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Behavioral/Systems/Cognitive

Active Engagement Improves Primary Auditory Cortical
Neurons’ Ability to Discriminate Temporal Modulation

Mamiko Niwa, Jeffrey S. Johnson, Kevin N. O’Connor, and Mitchell L. Sutter
Center for Neuroscience and Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, California 95618

The effect of attention on single neuron responses in the auditory system is unresolved. We found that when monkeys discrimi-
nated temporally amplitude modulated (AM) from unmodulated sounds, primary auditory cortical (A1) neurons better discrim-
inated those sounds than when the monkeys were not discriminating them. This was observed for both average firing rate and
vector strength (VS), a measure of how well neurons temporally follow the stimulus’ temporal modulation. When data were
separated by nonsynchronized and synchronized responses, the firing rate of nonsynchronized responses best distinguished AM-
noise from unmodulated noise, followed by VS for synchronized responses, with firing rate for synchronized neurons providing
the poorest AM discrimination. Firing rate-based AM discrimination for synchronized neurons, however, improved most with task
engagement, showing that the least sensitive code in the passive condition improves the most with task engagement. Rate coding
improved due to larger increases in absolute firing rate at higher modulation depths than for lower depths and unmodulated
sounds. Relative to spontaneous activity (which increased with engagement), the response to unmodulated sounds decreased
substantially. The temporal coding improvement—responses more precisely temporally following a stimulus when animals were
required to attend to it— expands the framework of possible mechanisms of attention to include increasing temporal precision of
stimulus following. These findings provide a crucial step to understanding the coding of temporal modulation and support a model
in which rate and temporal coding work in parallel, permitting a multiplexed code for temporal modulation, and for a comple-
mentary representation of rate and temporal coding.

Introduction
Processing temporal modulation is vital to interpreting sounds.
Speech, for example, is laden with meaningful temporal cues,
such as amplitude modulations (AMs), which serve as infor-
mation-bearing parameters in speech recognition (Van Tasell et
al., 1987; Shannon et al., 1995). AM is also a powerful cue for
segregating sound sources in complex listening environments
(Bregman et al., 1990; Grimault et al., 2002). Auditory cortical
lesions, including those restricted to the primary auditory cortex
(A1), have demonstrated that auditory cortex is necessary for
temporal and language/vocal communication processing (Hef-
fner and Heffner, 1986; Heffner and Heffner, 1989; Fitch et al.,
1994; Griffiths et al., 1997). However, demonstrations of close
links between the perception of temporal sound features and
auditory cortical activity have proven elusive, although recently
activity associated with perceptual choices in A1 has been re-
ported using choice probability analysis (Niwa et al., 2012). In

anesthetized and awake nonbehaving animals, auditory cortical
neurons may represent AM-related sound parameters by changes
in average firing rate (rate code) and/or in temporal firing pat-
terns (temporal code) (Lu et al., 2001; Liang et al., 2002; Schnupp
et al., 2006; Malone et al., 2007; Kajikawa et al., 2008; Walker et
al., 2008; Bizley et al., 2010; Imaizumi et al., 2010; Malone et al.,
2010; Rosen et al., 2010). AM can be coded by the temporal
pattern of activity directly mimicking the temporal pattern of the
stimulus (phase-locking). It is known that neurons throughout
the auditory system phase lock well (Review in Joris et al., 2004)
and that auditory cortex extracts temporal speech features by
tracking the temporal envelope (Steinschneider et al., 1980;
Steinschneider et al., 1994; Eggermont, 1995; Schreiner, 1998;
Steinschneider et al., 2005; Engineer et al., 2008). Because phase-
locked coding is so fundamental to the auditory system, this sys-
tem is ideal to investigate how behavioral state modulates
temporal patterns of activity.

The activity of auditory cortical neurons in behaving animals
depends on an animal’s behavioral state and “attentiveness”
(Hubel et al., 1959; Grady et al., 1997; Otazu et al., 2009). In
addition, auditory task engagement has been shown to change A1
neuron response properties compared to when animals are pas-
sively presented with the same sounds. These changes— e.g., fa-
cilitative frequency tuning changes in tone detection (Miller et
al., 1972; Fritz et al., 2003) and increased sharpness of spatial
tuning in sound localization (Lee and Middlebrooks, 2011)—
could be used to improve behavioral performance. In this paper
we measured the ability of neurons to distinguish an AM sound
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from its unmodulated noise carrier—the same discrimination
the animals performed— both when the animals were perform-
ing the discrimination and when they were sitting passively. Each
neuron’s ability was assessed with both rate and phase-locked
codes. We found that during behavioral discrimination, neural
discriminability of AM improved relative to passive listening
based on both rate and phase-locked codes, suggesting that the
accuracy of representation in both codes can be modulated by
behavioral state.

Materials and Methods
Subjects
Data were from the right hemispheres of two female (monkeys V and W)
and one male (monkey X) adult rhesus monkeys (Macaca mulatta), each
weighing 6 –11 kg. Monkey initials are consistent across all publications
from this laboratory. All procedures conformed to the United States
Public Health Service policy on experimental animal care and were ap-
proved by the University of California, Davis animal care and use
committee.

Acoustic stimuli
Stimuli were 800 ms sinusoidally AM broadband noise bursts (modula-
tion frequencies: 2.5, 5, 10, 15, 20, 30, 60, 120, 250, 500, and 1000 Hz;
modulation depths: 6, 16, 28, 40, 60, 80, and 100%) and unmodulated
(0% modulation) broadband noise. The broadband noise carrier was
“frozen”; the same random number sequence was used as a noise carrier
sample for all stimuli. Sound generation has been described previously
(O’Connor et al., 2011). Briefly, the sound signals were created in
MatLab (The MathWorks) and generated using a D/A converter (model
1401; Cambridge Electronic Design). They were then passed through a
programmable (PA5; TDT Systems) and a passive (LAT-45; Leader) at-
tenuator, amplified (MPA-200; Radio Shack), and delivered to a speaker.
Two different recording set-ups were used. One had a PA-110 (Radio
Shack) speaker 1.5 m from the subject at its ear level. The other had an
Optimus Pro-7AV (Radio Shack) positioned 0.8 m in front of the subject
at its ear level. The sound was generated at a sampling rate of 100 kHz and
had 5 ms cosine-ramped onsets and offsets. Intensity was calibrated with
a sound-level meter (model 2231; Bruel and Kjaer) to 63 dB sound pres-
sure level for all sounds at the outer ears.

Behavioral task
The behaving condition was discriminating AM noise from unmodu-
lated noise (i.e., a modulation detection task, detecting whether the stim-
ulus was amplitude modulated). The monkeys were trained to initiate a
trial by pressing and holding down a lever. A trial consisted of two 800 ms
sounds separated by a 400 ms interstimulus interval. The first (standard)
sound was an unmodulated noise, and the second (test) sound was either
unmodulated (nontarget) or an AM noise (target). Target stimuli had a
fixed modulation frequency [at the multiple unit’s best modulation fre-
quency, tested from 2.5 to 1000 Hz; see Physiological recording for details
of best modulation frequency (BMF) determination] during a recording
session and modulation depths of 6, 16, 28, 40, 60, 80, and 100%. Subjects
were trained to respond to AM targets by releasing the lever during an
800 ms response window following the offset of the second sound. When
the second sound was unmodulated (0% depth), the subjects were re-
quired to hold down the lever for the entire response window. The ma-
caques were rewarded with juice or water for both hits (a lever release for
target trials) and correct rejections (holding down the lever for nontarget
trials). Animals were notified on incorrect responses (misses and false
alarms; not releasing the lever on target trials and releasing the lever on
nontarget trials, respectively) by the offset of an incandescent light placed
in front of them. False alarms were also followed by a time-out period of
15– 60 s.

Behavioral training
Monkeys W and V went through the training described below. Monkey X
underwent similar training but was previously used in an auditory induc-
tion experiment (Petkov et al., 2003).

After training to sit quietly in an “acoustically transparent” primate
chair, the animals were taught to depress and release a lever for liquid
reward using standard operant shaping techniques. They then were
trained to depress the lever to initiate presentation of a brief (100 ms) AM
noise (target) and were rewarded for releasing the lever after AM offset.
The response limit was initially 10 s after offset and was decreased to 800
ms over the course of several sessions. Concurrently, the delay between
initial lever depression and sound presentation was increased to 1 s. Next,
two low-intensity 100 ms unmodulated noise bursts were introduced in
the 1 s (previously silent) period between lever depression and AM pre-
sentation, with 100 ms silent intersound intervals (ISIs) among the three
sounds. The intensity of the unmodulated noise was gradually increased
until it was equal to that of the AM. Subsequently, ISIs of 200, 400, and
800 ms replaced the fixed 100 ms ISI, the duration of the stimulus was
extended, and the number of possible pre-AM noise bursts was changed
from two bursts to two, three, or four bursts. At this point, standard only
(nontarget) trials were also introduced. This transition took several ses-
sions. The time needed for asymptotic performance varied across sub-
jects from 9 months to 1.5 years; therefore, these animals were highly
trained by the time recording experiments began. During physiological
recording sessions, all trials comprised one standard (unmodulated 800
ms noise), followed by a 400 ms ISI, and then a test stimulus (AM or
unmodulated 800 ms noise), so that more data could be collected for AM
relative to unmodulated noise. After this training, the animals were in-
formed by cue light when blocks of behaving or passive stimulation
conditions were to occur.

Physiological recording
The physiological recording procedures were similar to those previously
described (O’Connor et al., 2010). Briefly, each monkey was chronically
implanted with a titanium head holder and a CILUX recording chamber
(Crist Instrument) placed over the parietal cortex to allow for the near
vertical access to A1. A plastic grid with 27-gauge holes was placed on the
recording chamber. The grid held a stainless steel, transdural guide
tube that could be inserted throughout a 15 mm � 15 mm area of the
brain at 1 mm intervals. A high-impedance tungsten microelectrode
was inserted through the guide tube and lowered into A1 by a hydrau-
lic microdrive. All recordings were made while the monkey sat, head
restrained, in an “acoustically transparent” primate chair in a double-
walled, sound-attenuated, foam-lined booth (IAC: 9.5� � 10.5� �
6.5� or 4� � 3� � 6.5�).

Electrophysiological signals were amplified and filtered (0.3–10 kHz;
AM Systems model 1800 and Krohn-Hite model 3382), passed to a com-
puter with an A/D converter (sampling rate, 50 kHz; CED model 1401),
and saved to hard disk along with the time stamps of all other relevant
events for later analysis. Action potentials were sorted and assigned to
individual neurons [single units (SUs)] online, and then refined offline
using the waveform-matching algorithm by SPIKE2 (CED). Multiple
units (MUs) were clear spiking activity collected above the background
level.

The BMF was determined at each recording site’s MU by presenting
AM noise (modulation frequency: 2.5, 5, 10, 15, 20, 30, 60, 120, 250, 500,
and 1000 Hz; modulation depth, 100%) and unmodulated noise. Then
receiver operating characteristic (ROC) areas for AM at each modulation
frequency were calculated based on firing rate and vector strength (VS)
by comparing responses to AM noise with responses to unmodulated
noise (see ROC analysis). BMFVS was the modulation frequency with
greatest VS-based ROC area, and BMFSC was the frequency with rate-
based ROC area most deviant from 0.5. When BMFVS and BMFSC were
different, the selection of BMFVS or BMFSC was alternated from day to
day to test equivalently sized samples at both modulation frequencies.
After the BMF was selected, AM sensitivity was determined (1) while
animals performed the AM detection task (behaving condition, target
modulation frequency at the BMF, depths from 6 to 100%) and (2) while
they were presented with the same stimuli and received randomly timed
liquid rewards for sitting quietly (passive condition). For monkeys V and
W, the order of behaving and passive experiments was alternated from
recording day to day. For monkey X, behaving condition was always
followed by passive condition.
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Data analysis
Neural ROC analysis
Signal detection theory-based ROC analysis (Green and Swets, 1974;
Relkin and Pelli, 1987; Britten et al., 1992; Spitzer et al., 2004; Scott et al.,
2007) was used to quantify how well a neuron discriminates AM from its
unmodulated carrier. First, a measure (e.g., firing rate) of the unit’s re-
sponses was calculated on each trial. This was done for both AM sound
(signal) and unmodulated noise (noise). We only analyzed unmodulated
sounds that were in the second sound position (test sound) of the se-
quence. This is because the response to an identical sound in a two-sound
sequence may differ, depending on whether it was first or second (Brosch
and Schreiner, 1997; Werner-Reiss et al., 2006). Therefore, to allow fair
comparisons to the targets that also were in the second position, we only
analyzed unmodulated sounds presented in the same temporal position.
Then the neural measure obtained in repeated trials was plotted into
probability distributions for the AM at a given depth and the unmodu-
lated noise. From these two probability distributions, we determined the
proportion of trials in which neural response to AM exceeded a given
criterion level. The proportion of trials in which neural response to the
AM exceeded the criterion level is directly comparable to hit rate. The
proportion of trials in which neural response to the unmodulated noise
carrier exceeded the criterion level is directly comparable to false alarm
rate. This procedure was repeated at 100 criteria values spanning the full
range of both distributions. The two-dimensional plot of all pairs of
neural hit and false alarm rates forms the neural ROC, and the area under
the ROC is called the neural ROC area. Neural ROC area represents
neural detectability of a signal—the probability with which an ideal ob-
server can detect a signal (AM) based solely on neural responses. ROC
values of 1.0 indicate that the responses to AM were always larger than to
unmodulated noise (i.e., the trial-by-trial distribution of firing rate in
response to AM noise was higher and had no overlap with the trial-by-
trial distribution of firing rate in response to unmodulated noise). ROC
values of 0 indicate that the responses to AM noise were always smaller
than to unmodulated noise. ROC values of 0.5 indicate that the responses
to AM noise and to unmodulated noise were indistinguishable (i.e., the
distributions completely overlapped).

Discriminability index, d�
Discriminability index, d�, also measures how well a neuron discrimi-
nates AM from its unmodulated carriers by comparing distributions of
neural response to AM (signal) and unmodulated noise (noise) (Young
and Barta, 1986; Middlebrooks and Snyder, 2007; Rosen et al., 2010).
Unlike ROC analysis, d� is parametric with an assumption that signal and
noise distributions are normal and have the common variance. It is de-
fined as d� � (�s � �n)/�, where �s and �n are mean neural response
(firing rate or phase-projected VS) to AM signal and unmodulated noise,
respectively, and � is the common standard deviation (SD). � was esti-
mated as � � (�s � �n)/2, where �s and �n are the SDs of neural response
(firing rate or VSpp) to signal and noise, respectively. d� measures the
separation of mean values between signal and noise distributions in units
of their average SD. Unlike ROC area, d� cannot be converted to proba-
bility of detection for direct comparison of unit recordings with behav-
ior. However, d� is not bounded by 1 and 1, and continues to increase
proportionately when noise and signal distributions are very well sepa-
rated. ROC area reaches a ceiling at the value of 0 or 1 ( probability
correct cannot exceed 1) regardless of how far apart two completely
separated distributions are. In contrast, d� has no such bound and will
capture the distance between well separated distributions. Thus, in this
paper we are not using d� to determine a statistical probability but as an
estimate of the overlap of two distributions so it is serving as a measure of
separation more than a statistic. We introduced it because of problems
when ROC area runs into ceiling effects at values approaching 1.0.

Vector strength and phase-projected vector strength
Vector strength, VS (Goldberg and Brown, 1969), is defined as

VS �

�� �i�1
n cos�i�2

� ��i�1
n sin�i�2

n
(1)

where n is the total number of spikes, and �i is the phase of each spike in
radians.

�i is calculated by

�i � 2�
�ti modulo p�

p
(2)

where ti is the time of the spike relative to the onset of the stimulus and p
is the modulation period of the stimulus. VS measures how tightly the
response is temporally locked to one phase of modulation. If all spikes
fire at precisely the same phase relative to the stimulus AM, VS is 1. If
spikes are circularly symmetric with respect to stimulus phase (this in-
cludes random timing), VS will be 0. One weakness of VS is that it may
give spuriously high values at low firing rates. If a cell fires one spike on a
given trial, a VS value of 1 would result. If a cell fires two spikes randomly,
a high VS would also likely result because the probability of two random
spikes firing 180° out of phase with each other (relative to the stimulus
modulation period) is low. Basically, if sampling from a random distri-
bution of spikes in time, VS will approach zero as the number of spikes
approach infinity. Since we apply VS on trial-by-trial basis, VS in low
spike-count trials is a critical issue because some single units fire only a
few spikes in a single trial.

Neurometrics have been derived that can be used to look at whether
temporal patterns can detect or discriminate sounds (Walker et al.,

Figure 1. Average behavioral thresholds plotted against distribution of single-unit (SU) and
multiple-unit (MU) thresholds. A, Firing rate thresholds for each SU (pink dot) and MU (blue dot) are
superimposed on a plot of the average behavioral thresholds as a function of modulation frequency.
Each behavioral point (threshold) is the average of all sessions in which units were recorded regardless
of animal. Error bars are SD by session. Points above the 100% mark are units that did not reach the
threshold criterion of ROC area�0.75. B, Same as A, but for phase-projected vector strength. Note no
data points are shown for 1000 Hz because no units had 1000 Hz BMF.
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2008). In this paper, we wanted to focus on the
specific temporal code of the ability of neurons
to temporally follow the stimulus envelope
(phase locking). One way to address this issue
is to use a measure called phase-projected vec-
tor strength (VSPP) (Yin et al., 2011), which
allows for quantification of phase locking on
trial-by-trial basis. Unlike VS, VSPP does not
give spurious values on low spike trials. Ob-
taining single-trial measurements is essential
for neurometric analysis, where trial-by-trial
variance is a key element to compare neural to
behavioral results. Determining the best mea-
sure to quantify temporal following can be dif-
ficult (Kajikawa and Hackett, 2005; Malone et
al., 2007, 2010), but here we wanted to examine
whether task engagement can improve a neu-
ron’s ability to follow temporal modulation of
a sound. Conceptually, VSPP compares the
mean phase angle for each trial with the mean
phase angle of all trials (at 100% depth for cor-
responding condition) and penalizes single-
trial VS values if they are not in phase with the
global response. VSPP was calculated on a trial-
by-trial basis as follows:

VSpp � VSt cos��t � �c� (3)

where VSPP is the phase-projected vector
strength per trial, VSt is the vector strength per
trial, calculated as in Equation 1, and �t and �c

are the trial-by-trial and mean phase angles in
radians. Phase angles � are calculated as

� � arctan2
�i�1

n sin�i�i�1
n cos�i

(4)

where n is the number of spikes per trial (for
�t) or across all trials (for �c) and arctan2 is a
modified version of the arctangent that deter-
mines the correct quadrant of the output based
on the signs of the sine and cosine inputs
(MatLab, atan2; The MathWorks). The mean
phase angle �c for each cell was estimated from
its response to 100% AM. For all VSPP calcula-
tions, a cell that fired no spikes was assigned a
VSPP of zero. Whereas VS ranges from 1 (all
spikes occur at the same phase with respect to
stimulus) to 0 (spikes timed randomly with re-
spect to stimulus phase, or spikes occurring
circularly symmetric with regard to stimulus
phase), VSPP may range from 1 (all spikes in
phase with the mean phase) to �1 (all spikes
180° out of phase with mean phase), with 0
corresponding to random phase with regard to
the mean phase. Except for the cases in which there were low spike
counts, the two VS measures were in good agreement (Yin et al., 2011).

Calculation of neural and behavioral thresholds. On each recording day
we used all behavioral trials to calculate hit rates at each depth and false
alarm rates. Then we estimated ROC area (Green and Swets, 1974) by
calculating the trapezoidal area under the false alarm versus the hit rate
curve at each depth (O’Connor et al., 2000). We then plotted ROC area
versus depth and fit a sigmoid function to the data points. Threshold was
defined as the point at which the sigmoid fit crossed an ROC area of 0.75.

Neural thresholds were calculated using the neural ROC area. For each
unit, we calculated a depth sensitivity (neural ROC area vs depth) func-
tion for both firing rate (over the 800 ms stimulus) and phase-projected
vector strength (VSPP) comparing the modulated stimulus responses to
the unmodulated stimulus responses (Johnson et al., 2012). ROC area

was plotted as a function of modulation depth for each unit. We then fit
a sigmoid to the data points and calculated thresholds from these func-
tions as we did for behavior (where the fit crosses an ROC area of 0.75).

Categorization of synchronized and nonsynchronized responses. A syn-
chronized response was defined as one that significantly phase locked at
any modulation depth (6 –100%). This was quantified by comparing the
VSPP values in response to the AM stimulus to the VSPP values for the
unmodulated noise response. This was done at each depth with a t test
and a correction for multiple comparisons (7 depths, p corrected to 0.05
by using 0.0073 for each comparison).

A nonsynchronizing response was defined as a response that did not
meet the above synchronizing requirement and that could distinguish
AM from unmodulated noise. This was objectively quantified as having a
significantly different firing rate (measured over the entire 800 ms stim-
ulus duration) in response to AM at any modulation depth (6 –100%)

Figure 2. A, B, Raster plots of a MU response to 15 Hz AM as modulation depth is varied from 100% (top) to 0% (bottom) in the
passive (A) and the behaving (B) conditions. C, D, Probability distributions of single-trial firing rate (0 – 800 ms) in response to
100% (black bars) and 0% (gray bars) AM in the passive (C) and the behaving (D) conditions. E, Average firing rate during the
stimulus is plotted as a function of modulation depth for the passive (solid square) and behaving (open circle) conditions. F, G, ROC
area (F ) and d� (G) based on firing rate are plotted as a function of modulation depth for passive (solid square) and behaving (open
circle) conditions.
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than in response to the unmodulated noise (corrected p 	 0.05). The
neural responses from the behaving condition were used for the purpose
of these categorizations.

Characterization of A1 and histology. The determination that our re-
cordings were made in A1 was based on the stereotypical tonotopic gra-
dient, the robustness of responses, and the sharpness of frequency tuning
(Merzenich and Brugge, 1973; Morel et al., 1993; Kosaki et al., 1997;
Rauschecker, 1997; Recanzone, 2000; Recanzone et al., 2000; Kusmierek
and Rauschecker, 2009; Yin et al., 2011) obtained from physiological
recordings. We also performed histological experiments on one monkey
(V) to confirm that our recording sites were located in A1. Two other
monkeys (X and W) are still serving as subjects in related experiments
and thus are not available for the histological confirmation (Niwa et al.,
2012).

Frequency tuning was measured at each recording site by presenting
pure tones with different combinations of frequencies and intensities. An
initial assessment was made by manually varying frequency and intensity
to determine the frequency range used in the automated procedure. For
the automated procedure, frequencies typically spanned three octaves
with 1⁄5 octave increments around a center frequency that was estimated
by the initial manual assessment. Intensities typically spanned 80 dB with
a 10 dB increment between 10 and 90 dB SPL. Tone duration was 100 ms.
Stimuli were presented in a random order and repeated at least three
times for each frequency–intensity combination. A two-dimensional re-
sponse matrix (intensity � frequency) was obtained using firing rate
during the 100 ms stimulus window. The unit’s frequency tuning curve
was estimated using the contour line at the mean spontaneous response
(spike count in a 75 ms window before the onset of each frequency–

intensity combination) plus 2 SD (MatLab,
contourc function; The MathWorks). The best
frequency (BF) and threshold were determined
from the obtained frequency tuning curve. A
tonotopic map was created from BF in all re-
cordings for each animal. The location of A1
was determined based on a systematic increase
in BF from anterior to posterior axis.

On termination of the experiments, three lo-
cations were marked in one animal (monkey
V) by inserting electrodes dipped in biotinyl-
ated dextran amine. These three locations were
at the anterior, middle, and posterior parts on
the physiologically determined border between
A1 and the middle-medial belt cortex. Then the
monkey was given an overdose of sodium pen-
tobarbital and was perfused with 4% parafor-
maldehyde in 0.1 M phosphate buffer. The
brain was removed, blocked, and allowed to
sink in 30% sucrose in 0.1 M phosphate buffer
before it was frozen. Sections of 50 �m thick-
ness were cut on a sliding microtome in the
frontal plane and were alternately processed
with three staining methods: treatment with
mouse anti-parvalbumin antibody and then
with biotinylated horse anti-mouse secondary
antibody followed by reactions with acetyl-
avidin biotinylated peroxidase complex (ABC)
and diamino benzidine (DAB); Nissl staining;
and Nissl staining followed by reactions with
ABC and DAB. The anatomical boundary of
A1 in monkey V was consistent with the phys-
iologically determined borders (O’Connor et
al., 2010).

Results
Comparison of behavior to physiology
The animal’s behavioral thresholds were
in the 15–25% range at the more sensitive
modulation frequencies. The behavioral
data for unit recording sessions in this

study are summarized in Figure 1. Psychometric data for re-
sponse times (the time from the end of the test stimulus to lever
release) and response probability were also recently published
(Niwa et al., 2012). The most sensitive MU and SU thresholds,
derived using either firing rate or VS-based metrics, were much
better than behavioral performance. In Figure 1, unit thresholds
are only taken from the behaving condition. The easiest to ob-
serve difference between SUs and MUs is the tendency for a
higher proportion of SUs not to reach the threshold criterion of
ROC area �0.75. It is difficult to compare thresholds between
single and multiple units because there is no one best way to
handle units that did not reach threshold (Johnson et al., 2012).

Neural sensitivity to AM improves due to behavioral
engagement in the AM task
The ability of an observer to decode neural responses to deter-
mine whether a sound was amplitude modulated based on firing
rate significantly improved when animals performed an AM dis-
crimination task (behaving condition) compared to when they
were passively presented with the same stimuli (passive condi-
tion). The task was to determine whether a sound (0 –100% depth
sinusoidally amplitude modulated noise) was modulated or un-
modulated (this task is also referred to as modulation detection).
Many units improved their ability to discriminate AM from its
unmodulated noise carrier in the behaving condition (Fig. 2).

Figure 3. A, B, Raster plots of an SU response to 15 Hz AM in the passive (A) and the behaving (B) conditions. C, Phase-projected
vector strength (VSpp) is plotted as a function of modulation depth for the passive (solid square) and the behaving (open circle)
conditions. D, E, ROC area (D) and d� (E) based on VSpp are plotted as a function of modulation depth.
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This MU’s responses temporally followed
(i.e., phase locked to) the 15 Hz modula-
tion frequency at higher modulation
depths in both passive (Fig. 2A) and be-
having (Fig. 2B) conditions. The average
firing rate also increased monotonically
with modulation depth in both condi-
tions. Although the basic response prop-
erties appear similar, this unit’s AM
responses were not the same between con-
ditions. For example, in the behaving con-
dition, the average firing rate (0 – 800 ms)
to 100% AM was higher and to 0% (un-
modulated) was lower than in the passive
condition (Fig. 2E).

To determine whether the change in
mean firing rate between behaving and
passive conditions translates to improve-
ment of neuronal AM discrimination
performance, we used ROC analysis to
calculate neuronal ability to discriminate
AM (6–100%) from unmodulated sounds
(0%). Average firing rate over the entire
stimulus was calculated in each trial, and
probability distributions of firing rates were
created for unmodulated noise and AM at
each depth (Fig, 2C,D). In this example, the
distributions of responses to 100% AM
(black bars) and unmodulated noise (gray
bars) were well separated in the behaving
condition but less so in the passive condi-
tion, indicating that this MU’s firing rate
discriminated 100% AM from noise better
in the behaving than in the passive condi-
tion. ROC area was calculated by comparing
distributions of AM responses at each mod-
ulation depth to unmodulated noise re-
sponses in each condition. Neural ROC area
represents the probability that an ideal ob-
server detects modulation based solely on
neural responses (ROC of 0.5 � chance). The ROC area for 100%
AM was 0.99 in the behaving condition and 0.83 for the passive
condition in this example. Rate-based ROC areas were greater in the
behaving than in the passive condition at 16–100% depths (Fig. 2F),
indicating that an ideal observer using the firing rate of this MU can
better discriminate AM from unmodulated noise in the behaving
condition. Neural d�, an alternative measure of neural discriminabil-
ity, shows the same effect (Fig. 2G) (the need for using d� is described
later).

We also examined whether AM sensitivity based on a temporal
code improves when animals engage in the AM detection task.
Phase-projected vector strength (VSPP; see Materials and Methods
for details) was used as a measure of phase locking. VSPP measures
the ability of neurons to temporally follow the AM on a trial-by-trial
basis (Yin et al., 2011). We did not use standard VS (Goldberg and
Brown, 1969) without phase projection because it gives spurious
values on low spike trials. Obtaining single-trial measurements is
essential for neurometric analysis in which trial-by-trial variance is a
key element to compare neural to behavioral results. VSPP was cal-
culated for each trial in the time window excluding onset response
(80–800 ms), and VSPP-based ROC areas were calculated for the
AM (6–100%) in the behaving and passive conditions. An example
of an SU that improved VSPP-based AM sensitivity is shown in Fig-

ure 3. This neuron phase locks to the 15 Hz AM at higher modula-
tion depths and monotonically decreases firing rate with increasing
depths in both passive (Fig. 3A) and behaving (Fig. 3B) conditions.
Trial-averaged VSPP, ROC area, and d� all increased in the behaving
condition (Fig. 3C–E).

The population average ROC area versus depth functions show
that the aggregate of activity across the population of A1 neurons
better discriminates AM from unmodulated noise in the behaving
than in the passive condition, based either on rate or phase-locking
codes (Fig. 4). To test the overall effect of the behavioral condition on
ROC area, ROC area data were collapsed across all depths in each
condition, and a single Wilcoxon signed-rank test was performed for
each condition with each measure (firing rate or VSpp). For MUs,
both rate- and VSPP-based ROC areas across depths significantly
increased in the behaving compared to the passive condition (Fig.
4A–D; p values shown at the bottom of each plot). Mean difference
for data collapsed across all depths is shown in the far right column
labeled “all” in Fig. 4E,F). For SUs, similar results were obtained
(Fig. 4B,E,F). Essentially identical results were obtained with d� (Fig.
4C,D,G,H). The results in Figure 4 indicate that AM sensitivity
based on a temporal code, measured by VSPP, significantly improves
due to the engagement in the AM task; however, the magnitude of
improvement is considerably smaller than that for rate-based AM

Figure 4. A, B, Population-mean ROC areas based on firing rate (black) and VSpp (red) are plotted as a function of modulation
depth for the passive (solid square) and the behaving (open circle) conditions for all recorded MUs (A) and SUs (B). C, D, Population
mean d� shown for MUs (C) and SUs (D) in the same manner as in A and B. In all panels, p values are denoted in corresponding colors
(red VSpp, black firing rate) showing Wilcoxon signed-rank test comparing across-depth ROC areas between behaving and passive
conditions. *p 	 0.05 for individual modulation depths where a Wilcoxon signed-rank test yielded a value. (red asterisk) VSpp.
(black asterisk) firing rate, respectively. E, F, Plots showing variation in mean difference of ROC area. The difference in ROC area
between behaving and passive conditions was calculated for every unit to create a distribution of differences. The mean and
standard error are then plotted for each modulation depth, and for all responses collapsed across modulation depth (far right
point). G, H, Same as E, F but this time for d�.
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sensitivity. The improved neural ROC areas in the behaving condi-
tion suggest that engagement in discrimination does not simply in-
crease firing equally (in the sense of adding a constant to the firing
rate) for all depths (0–100%) but, rather, serves to create larger dif-
ferences in firing rate and phase locking between modulated sounds
and the unmodulated sound in the behaving condition.

Engagement in the AM task improves rate-based AM
sensitivity of both synchronizing and nonsynchronizing
responses
Auditory neurons can encode AM with changes in firing rate
and/or synchronizing to the AM temporal envelope (phase-
locking). Some neurons respond to AM at some modulation
frequencies by changing firing rate without synchronizing ac-
tion potential timing to the modulation (nonsynchronized re-
sponses). Such nonsynchronized responses have been proposed
to have a special role in AM perception (Lu et al., 2001; Liang et
al., 2002; Bartlett and Wang, 2007; Bendor and Wang, 2007). AM
coding by phase locking (synchronizing responses) often accom-
panies a change in firing rate. Thus, synchronizing responses may
use both rate and phase-locked codes while nonsynchronizing
responses are thought to use rate to encode AM. Here, we exam-
ined whether AM sensitivity of synchronizing and nonsynchro-
nizing responses was differentially affected by the change in
behavioral states.

AM sensitivity significantly improves for synchronizing re-
sponses in A1 (Fig. 5). The phase-locked based ROC area signif-
icantly improved for behaving relative to passive conditions
across depth for both SUs and MUs and for both ROC area and d�

(Fig. 5A,B, magenta, G). This is different
from responses in Figure 4 in which all
units (synchronized, nonsynchronized,
and those that did not show significant
changes in firing rate or phase locking
with modulation depth) are included,
whereas the magenta and green curves in
Figure 5A–D,G,J only include synchro-
nized responses. The rate-based ROC
areas for synchronizing responses are sig-
nificantly greater in the behaving condi-
tion compared to the passive condition
across depths (Fig. 5A,B, green, F). For
nonsynchronizing responses, there was a
significant increase in across-depth, rate-
based ROC areas of MUs, but not of SUs
(Fig. 5A,B top, blue, E). Note that for the
population average, rate-based ROC areas
are much higher for nonsynchronized re-
sponses than those for synchronized re-
sponses. This means that many of the
nonsynchronized responses in the passive
state can already distinguish AM from
unmodulated noise very well at higher
depths. Since ROC areas are bounded by
the values of 0 and 1, there may be a ceiling
effect on the change in AM sensitivity for
cells that have well separated distributions
of AM and unmodulated noise in the pas-
sive condition. To investigate this possibil-
ity, we used d� as an alternate statistic
because when distributions of unmodulated
and modulated responses are completely
separated, ROC area gives values of 0 or 1

regardless of how far apart those distributions are, while d� is un-
bounded and gives values reflecting the distance between those dis-
tributions. When nonsynchronized responses are analyzed with d�,
the MUs showed a robust significant change, but the SU improve-
ment only approached significance, showing a trend of increase in
the behaving condition for across-depth data (p � 0.0747 by Wil-
coxon sign-rank test) (Fig. 5D, blue lines, H).

Together, the results indicate that rate-based AM discrim-
inability improves due to the engagement in the AM task for both
synchronizing and nonsynchronizing responses. Although the
nonsynchronizing responses of SUs did not show a significant
increase in d� or in ROC area, MUs did show a significant in-
crease. In addition, nonsynchronizing responses have much
better AM sensitivity compared to synchronizing responses re-
gardless of behavioral states, implicating the importance of non-
synchronizing responses in AM detection.

Improvement in rate-based AM sensitivity is greater in the
earlier period of stimulus presentation for suprathreshold
stimuli
We conducted ROC analyses using different time windows and
found that the improvement in AM sensitivity due to behavioral
states is time dependent. Rate-based ROC areas were calculated
in time windows of 400 ms duration beginning at 0, 100, 200, 300,
and 400 ms after stimulus onset. We found that for 100 and 80%
AM stimuli, differences in rate-based ROC areas between the
behaving and passive conditions appear greater in the first half of
the stimulus (0 – 400 ms) than in the second half (400 – 800 ms),
whereas this effect does not appear to be present at lower modu-

Figure 5. Same style graph as in the previous figure, except in this figure nonsynchronized and synchronized (for rate and VSpp)
responses are separately analyzed.
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lation depths (Fig. 6). Two-way ANOVA
examining the effect of time (first or sec-
ond half of stimulus) and condition (be-
having or passive) confirmed this for MUs
(Table 1; significant interaction at 100 and
80%). For 40, 28, and 16%, the difference
of ROC areas between conditions (behav-
ing or passive) stayed approximately con-
stant for different starting times of the
analysis windows (Table 1; those interac-
tions were not significant). This result
suggests that the modulation of AM sen-
sitivity by the behavioral state in A1 neu-
rons may have the biggest impact during
the earlier period of stimulus presentation
for stimuli with larger depths (i.e., pre-
sumably more easily detectable AM).
Although there are many potential expla-
nations, an intriguing possibility is that
this might be because the discrimination
could be made earlier during the stimulus
for these sounds, and the effect of engage-
ment in the AM detection task might be
reduced in the later period. In contrast,
those stimuli near the animals’ behavioral
AM detection thresholds (
20–25% depth)
showconstantimprovementinAMsensitivity
over the stimulus period, possibly because the detection of modulation
takes longer and, therefore, requires a longer period of engagement.

Firing rate relative to spontaneous activity
Thus far, we have shown how the ability to detect modulation as
measured by ROC analysis improves with task engagement. A re-
lated question is whether and how raw firing rates change. We found
that both the spontaneous and the driven firing rates to AM were
higher in the behaving compared to the passive condition (Fig.
7A,B), although the firing rate in response to the unmodulated (0%
depth) sound was not significantly different between the passive and
the behaving conditions. The differences between behaving and pas-
sive conditions appear to get larger with increasing modulation
depth. Interestingly, when the appropriate spontaneous rates were
subtracted from the driven firing rate, the spontaneous-adjusted rate
was lower in the behaving than the passive condition (Fig. 7C,D).
However, the slope of the spontaneous-adjusted firing rate versus
the depth function was steeper in the behaving condition compared
to the passive condition (Fig. 7C,D), which supports the improved
ability of neurons to distinguish between modulated and unmodu-
lated sounds during task engagement.

Comparison of MUs and SUs
While Figure 1 shows that the most sensitive MUs and SUs have
similar thresholds, Figures 4 – 6 paint a slightly different picture.
In Figures 4 – 6, mean d� and ROC areas are higher for MUs than
SUs. Unlike the case for thresholds (Fig. 1) the mean d� and ROC
areas for the most AM-responsive SUs and MUs were not similar;
MUs had higher d� values and ROC areas (Fig. 8). Here most
AM-responsive SUs (or MUs) are defined by averaging d� or ROC
area across all depths and both conditions and taking those with
the highest 25% values for this average. Although we cannot be
certain, one explanation for MU improved ability to discriminate
AM from unmodulated noise could be the added statistical reli-
ability gained by pooling across the multi-unit. A pooling effect

that improved neural sensitivity using similar stimuli in passive
animals has recently been demonstrated (Johnson et al., 2012).

In addition to their increased ability to distinguish AM from
unmodulated noise, MUs show greater differences between d�
values (also ROC areas) for firing rate in the behaving and passive
conditions than do SUs (Fig. 4, compare C, D; also see Fig. 4E,G
and 5E,F,H, I). One salient difference between SUs and MUs is
the higher proportion of SUs that do not reach threshold (Fig. 1).
It is possible that during averaging the larger number of nonsen-
sitive SUs reduces the average difference between behaving and
passive conditions for SUs, especially if these nonsensitive SUs do
not distinguish between the two conditions (we will call this
“smearing”). This might then lead to the observed smaller differ-
ences for SUs in Figs. 4E,G, 5E–I. It also might be that the SUs
with the highest mean d� and ROC areas are as good as the best
MUs. To investigate these possibilities, we calculated mean ROC
areas and mean d� values for the most AM-responsive SUs
(shown in Fig. 8). If nonsensitive SUs are responsible for a reduc-
tion in the behaving–passive difference, the most AM-responsive
SUs (top 25%) should show a greater behaving–passive differ-
ence than the overall population, but this is not the case. For d�,
the behaving–passive difference is similar for both the top 25% of
cells and the overall population (Fig. 8G,H). For ROC area, the
top 25% of SUs, if anything, have higher values in the passive than
the behaving condition (Fig. 8D). These results argue against the
smearing case and also against the best SUs contributing more to
the differences observed between behaving and passive condi-
tions. Interestingly, these results, particularly the ROC area re-
sults, suggest that the most AM-responsive units may in fact
reduce overall mean differences between behaving and passive
conditions.

The fact that for ROC area there is little difference between
behaving and passive conditions could reflect ceiling effects. As a
measure, ROC area is bounded at 1, so increases in sensitivity for
already sensitive units may be limited; d�, on the other hand, is
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Figure 6. A, B, Rate-based ROC areas are calculated in 400 ms time windows starting at various times after stimulus onset.
Population mean rate-based ROC area is plotted as a function of start time of the time windows at each modulation depth (from
100% on the left to 6% on the right) for MUs (A) and SUs (B).
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not bounded, and increases in sensitivity can be seen regardless of
the initial sensitivity of the unit.

Discussion
These results show that at the SU and MU levels, task engagement
(1) not only increases activity but changes the ability to tell two
stimuli apart and (2) does not act solely on average firing rate but
also can improve temporal codes by increasing the temporal pre-
cision of firing.

Effect of auditory task engagement on auditory
cortical response
Auditory cortical stimulus-evoked and spontaneous firing rates
depend on behavioral state (Miller et al., 1972; Hocherman et al.,
1976; Pfingst et al., 1977; Benson and Hienz, 1978; Benson et al.,
1981; Scott et al., 2007; Otazu et al., 2009; Jaramillo and Zador,
2011). Changes in driven and spontaneous firing rates between
behaving and passive conditions are inconsistent across studies
(varying from suppression, to no change, to enhancement). The
discrepancy may reflect differences in behavioral task (for review,
see Sutter and Shamma, 2011) as it is well known that small
differences in task and stimulus configuration can have large ef-
fects on modulation of neural activity (e.g., Groh et al., 1996;
Boudreau et al., 2006). We found both evoked and spontaneous
firing rates were raised in the behaving compared to the passive
condition (Fig. 7A,B). Otazu et al. (2009) proposed that tasks
tend to have selective and nonselective attentional demands that
increase and decrease activity, respectively, and our physiological
results are consistent with this model if the AM discrimination
used engaged selective attention.

Active engagement has also been shown to change A1 neuron
tuning properties compared to passive conditions (Fritz et al.,
2003; Atiani et al., 2009; Lee and Middlebrooks, 2011). Lee and
Middlebrooks (2011) found that A1 neuron spatial tuning be-
comes sharper, likely due to the suppression of responses to less
preferred locations, when animals localize sound. Fritz et al.
(2003) found many A1 neurons exhibit facilitative changes in
their spectro-temporal receptive fields (STRFs) when animals
performed tone detection. The facilitative change took the form
of an increase in excitation or a reduction in inhibitory sideband
near the frequency of target tones in the detection task.

Using neurometric analysis we found that neurons can better
distinguish modulated from unmodulated sounds during discrimi-
nation (behavior) and that the improved neural discriminability is
not due to a general increase in firing rate during the behaving con-
dition but rather to stimulus-dependent changes. Firing rate in-
creased more for modulated than unmodulated sounds in the
behaving condition, rendering the two more distinguishable.

Because both evoked and spontaneous firing rates are higher
in the behaving compared to the passive condition, an interesting
relationship is observed. Spontaneous-adjusted driven rate is
lower in the behaving condition (Fig. 7C,D). Then why does neu-
ral discriminability increase? It increases because during task per-
formance the neurons barely respond above spontaneous to
unmodulated noise but respond much more to modulated
sounds; therefore, modulation contrast is improved. This result is
consistent with that of Atiani et al. (2009), who focused on spec-
tral, more than temporal, contrast. They trained ferrets to detect
a tone within a spectrally complex sound. Following training they
found differences in the STRF between active and passive condi-

Table 1. p values of two-way repeated measures ANOVA on behavioral condition and time

100% 80% 60% 40% 28% 16% 6%

MUs
Behaving versus passive 0.0011* 0.0023* 0.0004* 0.00018* 0.0142* 0.1307 0.3628
1st versus 2nd half 0.0523 0.9024 0.1791 0.0045* 0.0005* 0.0005* 0.0350*
Interaction 0.0004* 0.0209* 0.0543 0.5085 0.7039 0.6758 0.3647

SUs
Behaving versus passive 0.0489* 0.2000 0.0202* 0.2169 0.6296 0.8370 0.2057
1st versus 2nd half 0.0588 0.3218 0.6509 0.0432* 0.0003* 0.0000* 0.0219*
Interaction 0.1741 0.3023 0.9701 0.4025 0.5989 0.7383 0.7059

We obtained p values from two-way ANOVA (repeated measures) testing for the effects of behavioral conditions (factor 1; behaving vs passive) and time window conditions (factor 2; first vs second halves of the test stimulus) on the firing
rate-based ROC areas. We also determined the interaction of these factors (factor 1 � factor 2). *Significant at p 	 0.05.

Figure 7. A, B, Population mean stimulus-evoked firing rate is plotted as a function of
modulation depth for the passive (solid squares) and behaving (open circles) conditions for all
recorded MUs (A) and SUs (B). Dotted and solid horizontal lines denote spontaneous firing rate
in the passive and behaving conditions, respectively. C, D, Stimulus-evoked firing rate relative
to spontaneous firing rate (firing rate spontaneous, where spontaneous is different for behav-
ing and passive conditions) is plotted as a function of modulation depth.
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tions. The changes had two components: a
decrease in overall activity relative to
spontaneous (gain shift) and a frequency
selective increase in driven activity at fre-
quencies near the target for high signal-
to-noise trials.

Additionally, we observed that AM
discriminability based on phase-locking
improves in the behaving condition. To
our knowledge, this is the first demonstra-
tion of an improvement in an auditory
neuron’s ability to follow stimulus tempo-
ral structure when performing a task that
requires attention to this structure.

Relationship to sound processing
Our data can be interpreted in the context of
two problems encountered by the auditory
system. One is, can more than one sound
feature be simultaneously encoded? The
other is, what is the best way to encode AM?
Under more natural conditions these can be
combined into, how does the brain best rep-
resent one sound feature in a complex
stream of many others?

Relationship to sound processing:
coding multiple sound features
A1 has the challenge of simultaneously en-
coding multiple sound features to be sent to
more specialized parallel pathways higher in
the auditory system (Rauschecker and Tian,
2000; Woods et al., 2006; Leaver and Raus-
checker, 2010; Hackett, 2011). This can be
achieved in several ways. If neurons use only
firing rate, a population code is required be-
cause a single neuron’s firing rate cannot
unambiguously code several features simul-
taneously. For example, for neurons that re-
spond to AM by monotonically increasing
firing rate for modulation depth and loudness, intermediate firing
rates could either indicate loud low-depth or soft high-depth
sounds. One population code is that multiple features simultane-
ously present in a sound can be encoded by distinct “feature-
detecting” neurons. The features can be recovered by observing
which neurons fire (Barlow, 1972; Suga, 1989; Groh, 2001). An al-
ternative to this one-neuron one-feature scheme is that each neuron
encodes multiple parameters, but the population is needed to dis-
ambiguate the fact that a single firing rate cannot uniquely identify
the parameter (Rolls et al., 1997; Petkov et al., 2007; Bizley et al.,
2009).

Two results suggest a special role for nonsynchronized responses
as AM “feature detectors” working in parallel with other neurons to
represent multi-parameter sounds (Lu et al., 2001). First, the ability
of MU nonsynchronized firing rate to discriminate AM from un-
modulated noise significantly improves when the animal is discrim-
inating. This suggests that attention can modulate nonsynchronized
responses. Second, nonsynchronized rates are very sensitive to AM
(Fig. 5) and, therefore, better at detecting modulation than synchro-
nized responses.

A different method of encoding multiple features simultaneously
is temporal multiplexing, by which different features are coded sep-
arately within the same neuron, embedded in different time scales,

ranging from average firing rate to millisecond-precision spike tim-
ing (Sutter and Margoliash, 1994; Gawne et al., 1996; Victor, 2000;
Fairhall et al., 2001; Elhilali et al., 2004; Chase and Young, 2006;
Ahissar and Knutsen, 2008; Panzeri et al., 2009; Walker et al., 2011).
A multiplexed code’s advantage over a single time scale code is that a
neuron can simultaneously represent different features, thereby in-
creasing a single neuron’s coding capacity. Synchronized responses
appear to use a multiplexed code by which average firing rate and
phase locking can encode different information (Lu et al., 2001; Sali-
nas and Sejnowski, 2001; Friedrich et al., 2004; Yin et al., 2011). The
evidence for multiplexed coding in synchronized responses requires
more careful interpretation because they can use rate or temporal
codes, while nonsynchronized responses are thought to use only rate
coding. VS is more sensitive than firing rate in the passive condition,
but rate sensitivity improves more with task engagement, bringing
sensitivity between the two measures closer (Figs. 4, 5, green vs ma-
genta). This relationship between phase locking and rate is similar to
that obtained in primary somatosensory cortex for low flutter fre-
quencies (Salinas et al., 2000). When this is combined with evidence
that firing rate is more tightly coupled to behavior and decisions
(Hernandez et al., 2000; Niwa et al., 2012), it is reasonable to inter-
pret firing rate as a higher level code extracted from an accurate
temporal representation.

Figure 8. A–D, Comparison of mean ROC area for MUs and SUs between the units that best discriminated AM (B, MUs; D, SUs)
and the entire population of units (A, MUs; C, SUs). The top 25% was determined for each plot by averaging ROC (top), including
both conditions and all depths (averaging all responses of the unit regardless of depth and behavioral condition) and selecting the
units whose averaged ROC was in the highest quartile. E–H, Same as A–D, but using d�.
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Complementary coding of one sound feature
Another way to view the simultaneous use of temporal and rate
codes is as complementary codes that together provide more infor-
mation about one sound feature (Furukawa and Middlebrooks,
2002; Nelken et al., 2005; Atencio et al., 2008; Kayser et al., 2009;
Bizley et al., 2010; Shih et al., 2011). As such, higher level neurons
could combine rate and temporal information to encode more ac-
curately than either alone. Our results can be interpreted as synchro-
nized responses using complementary rate and temporal codes
(both of which can be improved by behavioral state) to represent
AM more accurately. This complementary representation could
combine at higher levels to create more sensitive, feature selective,
nonsynchronized responses. Thus, nonsynchronizing responses
may reflect higher level feature selectivity as part of a hierarchy. Both
levels of this hierarchical processing can be found in the same area, or
even in the same neurons. Yin et al. (2011) have shown that many
neurons use nonsynchronized rates at some modulation frequencies
and synchronized response properties at others, suggesting that neu-
rons are using different schemes at different modulation frequen-
cies. This suggests that this hierarchical processing is not strictly
confined by brain area but for AM could gradually emerge through
the auditory neuraxis.

Task-specific considerations
We calibrated all AM stimuli to the same intensity, and animals
performed each block at one modulation frequency; only modula-
tion depth varied. Therefore, firing rate could uniquely identify
depth. Had a range of intensities, modulation frequencies, and
depths been used, a single neuron could not solely rely on firing rate
to determine whether the sound was modulated. Then phase-
locking, which is less-dependent on mean intensity, might be more
important, and greater task-dependent modulation of VS might oc-
cur. In addition, multiplexed coding schemes could be directly ad-
dressed if multiple stimulus parameters are varied. If multiple codes
are in place, it will be helpful to design behavioral experiments that
exploit limitations of different codes to manipulate the relevance of
the different codes in solving the task.
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