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Modeling plasma accelerators is a computationally challenging task and the quasi-static particle-in-
cell algorithm is a method of choice in a wide range of situations. In this work, we present the first 
performance-portable, quasi-static, three-dimensional particle-in-cell code HiPACE++. By decomposing 
all the computation of a 3D domain in successive 2D transverse operations and choosing appropriate 
memory management, HiPACE++ demonstrates orders-of-magnitude speedups on modern scientific GPUs 
over CPU-only implementations. The 2D transverse operations are performed on a single GPU, avoiding 
time-consuming communications. The longitudinal parallelization is done through temporal domain 
decomposition, enabling near-optimal strong scaling from 1 to 512 GPUs. HiPACE++ is a modular, 
open-source code enabling efficient modeling of plasma accelerators from laptops to state-of-the-art 
supercomputers.

Program summary
Program Title: HiPACE++
CPC Library link to program files: https://doi .org /10 .17632 /zh3rc7hvrm .1
Developer’s repository link: HiPACE++ GitHub repository
Licensing provisions: BSD 3-clause
Programming language: C++
Nature of problem: Modeling plasma accelerators is a computationally challenging task requiring 
nanometer-scale resolutions over meter-scale propagation distances. The quasi-static particle-in-cell 
method enables high-fidelity simulations of this strongly non-linear process, but these simulations can 
be very expensive.
Solution method: The quasi-static particle-in-cell algorithm is modified to enable efficient utilization of 
accelerated hardware, in particular with GPU computing, reducing the cost of simulations by orders of 
magnitude. A novel longitudinal parallelization enables excellent strong scaling of this method up to 
hundreds of GPUs.
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1. Introduction

Plasma accelerators [1,2] enable the acceleration of charged 
particles over short distances due to their multi-GeV/m field gra-
dients. Although great progress in terms of beam quality and 
stability has recently been achieved [3–6], significant advance is 
still required to make plasma-accelerator-driven applications fea-
sible. The Particle-in-Cell (PIC) method [7,8] is a reliable tool to 
simulate plasma acceleration, and PIC simulations play a major 
role in understanding, exploring and improving plasma accelera-
tors [9–11].
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Simulation of a multi-GeV plasma-based accelerator typically 
requires modeling sub-micron-scale structures propagating over 
meter-scale distances, hence full electromagnetic PIC simulations 
require millions of time steps due to the Courant-Friedrichs-Lewy 
(CFL) condition [12], which makes them unpractical. Several meth-
ods were developed to circumvent this limitation and enable larger 
time steps, including running PIC in a Lorentz-boosted frame [13]
or using a quasi-static approximation [14–17], both of which have 
proved performant for modeling of high-energy plasma accelerator 
stages [18–26].

Besides algorithmic improvements, further speedup can be ac-
complished from hardware improvement. Accelerated computing 
is growing in popularity in the supercomputer landscape [27], and 
in particular using GPUs (Graphics Processing Units) as accelera-
tors enabled significant speedup in High-Performance Computing 
(HPC) applications including PIC [28–31].

The heterogeneity of processor architectures in HPC makes it 
difficult to maintain a portable codebase but, following modern 
HPC practices, this challenge can be efficiently addressed with 
performance-portability layers [32–34].

In this article, we present the portable, three-dimensional, 
open-source, quasi-static PIC code HiPACE++1 [35]. HiPACE++ is 
written in C++ and is built on top of the AMReX [36] frame-
work, which provides field data structure, Message Passing Inter-
face (MPI) communications, and a performance-portability layer. 
In particular, the quasi-static PIC algorithm is adapted to acceler-
ated computing, and HiPACE++ demonstrates orders-of-magnitude 
speedup over CPU implementations as well as near-optimal scaling 
up to hundreds of cutting-edge GPUs. These performances enable 
realistic simulations of 1024 × 1024 × 1024 cells for 1000 time 
steps in less than two minutes on modern GPU-accelerated super-
computers. HiPACE++ is a new software, combining the algorithm 
from the legacy C code HiPACE [22] with a portability layer and 
specific modifications enabling GPU computing.

The article is organized as follows: Section 2 summarizes the 
well-known quasi-static PIC algorithm. The GPU-porting strategy 
is introduced in Sec. 3. Correctness of the code is demonstrated 
in Sec. 4. Sec. 5 presents performance results and a novel paral-
lelization strategy improving scalability on accelerated platforms. 
Additional code features are highlighted in Sec. 6.

2. The quasi-static particle-in-cell algorithm

In a plasma accelerator, a driver perturbs the plasma elec-
trons (the ions, heavier, can generally be considered immobile) and 
drives an electron plasma wave. While the driver can be a laser 
pulse or a particle beam, we hereafter focus on the case of a par-
ticle beam (beam-driven wakefield acceleration) for simplicity, as 
this is what is currently implemented in HiPACE++. In the wake of 
the driver, a witness beam of charged particles can be accelerated 
with a high field gradient. In most conditions (with the notable 
exception of witness beam self-injection), the driver and witness 
beams evolve on a time scale much longer than the plasma re-
sponse [37]. The quasi-static approximation (QSA) treats the beams 
as rigid when computing the plasma response at a given beam lo-
cation, hence decoupling the beam and plasma evolutions. Under 
this approximation, the Maxwell equations take the form of Pois-
son equations, and the scheme is not subject to a CFL condition. 
Then, the time step is determined by the smallest betatron period 
of the beams (the betatron period is the characteristic time scale 
over that a beam evolves), making it possible to use time steps 
orders of magnitude larger than those in conventional electromag-
netic PIC [22]. The algorithm has two main parts: first, from the 

1 https://github .com /Hi -PACE /hipace.
2

Fig. 1. Snapshot of the quasi-static PIC algorithm. The 3D simulation domain is cal-
culated slice-by-slice in a loop over the longitudinal grid points from the head of 
the box to its tail. Only the beam particles, a 2D slice of plasma particles, and a few 
2D slices of fields are required to determine the wake in the 3D simulation domain.

distributions of the beams, compute the plasma response (compu-
tationally expensive). Second, from the plasma fields, advance the 
beams by one time step (computationally cheap).

For a given distribution of the beams, the plasma response is 
computed in the co-moving frame defined by ζ = z − ct , with c
being the speed of light in vacuum (the beams propagate in the 
+z direction). A slice of unperturbed plasma is initialized ahead of 
the beams and pushed backwards along the ζ coordinate. At each 
longitudinal position, the wakefields are calculated as a 2D prob-
lem in the transverse plane. The 3D problem is then solved as nζ

2D transverse problems (called slices), with nζ being the number of 
longitudinal grid points in the simulation domain. Fig. 1 illustrates 
the algorithm. In the standard algorithm, the fields are calculated 
in the whole 3D domain before the beams are advanced by one 
time step. In this work, we propose to integrate the beam advance 
in the loop over slices, hence pushing beam particles slice by slice. 
With this change, all parts of the simulation are done per slice, 
which is a crucial condition for our performance-portability strat-
egy, in particular on GPUs.

From Maxwell’s equations and the QSA, the following field 
equations can be derived [21]. The wake potential ψ = φ − c Az , 
with φ and A being the scalar and vector potential respectively, is 
obtained from

∇2⊥ψ = − 1

ε0

(
ρ − 1

c
J z

)
, (1)

where ε0 is the vacuum permittivity and ρ and J are the total 
(beams + plasma) charge and current densities, respectively. The 
transverse wakefields Ex − c B y and E y + c Bx are calculated from 
the transverse derivatives of ψ :

Ex − c B y = − ∂

∂x
ψ , (2a)

E y + c Bx = − ∂

∂ y
ψ. (2b)

The longitudinal field Ez is obtained from

∇2⊥Ez = 1

ε0c
∇⊥ · J⊥ . (3)

The components of the magnetic field are given by

∇2⊥Bx = μ0(−∂y J z + ∂ζ J y) , (4a)

∇2⊥B y = μ0(∂x J z − ∂ζ J x) , (4b)

and

https://github.com/Hi-PACE/hipace
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∇2⊥Bz = μ0(∂y J x − ∂x J y), (5)

where μ0 denotes the vacuum permeability. All quantities ex-
cept the longitudinal derivatives ∂ζ J x and ∂ζ J y are directly ac-
cessible after the current deposition. These derivatives can be ob-
tained with a predictor-corrector loop [20,22] or by explicit inte-
gration [38,39]. Both options are available in HiPACE++, hereafter 
referred to as predictor-corrector or explicit method respectively, 
and their implementations are described in Sec. 3.2.

In the QSA PIC algorithm presented here, the fields at slice ζ
are advanced in space (from ζ + �ζ to ζ ) and the beam particles 
are advanced in time (from t to t + �t) together, in the following 
sequence:

1. Gather fields and push plasma particles backwards from ζ +
�ζ to ζ ;

2. Deposit plasma currents and densities;
3. Deposit beam currents and densities;
4. Solve equation (1) for ψ to calculate Ex − c B y and E y + c Bx

with equation (2);
5. Solve equation (3) for Ez;
6. Solve equation (5) for Bz;
7. Solve equations (4) for Bx/y .
8. Gather fields and push beam particles located in slice ζ from 

t to t + �t .

In the standard QSA PIC algorithm (see [20,22]), the beam op-
erations (current deposition, field gather and particle push) are 
separated from the loop over slices: at the end of the loop over 
slices, once the fields are computed on the whole 3D domain, the 
3D fields are used to advance the beam. Here, we integrate the 
beam operations into the 2D slice routine, which removes the ne-
cessity to allocate the memory of the 3D simulation domain. This 
modification is a key requirement to harness the full compute po-
tential of a GPU, as explained in the next section. Additionally, the 
3D field arrays are never used for computation and therefore do 
not need to be allocated, which allows for fitting high-resolution 
simulations on a single GPU. This enables production-quality sim-
ulations even with modest GPU resources.

3. Porting quasi-static PIC to GPU

3.1. Porting strategy

HiPACE++ is written considering modern GPU architectures 
with tens-of-GB global memory, relatively slow transfers between 
host (CPU) and device (GPU) memories, and fast atomic operations. 
As illustrated in Fig. 1, the data that needs to be allocated for com-
putation is modest, and only consists in the beam particles, a 2D 
slice of plasma particles, and a 2D slice of grid quantities. In a 
vast majority of practical cases, these quantities fit in the global 
memory of a single GPU. Thus, these are directly allocated in the 
GPU memory, reducing the need for host-device transfers during 
computation to its minimum. Host-device transfers are only used 
for I/O and communication during the longitudinal parallelization, 
although both can be in principle circumvented by using buffer-
ing methods combined with optimized transfers, such as using 
NVIDIA GPUDirect. Additionally, keeping all required data directly 
on the GPU makes it possible to use single-GPU Fast Fourier Trans-
forms (FFTs) that are considerably faster than single- or multi-CPU 
FFTs, which accounts for a significant fraction of the observed 
speedup.

A practical consequence of this strategy is that the full 3D do-
main is not needed for computation and thus never allocated on 
GPU, leading to much reduced memory utilization. The GPU mem-
ory limits the transverse resolution, though high (2048 ×2048 grid 
3

points) up to extreme (8192 × 8192 grid points) resolutions are 
achievable with small GPUs (8 GB GPU-memory) and state-of-the-
art GPUs (80 GB GPU-memory), respectively.

This has another important consequence: Since the 3D domain 
is not allocated on the GPU, the fields on a slice overwrite the 
previous values and are not known at the end of the loop over 
slices. For this reason, the beam operations (field gather, particle 
push and current deposition) must be performed per slice within 
the loop over slices. To that end, beam particles are sorted per 
slice at the beginning of each time step. Although this results 
in many small and inefficient kernels (a slice of beam particles 
contains ∼1000 particles for typical simulation parameters), the 
beam operations take a negligible amount of time overall. Finally, 
field data in the full 3D domain can be stored for the purpose 
of diagnostics. In that case, the required data is stacked in host 
(CPU) memory until the last slice is computed, and then flushed to 
disk.

In summary, the porting strategy combines two elements: (i) 
fit the 2D transverse problem in GPU memory, so it can be 
solved without excessive communications and (ii) reduce host-
device transfers to a minimum. Space is saved on device memory 
by not allocating 3D field arrays, thus enabling the computation of 
large domains on a single GPU.

3.2. Implementation

As part of the main loop over slices, the most time-consuming 
functions in the quasi-static PIC method are the field solver, 
the plasma particle pusher, and the plasma current deposi-
tion. Performance-portability is achieved via the AMReX frame-
work [36], and the same methods as in Ref. [30] are applied: 
low-level loops (over all particles or over all grid points in a slice) 
are written in an abstract form (through a function amrex::Par-
allelFor), which is compiled into a vectorized loop (for CPU) or 
a GPU kernel depending on the target platform, enabling porta-
bility of a unique source code. The GPU implementation exploits 
fast single-GPU FFTs as well as fast atomic operations on modern 
GPUs (in particular for the current deposition, the most expensive 
particle operation). The implementation of the core functions is 
described in the next paragraphs.

For the plasma particle push, HiPACE++ uses a fifth-order 
Adams-Bashforth particle pusher, as described in [22]. The trans-
verse beam position x⊥ , the transverse normalized momentum 
u⊥ = 1

Mc

(
px, p y

)
, and the normalized plasma wake potential 	p =

e
mec2 ψp of each plasma particle (with M being the mass of the 
pushed plasma particle, me the mass of an electron, and e the ele-
mentary charge) are updated as follows:

∂ζ x⊥ = − u⊥
1 + 	p

, (6)

∂ζ u⊥ = − q

M

[
γp

1 + 	p

(
Ex − cB y

E y + cBx

)
+

(
cB y

−cBx

)

+ cBz

1 + 	p

(
u y

−ux

)]
,

(7)

∂ζ ψp = − qme

Me

[
1

1 + 	p

(
ux

u y

)
·
(

Ex − cB y

E y + cBx

)
− Ez

]
, (8)

with q being the charge of the particle and γp the Lorentz factor 
given by

γp = 1 + u2⊥ + (
1 + 	p

)2

2
(
1 + 	

) . (9)

p
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The beam particles are advanced by a second-order symplectic 
integrator. The field gather and particle push are embarrassingly 
parallel operations well-suited to GPU computing.

Due to the handling per slice, the current deposition is so far 
limited to zeroth order longitudinally for both plasma and beam 
particles, while orders 0-3 are available in the transverse direction. 
On GPU, the otherwise expensive current deposition is performed 
using fast atomic operations to global device memory.

As can be seen in Eqs. (2), (3) and (5), most fields are computed 
by solving a transverse Poisson equation and applying finite-
difference operators. The Poisson equation with Dirichlet boundary 
conditions is solved by means of fast Poisson solvers [40], which 
are based on a Discrete Sine Transform (DST) of the first type. The 
DST is provided by the FFTW [41] library on CPU and by a cus-
tom implementation using FFTs [42] on GPU. The FFTs on GPU are 
provided by vendor libraries. The capability to run 2D FFTs on a 
single GPU instead of parallel FFTs on many CPUs is critical to 
provide good performance, considering that parallel FFTs require 
large amount of communications. Special care is needed to com-
pute Bx/y , because of the longitudinal derivatives ∂ζ J x and ∂ζ J y
in Eq. (4). The Bx/y field solver is usually the most expensive part 
of the 3D QSA PIC method.

Two options are implemented for the Bx/y field solver algo-
rithm. The first option is a predictor-corrector field solver, as 
implemented in the legacy code HiPACE. The longitudinal deriva-
tives ∂ζ J x/y are evaluated on slice ζ from the previously-computed 
slice ζ +�ζ and slice ζ −�ζ still to be computed. An initial guess 
is made for Bx/y , with which particles are pushed from slice ζ
to ζ − �ζ where their current is deposited. The current on slice 
ζ −�ζ is used to calculate Bx/y at ζ , and the procedure is repeated 
until a convergence criterion is reached or a maximum number of 
iterations is attained. Each iteration involves all PIC operations for 
plasma particles as well as several Poisson solves.

The second option for the Bx/y field solver is an explicit field 
solver using analytic integration, as done in Refs. [38,39]. A 2D 
non-homogeneous Helmholtz-like equation must be solved (see 
equation (19) in Ref. [39]), for which HiPACE++ uses the GPU-
capable multigrid solver provided by AMReX. The multigrid solver 
is an expensive operation relying on an iterative solver, but does 
not require multiple iterations of PIC operations.

4. Correctness

The reference setup used throughout this article consists in 
a typical beam-driven wakefield acceleration simulation contain-
ing a driver beam and witness beam with Gaussian distributions 
with rms sizes kpσ⊥,d = 0.3, kpσζ,d = 1.41 and kpσ⊥,w = 0.1, 
kpσζ,w = 0.2, where kp = ωp/c is the plasma wavenumber, ωp =√

n0e2/(meε0) is the plasma frequency, and n0 the ambient plasma 
density (subscripts d and w stand for driver and witness, respec-
tively).

The driver beam is located at the origin and has a peak density 
of nb,d/n0 = 10. The witness beam is centered around longitudinal 
position kpζ0,witness = −5 and has a peak density of nb,w/n0 = 100. 
The electron plasma is modeled with 4 particles per cell, and the 
background ions are assumed to be immobile. The simulation do-
main in x, y, and ζ is, in units of k−1

p , (−8, 8), (−8, 8), and (−7, 5) 
and uses 1024 × 1024 × 1024 grid points. All simulation parame-
ters and the used software are listed in the Appendix.

Fig. 2 shows a comparison between HiPACE++, the legacy code 
HiPACE, and the full GPU-capable 3D electromagnetic PIC code 
WarpX [25]. The accelerating field Ez/E0, where E0 = cmeωp/e is 
commonly referred to as the cold non-relativistic wave breaking 
limit [37], shows excellent agreement between these three codes. 
For HiPACE++, both the predictor-corrector and the explicit solver 
were used, and both demonstrate again very good agreement, as 
4

Fig. 2. (a) x-ζ snapshot of the electric field in a beam-driven wakefield acceleration 
simulation using WarpX (top) and HiPACE++ (bottom). (b) Lineout of the acceler-
ating field from WarpX, HiPACE, and HiPACE++. The inset shows a zoom on the 
witness beam region, where flattening of the accelerating field due to beam load-
ing is visible. Both the predictor-corrector (pred.-corr.) and the explicit field solvers 
are shown. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

shown in Fig. 2(b). For WarpX, the rigid beams propagated in a 
uniform plasma long enough for the wake to reach a steady state. 
Minor differences in the witness beam region and in the spike at 
the back of the bubble can be attributed to different physical mod-
els, numerical methods, and initialization.

5. Performance and parallelization

In this section, the performance of HiPACE++ is evaluated. Al-
though QSA PIC codes are considered fast due to their large time 
steps, full 3D simulations remain computationally expensive. To 
reduce the runtime, the QSA PIC loop can be parallelized in two 
independent ways: First, for so-called transverse parallelization, the 
computation of a 2D slice can be performed by multiple processing 
units via transverse domain decomposition. Second, in the lon-
gitudinal parallelization, the domain is decomposed longitudinally, 
and different processing units compute different parts of this do-
main. Due to intrinsic dependencies of the QSA PIC method (at a 
given time step, the head of the domain must be computed be-
fore the tail), this longitudinal parallelization takes the form of 
a pipeline [43,44], where different ranks compute different time 
steps.

Transversely, the computation of individual slices in HiPACE++
is performed on 1 GPU (when running on GPU, see Sec. 5.1) or 
using multiple OpenMP threads (when running on CPU). Longitu-
dinally, the code is parallelized with MPI through a novel pipeline 
algorithm, see Sec. 5.2.

Unless stated otherwise, all simulations in this section ran on 
the JUWELS Booster, where each node is equipped with 2 AMD 
EPYC 7402 processors with 24 cores each and 4 NVIDIA A100 GPUs 
(40 GB, NVLink3) per node.

5.1. Single-GPU performance

As discussed in Sec. 3 and illustrated in Fig. 1, the amount of 
data that must be allocated for a 3D domain is relatively modest 
and consists of beam particles and 2D slices of plasma particles 
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Fig. 3. Performance comparison between GPU and CPU, for the same setup as 
Sec. 4 for a single time step with medium (512 × 512 × 1024 cells, blue lines) 
and high (2048 × 2048 × 1024 cells, red lines) resolutions, with predictor-corrector 
field solver) on the JUWELS Booster. Simulations on CPU used HiPACE (MPI-parallel, 
dashed lines) and HiPACE++ (OpenMP-parallel, dotted line). Simulations on GPU 
used HiPACE++. The high resolution run with HiPACE does not fit on less than 16 
nodes on CPU.

and fields on the grid. Due to the relatively small size of beam 
data, the amount of data virtually depends only on the transverse 
number of cells. For example, the total allocated data on the global 
memory of a NVIDIA A100 GPU with the explicit solver (respec-
tively predictor-corrector method) with 2 million beam particles 
(accounting for ∼ 230 MB) and 1 particle per cell for the plasma 
electrons is 2.0 GB (resp. 2.0 GB) for a problem of 128 × 128 cells 
transversely, 2.9 GB (resp. 2.6 GB) for a 1024 × 1024 problem and 
19.2 GB (resp. 12.9 GB) for a 4096 × 4096 problem size (for de-
tails on all simulation parameters see the Appendix). Therefore, 
most practical problems fit on a single GPU, and the performance 
of HiPACE++ on a single NVIDIA A100 GPU is detailed below.

The benefit of fitting the problem on a single GPU is clearly 
demonstrated in Fig. 3. Typical CPU implementations of the 3D 
QSA PIC method [22,39,21] accelerate the calculation by decom-
posing the domain transversely, resulting in large amounts of com-
munications (in particular in the Poisson solver) that dominate the 
runtime and cause non-ideal scaling. The CPU runs used only the 
48 CPU cores on the nodes of the JUWELS Booster. The GPU runs 
also used the 4 GPUs. The CPU runs were parallelized in the trans-
verse direction only. Longitudinal parallelization is an orthogonal 
problem, and is done in the exact same way on CPU and GPU 
(see Sec. 5.2). On GPU, the simulations at medium and high resolu-
tions take 3.6 sec and 22.9 sec and cost 2.5 × 10−4 node-hours and 
1.6 × 10−3 node-hours, respectively. For the same simulations us-
ing 1024 cores on CPU, HiPACE requires 17.5 sec and 556.1 sec for 
a cost of 0.10 node-hours and 3.3 node-hours. At medium resolu-
tion, the run on 1 (1024) CPU cores was 145× (4.7×) slower and 
cost 12× (630×) more node-hours than on 1 GPU. At high resolu-
tion, the run on 16 (1024) CPU cores was 197× (24×) slower and 
cost 261× (2050×) more node-hours than on 1 GPU. The number 
of node-hours was calculated as [number of CPU cores]/48 for CPU 
runs, and [number of GPUs]/4 for GPU runs, as each node has 48 
CPU cores and 4 GPUs.

For CPU computing with no hardware accelerator, shared-
memory parallelization with OpenMP is implemented to enable 
transverse parallelization when running on CPU only. In that case, 
tiling is implemented for plasma particle operations (field gather, 
particle push and current deposition), and the threaded version 
of FFTW can be called. As shown by the dotted line in Fig. 3, 
the transverse OpenMP parallelization of HiPACE++ gives a simi-
lar scaling as the pure MPI transverse parallelization of the legacy 
code HiPACE up to 16 threads (running on 16 cores of the 24-core 
JUWELS Booster CPUs). We attribute the performance improve-
ment of HiPACE++ over HiPACE to better memory handling, but 
5

Fig. 4. Runtime for different transverse resolutions on (a) NVIDIA A100 GPUs and 
(b) a single Graphics Compute Die (GCD) of an AMD Instinct MI250X. Left bars: 
using the predictor-corrector loop. Right bars: using the explicit field solver. The 
runtimes of 1024 × 1024 for AMD Instinct MI250X only, 2048 × 2048 and 4096 ×
4096 transverse grid points are plotted on a separate y-axis to improve readability 
of the figure.

detailed profiling of the legacy code HiPACE is out of scope of this 
article.

For further insight into the performance of HiPACE++, we ran 
the reference setup presented in Sec. 4 with increasing transverse 
resolution, keeping all other parameters constant (for more details 
see the Appendix). This scan uses 1024 longitudinal grid points, 
and performance data is given for both the predictor-corrector loop 
and the explicit field solver. The predictor-corrector loop used up 
to 5 iterations, which typically yields a comparable level of conver-
gence between the two solvers in standard beam-driven plasma 
accelerator scenarios. We observed that the explicit solver con-
verges faster than the predictor-corrector loop in challenging sim-
ulation settings, such as large transverse box sizes or abrupt beam 
current spikes.

The most time-consuming functions of the two solvers on an 
NVIDIA A100 are shown in Fig. 4 (a). In both cases a vast majority 
of the time is spent in solving for Bx/y . While both the fast Pois-
son solver and particle operations dominate the predictor-corrector 
solver at different resolutions, the multigrid solver is always the 
most expensive operation for the explicit solver. As a reminder, 
each iteration in the predictor-corrector loop involves all PIC oper-
ations for the plasma particles (field gather, particle push, current 
deposition and field solve) repeated up to 5 times per slice. Note 
that this study is not a comparison of the two field solvers, as they 
have different convergence properties, but rather a performance 
analysis of each solver separately.

The performance portability of HiPACE++ on ROCm-capable 
AMD GPUs is demonstrated by running the transverse scaling on 
a single Graphics Compute Die (GCD) of an AMD Instinct MI250X, 
shown in Fig. 4 (b). The scan was performed on the early-access 
test system Crusher at the Oak Ridge Leadership Facility, which is 
equipped with a 64-core AMD EPYC 7A53 “Optimized 3rd Gen EPY-
C” CPU and four AMD Instinct MI250X. Each MI250X contains two 
GCDs, which can be viewed as two separate GPUs from a program-
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ming perspective. The run time differs roughly by 0.7 −1.6× (resp. 
0.9 − 3.7×) for the predictor-corrector solver (resp. explicit solver) 
in comparison with the NVIDIA A100. Note that these results were 
obtained on a test platform to demonstrate the portability and 
significant performance improvements are to be expected, for ex-
ample by optimizations of rocFFT, which currently suffers from 
performance penalties for FFTs with grid sizes that are not a power 
of two.

5.2. Longitudinal parallelization via temporal domain decomposition

As presented in Sec. 2, the computation of the fields in the 
full domain at a given time step relies on a loop from the head-
most slice to the tail, and consequently cannot be parallelized lon-
gitudinally by standard domain decomposition. When computing 
multiple time steps, longitudinal parallelization can be achieved 
via pipelining algorithms [43,44], which were first realized in the 
form of a spatial decomposition [43]. Because of the combina-
tion of (i) faster computation of each slice and (ii) using a single 
rank per slice, the standard spatial decomposition demonstrates 
poor scaling with our GPU implementation. We hereafter present a 
temporal domain decomposition, more suitable to the GPU imple-
mentation in HiPACE++. This implementation has some similarities 
with the streaming pipeline presented in Ref. [44]. Both pipelines 
are summarized below, assuming the problem is decomposed lon-
gitudinally in as many sub-domains (boxes) as the number of ranks 
nranks , and runs for nt time steps.

In the spatial decomposition, each rank gets assigned one sub-
domain, which it consecutively calculates for every time step. After 
the rank has calculated its sub-domain for time step t , it passes 
the plasma particles and slices required for computation via MPI 
to the next rank downstream. It then receives the plasma particles 
and slices at t + �t from the next rank upstream. A rank keeps its 
associated beam particles, unless they slip backwards out of the 
sub-domain due to longitudinal velocities smaller than the speed 
of light. The communication caused by beam particle slippage is 
usually negligible.

The algorithm (in pseudo-code) reads:

# Rank r computes box b for all time steps
for t in 0:nt-1:

Receive last slice from box b+1 at time t
Compute box b at time t
Send last slice to box b-1 at time t

where a slice consists in field data and plasma particle data. 
This pipeline is represented on the left of Fig. 5. The number 
of scalars communicated per time step and per rank reads Ns =
nxny(Scell +nppc S plasma) where nx (ny) is the number of cells in the 
transverse direction x (y), Scell is the number of scalars communi-
cated per cell (in HiPACE++, Scell = 6 for J x and J y of the previous 
slice, and Bx/y of the two previous slices) and S plasma is the num-
ber of scalars communicated per plasma particle (in HiPACE++, 
S plasma = 35 due to fifth-order Adams-Bashforth pusher). Here, 
nppc is the number of plasma particles per cell. Each rank always 
communicates a full slice, so the amount of data communicated 
does not scale with nranks .

In the temporal decomposition, each rank computes the full 
domain for the subset of time steps t for which t ≡ r (mod nt)
(where r is the current rank). At each time step, the assigned rank 
computes the full domain in a loop over the boxes, from head to 
tail. After each box is calculated, the beam particles within that 
box are sent to the next rank downstream, which calculates the 
next time step for this box. Then, the rank receives the beam par-
ticles of the next box from the rank upstream and continues its 
6

Fig. 5. Left: spatial domain decomposition. Each rank calculates a fixed sub-domain 
for all time steps. Plasma particles and 2D field slices need to be communicated. 
Right: temporal domain decomposition. Each rank calculates the full domain for a 
sub-set of time steps. The beam particles of a sub-domain need to be communi-
cated.

calculation from head to tail. The rank keeps the plasma particles 
and 2D grid quantities and resets them at each new time step in 
the first box.

The algorithm (in pseudo-code) reads:

# Rank r computes all boxes for time step t
for b in nb-1:0:

Receive beam from box b at time t-1
Compute box b at time t
Send beam to box b at time t+1

This pipeline is represented on the right of Fig. 5. The num-
ber of scalars communicated per time step and per rank reads 
Nt = nbeam,r × Sbeam where nbeam,r and Sbeam denote the number of 
beam particles on that rank and number of scalars communicated 
per beam particle, respectively. As can be seen in Fig. 5, nbeam,r
scales with the number of ranks (i.e., the number of sub-domains), 
so this pipeline should perform better for strong scaling.

Scalability is the key advantage of the temporal decomposition: 
in the spatial decomposition, the amount of data to send/receive 
is constant (one slice of fields and plasma particles) while, in the 
temporal decomposition, it scales with the number of ranks (only 
the beam particles within the sub-domain are communicated).

As an example, let us consider a typical problem with nx =
ny = 1024, nppc = 1, and nbeam,total = 2 × 106. Even in the most 
favorable case (exchanging as few scalars as possible), S plasma = 7
for position, momentum and particle weight (HiPACE++ uses 35), 
Sbeam = 7 and Scell = 6 to calculate the initial guess, the amount 
of data (assuming IEEE 754 double precision) exchanged per 
rank and per time step is 110 MB for the spatial decomposi-
tion. Although this is usually not the case, we assume a load-
balanced beam particle distribution across ranks for simplicity, so 
that nbeam,r = nbeam,total/nranks . The temporal decomposition ex-
changes roughly 110 MB/nranks per rank and per time step. For 
nranks = 256 the temporal decomposition exchanges roughly two 
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Fig. 6. Strong scaling for two different problems with a) 1024 × 1024 × 1024 cells 
with 4 plasma particles per cell for 1000 time steps and b) 2048 ×2048 ×2048 cells 
with 1 plasma particle per cell for 2048 time steps. Both settings used two beams 
with 106 beam particles each. The final run time is given for the maximum number 
of ranks used. In b) the scaling starts at 4 GPUs due to time limit restriction on the 
supercomputer. The problems are parallelized in the longitudinal direction only.

orders of magnitude less data than the spatial decomposition, and 
is hence expected to show better scalability.

The performance of the temporal decomposition pipeline is as-
sessed via a strong scaling of two different setups. One setup is 
the reference simulation setup from Sec. 4 with nsteps = 1000 time 
steps and the other uses 2048 × 2048 × 2048 cells and 2048 time 
steps (for more details see the Appendix). The efficiency η is given 
by η(nranks) = t(1)/[nrankst(nranks)] where t(i) is the run time on 
i ranks. Due to the filling and emptying of the pipeline, the ideal 
efficiency for both pipelines is not identically 1 but rather given by

ηideal(nranks) =
(

1 + nranks − 1

nsteps

)−1

. (10)

An efficiency of 1 is obtained in the limit of nsteps � nranks . The 
results are shown in Fig. 6. The temporal domain decomposition 
(red lines) shows an efficiency close to the ideal pipeline scaling 
(black dashed line). The spatial decomposition (blue lines) suffers 
from efficiency degradation above 8 ranks. Both scalings were per-
formed on the JUWELS Booster and the reference setup was also 
run on Summit (red dotted line), which is equipped with 6 NVIDIA 
V100 GPUs per node. The maximum number of ranks is chosen so 
that only 4 slices remain per sub-domain, which was the case at 
256 ranks (= 256 GPUs) for the reference setup and 512 ranks for 
the higher-resolution case.

Note, that the temporal domain decomposition outperforms the 
spatial decomposition even though it is at a disadvantage: due 
to performance enhancements unrelated to the parallelization, the 
absolute run time is reduced, causing the communications to take 
up a larger fraction of the total run time.

6. Software practice and additional features

HiPACE++ is a versatile, open-source, 3D, quasi-static PIC soft-
ware with an object-oriented design to invite the integration of 
new numerical methods or physics packages. HiPACE++ uses the 
cross-platform build system CMake and can be installed, as well 
as its dependencies, with software package managers, such as 
Spack [45].

HiPACE++ complies with the openPMD standard [46] and uses 
the openPMD-api [47] for I/O, allowing for interoperability and 
simple benchmarking with other codes. Both HDF5 [48] and 
ADIOS2 [49] file formats are supported (a feature inherited from 
7

Fig. 7. (a) Evolution of the emittance during propagation over 3000 time steps of 
the witness beam presented in Sec. 4 with an initial transverse offset of the witness 
bunch centroid of xb = σx , for the two field solvers, in normalized units. The error 
due to single precision is computed for each field solver with respect to the double-
precision simulation; (b) Same for a simulation running in SI units, where k−1

p =
10 μm.

the openPMD-api), and the capability to read an external beam 
from file at the openPMD format is available.

Two unit systems, SI units and normalized units, are avail-
able as a runtime parameter. In normalized units, all lengths are 
re-scaled to the plasma skin depth k−1

p , the fields to the cold, 
non-relativistic wave breaking limit E0, and all densities to the 
background plasma density n0. All operations are performed in 
the unit system chosen by the user. An advanced parser makes 
it possible to write the input file in a unit system and run the 
simulation in the other one, allowing to use the advantages of 
both unit systems (numerical accuracy, interoperability with other 
codes, convenience for multi-physics implementations, etc.) in a 
flexible manner.

The code can be compiled in either double (C++ double) or 
single (C++ float) precision, a feature inherited from AMReX. The 
effect of the precision on the simulation accuracy is investigated by 
comparing the evolution of the emittance of the witness beam of 
the reference setup with an initial emittance of εx,0 = 0 when an 
initial transverse offset of the bunch centroid xb = σx is present in 
Fig. 7. For both predictor-corrector and explicit field solvers, the er-
ror attributed to using single precision remains well below 1% (2%) 
in normalized units (SI units) after 3000 time steps. As expected, 
the difference between single and double precision is higher for 
SI units than for normalized units, although both remain on the 
percent level.

Table 1 shows the runtime in single and double precisions 
for the two solvers on two different architectures, a cutting-edge 
HPC GPU (NVIDIA A100) and a typical consumer-grade (“gaming”) 
GPU (NVIDIA RTX2070), easily available on a laptop. As antici-
pated, double-precision calculations are much faster on the HPC 
GPU than on the gaming GPU. However, with the capability to 
run high-resolution production simulations on a gaming GPU with 
comparable accuracy and performance as on an HPC GPU in single 
precision, HiPACE++ provides useful scalability from laptops to the 
largest supercomputers.
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Table 1
Runtime for 1 time step of the simulation presented in 
Fig. 7 on NVIDIA A100 and NVIDIA RTX2070 GPUs. P-C 
stands for the predictor-corrector loop.

GPU Solver Tdouble Tsingle speedup
A100 P-C 14.9 s 11.4 s 1.3×
A100 explicit 8.0 s 5.8 s 1.4×
RTX2070 P-C 96.9 s 33.7 s 2.9×
RTX2070 explicit 52.4 s 17.0 s 3.1×

Though in active development, HiPACE++ features numerous 
capabilities useful for production simulations including multiple 
beams and plasma with different species and profiles (driver and 
witness beam, ion motion, etc.), the possibilities to load external 
beams and apply external fields as well as specialized mesh re-
finement capabilities [50]. Field ionization using the ADK-model 
[51] is available in SI units and could readily be extended to nor-
malized units. HiPACE++ proposes different field solvers, and uses 
modern software practices to make it a user-friendly and stable 
code (continuous integration, open development repository, exten-
sive documentation and comments). Planned upgrades include a 
laser envelope model [52,17,53], full mesh refinement, and the 
support of more GPU architectures from other providers. The code 
is fully operational on CPU, on modern NVIDIA GPUs, and modern, 
ROCm-capable AMD GPUs.

7. Conclusion

This paper presented the open-source, performance-portable, 
3D quasi-static PIC code HiPACE++. The main adjustments required 
to port the quasi-static PIC loop to accelerated computing consist 
in (i) ensuring that all operations, including the beam operations, 
are performed within the loop over slices so little data needs to 
be stored on device memory and (ii) proposing a different longi-
tudinal parallelization (pipeline) with which the amount of data 
communicated per rank scales down with the number of ranks, 
enabling excellent scalability for production simulations up to hun-
dreds of GPUs.

Focusing on runtime rather than scalability, HiPACE++ is not 
MPI-parallel transversally: each slice is computed on a single GPU, 
enabling orders-of-magnitude speedup with respect to CPU im-
plementations. Transverse parallelization will be considered if it 
provides significant speedup without impacting the code clarity. 
Benchmarks show excellent agreement with legacy code HiPACE 
and full electromagnetic PIC code WarpX.

HiPACE++ is built on top of cutting-edge libraries (in particular 
AMReX and openPMD-api) to harness top performance-portability 
and encourage open science, while improving sustainability. It en-
ables production simulations of plasma acceleration from laptops 
to supercomputers.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgements

The authors gratefully acknowledge helpful discussions with 
T.J. Mehrling, C.B. Schroeder, J. Osterhoff, T. Wetzel, and B. Die-
derichs. We gratefully acknowledge the Gauss Centre for Super-
computing e.V. (www.gauss -centre .eu) for funding this project by 
providing computing time through the John von Neumann In-
stitute for Computing (NIC) on the GCS Supercomputer JUWELS 
Booster at Jülich Supercomputing Centre (JSC). We acknowledge 
8

Table A.2
Simulation parameters of the presented studies in the respective figure. 
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Appendix A. Simulation parameters

In all simulations, second-order current deposition was used in 
the transverse direction. The reference setup consists of a drive 
and a witness beam. Both beams are Gaussian with rms sizes 
kpσ⊥,d = 0.3, kpσζ,d = 1.41 and kpσ⊥,w = 0.1, kpσζ,w = 0.2. The 
peak densities are nb,d/n0 = 10 and nb,w/n0 = 100. The drive beam 
has an initial energy of 10 GeV and 0.1% rms energy spread, the 
witness beam has an initial energy of 1 GeV and no initial energy 
spread. The drive beam is located at the origin, the witness beam 
is centered around longitudinal position kpζ0,w = −5. The beams 
are initialized at waist, either with a fixed number of particles per 
cell with a variable weight or with random positions and fixed 
weights. The beams initialized by a variable weight use 1 particle 
per cell. The randomly initialized beams use 106 fixed weight par-
ticles per beam. For all simulations, the domain is, in units of k−1

p , 
(−8, 8), (−8, 8), and (−7, 5) in x, y, and ζ . The varying simulation 
parameters for the presented studies are listed in Table A.2. The 
time step in all simulations is dt = 6 ω−1

p .
For the HiPACE++ and WarpX simulations on the JUWELS 

Booster, we used GCC 9.3.0, CUDA 11.0, OpenMPI 4.1.0rc1, CMake 
3.18.0, and FFTW 3.3.8, except for the strong scaling using the 
temporal domain decomposition on the JUWELS Booster, which 
used GCC 10.3.0, CUDA 11.3, and OpenMPI 4.1.1. The GPU runs 
were compiled with nvcc 11.0.221 using the following flags:
-O3 -gencode=arch=compute_80,code=sm_80
-gencode=arch=compute_80,code=compute_80
-maxrregcount=255 --use_fast_math.

The HiPACE++ CPU runs were compiled using the following 
flags: -O3 -DNDEBUG -pthread -fopenmp 
-Werror=return-type.

The legacy code HiPACE was compiled with ICC 19.1.2.254 using 
the flags: -std=c99 -march=native -O3 -Os.

On the laptop, we used GCC 8.4.0, CUDA 11.0, MPI 3.1, and 
CMake 3.20.3. The code was compiled with nvcc 11.0.194 using the 
following flags: -O3 -DNDEBUG --expt-relaxed-constexpr

https://www.gauss-centre.eu
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--expt-extended-lambda -Xcudafe
--diag_suppress=esa_on_defaulted_function_ignored
-maxrregcount=255 -Xcudafe --display_error_number
--Wext-lambda-captures-this --use_fast_math
-Xcompiler -pthread.

Throughout the studies, we used AMReX v21.05 to v22.04 and 
HiPACE++ from commit 3f2f4e15a607 to v22.04, except for the 
simulation using spatial domain decomposition, which was con-
ducted on commit 11523c24c0f7c73ce3fe8d3424ede54565f58d50.
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