UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
General and Specific Expertise in Scientific Reasoning

Permalink
https://escholarship.org/uc/item/2b3795m3

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 19(0)

Authors
Schunn, Christian D.
Anderson, John R.

Publication Date
1997

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/2b3795m3
https://escholarship.org
http://www.cdlib.org/

General and Specific Expertise in Scientific Reasoning

Christian D. Schunn

Department of Psychology

Carnegie Mellon University
Pittsburgh, PA 15213

schunn+@cmu. edu

Abstract
Previous research on scientific reasoning has shown that it
involves a diverse set of skills. Yet, little is known about

generality of those skills, an important issue to theories of
expertise and to attempts to automate scientific reasoning
skills. We present a study examining what kinds of skills
psychologists actually use in designing and interpreting
experiments. The results suggest: 1) that psychologists use
many domain-general skills in their experimentation; 2) that
bright and motivated undergraduates are missing many of
these skills; 3) some domain-general skills are not specific to
only scientists; and 4) some domain-specific skills can be
acquired with minimal domain-experience.

Introduction

What are the reasoning skills required for making scientific
discoveries? Previous psychological research on scientific
reasoning has produced a rich and varied set of findings
regarding the nature of scientific reasoning skills (e.g.,
Dunbar, 1994; Klahr & Dunbar, 1988; Kulkarni & Simon,
1988). While such research has indicated many dimensions
to scientific expertise, it is often difficult to determine
whether the features that define scientific expertise are due
to differences in general ability, familiarity with the research
question, or familiarity with the research methods. One
approach that offers some progress on these issues uses a
quasi-experimental design which involves a common,
representative scientific reasoning task and then
systematically manipulates various forms of expertise. This
approach has two clear exemplars: Voss, Tyler & Yengo's
(1983) study of scientific reasoning in political science, and
Shraagen’s (1993) study of study of scientific reasoning in
experimental psychology. In both of these studies, at least
two kinds of experts were used—scientists working within
the domain of the research question given to them, and
scientists from the same discipline (e.g., political scientists
or experimental psychologists) but with a different domain
of expertise and therefore unfamiliar with the research
question. A third group of participants included
undergraduate novices familiar neither with the scientific
method nor the particular domain of the research question.
Thus, these studies contrasted domain expertise with task
expertise. Both studies found that, while there were effects
of domain expertise, there were also effects of task expertise,
indicating that there are domain-general components to
scientific reasoning.

While the Voss et al. and the Shraagen studies have
provided some answers about the nature and generality of
scientific reasoning skills, many questions remain. First,
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those two studies identified only a few of the skills required
for scientific reasoning, all within the design process.
Presumably a complex task such as making scientific
discoveries requires many more skills within the design
process and within other aspects. For example, there are also
the processes of deciding how to measure and plot the
outcomes of experiments, interpreting the experimental
outcomes, and generating or comparing results to hypotheses
(cf. Schunn & Klahr, 1995). Second, the Voss et al. and
Shraagen studies did not provide any opportunities for the
participants to make use of feedback. Scientists in the real
world rely on the ability to test their ideas empirically, and
iteratively attack a problem (Tweney, 1990)—scientific
questions are rarely answered in one experiment (and
especially not in the first one).

The current study was designed to address these issues. As
with the Voss et al. and Shraagen studies, our study contrasts
domain-experts with task-experts and task novices.
However, in contrast to the two previous studies, the current
study had two new features. First, it makes use of a new
computer interface that simulates the outcomes of
experiments, which in turn, allows the participants to see the
results of their experiments and design multiple experiments
based on the feedback they receive. Second, this study
examines the processes by which the participants examined
the experimental outcomes and measures what they
concluded from the outcomes.

Three general questions were of focus in our study. First,
is there a general set of skills that scientists use in designing
and interpreting experiments? It may be that there are
relatively few general skills that hold true across domains, or
even across scientists. Second, of the domain-general skills
that do exist, are these general skills unique to scientists, or
would any intelligent, motivated individual possess them?
The empirical generality of these reasoning skills should
provide important information about the nature and origins
of these skills. Third, assuming there are both domain-
general skills and domain-specific skills, will these skills
transfer to the current task? Recent theories of learning and
transfer have suggested that transfer is non-trivial matter
(e.g., Clancey, 1993; Greeno, 1988; Lave, 1988; Suchman,
1987). For example, the Task-Experts may not be able to
apply their domain-general skills because the current task is
not situated in their familiar domains.

The problem given to the participants was to find the
cause of the spacing effect, a problem from within cognitive
psychology, specifically memory. This problem met three
important constraints: 1) the solution must be unknown to
the domain-experts, as science involves the discovery of
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previously-unknown solutions; 2) the problem must be free
of domain-specific jargon and easily understandable (o even
task-novices; and 3) despite being easy to understand and
not yet solved, the solution must be obtainable through
experimentation,

Methods
Participants

There were three sources of participants: Cognitive
psychology faculty studying memory (Domain-Experts;
N=4), Social and Developmental psychology faculty not
studying memory (Task-Experts; N=6), and Carnegie
Mellon undergraduates (N=30) from a variety of
backgrounds. The Domain-Experts and Task-Experts were a
mix of senior and junior faculty at strong research
universities.

Materials & Procedure

At the beginning of the experiment, all the participants were
given a step-by-step introduction into the main task on the
computer. The instructions described the spacing effect—
that spaced practice produces better memory performance
than massed practice—and two theories which have been
proposed to explain the spacing effect. The first theory was
the shifting context theory, which stated that memories were
associated with the context under study and that context
gradually shifted with time. Thus, the spacing effect occurs
because spaced practiced produces associations to more
divergent contexts which in turn are more likely to overlap
with the test context. The second theory was the frequency
regularity theory, which stated that the mind tries to estimate
how long memories will be needed based on regularities in
the environment and, in particular, adjusts forgetting rates
according to the spacing between items. The participants’
primary task was to determine which theory provided a
better account of the spacing effect—this goal was presented
to them at the beginning, in the middle, and at the end of the
instructions.

Since we were interested in the process by which people
plotted and interpreted data in addition to how they designed

experiments, we designed a computer interface, called the
Simulated Psychology Lab, that produced experimental
outcomes and allowed participants to iterate through the
process of design, plot and interpret. The interface was
designed to support factorial experimental designs because
that was the most common design generated by Domain-
Experts and graduates students in pilot experiments. Within
the interface, participants designed experiments by selecting
values on six dimensions, any of which could be
manipulated, and up to four factors could be simultaneously
manipulated in any one experiment. The participants were
told that the computer had been given the results of many
actual experiments, and that it would show them the results
of whatever experiment they generated.

The source task factors that the participants could
experiment with included 1) repetitions—the number of
times that the list of words was studied; 2) spacing—the
amount of time spent between repetitions; and 3) source
context—whether the participants were in the same context
for each repetition or whether they changed contexts on each
repetition. The test factors included 1) the test task—free
recall, recognition, or stem completion; 2) delay—the
amount of time from the last study repetition until the test
was given; and 3) test context—whether the participants
were in the same context or a different context at test relative
to study. For each variable, the participants could either hold
the variable constant or vary it. Values had to be selected on
all dimensions, including the dimensions that were held
constant in the given experiments; no default values were
used. There was no restriction on the order of value
selection, and participants could go back to change their
selections for any of the variables at any point in time up
until they selected to run the experiment.

The participants made predictions and were given
outcomes in a table format with all cells being shown at
once. A table format was used rather than a graphical format
because it was thought that the table format was less difficult
to understand and manipulate for the undergraduate
participants. Before being given the table, participants had to
decide on which dimension each manipulated factor would
be plotted. After deciding on the table structure, participants

Test Delays
Source 5 Minutes 20 Minutes 2 Hours r=0'9 1

Spacings

5 Minutes i
40 23 9 o4 Next Experiment ]
a0 70 30

SourceRepetitions=3
20 Minutes SourceContexts=Same

58 38 72'5 40 TestTask=FreeRecall
95 80 0 TestContexts=Same
40 39 17 32.2

Figure 1: The interface for displaying the experiment outcomes. Main entry is the actual outcome, predictions are in italics.
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made numerical predictions for their tasks. The number to be
predicted for each cell in their design was the mean percent
correct for that cell. Although this prediction task is more
stringent than the prediction task psychologists typically
give themselves (i.e., directional predictions at best, and
rarely for all dimensions and interactions), this particular
form of a prediction task was used because: |) assessing
directional predictions proved a difficult task to automate; 2)
numerical predictions could be made without explicit
thought about the influence of each variable and possible
interactions and thus was less intrusive; 3) it provided
further data about the participants’ theories and beliefs about
each of the vanables; and 4) it provided some cost o large
experimental designs to simulate the increasing real-world
cost of larger experimental designs.

After completing their predictions, the participants were
shown the results of their experiment. The same table format
was used, including the display of the variables held constant
and their values (see Figure 1). In addition, the outcome
tables also displayed the participant’s predictions for each
cell in italics. To facilitate comparison across rows, columns,
and tables, the row, column, and table marginals were also
provided. To provide a rough evaluation of the quality of the
predictions, the participants were also shown the Pearson
correlation between the predictions and outcomes. The
actual results displayed were generated by a mathematical
model that is roughly consistent with results from research
on memory and the spacing effect.

Participants worked at the task until they felt that they had
found out what the cause of the spacing effect was or 40
minutes had elapsed—this time-limit was selected because
most participants were able to complete the task in this
amount of time, and because we were more interested in
discovery processes than in final products.

The primary data gathered in this experiment was
keystroke data as the participants generated, plotted, and

interpreted experiments, However, the participants were alsc
asked o give a think-aloud verbal protocol throughout the
task. Moreover, at the end of the task, participants were
asked to verbally report their conclusions about the spacing
effect—i.e., whether either of the two theories given to them
at the beginning of the task explained the spacing effect. The
participants were also asked to give conclusions about the
effects of each of the variables.

Results

The goal of this paper is to examine the presence and
absence of different kinds of domain-specific and domain-
general experimentation skills in psychology, specifically in
the domain of cognitive processes in memory. Rather than
bias the results in favor of one outcome or another, we
include all the skills that we examined. The skills are divided
into four general classes of skills: designing an experiment,
displaying data, making predictions, and interpreting
outcomes. Within each class, skills are divided into domain-
general (skills expected to be useful in at least psychology
generally) and domain-specific (skills expected to useful
only in memory experiments). The left half of Table 1
presents a complete list of the skills examined.

The experiment design skills were evaluated using the
experiments generated by the participants (as reflected in the
keystroke protocol), and, in the case of the first design skill,
what the participants said while they designing the
experiments. The display and prediction skills were
evaluated using the participants display and prediction
choices (as reflected in the keystroke protocol). The outcome
interpretation skills were evaluated using the participants
final conclusions’ about the six factors and the two theories
for the cause of the spacing effect. The interpret skills were
evaluated conditional on opportunities to learn (e.g., correct
conclusions regarding a main effect or interaction were only
evaluated conditional on having conducted the relevant

Table 1: Complete list of skills examined by skill type and skill level, as well as the direction and statistical significance (.2,
.05, and .01) of the pairwise comparisons between Domain Experts and Task Experts, All Experts and High-Ability

undergraduates, and High and Mid-Ability undergraduates.

Type Level Skill DEvTE EvHA HAvMA
Design General  Design experiments to test the given theories 0 +++ +++
Design General Keep experiments simple -- e 0
Design General  Use sensible factor value 0 +++ 0
Design General Manipulate factors relevant to the theories under test 0 0 e
Design General Keep general settings constant across experiments 0 0 ++
Design General  Avoiding floor and ceiling effects -- 0 0
Design Specific  Knowledge of variables likely to interact - 0 0
Design Specific  Choose factor values useful in the given domain. 0 ++ 0
Display General  Display continuous factors within rather than across tables + 0 0
Display =~ General Display factors consistently across tables 0 0 0
Display Specific  Display the true spacing effect within a table 0 0 o+
Predict General  Correctly predict the direction of known effects 0 - 0
Predict General ~ Make caricature predictions of interactions 0 +++ 0
Predict __ Specific Making ball-park estimates of effects + 0 0
Interpret  General  Make conclusions in light of theories under test 0 +4++ +
Interpret  General  Use evidence in support of conclusions about theories 0 e 0
Interpret  General Encode main effects 0 0 0
Interpret General  Encode interaction outcomes 0 +4+ 0
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Table 2: The mean number of experiments and mean time on
task in minutes (with standard errors).

Group # Experiments  Time on task

Domain-Experts 28(0.8) 36.0 (5.7)

Task-Experts 48 (0.7) 38.0(3.2)

High-Ability 5.6 (1.0) 36.3 (1.6)

Mid-Ability 5.7 (0.7) 34.0 (1.8)
experiments).

To examine the empirical generality of the skills, we
structure each of the analyses by contrasting performance for
each of the participant groups. We predicted that the
Domain-Experts alone would display the domain-specific
skills, and that both the Domain-Experts and Task-Experts
would display the domain-general skills. However, it is
possible that some of the skills may be so general that all
groups would display the domain-general skills.

The comparisons between the Task-Experts and
undergraduates is likely to confound two factors: task
expertise and general reasoning ability. To examine the
influence of reasoning ability skills the undergraduates were
divided into two groups using a median-split on Math SAT,
a factor found to be predictive of performance in this domain
and other scientific reasoning tasks (e.g., Schunn & Klahr,
1993). If the differences between the undergraduates and the
Task-Experts were due only to task expertise, then there
should be no differences between the two groups of
undergraduates. Those undergraduates above the median
(660) were called High-Ability undergraduates (mean=728,
N=14), and those below were called Mid-Ability
undergraduates (mean=586, N=16). Since our
undergraduates all had Math SATs above the US national
median, we used the label Mid rather than Low.

Before examining the results from the skill-specific
analyses, we begin with two general results regarding
number of experiments generated and time on task for each
of the groups. The three groups spent approximately an
egual amount of time on the task (see Table 2). However,
Domain-Experts conducted fewer experiments than did the
Task-Experts and undergraduates. This occurred because the
Domain-Experts conducted a small number of complex
experiments, whereas the other groups conducted a larger
number of simple experiments.

The statistical analyses focus on three pairwise
comparisons: Domain-Experts versus Task-Experts, Domain
and Task-Experts versus High-Ability undergraduates, and
High-Ability versus Mid-Ability undergraduates. Because
there are so many skills being examined, we cannot describe
the detailed results for each of the skills. Instead, here we
will present two characteristic results, and then focus on the
patterns across the skills.

The primary goal of the task was to test the two given
theories for the cause of the spacing effect (the Shifting
Context theory and the Frequency Regularity theory). Yet,
many of the undergraduates did not seem to understand how
this goal might be achieved. Table 3 presents the proportion
of participants mentioning either theories while they were
designing experiments. Both Domain and Task experts
mentioned the theories from the very beginning of the task,

Table 3: Proportion of participant mentioning either of the
theories during experiment design (first experiment or ever),

Group 1st Exp. Ever
Domain-Experts 1.00 1.00
Task-Experts 1.00 1.00
High-Ability 43 64
Mid-Ability 06 06

whereas a large proportion of the undergraduates did not
mention the theories during the design of any of their
experiments. A similar pattern held for outcome
interpretation: all Experts related the results back to the two
theories under test, whereas the majority of the
undergraduates did not. This lack of focus on the theories
under test was also reflected in the kinds of variables that the
undergraduates included in their experiments—they were
more likely to included irrelevant factors such as repetition.
An important general outcome-interpretation skill is the
ability to encode interactions. In this task, there were two
two-way interactions. First, there was a quantitative Spacing
x Delay interaction, such that the spacing effect was larger at
longer delays. Second, there was an effect/no-effect Spacing
x Test Task interaction, such that there was no spacing effect
with stem completion. The participants’ final hypotheses
were coded for correctness on these two interactions, and
only those participants who had conducted the relevant
experiments were included in this analysis. Overall, the
Domain-Experts and Task-Experts were equally able to
correctly encode these interactions (see Table 4). By
contrast, the High-Ability undergraduates were less able to
encode the interactions, and the Mid-Ability undergraduates
rarely encoded the interactions. In addition to being able to
encode interactions when they exist, there is also the skill of
noting non-interactions (i.e., not being deceived by small
levels of noise). To see whether the groups differed in their
ability to note non-interactions, the participant’s final
conclusions were coded for descriptions of non-existent
interactions. The Domain-Experts and Task-Experts almost
never made such errors, whereas the undergraduates made a
significant number of such errors (see Table 4). In fact, the
undergraduates were overall just as likely to report non-
existent interactions than to report existing interactions.
These two sets of results illustrate a general pattern:
Domain and Task-Experts were near ceiling on domain-
general skills, and undergraduates often did not possess
these skills. Across all the skills, the following pattern
emerged: Domain-Experts differed from Task-Experts

Table 4: Proportion of participants (and Ns) making correct
conclusions about each interaction given opportunity to
observe the interaction and proportion of participants making
extraneous interaction conclusions.

Group Spacing x  Spacing x False
Delay Test Task  Alarms
Domain-Experts 1.00 (2) 50 (2) .00 (4)
Task-Experts 75 (4) 1.00 (1) 17 (6)
High-Ability 44 (9) 50 (4) 43 (14)
Mid-Ability 11(9) 33 (6) 31(16)
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Table 5: Effect directions by skill level.

Pair Level +++ ++ + 0 - -
Domain-Experts  General 1 2
_¥s. Task-Experts _Specific RSN 2
Experts vs. General E587020 010
High-Ability Specific 1 e
High-Ability vs.  General © 12010 10
Mid- Ability Specific I i

primarily in terms of domain-specific skills; Experts differed
from High-Ability undergraduates primarily in terms of
domain-general skills; and High-Ability undergraduates
different from Mid-Ability undergraduates in terms of
domain-general skills.

To examine these patterns quantitatively, we classified
those pairwise comparisons for each skill according to its
direction (expected direction vs. unexpected direction) and
statistical significance (p<.01, p<.05, p<.2, and no effect),
using Fisher Exact tests for discrete variables and t-tests for
continuous variables. The expected directions for the three
pairwise comparisons of interest were: Domain-
Experts>Task-Experts, Experts>High-Ability undergrad-
uates, and High-Ability undergraduates>Mid-ability under-
graduates. Combining direction and statistical significance
produced seven categories of possible effects: expected very
strong (+++), expected strong (++), expected weak (+), no
effect (0), unexpected weak (-), unexpected strong (- -), and
unexpected very strong (- - -). Table 1 presents the results of
these statistical tests for each skill.

The results of this aggregation analysis are presented in
Table 5. The shaded areas are the regions predicted by an
Expertise-type by Skill-type interaction. As can be seen by
comparing the density of effects in the shaded versus
unshaded areas, while there are some exceptions, the overall
effects of skill generality by group comparisons are as
expected. In the comparisons between the two expert groups,
more of the domain-specific skills showed positive
differences (50%) than did the domain-general skills (7%),

%2(1)=4.1 p<.05. In the comparisons between the Experts
and the High-Ability undergraduates, more of the domain-
general skills showed positive differences (57%) than did the
domain-specific skills (25%), although because of the small
number of domain-specific skills, this trend was not
statistically significant, xz(l)zl.?; p<.25. Finally, in the
comparisons between the High and Mid-Ability
undergraduates, few of skills of either type showed positive
differences (29% and 25% for domain-general and domain-
specific skill respectively, x2(1)<1).

In sum, the two Expert groups differ primarily on domain-
specific skills, the Task-Experts differ from the High-Ability
undergraduates primarily on domain-general skills, and the
two groups of undergraduates differ rarely, and equally often
on domain-general and domain-specific skills. Thus,
contrary to a general reasoning-ability model or a situated
action model, it appears that expertise in scientific reasoning
consists of domain-specific and domain-general skills for
design, display, prediction, and interpretation skills.

Discussion

The demonstrations of empirical generality of scientific
reasoning skills in this paper depend on several assumptions.
The first assumption is that the lack of differences between
the expert groups were not due to low N problems. In
support of this assumption, the Task-Experts’ performance
was ncar ceiling on the measures of domain-general skills
(c.g., see Table 3) suggesting that they did indeed possess
these skills. Moreover, we also used a fairly liberal criteria in
assessing statistical trends, and found a weak trend on only
one of the 14 domain-general skills. The second assumption
is that the task that we used was representative of a real
scientific task. In support of this assumption, scientists were
shown to have skills useful in our task, and these skills were
typically not present in bright, motivated undergraduates.

The results of this study contained striking similarities and
differences to the findings of the Voss et al. (1983) and
Shraagen (1993) studies. Similar to both of those previous
studies, our study found that there were many skills that
expert scientists share across domains—our study catalogued
additional domain-general experiment design skills and also
added prediction, plotting, and outcome interpretation skills.

The general pattern of results across the skills present a
picture of expertise that contrasts the current view of
domain-expertise—that domain-expertise consists primarily
of a large quantity of domain-specific facts and skills
acquired only through thousands of hours of practice (e.g.,
Ericsson, Krampe, & Tesch-Romer, 1993; Gobet & Simon,
1996). Instead, our findings suggest that expertise in some
domains may also consist of many domain-general skills,
and that domain-specific skills can occasionally be readily
acquired by bright individuals without numerous hours of
experience.

How might our results be reconciled with existing models
of expertise? A potentially important factor determining
which kinds of experiences and abilities underlie expertise in
a given domain may be the relative familiarity of typical
problems seen in the domain. Many of the previous studies
of expertise involved well-defined problem tasks like chess
(e.g., Chase & Simon, 1973; Gobet & Simon, 1996) in
which there was little role for good search heuristics and a
relatively large role for recognizing good problem states
(based on previous experience with those states). Other
studies involved giving experts very simple problems that
were highly familiar to them (e.g., Chi & Koeske, 1983,
Larkin, 1980), in which the problems could also be solved
using recognition processes. By contrast, scientific
discovery, by definition, involves tasks which are quite
novel to the experts, and thus expertise in such a domain
cannot rely heavily on recognitional processes.

This kind of model of expertise for scientific reasoning
has several important consequences for artificial intelligence
and attempts to automate scientific discoveries (cf. Valdes-
Perez, 1995). The large presence of domain-general skills in
our results suggests that many aspects of scientific reasoning
could be automated using computational programs that are
fairly domain-general, and hence more widely applicable.
Towards this goal, we have identified several general
heuristics that scientists use.
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The results of this study also have educational
implications—it appeared that there were several design and
prediction skills that few of even the High-Ability
undergraduates had mastered. At the level of design, the
undergraduates made poor values selections for various
factors (e.g., selecting a poor range of values). Given their
problems in selecting experiment features, it was particularly
problematic that the undergraduates also violated the design
heuristic of keeping experiments simple. It is possible that
the undergraduates underestimated the difficulty of the task,
since Schunn (1995) found that undergraduates do regulate
the complexity of their experiments according to their
expectations and experiences with task difficulty. At the
level in interpretation skills, undergraduates were only
marginally less able to encode main effects, but much less
able to encode interactions and ignore noise levels.

The most striking of the undergraduate differences was the
fundamental lack of appreciation of the purpose this
scientific task: to obtain empirical evidence which could
distinguish between two theoretical accounts of an empirical
phenomenon. Counter to the purpose of the task, the
majority of the undergraduates did not use the theories in
designing the experiments nor did they relate the results of
the experiments to the theories. While it may be that some of
these undergraduates thought of the theories but merely did
not report them in the verbal protocols, the lack of mention
of the theories in the verbal protocols was correlated with
other differences in the kinds of experiments they designed.
Moreover, it seems unlikely that performance differences
could be attributed to motivation differences as the
undergraduates not mentioning the theories worked at the
task for just as long as the experts and the other
undergraduates.

In sum, this study have provided new information
regarding the nature of expertise in science: 1) there are
skills that are common across domains and do transfer,
contrary to the predictions of theories of situated learning
and action; 2) many of these domain-general reasoning skills
are a function of task expertise and are not a simple function
of general reasoning ability, contrary to a simple general-
reasoning ability model of expertise; 3) some of these skills
have already been acquired by bright undergraduates,
contrary to an intensive domain-specific practice model of
expertise; and yet 4) many undergraduates still lack
fundamental aspects regarding the function of scientific
experimentation.
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