by the fact that log(1 + x) ≤ x for any x > 0, and the last

inequality follows by the assumption θ ≤ 3
4

.

It thus remains to establish a uniform lower bound on Γ(t, θ). In what follows, our choice

of constants was a compromise between simplicity and the quality of the lower bound, and

we note that one can easily choose constants that are slightly more optimal.

Assume first that θ ≥ θ0 ≥ 0 for some θ0 to be defined later. Notice that

f̃(t, θ) :=
1

θ
f(t, θ) = 2

∞∑
i=0

tanh2i+1(t/2)

2i+ 1
θ2i ,

and so f̃(t, θ) is strictly increasing in θ for any t > 0. Since

Γ(t, θ) =
θt− f(t)

8(1− θ)tf(t) tanh( t
2
)

≥ θt− f(t)

8(1− θ0)tf(t) tanh( t
2
)

=
t− f̃(t)

8(1− θ0)tf̃(t) tanh( t
2
)
,

we have that Γ is monotone decreasing in θ for any such t, and therefore Γ(t, θ) ≥ 1
8(1−θ0)

Γ̃(t),

where Γ̃ is defined as follows:

Γ̃(t) :=
θt− f(t, θ)

tf(t, θ) tanh( t
2
)

with respect to θ = 3
4
. (3.3.12)

Recall that the Taylor expansion of f(t, θ) around 0 is θt − θ(1−θ2)
12

t3 + O(t5). It is easy to

verify that for θ = 3
4

this function satisfies

f(t, θ) ≤ θt− (θt)3

20
for θ = 3

4
and any 0 < t ≤ 3 .

Adding the fact that tanh(x) ≤ x for all x ≥ 0, we immediately obtain that

Γ̃ ≥ θ3t3

20t(θt)(t/2)
=
θ2

10
>

1

20
for all 0 < t ≤ 3 .
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On the other hand, for t ≥ 3 we can use the uniform upper bounds of 1 and log(1+θ
1−θ ) for

tanh(t/2) and f(t) respectively, and gain that

Γ̃ ≥
θt− log(1+θ

1−θ )

t log(1+θ
1−θ )

=
θ

log(1+θ
1−θ )

− 1

t
≥ 1

20
for all t ≥ 3 .

Altogether, as Γ ≥ 1
8(1−θ0)

Γ̃, we can conclude that Γ ≥ [160(1− θ0)]
−1.

Note that the trivial choice of θ0 = 0 already provides a uniform lower bound of 1
160

for Γ (and hence also for κ, as the lower bound in (3.3.11) is only larger). However, this

bound can be improved by choosing another θ0 and treating the case 0 < θ ≤ θ0 separately.

To demonstrate this, take for instance θ0 = 1
2
. Since the above analysis gave that Γ̃ ≥ 1

20

whenever θ ≤ 3
4
, it follows that

Γ ≥ 1

160(1− θ0)
=

1

80
for all 1

2
≤ θ ≤ 3

4
.

For θ ≤ θ0, we essentially repeat this analysis of Γ̃, only this time the respective value of θ

(that is, the maximum value it can attain) is 1
2
. One can thus verify that in that case,

f(t, θ) ≤ θt− (θt)3

6
for θ = 1

2
and any 0 < t ≤ 2.7 ,

and the above argument then shows that

Γ̃ ≥ θ2

3
=

1

12
for all 0 < t ≤ 2.7 .

On the other hand,

Γ̃ ≥ θ

log(1+θ
1−θ )

− 1

t
≥ 1

12
for all t ≥ 2.7 ,

thus for θ = 1
2

we have Γ̃ ≥ 1
12

for all t > 0. This converts into the lower bound Γ ≥ 1
96

, thus

completing the proof with a final value of κ = 1
96

. �

Remark 2. Note that the only places where we used the fact that θ ≤ 3
4

are the lower bound

on g(t, θ, C1) in (3.3.11) and the analysis of Γ̃, as defined in (3.3.12). In both cases, we

actually only need to have θ ≤ θ1 for some constant θ1 < 1, whose precise value might affect

the final value of κ.

Using the above lemma, we are now ready to obtain the final ingredient required for the

proof of the recursion relation of mv, as incorporated in Lemma 3.3.9. This lemma provides
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a recursive bound on a quantity that resembles mv, where instead of integrating over xξv, we

integrate over f(xξv).

Lemma 3.3.9. Let f and D∗
v be as in (3.3.4) and Lemma 3.3.3 respectively. There exists a

universal constant κ > 1
100

so that for K = 1
4
(1− θ)κ we have∫

f(xξv)dQ
+
v (ξ)−

∫
f(xξv)dQ

−
v (ξ) ≤ θmv

D∗
v(1 +Kmv)

.

Proof. Clearly,∫
f(xξv)dQ

+
v (ξ)−

∫
f(xξv)dQ

−
v (ξ)

=

∫
(f(xξv)− f(x∗v))dQ

+
v (ξ)−

∫
(f(xξv)− f(x∗v))dQ

−
v (ξ) .

Applying Lemma 3.3.6, we then obtain that∫
f(xξv)dQ

+
v (ξ)−

∫
f(xξv)dQ

−
v (ξ)

= C∗
v

∫
(f(xξv)− f(x∗v))

(
tanh

xξv
2
− tanh

x∗v
2

)
dQv(ξ) ,

and similarly,

mv = C∗
v

∫
(xξv − x∗v)

(
tanh

xξv
2
− tanh

x∗v
2

)
dQv(ξ) .

Let

F (x) = (f(x)− f(x∗v)) (tanh(x/2)− tanh(x∗v/2)) ,

G(x) = (x− x∗v) (tanh(x/2)− tanh(x∗v/2)) ,

and define Λ to be the probability measure on R as:

Λ(x) := Qv

(
{ξ : xξv = x}

)
.

According to this definition, we have∫
F (xξv)dQv(ξ) =

∫
F (x)dΛ , and

∫
G(xξv)dQv(ξ) =

∫
G(x)dΛ ,
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and thus, by the above arguments,∫
f(xξv)dQ

+
v (ξ)−

∫
f(xξv)dQ

−
v (ξ) = C∗

v

∫
F (x)dΛ ,

mv = C∗
v

∫
G(x)dΛ . (3.3.13)

Furthermore, notice that by (3.3.7) and the fact that f is odd and increasing for x ≥ 0,

F (x) ≤ 2f
(x− x∗v

2

)(
tanh

x

2
− tanh

x∗v
2

)
.

and so ∫
f(xξv)dQ

+
v (ξ)−

∫
f(xξv)dQ

−
v (ξ)

≤ 2C∗
v

∫
f
(x− x∗v

2

)(
tanh

x

2
− tanh

x∗v
2

)
dΛ . (3.3.14)

In our next argument, we will estimate
∫
G(x)dΛ and

∫
G(x)dΛ according to the behavior

of F and G about x∗v. Assume that x∗v ≥ 0, and note that, although the case of x∗v ≤ 0 can be

treated similarly, we claim that this assumption does not lose generality. Indeed, if x∗v < 0,

one can consider the boundary condition of τ ′ = −τ , which would give the following by

symmetry:

x∗v
′ = −x∗v , X ′

v(−ξ) = −xξv(ξ) , Q′
v(−ξ) = Qv(ξ) .

Therefore, as f(·) and tanh(·) are both odd functions, we have that
∫
F (x)dΛ and

∫
G(x)dΛ

will not change under the modified boundary condition, and yet x∗v
′ ≥ 0 as required.

Define

I− := (−∞, x∗v] , I+ := [x∗v,∞) .

First, consider the case where for either I = I+ or I = I− we have{ ∫
I
F (x)dΛ ≥ 1

2

∫
F (x)dΛ ,∫

I
G(x)dΛ ≥ 1

2

∫
F (x)dΛ .

(3.3.15)

In this case, the following holds(∫
F (x)dΛ

)(∫
G(x)dΛ

)
≤ 4

(∫
I

F (x)dΛ

)(∫
I

G(x)dΛ

)
≤ 4

∫
I

F (x)G(x)dΛ ≤ 4

∫
F (x)G(x)dΛ ,
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where in the second line we applied the FKG-inequality, using the fact that both F and G

are decreasing in I− and increasing in I+. The last inequality followed from the fact that F

and G are always non-negative. Note that∫
F (x)G(x)dΛ =

∫
(f(x)− f(x∗v)) (x− x∗v)

(
tanh

x

2
− tanh

x∗v
2

)2

dΛ ,

and recall that Claim 3.3.8 applied onto tanh(x) (which indeed has an even non-negative

derivative cosh−2(x) that is decreasing in x ≥ 0) gives

tanh
x

2
− tanh

y

2
≤ 2 tanh

(x− y

4

)
for any x > y .

Noticing that each of the factors comprising F (x)G(x) has the same sign as that of (x−x∗v),
and combining this with (3.3.7), it thus follows that(∫

F (x)dΛ

)(∫
G(x)dΛ

)
≤ 16

∫
f
(x− x∗v

2

)
(x− x∗v)

(
tanh

x

2
− tanh

x∗v
2

)
tanh

(x− x∗v
4

)
dΛ . (3.3.16)

Second, consider the case where for I+ and I− as above, we have{ ∫
I+
F (x)dΛ ≥ 1

2

∫
F (x)dΛ ,∫

I−
G(x)dΛ ≥ 1

2

∫
G(x)dΛ .

(3.3.17)

The following definitions of F̃ and G̃ thus capture a significant contribution of F and G to∫
FdΛ and

∫
GdΛ respectively:{

F̃ (s) := F (x∗v + s)

G̃(s) := G(x∗v − s)
for any s ≥ 0 , (3.3.18)

By further defining the probability measure Λ̃ on [0,∞) to be

Λ̃(s) := Λ(x∗v − s)1{s 6=0} + Λ(x∗v + s) for any s ≥ 0 , (3.3.19)
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we obtain that ∫
F (x)dΛ ≤ 2

∫
I+
F (x)dΛ ≤ 2

∫ ∞

0

F̃ (x)dΛ̃ ,∫
G(x)dΛ ≤ 2

∫
I−
G(x)dΛ ≤ 2

∫ ∞

0

G̃(x)dΛ̃ .

With both F̃ and G̃ being monotone increasing on [0,∞), applying the FKG-inequality with

respect to Λ̃ now gives(∫
F (x)dΛ

)(∫
G(x)dΛ

)
≤ 4

∫ ∞

0

F̃ (x)G̃(x)dΛ̃

= 4

∫ ∞

0

(f(x∗v + s)− f(x∗v))

(
tanh

x∗v + s

2
− tanh

x∗v
2

)
· (−s)

(
tanh

x∗v − s

2
− tanh

x∗v
2

)
dΛ̃ .

Returning to the measure Λ, the last expression takes the form

4

∫
I+

(f(x)− f(x∗v))

(
tanh

x

2
− tanh

x∗v
2

)
· (x− x∗v)

(
tanh

x∗v
2
− tanh

2x∗v − x

2

)
dΛ

+4

∫
I−

(f(2x∗v − x)− f(x∗v))

(
tanh

2x∗v − x

2
− tanh

x∗v
2

)
· (x− x∗v)

(
tanh

x

2
− tanh

x∗v
2

)
dΛ .

We now apply (3.3.7) and Claim 3.3.8 (while leaving the term (tanh x
2
− tanh x∗v

2
) unchanged

in both integrals) to obtain that(∫
F (x)dΛ

)(∫
G(x)dΛ

)
≤ 16

∫
f
(x− x∗v

2

)(
tanh

x

2
− tanh

x∗v
2

)
(x− x∗v) tanh

(x− x∗v
4

)
dΛ .

That is, we have obtained the same bound as in (3.3.16).



77

It remains to deal with the third case where for I+ and I− as above,{ ∫
I−
F (x)dΛ ≥ 1

2

∫
F (x)dΛ ,∫

I+
G(x)dΛ ≥ 1

2

∫
G(x)dΛ .

(3.3.20)

In this case, we modify the definition (3.3.18) of F̃ and G̃ appropriately:{
F̃ (s) := F (x∗v + s)

G̃(s) := G(x∗v − s)
for any s ≥ 0 ,

and let Λ̃ remain the same, as given in (3.3.19). It then follows that∫
F (x)dΛ ≤ 2

∫
I−
F (x)dΛ ≤ 2

∫ ∞

0

F̃ (x)dΛ̃ ,∫
G(x)dΛ ≤ 2

∫
I+
G(x)dΛ ≤ 2

∫ ∞

0

G̃(x)dΛ̃ ,

with F̃ and G̃ monotone increasing on [0,∞). By the FKG-inequality,(∫
F (x)dΛ

)(∫
G(x)dΛ

)
≤ 4

∫ ∞

0

F̃ (x)G̃(x)dΛ̃

= 4

∫ ∞

0

(f(x∗v − s)− f(x∗v))

(
tanh

x∗v − s

2
− tanh

x∗v
2

)
· s
(

tanh
x∗v + s

2
− tanh

x∗v
2

)
dΛ̃ . (3.3.21)

As before, we now switch back to Λ and infer from (3.3.7) and Claim 3.3.8 that(∫
F (x)dΛ

)(∫
G(x)dΛ

)
≤ 16

∫
f
(x− x∗v

2

)(
tanh

x

2
− tanh

x∗v
2

)
(x− x∗v) tanh

(x− x∗v
4

)
dΛ ,

that is, (3.3.16) holds for each of the 3 possible cases (3.3.15), (3.3.17) and (3.3.20).
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Altogether, this implies that(∫
f(xξv)dQ

+
v (ξ)−

∫
f(xξv)dQ

−
v (ξ)

)
mv

= (C∗
v )2

(∫
F (x)dΛ

)(∫
G(x)dΛ

)
≤ 16C∗

v
2

∫
f
(x− x∗v

2

)(
tanh

x

2
− tanh

x∗v
2

)
(x− x∗v) tanh

(x− x∗v
4

)
dΛ .

Therefore, recalling (3.3.14) and choosing K = 1
4
(1 − θ)κ, where κ is as given in Lemma

3.3.7, we have(∫
f(xξv)dQ

+
v (ξ)−

∫
f(xξv)dQ

−
v (ξ)

)
(1 +Kmv)

≤ 2C∗
v

∫
f
(x− x∗v

2

)[
1 + 4κ(1− θ)C∗

v

x− x∗v
2

tanh
x− x∗v

4

]
·
(

tanh
x

2
− tanh

x∗v
2

)
dΛ

≤ 2C∗
v

∫
(1/D∗

v)θ
x− x∗v

2

(
tanh

x

2
− tanh

x∗v
2

)
dΛ = θ

C∗
v

D∗
v

∫
G(x)dΛ .

where the inequality in the last line is by Lemma 3.3.7 for δ = |x − x∗v|/2 (the case x < x∗v
follows once again from the fact that f is odd) and a choice of C1 = C∗

v = 2 cosh2(x∗v/2) ≥ 2

and C2 = (1/D∗
v) (recall that, by definition, 1/D∗

v = 1 + (1
2
C∗
v − 1)(1 − θ2) ≥ 1, satisfying

the requirements of the lemma). Therefore, (3.3.13) now implies that∫
f(xξv)dQ

+
v (ξ)−

∫
f(xξv)dQ

−
v (ξ) ≤ θmv

D∗
v(1 +Kmv)

,

as required. �

Combining Lemmas 3.3.4 and 3.3.9, we deduce that there exists a universal constant

κ > 0 such that

mv ≤
∑

w:(v,w)∈T̂

θ2mw

1 + 1
4
κ(1− θ)mw

. (3.3.22)

The proof will now follow from a theorem of [73], that links a function on the vertices of a

tree T with its L2-capacity according to certain resistances.

Theorem 3.3.10 ([73, Theorem 3.2] (reformulated)). Let T be a finite tree, and suppose

that there exists some K > 0 and positive constants {av : v ∈ T} such that for every v ∈ T
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and x ≥ 0,

gv(x) ≤ avx
/

(1 +Kx) .

Then any solution to the system xv =
∑

w:(v,w)∈T gw(xw) satisfies

xρ ≤ cap2(T )
/
K ,

where the resistances are given by R(u,v) =
∏

(x,y)∈P(ρ,v) a
−1
y , with P(ρ, v) denoting the simple

path between ρ and v.

Together with inequality (3.3.22), the above theorem immediately gives

mρ ≤
cap2(T̂ )

κ(1− θ)/4
,

completing the proof of Theorem 3.3.2. �

Proof of Proposition 3.3.1

In order to obtain the required result from Theorem 3.3.2, recall the definition of xξv for

v ∈ T , according to which we can write

µ̂ξ(σ(ρ) = 1) =
(
1 + tanh(xξρ/2 + h)

)
/2 ,

where h is the mentioned external field at the root ρ. By monotone coupling, we can

construct a probability measure Qc on the space {(ξ, ξ′) : ξ ≥ ξ′} such that the two marginal

distributions correspond to Q+
ρ and Q−

ρ respectively. It therefore follows that

∆ =

∫ (
µ̂ξ(σ(ρ) = 1)− µ̂ξ

′
(σ(ρ) = 1)

)
dQc

=
1

2

∫ (
tanh(xξρ/2 + h)− tanh(xξ

′

ρ /2 + h)
)
dQc

≤ 1

2

∫
xξρ − xξ

′
ρ

2
dQc =

1

4
mρ ≤

cap2(T̂ )

κ(1− θ)
,

where the last inequality follows from Theorem 3.3.2 using the same value of κ ≥ 1
100

. This

completes the proof. �
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3.4 Upper bound on the inverse-gap and mixing time

This section is devoted to the proof of the main theorem, Theorem 6, from which it follows

that the mixing time of the continuous-time Glauber dynamics for the Ising model on a b-ary

tree (with any boundary condition) is poly-logarithmic in the tree size.

Recalling the log-Sobolev results described in Section 5.1, it suffices to show an upper

bound of O(n logM n) on inverse-gap of the discrete-time chain (equivalently, a lower bound

on its gap), which would then imply an upper bound of O(n logM+2 n) for the L2 mixing-time

(and hence also for the total-variation mixing-time).

The proof comprises several elements, and notably, uses a block dynamics in order to

obtain the required upper bound inductively. Namely, we partition a tree on n vertices to

blocks of size roughly n1−α each, for some small α > 0, and use an induction hypothesis that

treats the worst case boundary condition. The main effort is then to establish a lower bound

on the spectral-gap of the block dynamics (as opposed to each of its individual blocks). This

is achieved by Theorem 3.4.1 (stated later), whose proof hinges on the spatial-mixing result

of Section 3.3, combined with the Markov chain decomposition method.

Throughout this section, let b ≥ 2 be fixed, denote by βc = arctanh(1/
√
b) the critical

inverse-temperature and let θ = tanh βc.

3.4.1 Block dynamics for the tree

In what follows, we describe our choice of blocks for the above mentioned block dynamics.

Let h denote the height of our b-ary tree (that is, there are bh leaves in the tree), and define

` := αh , r := h− ` , (3.4.1)

where 0 < α < 1
2

is some (small) constant to be selected later.

For any v ∈ T , let B(v, k) be the subtree of height k − 1 rooted at v, that is, B(v, k)

consists of k levels (except when v is less than k levels away from the bottom of T ). We

further let Hk denote the k-th level of the tree T , that according to this notation contains

bk vertices.

Next, define the set of blocks B as:

B := {B(v, r) : v ∈ H` ∪ {ρ}} for `, r as above. (3.4.2)

That is, each block is a b-ary tree with r levels, where one of these blocks is rooted at ρ, and

will be referred to as the distinguished block, whereas the others are rooted at the vertices of

H`.
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r
h

r



Figure 3.1: Block dynamics for the Ising model on the tree: illustration shows the distin-
guished block B(ρ, r) as well as a representative block of the form B(v, r) for v ∈ H`.

The following theorem establishes a lower bound on the spectral gap of the above-specified

block dynamics (with blocks B).

Theorem 3.4.1. Consider the Ising model on the b-ary tree at the critical inverse-temperature

βc and with an arbitrary boundary τ . Let gapτB be the spectral gap of the corresponding block

dynamics with blocks B as in (3.4.2). The following then holds:

gapτB ≥
1

4(b` + 1)

(
1− α

κ(1− θ)(1− 2α)

)
,

where κ > 0 is the absolute constant given in Theorem 3.3.2.

Given the above theorem, we can now derive a proof for the main result.

3.4.2 Proof of Theorem 6

By definition, as b ≥ 2, we have that

θ = tanh βc =
1√
b
≤ 1√

2
,

hence we can readily choose an absolute constant 0 < α < 1 such that

c(α) :=
1

8

(
1− α

κ(1− θ)(1− 2α)

)
> 0 .
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Let nh =
∑h−1

j=0 b
j be the number of vertices in a b-ary tree of height h excluding its leaves,

and let gapτh be the spectral gap of the (single-site) discrete-time Glauber dynamics for the

Ising model on a b-ary tree of height h and boundary τ (in the special case of a free boundary

condition, nh should instead include the leaves). Further define

gh = nh min
τ

gapτh .

Recalling the definition of B according to the above choice of α, we have that each of its

blocks is a tree of height r = (1− α)h, and that

sup
v∈T

#{B ∈ B : x ∈ B} = 2 ,

as each of the vertices in levels `, `+1, . . . , r is covered precisely twice in B, while every other

vertex is covered precisely once.

Hence, by Proposition 3.2.5 and Theorem 3.4.1, it now follows that for any h ≥ 1/α

(such that our choices of `, r in (3.4.1) are both non-zero) we have

gh ≥
(

1

4(b` + 1)

(
1− α

κ(1− θ)(1− 2α)

))
gr ·

1

2
= c(α)g(1−α)h .

Having established the induction step, we now observe that, as α is constant, clearly gk ≥ c′

holds for any k ≤ 1/α and some fixed c′ = c′(α) > 0. Hence,

gh ≥ c′
(
c(α)

)log1−α(1/h)
= c′h− log( 1

c(α))/ log( 1
1−α) ,

that is, there exists an absolute constant M (affected by our choice of the absolute constants

κ, α) so that the inverse-gap of the continuous-time dynamics with an arbitrary boundary

condition τ is at most g−1
h = O(hM), as required. �

3.4.3 Proof of Theorem 3.4.1

In order to obtain the desired lower bound on the spectral gap of the block dynamics, we

will apply the method of decomposition of Markov chains, described in Subsection 3.2.6. To

this end, we will partition our configuration according to the spins of the subset

S := B(ρ, `− 1) .
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Note that S is strictly contained in the distinguished block B(ρ, r), and does not intersect

any other B ∈ B. For η ∈ {±1}S, denote the set of configurations which agree with η by

Ωη := {σ ∈ Ω : σS = η} .

Following the definitions in Subsection 3.2.6, we can now naturally decompose the block

dynamics into a projection chain P̄ on {±1}S and restriction chains Pη on Ωη for each

η ∈ {±1}S. With Theorem 3.2.6 in mind, we now need to provide suitable lower bounds on

¯gapτ and gapτη, the respective spectral gaps of P̄ and Pη given the boundary condition τ .

We begin with the lower bound on the restriction chain gapτη, formulated in the next

lemma.

Lemma 3.4.2. For any boundary τ and η ∈ {±1}S, the spectral gap of the restriction chain

Pη on the space Ωη satisfies gapτη ≥ 1/(b` + 1).

Proof. Recall that the restriction chain Pη moves from σ ∈ Ωη to σ′ ∈ Ωη (that is, σ and

σ′ both agree with η on S) according to the original law of the chain, and remains at σ

instead of moving to any σ′ /∈ Ωη. By definition of our block dynamics, this means that with

probability b`/(b` + 1) we apply a transition kernel Q1, that selects one of the blocks rooted

at H` to be updated according to its usual law (since S and all of these blocks are pairwise

disjoint). On the other hand, with probability 1/(b`+1), we apply a transition kernel Q2 that

updates the distinguished block, yet only allows updates that keep S unchanged (otherwise,

the chain remains in place).

We next claim that the update of the distinguished block can only increase the value of

gapτη. To see this, consider the chain P ′
η, in which the distinguished block is never updated;

that is, Q2 described above is replaced by the identity. Clearly, since each of the vertices of

T \ S appears in (precisely) one of the non-distinguished blocks, the stationary distribution

of P ′
η is again µτ ;η, the Gibbs distribution with boundary conditions η and τ . Therefore,

recalling the Dirichlet form (3.2.2), for any f we clearly have

EP ′η(f) =
1

2

∑
x,y∈Ωη

[f(x)− f(y)]2 µτ ;η(x)P ′
η(x, y)

≤ 1

2

∑
x,y∈Ωη

[f(x)− f(y)]2 µτ ;η(x)Pη(x, y) = EPη(f) ,

and thus, by the spectral gap bound in terms of the Dirichlet form (3.2.1),

gap(Pη) ≥ gap(P ′
η) . (3.4.3)
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It remains to analyze the chain P ′
η, which is in fact a product chain, and as such its eigenvalues

can be directly expressed in terms of the eigenvalues of its component chains. This well known

fact is stated in the following straightforward claim (cf., e.g., [3, Chapter 4] and [54, Lemma

12.11]); we include its proof for completeness.

Claim 3.4.3. For j ∈ [d], let Pj be a transition kernel on Ωj with eigenvalues Λj. Let ν be

a probability distribution on [d], and define P ′, the transition matrix of the product chain of

the Pj-s on Ω′ = Ω1 × Ω2 × · · · × Ωd, by

P ′((x1, . . . , xd), (y1, . . . , yd)
)

=
d∑
j=1

ν(j)Pj(xj, yj)
∏
i:i6=j

1{xi=yi} .

Then P ′ has eigenvalues
{∑d

j=1 ν(j)λj : λj ∈ Λj

}
(with multiplicities).

Proof. Clearly, by induction it suffices to prove the lemma for d = 2. In this case, it is easy

to verify that the transition kernel P̃ can be written as

P̃ = ν(1)(P1 ⊗ IΩ2) + ν(2)(IΩ1 ⊗ P2) ,

where ⊗ denotes the matrix tensor-product. Thus, by tensor arithmetic, for any u, v, eigen-

vectors of P1, P2 with corresponding eigenvalues λ1, λ2 respectively, (u⊗ v) is an eigenvector

of P̃ with a corresponding eigenvalue of ν(1)λ1 + ν(2)λ2, as required. �

In our setting, first notice that Q1 itself is a product chain, whose components are the

b` chains, uniformly selected, updating each of the non-distinguished blocks. By definition,

a single block-update replaces the contents of the block with a sample according to the

stationary distribution conditioned on its boundary. Therefore, each of the above mentioned

component chains has a single eigenvalue of 1 whereas all its other eigenvalues are 0.

It thus follows that P ′
η (a lazy version of Q1) is another product chain, giving Q1 proba-

bility b`/(b` + 1) and the identity chain probability 1/(b` + 1). By Claim 3.4.3, we conclude

that the possible eigenvalues of P ′
η are precisely{

1

b` + 1
+

1

b` + 1

∑b`

j=1 λj : λj ∈ {0, 1}
}
.

In particular, gap(P ′
η) = 1/(b` + 1), and (3.4.3) now completes the proof. �

It remains to provide a bound on ¯gapτ , the spectral gap of the projection chain in the

decomposition of the block dynamics according to S. This is the main part of our proof of
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the lower bound for the spectral gap of the block dynamics, on which the entire proof of

Theorem 6 hinges. To obtain this bound, we relate the projection chain to the spatial-mixing

properties of the critical Ising model on the tree under various boundary conditions, studied

in Section 3.3.

Lemma 3.4.4. For any boundary τ , the spectral gap of the projection chain P̄ on the space

{±1}S satisfies

¯gapτ ≥ 1

b` + 1

(
1− α

κ(1− θ)(1− 2α)

)
,

where κ > 0 is the absolute constant given in Proposition 3.3.1.

We prove this lemma by establishing a certain contraction property of the projection

chain P̄ . Recall that P̄ (η, η′), for η, η′ ∈ {±1}S, is the probability that completing η into a

state σ according to the stationary distribution (with boundary η and τ) and then applying

the block dynamics transition, gives some σ′ that agrees with η′ on S.

Let S∗ = H`−1 denote the bottom level of S, and notice that in the above definition

of the transition kernel of P̄ , the value of the spins in S \ S∗ do not affect the transition

probabilities. Therefore, the projection of the chain P̄ onto S∗ is itself a Markov chain, which

we denote by P̄ ∗. In fact, we claim that the eigenvalues of P̄ and those of P̄ ∗ are precisely

the same (with the exception of additional 0-eigenvalues in P̄ ). To see this, first notice that

the eigenfunctions of P̄ ∗ can be naturally extended into eigenfunctions of P̄ with the same

eigenvalues (as P̄ ∗ is a projection of P̄ ). Furthermore, whenever η1 6= η2 ∈ S agree on S∗,

they have the same transition probabilities to any η′ ∈ S, thus contributing a 0-eigenvalue

to P̄ . It is then easy to see that all other eigenvalues of P̄ (beyond those that originated

from P̄ ∗) must be 0. Altogether,

gap(P̄ ∗) = gap(P̄ ) ( = ¯gapτ ) , (3.4.4)

and it remains to give a lower bound for gap(P̄ ∗). The next lemma shows that P̄ ∗ is

contracting with respect to Hamming distance on {±1}S∗ .

Lemma 3.4.5. Let X̄∗
t and Ȳ ∗

t be instances of the chain P̄ ∗, starting from ϕ and ψ respec-

tively. Then there exists a coupling such that

Eϕ,ψdist(X̄∗
1 , Ȳ

∗
1 ) ≤

(
b`

b` + 1
+

1

b` + 1
· 1 + (b− 1)`

bκ(1− θ)(r − `)

)
dist(ϕ, ψ) .

Proof. Clearly, if ϕ = ψ the lemma trivially holds via the identity coupling. In order to

understand the setting when ϕ 6= ψ, recall the definition of the chain P̄ ∗, which has the

following two possible types of moves E1 and E2:
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1. With probability 1 − 1
b`+1

, the block dynamics updates one of the non-distinguished

blocks: denote this event by E1. Since this operation does not affect the value of the

spins in the subset S (and in particular, in S∗), the projection chain P̄ remains in place

in this case (and so does P̄ ∗).

2. With probability 1
b`+1

, the distinguished block is being updated: denote this event

by E2. By the discussion above, this is equivalent to the following. Let η denote the

current state of the chain P̄ ∗. First, T \S is assigned values according to the stationary

distribution with boundary η and τ . Then, the distinguished block B(ρ, r) is updated

given all other spins in the tree, and the resulting value of S (and hence also of S∗) is

determined by the new state of the projection chain.

By the triangle inequality, it suffices to consider the case of dist(ϕ, ψ) = 1. Suppose therefore

that ϕ and ψ agree everywhere on S∗ except at some vertex %, and that without loss of

generality,

ϕ(%) = 1 , ψ(%) = −1 .

Crucially, the above mentioned procedure for the event E2 is precisely captured by the

spatial-mixing properties that were studied in Section 3.3. Namely, a spin of some site

v ∈ S∗ is propagated down the tree Tv (with boundary condition τ), and then the new value

of S∗ is reconstructed from level r + 1, the external boundary of B(ρ, r). We construct a

monotone coupling that will accomplish the required contraction property.

First, when propagating the sites v ∈ S∗ with v 6= %, we use the identity coupling (recall

that ϕ(v) = ψ(v) for all v 6= %). Second, consider the process that the spin at % undergoes.

For ϕ, a positive spin is propagated to T% (with boundary condition τ) and then reconstructed

from level r + 1 in the tree T (which corresponds to level r − `+ 1 in the subtree T%), with

an additional boundary condition from T \ T% that translates into some external field. For

ψ, a negative spin is propagated analogously, and notice that in its reconstruction, the exact

same external field applies (as T \ T% was guaranteed to be the same for ϕ and ψ).

Therefore, applying Proposition 3.3.1 on the tree T% with respect to the subtree T̂ =

B(%, r − `+ 1), we can deduce that

Eϕ,ψ

(
X̄∗

1 (%)− Ȳ ∗
1 (%)

∣∣E2

)
≤ cap2(B(%, r − `+ 1))

κ(1− θ)
, (3.4.5)

where κ > 1
100

, and the resistances are assigned as

R(u,v) = (tanh βc)
−2dist(%,v) .

We now turn to estimating the L2-capacity, which is equivalent to the effective conductance
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between % and ∂B(%, r−`+1). This will follow from the well-known Nash-Williams Criterion

(cf., e.g., [63]). Here and in what follows, Reff := 1/Ceff denotes the effective resistance.

Lemma 3.4.6 (Nash-Williams Criterion [72]). If {Πj}Jj=1 is a sequence of pairwise disjoint

cutsets in a network G that separate a vertex v from some set A, then

Reff(v ↔ A) ≥
∑
j

(∑
e∈Πj

1

Re

)−1

.

In our case, G is the b-ary tree B(%, r − ` + 1), and it is natural to select its different

levels as the cutsets Πj. It then follows that

Reff

(
%↔ ∂B(%, r − `+ 1)

)
≥

r−`+1∑
k=1

(bkθ2k)−1 = r − `+ 1 , (3.4.6)

where we used the fact that tanh βc = θ = 1/
√
b. It therefore follows that

cap2 (B(%, r − `+ 1)) ≤ 1

r − `
,

which, together with (3.4.5), implies that

Eϕ,ψ

(
X̄∗

1 (%)− Ȳ ∗
1 (%)

∣∣E2

)
≤ 1

κ(1− θ)(r − `)
. (3.4.7)

Unfortunately, asides from controlling the probability that the spin at % will coalesce in ϕ

and ψ, we must also consider the probability that % would remain different, and that this

difference might be propagated to other vertices in S∗ (as part of the update of B(ρ, r)). As-

sume therefore that the we updated the spin at % and indeed X̄∗
1 (%) 6= Ȳ ∗

1 (%), and next move

on to updating the remaining vertices of S∗. Since our propagation processes corresponding

to X̄∗ and Ȳ ∗ gave every vertex in T \ T% the same spin, it follows that each vertex v ∈ S∗,
v 6= %, has the same external field in X̄∗ and Ȳ ∗, with the exception of the effect of the spin

at %.

We may therefore apply the next lemma of [8], which guarantees that we can ignore

this mentioned common external field when bounding the probability of propagating the

difference in %.

Lemma 3.4.7 ([8, Lemma 4.1]). Let T be a finite tree and let v 6= w be vertices in T . Let

{Je ≥ 0 : e ∈ E(T )} be the interactions on T , and let {H(u) ∈ R : u ∈ V (T )} be an external
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field on the vertices of T . We consider the following conditional Gibbs measures:

µ+,H : the Gibbs measure with external field H conditioned on σ(v) = 1.

µ−,H : the Gibbs measure with external field H conditioned on σ(v) = −1.

Then µ+,H(σ(w))− µ−,H(σ(w)) achieves its maximum at H ≡ 0.

In light of the discussion above, Lemma 3.4.7 gives that

Eϕ,ψ

(1

2

∑
v∈S∗

(X̄∗
1 (v)− Ȳ ∗

1 (v))
∣∣E2

)
≤ Eϕ,ψ

(
X̄∗

1 (%)− Ȳ ∗
1 (%)

∣∣E2

)(
1 +

`−1∑
k=1

b− 1

b
bkθ2k

)
≤ 1 + (b− 1)(`− 1)/b

κ(1− θ)(r − `)
=

1 + (b− 1)`

bκ(1− θ)(r − `)
,

where in the first inequality we used the propagation property of the Ising model on the tree

(Claim 3.2.1), and in the second one we used the fact that θ = tanh(βc) = 1/
√
b, as well as

the estimate in (3.4.7).

We conclude that there exists a monotone coupling of X̄∗
t and Ȳ ∗

t with

Eϕ,ψ

(
dist(X̄∗

1 , Ȳ
∗
1 )
∣∣E2

)
≤ 1 + (b− 1)`

bκ(1− θ)(r − `)
,

which then directly gives that

Eϕ,ψ

(
dist(X̄∗

1 , Ȳ
∗
1 )
)
≤ b`

b` + 1
+

1

b` + 1
· 1 + (b− 1)`

bκ(1− θ)(r − `)
,

as required. �

The above contraction property will now readily infer the required bound for the spectral

gap of P̄ ∗ (and hence also for ¯gapτ ).

Proof of Lemma 3.4.4. The following lemma of Chen [17] relates the contraction of the

chain with its spectral gap:

Lemma 3.4.8 ([17]). Let P be a transition kernel for a Markov chain on a metric space Ω.

Suppose there exists a constant ι such that for each x, y ∈ Ω, there is a coupling (X1, Y1) of
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P (x, ·) and P (y, ·) satisfying

Ex,y(dist(X1, Y1)) ≤ ι dist(x, y) . (3.4.8)

Then the spectral gap of P satisfies gap ≥ 1− ι.

By Lemma 4.2.8, the requirement (3.4.8) is satisfied with

ι =
b`

b` + 1
+

1

b` + 1
· 1 + (b− 1)`

bκ(1− θ)(r − `)
,

and hence

gap(P̄ ∗) ≥ 1− ι =
1

b` + 1

(
1− 1 + (b− 1)`

bκ(1− θ)(r − `)

)
≥ 1

b` + 1

(
1− α

κ(1− θ)(1− 2α)

)
, (3.4.9)

where in the last inequality we increased 1 + (b− 1)` into b` to simplify the final expression.

This lower bound on gap(P̄ ∗) translates via (3.4.4) into the desired lower bound on the

spectral gap of the projection chain, ¯gapτ . �

We are now ready to provide a lower bound on the spectral gap of the block dynamics,

gapτB, and thereby conclude the proof of Theorem 3.4.1. By applying Theorem 3.2.6 to our

decomposition of the block dynamics chain P τ
B ,

gapτB ≥
¯gap

3
∧ ¯gap · gapmin

3γ + ¯gap
, (3.4.10)

where

gapmin := min
η∈{±1}S

gapτη , γ := max
η∈{±1}S

max
x∈Ωη

∑
y∈Ω\Ωη

P τ
B(x, y) .

Lemma 3.4.2 gives that gapmin ≥ 1/(b` + 1), and clearly, as the spins in S can only change

if the distinguished block is updated, γ ≤ 1/(b` + 1). Combining these two inequalities, we

obtain that

¯gap · gapmin

3γ + ¯gap
=

gapmin

1 + 3γ/ ¯gap
≥ 1

(b` + 1) + 3/ ¯gap
≥ 1

4

( 1

b` + 1
∧ ¯gap

)
(3.4.11)
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with room to spare. Together with (3.4.10), this implies that

gapτB ≥
1

4(b` + 1)
∧ 1

4
¯gap ,

and Lemma 3.4.4 now gives that

gapτB ≥
1

4(b` + 1)

(
1− α

κ(1− θ)(1− 2α)

)
,

as required. This concludes the proof of Theorem 3.4.1, and completes the proof of the upper

bound on the mixing time. �

Remark 3. Throughout the proof of Theorem 6 we modified some of the constants (e.g.,

(3.4.9), (3.4.11) etc.) in order to simplify the final expressions obtained. By doing the

calculations (slightly) more carefully, one can obtain an absolute constant of about 300 for

the upper bound in Theorem 6.

3.5 Lower bounds on the mixing time and inverse-gap

In this section, we prove Theorem 8, which provides lower bounds on the inverse-gap and

mixing time of the critical Ising model on a b-ary tree with free boundary. Throughout this

section, let b ≥ 2 be fixed, and set θ = tanh βc = 1√
b
.

3.5.1 Lower bound on the inverse-gap

The required lower bound will be obtained by an application of the Dirichlet form (3.2.1),

using a certain weighted sum of the spins as the corresponding test function.

Proof of Theorem 8, inequality (3.1.2). Let T be a b-ary tree, rooted at ρ, with h levels

(and n =
∑h

k=0 b
k vertices). We will show that

gap−1 ≥ b− 1

6b
nh2 .

For simplicity, we use the abbreviation d(v) := dist(ρ, v), and define

g(σ) :=
∑
v∈T

θd(v)σ(v) for σ ∈ Ω .
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By the Dirichlet form (3.2.1), and since P (σ, σ′) ≤ 1
n

for any σ, σ′ ∈ Ω in the discrete-time

dynamics, we have that

E(g) =
1

2

∑
σ,σ′

[g(σ)− g(σ′)]2µ(σ)P (σ, σ′)

≤ 1

2
max
σ

∑
σ′

[g(σ)− g(σ′)]2µ(σ)P (σ, σ′) ≤ 1

2

h∑
k=0

bk

n
(2θk)2 ≤ 2h

n
.

On the other hand, the variance of g can be estimated as follows.

Varµ g = Varµ

(∑
v∈T

θd(v)σ(v)
)

=
∑
u,w∈T

θd(u)+d(w) Covµ(σ(u), σ(w))

=
∑

u,v,w∈T

θd(u)+d(w) Covµ(σ(u), σ(w))1{u∧w=v} ,

where the notation (u∧w) denotes their most immediate common ancestor (i.e., their com-

mon ancestor z with the largest d(z)). Notice that for each v ∈ T , the number of u,w that

are of distance i, j from v respectively and have v = u ∧ w is precisely bi · (b− 1)bj−1, since

determining u immediately rules bj−1 candidates for w. Furthermore, by Claim 3.2.1 we have

Covµ(σ(u), σ(w)) = θd(u)+d(w)−2d(v) ,

and so

Varµ g =
∑

u,v,w∈T

θd(u)+d(w)θd(u)+d(w)−2d(v)1{u∧w=v}

=
h∑
k=0

bk
h−k∑
i=0

h−k∑
j=0

bi(b− 1)bj−1θ2k+i+jθi+j

=
b− 1

b

h∑
k=0

(h− k)2 =
b− 1

6b
h(h+ 1)(2h+ 1) ≥ b− 1

3b
h3 .

Altogether, we can conclude that

gap ≤ E(g)

Varµ g
=

6b

b− 1
· 1

nh2
, (3.5.1)

as required. �
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Figure 3.2: Speed-up dynamics for the Ising model on the tree.

3.5.2 Lower bound on the mixing-time

In order to obtain the required lower bound on the mixing time, we consider a “speed-up”

version of the dynamics, namely a custom block-dynamics comprising a mixture of singletons

and large subtrees. We will show that, even for this faster version of the dynamics, the mixing

time has order at least n log3 n.

Let T be a b-ary tree with h levels (and n =
∑h

k=0 b
k vertices). Consider two integers

1 ≤ ` < r ≤ h, to be specified later. For every v ∈ H`, select one of its descendants in Hr

arbitrarily, and denote it by wv. Write W = {wv : v ∈ H`} as the set of all such vertices.

Further define

Bv := (Tv \ Twv) ∪ {wv} (for each v ∈ H`) .

The speed-up dynamics, (Xt), is precisely the block-dynamics with respect to

B = {Bv : v ∈ H`} ∪
⋃
u/∈W

{u} .

In other words, the transition rule of the speed-up dynamics is the following:

(i) Select a vertex u ∈ V (T ) uniformly at random.

(ii) If u 6∈ W , update this site according to the usual rule of the Glauber dynamics.

(iii) Otherwise, update Bv given the rest of the spins, where v ∈ H` is the unique vertex

with u = wv.

The following theorem of [75] guarantees that, starting from all-plus configuration, the

speed-up Glauber dynamics indeed mixes faster than the original one. In what follows, write

µ � ν if µ stochastically dominates ν.
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Figure 3.3: Speed-up dynamics on the forest F and the sub-forest G.

Theorem 3.5.1 ([75] and also see [74, Theorem 16.5]). Let (Ω, S, V, π) be a monotone system

and let µ be the distribution on Ω which results from successive updates at sites v1, . . . , vm,

beginning at the top configuration. Define ν similarly but with updates only at a subsequence

vi1 , . . . , vik . Then µ � ν, and ‖µ − π‖TV ≤ ‖ν − π‖TV. Moreover, this also holds if the

sequence v1, . . . , vm and the subsequence i1, . . . , ik are chosen at random according to any

prescribed distribution.

To see that indeed the speed-up dynamics Xt is at least as fast as the usual dynamics,

first note that any vertex u /∈ W is updated according to the original rule of the Glauber

dynamics. Second, instead of updating the block Bv, we can simulate this operation by

initially updating wv (given its neighbors), and then performing sufficiently many single-site

updates in Bv. This approximates the speed-up dynamics arbitrarily well, and comprises a

superset of the single-site updates of the usual dynamics. The above theorem thus completes

this argument.

It remains to estimate the mixing time of the speed-up dynamics Xt. To this end, define

another set of blocks as follows: for every v ∈ H`, let Lv denote the simple path between v

and wv (inclusive), define the forest

F :=
⋃
v∈H`

(Lv ∪ Twv) ,

and put

BF := {Lv : v ∈ H`} ∪
⋃

u∈F\W

{u} .

We define Yt, the speed-up dynamics on F , to be the block-dynamics with respect to BF
above. This should not be confused with running a dynamics on a subset of T with a

boundary condition of the remaining vertices; rather than that, Yt should be thought of as

a dynamics on a separate graph F , which is endowed with a natural one-to-one mapping to
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the vertices of T . Further note that, except for the singleton blocks in B, every block Bv ∈ B
in the block-dynamics Xt has a counterpart Lv ⊂ Bv in Yt.

The next lemma compares the continuous-time versions of Xt and Yt (where each block is

updated at rate 1), and shows that on a certain subset of the vertices, they typically remain

the same for a substantial amount of time.

Lemma 3.5.2. Let (Xt) and (Yt) be the continuous-time speed-up dynamics on T and F

respectively, as defined above. Let G =
⋃
v∈H`

Twv and define

τ = inf
t
{Xt(u) 6= Yt(u) for some u ∈ V (G)} .

Then there exists a coupling of Xt and Yt such that

P(τ > t) ≥ exp(−θr−`b`t) .

Proof. For two configurations σ ∈ {±1}T and η ∈ {±1}F , denote their Hamming distance

on F by

dist(σ, η) =
∑
v∈F

1{σ(v) 6=η(v)} .

The coupling of Xt and Yt up to time τ can be constructed as follows:

1. Whenever a singleton block {u} with u ∈ T \ F is being updated in Xt, the chain Yt
remains in place.

2. Otherwise, when a block B is updated in Xt, we update B ∩ F (the unique B′ ∈ BF
with B′ ⊂ B) in Yt so as to minimize dist(Xt, Yt).

For any w ∈ W , define the stopping time

τw = inf{t : Xt(w) 6= Yt(w)} ,

and notice that in the above defined coupling we have τ = minw∈W τw, since W separates

G \W from F .

Let v ∈ H` and w = wv ∈ W , and suppose that block Bv is to be updated at time

t < τw in Xt, and hence, as defined above, Lv is to be updated in Yt. By definition, at this

time these two blocks have the same boundary except for at v, where there is a boundary

condition in T (the parent of v) and none in F (recall v is the root of one of the trees in F ).

We now wish to give an upper bound on the probability that this update will result in

Xt(w) 6= Yt(w). By the monotonicity of the Ising model, it suffices to give an upper bound

for this event in the case where v has some parent z in F , and Xt(z) 6= Yt(z). In this case, we
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can bound the probability that Xt(w) 6= Yt(w) (in the maximal coupling) by an expression

of the form
1

2

(
µ+,H(σ(w))− µ−,H(σ(w))

)
as described in Lemma 3.4.7, where the external field H corresponds to the value of the spins

in Tw \ {w}. Lemma 3.4.7 then allows us to omit the external field H at w, translating the

problem into estimating the probability that a difference propagates from v to w. By Claim

3.2.1, we deduce that

P (Xt(w) 6= Yt(w)) ≤ θr−` ,

and therefore

P (t < τw) ≥ exp
(
−θr−`t

)
.

Using the fact |W | = b`, it follows that

P(t < τ) = P
(
t < min

w∈W
τw

)
≥ exp(−θr−`b`t) ,

as required. �

With the above estimate on the probability that Xt and Yt are equal on the subgraph G

up to a certain time-point, we can now proceed to studying the projection of Xt on G via

that of Yt (being a product chain, Yt is much simpler to analyze).

To be precise, let X̃t and Ỹt denote the respective projections of Xt and Yt onto G, which

as a reminder is the union of all trees Twv . Notice that Ỹt is precisely the continuous-time

single-site Glauber dynamics on G, since the block update of Lv in F translates simply into

the single-site update of wv in G. On the other hand, X̃t is not even necessarily a Markov

chain. We next prove a lower bound on the mixing time of the Markov chain Ỹt.

Lemma 3.5.3. Let H̃t be the transition kernel of Ỹt, and let µG denote its corresponding sta-

tionary measure. Let gap′ denote the spectral-gap of the continuous-time single-site dynamics

on a b-ary tree of height h− r. Then

‖H̃t(1, ·)− µG‖TV >
3

5
for any t ≤ ` log b−2

2gap′
,

where 1 denotes the all-plus configuration.

Proof. Let T ′ denote a b-ary tree of height h − r and n′ vertices. Let P ′ be the transition

kernel of the corresponding discrete-time single-site Glauber dynamics on T ′, let H ′
t be

the transition kernel of the continuous-time version of this dynamics, and let µ′ be their

corresponding stationary measure.
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By definition of G as a disjoint union of b` copies of T ′, clearly Ỹt is a product of b` copies

of identical and independent component chains on T ′. We can therefore reduce the analysis

of Ỹt into that of H ′
t, where the second eigenvalue of of its discrete-time counterpart P ′ plays

a useful role.

The following lemma ensures that P ′ has an increasing eigenfunction corresponding to

its second largest eigenvalue λ′.

Lemma 3.5.4 ([71, Lemma 3]). The second eigenvalue of the discrete-time Glauber dynamics

for the Ising model has an increasing eigenfunction.

Since the eigenspace of λ′ has an increasing eigenfunction, it also contains a monotone

eigenfunction f such that |f(1)| = ‖f‖∞. Therefore, the transition kernel of the continuous-

time chain satisfies

(H ′
tf) (1) =

( ∞∑
k=0

e−tn
′ (tn′)k

k!
(P ′)kf

)
(1)

= e−tn
′
∞∑
k=0

(tn′λ′)k

k!
f(1) = e−n

′(1−λ′)tf(1) . (3.5.2)

Since
∫
fdµ′ = 0, we have that

|(H ′
tf)(1)| =

∣∣∣∑
y

(H ′
t(1, y)f(y)− f(y)µ′(y))

∣∣∣ ≤ 2‖f‖∞‖Ht(1, ·)− µ′‖TV .

Plugging in (3.5.2) and using the fact that |f(1)| = ‖f‖∞, it follows that

‖H ′
t(1, ·)− µ′‖TV ≥

1

2
e−n

′(1−λ′)t . (3.5.3)

In order to relate the product chain Ỹt to its component chain Y ′
t , we will consider

the Hellinger distance between certain distributions, defined next (for further details, see,

e.g., [52]). First, define the Hellinger integral (also known as the Hellinger affinity) of two

distribution µ and ν on Ω to be

IH(µ, ν) :=
∑
x∈Ω

√
µ(x)ν(x) .

The Hellinger distance is now defined as

dH(µ, ν) :=
√

2− 2IH(µ, ν) .
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Clearly, for any two distributions µ and ν,

IH(µ, ν) =
∑
x∈Ω

√
µ(x)ν(x) ≥

∑
x∈Ω

µ(x) ∧ ν(x) = 1− ‖µ− ν‖TV ,

and so dH provides the following lower bound on the total variation distance:

‖µ− ν‖TV ≥ 1− IH(µ, ν) =
1

2
d2
H(µ, ν) . (3.5.4)

Furthermore, the Hellinger distance also provides an upper bound on dTV, as the next simple

inequality (e.g., [36, Lemma 4.2 (i)]) shows:

‖µ− ν‖TV ≤ dH(µ, ν) . (3.5.5)

To justify this choice of a distance when working with product chains, notice that any two

product measures µ =
∏n

i=1 µ
(i) and ν =

∏n
i=1 ν

(i) satisfy

IH(µ, ν) =
n∏
i=1

IH(µ(i), ν(i)) . (3.5.6)

Next, we consider the Hellinger integral of our component chains H ′
t. Indeed, combining the

definition of dH with (3.5.5), we get that

IH(H ′
t(1, ·), µ′) ≤ 1− 1

2
‖H ′

t(1, ·)− µ′‖2
TV ≤ 1− 1

8
e−2n′(1−λ′)t ,

where the last inequality is by (3.5.3). Therefore, applying (3.5.6) to the product chain H̃t

(the product of b` copies of H ′
t), we can now deduce that

IH(H̃t(1, ·), µG) ≤
(

1− 1

8
e−2(1−λ′)tn′

)b`
.

At this point, (3.5.4) gives that

‖H̃t(1, ·)− µG‖TV ≥ 1−
(

1− e−2(1−λ′)tn′

8

)b`
.

Recall that by definition, gap′ is the spectral-gap of H ′
t, the continuous-time version of P ′,
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and so gap′ = n′(1− λ′). Hence, if

t ≤ ` log b− 2

2gap′

then

‖H̃t(1, ·)− µG‖TV ≥ 1− exp
(
− e2/8

)
>

3

5
,

as required. �

The final ingredient required is the comparison between µG (the Gibbs distribution on

G), and the projection of µ (the Gibbs distribution for T ) onto the graph G. The following

lemma provides an upper bound on the total-variation distance between these two measures.

Lemma 3.5.5. Let µ and µG be the Gibbs distributions for T and G resp., and let µ̃ denote

the projection of µ onto G, that is:

µ̃(η) = µ({σ ∈ {±1}T : σG = η}) ( for η ∈ {±1}G ) .

Then ‖µG − µ̃‖TV ≤ b2`θ2(r−`).

Proof. Recalling that G is a disjoint union of trees {Tw : w ∈ W}, clearly the configurations

of these trees are independent according to µG. On the other hand, with respect to µ̃, these

configurations are correlated through their first (bottom-most) common ancestor. Further

notice that, by definition, the distance between wi 6= wj ∈ W in T is at least 2(r− `+ 1), as

they belong to subtrees of distinct vertices in H`.

To bound the effect of the above mentioned correlation, we construct a coupling between

µG and µ̃ iteratively on the trees {Tw : w ∈ W}, generating the corresponding configurations

η and η̃, as follows. Order W arbitrarily as W = {w1, . . . , wb`}, and begin by coupling µG
and µ̃ on Tw1 via the identity coupling. Now, given a coupling on ∪i<kTwi

, we extend the

coupling to Twk
using a maximal coupling. Indeed, by essentially the same reasoning used

for the coupling of the processes Xt and Yt on G in Lemma 3.5.2, the probability that some

already determined wi (for i < k) would affect wk is at most θ2(r−`+1). Summing these

probabilities, we have that

P
(
ηTwk

6= η̃Twk

)
= P (η(wk) 6= η̃(wk)) ≤ (k − 1)θ2(r−`+1) .

Altogether, taking another union bound over all k ∈ [b`], we conclude that

‖µG − µ̃‖TV ≤ P(η 6= η̃) ≤ b2`θ2(r−`) ,
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completing the proof. �

We are now ready to prove the required lower bound on tmix.

Proof of Theorem 8, inequality (3.1.3). As we have argued above (see Theorem 4.2.4

and the explanation thereafter), it suffices to establish a lower bound on the mixing time

of the speed-up dynamics Xt on T . By considering the projection of this chain onto G, we

have that

‖P1(Xt ∈ ·)− µ‖TV ≥ ‖P1(X̃t ∈ ·)− µ̃‖TV ,

and recalling the definition of τ as inft{(Xt)G 6= (Yt)G},

‖P1(X̃t ∈ ·)− µ̃‖TV ≥ ‖P1(Ỹt ∈ ·)− µ̃‖TV −P(τ ≤ t)

≥ ‖P1(Ỹt ∈ ·)− µG‖TV −P(τ ≤ t)− ‖µG − µ̃‖TV .

Let gap and gap′ denote the spectral-gaps of the continuous-time single-site dynamics on

a b-ary tree with h levels and h − r levels respectively (and free boundary condition), and

choose t such that

t ≤ ` log b− 2

2gap′
. (3.5.7)

Applying Lemmas 3.5.2, 3.5.3 and 3.5.5, we obtain that

‖P1(Xt ∈ ·)− µ‖TV ≥
3

5
−
(
1− exp(−θr−`b`t)

)
− b2`θ2(r−`) . (3.5.8)

Now, selecting

` =
h

5
and r =

4h

5
,

and recalling that bθ2 = 1, we have that the last two terms in (3.5.8) both tend to 0 as

h→∞, and so

‖P1(Xt ∈ ·)− µ‖TV ≥
3

5
− o(1) .

In particular, for a sufficiently large h, this distance is at least 1/e, hence by definition the

continuous-time dynamics satisfies tmix ≥ t. We can can now plug in our estimates for gap′

to obtain the required lower bounds on tmix.

First, recall that by (3.5.1),

gap′ ≤ 6b

b− 1
· 1

(h− r)2
,
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and so the following choice of t satisfies (3.5.7):

t :=
(b− 1)

12b
(h− r)2(` log b− 2) .

It follows that the mixing-time of the continuous-time dynamics satisfies

tmix ≥ t ≥
((b− 1) log b

1500 b
+ o(1)

)
h3 ,

and the natural translation of this lower bound into the discrete-time version of the dynamics

yields the lower bound in (3.1.3).

Second, let g(h) be the continuous-time inverse-gap of the dynamics on the b-ary tree

of height h with free-boundary condition, and recall that by Theorem 6, we have that g is

polynomial in h. In particular,

g(h) ≤ Cg(h/5) for some fixed C > 0 and all h.

Since by definition (gap′)−1 = g(h − r) = g(h/5) and gap−1 = g(h), we can choose t to be

the right-hand-side of (3.5.7) and obtain that for any large h

tmix ≥ t ≥ C ′gap−1h for some C ′ > 0 fixed.

Clearly, this statement also holds when both tmix and gap correspond to the discrete-time

version of the dynamics, completing the proof. �

3.6 Phase transition to polynomial mixing

This section contains the proof of Theorem 7, which addresses the near critical Ising model

on the tree, and namely, the transition of its (continuous-time) inverse-gap and mixing-time

from polynomial to exponential in the tree-height. Theorem 7 will follow directly from the

next theorem:

Theorem 3.6.1. Fix b ≥ 2, let ε = ε(h) satisfy 0 < ε < ε0 for a suitably small constant

ε0, and let β = arctanh
(√

(1 + ε)/b
)
. The following holds for the continuous-time Glauber

dynamics for the Ising model on the b-ary tree with h levels at the inverse-temperature β:

(i) For some c1 > 0 fixed, the dynamics with free boundary satisfies

gap−1 ≥ c1 ((1/ε) ∧ h)2 (1 + ε)h . (3.6.1)
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(ii) For some absolute constant c2 > 0 and any boundary condition τ

gap−1 ≤ tmix ≤ ec2(εh+log h) . (3.6.2)

Throughout this section, let b ≥ 2 be some fixed integer, and let T be a b-ary tree with

height h and n vertices. Define θ =
√

(1 + ε)/b, where ε = ε(n) satisfies 0 < ε ≤ ε0 (for

some suitably small constant ε0 <
1
8

to be later specified), and as usual write β = arctanh(θ).

Proof of Theorem 3.6.1. The proof follows the same arguments of the proof of Theorems

6 and 8. Namely, the upper bound uses an inductive step using a similar block dynamics,

and the decomposition of this chain to establish a bound on its gap (as in Section 3.4) via

the spatial mixing properties of the Ising model on the tree (studied in Section 3.3). The

lower bound will again follow from the Dirichlet form, using a testing function analogous

to the one used in Section 3.5. As most of the arguments carry to the new regime of β in

a straightforward manner, we will only specify the main adjustments one needs to make in

order to extend Theorems 6 and 8 to obtain Theorem 3.6.1.

Upper bound on the inverse-gap

Let 1
100

< κ < 1 be the universal constant that was introduced in Lemma 3.3.7 (and appears

in Proposition 3.3.1 and Theorem 3.3.2), and define

ε0 :=
κ

20
≤ 1

8
.

As b ≥ 2 and ε < ε0 ≤ 1
8
, we have that θ ≤ 3

4
, hence Proposition 3.3.1 and Theorem 3.3.2

both hold in this supercritical setting. It therefore remains to extend the arguments in

Section 3.4 (that use Proposition 3.3.1 as one of the ingredients in the proof of the upper

bound on gap−1) to this new regime of β.

Begin by defining the same block dynamics as in (3.4.2), only with respect to the following

choice of ` and r (replacing their definition (3.4.1)):

α := ε0 = κ/20 , (3.6.3)

` := α [(1/ε) ∧ h] , r := h− ` . (3.6.4)

Following the same notations of Section 3.4, we now need to revisit the arguments of Lemma

4.2.8, and extend them to the new value of θ = tanh β =
√

(1 + ε)/b. This comprises the

following two elements:
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1. Bounding the L2-capacity cap2(B(%, r − `)).

2. Estimating the probability that a difference in one spin would propagate to other spins,

when coupling two instances of the chain P̄ ∗.

Recalling the Nash-Williams Criterion (Lemma 3.4.6) and its application in inequality

(3.4.6), the effective resistance between % and ∂B(%, r − `) is at least

r−`+1∑
k=1

(
bkθ2k

)−1
=

r−`+1∑
k=1

(1 + ε)−k =
1

ε

(
1− (1 + ε)−(r−`+1)

)
,

which implies that

cap2 (B(%, r − `+ 1)) ≤ ε

1− (1 + ε)−(r−`) . (3.6.5)

Now, if ε ≥ 1/h, we have

1− (1 + ε)−(r−`) = 1− (1 + ε)−(h−2α/ε) ≥ 1− (1 + ε)−(1−2α)/ε

≥ 1− e−(1−2α) ≥ 1− 2α

2
,

where the last inequality uses the fact that exp(−x) ≤ 1− x+ x2

2
and that α > 0. Similarly,

if ε < 1/h then

1− (1 + ε)−(r−`) = 1− (1 + ε)−h(1−2α) ≥ 1− e−εh(1−2α)

≥ εh(1− 2α)− (εh(1− 2α))2

2
≥ εh

1− 2α

2
,

where in the last inequality we plugged in the fact that εh < 1. Combining the last two

equations with (3.6.5), we deduce that

cap2 (B(%, r − `+ 1)) ≤ 2 (ε ∨ (1/h))

1− 2α
.

Using (3.4.5), it then follows that

Eϕ,ψ

(
X̄∗

1 (%)− Ȳ ∗
1 (%)

∣∣E2

)
≤ 2 (ε ∨ (1/h))

κ(1− θ)(1− 2α)
.

By repeating the next arguments of Lemma 4.2.8 (without any additional essential changes),
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we obtain that under the monotone coupling,

Eϕ,ψ

(
dist(X̄∗

1 , Ȳ
∗
1 )
∣∣E2

)
≤ 2 (ε ∨ (1/h))

κ(1− θ)(1− 2α)

(
1 +

`−1∑
k=1

b− 1

b
bkθ2k

)
=

2 (ε ∨ (1/h))

κ(1− θ)(1− 2α)

(1

b
+
b− 1

b

(1 + ε)α[(1/ε)∧h] − 1

ε

)
≤ 2 (ε ∨ (1/h))

κ(1− θ)(1− 2α)

(1 + ε)α[(1/ε)∧h] − 1

ε
≤ 2 (ε ∨ (1/h))

κ(1− θ)(1− 2α)

eα[1∧ εh] − 1

ε

≤ 2 (ε ∨ (1/h))

κ(1− θ)(1− 2α)

2α[1 ∧ εh]

ε
=

4α

κ(1− θ)(1− 2α)
,

where in the last line we used the fact that ex − 1 < 2x for all 0 ≤ x ≤ 1. Again defining

gh = nh minτ gap
τ
h, we note that all the remaining arguments in Section 3.4 apply in our case

without requiring any modifications, hence the following recursion holds for gh:

gh ≥ c(α)gr = c(α)gh−α[(1/ε)∧h] , (3.6.6)

where

c(α) :=
1

8

(
1− 4α

κ(1− θ)(1− 2α)

)
.

Recalling the definition (3.6.3) of α, since θ ≤ 3
4

and κ < 1 we have that

4α

κ(1− θ)(1− 2α)
=

2

(1− θ)(10− κ)
<

8

9
,

and so c(α) > 0. We now apply the next recursion over ghk
:

h0 = h , hk+1 =

{
hk − (α/ε) if hk ≥ (1/ε) ,

(1− α)hk if hk ≤ (1/ε) .

Notice that by our definition (3.6.3), we have ε < ε0 = α. With this in mind, definition (3.6.4)

now implies that for any h > 1/α we have `, r ≥ 1. Thus, letting K = min{k : hk ≤ 1/α},
we can conclude from (3.6.6) that

ghk
≥ c(α)ghk+1

for all k < K, and hence

gh ≥ (c(α))K ghK
.
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By the definitions of hk and K, clearly

K ≤ ε

α
h+ log1/(1−α) (h ∧ (1/ε)) = O(εh+ log h) .

Since hK ≤ 1/α, clearly ghK
> c′ for some constant c′ = c′(α) > 0, giving

gh ≥ c′ (c(α))K ≥ e−M(εh+log h)

for some constant M = M(α) > 0 and any sufficiently large n. By definition of gh, this

provides an upper bound on gap−1, and as tmix = O
(
gap−1 log2 n

)
(see Corollary 3.2.4 in

Section 5.1), we obtain the upper bound on tmix that appears in (3.6.2).

Lower bound on the inverse-gap

We now turn to establishing a lower bound on the inverse-gap. Define the test function g to

be the same one given in Subsection 3.5.1:

g(σ) =
∑
v∈T

θdist(ρ,v)σ(v) .

By the same calculations as in the proof of Theorem 8 (Subsection 3.5.1), we have that

E(g) ≤ 1

2

h∑
k=0

bk

n
(2θk)2 =

2

n

h∑
k=0

(1 + ε)k =
2

n

(1 + ε)h+1 − 1

ε
, (3.6.7)

whereas

Varµ(g) =
b− 1

b

h∑
k=0

bkθ2k
( h−k∑
i=0

biθ2i
)2

=
b− 1

b

h∑
k=0

(1 + ε)k
( h−k∑
i=0

(1 + ε)i
)2

=
b− 1

b

h∑
k=0

(1 + ε)k
((1 + ε)h−k+1 − 1

ε

)2

=
b− 1

b ε2

h∑
k=0

(
(1 + ε)2h−k+2 − 2(1 + ε)h+1 + (1 + ε)k

)
=
b− 1

b ε3

(
(1 + ε)2h+3 − (2h+ 3) ε(1 + ε)h+1 − 1

)
. (3.6.8)
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When ε ≥ 8/h we have

1

2
(1 + ε)h+2 − (2h+ 3)ε ≥ ε

2
(h+ 2) +

ε2

2

(
h+ 2

2

)
− (2h+ 3)ε

≥ (h+ 2)ε

(
1

2
+ ε

h+ 1

4
− 2

)
≥ 4 ,

and therefore in this case (3.6.8) gives

Varµ(g) ≥ b− 1

2b

(1 + ε)2h+3

ε3
. (3.6.9)

Combining (3.6.7) and (3.6.9), the Dirichlet form (3.2.1) now gives that

gap ≤ 4b

b− 1

ε2

n(1 + ε)h
for ε ≥ 8/h . (3.6.10)

On the other hand, when 0 ≤ ε < 8/h we still have bθ2 ≥ 1 and hence

Varµ(g) =
b− 1

b

h∑
k=0

bkθ2k
( h−k∑
i=0

biθ2i
)2

≥ b− 1

b

h∑
k=0

(h− k)2 ≥ b− 1

3b
h3.

In addition, using the fact that the expression [(1 + ε)h+1 − 1]/ε in (3.6.7) is monotone

increasing in ε, in this case we have

E(g) ≤ 2

n

(1 + (8/h))h+1 − 1

8/h
≤ e7h/n ,

where the last inequality holds for any h ≥ 20. Altogether, the Dirichlet form (3.2.1) yields

(for such values of h)

gap ≤ 3e7b

b− 1

1

nh2
for 0 < ε ≤ 8/h . (3.6.11)

Combining (3.6.10) and (3.6.11), we conclude that

gap ≤ 3e15b

b− 1

[
n(1 + ε)h ((1/ε) ∧ h)2]−1

,

where we used the fact that (1 + ε)h ≤ e. This gives the lower bound on gap−1 that appears

in (3.6.1), completing the proof of Theorem 3.6.1. �
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3.7 Concluding remarks and open problems

• We have established that in the continuous-time Glauber dynamics for the critical Ising

model on a regular tree with arbitrary boundary condition, both the inverse-gap and

the mixing-time are polynomial in the tree-height h. This completes the picture for

the phase-transition of the inverse-gap (bounded at high temperatures, polynomial at

criticality and exponential at low temperatures), as conjectured by the physicists for

lattices. Moreover, this provides the first proof of this phenomenon for any underlying

geometry other than the complete graph.

• In addition, we studied the near-critical behavior of the inverse-gap and mixing-time.

Our results yield the critical exponent of β − βc, as well as pinpoint the threshold at

which these parameters cease to be polynomial in the height.

• For further study, it would now be interesting to determine the precise power of h in

the order of each the parameters gap−1 and tmix at the critical temperature. In the free-

boundary case, our lower bounds for these parameters in Theorem 8 provide candidates

for these exponents:

Question 3.7.1. Fix b ≥ 2 and let βc = arctanh(1/
√
b) be the critical inverse-temperature

for the Ising model on a b-ary tree of height h. Does the corresponding continuous-time

Glauber dynamics with free boundary condition satisfy gap−1 � h2 and tmix � h3?

• Both at critical and at near-critical temperatures, our upper bounds for the inverse-gap

and mixing-time under an arbitrary boundary condition matched the behavior in the

free-boundary case. This suggests that a boundary condition can only accelerate the

mixing of the dynamics, and is further supported by the behavior of the model under

the all-plus boundary, as established in [66]. We therefore conjecture the following

monotonicity of gap−1 and tmix with respect to the boundary condition:

Conjecture 1. Fix b ≥ 2 and β > 0, and consider the Ising model on a b-ary tree with

parameter β. Denote by gap and tmix the spectral-gap and mixing time for the Glauber

dynamics with free boundary, and by gapτ and tτmix those with boundary condition τ .

Then

gap ≤ gapτ and tmix ≥ tτmix for any τ .

• A related statement was proved in [65] for two-dimensional lattices at low temperature:

It was shown that, in that setting, the spectral-gap under the all-plus boundary condition

is substantially larger than the spectral-gap under the free boundary condition. In light

of this, it would be interesting to verify whether the monotonicity property, described

in Conjecture 1, holds for the Ising model on an arbitrary finite graph.
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Chapter 4

General lower bound on the mixing

for Ising model

4.1 Introduction

Consider a finite graph G = (V,E) and a finite alphabet Q. A general spin system on G is

a probability measure µ on QV ; well studied examples in computer science and statistical

physics include the uniform measure on proper colorings and the Ising model. Glauber

(heat-bath) dynamics are often used to sample from µ (see, e.g., [54, 64, 80]). In discrete-

time Glauber dynamics, at each step a vertex v is chosen uniformly at random and the label

at v is replaced by a new label chosen from the µ-conditional distribution given the labels on

the other vertices. This Markov chain has stationary distribution µ, and the key quantity

to analyze is the mixing time tmix, at which the distribution of the chain is close in total

variation to µ (precise definitions are given below).

If |V | = n, it takes (1 + o(1))n log n steps to update all vertices (coupon collecting),

and it is natural to guess that this is a lower bound for the mixing time. However, for the

Ising model at infinite temperature or equivalently, for the 2-colorings of the graph (V, ∅),
the mixing time of Glauber dynamics is asymptotic to n log n/2, since these models reduce

to the lazy random walk on the hypercube, first analyzed in [2]. Thus mixing can occur

before all sites are updated, so the coupon collecting argument does not suffice to obtain a

lower bound for the mixing time. The first general bound of the right order was obtained

by Hayes and Sinclair [42], who showed that the mixing time for Glauber dynamics is at

least n log n/f(∆), where ∆ is the maximum degree and f(∆) = Θ(∆ log2 ∆). Their result

applies for quite general spin systems, and they gave examples of spin systems µ where some

dependence on ∆ is necessary. After the work of [42], it remained unclear whether a uniform
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lower bound of order n log n, that does not depend on ∆, holds for the most extensively

studied spin systems, such as proper colorings and the Ising model.

In this chapter, we focus on the ferromagnetic Ising model, and obtain a lower bound of

(1/4 + o(1))n log n on any graph with general (non-negative) interaction strengths.

Recall the definition of the Ising measure as in (1.1.1). Throughout this chapter, we take

β = 1 and H ≡ 0 unless otherwise specified. We now state the main result of this chapter.

Theorem 9. Consider the Ising model (1.1.1) on the graph G with interaction matrix J ,

and let t+mix(G, J) denote the mixing time of the corresponding Glauber dynamics, started

from the all-plus configuration. Then

inf
G,J

t+mix(G, J) ≥ (1/4 + o(1))n log n ,

where the infimum is over all n-vertex graphs G and all nonnegative interaction matrices J .

Remark. Theorem 9 is sharp up to a factor of 2. We conjecture that (1/4 + o(1)) in

the theorem could be replaced by (1/2 + o(1)), i.e., the mixing time is minimized (at least

asymptotically) by taking J ≡ 0.

Hayes and Sinclair [42] constructed spin systems where the mixing time of the Glauber

dynamics has an upper bound O(n log n/ log ∆). This, in turn, implies that in order to

establish a lower bound of order n log n for the Ising model on a general graph, we have

to employ some specific properties of the model. In our proof of Theorem 9, given in the

next section, we use the GHS inequality [40] (see also [51] and [32]) and a recent censoring

inequality [75] due to Peter Winkler and the second author.

4.2 Proof of Theorem 9

The intuition for the proof is the following: In the case of strong interactions, the spins

are highly correlated and the mixing should be quite slow; In the case of weak interaction

strengths, the spins should be weakly dependent and close to the case of the graph with no

edges, therefore one may extend the arguments for the lazy walk on the hypercube.

We separate the two cases by considering the spectral gap. Recall that the spectral gap

of a reversible discrete-time Markov chain, denoted by gap, is 1 − λ, where λ is the second

largest eigenvalue of the transition kernel. The following simple lemma gives a lower bound

on t+mix in terms of the spectral gap.

Lemma 4.2.1. The Glauber dynamics for the ferromagnetic Ising model (1.1.1) satisfies

t+mix ≥ log 2 · (gap−1 − 1).
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Proof. It is well known that tmix ≥ log 2 · (gap−1 − 1) (see, e.g., Theorem 12.4 in [54]).

Actually, it is shown in the proof of [54, Theorem 12.4] that txmix ≥ log 2 · (gap−1 − 1)

for any state x satisfying f(x) = ‖f‖∞, where f is an eigenfunction corresponding to the

second largest eigenvalue. Since the second eigenvalue of the Glauber dynamics for the

ferromagnetic Ising model has an increasing eigenfunction f (see [71, Lemma 3]), we infer

that either ‖f‖∞ = f(+) or ‖f‖∞ = f(−). By symmetry of the all-plus and the all-

minus configurations in the Ising model (1.1.1), we have t+mix = t−mix, and this concludes the

proof. �

Lemma 4.2.1 implies that Theorem 9 holds if gap−1 ≥ n log n. It remains to consider the

case gap−1 ≤ n log n.

Lemma 4.2.2. Suppose that the Glauber dynamics for the Ising model on a graph G = (V,E)

with n vertices satisfies gap−1 ≤ n log n. Then there exists a subset F ⊂ V of size b
√
n/ log nc

such that ∑
u,v∈F,u 6=v

Covµ(σ(u), σ(v)) ≤ 2

log n
.

Proof. We first establish an upper bound on the variance of the sum of spins S = S(σ) =∑
v∈V σ(v). The variational principle for the spectral gap of a reversible Markov chain with

stationary measure π gives (see, e.g., [3, Chapter 3] or [54, Lemma 13.12]:

gap = inf
f

E(f)

Varπ(f)
,

where E(f) is the Dirichlet form defined by

E(f) = 〈(I − P )f, f〉π = 1
2

∑
x,y∈Ω

[f(x)− f(y)]2 π(x)P (x, y) .

Applying the variational principle with the test function S, we deduce that

gap ≤ E(S)

Varµ(S)
.

Since the Glauber dynamics updates a single spin at each step, E(S) ≤ 2, whence

Varµ(S) ≤ E(S)gap−1 ≤ 2n log n . (4.2.1)

The covariance of the spins for the ferromagnetic Ising model is non-negative by the FKG

inequality (see, e.g., [39]). Applying Claim 4.2.3 below with k = b
√
n

logn
c to the covariance

matrix of σ concludes the proof of the lemma. �
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Claim 4.2.3. Let A be an n×n matrix with non-negative entries. Then for any k ≤ n there

exists F ⊂ {1, . . . , n} such that |F | = k and

∑
i,j∈F

Ai,j1{i6=j} ≤
k2

n2

∑
i6=j

Ai,j .

Proof. Let R be a uniform random subset of {1, . . . , n} with |R| = k. Then,

E
[ ∑
i,j∈R

Ai,j1{i6=j}

]
=

∑
1≤i,j≤n

Ai,j1{i6=j}P(i, j ∈ R)

=
k(k − 1)

n(n− 1)

∑
1≤i,j≤n

Ai,j1{i6=j} ≤
k2

n2

∑
i6=j

Ai,j .

Existence of the desired subset F follows immediately. �

We now consider a version of accelerated dynamics (Xt) with respect to the subset F as

in Lemma 4.2.2. The accelerated dynamics selects a vertex v ∈ V uniformly at random at

each time and updates in the following way:

• If v 6∈ F , we update σ(v) as in the usual Glauber dynamics.

• If v ∈ F , we update the spins on {v} ∪ F c all together as a block, according to the

conditional Gibbs measure given the spins on F \ {v}.

The next censoring inequality for monotone systems of [75] guarantees that, starting from

the all-plus configuration, the accelerated dynamics indeed mixes faster than the original

one. A monotone system is a Markov chain on a partially ordered set with the property that

for any pair of states x ≤ y there exist random variables X1 ≤ Y1 such that for every state z

P(X1 = z) = p(x, z), P(Y1 = z) = p(y, z) .

In what follows, write µ � ν if ν stochastically dominates µ.

Theorem 4.2.4 ([75] and also see [74, Theorem 16.5]). Let (Ω, S, V, π) be a monotone system

and let µ be the distribution on Ω which results from successive updates at sites v1, . . . , vm,

beginning at the top configuration. Define ν similarly but with updates only at a subsequence

vi1 , . . . , vik . Then µ � ν, and ‖µ − π‖TV ≤ ‖ν − π‖TV. Moreover, this also holds if the

sequence v1, . . . , vm and the subsequence i1, . . . , ik are chosen at random according to any

prescribed distribution.
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In order to see how the above theorem indeed implies that the accelerated dynamics (Xt)

mixes at least as fast as the usual dynamics, first note that any vertex u /∈ F is updated

according to the original rule of the Glauber dynamics. Second, for u ∈ F , instead of

updating the block {u}∪F c, we can simulate this procedure by performing sufficiently many

single-site updates in {u}∪F c. This approximates the accelerated dynamics arbitrarily well,

and contains a superset of the single-site updates of the usual Glauber dynamics. In other

words, the single-site Glauber dynamics can be considered as a “censored” version of our

accelerated dynamics. Theorem 4.2.4 thus completes this argument.

Let (Yt) be the projection of the chain (Xt) onto the subgraph F . Recalling the definition

of the accelerated dynamics, we see that (Yt) is also a Markov chain, and the stationary

measure νF for (Yt) is the projection of µG to F . Furthermore, consider the subsequence

(Zt) of the chain (Yt) obtained by skipping those times when updates occurred outside of F

in (Xt). Namely, let Zt = YKt where Kt is the t-th time that a block {v} ∪ F c is updated in

the chain (Xt). Clearly, (Zt) is a Markov chain on the space {−1, 1}F , where at each time a

uniform vertex v from F is selected and updated according to the conditional Gibbs measure

µG given the spins on F \ {v}. The stationary measure for (Zt) is also νF .

Let St =
∑

v∈F Zt(v) be the sum of spins over F in the chain (Zt). It turns out that St is

a distinguishing statistic and its analysis yields a lower bound on the mixing time for chain

(Zt). To this end, we need to estimate the first two moments of St.

Lemma 4.2.5. Started from all-plus configuration, the sum of spins satisfies that

E+(St) ≥ |F |
(

1− 1
|F |

)t
.

Proof. The proof follows essentially from a coupon collecting argument. Let (Z
(+)
t ) be an

instance of the chain (Zt) started at the all-plus configuration, and let (Z∗
t ) be another

instance of the chain (Zt) started from νF . It is obvious that we can construct a monotone

coupling between (Z
(+)
t ) and (Z∗

t ) (namely, Z
(+)
t ≥ Z∗

t for all t ∈ N) such that the vertices

selected for updating in both chains are always the same. Denote by U [t] this (random)

sequence of vertices updated up to time t. Note that Z∗
t has law νF , even if conditioned on

the sequence U [t]. Recalling that Z
(+)
t ≥ Z∗

t and Eµσ(v) = 0, we obtain that

E+[Z
(+)
t (v) | v ∈ U [t]] ≥ 0 .

It is clear that Z
(+)
t (v) = 1 if v 6∈ U [t]. Therefore,

E+[Z
(+)
t (v)] ≥ P(v 6∈ U [t]) = (1− 1

|F |)
t .
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Summing over v ∈ F concludes the proof. �

We next establish a contraction result for the chain (Zt). We need the GHS inequality

of [40] (see also [51] and [32]). To state this inequality, we recall the definition of the Ising

model with an external field. Given a finite graph G = (V,E) with interaction strengths

J = {Juv ≥ 0 : uv ∈ E} and external magnetic field H = {Hv : v ∈ V }, the probability for

a configuration σ ∈ Ω = {±1}V is given by

µHG (σ) =
1

Z(J,H)
exp

( ∑
uv∈E

Juvσ(u)σ(v) +
∑
v∈V

H(v)σ(v)
)
, (4.2.2)

where Z(J,H) is a normalizing constant. Note that this specializes to (1.1.1) if H ≡ 0.

When there is no ambiguity for the base graph, we sometimes drop the subscript G. We can

now state the

GHS inequality [40]. For a graph G = (V,E), let µH = µHG as above, and denote by

mv(H) = EµH [σ(v)] the local magnetization at vertex v. If Hv ≥ 0 for all v ∈ V , then for

any three vertices u, v, w ∈ V (not necessarily distinct),

∂2mv(H)

∂Hu∂Hw

≤ 0 .

The following is a consequence of the GHS inequality.

Corollary 4.2.6. For the Ising measure µ with no external field, we have

Eµ[σ(u) | vi = 1 for all 1 ≤ i ≤ k] ≤
k∑
i=1

Eµ[σ(u) | vi = 1] .

Proof. The function f(H) = mu(H) satisfies f(0) = 0. By the GHS inequality and Claim 4.2.7

below, we obtain that for all H,H ′ ∈ Rn
+:

mu(H +H ′) ≤ mu(H) +mu(H
′) . (4.2.3)

For 1 ≤ i ≤ k and h ≥ 0, let Hh
i be the external field taking value h on vi and vanishing on

V \ {vi}. Applying the inequality (4.2.3) inductively, we deduce that

mu

(∑
iH

h
i

)
≤
∑

imu(H
h
i ) .

Finally, let h → ∞ and observe that mu(H
h
i ) → Eµ[σ(u) | σ(vi) = 1] and mu(

∑
iH

h
i ) →

Eµ[σ(u) | σ(vi) = 1 for all 1 ≤ i ≤ k]. �
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Claim 4.2.7. Write R+ = [0,∞) and let f : Rn
+ 7→ R be a C2-function such that ∂2f(x)

∂xi∂xj
≤ 0

for all x ∈ Rn
+ and 1 ≤ i, j ≤ n. Then for all x, y ∈ Rn

+,

f(x+ y)− f(x) ≤ f(y)− f(0) .

Proof. Since all the second derivatives are non-positive, ∂f(x)
∂xi

is decreasing in every coordinate

with x for all x ∈ Rn
+ and i ≤ n. Hence, ∂f(x)

∂xi
is decreasing in Rn

+. Let

gx(t) =
df(x+ ty)

dt
=
∑
i

yi
∂f(x)

∂xi
(x+ ty).

It follows that gx(t) ≤ g0(t) for all x, y ∈ Rn
+. Integrating over t ∈ [0, 1] yields the claim. �

Lemma 4.2.8. Suppose that n ≥ e4. Let (Z̃t) be another instance of the chain (Zt). Then

for all starting states z0 and z̃0, there exists a coupling such that

Ez0,z̃0

[∑
v∈F

|Zt(v)− Z̃t(v)|
]
≤
(

1− 1

2|F |

)t∑
v∈F

|z0(v)− z̃0(v)| .

Proof. Fix η, η̃ ∈ {−1, 1}F such that η and η̃ differ only at the vertex v and η(v) = 1. We

consider two chains (Zt) and (Z̃t) under monotone coupling, started from η and η̃ respectively.

Let ηA be the restriction of η to A for A ⊂ F (namely, ηA ∈ {−1, 1}A and ηA(v) = η(v) for

all v ∈ A), and write

ψ(u, η, η̃) = Eµ

[
σ(u) | σF\{u} = ηF\{u}

]
− Eµ

[
σ(u) | σF\{u} = η̃F\{u}

]
.

By the monotone property and symmetry of the Ising model,

ψ(u, η, η̃) ≤ Eµ[σ(u) | σF\{u} = +]− Eµ[σ(u) | σF\{u} = −]

= 2Eµ[σ(u) | σF\{u} = +] .

By symmetry, we see that E(σ(u) | σ(w) = 1) = −E(σ(u) | σ(w) = −1) and E(σ(u)) = 0.

Thus, Cov(σ(u), σ(w)) = E(σ(u) | σ(w) = 1). Combined with Corollary 4.2.6, it yields that

ψ(u, η, η̃) ≤ 2
∑

w∈F\{u}

Eµ[σ(u) | σ(w) = 1] = 2
∑

w∈F\{u}

Cov(σ(u), σ(w)) ,

Recalling the non-negative correlations between the spins, we deduce that under the mono-



114

tone coupling

Eη,η̃

[ 1

2

∑
v′∈F

|Z1(v
′)− Z̃1(v

′)|
]

= 1− 1

|F |
+

1

2|F |
∑

u∈F\{v}

ψ(u, η, η̃)

≤ 1− 1

|F |
+

1

|F |
∑

u∈F\{v}

∑
w∈F\{u}

Cov(σ(u), σ(w)) .

By Lemma 4.2.2, we get that for n ≥ e4,

Eη,η̃

[ 1

2

∑
v′∈F

|Z1(v
′)− Z̃1(v

′)|
]
≤ 1− 1

|F |
+

2

|F | log n
≤ 1− 1

2|F |
.

Using the triangle inequality and recursion, we conclude the proof. �

From the contraction result, we can derive the uniform variance bound on St. This

type of argument appeared in [53] (see Lemma 2.4) when (Zt) is a one dimensional chain.

The argument naturally extends to multi-dimensional case and we include the proof for

completeness.

Lemma 4.2.9. Let (Zt) and (Z̃t) be two instances of a Markov chain taking values in Rn.

Assume that for some ρ < 1 and all initial states z0 and z̃0, there exists a coupling satisfying

Ez0,z̃0

[∑
i|Zt(i)− Z̃t(i)|

]
≤ ρt

∑
i|z0(i)− z̃0(i)| ,

where we used the convention that z(i) stands for the i-th coordinate of z for z ∈ Rn.

Furthermore, suppose that
∑

i |Zt(i) − Zt−1(i)| ≤ R for all t. Then for any t ∈ N and

starting state z ∈ Rn,

Varz
(∑

iZt(i)
)
≤ 2

1− ρ2
R2 .

Proof. Let Zt and Z ′
t be two independent instances of the chain both started from z. Defining

Qt =
∑

i Zt(i) and Q′
t =

∑
i Z

′
t(i), we obtain that∣∣Ez[Qt | Z1 = z1]− Ez[Q

′
t|Z ′

1 = z′1]
∣∣ =

∣∣Ez1 [Qt−1]− Ez′1
[Q′

t−1]
∣∣

≤ ρt−1
∑

i|z1(i)− z′1(i)| ≤ 2ρt−1R ,

for all possible choices of z1 and z′1. It follows that for any starting state z

Varz(Ez[Qt | Z1]) = 1
2
Ez

[(
EZ1 [Qt−1]− EZ′1

[Q′
t−1]
)2] ≤ 2(ρt−1R)2.
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Therefore, by the total variance formula, we obtain that for all z

Varz(Qt) = Varz(Ez[Qt | Z1]) + Ez[Varz(Qt | Z1)] ≤ 2(ρt−1R)2 + νt−1 ,

where νt := maxz Varz(Qt). Thus νt ≤ 2(ρt−1R)2 + νt−1, whence

νt ≤
t∑
i=1

(νi − νi−1) ≤
t∑
i=1

2ρ2(t−1)R2 ≤ 2R2

1− ρ2
,

completing the proof. �

Combining the above two lemmas gives the following variance bound (note that in our

case R = 2 and ρ = 1− 1
2|F | , so 1− ρ2 ≥ 1

2|F |).

Lemma 4.2.10. For all t and starting position z, we have Varz(St) ≤ 16|F |.

We can now derive a lower bound on the mixing time for the chain (Zt).

Lemma 4.2.11. The chain (Zt) has a mixing time t+mix ≥ 1
2
|F | log |F | − 20|F |.

Proof. Let (Z
(+)
t ) be an instance of the dynamics (Zt) started from the all-plus configuration

and let Z∗ ∈ {−1, 1}F be distributed as νF . Write

T0 = 1
2
|F | log |F | − 20|F | .

It suffices to prove that

dTV(S(+)
T0
,S∗) ≥ 1

4
, (4.2.4)

where S(+)
T0

=
∑

v∈F Z
(+)
T0

(v) as before and S∗ =
∑

v∈F Z
∗(v) be the sum of spins in stationary

distribution. To this end, notice that by Lemmas 4.2.5 and 4.2.10:

E+(S(+)
T0

) ≥ e20+o(1)
√
|F | and Var+(S(+)

T0
) ≤ 16|F | .

An application of Chebyshev’s inequality gives that for large enough n

P+(S(+)
T0

≤ e10
√
|F |) ≤ 16|F |

(e20+o(1) − e10)
√
|F |)2

≤ 1

4
. (4.2.5)

On the other hand, it is clear by symmetry that EνF
S∗ = 0. Moreover, since Lemma 4.2.10

holds for all t, taking t→∞ gives that VarνF
S∗ ≤ 16|F |. Applying Chebyshev’s inequality
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again, we deduce that

PνF
(S∗ ≥ e10

√
|F |) ≤ 16|F |

(e10
√
|F |)2

≤ 1

4
.

Combining the above inequality with (4.2.5) and the fact that

dTV(S(+)
T0
,S∗) ≥ 1−P+(S(+)

T0
≤ e10

√
|F |)−Pµ(S∗ ≥ e10

√
|F |) ,

we conclude that (4.2.5) indeed holds (with room to spare), as required. �

We are now ready to derive Theorem 9. Observe that the dynamics (Yt) is a lazy version of

the dynamics (Zt). Consider an instance (Y +
t ) of the dynamics (Yt) started from the all-plus

configuration and let Y ∗ ∈ {−1, 1}F be distributed according to the stationary distribution

νF . Let S(+)
t and S∗ again be the sum of spins over F , but with respect to the chain (Y

(+)
t )

and the variable Y ∗ respectively. Write

T =
n

|F |

(1

2
|F | log |F | − 40|F |

)
,

and let NT be the number of steps in [1, T ] where a block of the form {v} ∪ F is selected to

update in the chain (Y
(+)
t ). By Chebyshev’s inequality,

P(NT ≥ 1
2
|F | log |F | − 20|F |) ≤ T |F |/n

(20|F |)2
= o(1) .

Repeating the arguments in the proof of Lemma 4.2.11, we deduce that for all t ≤ T0 =
1
2
|F | log |F | − 20|F |, we have

P+(S(+)
t ≤ e10

√
|F |) ≤ 1

4
.

Therefore

‖P+(Y
(+)
T ∈ ·)− νF‖TV ≥ 1−P(NT ≥ T0)−PµY

(S∗ ≥ e10
√
|F |)

−P+

(
S(+)
T ≤ e10

√
|F | | NT ≤ T0

)
.

Altogether, we have that

‖P+(Y
(+)
T ∈ ·)− νF‖TV ≥ 1

2
+ o(1) ≥ 1

4
,
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and hence that

t+,Ymix ≥ T ≥ 1+o(1)
4

n log n ,

where t+,Ymix refers to the mixing time for chain (Y
(+)
t ). Since the chain (Yt) is a projection

of the chain (Xt), it follows that the mixing time for the chain (Xt) satisfies t+,Xmix ≥ (1/4 +

o(1))n log n. Combining this bound with Theorem 4.2.4 (see the discussion following the

statement of the theorem), we conclude that the Glauber dynamics started with the all-plus

configuration has mixing time t+mix ≥ (1/4 + o(1))n log n. �

Remark. The analysis naturally extends to the continuous-time Glauber dynamics, where

each site is associated with an independent Poisson clock of unit rate determining the update

times of this site as above (note that the continuous dynamics is |V | times faster than the

discrete dynamics). We can use similar arguments to these used above to handel the laziness

in the transition from the chain (Zt) to the chain (Yt). Namely, we could condition on the

number of updates up to time t and then repeat the above arguments to establish that

t+mix ≥ (1/4 + o(1)) log n in the continuous-time case.

Remark. We believe that Theorem 9 should have analogues (with tmix in place of t+mix) for

the Ising model with arbitrary magnetic field, as well as for the Potts model and proper

colorings. The first of these may be accessible to the methods of this chapter, but the other

two models need new ideas.

Remark. For the Ising model in a box of Zd at high temperature, it is well known that the

mixing time is Θ(n log n). Recently, the sharp asymptotics (the so-called cutoff phenomenon)

was established by Lubetzky and Sly [59].
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Part II

Random walk on random graphs
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Chapter 5

Mixing time for the random walk on

near-supercritical random graphs

5.1 Preliminaries

5.1.1 Cores and kernels

The k-core of a graph G, denoted by G(k), is the maximum subgraph H ⊂ G where every

vertex has degree at least k. It is well known (and easy to see) that this subgraph is unique,

and can be obtained by repeatedly deleting any vertex whose degree is smaller than k (at

an arbitrary order).

We call a path P = v0, v1, . . . , vk for k > 1 (i.e., a sequence of vertices with vivi+1 an edge

for each i) a 2-path if and only if vi has degree 2 for all i = 1, . . . , k− 1 (while the endpoints

v0, vk may have degree larger than 2, and possibly v0 = vk).

The kernel K of G is obtained by taking its 2-core G(2) minus its disjoint cycles, then

repeatedly contracting all 2-paths (replacing each by a single edge). Note that, by definition,

the degree of every vertex in K is at least 3.

5.1.2 Structure of the supercritical giant component

The key to our analysis of the random walk on the giant component C1 is the following result

from [22]. This theorem completely characterizes the structure of C1, by reducing it to a

tractable contiguous model C̃1.

Theorem 5.1.1. [22] Let C1 be the largest component of G(n, p) for p = 1+ε
n

, where ε3n→∞
and ε→ 0. Let µ < 1 denote the conjugate of 1 + ε, that is, µe−µ = (1 + ε)e−(1+ε). Then C1

is contiguous to the following model C̃1:
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1. Let Λ ∼ N
(
1 + ε− µ, 1

εn

)
and assign i.i.d. variables Du ∼ Poisson(Λ) (u ∈ [n]) to

the vertices, conditioned that
∑
Du1{Du≥3} is even. Let

Nk = #{u : Du = k} and N =
∑

k≥3Nk .

Select a random multigraph K on N vertices, uniformly among all multigraphs with

Nk vertices of degree k for k ≥ 3.

2. Replace the edges of K by paths of lengths i.i.d. Geom(1− µ).

3. Attach an independent Poisson(µ)-Galton-Watson tree to each vertex.

That is, P(C̃1 ∈ A) → 0 implies P(C1 ∈ A) → 0 for any set of graphs A that is closed under

graph-isomorphism.

In the above, a Poisson(µ)-Galton-Watson tree is the family tree of a Galton-Watson

branching process with offspring distribution Poisson(µ). We will use the abbreviation

PGW(µ)-tree for this object. A multigraph is the generalization of a simple graph per-

mitting multiple edges and loops.

Note that conditioning on
∑
Du1{Du≥3} being even does not pose a problem, as one can

easily use rejection sampling. The 3 steps in the description of C̃1 correspond to constructing

its kernel K (Step 1), expanding K into the 2-core C̃(2)
1 (Step 2), and finally attaching trees

to it to obtain C̃1 (Step 3).

Further observe that Nk � εkn for any fixed k ≥ 2, and so in the special case where

ε = o(n−1/4) w.h.p. we have Du ∈ {0, 1, 2, 3} for all u ∈ [n], and the kernel K is simply a

uniform 3-regular multigraph.

Combining the above description of the giant component with standard tools in the

study of random graphs with given degree-sequences, one can easily read off useful geometric

properties of the kernel. This is demonstrated by the following lemma of [22], for which we

require a few definitions: For a vertex v in G let dG(v) denote its degree and for a subset of

vertices S let

dG(S) :=
∑
v∈S

dG(v)

denote the sum of the degrees of its vertices (also referred to as the volume of S in G). The

isoperimetric number of a graph G is defined to be

i(G) := min

{
e(S, Sc)

dG(S)
: S ⊂ V (G) , dG(S) ≤ e(G)

}
,
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where e(S, T ) denotes the number of edges between S and T while e(G) is the total number

of edges in G.

Lemma 5.1.2 ([22, Lemma 3.5]). Let K be the kernel of the largest component C1 of G(n, p)

for p = 1+ε
n

, where ε3n→∞ and ε→ 0. Then w.h.p.,

|K| =
(

4
3

+ o(1)
)
ε3n , e(K) = (2 + o(1))ε3n ,

and i(K) ≥ α for some absolute constant α > 0.

5.1.3 Notions of mixing of the random walk

For any two distributions ϕ, ψ on V , the total-variation distance of ϕ and ψ is defined as

‖ϕ− ψ‖TV := sup
S⊂V

|ϕ(S)− ψ(S)| =
1

2

∑
v∈V

|ϕ(v)− ψ(v)| .

Let (St) denote the lazy random walk on G, i.e., the Markov chain which at each step holds

its position with probability 1
2

and otherwise moves to a uniformly chosen neighbor. This is

an aperiodic and irreducible Markov chain, whose stationary distribution π is given by

π(x) = dG(x)/2|E| .

We next define two notions of measuring the distance of an ergodic Markov chain (St),

defined on a state-set V , from its stationary distribution π.

Let 0 < δ < 1. The (worst-case) total-variation mixing time of (St) with parameter δ,

denoted by tmix(δ), is defined to be

tmix(δ) := min
{
t : max

v∈V
‖Pv(St ∈ ·)− π‖TV ≤ δ

}
,

where Pv denotes the probability given that S0 = v.

The Cesàro mixing time (also known as the approximate uniform mixing time) of (St)

with parameter δ, denoted by t̃mix(δ), is defined as

t̃mix(δ) = min

{
t : max

v∈V

∥∥∥π − 1

t

t−1∑
i=0

Pv(Si ∈ ·)
∥∥∥

TV
≤ δ

}
.

When discussing the order of the mixing-time it is customary to choose δ = 1
4
, in which

case we will use the abbreviations tmix = tmix(1
4
) and t̃mix = t̃mix(1

4
).
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By results of [4] and [57] (see also [58]), the mixing time and the Cesàro mixing time have

the same order for lazy reversible Markov chains (i.e., discrete-time chains whose holding

probability in each state is at least 1
2
), as formulated by the following theorem.

Theorem 5.1.3. Every lazy reversible Markov chain satisfies

c1 t̃mix(1
4
) ≤ tmix(1

4
) ≤ c2 t̃mix(1

4
)

for some absolute constants c1, c2 > 0.

Proof. The first inequality is straightforward and does not require laziness or reversibility.

We include its proof for completeness. Notice that

∥∥∥π − 1

t

t−1∑
i=0

Pv(Si ∈ ·)
∥∥∥

TV
≤ 1

8
+

1

t

t−1∑
i=t/8

∥∥∥π −Pv(Si ∈ ·)
∥∥∥

TV

≤ 1

8
+ ‖π −Pv(St/8 ∈ ·)‖TV ,

where we used the fact that ‖π−Pv(St ∈ ·)‖ is decreasing in t. Taking t = 8tmix(1
8
), we obtain

that t̃mix(1
4
) ≤ 8tmix(1

8
) and conclude the proof of the first inequality using the well-known

fact that tmix(1
8
) ≤ 4tmix(1

4
).

The second inequality of the theorem is significantly more involved: By combining [57,

Theorem 5.4] (for a stronger version, see [58, Theorem 4.22]) and [4, Theorem C], it follows

that the order of the Cesàro mixing time can be bounded by that of the mixing time for the

corresponding continuous-time Markov chain. Now, using a well-known fact that the mixing

time for the lazy Markov chain and the continuous-time chain have the same order (see, e.g.,

[54, Theorem 20.3]), the proof is concluded. �

Let Γ be a stopping rule (a randomized stopping time) for (St). That is, Γ : G×Ω → N
for some probability space Ω, such that Γ(·, ω) is a stopping time for every ω ∈ Ω. Let

σΓ := Pσ(SΓ ∈ ·) when σ is a distribution on V .

Let σ, ν be two distributions on V . Note that there is always a stopping rule Γ such that

σΓ = ν, e.g., draw a vertex z according to ν and stop when reaching z. The access time from

σ to ν, denoted by H(σ, ν), is the minimum expected number of steps over all such stopping

rules:

H(σ, ν) := min
Γ : σΓ=ν

EΓ .

It is easy to verify that H(σ, ν) = 0 iff σ = ν and that H(·, ·) satisfies the triangle-inequality,

however it is not necessarily symmetric.
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The approximate forget time of G with parameter 0 < δ < 1 is defined by

Fδ = min
ϕ

max
σ

min
ν :‖ν−ϕ‖TV≤δ

H(σ, ν) . (5.1.1)

Combining Theorem 3.2 and Corollary 5.4 in [58], one immediately obtains that the approx-

imate forget time and the Cesàro mixing time have the same order, as stated in the following

theorem.

Theorem 5.1.4. Every reversible Markov chain satisfies

c1F1/4 ≤ t̃mix(1
4
) ≤ c2F1/4

for some absolute constants c1, c2 > 0.

5.1.4 Conductance and mixing

Let P = (px,y)x,y be the transition kernel of an irreducible, reversible and aperiodic Markov

chain on Ω with stationary distribution π. For S ⊂ Ω, define the conductance of the set S

to be

Φ(S) :=

∑
x∈S,y 6∈S π(x)px,y

π(S)π(Ω \ S)
.

We define Φ, the conductance of the chain, by Φ := min{Φ(S) : π(S) ≤ 1
2
} (In the special

case of a lazy random walk on a connected regular graph, this quantity is similar to the

isoperimetric number of the graph, defined earlier). A well-known result of Jerrum and

Sinclair [47] states that tmix is of order at most Φ−2 log π−1
min, where πmin = minx∈Ω π(x). This

bound was fine-tuned by Lovász and Kannan [56] to exploit settings where the conductance

of the average set S plays a dominant role (rather than the worst set). For our upper bound

of the mixing time on the random walk on the 2-core, we will use an enhanced version of the

latter bound (namely, Theorem 5.2.6) due to Fountoulakis and Reed [37].

5.1.5 Edge set notations

Throughout the chapter we will use the following notations, which will be handy when

moving between the kernel and 2-core.

For S ⊂ G, let EG(S) denote the set of edges in the induced subgraph of G on S, and

let ∂GS denote the edges between S and its complement Sc := V (G) \ S. Let

ĒG(S) := EG(S) ∪ ∂G(S) ,
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and define eG(S) := |EG(S)|. We omit the subscript G whenever its identity is made clear

from the context.

If K is the kernel in the model C̃1 and H is its 2-core, let

E?
H : 2E(K) → 2E(H)

be the operator which takes a subset of edges T ⊂ E(K) and outputs the edges lying on

their corresponding 2-paths in H. For S ⊂ V (K), we let

E?
H(S) := E?

H (EK(S)) , Ē?
H(S) := E?

H
(
ĒK(S)

)
.

5.2 Random walk on the 2-core

In this section we analyze the properties of the random walk on the 2-core C̃(2)
1 .

5.2.1 Mixing time of the 2-core

By the definition of our new model C̃1, we can study the 2-core C(2)
1 via the well-known

configuration model (see, e.g., [10] for further details on this method). To simplify the

notation, we let H denote the 2-core of C̃1 throughout this section.

The main goal of the subsection is to establish the mixing time of the lazy random walk

on H, as stated by the following theorem.

Theorem 5.2.1. With high probability, the lazy random walk on H has a Cesàro mixing

time t̃mix of order ε−2 log2(ε3n). Consequently, w.h.p. it also satisfies tmix � ε−2 log2(ε3n).

We will use a result of Fountoulakis and Reed [38], which bounds the mixing time in

terms of the isoperimetric profile of the graph (measuring the expansion of sets of various

volumes). As a first step in obtaining this data for the supercritical 2-core H, the next

lemma will show that a small subset of the kernel, S ⊂ K, cannot have too many edges in

ĒH(S).

Lemma 5.2.2. For v ∈ K, define

Cv,K := {S 3 v : |S| = K and S is a connected subgraph of K } .

The following holds w.h.p. for every v ∈ K, integer K and S ∈ Cv,K:

1. |Cv,K | ≤ exp [5(K ∨ log(ε3n))].
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2. dK(S) ≤ 30(K ∨ log(ε3n)).

Proof. By definition, Λ = (2 + o(1))ε w.h.p., thus standard concentration arguments imply

that the following holds w.h.p.:

N3 =
(

4
3

+ o(1)
)
ε3n and Nk ≤

(3ε)k log(1/ε)

k!
n for k ≥ 4 . (5.2.1)

Assume that the above indeed holds, and notice that the lemma trivially holds when K ≥
ε3n. We may therefore further assume that K ≤ ε3n.

Consider the following exploration process, starting from the vertex v. Initialize S to be

{v}, and mark v1 = v. At time i ≥ 1, we explore the neighborhood of vi (unless |S| < i),

and for each its neighbors that does not already belong to S, we toss a fair coin to decide

whether or not to insert it to S. Newly inserted vertices are labeled according to the order

of their arrival; that is, if |S| = k prior to the insertion, we give the new vertex the label

vk+1. Finally, if |S| < i at time i then we stop the exploration process.

Let Xi denote the degree of the vertex vi in the above defined process. In order to

stochastically dominate Xi from above, observe that the worst case occurs when each of the

vertices in v1, . . . , vi−1 has degree 3. With this observation in mind, let A be a set consisting

of N3−K vertices of degree 3 and Nk vertices k (for k ≥ 4). Sample a vertex proportional to

the degree from A and let Y denote its degree. Clearly, Xi � Yi, where Yi are independent

variables distributed as Y , and so

dK(S) �
K∑
i=1

Yi . (5.2.2)

By the definition of our exploration process,

|Cv,K | �
∑

`1+···+`K=K

K∏
i=1

(
Yi
`i

)
.

We can now deduce that

E|Cv,K | ≤ E

[ ∑
`1+···+`K=K

K∏
i=1

(
Yi
`i

)]
=

∑
`1+···+`K=K

K∏
i=1

E

[(
Yi
`i

)]
. (5.2.3)

For all i ≥ 4, we have

P(Y = i) ≤ 27i
(3ε)i−3 log(1/ε)

i!
= 27

(3ε)i−3 log(1/ε)

(i− 1)!
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and therefore, for sufficiently large n (recall that ε = o(1)),

E

[(
Y

k

)]
≤
(

3

k

)
+
∑
i≥4

(
i

k

)
· 27

(3ε)i−3 log(1/ε)

(i− 1)!
≤ 7

k!
for all k ,

Altogether,

E|Cv,K | ≤ 7K
∑

`1+···+`K=K

K∏
i=1

1

`i!
. (5.2.4)

The next simple claim will provide a bound on the sum in the last expression.

Claim 5.2.3. The function f(n) =
∑

`1+···+`n=n

∏n
k=1

1
`k!

satisfies f(n) ≤ en.

Proof. The proof is by induction. For n = 1, the claim trivially holds. Assuming the

hypothesis is valid for n ≤ m, we get

f(m+ 1) =
m+1∑
k=0

1

k!
f(m− k) ≤

m+1∑
k=0

em−k

k!
≤ em

m+1∑
k=0

1

k!
≤ em+1 ,

as required. �

Plugging the above estimate into (5.2.4), we conclude that E|Cv,K | ≤ (7e)K . Now,

Markov’s inequality, together with a union bound over all the vertices in the kernel K yield

the Part (1) of the lemma.

For Part (2), notice that for any sufficiently large n,

EeY ≤ e3 +
∑
i≥4

ei27i
(3ε)i−3 log(1/ε)

i!
≤ 25 ,

Therefore, (5.2.2) gives that

P
(
dK(S) ≥ 30

(
K ∨ log(ε3n)

))
≤ exp

[
−5
(
K ∨ log(ε3n)

)]
.

At this point, the proof is concluded by a union bound over Cv,K for all v ∈ K and K ≤ ε3n,

using the upper bound we have already derived for |Cv,K | in the Part (1) of the lemma. �

Lemma 5.2.4. Let L ⊂ E(K) be the set of loops in the kernel. With high probability,

every subset of vertices S ⊂ K forming a connected subgraph of K satisfies |Ē?
H(S)| ≤

(100/ε) (|S| ∨ log(ε3n)), and every subset T of 1
20
ε3n edges in K satisfies |E?

H(T )∪E?
H(L)| ≤

3
4
ε2n.
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Proof. Assume that the events given in Parts (1),(2) of Lemma 5.2.2 hold. Further note

that, by definition of the model C̃1, a standard application of CLT yields that w.h.p.

|K| = (4
3

+ o(1))ε3n , e(H) = (2 + o(1))ε2n , e(K) = (2 + o(1))ε3n .

By Part (2) of that lemma, dK(S) ≤ 30 (|S| ∨ log(ε3n)) holds simultaneously for every con-

nected set S, hence there are at most this many edges in ĒK(S).

Let S ⊂ K be a connected set of size |S| = s, and let

K = K(s) = s ∨ log(ε3n) .

Recalling our definition of the graph H, we deduce that

∣∣Ē?
H(S)

∣∣ � 30K∑
i=1

Zi ,

where Zi are i.i.d. Geometric random variables with mean 1
1−µ . It is well known that the

moment-generating function of such variables is given by

E(etZ1) =
(1− µ)et

1− µet
.

Setting t = ε/2 and recalling that µ = 1−(1+o(1))ε, we get that E(e
ε
2
Z1) ≤ e for sufficiently

large n (recall that ε = o(1)). Therefore, we obtain that for the above mentioned S,

P
(
|Ē?

H(S)| ≥ (100/ε)K
)
≤ exp(30K)

exp( ε
2
(100/ε)K)

= e−20K .

By Part (1) of Lemma 5.2.2, there are at most (4
3

+ o(1))ε3n exp(5K) connected sets of size

s. Taking a union bound over the (4
3

+ o(1))ε3n values of s establishes that the statement of

the lemma holds except with probability(
4
3

+ o(1)
)
ε3n

∑
s

e−20K(s)e5K(s) ≤
(

16
9

+ o(1)
)

(ε3n)−13 = o(1) ,

completing the proof of the statement on all connected subsets S ⊂ K.

Next, if T contains t edges in K, then the number of corresponding edges in H is again

stochastically dominated by a sum of i.i.d. geometric variables {Zi} as above. Hence, by the

same argument, the probability that there exists a set T ⊂ E(K) of αε3n edges in K, which
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expands to at least βε2n edges in H for some 0 < α < 1
2

and 0 < β < 1, is at most(
(2 + o(1))ε3n

αε3n

)
eαε

3n

e(ε/2)βε2n
≤ exp

[(
2H
(
α
2

)
+ α− β

2
+ o(1)

)
ε3n
]

(using the well-known fact that
∑

i≤λm
(
m
i

)
≤ exp[H(λ)m] whereH(x) is the entropy function

H(x) := −x log x− (1− x) log(1− x)). It is now easy to verify that a choice of α = 1
20

and

β = 2
3

in the last expression yields a term that tends to 0 as n→∞.

It remains to bound |L|. This will follow from a bound on the number of loops in K.

Let u ∈ K be a kernel vertex, and recall that its degree Du is distributed as an independent(
Poisson(Λ)

∣∣ · ≥ 3
)
, where Λ = (2 + o(1))ε with high probability. The expected number of

loops that u obtains in a random realization of the degree sequence (via the configuration

model) is clearly at most D2
u/D, where D = (4 + o(1))ε3n is the total of the kernel degrees.

Therefore,

E|L| ≤ (4
3

+ o(1))ε3n · (1/D)E[D2
u] = O(1) ,

and so E|E?
H(L)| = O(1/ε). The contribution of |E?

H(L)| is thus easily absorbed w.h.p. when

increasing β from 2
3

to 3
4
, completing the proof. �

Lemma 5.2.5. There exists an absolute constant ι > 0 so that w.h.p. every connected set

S ⊂ H with (200/ε) log(ε3n) ≤ dH(S) ≤ e(H) satisfies that |∂HS| / dH(S) ≥ ιε.

Proof. Let S ⊂ H be as above, and write SK = S ∩ K. Observe that SK is connected (if

nonempty). Furthermore, since dH(S) ≥ (200/ε) log(ε3n) whereas the longest 2-path in H
contains (1 + o(1))(1/ε) log(ε3n) edges w.h.p., we may assume that SK is indeed nonempty.

Next, clearly |∂HS| ≥ |∂KSK| (as each edge in the boundary of SK translates into a 2-path

in H with precisely one endpoint in S), while |ĒH(S)| ≤ |Ē?
H(SK)| (any e ∈ ĒH(S) belongs to

some 2-path Pe, which is necessarily incident to some v ∈ SK as, crucially, SK is nonempty.

Hence, the edge corresponding to Pe belongs to ĒK(SK), and so e ∈ Ē?
H(SK)). Therefore,

using the fact that dH(S) ≤ 2|ĒH(S)|,

|∂HS|
dH(S)

≥ |∂KSK|
2|Ē?

H(SK)|
=

|∂KSK|
2|ĒK(SK)|

· |ĒK(SK)|
|Ē?

H(SK)|
. (5.2.5)

Assume that the events stated in Lemma 5.2.4 hold. Since the assumption on dH(SK) gives

that |Ē?
H(SK)| ≥ (100/ε) log(ε3n), we deduce that necessarily

|SK| ≥ (ε/100)|Ē?
H(SK)| ,
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and thus (since SK is connected)

|ĒK(SK)| ≥ |EK(SK)| ≥ (ε/100)|Ē?
H(SK)| − 1 . (5.2.6)

Now,

dH(S) ≤ e(H) = (2 + o(1))ε2n ,

and since dH(S) = 2|EH(S)| + |∂HS| we have |EH(S)| ≤ (1 + o(1))ε2n. In particular,

|E(H) \ EH(S)| ≥ 3
4
ε2n for sufficiently large n.

At the same time, if L is the set of all loops in K and T = ĒK(K \ SK), then clearly

E?
H(T ) ∪ E?

H(L) is a superset of E(H) \ EH(S). Therefore, Lemma 5.2.4 yields that |T | ≥
1
20
ε3n. Since dK(SK) ≤ 2e(K) = (4 + o(1))ε3n, we get

dK(K \ SK) ≥ |T | ≥ ε3n

20
≥ 1 + o(1)

80
dK(SK) .

At this point, by Lemma 5.1.2 there exists α > 0 such that w.h.p. for any such above

mentioned subset S:

|∂KSK| ≥ α (dK(SK) ∧ dK(K \ SK)) ≥ α + o(1)

80
dK(SK) . (5.2.7)

Plugging (5.2.6),(5.2.7) into (5.2.5), we conclude that the lemma holds for any sufficiently

large n with, say, ι = 1
2
· 10−4α. �

We are now ready to establish the upper bound on the mixing time for the random walk

on H.

Proof of Theorem 5.2.1. We will apply the following recent result of [37], which bounds

the mixing time of a lazy chain in terms of its isoperimetric profile (a fine-tuned version of

the Lovász-Kannan [56] bound on the mixing time in terms of the average conductance).

Theorem 5.2.6 ([37]). Let P = (px,y) be the transition kernel of an irreducible, reversible

and aperiodic Markov chain on Ω with stationary distribution π. Let πmin = minx∈Ω π(x)

and for p > πmin, let

Φ(p) := min{Φ(S) : S is connected and p/2 ≤ π(S) ≤ p} ,
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and Φ(p) = 1 if there is no such S. Then for some absolute constant C > 0,

t̃mix ≤ C

dlog π−1
mine∑

j=1

Φ−2(2−j) .

In our case, the P is the transition kernel of the lazy random walk on H. By definition,

if S ⊂ H and dH(x) denotes the degree of x ∈ H, then

πH(x) =
dH(x)

2e(H)
, px,y =

1

2dH(x)
, πH(S) =

dH(S)

2e(H)
,

and so Φ(S) ≥ 1
2
|∂HS|/dH(S). Recall that w.h.p. e(H) = (2 + o(1))ε2n. Under this assump-

tion, for any p ≥ 120 log(ε3n)
ε3n

and connected subset S ⊂ H satisfying πH(S) ≥ p/2,

dH(S) = 2πH(S)e(H) ≥ (200/ε) log(ε3n) .

Therefore, by Lemma 5.2.5, w.h.p.

Φ(p) ≥ 1
2
ιε for all 120 log(ε3n)

ε3n
≤ p ≤ 1

2
. (5.2.8)

Set

j∗ = max
{
j : 2−j ≥ 120 log(ε3n)

ε3n

}
.

It is clear that j∗ = O(log(ε3n)) and (5.2.8) can be translated into

Φ(2−j) ≥ 1
2
ιε, for all 1 ≤ j ≤ j∗ . (5.2.9)

On the other hand, if πH(S) ≤ p < 1 then dH(S) ≤ 2pe(H) while |∂HS| ≥ 1 (as H is con-

nected), and so the inequality Φ(S) ≥ 1
2
|∂HS|/dH(S) gives Φ(S) ≥ 1/(4pe(H)). Substituting

p = 2−j with j ≤ dlog π−1
mine we have

Φ(2−j) ≥ 2j−2

e(H)
≥ 2j

10ε2n
(5.2.10)

(where the last inequality holds for large n). Combining (5.2.9) and (5.2.10) together, we
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now apply Theorem 5.2.6 to conclude that there exists a constant C > 0 such that, w.h.p.,

t̃mix ≤ C

dlog π−1
mine∑

j=1

1

Φ2(2−j)
= C

 j∗∑
j=1

1

Φ2(2−j)
+

dlog π−1
mine∑

j=j∗

1

Φ2(2−j)


≤ C

(
j∗(1

2
ιε)−2 + 2(10ε2n · 2−j∗)2

)
= O(ε−2 log2(ε3n)) ,

where the last inequality follows by our choice of j∗.

The lower bound on the mixing time follows immediately from the fact that, by the

definition of C̃1, w.h.p. there exists a 2-path in H whose length is (1 − o(1))(1/ε) log(ε3n)

(see [22, Corollary 1]). �

5.2.2 Local times for the random walk on the 2-core

In order to extend the mixing time from the 2-core H to the giant component, we need to

prove the following proposition.

Proposition 5.2.7. Let Nv,s be the local time induced by the lazy random walk (Wt) on H
to the vertex v up to time s, i.e., #{0 ≤ t ≤ s : Wt = v}. Then there exists some C > 0

such that, w.h.p., for all s > 0 and any u, v ∈ H,

Eu[Nv,s] ≤ C
εs

log(ε3n)
+ (150/ε) log(ε3n) .

In order to prove Proposition 5.2.7, we wish to show that with positive probability the

random walk Wt will take an excursion in a long 2-path before returning to v. Consider

some v ∈ K (we will later extend this analysis to the vertices in H \ K, i.e., those vertices

lying on 2-paths). We point out that proving this statement is simpler in case Dv = O(1),

and most of the technical challenge lies in the possibility that Dv is unbounded. In order to

treat this point, we first show that the neighbors of vertex v in the kernel are, in some sense,

distant apart.

Lemma 5.2.8. For v ∈ K let Nv denote the set of neighbors of v in the kernel K. Then

w.h.p., for every v ∈ K there exists a collection of disjoint connected subsets {Bw(v) ⊂ K :

w ∈ Nv}, such that for all w ∈ Nv,

|Bw| =
⌈
(ε3n)1/5

⌉
and diam(Bw) ≤ 1

2
log(ε3n) .

Proof. We may again assume (5.2.1) and furthermore, that

3 ≤ Dv ≤ log(ε3n) for all v ∈ K .
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Let v ∈ K. We construct the connected sets Bw while we reveal the structure of the kernel K
via the configuration model, as follows: Process the vertices w ∈ Nv sequentially according

to some arbitrary order. When processing such a vertex w, we expose the ball (according

to the graph metric) about it, excluding v and any vertices that were already accounted for,

until its size reaches
⌈
(ε3n)1/5

⌉
(or until no additional new vertices can be added).

It is clear from the definition that the Bw’s are indeed disjoint and connected, and it

remains to prove that each Bw satisfies |Bw| =
⌈
(ε3n)1/5

⌉
and diam(Bw) ≤ log(ε3n).

Let R denote the tree-excess of the (connected) subset {v} ∪
⋃
w Bw once the process is

concluded. We claim that w.h.p. R ≤ 1. To see this, first observe that at any point in the

above process, the sum of degrees of all the vertices that were already exposed (including v

and Nv) is at most ⌈
(ε3n)1/5

⌉
log2(ε3n) = (ε3n)1/5+o(1) .

Hence, by the definition of the configuration model (which draws a new half-edge between

w and some other vertex proportional to its degree), R � Z where Z is a binomial variable

Bin
(
(ε3n)1/5+o(1), (ε3n)−4/5+o(1)

)
. This gives

P(R ≥ 2) = (ε3n)−6/5+o(1) .

In particular, since Dw ≥ 3 for any w ∈ K, this implies that we never fail to grow Bw to size

(ε3n)1/5, and that the diameter of each Bw is at most that of a binary tree (possibly plus

R ≤ 1), i.e., for any large n,

diam(Bw) ≤ 1
5

log2(ε
3n) + 2 ≤ 1

2
log(ε3n) .

A simple union bound over v ∈ K now completes the proof. �

We distinguish the following subset of the edges of the kernel, whose paths are suitably

long:

E :=
{
e ∈ E(K) : |Pe| ≥

1

20ε
log(ε3n)

}
,

where Pe is the 2-path in H that corresponds to the edge e ∈ E(K). Further define Q ⊂ 2K

to be all the subsets of vertices of K whose induced subgraph contains an edge from E :

Q := {S ⊂ K : EK(S) ∩ E 6= ∅} .

For each e ∈ K, we define the median of its 2-path, denoted by med(Pe), in the obvious

manner: It is the vertex w ∈ Pe whose distance from the two endpoints is the same, up to

at most 1 (whenever there are two choices for this w, pick one arbitrarily). Now, for each
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v ∈ H let

Ev := {med(Pe) : e ∈ E , v /∈ Pe} .

The next lemma provides a lower bound on the effective conductance between a vertex v in

the 2-core and its corresponding above defined set Ev. See, e.g., [63] for further details on

conductances/resistances.

Lemma 5.2.9. Let Ceff(v ↔ Ev) be the effective conductance between a vertex v ∈ H and

the set Ev. With high probability, for any v ∈ H,

Ceff(v ↔ Ev)/Dv ≥ ε/(100 log(ε3n)) .

Proof. In order to bound the effective conductance, we need to prove that for any v ∈ K,

there exist Dv disjoint paths of length at most (100/ε) log(ε3n) leading to the set Ev. By

Lemmas 5.2.4 and 5.2.8, it suffices to prove that w.h.p. for any v ∈ K and w ∈ Nv, we have

that E(Bw)∩E 6= ∅, where Nv and Bw are defined as in Lemma 5.2.8 (in this case, the path

from v to some e ∈ E within Bw will have length at most 1
2

log(ε3n) in K, and its length will

not be exceed (100/ε) log(ε3n) after being expanded in the 2-core).

Notice that if Y is the geometric variable Geom(1− µ) then

P
(
Y ≥ 1

10ε
log(ε3n)

)
= µ

1
10ε

log(ε3n) ≥ (ε3n)−1/10+o(1) .

Therefore, by the independence of the lengths of the 2-paths and the fact that |Bw| =⌈
(ε3n)1/5

⌉
, we obtain that

P (E(Bw) ∩ E = ∅) ≤
(
1− (ε3n)−1/10+o(1)

)(ε3n)1/5

≤ e−(ε3n)1/10−o(1)

.

At this point, a union bound shows that the probability that for some v ∈ K there exists

some w ∈ Nv, such that E(Bw) does not intersect E , is at most(
4
3

+ o(1)
)
ε3n · log(ε3n) · e−(ε3n)1/10−o(1)

= o(1) . �

We are ready to prove the main result of this subsection, Proposition 5.2.7, which bounds

the local times induced by the random walk on the 2-core.

Proof of Proposition 5.2.7. For some vertex v ∈ H and subset A ⊂ H, let

τ+
v := min{t > 0 : Wt = v} , τA := min{t : Wt ∈ A} .

It is well-known (see, e.g., [63, equation (2.4)]) that the effective conductance has the fol-
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lowing form:

Pv(τA < τ+
v ) =

Ceff(v ↔ A)

Dv

.

Combined with Lemma 5.2.9, it follows that

Pv(τEv < τ+
v ) =

Ceff(v ↔ Ev)
Dv

≥ ε/
(
100 log(ε3n)

)
.

On the other hand, for any v ∈ H, by definition w ∈ Ev is the median of some 2-path, which

does not contain v and has length at least 1
20ε

log(ε3n). Hence, by well-known properties of

hitting times for the simple random walk on the integers, there exists some absolute constant

c > 0 such that for any v ∈ H and w ∈ Ev:

Pw

(
τ+
v ≥ cε−2 log2(ε3n)

)
≥ Pw

(
τK ≥ cε−2 log2(ε3n)

)
≥ 2

3
,

Altogether, we conclude that

Pv

(
τ+
v ≥ cε−2 log2(ε3n)

)
≥ Pv

(
τEv < τ+

v

)
min
w∈Ev

{
Pw(τ+

v ≥ cε−2 log2(ε3n))
}

≥ ε/
(
150 log(ε3n)

)
.

Setting tc = cε−2 log2(ε3n), we can rewrite the above as

Pv(Nv,tc ≥ 2) ≤ 1− ε/
(
150 log(ε3n)

)
.

By the strong Markovian property (i.e., (Wτ+
v +t) is a Markov chain with the same transition

kernel of (Wt)), we deduce that

P(Nv,tc ≥ k) ≤
[
1− ε/

(
150 log(ε3n)

)]k−1
,

and hence

ENv,tc ≤ (150/ε) log(ε3n) .

The proof is completed by observing that Ev(Nv,s) ≤ ds/tceEvNv,tc and that EuNv,s ≤ EvNv,s

for any u. �

5.3 Mixing on the giant component

In this section, we prove Theorem 1, which establishes the order of the mixing time of the

lazy random walk on the supercritical C1.
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5.3.1 Controlling the attached Poisson Galton-Watson trees

So far, we have established that w.h.p. the mixing time of the lazy random walk on the 2-core

C̃(2)
1 has order ε−2 log2(ε3n). To derive the mixing time for C̃1 based on that estimate, we need

to consider the delays due to the excursions the random walk makes in the attached trees.

As we will later see, these delays will be upper bounded by a certain a linear combination

of the sizes of the trees (with weights determined by the random walk on the 2-core). The

following lemma will play a role in estimating this expression.

Lemma 5.3.1. Let {Ti} be independent PGW(µ)-trees. For any two constants C1, C2 > 0

there exists some constant C > 0 such that the following holds: If {ai}mi=1 is a sequence of

positive reals satisfying

m∑
i=1

ai ≤ C1ε
−2 log2(ε3n) , (5.3.1)

max
1≤i≤m

ai ≤ C2ε
−1 log(ε3n) , (5.3.2)

then

P
( m∑
i=1

ai|Ti| ≥ Cε−3 log2(ε3n)
)
≤ (ε3n)−2 .

Proof. It is well-known (see, e.g., [76]) that the size of a Poisson(γ)-Galton-Watson tree T
follows a Borel(γ) distribution, namely,

P(|T | = k) =
kk−1

γk!
(γe−γ)k . (5.3.3)

The following is a well-known (and easy) estimate on the size of a PGW-tree; we include its

proof for completeness.

Claim 5.3.2. Let 0 < γ < 1, and let T be a PGW(γ)-tree. Then

E|T | =
1

1− γ
, Var(|T |) =

γ

(1− γ)3
.

Proof. For k = 0, 1, . . ., let Lk be the number of vertices in the k-th level of the tree T .

Clearly, ELk = γk, and so E|T | = E
∑

k Lk = 1
1−γ .

By the total-variance formula,

Var(Li) = Var
(
E
(
Li
∣∣Li−1

))
+ E

(
Var

(
Li
∣∣Li−1

))
= γ2 Var(Li−1) + γELi−1 = γ2 Var(Li−1) + γi .
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By induction,

Var(Li) =
2i−1∑
k=i

γk = γi
1− γi

1− γ
. (5.3.4)

We next turn to the covariance of Li, Lj for i ≤ j:

Cov(Li, Lj) = E[LiLj]− ELiELj = γj−iEL2
i − γi+j

= γj−i Var(Li) = γj
1− γi

1− γ
.

Summing over the variances and covariances of the Li’s, we deduce that

Var(|T |) = 2
∞∑
i=0

∞∑
j=i

γj
1− γi

1− γ
−

∞∑
i=0

γi
1− γi

1− γ
=

γ

(1− γ)3
. �

We need the next lemma to bound the tail probability for
∑
ai|Ti|.

Lemma 5.3.3 ([49, Corollary 4.2]). Let X1, . . . , Xm be independent r.v.’s with E[Xi] = µi.

Suppose there are bi, di and ξ0 such that Var(Xi) ≤ bi, and∣∣E [(Xi − µi)
3eξ(Xi−µi)

]∣∣ ≤ di for all 0 ≤ |ξ| ≤ ξ0 .

If δξ0
∑m

i=1 di ≤
∑m

i=1 bi for some 0 < δ ≤ 1, then for all ∆ > 0,

P

(∣∣∣ m∑
i=1

Xi −
m∑
i=1

µi

∣∣∣ ≥ ∆

)
≤ exp

(
− 1

3
min

{
δξ0∆,

∆2∑m
i=1 bi

})
.

Let Ti = |Ti| and Xi = aiTi for i ∈ [m]. Claim 5.3.2 gives that

µi = EXi = ai/(1− µ) .

Now set

ξ0 = ε3/(10C2 log(ε3n)) .

For any |ξ| ≤ ξ0, we have ai|ξ| ≤ ε2/10 by the assumption (5.3.2), and so

∣∣E [(Xi − µi)
3eξ(Xi−µi)

]∣∣ = a3
i

∣∣∣E[(Ti − 1

1− µ

)3

eξai(Ti− 1
1−µ

)
]∣∣∣

≤ a3
iE
[
(1− µ)−31{Ti<(1−µ)−1}

]
+ a3

iE
[
T 3
i eξaiTi1{Ti≥(1−µ)−1}

]
≤ a3

i (1− µ)−3 + a3
iE
[
T 3
i exp(ε2Ti/10)

]
. (5.3.5)
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Recalling the law of Ti given by (5.3.3), we obtain that

E
(
T 3
i exp(ε2Ti/10)

)
=

∞∑
k=1

kk−1

µk!
(µe−µ)kk3eε

2k/10 .

Using Stirling’s formula, we obtain that for some absolute constant c > 1,

E
(
T 3
i exp(ε2Ti/10)

)
≤ c

∞∑
k=1

kk−1(µe−µ)k

µ(k/e)k
√
k
k3eε

2k/10

=
c

µ

∞∑
k=1

k3/2(µe1−µ)keε
2k/10 . (5.3.6)

Recalling that µ = 1 − ε + 2
3
ε2 + O(ε3) and using the fact that 1 − x ≤ e−x−x

2/2 for x ≥ 0,

we get that for sufficiently large n (and hence small enough ε),

µe1−µ = (1− (1− µ)) e1−µ ≤ exp
(
−1

2
ε2 +O(ε3)

)
≤ e−ε

2/3 . (5.3.7)

Plugging the above estimate into (5.3.6), we obtain that for large n,

E
[
T 3
i exp(ε2Ti/10)

]
≤ 2c

∞∑
k=1

k3/2e−ε
2k/6 ≤ 4c

∫ ∞

0

x3/2e−ε
2x/6 dx

≤ 400cε−5

∫ ∞

0

x3/2e−x dx = 300
√
πcε−5 .

Going back to (5.3.5), we get that for some absolute c′ > 1 and any large n,∣∣E [(Xi − µi)
3eξ(Xi−µi)

]∣∣ ≤ a3
i

(
2ε−3 + c′ε−5

)
≤ ai · 2c′C2

2ε
−7 log2(ε3n) := di ,

where the second inequality used (5.3.2).

By Claim 5.3.2, it follows that for large enough n,

Var(Xi) = a2
i Var(Ti) = a2

i

µ

(1− µ)3
≤ 2a2

i ε
−3 ≤ ai · 2C2ε

−4 log(ε3n) := bi .

Since
∑

i di = (c′C2ε
−3 log(ε3n))

∑
i bi, by setting δ = 1 (and recalling our choice of ξ0) we

get

δξ0

m∑
i=1

di =
δc′

10

∑
i

bi ≤
m∑
i=1

bi .
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We have thus established the conditions for Lemma 5.3.3, and it remains to select ∆. For a

choice of ∆ = (60C2 ∨
√

12C1C2)ε
−3 log2(ε3n), by definition of ξ0 and the bi’s we have

ξ0∆ ≥ 6 log(ε3n) ,

∆2/
∑

i bi ≥ 6C1ε
−2 log3(ε3n)/

∑
i ai ≥ 6 log(ε3n) ,

where the last inequality relied on (5.3.1). Hence, an application of Lemma 5.3.3 gives that

for large enough n,

P
(∑

i aiTi −
∑

i µi ≥ ∆
)
≤ (ε3n)−2 .

Finally, by (5.3.1) and using the fact that 1 − µ ≥ ε/2 for any large n, we have
∑

i µi =

(1−µ)−1
∑

i ai ≤ 2C1ε
−3 log2(ε3n). The proof of Lemma 5.3.1 is thus concluded by choosing

C = 2C1 + (60C2 ∨
√

12C1C2). �

To bound the time it takes the random walk to exit from an attached PGW-tree (and

enter the 2-core), we will need to control the diameter and volume of such a tree. The

following simple lemma of [23] gives an estimate on the diameter of a PGW-tree:

Lemma 5.3.4 ([23, Lemma 3.2]). Let T be a PGW(µ)-tree and Lk be its k-th level of

vertices. Then P(Lk 6= ∅) � εe−k(ε+O(ε2)) for any k ≥ 1/ε.

The next lemma gives a bound on the volume of a PGW-tree:

Lemma 5.3.5. Let T be a PGW(µ)-tree. Then

P(|T | ≥ 6ε−2 log(ε3n)) = o(ε(ε3n)−2) .

Proof. Recalling (5.3.3) and applying Stirling’s formula, we obtain that for any s > 0,

P(|T | ≥ s) =
∑
k≥s

kk−1

µk!
(µe−µ)k �

∑
k≥s

(µe1−µ)k

k3/2
. (5.3.8)

Write r = log(ε3n). By estimate (5.3.7), we now get that for large enough n,∑
k≥6ε−2r

k−3/2(µe1−µ)k ≤
∑

k≥6ε−2r

k−3/2e−ε
2k/3 = O(e−2rε/

√
r) ,

and combined with (5.3.8) this concludes the proof. �

Finally, for the lower bound, we will need to show that w.h.p. one of the attached PGW-

trees in C̃1 is suitably large, as we next describe. For a rooted tree T , let Lk be its k-th level
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of vertices and Tv be its entire subtree rooted at v. Define the event

Ar,s(T ) := {∃v ∈ Lr such that |Tv| ≥ s } .

The next lemma gives a bound on the probability of this event when T is a PGW(µ)-tree.

Lemma 5.3.6. Let T be a PGW(µ)-tree and take r = d1
8
ε−1 log(ε3n)e and s = 1

8
ε−2 log(ε3n).

Then for any sufficiently large n,

P(Ar,s(T )) ≥ ε(ε3n)−2/3 .

Proof. We first give a lower bound on the probability that |T | ≥ s. By (5.3.8), we have

P(|T | ≥ s) ≥ c
∑

k≥s k
−3/2(µe1−µ)k for some absolute c > 0. Recalling that µ = 1 − ε +

2
3
ε2 +O(ε3), we have that for n large enough,

µe1−µ ≥ e−(ε+ε2)eε−ε
2 ≥ e−2ε2 .

Therefore, for s = 1
8
ε−2 log(ε3n) this gives that

P(|T | ≥ s) ≥ c
∑

s≤k≤2s

k−3/2e−2ε2k ≥ cs(2s)−3/2e−4ε2s ≥ ε(ε3n)−1/2+o(1) .

Combining this with the fact that {Tv : v ∈ Lr} are i.i.d. PGW(µ)-trees given Lr, we get

P
(
Ar,s(T )

∣∣Lr) = 1− (1−P(|T | ≥ s))|Lr| ≥ 1− (1− ε(ε3n)−1/2+o(1))|Lr| .

Taking expectation over Lr, we conclude that

P (Ar,s(T )) ≥ 1− E
(
(1− ε(ε3n)−1/2+o(1))|Lr|

)
≥ ε(ε3n)−1/2+o(1)E|Lr| − ε2(ε3n)−1+o(1)E|Lr|2 . (5.3.9)

For r = d1
8
ε−1 log(ε3n)e we have

E(|Lr|) = µr ≥ e−(ε+O(ε2))r ≥ (ε3n)−1/8+o(1) ,

and by (5.3.4),

Var |Lr| = µr
1− µr

1− µ
≤ e−εr2ε−1 ≤ 2ε−1(ε3n)−1/8 .
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Plugging these estimates into (5.3.9), we obtain that

P (Ar,s(T )) ≥ ε(ε3n)−5/8+o(1) ≥ ε(ε3n)−2/3 ,

where the last inequality holds for large enough n, as required. �

5.3.2 Proof of Theorem 1: Upper bound on the mixing time

By Theorem 5.1.1, it suffices to consider C̃1 instead of C1. As in the previous section, we

abbreviate C̃(2)
1 by H.

For each vertex v in the 2-core H, let Tv be the PGW-tree attached to v in C̃1. Let (St)

be the lazy random walk on C̃1, define ξ0 = 0 and for j ≥ 0,

ξj+1 =

{
ξj + 1 if Sξj+1 = Sξj ,

min
{
t > ξj : St ∈ H , St 6= Sξj

}
otherwise.

.

Defining Wj := Sξj , we observe that (Wj) is a lazy random walk on H. Furthermore, started

from any w ∈ H, there are two options:

(i) Do a step in the 2-core (either stay in w via the lazy rule, which has probability 1
2
, or

jump to one of the neighbor of w in H, an event that has probability dH(w)/2dC̃1
(w)).

(ii) Enter the PGW-tree attached to w (this happens with probability dTw(w)/2dC̃1
(w)).

It is the latter case that incurs a delay for the random walk on C̃1. Since the expected return

time to w once entering the tree Tw is 2(|Tw| − 1)/dTw(w), and as the number of excursions

to the tree follows a geometric distribution with success probability 1− dTw(w)/2dC̃1
(w), we

infer that

Ewξ1 = 1 +
2(|Tw| − 1)

dTw(w)
·

2dC̃1
(w)

2dC̃1
(w)− dTw(w)

≤ 4|Tw| .

For some constant C1 > 0 to be specified later, let

` = C1ε
−2 log2(ε3n) , and av,w(`) =

`−1∑
j=0

Pv(Wj = w) . (5.3.10)
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It follows that

Ev(ξ`) =
`−1∑
j=0

∑
w∈H

Pv(Sξj = w)Ewξ1

=
∑
w∈H

`−1∑
j=0

Pv(Wj = w)Ewξ1 ≤ 4
∑
w∈H

av,w(`)|Tw| . (5.3.11)

We now wish to bound the last expression via Lemma 5.3.1. Let v ∈ K. Note that, by

definition, ∑
w∈H

av,w(`) = ` = C1ε
−2 log2(ε3n) .

Moreover, by Proposition 5.2.7, there exists some constant C2 > 0 (which depends on C1)

such that w.h.p.

max
w∈H

av,w(`) ≤ C2ε
−1 log(ε3n) .

Hence, Lemma 5.3.1 (applied on the sequence {av,w(`) : w ∈ H}) gives that there exists

some constant C > 0 (depending only on C1, C2) such that∑
w∈H

av,w(`)|Tv| ≤ Cε−3 log2(ε3n) except with probability (ε3n)−2 .

Since |K| = (4
3

+ o(1))ε3n w.h.p., taking a union bound over the vertices of the kernel while

recalling (5.3.11) implies that w.h.p.,

Ev(ξ`) ≤ Cε−3 log2(ε3n) for all v ∈ K . (5.3.12)

We next wish to bound the hitting time to the kernel K, defined next:

τK = min{t : St ∈ K} .

Define τx and τS analogously as the hitting times of St to the vertex x and the subset S

respectively. Recall that from any v ∈ C̃1, after time ξ1 we will have hit a vertex in the

2-core, hence for any v ∈ C̃1 we have

EvτK ≤ EvτH + max
w∈H

EwτK . (5.3.13)
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To bound the first summand, since

max
v∈C̃1

EvτH = max
w∈H

max
v∈Tw

Evτw ,

it clearly suffices to bound Evτw for all w ∈ H and v ∈ Tw. To this end, let w ∈ H, and

let S̃t be the lazy random walk on Tw. As usual, define τ̃v = min{t : S̃t = v}. Clearly, for

all v ∈ Tw we have Evτw = Ev τ̃w. We bound Ev τ̃w by Ev τ̃w + Ewτ̃v, i.e., the commute time

between v and w. Denote by Reff(v, w) the effective resistance between v and w when each

edge has unit resistance. The commute time identity of [16] (see also [83]) yields that

Ev τ̃w + Ewτ̃v ≤ 4|Tw|Reff(v↔w) ≤ 4|Tw| diam(Tw) , (5.3.14)

Now, Lemmas 5.3.4 and 5.3.5 give that for any w ∈ H, with probability at least 1 −
O(ε(ε3n)−2),

|Tw| ≤ 6ε−2 log(ε3n) and diam(Tw) ≤ 2ε−1 log(ε3n) . (5.3.15)

Since w.h.p. |H| = (2 + o(1))ε2n, we can sum the above over the vertices of H and conclude

that w.h.p., (5.3.15) holds simultaneously for all w ∈ H. Plugging this in (5.3.14), we deduce

that

Ev τ̃w + Ewτ̃v ≤ 48ε−3 log2(ε3n) ,

and altogether, as the above holds for every w ∈ H,

max
v∈C̃1

EvτH ≤ 48ε−3 log2(ε3n) . (5.3.16)

For the second summand in (5.3.13), consider e ∈ K and let Pe be the 2-path correspond-

ing to e in the 2-core H. Recall that w.h.p. the longest such 2-path in the 2-core has length

(1 + o(1))ε−1 log(ε3n). Since from each point v ∈ Pe we have probability at least 2/|Pe| to

hit one of the endpoints of the 2-path (belonging to K) before returning to v, it follows that

w.h.p., for every e ∈ K and v ∈ Pe we have

max
w∈Pe

Ew#{t ≤ τK : Wt = v} ≤ (1
2

+ o(1))ε−1 log(ε3n) . (5.3.17)

We now wish to apply Lemma 5.3.1 to the sequence av = maxw∈Pe Ew#{t ≤ τK : Wt = v}.
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Since this sequence satisfies

max
v∈Pe

av ≤ (1
2

+ o(1))ε−1 log(ε3n) ,
∑
v∈Pe

av ≤ (1
2

+ o(1))ε−2 log2(ε3n) ,

we deduce that there exists some absolute constant C ′ > 0 such that, except with probability

O((ε3n)−2), every w ∈ Pe satisfies

EwτK ≤ C ′ε−3 log2 ε3n . (5.3.18)

Recalling that e(K) = (2 + o(1))ε3n w.h.p., we deduce that w.h.p. this statement holds

simultaneously for all w ∈ H. Plugging (5.3.16) and (5.3.18) into (5.3.13) we conclude that

w.h.p.

EvτK ≤ (C ′ + 48)ε−3 log2 ε3n for all v ∈ C̃1 .

Finally, we will now translate these hitting time bounds into an upper bound on the

approximate forget time for St. Let πH denote the stationary measure on the walk restricted

to H:

πH(w) = dH(w)/2e(H) for w ∈ H .

Theorem 5.2.1 enables us to choose some absolute constant C1 > 0 so that `, defined

in (5.3.10) as C1ε
−2 log2(ε3n), would w.h.p. satisfy

max
w∈H

∥∥∥∥1

`

∑̀
j=1

Pw(Wj ∈ ·)− πH

∥∥∥∥
TV

≤ 1

4
. (5.3.19)

Define ξ̄0 = τK and for j ≥ 0, define ξ̄j+1 as we did for ξj’s, that is,

ξ̄j+1 =

{
ξ̄j + 1 if Sξ̄j+1 = Sξ̄j ,

min
{
t > ξ̄j : St ∈ H , St 6= Sξ̄j

}
otherwise.

.

Let Γ be the stopping rule that selects j ∈ {0, . . . , `− 1} uniformly and then stops at ξ̄j. By

(5.3.19), w.h.p.

max
v∈C̃1

∥∥∥Pv(SΓ ∈ ·)− πH

∥∥∥
TV

≤ 1

4
.

Going back to the definition of the approximate forget time in (5.1.1), taking ϕ = πH with

the stopping rule Γ yields F1/4 ≤ maxv∈C̃1
EΓ ≤ maxv∈C̃1

ξ̄`.
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Furthermore, combining (5.3.12) and (5.3.18), we get that w.h.p. for any v ∈ C̃1:

Ev ξ̄` ≤ (C + C ′ + 48)ε−3 log2(ε3n) .

Altogether, we can conclude that the approximate forget time for St w.h.p. satisfies that

F1/4 ≤ max
v∈C̃1

Ev ξ̄` ≤ (C + C ′ + 48)ε−3 log2(ε3n) .

This translates into the required upper bound on tmix via an application of Theorems 5.1.3

and 5.1.4. �

5.3.3 Proof of Theorem 1: Lower bound on the mixing time

As before, by Theorem 5.1.1 it suffices to prove the analogous statement for C̃1.

Let r, s be as in Lemma 5.3.6, i.e.,

r = d1
8
ε−1 log(ε3n)e and s = 1

8
ε−2 log(ε3n) .

Let Tv for v ∈ H be the PGW(µ)-tree that is attached to the vertex v. Lemma 5.3.6 gives

that when n is sufficiently large, every v ∈ H satisfies

P(Ar,s(Tv)) ≥ ε(ε3n)−2/3 .

Since |H| = (2 + o(1))ε2n w.h.p. (recall Theorem 5.1.1), and since {Tv : v ∈ H} are i.i.d.

given H, we can conclude that w.h.p. there exists some ρ ∈ H such that Ar,s(Tρ) holds. Let

ρ ∈ H therefore be such a vertex.

Let (St) be a lazy random walk on C̃1 and π be its stationary distribution. As usual, let

τv := min{t : St = v}. We wish to prove that

max
w∈Tρ

Pw

(
τρ ≥ 2

3
rs
)
≥ 1

3
. (5.3.20)

For w ∈ Tρ, let Tw be the entire subtree rooted at w. Further let Lr be the vertices of

the r-th level of Tρ. By our assumption on Tρ, there is some ξ ∈ Lr such that |Tξ| ≥ s.

We will derive a lower bound on Eξτρ from the following well-known connection between

hitting-times of random walks and flows on electrical networks (see [83] and also [63, Propo-

sition 2.19]).

Lemma 5.3.7 ([83]). Given a graph G = (V,E) with a vertex z and a subset of vertices

Z not containing z, let v(·) be the voltage when a unit current flows from z to Z and the
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voltage is 0 on Z. Then EzτZ =
∑

x∈V d(x)v(x).

In our setting, we consider the graph C̃1. Clearly, the effective resistance between ρ and

ξ satisfies Reff(ρ ↔ ξ) = r. If a unit current flows from ξ to ρ and v(ρ) = 0, it follows

from Ohm’s law that v(ξ) = r. Notice that for any w ∈ Tξ, the flow between w and ξ is 0.

Altogether, we deduce that

v(w) = r for all w ∈ Tξ .

Therefore, Lemma 5.3.7 implies that

Eξτρ ≥ r|Tξ| ≥ rs .

Clearly, if w? ∈ Tρ attains max{Ewτρ : w ∈ Tρ} then clearly

Ew?τρ ≤ 2
3
rs+ Pw?

(
τρ ≥ 2

3
rs
)
Ew?τρ .

On the other hand,

Ew?τρ ≥ Eξτρ ≥ rs ,

hence we obtain (5.3.20).

Recall that w.h.p. |C̃1| = (2+o(1))εn. Together with Lemma 5.3.5, we deduce that w.h.p.

every v ∈ H satisfies

|Tv| ≤ 6ε−2 log(ε3n) = o(|C̃1|) .

In particular, |Tρ| = o(|C̃1|), and so (as it is a tree) π(Tρ) = o(1). However, (5.3.20) states

that with probability at least 1
3
, the random walk started at some w ∈ Tρ does not escape

from Tρ, hence

max
w∈C̃1

‖Pw(S2rs/3 ∈ ·)− π‖TV ≥ 1
4
.

where π is the stationary measure for the random walk St on C̃1. In other words, we have

that

tmix

(
1
4

)
≥ 2

3
rs = 1

96
ε−3 log2(ε3n) ,

as required. �

5.4 Mixing in the subcritical regime

In this section, we give the proof of Theorem 2. By Theorem 1 and the well known dual-

ity between the subcritical and supercritical regimes (see [60]), it suffices to establish the

statement for the subcritical regime of G(n, p).
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For the upper bound, by results of [11] and [60] (see also [69]), we know that the largest

component has size O(ε−2 log(ε3n)) w.h.p., and by results of [61], the largest diameter of a

component is w.h.p. O(ε−1 log(ε3n)). Therefore, by the commute time identity (5.3.14) the

maximal hitting time to a vertex is O(ε−3 log2(ε3n)) uniformly for all components, and using

the well-known fact that tmix = O(maxx,y Exτy) (see, e.g., [3, Chapter 2]) we arrive at the

desired upper bound on the mixing time.

In order to establish the lower bound, we will demonstrate the existence of a component

with a certain structure, and show that the order of the mixing time on this particular

component matches the above upper bound.

To find this component, we apply the usual exploration process until εn vertices are

exposed. By definition, each component revealed is a Galton-Watson tree (the exploration

process does not expose the tree-excess) where the offspring distribution is stochastically

dominated by Bin(n, 1−ε
n

) and stochastically dominates Bin(n, 1−2ε
n

).

It is well known (see, e.g., [55, equation (1.12)]) that for any λ > 0,∥∥Bin(n, λ
n
)− Po(λ)

∥∥
TV

≤ λ2/n .

It follows that when discovering the first εn vertices, we can approximate the binomial

variables by Poisson variables, at the cost of a total error of at most εn(1/n) = ε = o(1).

Lemma 5.4.1. With high probability, once εn vertices are exposed in the exploration process,

we will have discovered at least ε2n/2 components.

Proof. Notice that each discovered component is stochastically dominated (with respect to

containment) by a Poisson(1 − ε)-Galton-Watson tree. Thus, the probability that the first

ε2n/2 components contain more than εn vertices is bounded by the probability that the total

size of ε2n/2 independent PGW(1− ε)-trees is larger than εn. The latter can be estimated

(using Chebyshev’s inequality and Claim 5.3.2) by

P
(∑ε2n/2

i=1 |Ti| ≥ εn
)
≤ ε2nε−3

(εn/2)2
= 4(ε3n)−1 = o(1) . �

For a rooted tree T , we define the following event, analogous to the event Ar,s(T ) from

Subsection 5.3.1:

Br,s(T ) := {∃v, w ∈ T such that |Tv| ≥ s , |Tw| ≥ s and dist(v, w) = r} .

The next lemma estimates the probability that the above defined event occurs in a PGW-

tree.
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Lemma 5.4.2. Let T be a PGW(1 − 2ε)-tree and set r = d 1
20
ε−1 log(ε3n)e and s =

1
64
ε−2 log(ε3n). Then for some c > 0 and any sufficiently large n,

P(Br,s(T )) ≥ cε(ε3n)−1/2 .

Proof. The proof follows the general argument of Lemma 5.3.6. By Lemma 5.3.4,

P(L1/ε 6= ∅) � ε .

Combined with the proof of Claim 5.3.2 (see (5.3.4) in particular), we get that

E
(
|L1/ε| | L1/ε 6= ∅

)
� ε−1 , and Var

(
|L1/ε| | L1/ε 6= ∅

)
� ε−2 .

Applying Chebyshev’s inequality, we get that for some constants c1, c2 > 0

P
(
|L1/ε| > c1ε

−1
∣∣L1/ε 6= ∅

)
≥ c2 .

Repeating the arguments for the proof of Lemma 5.3.6, we conclude that for a PGW(1−2ε)-

tree T , the probability that the event Ar,s(T ) occurs (using r, s as defined in the current

lemma) is at least ε(ε3n)−1/4 for n large enough. Thus (by the independence of the subtrees

rooted in the (1/ε)-th level),

P

(⋃{
Ar,s(Tu) ∩ Ar,s(Tu′) : u,u

′∈L1/ε

u 6=u′

} ∣∣∣ |L1/ε| > c1ε
−1

)
≥ c(ε3n)−1/2

for some c > 0. Altogether, we conclude that for some c′ > 0,

P

(⋃{
Ar,s(Tu) ∩ Ar,s(Tu′) : u,u

′∈L1/ε

u 6=u′

})
≥ c′ε(ε3n)−1/2 ,

which immediately implies that required bound on P(Br,s(T )). �

Combining Lemmas 5.4.1 and 5.4.2, we conclude that w.h.p., during our exploration pro-

cess we will find a tree T which satisfies the event Br,s(T ) for r, s as defined in Lemma 5.4.2.

Next, we will show that the component of T is indeed a tree, namely, it has no tree-excess.

Clearly, edges belonging to the tree-excess can only appear between vertices that belong

either to the same level or to successive levels (the root of the tree T is defined to be the

vertex in T that is first exposed). Therefore, the total number of candidates for such edges

can be bounded by 4
∑

i |Li|2 where Li is the i-th level of vertices in the tree. The next claim

provides an upper bound for this sum.
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Claim 5.4.3. Let r, s be defined as in Lemma 5.4.2. Then the PGW(1− ε)-tree T satisfies

E
[∑

i |Li|2 | Br,s(T )
]

= O
(
ε−3

√
ε3n
)
.

Proof. Recalling Claim 5.3.2 and in particular equation (5.3.4), it follows that E (
∑

i |Li|2) ≤
ε−2. Lemma 5.4.2 now implies the required upper bound. �

By the above claim and Markov’s inequality, we deduce that w.h.p. there are, say,

O
(
ε−3(ε3n)2/3

)
candidates for edges in the tree-excess of the component of T . Crucially,

whether or not these edges appear is independent of the exploration process, hence the

probability that any of them appears is at most O
(
(ε3n)−1/3

)
= o(1). Altogether, we may

assume that the component of T is indeed a tree which satisfies the event Br,s(T ).

It remains to establish the lower bound on the mixing time of the random walk on the

tree T . Let v, w be two distinct vertices in the r-th level satisfying |Tv| ≥ s and |Tw| ≥ s.

By the same arguments used to prove (5.3.20), we have that

max
u∈Tv

Pu(τw ≥ 10−3rs) ≥ 1− 10−3 .

Recall that w.h.p. |T | ≤ 6ε−2 log(ε3n) = 384s. It now follows that w.h.p. the mixing time

of the random walk on this components satisfies

tmix(δ) ≥ 10−3rs , for δ = 1
384

− 10−3 ≥ 10−3 .

The lower bound on tmix(1
4
) now follows from the definition of r, s. �
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