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ABSTRACT OF THE DISSERTATION

Essays on Industrial Organization

by

El Hadi Caoui

Doctor of Philosophy in Economics
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Professor John William Asker, Chair

This dissertation consists of two essays in the area of Industrial Organization.

In Chapter 1, I investigate the role of network effects in explaining the within-firm

rate of technology adoption. I study the conversion of movie distribution and exhibi-

tion from 35mm film to digital technology. These industries constitute a hardware-

software system with indirect network effects. I specify and estimate a dynamic

oligopoly game of digital hardware adoption by movie theaters and digital movies

(software) supply by movie distributors. Crucially, theaters’ technology-adoption de-

cisions are made at the screen level so diffusion occurs both within and across firms.

Counterfactual simulations establish that: (1) at the industry level, diffusion occurs

mainly within rather than across firms; (2) differences in technology adoption across

firms, which are commonly attributed to scale economies and strategic incentives,

are in part due to larger firms’ ability to initially adopt the technology at a smaller

scale. Therefore, explicitly accounting for intra-firm adoption dynamics is important

to better explain aggregate diffusion and firm heterogeneity in technology adoption.

In Chapter 2, I study how non-cartel firms adjust their pricing to the supra-

competitive level sustained by a cartel, and in doing so, may harm consumers via

so-called “umbrella” damages. Such damages arise, in particular, when contracts are

awarded through first-price procurement auctions. This chapter examines the bidding
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behavior of non-cartel firms bidding against the Texas school milk cartel between

1980 and 1992. Evidence is found that the largest non-cartel firm bid significantly

higher when facing the cartel. Structural estimation of damages and inefficiencies

due to the cartel agreement reveals that per contract: (1) damages from non-cartel

firms overbidding are at least 47% of damages caused by the cartel, (2) when the

outcome of the auction is inefficient, damages due to misallocation amount to 64% of

cartel damages. Finally, inefficiencies raise the winner’s cost by 3.7%. These results

shed light on the potential importance of umbrella damages from a civil liability

perspective.

iii



The dissertation of El Hadi Caoui is approved.

Simon Adrian Board

Martin B Hackmann

Brett William Hollenbeck

John William Asker, Committee Chair

University of California, Los Angeles

2019

iv



TABLE OF CONTENTS

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Intra-Firm Technology Adoption under Network Effects: Evidence

from the Movie Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Industry Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 From 35mm Film to Digital . . . . . . . . . . . . . . . . . . . 11

1.3.2 The French Distribution and Exhibition Markets . . . . . . . 14

1.4 Data and Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . 17

1.5 Reduced-Form Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6 Industry Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.6.1 Adoption of Digital Projectors by Theaters . . . . . . . . . . . 33

1.6.2 Market Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . 42

1.6.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.7 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.7.1 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.7.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.7.3 Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . 52

1.8 Counterfactual Simulations . . . . . . . . . . . . . . . . . . . . . . . . 65

1.8.1 Intra-Firm Margin and Aggregate Diffusion . . . . . . . . . . 65

1.8.2 Introduction Lag and Market Structure . . . . . . . . . . . . . 68

v



1.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2 A Study of Umbrella Damages from Bid-Rigging . . . . . . . . . . 74

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.2 A Theoretical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.2.1 Effect of collusion on the non-cartel firm’s profits . . . . . . . 84

2.2.2 Effect of the cartel size and cartel mechanism on the non-cartel

firm’s bidding . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2.3 The School Milk Market . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.4 Data and Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . 92

2.5 Reduced Form Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.6 Structural Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2.6.1 Data Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 103

2.6.2 Estimation Approach . . . . . . . . . . . . . . . . . . . . . . . 106

2.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A Appendix to Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A.1 Panel of Digital-Projector Acquisitions . . . . . . . . . . . . . . . . . 121

A.2 Reduced Form Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.3 Industry Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.3.1 Perceived Transition Kernel . . . . . . . . . . . . . . . . . . . 126

A.3.2 Multi-homing . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.4 Estimation: Adoption Policy Rule (1st Step) . . . . . . . . . . . . . . 131

vi



B Appendix to Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.1 Algorithm for solving the asymmetric auction (Step 3) . . . . . . . . 132

vii



LIST OF FIGURES

1.1 Distribution of theaters by size (number of screens) . . . . . . . . . . . . 15

1.2 Observation times (vertical lines) for the diffusion of digital projectors . . 18

1.3 Hardware adoption cost . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Inter- and intra-firm decomposition . . . . . . . . . . . . . . . . . . . . . 25

1.5 Aggregate share of digital screens by theater size . . . . . . . . . . . . . 26

1.6 Effects of the industry share of digital screens and adoption cost on the

probability of adoption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.7 Identification of πd(x̃it)− πf (x̃it) . . . . . . . . . . . . . . . . . . . . . . 45

1.8 Density estimate of the intra-firm rate of adoption by firm size . . . . . . 53

1.9 Share of movies available in digital ht as a function of share of digital

screens st/S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

1.10 Predicted distribution of annual profits per screen (in euros) across the-

aters: (a) Before the diffusion of digital cinema, (b) after the diffusion of

digital cinema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

1.11 Predicted annual profits per screen as a function of firm size . . . . . . . 64

1.12 Aggregate adoption rate with and without the intra-firm adoption margin 67

2.1 Map of the counties in the dataset, by market area . . . . . . . . . . . . 97

2.2 Estimates and 95% confidence intervals for the county dummies . . . . . 101

2.3 Estimated bid functions for auctions with three bidders with an efficient

and inefficient cartel mechanism . . . . . . . . . . . . . . . . . . . . . . . 112

2.4 Within-auction mean of bids against standard deviation for auctions with

3 bidders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

viii



2.5 Cumulative distributions of normalized bids for three-bidder auctions . . 119

A.1 Share of digitally equipped screens and observation times . . . . . . . . . 121

A.2 Effects of the industry share of digital screens and adoption cost on the

probability of adoption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.3 Predicted annual profits per screen as a function of firm size . . . . . . . 129

A.4 Aggregate adoption rate with and without the intra-firm adoption margin 130

ix



LIST OF TABLES

1.1 List of variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Summary statistics (theaters with at least 4 screens) . . . . . . . . . . . 23

1.3 Summary statistics by market size (theaters with at least 4 screens) . . . 23

1.4 Share of screens converted sit/Si conditional on si(t−1)/Si = 0 (ordered

probit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.5 Adoption policy function . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

1.6 Predictions using the adoption policy function - All firms . . . . . . . . . 56

1.7 Predictions using the adoption policy function - Miniplexes (4-7 screens) 57

1.8 Predictions using the adoption policy function - Multi/Megaplexes (8-23

screens) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1.9 Annual number of screenings as function of theater type . . . . . . . . . 60

1.10 Structural parameter estimates (in 2010 euros) . . . . . . . . . . . . . . 62

1.11 Introduction lag (in days) by firm size . . . . . . . . . . . . . . . . . . . 70

1.12 Introduction lag (in days) by number of firms . . . . . . . . . . . . . . . 72

2.1 Number of bids and wins by firm 1980− 1992 . . . . . . . . . . . . . . . 94

2.2 Descriptive statistics by market area . . . . . . . . . . . . . . . . . . . . 96

2.3 List of variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

2.4 Determinants of Pure Milk’s bids . . . . . . . . . . . . . . . . . . . . . . 100

2.5 Estimates of damages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.1 Observation times by data source . . . . . . . . . . . . . . . . . . . . . . 122

A.2 Share of screens converted sit/Si conditional on si(t−1)/Si = 0 (ordered logit)124

x



ACKNOWLEDGMENTS

I am deeply grateful to my thesis advisors—John Asker, Simon Board, Martin Hack-

mann, and Brett Hollenbeck—for their exceptional guidance, patience, and support

through my years as a graduate student. I have learned tremendously from our in-

teractions, and aspire to be as good of an advisor to my future students as they have

been to me.

I am grateful for helpful discussions and guidance from Hugo Hopenhayn, Volker

Nocke, and John Riley. Comments from seminar participants at the UCLA IO pros-

eminar, USC Economics, UCLA Anderson helped shape this dissertation as well.

I would also like to acknowledge the hard work of Chiara Paz and Juliana Smith

in administering the Economics graduate program at UCLA. Their support made

navigating graduate life much smoother for all students.

I thank Renato Giroldo, Keyoung Lee, Rustin Partow, Ksenia Shakhgildyan,

Mengshan Cui, Jonathan Gu, Vladimir Pecheu, Jesper Riis-Vestergaard Soerensen,

Bruno Pellegrino, Marco Testoni, Maria Lucia Yanguas and the rest of my classmates

for their continued friendship since we arrived at UCLA in 2014. I thank my par-

ents for their constant encouragement. Finally, I owe heartfelt thanks to my partner,

Ludovica, for her support and for sharing the ups and downs of this adventure of

graduate school. I look forward to all of the new adventures awaiting us.

xi



VITA

Education

2015 M.A. in Economics, University of California, Los Angeles

2014 M.A. in Economics, Paris School of Economics

2014 M.Sc. in Statistics. ENSAE ParisTech

2012 B.Sc. in Economics and Mathematics. Ecole Polytechnique

Fellowships

2018–2019 Dissertation Year Fellowship. UCLA Graduate Division

2018 Board of Visitors Fellowship. UCLA Economics

2017–2018 Jacqueline and George Mefferd Fellowship for best original work presented

at the UCLA Industrial Organization proseminar

2016–2017 Jack Hirshleifer Endowed Fund recipient for Best Teaching Assistant

2014–2018 Graduate Student Fellowship. UCLA Economics

Teaching

2015–2018 Teaching Assistant. Introduction to Econometrics II (Ph.D. level),

Microeconomic Theory, Introduction to Statistics

xii



INTRODUCTION

This dissertation consists of two papers relating to the field of Industrial Organization.

The first examines the role of network effects in technology adoption, focusing on the

within-firm margin of adoption. As an illustration, I study the conversion of the

movie industry from 35mm to digital. The second studies “umbrella damages,” a

type of damages caused to consumers when non-cartel firms adjust their pricing to

the collusive level sustained by a cartel. The common thread throughout this work

is the focus on classic questions of the Industrial Organization literature, such as

the relationship between technology adoption and market structure (i.e, firm size

distribution and concentration levels), and collusion between competitors in product

markets.

The first chapter is motivated by the empirical observation that technological in-

novations diffuse over time, not only across firms, but also within firms. I contribute

to the understanding of within-firm technology adoption by quantifying the role of

network effects. Network effects arise when the benefit from adopting an innovation

depends on the number of other firms adopting it. Focusing on the movie industry’s

conversion from 35mm film to digital technology between 2005 and 2014, I collect

panel data on movie theaters’ decisions to adopt digital technology. I specify a dy-

namic model of technology adoption by movie theaters, and calibrate it to the data.

This allows the simulation of counterfactuals. The analysis show that technological

diffusion within the firm is an important factor affecting the speed of industry-wide

diffusion. Additionally, the ability to gradually adopt the innovation favors larger

firms, and explains a significant fraction of the adoption time lag between small and

large firms.

Chapter 2 aims attention at a potential collateral damage of cartel agreements.

The latter are agreements between rival firms to cooperate and raise prices rather
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than compete. Such agreements harm consumers and cause “damages” to efficient

production allocation. This chapter argues that firms which are not part of a cartel

agreement can also adjust their pricing to the level sustained by a cartel, harming

in the process consumers who do not buy directly from the cartel. Such “umbrella

damages” broaden the scope of the overall damages caused by the cartel. The Texas

school milk cartel in the 1990s is used as a case study. Estimates of umbrella damages

indicate that they constitute a significant fraction of overall cartel damages.
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CHAPTER 1

Intra-Firm Technology Adoption under Network

Effects: Evidence from the Movie Industry

1.1 Introduction

Innovations contribute to economic growth only insofar as they are broadly adopted

by firms. Understanding the factors affecting firms’ adoption decisions is therefore

essential to devise effective policies encouraging the spread of new technologies. One

such factor are network effects, which have been the object of an extensive empirical

literature. This literature focuses mainly on the inter-firm adoption margin by as-

suming firms make 0–1 adoption decisions or by studying firms’ first adoption. By

contrast, this paper investigates how network effects drive the intra-firm margin of

technology adoption, that is, the rate at which a new technology replaces the old

technology within a given firm. The objective is to evaluate how the latter margin

contributes to industry-wide diffusion and shapes the relationship between market

structure and technology adoption.

The importance of analyzing this margin appears at two separate levels. First, if

intra-firm diffusion constitutes the main driver of industry diffusion, policy aiming at

accelerating adoption should explicitly target inefficiently slow diffusion within firms.

Second, differences in adoption across firms that are attributed to scale economies and

strategic interactions may, in fact, be better explained when accounting for intra-firm

adoption dynamics: In an environment with network effects, capital indivisibilities
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amplify the positive link between firm size and early adoption.

The study focuses on the conversion of movie distribution and exhibition from

35mm film to digital cinema in France, between 2005 and 2013. Digital cinema

consists of distributing motion pictures to theaters over a digital support (internet or

hard drives) as opposed to the historical use of 35mm film reels. To screen digital

movies, theaters must equip their screens with digital video projectors instead of film

projectors: The two technologies (digital and film) are incompatible.

Digital cinema is well suited for analyzing the role of network effects in intra-firm

technology adoption for two reasons. First, the movie distribution-exhibition indus-

tries constitute a hardware-software system with indirect network effects (Katz and

Shapiro (1985)). Adoption of digital projectors—the hardware—by theaters is con-

tingent on the availability of digital movies—the software—supplied by distributors.

Conversely, software availability depends on the hardware installed base.

Second, indirect network effects lead to intra-firm technology diffusion (i.e.,within

theaters). Indeed, the benefit of replacing a film projector with a digital projector

can initially be small because of the limited availability of digital movies. As a

consequence, it is only optimal for a given theater to initially convert a small fraction

of its capital stock of screens to digital projection. As the industry-wide share of

screens equipped with digital projectors grows over time, so does the availability

of digital movies. The latter in turn further increases theaters’ marginal benefit

from adoption, and leads to the process of technological diffusion within theaters.

According to industry professionals, network effects were a major factor affecting

adoption.

This mechanism applies more generally to other industries. A recent and still

developing example is the trucking industry’s adoption of electric vehicles (hardware),
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which depends on the availability of charging infrastructures (software).1 At a given

point in time, a trucking firm’s rate of adoption of electric vehicles will reflect the

overlap between its distribution routes and the network of available charging stations.

The paper leverages three novel datasets: (1) a panel recording adoption of digital

projectors at the theater-screen level, as well as information on local market conditions

and theater characteristics, (2) a time series of hardware prices, and (3) a time series

reporting the share of movies distributed in digital.

To quantify the contribution of the intra-firm margin to aggregate diffusion and the

cross-sectional heterogeneity in adoption, I specify a structural model and simulate

counterfactuals shutting down this margin. Theaters’ technology-adoption choices

are modeled as a dynamic oligopoly game, allowing for rich theater and market het-

erogeneity. Every period, theaters choose the number of screens to equip with the

digital projection hardware, given their competitors’ adoption decisions, the adop-

tion cost, and the availability of digital movies. In turn, the availability of digital

movies depends on the number of digitally equipped screens in the industry. Because

network effects are at the industry level, with a few hundred theaters adopting, this

framework generates a particularly high-dimensional state space. To alleviate the

computational burden, the paper assumes firms condition their adoption decisions on

moments summarizing the industry state, rather than all possible realizations of it:

the equilibrium concept employed in this paper follows the moment-based equilibrium

defined in Ifrach and Weintraub (2017).2

Theaters’ single-period profits are estimated using the two-step estimator of Ba-

jari, Benkard, and Levin (2007) (hereafter BBL (2007)). By recovering the equilibrium

actually played in the data, this approach allows me to deal with equilibrium mul-

tiplicity, a prevalent issue in games with network effects. The estimation approach

1See “How Tesla’s first truck charging stations will be built” - Reuters 02/01/2018

2This framework has been used in recent empirical work by Jeon (2017) and Gerarden (2017).
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exploits differences in adoption behavior across theaters (e.g., differences in adoption

times, units of new technology acquired, and adoption costs) to estimate how theaters

and market characteristics affect single-period profits.

Using the estimated model, the paper first evaluates the extent to which industry

diffusion is driven by intra-firm diffusion. The equilibrium industry diffusion (i.e.,

variance in adoption times across all screens) is decomposed into an intra-firm and

inter-firm margins. To separate the two margins, a counterfactual diffusion path is

simulated, restricting every theater’ adoption-strategy space to a binary 0–1 adoption

decision. In this sense, theaters are restricted to converting their entire capital stock

of screens at once, conditional on adoption, thus shutting down the intra-firm margin.

Importantly, theaters take the aggregate share of digital movies over time as given

in the equilibrium played in the data: this approach, therefore, computes a counter-

factual best-response.3 The analysis shows aggregate diffusion (i.e., the dispersion in

adoption times across capital units) is mainly explained (69%) by the diffusion within

rather than across theaters.

Second, the analysis moves from the industry to the local market level. The

estimated model is used to evaluate the role of the intra-firm margin in explaining

the observed heterogeneity in adoption rates across firms. Such differences have been

historically attributed to two important factors: firm size (economies of scale) and

market concentration (strategic incentives).4 The objective is to isolate the role of

the intra-firm margin from the latter two factors. The intra-firm margin plays a

role because large theaters are able to initially convert a smaller fraction of their

stock of screens than are small theaters. It is optimal to do so due to the presence

3A counterfactual best-response is sufficient to decompose the equilibrium aggregate diffusion rate
into an intra-firm and inter-firm margins. While interesting in itself for welfare analysis, computation
of counterfactual equilibria is complicated by multiplicity.

4Differences can also arise due to heterogeneity in firm characteristics (type of programming,
integration etc.) which the model allows and controls for.
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of indirect network effects: the benefit from adopting depends on the availability of

digital movies, and initially, only a small fraction of movies is released in digital. As a

result, larger theaters and more concentrated local markets (i.e., markets with fewer

theaters, keeping the total stock of screens fixed) introduce the technology faster—all

else equal.

The introduction lag, or difference in expected time to first adoption between a

small and large theater (resp. between a competitive and concentrated market), is

simulated under (1) the equilibrium adoption strategy played in the data and (2)

the counterfactual best response outlined above (intra-firm margin shut down)—in

a given local market, fixing theaters and market characteristics. By comparing the

introduction lags simulated under adoption strategies (1) and (2), one can isolate the

role of the intra-firm margin from other factors (scale economies, strategic interac-

tions). For the average urban local market with more than 100, 000 inhabitants, a

significant fraction of the introduction lag (30% to 42% for small/large theaters, and

43% to 69% for less/more concentrated market) is due to the intra-firm adoption mar-

gin. Therefore, in addition to economies of scale and strategic incentives, intra-firm

adoption dynamics are an important factor explaining differences in adoption behav-

ior across firms and shape the relationship between market structure and technology

adoption.

The rest of the paper is organized as follows. The next section reviews the lit-

erature and highlights the main points of departure from it. Section 1.3 presents

the movie distribution and movie exhibition industries, describes the technology and

highlights the specificities of the French market. Section 1.4 describes the data and

gives preliminary descriptive statistics. Section 1.5 quantifies the magnitude of in-

direct network effects via reduced-form analysis. Section 1.6 develops the dynamic

model of technology adoption. Section 1.7 estimates the industry model. Finally,

section 1.8 presents the counterfactual analysis.
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1.2 Related Literature

Previous empirical work estimating the extent of network effects in technology adop-

tion has focused mainly on the inter-firm (or extensive) margin, modelling adoption

as a 0–1 decision. This approach is appropriate when adopters are end-consumers

with a unit demand for the technological good or when, in the case of firm adoption,

the technology is not embodied in capital. Recent examples in the case of consumer

goods include video games platforms (Clements and Ohashi (2005), Corts and Le-

derman (2009), Dubé, Hitsch, and Chintagunta (2010), Lee (2013)), DVD players

(Karaca-Mandic (2003)), and home computers (Goolsbee and Klenow (1999)). More

recently, Ryan and Tucker (2012) studies the diffusion of videocalling within a multi-

national firm. In their model, the within-firm rate of adoption is measured by the

number of employees using the technology, with each employee making 0–1 adoption

decisions; network effects arise within the firm.5

In the case of firm adoption, examples include the US Fax market (Economides and

Himmelberg (1995)), Automatic Teller Machines (Saloner and Shepard (1995)), elec-

tronic switching in the US telecommunication industry (Majumdar and Venkatara-

man (1998)), and the Automated clearinghouse payment system (Gowrisankaran and

Stavins (2004), and Ackerberg and Gowrisankaran (2006)). In contrast to this liter-

ature, this paper analyzes the extent to which network effects, at the industry level,

determine not only whether the technology is adopted, but also how the intra-firm

adoption rate is affected.

I also contribute to the literature analyzing the drivers of intra-firm technology

adoption. The development of this literature has been limited by the lack of detailed

data at the unit of capital level. In order to observe the intra-firm spread of an

5Note that in all the aforementioned papers, except in the cases of home computers and video-
calling, network effects are indirect. This type of network effects have been formally modelled by
Chou and Shy (1990), and further developed by Church and Gandal (1992). Recent theoretical
contributions include Markovich (2008), and Markovich and Moenius (2013).
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innovation, each firm has to be observed over long time periods since the date of

initial adoption. Intra-firm adoption was first analyzed in Mansfield (1963), who

studies railroads’ conversion from steam to diesel powered locomotives. In this model,

a new technology diffuses within the firm as the risk attached to the payoff from this

technology is reduced over time through inter-firm and intra-firm learning. Other

empirical studies based on the learning approach include Nabseth and Ray (1974),

Romeo (1975), Levin, Levin, and Meisel (1992), and Fuentelsaz, Gomez, and Polo

(2003).6

Recently, alternatives to the learning model were proposed. In particular, Bat-

tisti and Stoneman (2005) propose stock effects as an important driver of the time

intensity of intra-firm adoption, using the case of Computer Numerically Controlled

Machine tools within firms in the UK engineering and metalworking sectors.7 Other

studies following this approach include Hollenstein (2004) and Hollenstein and Wo-

erter (2008). This strand of the literature relies on cross-sectional survey data and is

constrained to estimating the effect of firm- or environment-specific factors on inter-

and intra-firm adoption at a given point in time. By contrast, this paper relies on

a panel of adoption decisions for all firms active in a given industry, and explicitly

models the dynamics of stock effects.

This paper makes a contribution to the literature on market structure and in-

novation (including technology adoption). The recent research on this topic builds

dynamic structural models and simulates the effect of competition on innovation (e.g.,

6A literature on the ”depth” of adoption considers the intensity of use of a given stock of new
technology. One example is Astebrot’s (2004) study of the effect of learning sunk costs. The depth of
adoption differs from the intra-firm margin of adoption, in that the stock of new technology adopted
is fixed while the extent to which this stock’s technological capabilities are exploited varies.

7The stock-effect approach argues intra-firm diffusion will not be instantaneous, because the
marginal profit gain from increased use of new technology decreases with use. In their case, the
decreasing marginal returns from further adoption are implied by a Cobb-Douglas specification of
the production function (implying decreasing marginal productivity of capital embodying the new
technology).
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Goettler and Gordon (2011), Igami (2017), Igami and Uetake (2017)) or technology

adoption (Schmidt-Dengler (2006)). This paper follows this methodological approach

and analyzes how market structure, and in particular firm size, can impact the timing

of technology adoption specifically via the intra-firm margin.

Finally, this paper contributes to the empirical literature studying the movie in-

dustry. This literature has considered many facets of the industry: the effect of

vertical integration (Gil (2008)), seasonality (Einav (2007)), strategic entry and exit,

and spatial retail competition (Davis (2006a),Davis (2006b), Takahashi (2015), Gil,

Houde, and Takahashi (2015)), and the quality-variety trade-off in screening brought

about by digital projection (Rao and Hartmann (2015)). In the strand focusing on

technology adoption, the closest paper is Gil and Lampe (2014), who analyze Holly-

wood’s conversion to color in the 1940s-1950s. Another related paper in this strand

is Waldfogel (2016). The latter paper studies the effect of digital movie production,

alternative distribution channels (streaming), and online film criticism on new prod-

uct releases. The present paper focuses on the digitalization of the movie distribution

and exhibition sectors, with theater releases as the main channel of distribution.

1.3 Industry Background

This section describes the movie-distribution and movie-exhibition industries before

and after the advent of digital technology. It presents costs and benefits of digital

cinema from the perspective of distributors and exhibitors, and discusses the effect

of digital cinema on movie ticket prices and quality. Finally, this section highlights

specificities of the French distribution and exhibition markets and important stylized

facts.
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1.3.1 From 35mm Film to Digital

For most of the 20th century, movies reached viewers after going through a series

of specified steps in a vertically structured industry. After the movie is shot and

produced, distributors print the movie onto 35mm film reels and ship the reels to

movie theaters. At the theater, a projectionist inspects the print, attaches the reels

together, and positions them so they can be fed to the screening platter of a film

projector. When the movie’s run is over, the print is broken back down into shipping

reels and either sent to the next theater venue or returned to the distributor.

On January 19, 2000, the Society of Motion Picture and Television Engineers, in

the US, initiated the first standards group dedicated to developing digital cinema. The

technology would entail (1) movie distribution on a digital support (via the internet

or hard drives), instead of the historical uses of film reels and (2) movie projection

via digital projection hardware instead of the film-projection technology.

To screen a digital movie, theaters must equip their screens with digital projec-

tors. Four manufacturers supply digital cinema projectors worldwide: Sony, Barco,

Christie, and NEC. The average list price of a digital projector (in 2010 euros) was

e88, 000 in 2005, e50, 000 in 2010, and e40, 000 by 2012. In addition to the digital

projector, a digital cinema requires a powerful computer known as a “server.” A dig-

ital movie is supplied to the theater as a digital file called a Digital Cinema Package

(DCP). The DCP is copied onto the internal hard drives of the server, usually via a

USB port.

Digital projection automates all the technical tasks that were previously performed

by the projectionist. Unskilled staff can control the playback of the content (movie

featured, trailers, ads), the projector, sound system, auditorium lighting, and tab

curtains through automation cues in the server.

11



1.3.1.1 Distributors’ supply of digital movies

Digital distribution of movies drastically cuts printing and shipping costs for movie

distributors. To print an 80-minute feature film can cost US$1,500 to $2,500 per

print. By contrast, a feature-length movie can be stored on an off-the-shelf 300GB

hard drive for $50.8 In addition, hard drives can be returned to distributors for reuse.

With several hundred movies distributed every year, the US distribution industry

saves over $1 billion annually.

1.3.1.2 Exhibitors’ adoption of digital projectors

Digital projection allows exhibitors to cut down on operating costs. Screening film

prints is a technical task, requiring mechanical skills that are growing rare. Film

projectionists are commonly represented by powerful unions and are therefore expen-

sive.9 By contrast, operating a digital projector is a simple task: untrained staff can

easily compose a playlist and launch a projection as on a regular computer. One

consequence is that uncertainty about the benefits of the technology and learning,

which are usually thought of as important determinants of intra-firm diffusion, are

not central to adoption decisions. Digital projection also opens up the possibility of

using theaters for âalternative contentâ such as pop concerts, opera broadcasts, and

sports events.

8The latter figure of $50 does not include the price of encryption-key generation, transportation,
and storage, which add approximately $200–$300. For French/European movies, these figures are
around e950 for film print distribution and around e350 for digital print distribution, including
shipping, encryption-key generation, and storing.

9 See interview in l’Obs 07/14/2010 (in French) “Frederic, projectionniste chez UGC pour 1800
euros par mois” The collective bargaining agreements set the minimum monthly salary to e1, 500
over the period of interest.
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1.3.1.3 Multi-homing by movie distributors and theaters

Multi-homing in movie distribution consists of the distribution of a given movie on

both film and digital supports. It was initially very common: most movies released

in digital format were also distributed on film. As the technology diffused, the share

of multi-homed movies decreased toward 0.

Multi-homing in movie exhibition refers to equipping a given screen with both

a digital and film projector. This type of multi-homing was rare for practical rea-

sons (limited space in screening booth, heavy and sensitive projection equipment),

and because theaters laid off their projectionists following the adoption of digital

projection.

1.3.1.4 The Virtual Print Fee system

A large fraction of the cost savings from digital cinema is realized by distributors. For

this reason, theaters have been reluctant to switch without a cost-sharing arrangement

with movie distributors. An agreement was reached with the Virtual Print Fee (VPF)

system. The VPF system was born in the US market and was rapidly adopted in the

rest of the world. Under this system, the distributor pays a fee per digital movie to

help finance the digital hardware acquired by the theater. The VPF contract would

typically cover 50% of the hardware adoption cost; the rest has to be paid for by the

exhibitor.

1.3.1.5 Impact on ticket prices and movie quality; and the role of 3D

Excluding 3D movies, the film-digital quality differential was small enough not to

warrant any impact on ticket prices.10 Although 3D movies, and in particular Avatar

10As noted by Davis (2006a), theaters’ ability to set ticket prices is constrained by distributors’
incentives. Because the conversion to digital distribution affected mainly the cost of a movie print,
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(released in the winter 2009, grossing $2.7 billion worldwide), were initially a major

selling point for digital projection, exhibitors quickly realized it was not expanding

the audience as promised.11 The vast majority of movies released over the diffusion

period were in 2D.

1.3.1.6 Welfare implications

Although the paper does not discuss welfare, digital cinema is expected to increase

consumer surplus by reducing the cost of making movies. A first consequence of such

reduction in costs are wider releases with increased access for theaters located in small

and rural markets. Second, cost reductions in movie making will lead to new product

entry.12

1.3.2 The French Distribution and Exhibition Markets

1.3.2.1 The French Exhibition Industry

The French exhibition industry is fragmented, with a large fraction of small theaters.

Figure 1.1 represents the distribution of theaters by size, defined as the number of

screens owned by the theater. Half of the theaters are mono-screen. An additional

15% are two-screen theaters. The largest theater chains by share of total screens in

2014 (end of the diffusion of digital cinema) are Gaumont-Pathe (13.6% of screens),

CGR (7.8%), and UGC (7.5%). These three chains make up 50.1% of total box

which is a fixed cost from the point of view of movie tickets, it did not significantly impact ticket
pricing.

11See Bordwell (2013).

12Aguiar and Waldfogel (2018) show that if product quality is unpredictable at the time of invest-
ment (as is typically the case with cultural products such as movies), new product entry can have
large welfare benefits.
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office revenue.13 In the early phase of the diffusion period (in 2007), these shares

were: Gaumont-Pathe (12.1% of screens), CGR (7.1%), and UGC (7.0%). Market

shares were relatively stable over the diffusion period. The French exhibition industry

experienced small entry and exit rates over the diffusion period (around 1.5% per

year). As a result, the majority of digital projectors acquired were replacing old film

projectors, enabling the analysis of intra-firm adoption decisions.

Figure 1.1: Distribution of theaters by size (number of screens)

1.3.2.2 The French Distribution Industry

The French distribution industry is less concentrated than its US counterpart. In

2014, for example, the four-firm concentration ratio was 35.2% in France and 57.4%

in the US. Over the diffusion period 2005 − 2014, US movies had an average 47%

market share (of total box-office revenue), French movies had a 39% market share,

13See Kopp (2016).
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and European and other nationalities made up 14% of the box office.14 An important

point to note is that US studios distribute their movies via national subsidiaries

(e.g., Universal France or Warner Bros. France). Subsidiaries tailor their advertising

and distribution campaigns to the national market they operate in. Therefore, the

support—film or digital—over which US movies are distributed in France depends

primarily on the installed bases of film and digital projectors in France.

1.3.2.3 The VPF and Government Subsidies

In the US, the VPF system was the result of bilateral negotiations between distrib-

utors and exhibitors. This was initially the case in France as well, until a law was

passed on September 2010 making VPF contributions mandatory: any movie distrib-

utor willing to distribute digital copies of its movie must pay a fixed fee to the theater

booking the digital copy. As in the US, the VPF would go toward covering 50% of

the digital projector cost, the rest being paid by the exhibitor.

Government and regional subsidies to small theaters were another important fea-

ture of the hardware-acquisition process in France. Many small “continuation” the-

aters, which receive movies only two or three weeks after their national release, did

not generate enough VPF to be able to acquire the digital-projection hardware. The

government, along with the regions, stepped in to help these theaters finance their

digital conversion. These aids were allocated to theaters that owned less than three

screens and were not part of a chain controlling 50 screens or more.

1.3.2.4 Art House Theaters

French theaters can acquire the “art house” label if they screen a minimum share

of independent and art house movies. This share depends on the theater location

14Based on CNC 2014 annual report.
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(market size). The label, awarded every year, entitles the theater to government

financial support (in the form of a lump-sum subsidy). A priori, operating profits

may differ for art house theaters compared to non-art house theaters. Therefore, art

house theaters may differ in their adoption behavior.

1.4 Data and Descriptive Statistics

This section describes the data and presents descriptive statistics. The data contain

information on theaters’ digital-adoption decisions, theater characteristics, adoption

costs, and availability of digital movies over time. This information is used to study

the role of indirect network effects in driving within-theater adoption of digital.

The main dataset is a panel describing digital adoptions by theaters. This dataset

was collected from two sources: the European Cinema Yearbooks published by Media

Salles, and an online database maintained by Cinego, a private digital platform.15

Both sources are public and provide snapshots of the digital-exhibition industry at

different time periods spanning June 2005 through March 2013, in France. Thirteen

dates are obtained from the Cinema Yearbooks, and 5 dates from the Cinego database.

At each of the 18 observation dates, the number of digital projectors acquired is

known for every active theater. The observation dates and source are detailed in

Appendix A.1. Figure 1.2 represents the 18 observation dates along the industry

share of screens equipped with digital projection. As seen in this figure, the panel is

aperiodic (starting in 2008) and stops before the diffusion is complete in 2014. Five

periods are dropped to ensure a relative periodicity in the sample (6 months). Details

about this procedure can be found in Appendix A.1.

Two auxilliary datasets complement the main adoption panel dataset. The first

15Raw data available at: http://www.mediasalles.it/yearbook.htm and
https://cinego.net/basedessalles (via the Internet Archive)
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Figure 1.2: Observation times (vertical lines) for the diffusion of digital projectors

is obtained from the French National Center of Cinematography (CNC hereafter).

The CNC dataset provides a rich set of information on theaters’ characteristics, local

market demand, and the share of movies available in digital, between 2005 and 2015.

More precisely, this annual dataset contains: (1) lists of all active theaters, (2) the

number of screens, the number of seats, the address, the owner’s identity (theater

chain, individual), and art house status for each active theater, (3) market population

(categorical) at the urban/rural unit level (defined below), (4) the share of movies

released in digital (distributed partially or entirely in digital), and (5) in 2015 only, a

categorical variable for ticket sales (e.g., “150,000 to 200,000 tickets sold”), number

of movies screened, total number of screenings, shares of movies screened that year

by type (art house vs. non-art house), and by nationality (US, France, Europe, and

other) for each active theater.

The second auxiliary dataset, obtained from the European Audiovisual Observa-
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tory, provides time-series information on digital-projector acquisition costs.16 Namely,

the time-series for the hardware adoption cost is constructed by adding (1) the price

of a digital projector (net of VPF contributions) to (2) ancillary costs. The time-series

for digital-projector prices is based on a survey of projector manufacturers. Actual

prices paid by specific theaters are not public due to nondisclosure agreements be-

tween theaters and manufacturers. This time-series is taken as representative of the

“list” price (or manufacturer’s suggested retail price MSRP) of digital projectors. The

analysis accounts for the VPF subsidies, which cover 50% of the projector price.17

Ancillary costs include the price of other equipment (the server and the digital sound

processor), Theater Management software, and labor costs (installation). Estimates

of ancillary costs were collected by the European Audiovisual Observatory, but are

only available for 2010. In the analysis, these ancillary costs are assumed to have

stayed constant over the sample period. This assumption seems reasonable for labor

costs. According to the Observatory, price declines for the server and digital sound

processor are more limited than for the digital projector. The hardware-adoption cost

is adjusted to 2010 constant euros.18. The hardware adoption cost is interpolated to

obtain estimates at the 13 observation dates. Figure 1.3 shows the time series for this

variable.

The analysis is conducted on the data after the following preparation. Itinerant

theaters, which account for 5% of active theaters, are dropped. Because the focus is

on firms’ decision to convert existing capital from film to digital, theaters that enter

during the diffusion period already equipped with digital projectors are excluded

16See ”The European Digital Cinema Report - Understanding digital cinema roll-out” (Council
of Europe, 2012)

17Although the law mandating VPF subsidies was only enacted in September 2010, it was retro-
active. Moreover, anecdotal evidence indicates that pre-2010, the majority of projectors were pur-
chased under VPF agreements. The model will assume digital projector-purchases before 2010
benefited from VPF subsidies.

18The GDP Implicit Price Deflator for France is used.
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Figure 1.3: Hardware adoption cost

from the model. Their contribution to the overall installed base of digital screens is,

however, accounted for and taken as exogenous. Firms exiting before conversion to

digital are also excluded.19 Rates of entry and exit are, however, low (around 1.5% of

firms enter or exit every year). Theaters in French overseas territories are excluded.

The final sample includes 1, 671 theaters, located in 1, 169 markets (urban or rural

units, defined below), and observed over 13 dates between June 2005 and April 2012.

The sample covers 87% of all non-itinerant theaters located in Metropolitan France,

which were active in 2005 or entered before 2008 equipped with the old technology.

A description of variables used in the analysis is shown in Table 1.1.

19The inability to convert is, however, not a significant cause for exit, because the CNC and
regional governments subsidized digital adoption for the smallest and less financially sound theaters.
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Table 1.1: List of variables

Type Variable Description

Movie theater digital screens: sit number of screens converted to digital by time t

screens : Si total number of screens

seats average number of seats per screen

art house equals 1 if art house theater

chain identifier of movie theater chain

competitors d-screens competitors’ digital screens by time t

competitors f-screens competitors’ film screens by time t

box-office* number of tickets sold (annual - categorical)

art house movies* share of art house movies

screenings* total number of screenings

Market demand region identifier for the 22 administrative regions

market size identifier for: Paris, Paris inner suburbs (”petite couronne”)

Paris outer suburbs (”grande couronne”),

urban unit with more than 100 thousands inhabitants,

urban unit with 20 to 100 thousands inhabitants,

urban unit with less than 20 thousands inhabitants and rural

Digital projector adoption cost: pt list prices for 2K digital projectors

(including VPF subsidies and ancillary costs) in 2010 euros

Movie distribution digital movies ht share of movies released in digital format

Note: The first three categories in market size (Paris and suburbs) are colinear with the regional dummy for ”Ile-de-

France”, the latter is therefore excluded. * variables only available for 2015

Local Market Definition and Competitors

Local market demand and competition is defined with respect to the urban or rural

unit in which the theater is located. An urban unit is defined by the INSEE, the

French National Statistics Office, for the measurement of contiguously built-up areas.

It is a “commune” alone or a grouping of communes that form a single unbroken

spread of urban development, with no distance between habitations greater than 200

meters, and have a total population greater than 2,000 inhabitants. Communes not
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belonging to an urban unit are considered rural.20 In 2010, Metropolitan France

contained 2, 243 urban units and about 33, 700 rural units.

For the largest cities (Paris, Lyon, Marseille), the urban unit division is not appro-

priate, because the resulting local markets are too large. In these cases, the relevant

market within each city is the “arrondissement” (equivalent to zipcode in the US).21

In the rest of the paper, a theater’s competition is measured using the number of

competing screens in the same local market.

Descriptive Statistics

The analysis focuses on theaters with at least four screens, due to the prevalence

of government and regional subsidies for small theaters (fewer than three screens).22

Table 1.2 and 1.3 report cross-sectional summary statistics, and highlight the market

and firm heterogeneity captured by the data.

Table 1.2 shows summary statistics for the 399 theaters with at least four screens.

A significant fraction of these theaters, 33%, are art house theaters. The average

theater has eight screens, and 1, 538 seats. Thirty-five percent of theaters are part

of the three largest theaters chains: Gaumont-PathÃ c©, CGR, and UGC. In total,

53.4% of theaters are miniplexes (4-7 screens) and 46.6% are multiplexes/megaplexes

(8 screens or more).

Table 1.3 reports summary statistics by market type. Paris and its suburbs are

controlled for separately because attendance rates are significantly higher in the cap-

20Communes correspond to civil townships and incorporated municipalities in the US.

21The subdivision by arrondissement is arbitrary, given that theaters are engaged in spatial com-
petition. However, the use of a distance measure instead to define a firm’s rivals (in which the
relevant market is theater-specific) would make the dynamic model intractable.

22These subsidies covered part or all of a theater’s adoption costs. This restriction allows the paper
to avoid having to model firms’ beliefs regarding the distribution of future government and regional
subsidies (and subsequent increase in the number of digitalized screens). Although the model does
not formally include subsidized firms, their adoption decisions will matter for the aggregate diffusion
of digital projectors: their contribution to the network of digital screens is accounted for but assumed
to be exogenous to the model.
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Table 1.2: Summary statistics (theaters with at least 4 screens)

Variable Minimum Mean Maximum Std. Deviation

Theater characteristics

Screens 4 8.118 23 3.736

Seats 112 1, 538 7, 408 961

Art House 0 0.336 1 0.473

# Competitors (theaters) 0 3.118 14 3.414

Theater size (indicators)

Miniplexe (4-7 screens) 0 0.534 1 0.499

Multi/Megaplexe (8 screens or more) 0 0.466 1 0.499

Theater chains (indicators)

UGC 0 0.083 1 0.276

Gaumont-Pathé 0 0.168 1 0.374

CGR 0 0.103 1 0.304

Per screen cost of 56, 176 68, 366 84, 000 8, 800

digital conversion (in 2010 euros)

Table 1.3: Summary statistics by market size (theaters with at least 4 screens)

Theaters Markets Theater size Art house Screens per Screens per

(mean) (share) market (mean) market (sd)

Urban unit - >100k inhab 174 101 9.167 0.213 15.792 8.431

Urban unit - 20 to 100k inhab 126 116 7.024 0.563 7.629 2.986

Urban unit - <20k inhab and rural 17 17 6.647 0.647 6.647 3.552

Paris 37 15 7.189 0.135 17.733 9.565

Paris - inner suburbs 18 18 9.222 0.278 9.222 4.977

Paris - outer suburbs 27 26 7.926 0.185 8.231 4.320

National 399 293 8.117 0.337 11.055 7.262
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ital compared to national averages.23 As expected, the stock of screens grows with

the market size. A larger fraction of theaters are art house in rural areas, because

the CNC’s threshold requirements to qualify are lower for relatively less dense ar-

eas. Theater size increases on average with market size (except for Paris, where the

scarcity of space limits theater size).

Preliminary analysis of the data shows that the intra-firm margin is quantita-

tively important at the aggregate level, and that there is substantial heterogeneity in

adoption rates by firm size.

Figure 1.4a shows the number of new digital screens equipped per year. Figure

1.4b decomposes this number into: (1) screens installed by new adopters (theaters

with no digital screens in t−1), and (2) screens installed by theaters with some digital

screens by t− 1. (1) is informative about the degree of inter-firm adoption, whereas

(2) is informative about the degree of intra-firm adoption. Starting in 2008, a large

fraction of screens converted to digital per year belong to theaters that have already

adopted at least one digital screen in previous periods, highlighting the importance of

the intra-firm margin. An alternative way of measuring the contribution of intra-firm

adoption is to decompose the sample variance in adoption times across all screens in

the industry into within-theater and between-theater variances. The former sample

variance is 1.28 (corresponding to a standard deviation of 1.13 years), the latter is 1.02

(or a standard deviation of 1.01 years). Therefore, within-theater variance in adoption

times explains about 56% of total variance across all screens in the industry.24

With respect to firm heterogeneity in adoption, figure 1.5 shows the share of digital

screens over time for theaters grouped by size. Larger theaters adopt the technology

faster (i.e., there is a first-order stochastic shift of the adoption path as firm size

23Moviegoers in Paris visit theaters on average 12 times a year, compared to a national average
of 4− 5 times over the diffusion period.

24This likely underestimates the contribution of the intra-firm margin because the panel stops
before the end of the diffusion.
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Figure 1.4: Inter- and intra-firm decomposition

(a) New digital screens (b) Decomposition: Inter/Intra-firm

Note: “Inter-firm” corresponds to screens installed by new adopters (no digital screens by t − 1).

“Intra-firm” corresponds to screens installed by theaters with some digital screens by t−1. Subsidized

theaters (3 screens or fewer) excluded.

decreases). On the one hand, this pattern can be due to size-related factors affecting

theater’s profits and adoption costs. In particular, theaters of varying size might

differ in their characteristics (type of programming, ownership), in their competitive

environment, and in profits per screen if economies of scale are important. On the

other hand, capital indivisibilities at the screen level can also explain the initial lag

in adoption of small theaters: if the share of digital movies is initially small, theaters

have an incentive to initially convert a small share of screens to digital. Hence, only

the largest theaters are able to adopt at the margin. To distinguish the contribution

of capital indivisbilities from other potential factors explaining the delay, a structural

model is needed. Before describing the model (section 1.6), the next section presents

reduced-form evidence for the magnitude of network effects in this industry.
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Figure 1.5: Aggregate share of digital screens by theater size

1.5 Reduced-Form Analysis

The anecdotal evidence garnered from industry professionals suggests indirect net-

work effects are at play in the diffusion of digital cinema. This section provides

estimates of the magnitude of these network effects. The analysis focuses primarily

on hardware adoption, because of the richness of the data there. The results indi-

cate that digital-movie availability is an important variable affecting theaters’ digital

hardware adoption. This variable will therefore be an important component in the

structural model analyzed in the rest of the paper.

As noted in Gowrisankaran and Stavins (2004), network effects (whether direct or

indirect) are difficult to identify using only time-series data because the adoption cost

is decreasing over time while the network size is increasing over time. Disentangling

both effects is challenging.

The effect of digital-movie availability on theaters’ adoption of digital projectors is
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identified here by leveraging differences in movie programming between art house the-

aters and commercial theaters. The underlying assumption is that art house theaters’

adoption of digital projectors would depend on the availability of digital art house

movies, whereas commercial theaters’ adoption would depend on the availability of

digital commercial (non-art house) movies. At a given period t, both types of theaters

will face the same hardware adoption cost but different digital-movie availabilities,

giving cross-sectional variation in this latter variable.25

A theater is defined as an “art house” if at least 80% of the movies it screened

in 2015 were art house movies. A theater is defined as a commercial theater if at

most 20% of the movies it screened in 2015 were art house movies.26 This definition

is preferable to the use of the “art house” label awarded by the CNC every year (and

observed in the data), because thresholds to qualify for the award can be as low as

30% in small urban and rural markets. The preferred definition allows for better

identification of theater’ type but has the disadvantage that data on the share of art

house movies screened by the theater are only available for 2015. The share in 2015

is assumed to reflect the average share of art house movies screened by the theater

over the diffusion period 2005 − 2014. The validity of this assumption rests on two

observations. First, the data show that no changes occured in theaters’ CNC-defined

art house labels over the sample period. Art house theaters tend to maintain their

art house label, whereas commercial theaters do not turn into art house theaters.27

Second, the share of art house movies released per year remained relatively constant

25Differences in digital-movie availability for art house and commercial movies stems from het-
erogeneity among distributors. Distributors of commercial movies (e.g., the majority of US studios)
started distributing on digital earlier than smaller art house distributors.

26The quantitative results (documented below) are robust to both relaxing and restricting the
thresholds used to define art house and commercial theaters.

27One reason for the stability in art house labels is that art house theaters receive state aid, which
acts as an incentive to maintain their programming.
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between 2005 and 2015.28 In particular, the conversion to digital did not have an

impact on it.

Because the share of art house (resp. commercial) movies released on digital

are not directly observed in the data, the reduced-form analysis assumes that the

latter variables can be proxied by the share of art house (resp. commercial) screens

converted to digital across the industry. Details on how these two variables are

constructed are presented in Appendix A.2. This assumption is valid if the availability

of digital movies is driven by the installed base of digital projectors. In addition to the

anecdotal evidence stating so, the assumption is buttressed by regressing the share

of movies released in digital on the industry share of screens equipped with a digital

projector, instrumenting the latter by the hardware-adoption cost, and controlling

for year fixed effects. The results indicate the installed base of digital projector has

a positive and significant effect on digital-movie availability.29

The reduced-form model relates the share of digital screens in theater i to: (1) the

industry-wide installed base of (art house or commercial) screens, (2) the adoption

cost, (3) firm characteristics (number of screens and seats), and (4) market character-

istics (market size, competitors’ screens). Denote by Si the total number of screens

in theater i, and by sit the number of digital screens in theater i by period t. The

dependent variable is the share of screens converted to digital sit/Si. The analysis

focuses on non-adopters’ incentive to adopt, so only the case of first adoption is con-

sidered; that is, the dependent variable is sit/Si conditional on sit−1/Si = 0.30 Capital

28According to statistics compiled by the CNC, the share of art house movies released per year
fluctuates between 55% and 62% between 2005 and 2015. The average share is 58.7% over the
sample period. Over the diffusion period, on average, 25% of US movies released in France are art
house, whereas this share for French movies is 68%. See Bilan 2015 at http://www.cnc.fr/web/

fr/bilans/-/ressources/9217573

29A 1% increment in the industry share of digital screens (instrumented by digital projector prices)
implies a 1.51% increment in the share of movies released in digital.

30Every period, only theaters that have not yet adopted are included in the regression.
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indivisibilities imply that the dependent variable is discrete and can take values in

sit/Si ∈ {0, 1
Si
, 2
Si
, ..., 1}.

Let xit be the list of regressors including the aggregate share of digital art house

or commercial screens, the adoption cost, theater i’s number of screens Si, number

of seats, CNC-defined art house label, competitors’ digital screens, and competitors’

film screens.

An ordered probit model relating the discrete dependent variable sit/Si to xit is

estimated by maximum likelihood. The sample is restricted to art house and com-

mercial miniplexes (4–7 screens). The periodic sample with 13 dates is used, and

it contains 42 art house theaters and 111 commercial theaters.31 Table 1.4 presents

the estimates of the ordered probit model under three specifications: (1) is the base-

line specification, (2) includes dummies for regions, market size, chain membership,

box-office revenue (in 2015), and (3) includes theater-level random effects.32 In all

specifications, year fixed effects are included. An ordered logit specification, included

in Appendix A.2, predicts effects of similar magnitude.

The results indicate that the share of digital art house (resp. commercial) screens

in the industry has a significant and positive effect on art house (resp. commercial)

theaters’ own adoption of digital screens. The effect of a 10% increment in the

industry share of art house (resp. commercial) digital screens on the probability of

adoption is represented in Figure 1.6a as a function of the initial industry share of art

house (resp. commercial) digital screens.33 An increase in the share of digital screens

from 50% to 60% increases the probability of adoption by approximately 10%.

31Multi and megaplexes (8 screens or more) are excluded because the majority are commercial
theaters.

32Focusing on first adoption might lead to selection of theaters over time. The inclusion of theater
random effects alleviates this concern.

33Marginal effects are evaluated at the mean and are obtained by summing marginal effects on
the probabilities of converting non-zero shares of digital screens sit/Si > 0.
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Table 1.4: Share of screens converted sit/Si conditional on si(t−1)/Si = 0 (ordered

probit)

(1) (2) (3)

Estimate s.e Estimate s.e Estimate s.e

Industry share of d-screens 2.392∗∗ 1.219 2.896∗∗ 1.263 2.425∗∗ 1.131

Adoption cost -2.557∗∗ 1.002 -2.623∗∗ 1.043 -2.714∗∗ 1.018

Own screens 0.053 0.055 0.062 0.059

Seats -0.085 1.176 -0.288 1.302

Art house 0.024 0.130 0.021 0.138

Competitor d-screens 0.013 0.010 0.012 0.011 0.013 0.010

Competitor f-screens -0.004 0.004 -0.005 0.004 -0.004 0.004

Year FE Yes Yes Yes

Region FE No Yes No

Market size FE No Yes No

Chain FE No Yes No

Box-office FE No Yes No

Theater RE No No Yes

Observations 1, 563 1, 563 1, 562

-log Likelihood 391.292 373.626 384.251

AIC 816.584 805.251 798.502

Note: ∗∗∗p < 0.01 ;∗∗p < 0.05; ∗p < 0.1. d-screen = screen equipped with a digital projector.

f-screen = screens equipped with a film projector. For market dummies, the omitted category is

“urban unit with 20 to 100 thousands inhabitants.” For the chain dummies, the omitted category

is “single firm and small chains.”
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Figure 1.6: Effects of the industry share of digital screens and adoption cost on the

probability of adoption

(a) Effect of an increase in the share of digital

screens

(b) Effect of a decrease in the adoption cost

Notes: Panel (a) shows the effect of a 10% increment in the industry share of digital screen, on the

probability of adoption, evaluated at the mean, as a function of the initial industry share of digital

screens. Panel (b) shows the effect of a one standard deviation decrease in the adoption cost on the

probability of adoption evaluated at the mean as a function of the industry share of digital screens.
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The hardware-adoption cost exerts a negative and significant effect on the proba-

bility that a theater adopts. Figure 1.6b shows that a one-standard-deviation decrease

in the adoption cost (corresponding to e6, 500) increases the probability of adoption

by approximately 55%—when 50% of screens in the industry are digital.

In summary, these results indicate the magnitude of the network effect is signifi-

cant. A given art house (resp. commercial) theater’s likelihood of adoption responds

to the share of art house (resp. commercial) movies released in digital, under the

assumption that the latter variable can be proxied by the installed base of art house

(resp. commercial) digital screens across the industry. The section relies on anecdotal

evidence and a time-series regression to support this assumption.

1.6 Industry Model

This section presents the dynamic structural model. The model will be subsequently

used to guide the estimation and recovery of theaters’ operating profits under the film

and digital technologies. These profits are required to study the role of the intra-firm

margin, by simulating counterfactual adoption paths.

Theaters’ technology adoption choices are modelled as a dynamic oligopoly game

in the tradition of Ericson and Pakes (1995). The central part of the model specifies

how theaters make their technology adoption decisions—both at the inter-firm and

intra-firm margins—as a function of their type, the adoption cost, their rivals’ adop-

tion decisions, and the availability of technology-specific complementary goods (film

or digital movies). Theaters adopt digital projectors for two reasons: (1) to be able

to screen movies exclusively released on digital and (2) for cost-reduction purposes.

For the distribution market, a reduced-form model is used. This part of the model is

meant to capture, for a given movie to be released, a distributor’s decision regarding

on which support to distribute it (film and/or digital), given the technology-specific
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network size (number of screens equipped with film/digital projectors). Finally, an

equilibrium of the distribution-exhibition industries is specified. In equilibrium, the-

aters convert their screens optimally to digital projection, given their information

sets and beliefs about future states, and these beliefs are consistent with theaters’

adoption decisions and distributors’ optimal choices of distribution format.34

1.6.1 Adoption of Digital Projectors by Theaters

Time is discrete and infinite. A period corresponds to six months.

Firms: A firm is a movie theater. There are I firms indexed by i ∈ {1, ..., I}. This

set is fixed throughout the game: no entry and exit occur.

Firm state space: Firm heterogeneity is reflected through firm states. In period t,

the individual state of theater i ∈ I is a vector denoted by xit ∈ X . Firm state xit

is decomposed into (τi, sit, zit):

• τi is a vector representing theater i’s type, which is fixed throughout the game.

τi includes firm size Si (number of screens), local market characteristics (market

size, denoted marketi, and number of competitors’ screens, denoted S−i), art

house label arti ∈ {0, 1}, and a chain identifier chaini ∈ {0, 1, ..., C} (with

chaini = 0 if i is not horizontally integrated).

• sit ∈ {0, 1, ..., Si} represents the number of screens converted to digital by the-

ater i, by the beginning of period t. The remaining Si − sit screens operate

using the film technology.

• zit is a vector containing theater i’s competitors’ types and digital screens.

This vector is at the local market level (urban or rural unit in which theater i is

located), and differs from the industry state, which is at the national level and

34All vectors are denoted in bold.
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defined below.

Let the industry state, yt, be a vector over individual firm states that specifies,

for each firm state x ∈X , the number of firms (across the industry) at x in period t.

Focusing on symmetric and anonymous equilibrium strategies, this definition of the

industry state is without loss of generality. Let S =
∑

i∈I Si denote the total number

of screens in the industry, and let st =
∑

i∈I sit denote the total number of digital

screens in the industry in period t.

Theaters that are part of the same chain are assumed to make their adoption

decisions independently. This assumption is motivated by the fact that modelling

adoption at the chain level is computationally burdensome: each chain’s state should

record firms’ states for all theaters part of the chain. The resulting chain state vector is

high-dimensional.35 This modelling assumption is discussed in more length in section

1.6.3.

Transition dynamics: A theater can increase its number of digital screens, sit, by

paying an adoption cost. If firm i converts ait screens to digital in period t, the firm

transitions to a state sit+1 given by

sit+1 = sit + ait for ait ≤ Si − sit (1.1)

There is no uncertainty in state transition. A theater’s state sit is bounded above by

its maximum capacity Si.

Aggregate adoption cost: The aggregate adoption cost process, {pt, t ≥ 0}, includes

the digital-projector price (net of VPF contributions) and ancillary costs, and is as-

sumed to follow a finite Markov process, independent of all previously defined quan-

tities:

pt = pt−1 + ηt−1 (1.2)

35The chain adoption state vector for Gaumont-PathÃ c© (70 theaters) has dimension 1,088,430—
assuming all theaters have four screens and ignoring theaters’ types and rivals states.
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where ηt−1 is a discrete random variable, i.i.d across periods, with a non-positive

support. Denote by P(pt+1|pt) the corresponding Markov kernel. This process reflects

technological advances in the manufacturing of digital projectors, as well as learning-

by-doing and scale economies, which exogeneously decreases the hardware adoption

cost over time. It is publicly observable to all firms.36

Firm-specific adoption cost: The per-screen adoption cost for theater i in period t is

the sum of two components:

pt + εit (1.3)

where pt is the aggregate adoption cost and εit is a theater-specific shock, drawn from

a normal distribution N(0, σ2). This theater-specific shock is privately drawn at the

beginning of each period and is independent across periods and theaters.

Before defining theaters’ single-period profit function, the relationship between

the share of digital movies, and st, the number of digital screens, must be specified.

This is done by considering distributors’ technology-choice problem.

Availability of digital movies: Every period, a continuum of mass M of movies

is released. Movies are short-lived and are screened by theaters for one period. Let

hdt denote the share of movies available exclusively in digital format in period t, and

hft denote the share of movies available exclusively in film in period t. Denote by

hmt = 1− ht− hft the share of multi-homed movies (i.e., distributed on both film and

digital).

The share of multi-homed movies, hmt , is not observed in the data (only hdt + hmt

is observed). In anticipation of the estimation section, and to keep the exposition

concise, the rest of the model is derived under the “no multi-homing” assumption:

hmt = 0 for all t. As a robustness check, the model is also derived and estimated

36The exogeneity of the price process can be relaxed. For example, the transition matrix of the
process can depend on the stock of digital screens in the industry: P(pt+1|pt, st). The simpler
specification is imposed due to the limited amount of data available to estimate this transition
matrix (only time series information used).
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under the polar “wide multi-homing” assumption, hdt = 0 for all t. The qualitative

findings, included in Appendix A.3.2, are robust to this assumption.

For the rest of the analysis, define ht ≡ hdt so that 1−ht = hft . The share of digital

movies, ht, is assumed to depend on the share of digital screens in the industry at

the beginning of the period.37 Let

ht = Γ(st/S) (1.4)

denote distributors’ reaction function giving the share of movies released in digital as

a function of the industry-wide share of digital screens.38

Theaters’ Single-Period Profit Function: The single-period profit of theater i

(net of the adoption cost) in period t if it adopts ait units of digital hardware is given

by

Π(xit, pt, ht, ait, εit) = π(xit, ht)− ait(pt + εit) (1.5)

where π(xit, ht) are theater i’s operating profits (screenings, concessions, advertise-

ments) in period t, which depends on the firm state xit and the shares of digital

movies ht, and ait(pt + εi,t) is the total cost of converting ait screens in period t.

Operating profits, which are not observed in the data, are specified via reduced-

form and estimated. Namely, π(xit, ht) is obtained by aggregating profits per movie

screening across all movies the theater is able to screen given its stock of digital and

film screens. The technologies being incompatible, a theater can screen a digital movie

only if it has a digital screen. A theater lagging in its adoption of digital will have

fewer movies to screen over time, because as the network of digital screens grows, an

increasing share of movies is only available on digital.

37This approximation is made for tractability. Because distributors share box-office revenue with
theaters, and this revenue differs across theaters, distributors might base their decision not only on
the aggregate number of digital screens, but also on the identity of the converted theaters.

38This simple specification for the relationship determining ht can be relaxed to account for other
exogenous determinants of the share of digital movies. It is imposed due to the limited amount of
time-series information necessary to fit the relationship.

36



It is assumed that, every period, theater i randomly draws a mass Mi ⊂ M of

movies from the mass M released in that period. By the law of large numbers, a

share ht of movies drawn are digital movies. In particular, every theater draws the

same share ht of digital movies per period.39 Denote by Ri the number of screenings a

theater can host if it is able to screen all Mi movies drawn. The number of screenings

Ri is exogenous and depends only on the theater’s type τi.

Let πd(xit) and πf (xit) be the single-period profits per movie screening in state xit

from screening a digital or film copy, respectively. Due to cost reductions from digital

projection, these profits satisfy: πf (xit) ≤ πd(xit). Operating profits are obtained by

aggregating profits per movie screening across all screenings, and are given by

π(xit, ht) = R(τi)×


sit
Si
πd(xit) + (1− ht)πf (xit) if sit

Si
≤ ht

htπd(xit) + (1− sit
Si

)πf (xit) if sit
Si
≥ ht

(1.6)

where sit/Si is the share of digital screens in the theater in period t, and ht is the

share of movies released in digital.

Three points should be noted. First, equation (1.6) implies π(xit, ht) is strictly

concave and piece-wise linear so the single-period marginal benefit from further adop-

tion is decreasing. Ideally, theaters wishes to match the share of digital screens sit/Si

to the share of digital movies released ht.

Second, network effects are indirect: For a theater, the benefit from adopting a

digital projector depends on the share of movies available in digital ht (technology-

specific software), which in turn depends on the share of digital screens in the industry

through equation (1.4).

39This assumption reduces significantly the complexity of the model. Relaxing these assumptions
would yield firm-specific shares of digital movies {hit}i∈I . Smaller theaters might be able to delay
their conversion longer because they screen fewer movies overall. Ignoring this mechanism would
affect the estimation results by predicting lower profits from adoption for smaller theaters.

37



Third, a theater’s type (firm and market characteristics) impacts the theater’s

profits per screen, π(xit, ht)/Si, via two channels: the number of screenings per screen

R(τi)/Si and the profit per screening (πd(xit), πf (xit)). The impact of theater size

on profits per screen can be non-linear if, for instance, larger theaters have more

screenings per screen (R(τi)/Si increasing in Si), but profits per screening decrease

with theater size (πd(xit), πf (xit) decreasing in Si).

State space: In a Markov Perfect Equilibrium, firms use Markov adoption strate-

gies and condition their adoption decision only on the current vector of state variables

ωit ≡ (xit, pt,yt, εit). Although theater i’s single-period profits, Π(.), do not directly

depend on the industry state yt, the firm tracks this variable in order to form expec-

tations about the future evolution of st which in turn determines, via equation (1.4),

the (payoff-relevant) share of digital movies ht.

In this setting, the large number of firms (due to network effects at the industry

level) and the dimension of firms’ state X generate a high-dimensional industry state

space. For instance, ignoring firm heterogeneity and assuming all 399 firms are four-

screen theaters (so sit ∈ {0, 1, 2, 3, 4}), the total number of possible industry states

yt is 1,071,993,300. To alleviate the computational burden, two assumptions are

imposed.

First, firms are assumed to condition their adoption decision on moments summa-

rizing the industry state vector yt, rather than all possible realizations of the vector yt.

Ifrach and Weintraub (2017) proposed an alternative approximation of MPE based

on moments of the industry space, which is the approach followed here.40 More pre-

cisely, firms are assumed to condition their adoption decisions on the un-normalized

first moment of the distribution of {sit}i∈I , that is, the total number of digital screens

in the industry st.

40Approximation methods to MPEs were initially proposed in the IO literature on dynamic games
with complete information by Weintraub, Benkard, and Van Roy (2008), and subsequently refined
in Benkard, Jeziorski, and Weintraub (2015).
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Second, the paper assumes that firms do not keep track of the whole vector of com-

petitors’ states zit, but only of competitors’ total number of digital screens denoted

zit.

In summary, firms are assumed to condition their adoption decisions on the

moment-based state ω̃it = (x̃it, pt, st, εit), where the moment-based firm state x̃it is

defined by x̃it = (τi, sit, zit).
41 The analysis focuses on equilibria in pure symmetric

moment-based strategies, defined as mappings from the current moment-based state

ω̃it into actions (i.e., number of screens to be converted to digital).

Perceived transition kernel: Define γ̃it ≡ (x̃it, pt, st), as the moment-based state

excluding the private firm-specific shock, so that

ω̃it = (x̃it, pt, st, εit) = (γ̃it, εit)

Similarly define γit ≡ (xit, pt,yt) as the true underlying state excluding the private

firm-specific shock, so that

ωit = (xit, pt,yt, εit) = (γit, εit)

As noted in Ifrach and Weintraub (2017), the moment-based state process {γ̃it, t ≥ 0}

is in general not Markov, even if the true state process {γit, t ≥ 0} is. By aggregat-

ing information via moments, the moments obtained are not necessarily sufficient

statistics for next period’s moments: for instance, given st, next-period state st+1

depends on whether the st digital screen are owned by small vs. large theaters, art

vs. non art house theaters, or located in rural vs. large urban market. In this sense,

many underlying industry distributions can yield the same current-period moment

st, but different next-period moment st+1. Therefore, one has to construct a Markov

approximation of the kernel transition matrix guiding the dynamics of the process

41This definition differs from Ifrach and Weintraub’s (2017) definition of the moment-based indus-
try state in the fact that it does not keep track of dominant firms’ states, but only of an aggregate
moment describing the states of firms.
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{γ̃it, t ≥ 0}. Assume theater i follows moment-based adoption strategy a′ while all

other theaters use moment-based adoption strategy a. The objective is to define a

kernel P̂a′,a, which is a good approximation of the non-Markov process {γ̃it, t ≥ 0}.

The process described by P̂a′,a correponds to firm i’s perception of the evolution of

its own state x̃it = (τi, sit, zit), the adoption price pt, and the industry moment st.

To keep the exposition concise, the construction of the perceived transition kernel is

detailed in Appendix A.3.1.

Value function and optimal adoption rule: Let a(γ̃it, εit) be a pure moment-

based adoption strategy. Firms aim to maximize expected discounted profits, by

choosing the number of screens to equip with a digital projector at the current period,

taking into account the effect on future operating profits and given their belief about

future values of the state vector. The moment-based value function of firm i is defined

as the solution of the following Bellman equation (where the subscript t is omitted

and next-period variables are marked with a prime):

V (γ̃i, εi) = max
ai

{
π(x̃i, h)− ai(p+ εi)

+ β
∑
z′i,p
′,s′

V (τi, si + ai, z
′
i, p
′, s′)P̂a(z

′
i, p
′, s′|γ̃i)

} (1.7)

where β is the discount factor, P̂a is the perceived transition kernel previously defined,

giving the perceived probability of one-period reachable states for competitors’ digital

screens, the adoption price, and the adoption moment vector s, given firm i’s belief

a about its competitors’ actions. The share of digital movies can be derived using

equation (1.4) as: h′ = Γ(s′/S). Moreover, V (τi, , si + ai, z
′
i, p
′, s′) is firm i’s ex-ante

value function, that is, before observing next-period firm-specific shock ε′i. It is given

by: V (τi, si + ai, z
′
i, p
′, s′) =

∫
V (τi, si + ai, z

′
i, p
′, s′, ε′i)dF (ε′i).

The optimal adoption rule can be expressed as a function of the choice-specific

value functions. Let W (ai|γ̃i) denote the discounted expected value function when
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firm i converts ai screens in the current period:

W (ai|γ̃i) = β
∑
z′i,p
′,s′

V (τi, si + ai, z
′
i, p
′, s′)P̂a(z

′
i, p
′, s′|γ̃i) (1.8)

Define ∆W (k|γ̃i) ≡ W (k|γ̃i)−W (k−1|γ̃i) for k ∈ {1, 2, .., Si} as the difference in

the choice-specific value functions of converting k and k − 1 screens to digital. Firm

i’s optimal adoption rule is derived by noting that, in deciding the number of screens

to convert to digital technology, the firm compares the choice-specific value functions

net of the adoption cost. The adoption cost, in turn, depends on the current list price

pt, and firm i’s idiosyncratic shock εit. The optimal adoption rule takes the form of

a set of cut-offs in εit.
42 It can be expressed as

ait =



0 if ∆W (1|γ̃it)− pt ≤ εit

k if ∆W (k + 1|γ̃it)− pt < εit ≤ ∆W (k|γ̃it)− pt

and 1 ≤ k < Si − sit

(Si − sit) if εit < ∆W (Si − sit|γ̃it)− pt

(1.9)

The optimal adoption rule can alternatively be recast in the form of conditional

choice probabilities (CCP):

P (ait|γ̃it) =



∫∞
∆W (1|γ̃it)−pt dF (εit) if ait = 0

∫ ∆W (k|γ̃it)−pt
∆W (k+1|γ̃it)−pt dF (εit) if ait = k ∈ {1, 2, ..., Si − sit − 1}

∫ ∆W (Si−sit|γ̃it)−pt
−∞ dF (εit) if ait = Si − sit

(1.10)

42The cut-off rule can be derived by noting the following two points: (1) ait is optimal in state
γ̃it iff W (ait|γ̃it) − ait(pt + εit) ≥ W (a′|γ̃it) − a′(pt + εit) for all a′ 6= ait, and (2) ∆W (k|γ̃it) is
decreasing in k (W is concave - which stems from the strict concavity of the single-period profit
function π(x̃i, h) in ai,t−1). Combining (1) and (2) yield the cut-off rule.
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Finally, the ex-ante value function (i.e., before the firm observes the idiosyncratic

shock εit) can be derived by taking expectations with respect to εi in equation (1.7):

V (γ̃i) = π(x̃i, h) +
∑
ai

P (ai|γ̃i)
(
− ait(p+ E[εi|γ̃i, ai]) +W (ai|γ̃i)

)
(1.11)

The last equation expresses the ex-ante value function V , as a function of the choice-

specific value function W and probabilities P (ai|γ̃i). The latter are both functions of

the ex-ante value function. An equilibrium ex-ante value function is a fixed-point of

this mapping.

1.6.2 Market Equilibrium

In every period, the sequence of events is as follows: First, distributors observe the

outstanding number of digital screens st in the industry and publicly make their

distribution decision (film or digital) for movies released in that period. Second,

theaters receive a private draw εit from the distribution of hardware costs, and decide

whether to convert any screens to digital, given the share of movies released in digital

ht, their competitors’ digital screens, and their private adoption cost. Third, theaters

receive operating profits and pay the adoption cost. The state variables evolve as

the adoption decisions are completed and new values of the exogenous variables are

realized.

The analysis focuses on equilibrium in pure symmetric moment-based strategies.

In a moment-based equilibrium, each theater’s adoption decision is optimal in every

(moment-based) state, given its beliefs about future states, and those beliefs are

consistent with the adoption decisions of other theaters. The adoption strategy a∗ is

a moment-based equilibrium if:

V (γ̃it; a
∗) ≥ V (γ̃it; a

′
i, a
∗
−i) for all firm states γ̃it and strategies a′i (1.12)

where V (γ̃it; a
∗) is theater i’s ex-ante value function at state γ̃it, given that all theaters

play strategy a∗, and V (γ̃it; a
′
i, a
∗) is theater i’s ex-ante value function when the
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theater unilaterally deviates to strategy a′i. Given the large number of theaters, the

mapping Γ(.) is assumed to be the same under strategy profiles a∗ and (a′i, a
∗
−i) (it is

not affected by unilateral deviations).

Due to network effects, the game has multiple equilibria, some of which can be found

numerically.43

1.6.3 Remarks

The assumption that theaters make their adoption decisions independently, even

within chains, is violated if theater chains coordinate adoption decisions across the-

aters. Two incentives to do so are: (1) to benefit from lower per-unit adoption cost

when placing large orders of projectors and (2) to tip the industry by significantly

increasing the share of digital screens in the industry. To alleviate concern (1), the

model controls for chain effects in the profits from operating (firm type τi include

an indicator for the three largest theater chains). Regarding the second motive, the

largest chain (Gaumont-PathÃ c©) controlled 12.1% of screens and had a market share

(box-office revenue) of approximately 20%: given its relatively small capital stock of

screens, its ability to tip the market toward digital appears limited.

1.7 Estimation

This section discusses the identification and estimation of the structural model pre-

sented in section 1.6. The objective is to recover (1) the single-period profit functions

per digital and film movie screening (πd(x̃it), πf (x̃it)) and (2) the variance of the firm-

specific shock. To circumvent computational and equilibrium multiplicity issues, the

43The existence proof in Ifrach and Weintraub (2017) requires the industry state process to be
irreductible and aperiodic (and is derived for the long-run perceived kernel, not the short-run kernel
used here), so it is not directly applicable to this setting. One can, however, show that at least one
degenerate equilibrium (e.g., with no adoption) exists.
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model is estimated using a two-step CCP-based approach (Bajari, Benkard, and Levin

(2007)). Estimation results point to cost reductions from digital projection, hetero-

geneity in profits per screen across theaters, and the presence of scale economies in

operation (profits per screen increasing in theater size).

1.7.1 Identification

Standard results for the identification of discrete-choice models, as in Magnac and

Thesmar (2002) and Bajari, Chernozhukov, et al. (2015), apply to this setting. Vari-

able profits are identified, but fixed-cost components entering operating profits must

be normalized to zero. The discount factor β is assumed to be known.

Differences in adoption times (and units of technology acquired) across firms allow

the identification of the functions πd and πf ’s dependence on firm state x̃it. Because

the aggregate adoption cost, which is observed by the econometrician (up to a firm-

specific private shock), is decreasing over time, differences in adoption times across

firms reveal differences in the paid adoption costs, which translate into differences in

firms’ single-period profits: for example, firms that adopt earlier must be receiving

higher single-period profits than firms that adopt later.

More precisely, to evaluate which elements of the single-period profit functions

are identified, note that there are two motives for adopting a digital projector. A

firm adopts a digital projector: (1) to gain access to digital movies it would oth-

erwise not be able to screen and (2) for cost-reduction purposes (the profits from

screening a digital movie may be higher than the profits from screening a film movie:

(πf (x̃it) ≤ πd(x̃it))).

Adoption for the first motive is informative about πd(x̃it). When ht >
sit
Si

(i.e., the

share of digital movies released is greater than the share of digital screens owned by

theater i), theater i adopts in order to gain access to new digital movies (the fraction
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ht− sit
Si

of un-screened digital movies). The marginal benefit from adoption per-movie

screening is πd(x̃it). The variation in adoption times across different theaters, allows

the identification of the function πd(x̃it).

Adoption for the second motive is informative about the difference πd(x̃it)−πf (x̃it),

or the cost-reduction from screening a digital movie relative to a film movie. 44 This

difference is identified by exploiting capital indivisibilities. Consider the example in

Figure 1.7. Given ht and the fact that the theater has not adopted yet, the four-

screen theater contemplates the options of converting one screen (left panel) or two

screens (right panel). In the first case, the theater forgoes profits of A × πd(x̃it),

whereas in the second case, the theater forgoes profits of B×πf (x̃it) (where A and B

are masses of movies). Ignoring continuation values, the theater chooses to convert

two rather than one screen ( sit
Si

= 1/2) iff A × πd(x̃it) − B × πf (x̃it) ≥ pt. In cases

where this inequality holds (which correspond to cases where theaters over-invest),

different adoption times allow identification of the difference (πd(x̃it) − πf (x̃it)) (up

to the known constants A and B).

Figure 1.7: Identification of πd(x̃it)− πf (x̃it)

Finally, the variance of the firm-specific shock, V (εit) = σ2, is identified from the

44A direct way of identifying this difference would exploit the presence of multi-homed movies,
which are available on both formats, and therefore impact theaters’ incentive to adopt only via the
cost reduction motive. However, due to data limitation, this identification approach is not possible
under the “no-multihoming” assumption (hmt = 0).
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variation in adoption times and units of technology adopted between theaters in the

same firm state x̃i.

1.7.2 Estimation

1.7.2.1 Parameterization:

This section details the model parameterization. A theater’s single-period operating

profits are constructed as the product of the total number of screenings R(τi) and the

expected profit per screening. The total number of screening R(τi) and the profits per

movie screening (πf (x̃it), πd(x̃it)) are parameterized, and are estimated separately.

The number of screenings R(τi) is estimated outside the model, using data on

screenings in 2015 for each active theater in the model. This variable is explained

by a reduced-form model that includes theater and market characteristics part of

theater type τi: theater size Si, market size marketi, number of rival screens S−i, art

house status arti, and interaction between these variables. This specification allows

the number of screenings per screen to vary non-linearly with theater size, capturing

potential scale economies. The assumption that the 2015-level for the dependent

variable is representative of the diffusion period relies on the fact that the annual

number of screenings per screen did not vary significantly over the diffusion period.45

For the single-period profit per movie screenings πd(x̃it) and πf (x̃it), a simple

Breshnahan and Reiss (1991)-style reduced form is used:

πf (x̃it) = αf0 + αf1Si + αf21{arti = 1}+ αf3S−i + αf4zit + αfmarketi + αfchaini (1.13)

45The annual number of screenings per screen for multi/megaplexes (8 screens or more) was on
average 1, 787 with a standard deviation of 40 over 2008− 2015, whereas for miniplexes, the average
number of screenings per screen is 1, 346 with a standard deviation of 30 (based on CNC’s “bilan
2015” and the report by the Digital Diffusion Observatory published in September 2016. Both
reports are available (in French) at: http://www.cnc.fr/web/fr/publications)
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πd(x̃it) = αd0 +αd1Si+αd21{arti = 1}+αd3S−i+αd4zit+αdmarketi +αdchaini +αd5
sit
Si

(1.14)

where Si is the number of screens in theater i, sit is the number of digital screens in

theater i in period t, arti is an indicator for art house theaters, S−i is the total number

of screens owned by theater i’s competitors, zit is the total number of digital screens

owned by theater i’s competitors in period t, and αmarketi and αchaini are dummies

for market size and chain identifier.46

The cost reduction from screening digital movies compared to film movies is al-

lowed to depend on the share of digital screens in theater i via the term αd5
sit
Si

. The

cost reduction is expected to be increasing in theater i’s share of digital screens. This

specification is imposed because, according to industry professionals, operating both

technologies simultaneously within a given theater is relatively costly (e.g., limited

ability to re-allocate movies across screens within the theater).

The specifications for R(τi) and (πd(x̃it), πf (x̃it)) allow profits per screen to vary

non-linearly with theater size via two channels: the number of screenings per screen

and profits per screening. This specification will capture potential scale economies,

for which empirical evidence is available (Verma (2001)).47 The variables S−i and

zit entering (πd(x̃it), πf (x̃it)) capture the effect of strategic interactions between com-

petitors on profits.

The parameters of interest are the vector

α =
(
{αji}i=0...5, α

j
market=1...6, α

j
chain=0...3, j ∈ {f, d}

)
entering the profit per digital and film screenings and the variance σ2 of the firm-

specific shock.

46See Table 1.1 for the different categories of market size.

47Only variable profits are identified, so potential scale economies are not due to fixed costs
(concession stands, box-office etc.) but to decreasing average variable cost.
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1.7.2.2 Estimation approach:

The paper follows the two-step method of BBL (2007) for two reasons. First, the high

dimensionality of the model, due to network effects at the industry-level, renders a full-

solution method impractical. Second, as is common in games of technology adoption

under network effects, equilibrium multiplicity is severe. The two-step method, which

avoids equilibrium computation, helps circumvent the multiplicity issue by directly

estimating the equilibrium played in the data.

In a first step, the equilibrium policy rule and transition probabilites are estimated

from the data, under the assumption that firms play a moment-based equilibrium,

and then equilibrium value functions are approximated via simulation by using the

estimated equilibrium policy functions and transition probabilities. In a second step,

the parameters are estimated by imposing the optimality condition stating that the

equilibrium value function yields a higher payoff than the value function from non-

equilibrium deviations.

First-step estimation:

Movie theaters’ adoption-policy function. The first element to estimate is the equi-

librium policy function governing theaters’ adoption of digital hardware. The policy

function is a cut-off rule in the idiosyncratic shock εit given by equation (1.9). The es-

timation proceeds by first recovering the conditional choice probabilities (CCP) from

the data. Next, the cut-offs forming the equilibrium policy function are obtained from

the CCP by inverting equation (1.10). The conditional choice probabilities P (ait|γ̃it)

are estimated using an ordered probit model, and in what follows are assumed to be

known.48

48In the estimation part, the network size effect (share of digitally equipped screens across the
industry) is separately identified from the adoption cost in the policy rule P (ait|γ̃it) via functional
form restriction. Additionally, to simulate the value function at states γ̃it which are not visited in
the data, knowledge of the CCP P (ait|γ̃it) is required, and the two-step estimation method relies
on the functional form of the policy function.
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The cut-offs are recovered by noting that for a ∈ {0, .., Si − sit},

P (ait ≤ a|γ̃it) =

∫ ∞
∆W (a+1|γ̃it)−pt

dF (εit) = 1− Φ

(
∆W (a+ 1|γ̃it)− pt

σ

)
(1.15)

where εit ∼ N(0, σ2) and Φ is the normal cumulative distribution. The cut-offs can

be obtained by inverting equation (1.15):

∆W (a+ 1|γ̃it)− pt
σ

= Φ−1(1− P (ait ≤ a|γ̃it)) (1.16)

If the firm idiosyncratic shock εit equals this (normalized) cut-off, firm i is indifferent

between adopting a and a+ 1 digital screens, in state γ̃it.

Transition probabilities of the exogeneous hardware price process. To estimate the

transition probabilities of the price process {pt, t ≥ 0}, the variable is first discretized.

The number of discrete grid points is 15. Over the diffusion period, the price pro-

cess was on a downward trend, possibly due to technological advances in hardware

manufacturing, learning by doing, and scale economies. Every period, the price is

assumed to either move to a lower grid point, or stay at the current state. The initial

(and maximum) price at t = 0 is set at the actual price level observed in the data:

e84, 000. The minimum price level is set at e40, 000. The probability that the price

transitions to a lower grid point is estimated from the transitions observed in the

data.

Distributors’ policy function. As noted in the model, distributors’ policy rule regard-

ing the distribution format (film or digital) is aggregated, because the data provides

only information on the aggregate share of movies released on digital format ht.
49

The relationship between the share of digital movies ht and the aggregate share of

digital screens st, given by equation (1.4), is fitted directly from the data.50

49Under the “no multi-homing” assumption, hmt = 0 for all t.

50Note the industry share of digital screens accounts for (subsidized) small theaters and theaters
that entered already equipped with digital projection. Their adoption is, however, assumed to follow
a deterministic and exogeneous process. Theaters in the model take this process as given.
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Value functions. The expected value function at a given state is forward-simulated:

a large number of paths starting at the given state are simulated using the estimated

policy rules, and the discounted sum of profits obtained from these simulated paths

are averaged. The simulated paths, starting from a given state {γ̃i0}i∈I , are generated

using the following procedure:

1. Initialize the industry at the given state {γ̃i0}i∈I .

2. Draw firm specific adoption shocks {εi0}i∈I and corresponding adoption deci-

sions dictated by the estimated policy rule.

3. Calculate the single period profit Π(γ̃i0, εi0) given by equation (1.5).

4. Update the current state {γ̃i0}i∈I according to the adoption decisions and tran-

sition of the exogeneous price process to next period state: {γ̃i1}i∈I .

5. Repeat steps 1-4 for T periods.

The equilibrium value function at state {γ̃i0}i∈I is obtained by averaging L = 500

simulated paths. The paths have length T = 40 periods (or 20 years). The discount

factor used is β = 0.975.51 An estimate of the equilibrium value function is obtained

as

1

L

L∑
l=1

{
T∑
t=0

βtΠh(γ̃it, εit|{γ̃i0}i∈I ,α, σ)

}
(1.17)

where γ̃it = (x̃it, pt, st) and Πh(γ̃it, εit|{γ̃i0}i∈I ,α, σ) is the single period profit in

simulation h at period t, when the firm follows the equilibrium adoptions strategy a∗,

under the candidate parameters (α, σ).52

51An alternative value for the discount factor, β = 0.95, is also considered.

52The linearity of the single-profit function in (α, σ) is exploited to reduce the computational
intensity of the procedure: in the second step, the value function at a given state can be simulated
only once, instead of for every candidate parameter vector (α, σ).
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Second-step estimation: In the second step, the underlying parameters (α, σ)

are set such that equilibrium condition (1.12) is satisfied for every firm i, state γ̃i

and non-equilibrium deviation a′i. Denote by χ = {i, γ̃i, a′i} a particular equilibrium

condition. Under parameter vector (α, σ), define

g(χ;α, σ) = V̂ (γ̃i|a∗i , a∗−i)− V̂ (γ̃i|a′i, a∗−i) (1.18)

as the difference between the simulated value function at state γ̃i, when firm i plays

the estimated policy rule a∗i and the deviation a′i.
53 The equilibrium condition (1.12)

is satisfied if g(χ;α, σ) ≥ 0. The objective of the second step is to find the parameter

vector (α, σ) such that this inequality holds for all possible equilibrium conditions

indexed by χ. BBL (2007) demonstrate that one can restrict estimation to a suffi-

ciently large subset that covers the space of inequalities. The estimation proceeds by

selecting Nχ = 3, 600 equilibrium conditions. Deviations from the equilibrium adop-

tion strategy are obtained by adding perturbations to the estimated cut-off points.

The selected equilibrium conditions are combined to form the objective function:

Q(α, σ) =
1

Nχ

Nχ∑
j=1

(min{g(χj;α, σ)}, 0)2 (1.19)

The estimator of the underlying parameters is the solution of

min
α,σ

Q(α, σ)

This function is not trivially minimized at the zero vector, because the adoption cost

ait × pt enters in periods when the theater converts some of its screens to digital.

Although BBL (2007) derive the asymptotic formula for the variance-covariance

matrix, implementing it remains computationally burdensome (as one needs to com-

pute the cross-partial derivate of Q with respect to (α, σ) and the first-stage pa-

rameters). Bootstrap sampling is therefore preferred to obtain standard errors. One

53In the above notation, dependence on the first-step parameters is omitted for ease of notation.
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difficulty with non-parametric bootstrap is the presence of correlation in decisions

across local markets, therefore, sampling market-histories with replacement, as is

commonly done in dynamic oligopoly games, is not a valid approach. Instead, a

parametric boostrap procedure is used.54

1.7.3 Estimation Results

1.7.3.1 First-step estimates

Theaters’ adoption-policy function. The conditional choice probabilities are estimated

using a flexible reduced form, via an ordered probit model. To further control the

size of the state space, theaters’ strategy space (the number of screens that can be

converted) is restricted to lie on a grid. More precisely, miniplexes (theaters with

4 to 7 screens) are assumed to adopt on the space sit/Si ∈ {0, 1
4
, 1

2
, 3

4
, 1}, whereas

multi- and megaplexes (theaters with 8 screens or more) are assumed to adopt on

the space sit/Si ∈ {0, 1
8
, 2

8
, ..., 7

8
, 1}. Figure 1.10 shows kernel density estimates of

the intra-firm adoption rates for miniplexes (panel (a)) and multi/megaplexes (panel

(b)), conditional on partial adoption (sit/Si > 0 and sit/Si < 1). For miniplexes,

the density has three identifiable modes. The previous assumption restricting the

strategy space to the set {0, 1
4
, 1

2
, 3

4
, 1} appears non-restrictive. For multi/megaplexes,

the density shows a mode around 0.2. The grid chosen, {0, 1
8
, 2

8
, ..., 7

8
, 1}, is sufficiently

fine given the estimated density of sit/Si.

Because theaters cannot divest and roll back the old technology, a firm cannot

transition to lower states. For instance, a four-screen theater with sit/Si = 3/4 can

only transition to sit+1/Si ∈ {3/4, 1}. In this sense, next period’s possible states de-

54(1) draw a bootstrap sample of local markets (initial industry state), (2) simulate the diffusion
process across all markets in the bootstrap sample using the (parametric) first-stage estimates, and
(3) estimate the model following the two-step procedure using the bootstrap sample. Repeat the
three steps Nb times.
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Figure 1.8: Density estimate of the intra-firm rate of adoption by firm size

(a) Miniplexes (4-7 screens) (b) Multi/Megaplexes (8 screens or more)

Notes: Both density estimates correspond to the distribution of sit/Si conditional on

sit/Si > 0 and sit/Si < 1

pend on the firm’s adoption rate in the current period. This dependence is accounted

for in constructing the likelihood (see Appendix A.4).

A theater’s share of screens converted to digital between t and t + 1, denoted

ait/Si, is explained by the share of digital movies (or equivalently the aggregate share

of digital screens in the industry, through equation (1.4)), the aggregate adoption cost,

the number of screens in the theater (and its square), the share of digital screens in

the theater in period t, whether the theater is an art house, competitors’ digital

screens in period t, and competitors’ total number of screens. A second specification

augments the model by including market dummies to control for market size. A

third specification includes both market dummies and theater-chain dummies for the

three major French theater chains (Gaumont-PathÃ c©, CGR, and UGC). Finally, a

fourth specification also controls for interactions between theater size Si and all other

variables.
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Table 1.5 presents the estimates of the ordered probit model under the four spec-

ifications. As expected, across the four specifications, the share of digital screens

in the industry (equivalently the share of digital movies) is positively related to the

probability of adoption, whereas the adoption cost is negatively related to the prob-

ability of adoption. Larger theaters are more likely to adopt, but the marginal effect

is decreasing. Art house theaters are less likely to adopt. The share of a theater’s

screens already converted to digital is negatively related to further adoption.55

Competitors’ total number of screens and digital screens do not significantly im-

pact a theater’s likelihood of adoption. This estimate indicates that strategic inter-

actions between firms are not a major determinant of adoption.56 Theaters located

in Paris are more likely to adopt than theaters located in the small urban areas with

20, 000 to 100, 000 thousands inhabitants. Among the chain dummies, CGR theaters

are more likely to adopt than single theaters or theaters belonging to smaller chains.

The rest of the analysis uses specification (4).

To check the goodness of fit, model predictions (from specification (4)) for the

share of digital screens are compared to actual shares in the data. Tables 1.6, 1.7,

and 1.8 present the comparison for all firms, miniplexes only, and multi/megaplexes,

respectively. In each table, the aggregate share of digital screens, the share of adopters

(theaters with at least one digital screen), and the average within-theater share of

digital screens (among adopters) are shown from 2006 to 2013. Overall, given the

limitations imposed by the parametric specification of the policy function, the model

captures the main trends in the aggregate, inter-firm, and intra-firm diffusion rates, for

all firms and by firm size (miniplexes vs. multi/megaplexes). Note that the aggregate

55This finding is expected because, given a share of digital movies, theaters that are lagging behind
in terms of adoption (low sit/Si) have a greater incentive to adopt.

56The likelihood-ratio test of specification (3) and (4) against a specification without competitors’
screens and digital screens fails to reject the null that both coefficients are zero at the 5% confidence
level.
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Table 1.5: Adoption policy function

Dependent variable: Share of screens converted ait/Si

(1) (2) (3) (4)

Estimate s.e Estimate s.e Estimate s.e Estimate s.e

Industry share of d-screens 0.775 0.156 0.796 0.158 1.013 0.164 1.939 0.384

Adoption cost -1.313 0.023 -1.317 0.025 -1.382 0.025 -1.514 0.038

Own screens 0.088 0.030 0.084 0.031 0.068 0.032 0.102 0.044

Own screens sqrd -0.003 0.001 -0.003 0.001 -0.001 0.001 -0.005 0.002

Art house -0.114 0.066 -0.130 0.069 -0.156 0.069 -0.321 0.218

Competitors’ d-screens 0.001 0.009 0.000 0.009 -0.003 0.009 -0.003 0.009

Competitors screens -0.002 0.003 -0.005 0.003 -0.001 0.003 0.016 0.008

Own share of d-screens -1.422 0.113 -1.443 0.113 -1.699 0.118 -1.361 0.300

Market dummies

Urban unit - <20k inhab and rural 0.102 0.139 0.104 0.140 -0.335 0.343

Urban unit - >100k inhab 0.024 0.073 0.009 0.071 -0.965 0.243

Paris - inner suburbs -0.237 0.139 -0.064 0.140 -0.718 0.354

Paris - outer suburbs -0.133 0.114 -0.000 0.060 -0.692 0.296

Paris 0.092 0.114 0.293 0.116 -0.568 0.308

Chain dummies

Gaumont-Pathe -0.146 0.079 0.211 0.254

CGR 0.309 0.093 -1.028 0.386

UGC -0.891 0.129 -1.238 0.378

Interactions: own screens × variables X

Observations 4, 788 4, 788 4, 788 4, 788

- log Likelihood 2, 222.981 2, 220.041 2, 182.751 2, 150.577

AIC 4, 461.962 4, 466.082 4, 397.502 4, 357.154

Note: For market dummies, the omitted category is “urban unit with 20–100 thousands

inhabitants.” For the chain dummies, the omitted category is “single firm and small chains.”
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share of digital screens was constantly lower for miniplexes than for multi/megaplexes,

as reflected in the predictions as well. Additionally, the intra-firm rates’ evolution

over time is smoother in the prediction than in the data.57

Table 1.6: Predictions using the adoption policy function - All firms

Aggregate Inter-firm Intra-firm

Year Data Prediction Data Prediction Data Prediction

2006 0.003 0.000 0.021 0.001 0.127 0.161

2007 0.006 0.001 0.028 0.005 0.210 0.215

2008 0.043 0.010 0.056 0.028 0.182 0.256

2009 0.159 0.093 0.122 0.197 0.420 0.359

2010 0.236 0.270 0.431 0.498 0.459 0.470

2011 0.460 0.483 0.684 0.724 0.583 0.596

2012 0.791 0.709 0.841 0.878 0.880 0.761

2013 0.939 0.922 0.934 0.931 0.985 0.934

Note: The column labelled “Aggregate” corresponds to the share of digital

screens across all firms in the industry. The column labelled “Inter-firm” cor-

responds to the share of theaters with at least one digital screen. The column

labelled “Intra-firm” corresponds to the within-theater average share of digital

screens among theaters with at least one digital screen. The predicted rates are

obtained by averaging 500 simulation paths.

57In particular, for miniplexes, the intra-firm rate jumps to 41% as early as 2007, whereas the
model predicts a slow increase between 2006 and 2009 to reach 40%. The prediction is also smoother
in the case of multi/megaplexes, with an increase in the actual intra-firm rates from 13.5% in 2008
to 41.5% in 2009, whereas the model predicts a smoother transition.
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Table 1.7: Predictions using the adoption policy function - Miniplexes (4-7 screens)

Aggregate Inter-firm Intra-firm

Year Data Prediction Data Prediction Data Prediction

2006 0.002 0.000 0.008 0.000 0.267 0.229

2007 0.007 0.000 0.017 0.002 0.415 0.293

2008 0.007 0.003 0.017 0.007 0.415 0.338

2009 0.024 0.042 0.054 0.093 0.435 0.400

2010 0.112 0.165 0.243 0.317 0.443 0.463

2011 0.294 0.348 0.498 0.584 0.569 0.549

2012 0.653 0.597 0.745 0.798 0.857 0.702

2013 0.879 0.872 0.891 0.885 0.975 0.906

Note: The columns are defined in the same way as in Table 1.6, but the

reference group is miniplexes instead of all firms. The predicted rates are

obtained by averaging 500 simulation paths.
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Table 1.8: Predictions using the adoption policy function - Multi/Megaplexes (8-23

screens)

Aggregate Inter-firm Intra-firm

Year Data Prediction Data Prediction Data Prediction

2006 0.003 0.000 0.037 0.001 0.087 0.156

2007 0.005 0.002 0.043 0.010 0.107 0.206

2008 0.015 0.013 0.106 0.056 0.135 0.240

2009 0.092 0.113 0.207 0.332 0.415 0.344

2010 0.307 0.320 0.670 0.707 0.466 0.475

2011 0.554 0.554 0.920 0.914 0.593 0.637

2012 0.870 0.775 0.963 0.978 0.903 0.825

2013 0.973 0.950 0.989 0.987 0.997 0.966

Note: The columns are defined in the same way as in Table 1.6, but the

reference group is multi/megaplexes instead of all firms. The predicted rates

are obtained by averaging 500 simulation paths.
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Figure 1.9: Share of movies available in digital ht as a function of share of digital

screens st/S

Distributors’ reaction function. Figure 1.9 shows distributors’ reaction function (equa-

tion (1.4)) as fitted from the data. This relation gives the share of digital movies per

period, as a function of the share of digital screens in the industry.58 One issue with

games of technology adoption under network effects is the way the network is initially

seeded with the new technology to break the ”chicken or the egg” problem. In the

case of France, the problem was resolved by the US studios’ initial commitment to

distribute movies in digital (in Figure 1.9, the intercept is non-zero).

1.7.3.2 Second-step estimates

This section presents estimation results for the total number of screenings R(τi) and

profits per movie screening (πf (x̃it), πd(x̃it)). These components are combined, as in

58Under the no-multihoming assumption, hmt equals 0 for all t.

59



equation (1.6), to obtain theaters’ single-period operating profits.

First, estimates for the total number of screenings are presented in Table 1.9.

Specification (1) includes firm size Si and market size marketi (and their interaction)

as explanatory variables. Specification (2) augments the model with the art house

variable. Specification (3) also includes the number of competing screens S−i.

Table 1.9: Annual number of screenings as function of theater type

Dependent variable: number of screenings

(1) (2) (3)

Own screens 2,285∗∗∗ (102) 2,547∗∗∗ (129) 2,570∗∗∗ (130)

Paris - outer suburbs 1,206 (1,346) 2,645∗ (1,415) 2,747∗ (1,411)

Urban unit - ≤ 20k inhab and rural 469 (1,733) 960 (1,726) 1,114 (1,723)

Urban unit - ≥ 100k inhab 2,989∗∗∗ (914) 4,253∗∗∗ (983) 3,926∗∗∗ (1,089)

Paris - inner suburbs 1,855 (1,575) 2,778∗ (1,581) 2,889∗ (1,577)

Paris −1,512 (1,219) −11 (1,315) −456 (1,456)

Art house 2,986∗∗∗ (1,008) 3,002∗∗∗ (1,005)

Competitors’ screens 48 (36)

Own screens × Paris - outer suburbs 33 (158) −216 (173) −237 (173)

Own screens × urban unit - ≤ 20k inhab and rural 83 (249) −69 (250) −97 (250)

Own screens × urban unit - ≥ 100k inhab −268∗∗ (114) −501∗∗∗ (132) −450∗∗∗ (138)

Own screens × Paris - inner suburbs −5 (167) −217 (177) −236 (176)

Own screens × Paris 797∗∗∗ (156) 546∗∗∗ (172) 609∗∗∗ (179)

Own screens × art house −520∗∗∗ (154) −531∗∗∗ (154)

Own screens × competitors’ screens −8∗ (4)

Constant −5,093∗∗∗ (753) −6,691∗∗∗ (962) −6,796∗∗∗ (962)

Observations 399 399 399

R2 0.909 0.911 0.912

Adjusted R2 0.906 0.908 0.909

Residual Std. Error 2,726.2 (df = 387) 2,692.6 (df = 385) 2,683.9 (df = 383)

F Statistic 349.7∗∗∗ (df = 11; 387) 304.3∗∗∗ (df = 13; 385) 265.7 ∗∗∗ (df = 15; 383)

Note: ∗∗∗p < 0.01 ;∗∗p < 0.05; ∗p < 0.1. For market dummies, the omitted category is “urban unit with 20 to 100 thousands

inhabitants.”

As expected, the annual number of screenings per theater is increasing in theater

size, and in market size. Theaters located in Paris and other urban units with more
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than 100,000 inhabitants host more screenings. Art house theaters also host more

screenings, all else equal. The effect of the number of competing screens is not

significant. Finally, the negative intercept in all specification indicates potential non-

linearities in the effect of size: the number of screenings per screen is increasing in

the theater size.59

Next, estimates of the parameters entering the single-period profits per movie

screening and the variance of adoption costs are presented in Table 1.10. The coef-

ficients entering πf (x̃it) and πd(x̃it) are restricted to be equal αfi = αdi . Profits per

screening are decreasing in theater size and are lower for art house theaters, although

estimates are not precise. In light of the previous results regarding the total num-

ber of screenings, this finding indicates that the utilization rate (i.e., the share of

seats occupied per screening) does not vary significantly with theater size. Theater

size positively affects profits per screen mainly through its effect on the number of

screenings per screen. Fixing market size, profits are decreasing in the number of

competing screens, whereas competitors’ digital screens do not affect profits (effect

of the opposite sign of competitors’ screens).

The market dummies are not significant. These estimate indicate that market size

mainly affects the number of screenings but not profits per screening. This is the case

if the utilization rate (i.e., share of seats occupied per screening) does not vary with

market size. Next, cost reductions from digital projection are positive and significant

as indicated by the coefficient on “own-share of digital screens.” Finally, the standard

deviation of adoption costs is e2, 995, and is relatively smaller than the adoption cost,

which is between e40, 000 and e84, 000. The estimate for the standard deviation of

the adoption costs is close to the average price decrease per period, e3,308, indicating

that the dispersion in adoption times for otherwise identical firms is close to one

59For example, the annual number of screenings per screen for a monopolist non-art house theater
in an urban unit with 20,000–100,000 inhabitants is 1,012 for a 4-screen theater, 1,648 for an 8-screen
theater, and 1,860 for a 12-screen theater.
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Table 1.10: Structural parameter estimates (in 2010 euros)

Estimate s.e

Profits per movie screening: πf (x̃it)

Constant 12.274 1.885

Own screens -0.043 0.057

Art house -0.657 0.827

Competitors screens -0.015 0.053

Competitors’ d-screens 0.015 0.074

Market dummies

Urban unit - >100k inhab -0.340 0.840

Urban unit - <20k inhab and rural 0.166 1.275

Paris - inner suburbs -0.923 0.833

Paris - outer suburbs -0.629 0.865

Paris -0.779 1.098

Chain dummies

Gaumont-Pathe -0.778 0.823

CGR 3.310 2.241

UGC -2.295 0.909

Profits per digital movie screening:

own share of d-screens 2.420 1.054

Adoption cost

Firm shock: standard deviation σ 2, 995 1, 441

Note: Standard errors are calculated using Nb = 600 bootstrap sam-

ples.
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Figure 1.10: Predicted distribution of annual profits per screen (in euros) across

theaters: (a) Before the diffusion of digital cinema, (b) after the diffusion of digital

cinema

(a) (b)

period.

Profits levels implied by the structural model have the correct order of magnitude.

The distribution of annual profits per screen across theaters, predicted by the model,

is presented in Figures 1.10a (before the diffusion of digital cinema) and 1.10b (at the

end of the diffusion).

Annual profits per screen are approximately between e10, 680 and e26, 130 be-

fore diffusion, and between e14, 620 and e33, 900 after diffusion. These results are

contrasted with estimates using theater chains’ income statements, obtained for the

years 2014 to 2016 (i.e., after the diffusion period). The chains’ annual total profits

are divided by the total number of screens. Estimates range between e22, 000 and

e30, 000. Therefore, profits levels implied by the structural model are economically
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Figure 1.11: Predicted annual profits per screen as a function of firm size

(a) Before the diffusion (b) After the diffusion

Notes: Predicted profits are calculated fixing other characteristics to: monopolist, non art house

theater, not horizontally integrated.

plausible and reasonable.

Finally, combining estimates for the total number of screenings with profits per

screening, the model predicts economies of scale in operation. Figures 1.11a and 1.11b

show predicted annual profits per screen as a function of theater size and market size.

Other firm characteristics are set to: monopolist, non art house, and not horizontally

integrated. The combined effect of theater size on the number of screenings per screen

and profits per screening implies that profits per screen are increasing in theater size.

The marginal effect is decreasing. An increase from 5 to 10 screens increases profits

per screen from e15, 000 to e19, 000 (to e23, 000 in Paris), before the conversion to

digital.
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1.8 Counterfactual Simulations

This section uses the calibrated model to conduct counterfactual simulations and

examine the role of the intra-firm margin at the industry and local market levels.

First, the intra-firm margin is found to significantly contribute to industry-level dif-

fusion: both the introduction time and the overall dispersion in adoption times across

screens depend on within-theater adoption rates. Second, the relationship between

local market structure (in terms of theater size and market concentration) and tech-

nology adoption is impacted by theaters’ ability to adopt at the margin (intra-firm

margin effect), controlling for the role of other factors (economies of scale and strategic

interactions).60

1.8.1 Intra-Firm Margin and Aggregate Diffusion

The first simulation exercise decomposes the diffusion of digital projection over the

industry capital stock (screens) into an inter-firm margin (diffusion across firms)

and an intra-firm margin (diffusion within firms). Additionally, the counterfactual

simulation is used to evaluate the impact of the intra-firm margin on the introduction

time, that is, the expected time to first adoption. The analysis indicates both aspects

of aggregate diffusion—duration and introduction time—are significantly impacted

by the intra-firm margin, pointing to the importance of this margin of adoption in

understanding industry diffusion.

A firm’s equilibrium adoption behavior is decomposed into an inter-firm (or exten-

sive) margin, in which the firm decides whether to begin using the technology, and an

intra-firm (or intensive) margin, in which the firm decides what fraction of its capital

stock to convert. Whereas firms’ equilibrium behavior reflects both margins, the ex-

60This paper does not discuss social welfare. A discussion of potential welfare benefits of digital
cinema, in particular via new product offerings, is presented in section 1.3.
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tensive margin can be isolated by simulating firms’ adoption behavior restricting the

strategy space from sit ∈ {0, 1, ..., Si} to sit ∈ {0, Si}. In this counterfactual, firms

are restricted to convert their whole capital stock at once, conditional on adoption.

In this sense, the intra-firm (or intensive) margin is shut down. Because the objective

is to decompose the firm’s equilibrium adoption behavior, only a counterfactual best

response (to the equilibrium played in the data) is necessary—that is, fixing the price

process {pt, t ≥ 0} and the share of digital movies {ht, t ≥ 0} over time to their values

in the equilibrium played in the data. The best response is computed using the value

function iteration algorithm of Pakes and McGuire (1994).61

Figure 1.12 presents the diffusion curves (industry-wide share of screens equipped

with a digital projector over time) under the equilibrium adoption strategy (inter/intra-

firm), and the counterfactual adoption best response (inter-firm only). The simulation

shows that the introduction time, or expected time to first adoption, is delayed from

June 2007 to January 2011. In the counterfactual case, the diffusion is complete

by June 2013, whereas in the equilibrium case, diffusion is completed by June 2015.

These findings imply that the inter-firm margin, or dispersion in adoption times across

firms, explains 31% of the aggregate diffusion (or dispersion in adoption times across

units of capital). In other words, 69% of the dispersion in adoption across screens is

due to dispersion in adoption within firms.

The introduction lag—defined as the difference in introduction times—between

the equilibrium and counterfactual diffusion paths is 1, 297 days and corresponds to

44% of the equilibrium diffusion duration. The introduction time is significantly im-

pacted by firms’ ability to gradually convert their capital of screens to the new digital

technology. This finding is expected as firms delay their adoption until sufficiently

many movies are released in digital, because they are constrained to make a binary

61Note that, while a counterfactual equilibrium—in which the share of digital movies is endoge-
nously determined—is of separate interest, obtaining such equilibrium is complicated by equilibrium
multiplicity due to network effects.

66



Figure 1.12: Aggregate adoption rate with and without the intra-firm adoption margin

Note: The diffusion curves are obtained by generating 500

sample paths with a length of 20 years. The sample average of

these paths are reported. The 95% confidence interval is obtained

by using the structural parameters corresponding to 5th and 95th

percentiles of the distribution of time to full adoption.
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adoption decision.62 While the previous result concerns introduction times at the in-

dustry level, the next section focuses on introduction times at the local market level

(urban and rural unit).

1.8.2 Introduction Lag and Market Structure

This section analyzes the role of the intra-firm adoption margin in explaining differ-

ences in adoption times across firms. Such differences have been historically attributed

to two important factors: firm size (economies of scale) and market concentration

(strategic incentives).63 This section distinguishes the effect of the intra-firm margin

from the latter two factors, and shows that this margin accounts for an important

share of the differences in adoption times across firms.

1.8.2.1 Firm size

The adoption data indicates large theaters converted faster than small theaters to

digital projection. For example, by 2010, 24% of all miniplex theaters (4–7 screens)

had at least one digital screen, against 64% of all multi/megaplex theaters (8–23

screens).64 Fixing theater and local market characteristics, the presence of scale

economies can in part explain the delay in adoption of a small theater relative to a

large theater. If profits per digital screen increase with theater size, large theaters

will adopt earlier than small theaters. This subsection argues that, in addition to the

aforementioned factor, the intra-firm margin plays an important role in explaining this

delay: large theaters introduce the technology faster because they are able to convert

62Fixing the counterfactual share of digital movies ht and the adoption cost pt as in the data is
crucial for the introduction lag computed. If, for instance, firms expected ht to reach 1 in 2008, the
counterfactual introduction time would be earlier than 2008.

63See Hall and Khan (2002).

64See Tables 1.7 and 1.8.
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a smaller fraction of their capital stock. It is optimal to do so due to the presence

of indirect network effects: the benefit from adopting depends on the availability of

digital movies, and initially, only a small fraction of movies is released in digital.

To separate the contribution of the intra-firm margin from that of scale economies,

the introduction time—defined as the expected time to first adoption—is simulated

in a given local market (set to an urban unit with more than 100, 000 inhabitants),

with one monopolist theater owning Si screens, under (1) the equilibrium adoption

strategy (equilibrium played in the data) and (2) the counterfactual best response

with no intra-firm margin. Theater characteristics are set to non-art house, not part

of a theater chain.

Denote by TESi,m the introduction time in this local market with a monopolist

theater with size Si, under the equilibrium adoption strategy. Similarly, define TCSi,m

as the introduction time in the same local market with a monopolist theater with

size Si, under the counterfactual best-response strategy. As in the previous section,

the theater is best responding to the equilibrium played in the data. In particular,

the hardware price and the share of digital movies follow the same processes as in

the equilibrium played in the data. By varying the monopolist’s size Si, differences

in introduction times between small and large firms, TESi=small,m − TESi=large,m and

TCSi=small,m − T
C
Si=large,m

, are obtained.

In the counterfactual with no intra-firm margin, differences in introduction times

across theaters with varying size (TCSi=small,m − T
C
Si=large,m

) will reflect differences in

period profits stemming from economies of scale. In the equilibrium, these differences

in introduction times (TESi=small,m−T
E
Si=large,m

) will reflect both scale economies as well

as the intra-firm margin effect. The results are shown in Table 1.11.65 The reference

firm is a four-screen theater (small = 4), and introduction lags are computed relative

65The percentiles of TE
4,m − TE

Si,m
and TC

4,m − TC
Si,m

are obtained by using all bootstrap estimates
(for the policy rule and the structural parameters) to simulate these introduction lags, and derive
their empirical distribution.
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to larger theaters (Si ∈ {8, 10, 12}). The introduction lag in the equilibrium case is

between 398 and 532 days, whereas the introduction lag in the counterfactual case is

between 278 and 304 days. The results indicate the intra-firm margin accounts for

30% to 42% of the introduction lag. The remainder is due to scale economies.

Table 1.11: Introduction lag (in days) by firm size

Equilibrium: TE4,m − TESi,m Counterfactual: TC4,m − TCSi,m
intra and inter-firm margins inter-firm margin

Firm size Mean 5th 95th Mean 5th 95th

Si = 8 398.3 314.2 480.4 278.3 141.9 404.8

Si = 10 468.0 383.9 557.8 294.3 146.3 416.8

Si = 12 532.9 434.9 633.4 304.8 150.4 427.5

Note: Summary statistics of the introduction lag between the reference firm

(Si = 4) and larger firms, are presented. The introduction lags are computed

by averaging 500 sample paths for each firm. The means of TE4,m and TC4,m

correspond to March 2011 and September 2012 respectively.

1.8.2.2 Market concentration

The previous exercise focuses on the difference in introduction times between a small

and large monopolist theater, controlling for theater and market characteristics. This

subsection performs the same decomposition exercise, varying local market concen-

tration instead of theater size. That is, the total capital stock of screens in the local

market is kept fixed, while varying the number of (equally-sized) theaters competing
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in this local market. Differences in introduction times between local markets with

different levels of market concentration will stem from scale economies (as the av-

erage theater size increases with market concentration), strategic interactions (as a

theater’s adoption decision depends on its rivals’ film and digital screens), and the

intra-firm margin effect outlined in the previous subsection. The objective is to eval-

uate the contribution of the latter to differences in introduction times between local

market with different levels of concentration.

Introduction times are computed under (1) the equilibrium adoption strategy

(equilibrium played in the data) and (2) the counterfactual best response with no

intra-firm margin. Theater characteristics are set to non-art house, not part of a

theater chain. The total stock of screens is set to 24 screens. The market size is set

to “urban unit with more than 100,000 inhabitants.”

Denote by TEn,m the introduction time in this local market with n equally sized

theaters, under the equilibrium adoption strategy (equilibrium played in the data).

Similarly, define TCn,m as the introduction time in this local market with n equally sized

theaters, under the counterfactual best-response strategy, with no intra-firm margin.

By varying the number of theaters in the market, n, differences in introduction times

between markets with different level of concentration are obtained: TEn1,m
−TEn2,m

and

TCn1,m
− TCn2,m

, with n1 > n2.

The number of competitors in the market, n, takes values in {1, 2, 3, 6}. The

reference market is the less concentrated market with six four-screen theaters (n1 = 6),

and is compared to more concentrated markets: monopoly, duopoly, and three-firm

oligopoly (n2 ∈ {1, 2, 3}). The introduction time is simulated for all markets, and

differences (or introduction lags) are shown in Table 1.12.66 The introduction lag

under the equilibrium adoption strategy is between 205 and 256 days, whereas the

introduction lag under the counterfactual is between 78 and 116 days. These results

66The percentiles are obtained as in Table 1.11.
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indicate that the intra-firm margin accounts for 43% to 69% of the introduction

lag between the reference market (n1 = 6) and more concentrated markets (n2 ∈

{1, 2, 3}). The rest of the lag is explained by economies of scale (as average theater

size decreases with n) and strategic interactions between theaters.

Table 1.12: Introduction lag (in days) by number of firms

Equilibrium: TE6,m − TEn2,m
Counterfactual: TC6,m − TCn2,m

intra and inter-firm margins inter-firm margin

Market Mean 5th 95th Mean 5th 95th

n2 = 3 205.5 136.6 269.5 116.7 64.5 184.2

n2 = 2 210.7 106.7 298.1 113.1 50.3 189.7

n2 = 1 256.2 -14.7 528.2 78.5 5.0 160.8

Note: Summary statistics of the introduction lag between the reference market

(n1 = 6) and more concentrated markets, are presented. The introduction lags

are computed by averaging 500 sample paths for each market. The means of

TE6,m and TC6,m correspond to August 2009 and February 2012 respectively.

1.9 Conclusion

This paper investigates the role of network effects in intra-firm technology adoption.

The within-firm share of capital equipped with the new technology increases with

the availability of complementary software. In turn, software availability increases as

the hardware technology diffuses across and within firms. The study focused on the

digitalization of the movie distribution and exhibition industries because they offer
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an ideal setting for studying this mechanism.

The analysis shows that when software availability matters for adoption, the intra-

firm margin explains a significant share of the aggregate diffusion phenomenon: in

terms of dispersion in equilibrium adoption times, as well as time to first adoption.

Second, because firms with varying size differ in their ability to gradually roll out the

technology, intra-firm adoption dynamics and the presence of capital indivisibilities

amplify the positive relationship between firm size and early adoption; i.e., they

explain a significant share of the delay in adoption of smaller firms.

Two implications can be derived. First, the results underline the fact that design-

ing policies (e.g., technology subsidies) that encourage faster technological diffusion

within firm may be as important as designing policies that encourage faster diffusion

across firms. Second, in a network industry or hardware-software system, new tech-

nologies are adopted earlier if individual firms are larger, because they are able to

adopt at the margin. This sheds new light on potential effects of antitrust and merger

control on firms’ ability to adopt innovations.

The current study could be extended in several directions, one important is noted.

An avenue of research would be to analyze the role of vertical relations between the

software and hardware industries (here, distribution and exhibition) and the effect

of such vertical relations on firms’ incentives to adopt. These vertical relations are

particularly relevant if the payoff from adopting is asymmetric between the software

and hardware markets and involves transaction costs.
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CHAPTER 2

A Study of Umbrella Damages from Bid-Rigging

2.1 Introduction

When a cartel does not include every firm competing in an industry, non-cartel firms

can set their own prices higher than they would otherwise have been able to under

competitive conditions. This is in particular the case in markets where contracts are

awarded via first-price procurement auctions. When the results of such procurement

procedures (bids and bidders identities) are not concealed from non-cartel firms, they

may serve as an indication of the prevailing price level when future contracts are

procured for. Consequently, non-cartel bidders benefit from the protection of the

cartel’s inflated bidding, and operate “under the cartel’s umbrella.” Purchasers from

non-cartel bidders will still pay a price that exceeds what the market price would

be in the absence of collusion. In this sense, damages inflicted by non-cartel bidders

broaden the scope of cartel damages. Nonetheless, empirical research investigating

the importance of such damages remains scarce. This paper conducts a detailed study

of umbrella damages by examining the bidding behavior of non-cartel bidders facing

the Texas school milk cartel between 1980 and 1992.

Bid-rigging was a pervasive phenomenon in auctions for the supply of milk to

schools, at least until the early 1990s. According to Porter and Zona (1999), inves-

tigations were conducted in more than twenty states across the US, more than $90

millions of fines were levied, while about 90 people were sent to jail for sentences last-

ing 6 months on average. The Texas milk cartel is well-suited for analyzing damages
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inflicted by non-cartel bidders. First, two essential conditions are met: the cartel was

not all-inclusive and the auction format was first-price sealed bid.1 In particular, bids

and bidder identities are publicly announced. This public information enables non-

cartel firms to learn and adjust their bids to the supra-competitive levels sustained

by the cartel. Second, all firms involved in the cartel were convicted, which allows

to isolate non-cartel bidders and focus on their bidding behavior. Third, the dataset

collected by the Antitrust Divison of the Department of Justice spans markets with

and without cartel operations, which enables to identify the effect of the cartel’s price

umbrella on non-cartel bidders. Finally, the dataset is rich enough to allow an assess-

ment of damages inflicted by the cartel per se, as well as damages inflicted through

non-cartel bidders.

Reduced form analysis of the bid data reveals that, controlling for auction and

bidder observed heterogeneity, the largest non-cartel firm bid significantly higher

when facing the cartel. Further investigation of cartel and umbrella damages and

inefficiencies requires estimation of a structural model. Damages to the auctioneer are

decomposed into (1) cartel damages, defined as damages in auctions won by the cartel

and (2a) outsider damages, defined as damages in auctions won by the non-cartel firm,

when it is the lowest cost bidder and (2b) misallocation damages, defined as damages

in auctions won by the non-cartel firm, when the cartel bidder is the lowest cost bidder.

Case (2b) arises because partial collusion introduces asymmetry among bidders in the

first-price procurement setting: the cartel bidder has a stronger incentive to inflate his

bid above his cost than the non-cartel bidder. As a result, the winner is not necessarily

the lowest cost bidder, and the auction is no longer efficient. (2a) and (2b) form what

is defined as umbrella damages. Because the cartel’s internal structure is unknown,

1In ascending or second price auctions, bidding one’s private valuation is a dominant strategy
irrespective of the existence of the cartel, therefore umbrella damages do not arise. Note for umbrella
damages to arise in first-price procurement auction, one need not assume that non-cartel firms know
the existence of the cartel per se, but only that they know the equilibrium bid distribution of their
lowest bidding opponent, which can be inferred from past auctions.
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bounds on outsider and misallocation damages are derived assuming two extreme

cases for the cartel mechanism: either the mechanism is efficient (i.e., the lowest

cost cartel member is the cartel bidder in the target auction), or the mechanism is

inefficient (i.e., the cartel bidder is selected randomly among cartel members).2

The structural analysis shows that per contract, outsider damages (conditional on

the non-cartel firm winning) are at least 47% of cartel damages (conditional on the

cartel winning). This lower bound is obtained with an efficient cartel. If the cartel

is inefficient, outsider damages can be as large as cartel damages. Misallocation

damages are estimated to be as large as 64% when the cartel is efficient, and the

auction is asymmetric.3 With respect to inefficiencies due to the asymmetry across

bidders, losses are estimated to be 3.7% or $2, 909 per contract. The structural

estimates show that conditional on the non-cartel firm winning, prices are inflated by

2.9% to 8.5% relative to the competitive winning bid. These bounds are consistent

with the reduced form estimates of a 6% overcharge. These results points to a cartel

mechanism that was not fully efficient, but far from inefficient.4

From a competition law perspective, the complexity of proving umbrella claims

has been one of the argument stifling the recognition by US and European civil courts

of the ability of the purchasers from non-cartel firms to pursue treble damages from

colluders. This paper sheds new light on this debate by providing a case study of

umbrella damages, emphasizing the type of data and methodology that render the

estimation of damages possible and far from speculative. The US and European

2While the definition of an efficient cartel mechanism is straightforward, it is less obvious for an
inefficient cartel mechanism. In the inefficient case, the cartel bidder could be selected randomly as
is assumed in this paper. But one could think of other inefficient mechanisms such as the one in
which the cartel bidder is the least cost efficient member.

3If the cartel is inefficient, there is no asymmetry between bidders under the maintained assump-
tions and therefore no efficiency losses.

4This is consistent with Pesendorfer (2000) which shows that although the cartel didn’t use
sidepayments, it managed to retain quasi-efficient collusive rents through market division.
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competition laws have recently taken divergent paths in their treatment of whether

the civil liability in damages of the cartel members extend to umbrella damages. On

June 5th 2014, the ECJ handed down the awaited judgement in the elevator cartel

case (Kone AG and Others v. ÖBB-Infrastruktur AG), stating the right of plaintiffs

to compensation for umbrella damages.5 In its press release No 79/14, the ECJ states:

[...] where it has been established that the cartel is, in the circumstances of

the case and, in particular, the specific aspects of the relevant market, liable to

result in prices being raised by competitors not a party to the cartel, the victims

of this price increase must be able to claim compensation for loss sustained from

the members of the cartel.

At the same time, the ECJ emphasizes the ”high hurdles in terms of the burden

of proof that await” any umbrella claimants.6

In the US, competition law is inconsistent in its standing vis-a-vis umbrella claims.

The ability of purchasers from non-cartel firms to recover treble damages from the

conspirators under section 4 of the Clayton Act is uncertain because of the Supreme

Court decision in Illinois Brick Co. v. Illinois.7 In the former case, the Court

ruled that indirect purchasers (downstream buyers) may not sue on a theory that a

price-fixing overcharge has been passed on to them by intermediate sellers purchasing

from upstream colluders. Although Illinois Brick did not deal with the standing of

purchasers from nonconspiring competitors of the antitrust violator, that case was

5The elevator cartel, which involved the conclusion of anticompetitive agreements between major
European manufacturers of elevators and escalators, more specifically, Kone, Otis, Schindler and
ThyssenKrupp, operated in several Member States of the European Union over a period of many
years. The European Commission uncovered that cartel in 2003 and, in 2007, imposed fines for the
elevator cartel’s practices in the Belgian, German, Netherlands and Luxembourg markets.

6Opinion of the Advocate General Kokott.

7Section 4 of the Clayton Act provides that ”any person ... injured in his business or property”
by an antitrust violation may bring an action for treble damages.
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relied on heavily by the Third Circuit to deny standing to purchasers from non-

cartel firms.8. Again, one of the policy reasons underlying the Illinois Brick doctrine

revolves around the complexity of tracing out the causal link between the antitrust

violation and non-cartel firms’ response.9 This paper shows that in the particular

case of bid-rigging of procurement auctions, bid data can be leveraged to estimate

the size of damages when buyers do not contract directly with colluders.

This paper also relates to the debate around auction format choice. A commonly

advanced argument in favor of sealed bid auctions is that open auctions are more prone

to collusion because conspirators can immediately punish any deviations.10 This

reasoning does not account for the fact that given (partial) collusion, the auctioneer

will suffer damages of a greater scope in sealed bid auctions. As non-cartel firms adjust

their bidding strategy to the cartel, damages to the auctioneer extend to contract won

by non-conspiring firms. While in ascending auctions, the auctioneer suffers damages

only when the cartel is able to suppress the second highest bid (the auctioneer may

benefit in some cases from the cartel’s overbidding as found by Asker (2010)). This

work shows that damages in procurement auctions won by non-conspiring firm can

potentially form a non-negligible fraction of overall cartel damages. The potential

merit of sealed bid relative to open auctions is therefore nuanced with regard to these

findings.

8Judgments finding in favour of liability: United States Court of Appeals (Seventh Circuit),
United States Gypsum Co. v. Indiana Gas Co., 350 F.3d 623, 627 (2003); United States Court of
Appeals (Fifth Circuit), In re Beef Industry Antitrust Litigation, 600 F.2d 1148, 1166 (1979), State
of Washington v. American Pipe Construction Co., 280 F. Supp. 802 (D. Haw. 1968), Pollock
v. Citrus Associates, Inc. 512 F. Supp. 711 (S.D.N.Y. 1981). Judgements finding against such
liability, on the other hand, include: United States Court of Appeals (Third Circuit), Mid-West
Paper Products Co. v. Continental Group Inc., 596 F.2d 573, 597 (1979); United States District
Court (District of Columbia), Federal Trade Commission v.Mylan Laboratories, 62 F.Supp.2d 25,
39 (1999).

9Many states, including California, have enacted Illinois Brick-repealer legislation providing in-
direct purchasers standing to sue for antitrust violations.

10See the discussion in Athey, Levin, and Seira (2011) for timber auctions.
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The US milk cartels were the subject of various papers in the empirical literature

on bid-rigging. Pesendorfer (2000) examines the Florida and Texas school milk car-

tels, and shows that the data (in particular market shares and incumbency rates) is

consistent with a strong cartel in Florida (in the sense that sidepayments were used

between cartel members) and a weak cartel in Texas (no sidepayments). This paper

differs from the former in two dimensions: first, Pesendorder focuses on the Dallas-

Fort Worth (DFW) area while the dataset used in this paper includes in addition the

Waco and San Antonio areas in which the cartel was not operating, providing a set

of competitive auctions which are useful to predict counterfactuals; second, this pa-

per focuses primarily on outsiders’ response to the cartel’s bidding behavior. Hewitt,

McClave, and Sibley (1996) demonstrate that the high incumbency rates in Texas

(the supplier of a given school district doesn’t change from year to year in many

cases) can only be explained by collusion. Lee (1999) finds evidence of complemen-

tary bidding and high incumbency premia in the DFW school milk market. Porter

and Zona (1999) test for the presence of collusion in the Ohio school milk market by

comparing defendants firms in Cincinnati to a control group of non-defendants and

compute estimate of cartel damages. Lanzillotti (1996) provides a review of US milk

cartel cases, and shows that several features of the bids in Kentucky are indicative of

collusive behavior.

This paper is more broadly related to the empirical literature on bidding rings. A

first strand in this literature aims at providing econometric tests of collusion: Bald-

win, Marshall, and Richard (1997) for timber auctions, Porter and Zona (1993) for

highway construction, Bajari and Ye (2003) for contracts in the seal coat industry,

Athey, Levin, and Seira (2011) for timber auctions. A second strand in the liter-

ature focuses on the internal organization of bidding rings. Asker (2010) studies

equilibrium bidding and sidepayments in knock-out auctions held privately by the

New York stamp cartel before the actual auction. Kwoka Jr (1997) analyzes bids and
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sidepayments in knock-out auctions held by a real estate ring. Finally, a more recent

strand of the literature, closer to this paper, studies the interaction of partial cartels

and non-cartel bidders. Harrington, Hüschelrath, and Laitenberger (2016) analyzes

how the German cement cartel controlled the expansion of non-cartel supply (from

Eastern European countries) by sharing the collusive rents with German importers.

The empirical section of the paper relies on results from the literature on the

structural estimation of auctions. In particular, the non-parametric estimation of the

bidders’ underlying cost distribution follows the methodology introduced in Guerre,

Perrigne, and Vuong (2000). Observed auction heterogeneity is also controlled for by

using the first-stage regression technique developed in Haile, Hong, and Shum (2006).

Finally, the empirical section makes use of some of the numerical methods developed

in the computational literature on asymmetric auctions. Recent contributions in this

literature are: Li and Riley (2007), Gayle and Richard (2008), and Fibich and Gavish

(2011).

The next section describes the theoretical model of first-price procurement auc-

tions with asymmetric bidders and analyzes the effect of collusion, cartel size, and

cartel mechanism on the non-cartel firm profits and bidding behavior. Section 2

presents the school milk market and the relevant factors affecting the cost structure.

Section 3 describes the dataset. Section 4 examines the largest non-cartel firm’s bid-

ding behavior through a reduced-form approach, and shows that all else equal, the

largest non-cartel bidder overbids in school district where the cartel is operating. An

assessment of cartel and umbrella damages is presented in section 5 using a structural

approach.
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2.2 A Theoretical Model

This sections investigates properties of a non-cartel firm’s bidding behavior when

facing a cartel bidder.11 The section builds on the theoretical literature on asymmetric

first price auctions. In particular, Maskin and Riley (2000) and Lebrun (1999, 2006)

derive existence and uniqueness results, as well as comparative statics results for the

equilibrium bid functions.12 This section is also related to the theoretical literature

on bidding rings in first-price auctions: McAfee and McMillan (1992) characterize

the optimal mechanism for strong and weak cartels, while Marshall and Marx (2007)

compares first and second price auction formats when a cartel is not all-inclusive and

may or may not be able to control the bids of its members.

The questions of interest are: when does non-cartel firms benefit from their com-

petitors colluding ? How are non-cartel firm’s bidding and profits affected by the

cartel size and the cartel mechanism (relative to a situation with no cartel)?

The case of a single non-cartel firm is considered for simplicity, and in anticipation

of the empirical part. Risk-neutral firms are bidding for a single contract in a first-

price procurement setting. There is no reserve price. Denote by 1 the cartel bidder,

and by 2 the non-cartel bidder.13 For i ∈ {1, 2}, firm i’s cost ci is drawn from a

distribution Fi with support [c, c]. Fi has a continuous density fi strictly positive on

(c, c]. Cost are drawn independently across bidders, and are private. Existence and

uniqueness of an equilibrium in strictly increasing strategies was proved by Maskin

and Riley (2000) and Lebrun (1996,1999,2006) among others.

11The cartel bidder is defined as the cartel member selected to bid in the auction on behalf of the
cartel.

12Other references include Vickrey (1961), Griesmer and Levitan (1967) who study asymmetric
uniform distributions, Plum (1992) who study a class of power distributions and more recently:
Bajari (2001) and Cheng (2006). Athey (2001) derives more general existence results.

13Note that this setting does not rule out the possibility that other cartel members submit ”non-
serious” or ”complementary” bids. If that is the case, the non-cartel firm knows that it is facing
only one ”serious” bid from the cartel.
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Denote by βi bidder i’s equilibrium bidding strategy, and by φi = β−1
i the corre-

sponding inverse bid function. Note that if bidder j bids according to φj and bidder

i submits a bid b, then the latter wins if and only if cj > φj(b). Thus, bidder i’s

expected profit from bidding b is given by:

π(b; ci) = (b− ci) Pr(cj > φj(b)) = (b− ci) (1− Fj(φj(b))) (2.1)

The first-order condition with respect to b (at ci = φi(b)) is :

fj((φj(b))

1− Fj((φj(b))
φ′j(b) =

1

b− ci
with boundary condition φi(c) = c. (2.2)

Combining optimality conditions for the two bidders, the equilibrium bid functions

solve the following system of differential equations:


1

b−φ1(b)
= f2(φ2(b))

1−F2(φ2(b))
φ′2(b)

1
b−φ2(b)

= f1(φ1(b))
1−F1(φ1(b))

φ′1(b)

(2.3)

with right-boundary conditions : φ1(c) = φ2(c) = c. Maskin and Riley (2000) show

that inverse bid functions must satisfy the additional condition that the minimum bid

of all bidders is the same: φ1(b) = φ2(b) = c for some unknown b. Although analytical

solutions of problem (2.3) are in general not available, one can derive properties on

the equilibrium bid functions.

The first property, proved by Maskin and Riley (2000) and Pesendorfer (2000),

can be used to compare the cartel and non-cartel firms bid functions. Assume that

the bidders’ cost distributions can be ordered according to hazard rate dominance,

i.e
f1(c)

1− F1(c)
>

f2(c)

1− F2(c)
for all c (2.4)

This implies that, conditional on having a cost above c, the cartel bidder is more

likely to have a low cost than the non-cartel bidder.
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Proposition 1. Under the hazard rate dominance assumption:

1. The cartel firm bids higher than the non-cartel firm: β1(c) > β2(c) for all c ∈

(c, c)

2. Denoting by Gi bidder i’s equilibrium bid distribution (and gi the corresponding

density function), the cartel firm’s bid distribution dominates the non-cartel

firms bid distribution (in the hazard rate sense): g1(b)
1−G1(b)

> g2(b)
1−G2(b)

Proof. See Propositions 3.3 and 3.5 in Maskin and Riley (2000) or Krishna (2006).

Part 1 of the proposition implies that the non-cartel firm may win despite not

having the lowest cost among the bidders. This result in an inefficient allocation.

Part 2 of the proposition implies in particular that the non-cartel firm’s equilibrium

bid distribution first-order stochastically dominates the cartel firm’s equilibrium bid

distribution. As noted by Pesendorfer (2000), the hazard rate dominance condition

will be satisfied for instance when all firms (cartel and non-cartel firms) are ex-ante

symmetric and the cartel mechanism is efficient, i.e when the cartel bidder has the

lowest cost among cartel members. In this case, F1(c) = 1− (1− F (c))n where F is

the ex-ante symmetric distribution of bidders, and n is the number of cartel members.

One can see that f1(c)
1−F1(c)

= nf(c)
1−F (c)

> f(c)
1−F (c)

= f2(c)
1−F2(c)

.

Studying the magnitude and determinants of umbrella damages requires the com-

parison of competitive equilibrium bid functions, i.e bid functions when the firms do

not collude, with the collusive bid functions derived above. Denote by n the number

of cartel members, or cartel size. For simplicity, assume that all bidders, whether or

not in the cartel, are ex− ante symmetric, and that there is a single non-cartel firm.

All firms draw their cost from a distribution F with support [c, c]. F has a continuous

density f strictly positive on (c, c]. Under these assumptions, the competitive auction

in which firms do not collude is a symmetric auction with n + 1 bidders. There is a

unique equilibrium in strictly increasing strategies (see Krishna (2006)).
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Assumption 1 (Ex-ante Symmetric IPV). Across bidders, costs are symmetric (iden-

tically distributed according to the distribution F ), independent, and private.

Denote by β the symmetric equilibrium bidding strategy, and by φ = β−1 the

corresponding equilibrium inverse bid function. In this case, if a bidder’s cost is ci,

bidding b yields expected profits given by:

π(b; ci) = (b− ci) Pr(cj > φ(b),∀j 6= i) = (b− ci) (1− F (φ(b)))n (2.5)

The first-order condition with respect to b (at ci = φ(b)) is :

nf(φ(b))

1− F (φ(b))
φ′(b) =

1

b− ci
with boundary condition φ(c) = c. (2.6)

Let G(b) = F (φ(b)) denote the distribution of a firm’s equilibrium bid. Let

g(b) denote the corresponding density function. Since bidders are symmetric, this

distribution doesn’t depend on i. The first-order condition can be rewritten:

ci = b− 1−G(b)

ng(b)
(2.7)

Equation (2.7) expresses the individual private cost ci as a function of the indi-

vidual equilibrium bid b, and the distribution of equilibrium bid G. This mapping is

at the core of the structural estimation of the cost distribution F from the observed

distribution of bids G (see Guerre, Perrigne, and Vuong (2000) and step 2 in section

2.6.2).

2.2.1 Effect of collusion on the non-cartel firm’s profits

This subsection examines the effect of collusion between a strict subset of bidders on

the bidding and profits of the non-colluding bidder—or, outsider. First, the outsider’s

interim payoff (i.e., the expected profits conditional on his cost) always increases when

his competitors form a cartel.
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Define the outsider’s equilibrium interim payoff when facing n competitors (no

collusion):

π(c) = max
b

(b− c) [1− F (φ(b))]n

Similarly, define the outsider equilibrium interim payoff when facing the cartel bidder

(the n competitors collude):

π̃(c) = max
b

(b− c) [1− F1(φ1(b))]

Assume first that the cartel mechanism is efficient, i.e F1(c) = 1 − (1 − F (c))n.

Then we have the following lemma:

Lemma 1. If the cartel mechanism is efficient, the outsider’s interim payoff is strictly

larger when his competitors collude:

π̃(c) > π(c) for all c ∈ [c, c)

Proof. Note that if φ solve the symmetric n + 1 bidders procurement auction, it

also solves the two bidder procurement auction in which bidders’ cost are drawn

from 1 − (1 − F (c))n. When the n firms collude efficiently, we obtain a 2 bidders

asymmetric auction in which bidders’ costs are drawn from F for the non-cartel firm

and 1− (1−F (c))n for the cartel bidder. Since F and 1− (1−F (c))n can be ordered

stochastically in the hazard rate sense, Corollary 1 of Lebrun (1998) applies to obtain

the strict inequality for the non-cartel firm profits.

In general, the cartel mechanism might not be efficient. Assume that the cartel

bidder’s cost distribution F1 (given a mechanism) satisfies the conditional stochastic

dominance relation14

d

dc

(
1− F1(c)

(1− F (c))n

)
> 0 for all c ∈ (c, c] (2.8)

14Note that this relation can also be rewritten in terms of hazard rate dominance.
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Proposition 2. If (2.8) holds, the outsider’s interim payoff is strictly larger when

his competitors collude:

π̃(c) > π(c) for all c ∈ [c, c)

Proof. F1 and 1− (1− F (c))n satisfy the assumption of conditional stochastic dom-

inance, therefore Corollary 1 in Lebrun (1998) implies that the outsider’s interim

payoff is strictly larger when facing the cartel with the mechanism yielding F1 than

when facing an efficient cartel. Combining this observation with the previous lemma

gives the result.

2.2.2 Effect of the cartel size and cartel mechanism on the non-cartel

firm’s bidding

In this subsection, comparative statics for the non-cartel firm equilibrium bid func-

tion are presented. In particular, two features are investigated: the cartel size and

the cartel mechanism. Comparative statics in first-price asymmetric auctions have

been studied by Lebrun (1998). The results presented here are an application of the

main theorem proved in the latter paper to the specific case of a cartel bidding in a

procurement auction.

First, let the cartel mechanism be fixed. Using the same notations introduced

above, denote by 1 the cartel bidder, and by 2 the non-cartel bidder (Fi, for i ∈ {1, 2}

the corresponding cost distributions, which satisfy the assumptions of the model).

The dependency of the cartel bidder’s cost distribution on the cartel size n is explicitly

represented as: F1(.|n). In particular under Assumption 1, if the cartel is efficient:

F1(c|n) = 1− (1− F (c))n (minimum cost among n symmetric bidders). If the cartel

is inefficient: F1(c|n) = F (c) (cartel bidder selected randomly).

Assume the cartel mechanism is such that F1(.|n) satisfies the following conditional

stochastic dominance conditionnote1
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d

dc

(
1− F1(c|n)

1− F1(c|n+ 1)

)
> 0 for all c ∈ (c, c] (2.9)

Proposition 3. Assume that (2.9) holds. Let the bid functions and their inverses

at the unique equilibrium when the cartel size is n be denoted β1(.|n),β2(.|n) and

φ1(.|n),φ2(.|n) respectively. Then

1. As the cartel size increases, the non-cartel firm bids more aggressively:

β2(c|n) > β2(c|n+ 1) for all c ∈ [c, c)

2. The larger cartel’s bid distribution is stochastically dominated by the smaller

cartel’s bid distribution:

F1(φ1(b|n)|n) < F1(φ1(b|n+ 1)|n+ 1) for all c ∈ [b, c)

where b = β1(c|n) = β2(c|n)

3. As the cartel size increases, both the cartel and non-cartel bidders’ interim profits

(conditional on their private cost) decrease

Proof. Follows directly from Theorem 1 and Corollary 1 in Lebrun (1998).

Condition 2.9 holds when the cartel mechanism is efficient. However, the condition

doesn’t hold if the cartel mechanism is inefficient (F1 is independent of n).

Next, let the cartel size be fixed. The effect of the cartel mechanism on the non-

cartel firm bidding can be analyzed. Consider two mechanisms implying a cartel

bidder’s cost distribution of either F1 or F̃1. Assume the two distribution satisfy the

conditional stochastic dominance relationnote1

d

dc

(
1− F1(c)

1− F̃1(c)

)
> 0 for all c ∈ (c, c] (2.10)
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This condition implies in particular that F̃1 is first order stochastically dominated

by F1. For instance, if F1(c) = F (c) (inefficient cartel) and F̃1(c) = 1 − (1 − F (c))n

(efficient cartel), the condition holds.

Proposition 4. Assume (2.10) holds. Let the bid functions and their inverses at the

unique equilibrium when the cartel bidder’s distribution is F1 (resp. F̃1) be denoted

(β1,β2) (resp. (β̃1,β̃2)) and (φ1,φ2) (resp. (φ̃1,φ̃2)). Then

1. The non-cartel firm bids more aggressively when the cartel bidder’s cost distri-

bution is F̃1 than when it is F1:

β2(c) > β̃2(c) for all c ∈ [c, c)

2. The cartel’s equilibrium bid distribution can be ordered according to first-order

stochastic dominance:

F1(φ(b)) < F̃1(φ̃1(b)) for all c ∈ [b, c)

where b = β1(c) = β2(c)

3. Cartel and non-cartel bidders’ interim profits (conditional on their private cost)

are lower under F̃1 than under F1.

Proof. Follows directly from Theorem 1 and Corollary 1 in Lebrun (1998).

The intuition for Proposition 3 and 4 is as follow. In both cases, as the cartel bidder

is made stronger (either by increasing the size of the cartel or by making the cartel

mechanism more efficient), the non-cartel firm responds by bidding more aggressively

(part (1) of the propositions). As a consequence, the cartel bidder’s interim payoff

decreases. In equilibrium, the cartel best response is such that it is more likely to bid

lower: the new equilibrium bid distribution is first-order stochastically dominated by

its initial equilibrium bid distribution (part (2) of the propositions). This results in

the non-cartel firm interim payoff being lower as well.
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2.3 The School Milk Market

Most public school districts in Texas use procurement auctions to allocate contracts

for the supply of school milk. Every year, between May and August, each district sets

a first-price sealed bid procurement auction, specifying contract characteristics such as

the estimated quantities (in half pint) of milk to supply by milk categories, the number

of delivery points, the contract period, the delivery times, and whether a cooler has

to be provided.15 Firms have one month to prepare their bid, which is a price per half

pint for each category of milk. A bid can be escalated or fixed. Escalated bids are

indexed to the price of raw milk, to insure the milk supplier against potentially large

fluctuations of the price of raw milk over the contract period. Bidders have to sign a

non-collusive affidavit, stating that they did not partake in any communication with

other bidders regarding prices or participation, and that they will not give or receive

any sidepayments. On the day of the letting, all submitted bids are opened and the

bidders identities and bids are publicly announced. Dairy distributors have to deliver

the packaged milk to various customers (e.g., retail stores, government agencies, and

schools). Retail stores are the main revenue source for distributors. School milk

contracts typically form 10% to 20% of a distributors’ revenue.

By nature, the school milk market is remarkably exposed to collusion. Firms

compete only on prices as the contracts terms (quantity and quality) are fixed and the

product homogenous. There are many small contracts to be gained facilitating market

division. Bids and bidder identities are publicly announced which helps detecting

price cuts by cartel members and increase transparency of prices. Firms frequently

interact as auctions are not held on the same day, which permits retaliation in case

of cheating. The demand for milk is inelastic so prices increases will yield higher

profits and are unlikely to face any buyer resistance. Finally, the market is relatively

15The main categories of milk being: whole white, whole chocolate, low-fat white, low-fat
chocolate.
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concentrated helping coordination.

Some of the aforementioned market features also enables potentially large umbrella

damages. Indeed, these damages stem from non-cartel firms adjusting their bidding

behavior to the supra-competitive levels sustained by the cartel. This is feasible since

all bids and bidder identities are publicly announced, which results in non-cartel firms

learning the price level in the rigged districts and adjusting to it. The latter channel is

reinforced by the high frequency of interactions, due to the large number of contracts

every year.

Next, the cost structure of milk processors is described. In anticipation of the

structural analysis, it is useful to decompose a milk processor’s cost when bidding for

a specific contract. This cost can be decomposed into:

1. A component common to all firms bidding for a contract: this component may

depend on observed auction characteristics such as the quantity of milk to sup-

ply, whether bids can be escalated, whether coolers and straws have to be

provided, the number of school within the district (which affects the quantity

to supply and the number of delivery points), as well as the number of deliveries

per week.

Additionally, this cost component depends on the price of raw milk, which is

regulated by federal order, as well as processing, packaging and labor costs

which, according to industry experts, are constant across firms in the market.16

2. An idiosyncratic component specific to the milk processor: this cost first de-

pends on the distance between the milk processing plant and the school district.

More precisely, it depends on how close the school district is to the firm’s dis-

16A federal milk order sets a uniform minimum price for raw milk in the area. This price is
typically increasing in the distance from the Midwest. In this paper, the marketing area was known
as the Texas Milk Marketing Order. Within the marketing area, price differ by a fixed proportion
from one zone to the other. The price of raw milk is around 7 cents per half-pint.
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tribution route. This distribution route depends on the firm’s current portfolio

of clients (e.g., government agencies, military bases, and schools). Second, the

idiosyncratic component depends on the firm current capacity utilization. If

the firm is near capacity, winning an extra contract may signify employing

an additional truck and driver which increases largely the cost of fulfilling the

contract. Finally, idiosyncratic costs include a firm’s efficiency in packaging,

loading trucks, managing the machinery etc.

If the common component is controlled for, the cost structure falls in the inde-

pendent and private value framework. Further discussion of this assumption is found

in section 2.6.3.2.

A description of the conspiracy as well as the main actors in the industry is

provided next. In 1992 and 1993, nine milk processors accused of collusion in the

DFW market area reached settlement with the State.17 The cartel included the main

suppliers with plants in the DFW market area: Borden, Foremost, Schepps, Cabell,

Oak Farms, Metzger, Vandervoort, Gandy, and Preston. Indictments suggest that

collusion began at least as early as 1975. This paper focuses on the period from 1980

to 1992. The cartel went through the following structural changes: in 1983, Borden

acquired Metzger; in 1985, Preston entered the school milk market and joined the

conspiracy; in 1986, Schepps acquired Foremost; in 1990, Cabell acquired Oak Farms.

Pure Milk Co. is the largest non-cartel school milk supplier in the dataset. The

firm’s main plant was located in Waco, TX (i.e in a different federal order zone

than the DFW cartel). The company was founded in the 1960s and was successful in

establishing a strong local customer base in Central Texas by marketing higher quality

dairy products. Its main raw milk supplier was Dairy Farmers of America, a national

milk marketing cooperative. School contracts made up to 20% of the firm’s business.

17As in Pesendorfer (2000), collusion is thought of as an explicit or implicit scheme designed to
limit competition and increase profits.
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While Pure Milk bid primarily for contract near its plant in the Waco market area,

it also participated in a non-negligible number of auctions for school districts in the

DFW market area. According to the General Manager of the firm at that time, these

were typically larger contracts justifying ”going the extra mile”. In these occasions,

Pure Milk bid against the cartel. The paper focuses on these contracts in which Pure

Milk bid in district where the cartel was operating. Pure Milk’s location further from

the epicenter of the conspiracy may have played a non-negligible role in it not being

part of the cartel. Most of its business was conducted in the Waco market area, while

the cartel was only active in Dallas-Fort Worth.

2.4 Data and Descriptive Statistics

The paper studies school milk contracts awarded annually between 1980 and 1992

in three large market areas in Northeastern and Southern Texas: Dallas-Fort Worth,

Waco and San Antonio. Contracts are awarded at the school district level. Figure

2.1 shows school districts in the dataset by market area. Each school district con-

tains around four to five schools. Initially, the dataset contains information on 1620

auctions, 4444 bids.

The main dataset is the auction data. This dataset was collected by the Antitrust

Division of the US Department of Justice during its investigation of the Texas milk

cartel. For each contract awarded, the following characteristics are observed: the

county and school district awarding the contract, the identity of the bidding firms

and corresponding bids for each milk category (whole white, whole chocolate, low-

fat white, low-fat chocolate, skim milk), the quantities required per milk category,

whether a cooler has to be provided, the number of meals served in the school district,

the school district enrollment, the number of deliveries per week, the number of

schools in the district, whether a bid was fixed or escalated, and the identity of the
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winner18.

Three auxiliary datasets complement the auction data. Two are obtained from

the US Department of Agriculture’s Marketing Service.19 First, a dataset on prices of

Class I fluid milk for the period of interest.20 This is the price of raw milk sold by milk

cooperatives (such as Dairy Farmers of America) to milk processors and distribution

firms.21 Second, a dataset giving the processing plants locations of the firms bidding

for the school milk contracts. Third, the longitudes and latitutes of school districts

is added to the main auction data.

The reduced form and structural analysis are conducted on the data after the fol-

lowing preparation. Auctions with more than one winner are dropped. Auctions with

only one participant are dropped. Prices are deflated using the CPI deflator into 1982

dollars. Finally, a distance variable is constructed for each observed bidder-auction

pair: this variable measures the great-circle distance between the school district and

the bidder’s closest plant. The variable is constructed using the latitude and lon-

gitude coordinates of firms’ plants and school districts. After this procedure, the

dataset contains information on 1, 033 auctions, 3, 488 bids.

Table 2.1 shows that the majority of firms win between 20% and 30% of auctions

in which they participate. Borden and Oak Farms are the largest firms in terms of

contract won over this period.22 In terms of contracts won, Pure Milk (the largest

non-cartel firm) is in the second-tier of the distribution. It won 28% of the contracts

it bid on.

18In some large and densely populated district, several distributors shared the contract.

19Southwest Market Area (Federal Milk Order 126).

20Class I Milk is raw milk destined to be used as a beverage, in opposition to milk processed into
yogurts, cheese etc.

21Note that such prices differ from one region to the other within the Texas Milk Marketing Order.

22Both firms are national, with a larger distribution network.
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Table 2.1: Number of bids and wins by firm 1980− 1992

Vendor # of bids # of wins % of wins

BORDEN 836 232 0.278

CABELL 418 140 0.335

FOREMOST 139 45 0.324

GANDY 23 5 0.217

KNOWLTON 12 1 0.083

LILLY 7 0 0

METZGER 21 4 0.190

OAK FARMS 530 184 0.347

PRESTON 333 98 0.294

PURE 255 72 0.282

SCHEPPS 528 115 0.218

SUPERIOR 46 30 0.652

VANDERVOORT 340 107 0.315

Total 3, 488 1, 033
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Table 2.2 gives summary statistics by market area. Over the period of interest,

735 contracts were awarded in Dallas-Fort Worth, 143 in San Antonio, and 179 in

Waco. Only 15 school districts awarded contracts in San Antonio, against 30 for

Waco. Indeed, school milk contracts in San Antonio are for larger quantities. The

average winning bid (for a half-pint of whole white milk) is greater in Dallas-Fort

Worth, followed by San Antonio, and lastly Waco23. The average cost of a contract is

the highest in San Antonio, reflecting again the larger size of contracts. The average

contract cost in DFW is $85, 115 against $18, 779 in Waco. This reflects differences

in contract sizes, raw milk prices, contract specification across the two market areas

but is also potentially related to inflated cartel prices in the DFW area.

2.5 Reduced Form Analysis

In this section, the bidding behavior of the largest non-cartel bidder (Pure Milk

Co.) is examined. This preliminary analysis provides evidence that Pure Milk bid

significantly less aggressively when facing cartel bidders, and allow a preliminary

assessment of the overbidding.

23Note that for these winning bid may reflect different auction characteristics from one market
area to the other (quantities, input prices etc)
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Table 2.2: Descriptive statistics by market area

Market Area DFW San Antonio Waco

Number of bids 2411 555 591

Number of contracts 735 143 179

Number of contracts/year 56.5 11 13.7

Number of counties 25 7 7

Number of school districts 115 15 30

winning bid/half pint
Mean 0.1442 0.1417 0.1365

SD 0.0214 0.0283 0.0226

# of meals per year-school district
Mean 522,578.2 1,273,001.4 339,188.0

SD 655,877.1 1,436,814.3 620,308.4

Contract total cost per school district
Mean 85,115.37 168,938.34 18,779.90

SD 112,916.49 202,501.19 24,883.69

Note: Bids are for a half-pint of whole white milk. Bids and contract cost are in 1982 dollars.
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Figure 2.1: Map of the counties in the dataset, by market area

Pure Milk’s processing plant is located near the city of Waco, in Mc Lennan

county. The firm bid mainly in Mc Lennan and neighboring counties (see Figure 2.1).

However, in 10% of the cases, the firm bid in further counties, located in the cartel

area of activity. Auctions in which Pure Milk bid are divided by counties into two

separate types:

• Collusive auctions: these are in counties contiguous or close to Dallas-Fort

Worth in which the cartel presence was established by the DoJ. The counties

are Johnson, Hood, Erath, Dallas, and Comanche. Such auctions form around
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10% of Pure Milk’s bids.

• Competitive auctions: these are in counties outside the Dallas-Fort Worth car-

tel territory (they are located in the Waco or San Antonio market areas). The

counties are McLennan and directly contiguous counties: Coryell, Falls, Lime-

stone, Bell, Hill, and Bosque.

This classification is based on the factual statement of the milk cartel prosecution. It is

assumed that the cartel bid in the collusive counties, while all firms bid competitively

in the competitive counties.

Table 2.3: List of variables

Type Variable Description

Auction specific FMO price raw milk price in 1982 dollars

meals number of school lunches per school district per year

escalated equals 1 if the bid is escalated

deliveries number of deliveries per week

number of schools number of schools in the school district

cooler equals 1 if a cooler needs to be provided

number of bids number of bids submitted in the auction

Bidder specific distance great-circle distance between closest plant and school district

bid bid submitted for whole white category

incumbency equals 1 if bidder won the contract in previous year

Note: Indicators for missing values of cooler, deliveries and escalated are also included

The logarithm of Pure Milk’s bid for whole white milk is regressed on the variable

listed in Table 2.3. All continuous variables are in logarithm.24 Quadratic terms for

the number of meals and distance are included. In the first specification, no fixed

24The log-log specification allows the interpretation of coefficients as elasticities. Additionally,
because bids are positive, errors are positively skewed. By logging the observed variable, errors are
made more symmetric.
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effects are used. In the second specification, year fixed effects and dummy variables

for ”collusive” and ”competitive” counties are used. In the third specification, year

fixed effects and county dummy variables are used. Results are shown in Table 2.4.

Table 2.4 shows that bids move closely with the price of raw milk. As expected,

escalated bids are lower than fixed bids (since they are indexed to the price of raw milk

and therefore shield bidders against future fluctuations of their input price). Bids are

increasing in the number of schools to supply within the district. Bids are decreasing

in the number of bidders. In specifications (2) and (3), bids are convex in the number

of meals served (equivalently in the quantity of milk to supply). This would be

consistent with an optimal utilization rate for milk distributors. In specifications (2)

and (3), bids are concave in the distance between the processing plant and the school

district. Distance increases the cost of fulfilling a contract, but with diminishing

effects.

The regression provides evidence that Pure Milk overbid when facing the cartel.

In specification (2), the coefficient on the dummy for the group of collusive auctions

defined above is significantly different from zero and positive. Pure Milk bid on aver-

age 6% higher in the collusive auctions (facing the cartel), relative to the competitive

auctions. Specification (3) breaks down the effect at the county level. As shown in

Figure 2.2, coefficients are significantly positive in collusive counties, while the coeffi-

cients are significantly negative in counties with competitive auctions. All coefficients

are measured with respect to the average bid in Bell county (competitive auction).

The reduced form analysis demonstrates that the largest non-cartel bidder overbid

when facing the cartel. This approach is, however, limited if one is interested in the

magnitude of umbrella damages relative to cartel damages, or in assessing the size

of inefficiencies introduced by the cartel agreement. Therefore, more structure is im-

posed on the data. This structure is derived from the theoretical model of section 2.2.

The structural analysis allows not only the estimation of damages and inefficiencies,
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Table 2.4: Determinants of Pure Milk’s bids

(1) (2) (3)

Coeff. (SE) Coeff. (SE) Coeff. (SE)

Incumbency −0.013 (0.015) −0.029∗∗∗ (0.009) −0.001 (0.009)

FMO price 1.175∗∗∗ (0.068) 1.017∗∗∗ (0.067) 1.062∗∗∗ (0.060)

Meals −0.064 (0.233) −0.363∗∗ (0.141) −0.339∗∗ (0.163)

Meals sqrd 0.002 (0.010) 0.015∗∗ (0.006) 0.013∗ (0.007)

Escalated −0.041∗∗ (0.016) −0.016∗ (0.010) −0.019∗∗ (0.008)

Escalated missing −0.015 (0.018) −0.016 (0.011) −0.012 (0.010)

Cooler 0.004 (0.073) 0.011 (0.045) 0.004 (0.056)

Cooler missing −0.047 (0.067) −0.014 (0.041) 0.013 (0.053)

Deliveries 0.004 (0.014) −0.010 (0.008) −0.006 (0.009)

Deliveries missing 0.063 (0.051) 0.007 (0.032) 0.040 (0.037)

Number of schools 0.006∗ (0.003) 0.003 (0.002) 0.008∗∗ (0.003)

Number of bids −0.016 (0.013) −0.016∗∗ (0.008) −0.014∗ (0.008)

Distance 0.042 (0.027) 0.082∗∗∗ (0.018) 0.115∗∗∗ (0.022)

Distance sqrd −0.005 (0.005) −0.014∗∗∗ (0.004) −0.032∗∗∗ (0.006)

Collusive auction 0.066∗∗∗ (0.024)

Constant 1.587 (1.372) 3.002∗∗∗ (0.848) 3.228∗∗∗ (0.963)

Year FE No Yes Yes

County FE No No Yes

Observations 217 217 217

R2 0.697 0.908 0.934

Adjusted R2 0.676 0.896 0.921

Residual Std. Error 0.095 (df = 202) 0.054 (df = 190) 0.047 (df = 180)

F Statistic 33.214∗∗∗ (df = 14; 202) 72.363∗∗∗ (df = 26; 190) 71.104∗∗∗ (df = 36; 180)

Note: A dummy for competitive auctions is omitted in specification (2). Omitted county is BELL

in specification (3). Counties corresponding to collusive auctions in bold in specification (3). All

continuous variables in log. Prices in 1982 $. ∗∗∗Significant at the 1 percent level. ∗∗Significant

at the 5 percent level. ∗Significant at the 10 percent level.
100



Figure 2.2: Estimates and 95% confidence intervals for the county dummies
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but also a finer decomposition of umbrella damages into damages stemming simply

for the non-cartel firm overbidding, and damages originating in the inefficiency of the

asymmetric auction.

2.6 Structural Analysis

In this section, the theoretical model of section 2.2 is estimated from the data. The

objective is: first, to quantify the average damages caused to the school districts by

the outsider firm (umbrella damages), and second, to quantify the loss in efficiency

due to asymmetries between bidders introduced by the cartel agreement.

The estimation approach begins by recovering the underlying cost distribution of

bidders from observed competitive bids. As auctions differ in their specifications (in

the quantity to be supplied, whether bids can be escalated, number of deliveries per

week, number of schools in the district), bids will reflect auction specific heterogeneity.

A first step is to account for this observed auction heterogeneity to obtain a set

normalized bids. Costs are then estimated non-parametrically using the empirical

distribution of normalized bids following Guerre, Perrigne, and Vuong (2000)—GPV

hereafter.

Using the estimated cost distribution, counterfactual bids are obtained by solving

the auction in which the outsider firm faces the cartel. Two scenarios are considered:

(1) assuming that the cartel mechanism is efficient (in the sense, that the cartel

member with the lowest cost bids on behalf of the cartel), or (2) assuming that the

cartel mechanism is inefficient (the cartel bidder is selected randomly from the cartel

members). The cartel bidder is ”stronger” when the mechanism is efficient (scenario

(a)) and therefore the outsider will tend to bid more aggressively (see section 2.2). As

a result, estimates under this scenario will give a lower bound on umbrella damages.

Estimates under scenario (b) will accordingly provide an upper bound on umbrella

102



damages.

Under scenario (a), cartel bidder and outsider draw their costs from different

distributions. Equilibrium bid function in such asymmetric auction cannot be solved

for analytically. The bid functions are obtained by numerical resolution of the system

of differential equations (2.3). The method used is the fixed point iteration, introduced

by Fibich and Gavish (2011).

Once the counterfactual bids are obtained, auction heterogeneity is added back

to the bids, to reflect characteristics of auctions in which the cartel bid against the

outsider firm. Damages to the seller (school district) and inefficiencies are estimated.

2.6.1 Data Limitations

Although the dataset used is rich in many dimensions, a few difficulties must be dealt

with before laying out the estimation approach. A first issue is due to auctions differ-

ing in their observed characteristics, such as quantity of milk to supply. This auction

observed heterogeneity is addressed by imposing additional structure on firms’ costs

(Assumption 2). A second issue is related to the relatively small sample size of auc-

tions with a non-cartel firm bidding against the cartel.25 This issue is compounded by

the fact that the cartel mechanism is unknown. This section shows how assumptions

restricting the structure of the model can be leveraged to estimate the variables of

interest (cost distribution, equilibrium bid functions, and damages).

Denote by xd, auction d’ s observed characteristics (such as the quantity to be

supplied, whether bids can be escalated, number of deliveries per week, number of

schools in the district etc.).

Assumption 2 (Multiplicative Separability). Bidder i’s cost in auction d, denoted

25The data contains 250 bids by the non-cartel firm, 30 of which are against the cartel
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cid, can be written:

cid = c̃idΓ(xd)

for some function Γ(.). c̃id represents bidder i’s idiosyncratic (”normalized”) cost in

auction d, which is independent from xd.

Assumption 3 (Independence of costs across auctions). Costs are drawn indepen-

dently across school districts and years.

A detailed discussion of these assumptions’ validity is delayed to Section 2.6.3.2.

The main issue is related to the estimation of the cost distribution from observed

bids. The structural model developed in Section 2.2 requires (at least) two partici-

pants bidding non-cooperatively in each auction. Based on the list of firms prosecuted

by the DoJ, all firms located in the Dallas-Fort Worth area were found colluding for

contracts in that area. As a consequence, it is safe to assume that the majority of

bids for auctions in the Dallas-Fort Worth area (in which all participants were cartel

members) were either (1) a winning bid submitted by the cartel bidder to match the

seller’s (underlying) reserve price or (2) cooperative ”phony” or ”complementary”

bids submitted by other cartel bidders. The structural model cannot be used to infer

underlying costs from these complementary bids (and reserve prices), as most of them

do not necessarily map to a firm’s true cost, but were merely designed to simulate

competition among bidders (or extract all of the seller’s surplus). Auctions in which

the cartel participates are referred to as ”collusive” auctions.

Since the goal is to quantify the size of umbrella damages as a fraction of cartel

damages, a natural way to solve the previous issue would be to use only the sub-

set of collusive auctions in which the outsider firm bid against the cartel. In these

auctions, at least two participants (the outsider and the cartel bidder) are bidding

non-cooperatively. Unfortunately, two reasons make this alternative unappealing.

First, the small sample size of this set of auctions (with the outsider bidding against
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the cartel) renders any non-parametric estimation of the distribution of costs impos-

sible.26 Second, the cartel mechanism (in particular the choice of the cartel bidder) is

a priori unknown.27 One could assume a mechanism for the selection of the cartel bid-

der, and estimate underlying costs from observed bids. However, such an assumption

will be hard to justify. Additionally, if the mechanism is misspecified, this approach

will lead to biased estimates of underlying costs. A more conservative approach is

therefore preferred.

In the preferred approach, auctions from the two other market areas in the dataset

(Waco and San Antonio) are used. As no firm was prosecuted in counties around Waco

and San Antonio, it is assumed that firms were bidding competitively in these counties

(denoted hereafter ”competitive” auctions). By Assumption 2, observed auction het-

erogeneity can be separated from the idiosyncractic part of the bid. By Assumption

3, the set of competitive ”normalized” bids can be used to recover the distribution of

”normalized” costs (the c̃id). Using the estimated distribution of costs, counterfac-

tual bids are then simulated by solving the asymmetric auctions in which the outsider

firm bid against the cartel, for different specification of the cartel mechanism (efficient

cartel or inefficient cartel). Finally, by Assumption 2 (in particular the independence

of ”normalized” bids/costs and observed auction characteristics), observed auction

characteristics drawn from the set of collusive auction with the outsider firm bidding

against the cartel, are added back into the bids. By following this procedure, a set of

competitive auction, and a set of corresponding collusive auctions with the outsider

bidding against the cartel, are obtained.

Advantages of this approach are twofold. First, estimation of the cost distribution

does not hinge on the correct specification of the cartel mechanism. Indeed, cost

26The outsider firm bid against the cartel in about 10% of the auctions in which it participates,
which gives a set of 33 auctions.

27Pesendorfer (2000) finds evidence that the Texas cartel was quasi-efficient even though sidepay-
ments were not used, by comparing it to the Florida cartel which was efficient.
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are obtained from competitive auctions in which no bidders collude. Second, the

cost distribution is estimated non parametrically, as the sample size of competitive

auctions allows it.

One drawback of this approach is that it does not recover the specific cost cor-

responding to observed bids for collusive auctions in which the outsider participates.

Instead, it computes upper and lower bounds on umbrella damages using (1) the cost

distribution estimated from the set of competitive auctions and (2) auction observed

characteristics drawn from collusive auctions in which the outsider participates.

2.6.2 Estimation Approach

The steps followed in the estimation are described below:.

• Step 1: Observed auction heterogeneity

The estimation procedure assumes that the data available is from auctions of

ex − ante identical contracts. This is not the case for school milk contracts.

Indeed, contracts differ in various dimensions, which are public information and

observed by the bidders before submitting their bids. This public information

will enter not only a bidder’s private cost of realizing the contract, but also his

belief about other bidder’s costs.

Haile, Hong, and Shum (2006) propose one method to account for auction-

specific observed heterogeneity. The paper shows that multiplicative separabil-

ity (Assumption 2) of idiosyncratic costs and auction characteristics carries out

to bids and auction characteristics.

Lemma 2. Assume the multiplicative separable structure:

cidt = c̃idtΓ(xdt)

where cidt is bidder i’s cost for contract d at time t, xdt are contract-time spe-

cific characteristics. Then the equilibrium bid function has the multiplicative
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separable form:

β(cidt) = β(c̃idt)Γ(xdt)

This result can be used to account for observed auction heterogeneity and ho-

mogenize the bids. Assume the following parametric specification: Γ(xdt) =

exp(x′dkβ). The first-stage regression is:

ln bidt = x′dtβ + ηt + γc + κi + ndtδ + σidt (2.11)

where bidt denotes the bid of bidder i for contract d at time t, ηt is a time

specific dummy, γc is a county dummy, κi is a bidder specific dummy, and ndt

is the number of bidders participating in contract d at time t, σidt is the error

term. xdt include variables for: the price of raw milk, the number of meals

served (and its square), whether bids can be escalated, whether a cooler has

to be provided, the number of deliveries per week, and the number of schools

in the school district. All continuous variables are in logarithm. Note that the

use of time dummies enable us to capture seasonality: for instance, common

packaging, processing and labor costs, that might change over time, but are

common to all bidders.

The first-stage regression is ran on the sample of competitive auctions, that is,

auctions in which the cartel did not participate.

Normalized bids are constructed from the results of regression (2.11), as ln b̃idt =

ln bidt − x′dtβ̂ − η̂t − γ̂c.

Since equilibrium bid functions depend on the number of bidders participating

in the auction, the rest of the estimation is conducted on auctions fixing the

number of participants to three bidders.28

28Note that auctions with two participants do not give rise to potential umbrella damages, while
auctions with more than four bidders are somewhat scarce in the dataset.
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The estimation approach abstracts from auction unobserved heterogeneity. The

latter would be relevant if bidders were to observe auction characteristics that

are unobserved by the econometrician. In the context of school milk auctions,

there do not seem to be other factors relevant to firms’costs aside from the

ones controlled for in this first estimation step, i.e input prices, quantities, and

auction specifications (escalated bids, coolers, number of deliveries etc).

• Step 2: Estimation of the underlying cost distribution (GPV estima-

tor)

Following the procedure presented in Guerre, Perrigne, and Vuong (2000), the

underlying distribution of costs can be estimated using the distribution of nor-

malized bids, obtained in the previous step. The cumulative distribution of

bids is estimated using the empirical distribution function, while the density is

estimated using a kernel with finite support.29 Bid data are trimmed in order

to control for the asymptotic bias at the boundaries of the support of the bid

distribution as suggested in Guerre, Perrigne, and Vuong (2000).

• Step 3: Derivation of the asymmetric equilibrium bid functions

As shown in Section 2.2, the cartel bidder and non-cartel firm equilibrium (in-

verse) bid functions, denoted φ1 and φ2 respectively, are the solutions of:
1

b−φ2(b)
=

f1(φ1(b))φ′1(b)

1−F1(φ1(b))

1
b−φ1(b)

=
f2(φ2(b))φ′2(b)

1−F2(φ2(b))

(2.12)

where Fi (resp. fi) is the cumulative distribution (resp. density function) of

costs of the cartel (i = 1) and the outsider firm (i = 2). Along with the

boundary conditions φ1(b) = φ2(b) = c (lower bound of support of bids) and

φ1(c) = φ2(c) = c, equation (2.12) forms a nonlinear boundary value problem

29The epanechnikov kernel is used. The bandwidth selection method is likelihood cross-validation.
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(BVP), in which the location of the left-boundary b is unknown. In addi-

tion to this latter ”non-standard” feature, the numerical resolution of the BVP

is furthermore complicated (see below) by the fact that the mapping M in

(φ′1(b), φ′2(b)) = M(b, φ1(b), φ2(b)) is not Lipschitz-continuous in (φ1(b), φ2(b))

at the right boundary c.

The BVP defined in equation (2.12) cannot be solved analytically. However,

several numerical solutions have been proposed in the literature: the backward-

shooting method was first used to solve this problem by Marshall, Meurer, et al.

(1994) and used and refined in various subsequent papers.30 While this method

is currently the standard for computing equilibrium bids in asymmetric auctions,

it suffers from large instability at the right boundary (see Fibich and Gavish

(2011) for a detailed analysis). As a consequence, an alternative numerical

method, proposed in the latter paper, is preferred. Their idea is to recast the

BVP as a system of differential equations in φ1 and b (instead of φ2) as functions

of φ2. This allows to transform the BVP with unknown left boundary into a

BVP with known boundaries, and apply standard numerical techniques such as

fixed point iteration on a grid. The details of their numerical method, adapted

to this setting are presented in Appendix B.1.

Since the internal organization of the cartel is unknown, in particular regarding

how the cartel bidder is selected for a given contract, two extreme cases for

the cartel internal mechanism are considered. These two scenarios will provide

upper and lower bounds on umbrella damages.

1. Efficient cartel mechanism: the cartel is able to select its lowest cost mem-

ber to bid on behalf of the cartel at the auction. Such mechanism can be

30Gayle and Richard (2008) use local Taylor series expansions of the solution and the distribution
and Li and Riley (2007) use an adaptive step size for the numerical backward integration to allow
better control of the error.
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sustained for instance if the cartel uses sidepayments. Denote by F the

true distribution of costs for each bidder (assuming symmetry), and by n

the number of cartel members submitting bids in the auction. Then the

cost distributions of the non-cartel firm and of the cartel bidder are:

F2(c) = F (c) f2(c) = f(c) ∀c ∈ [c, c]

F1(c) = 1− (1− F (c))n f1(c) = nf(c)(1− F (c))n−1 ∀c ∈ [c, c]

Note that F1 is simply the distribution of the minimum of n random vari-

ables drawn independently from F .

2. Inefficient cartel mechanism: for each contract, the cartel bidder is selected

randomly among cartel members. In this case:

F2(c) = F1(c) = F (c) f2(c) = f1(c) = f(c) ∀c ∈ [c, c]

Estimators of (F1, F2, f1, f2) are constructed from the non-parametric estimators

of (F, f) obtained in Step 2 (GPV estimation).31, and passed on to the fixed

point iteration algorithm. The result of the numerical method are estimators

of the true asymmetric equilibrium inverse bid functions: φ̂1 and φ̂2.

• Step 4: Reincorporation of the observed auction heterogeneity

Observed auction heterogeneity is added back into the set of normalized bids by

drawing from the empirical distribution of auction characteristics in cases where

the outsider firm bid against the cartel. This is motivated by Assumptions 1

and 2.

31The estimator of the cumulative distribution F is kernel-smoothed in order to facilitate the
numerical resolution.
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• Step 5: Damage Assessment

Estimates of damages are constructed by combining the set of competitive win-

ning bids and corresponding counterfactual set of collusive winning bids.32 Es-

timate of efficiency losses are constructed by comparing the winner’s cost in the

competitive and corresponding collusive auction.

2.6.3 Results

2.6.3.1 Assessment of Damages and Inefficiencies

Figure 2.3 shows the estimated bid functions in the case of three bidders auctions.33

Each panel shows the bid function in the competitive auctions, along with the counter-

factual outsider and cartel’s bid functions in the case of an efficient cartel mechanism

(left panel), and an inefficient cartel mechanism (right panel). In both cases, the col-

lusive bidding functions lie above the competitive bidding function as both the cartel

bidder and the outsider bid less aggressively. Note that the overbidding increases the

smaller is the bidder’s cost. Overbidding when the cartel is inefficient is larger than

when the cartel is efficient (see section 2.2).

Table 2.5 presents damage estimates obtained from the structural analysis detailed

in section 2.6.2.34 Estimates of damages to the auctioneer (school district) correspond

to the difference between the winning bid of the collusive auction in which the outsider

firm bids against the cartel and the winning bid of the competitive auction. Damages

32Collusive auctions are the auctions in which the outsider firm bid against the cartel.

33Normalized bid functions are represented.

34$ are 1982 dollars. UB corresponds to an inefficient cartel. LB corresponds to an efficient
cartel.1only cartel damages in the case of an efficient mechanism are reported. For an inefficient
mechanism, these damages are the same as the UB on outsider damages. 2per contract (whole white
only): doesn’t include damages for the other milk categories. 3per contract: computed by applying
the overcharge estimated to the total quantity purchased (whole white and other categories). Pro-
portions of auctions in the efficient cartel case: 33% with outsider damages, 9% with misallocation
damages, 58% with cartel damages. Confidence intervals based on 2500 bootstrap iterations.
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Figure 2.3: Estimated bid functions for auctions with three bidders with an efficient

and inefficient cartel mechanism

(a) Efficient cartel mechanism (b) Inefficient cartel mechanism

are classified into three types, depending on the identity of the winner in each of the

competitive and collusive auction:

1. Cartel damages : these are damages in collusive auctions won by the cartel.

From the estimated bid function, the cartel also wins the competitive auction.35

These are the typical damages antitrust authorities try to assess.

2. Misallocation damages : these are damages in collusive auctions won by the

outsider, when a cartel member would have won the competitive auction. When

the cartel mechanism is efficient, it introduces asymmetry in the auction. As a

result, the outcome of the auction is no longer efficient. The outsider wins the

collusive auction even if they are not the lowest cost bidder. The reason is that

the cartel bids less aggressively than the outsider.

35The cartel bids less aggressively in the collusive auction, so if the cartel wins, it must be lowest
cost bidder.
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3. Outsider damages : these are damages in collusive auctions won by the outsider,

when the outsider would have won the competitive auction as well. The outsider

is the lowest cost bidder. In this situation, damages to the auctioneer come

merely from the fact that, by best replying to the cartel’s bidding, the outsider

is able to bid less aggressively than in the competitive auction.36

Importantly, these damages are computed conditional on the cartel (in the case

of cartel damages) or the non-cartel firm (for misallocation and outsider damages)

winning the collusive auction. When the cartel is efficient, auctions leading to cartel

damages form 58% of the sample, auctions leading to misallocation damages form 9%

of the sample, while auctions leading to outsider damages form 33% of the sample.

When the cartel is inefficient, auctions leading to cartel damages form 50% of the

sample, while auctions leading to outsider damages form 50% of the sample. Upper

bounds (UB) and lower bounds (LB) are derived for outsider damages in the case of

an inefficient and efficient cartel mechanisms respectively.

In auctions where the outsider firm bid against the cartel, the mean damages per

contract in the whole white milk category are between $1, 052 and $2, 019. If the

same overcharge was applied to all milk categories, damages per contract would be

between $3, 906 and $7, 495. For auctions won by the outsider as the lowest cost bidder

(outsider damages) the winning bid is 2.9% to 8.5% above the competitive winning

bid, depending on the cartel mechanism. As a fraction of the winning competitive

mark-up, these damages are between 12% and 42%. For auctions won by the outsider,

while the cartel was the lowest cost bidder, misallocation damages are 3.5% of the

competitive winning bid, or 26% of the competitive winning mark-up. For auctions

won by the cartel, damages are between 5.9% and 8.4% of the competitive winning

bid, or between 30% and 42% of the competitive winning mark-up.

36The situation in which the outsider wins the competitive auction while the cartel wins the
collusive auction does not arise because the outsider bids more aggressively than the cartel.
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Table 2.5: Estimates of damages

Point Estimate LB of 90% CI UB of 90% CI

Mean damage per half-pint ($) - LB 0.00518 0.00447 0.00579

Mean damage per half-pint ($) - UB 0.00982 0.00890 0.01069

Mean damage per contract (whole white only) ($) - LB 1, 052.26 852.62 1, 264.88

Mean damage per contract (whole white only) ($) - UB 2, 019.22 1, 663.09 2, 395.20

Mean damage per contract ($) - LB 3, 906.65 3, 068.04 4, 765.71

Mean damage per contract ($) - UB 7, 495.49 5, 966.52 9, 097.94

Mean damage per half-pint ($)

Outsider damages - LB 0.00316 0.00246 0.00379

Outsider damages - UB 0.00919 0.00815 0.01019

Misallocation damages 0.00404 0.00294 0.00516

Cartel damages1 0.00647 0.00577 0.00713

Mean damage as fraction of competitive winning bid

Outsider damages - LB 0.02996 0.02306 0.03648

Outsider damages - UB 0.08538 0.07443 0.09614

Misallocation damages 0.03538 0.02541 0.04637

Cartel damages 0.05968 0.05279 0.06631

Mean damage as fraction of competitive winning mark-up

Outsider damages - LB 0.12353 0.09412 0.15096

Outsider damages - UB 0.42288 0.37230 0.47661

Misallocation damages 0.26609 0.19664 0.33934

Cartel damages 0.30961 0.27065 0.34453

Mean damage per contract (whole white only)2 $

Outsider damages - LB 655.47 449.78 877.98

Outsider damages - UB 1, 902.96 1, 425.27 2, 378.19

Misallocation damages 812.32 350.07 1, 340.04

Cartel damages 1, 330.21 1, 065.17 1, 599.61

Mean damage per contract3 $

Outsider damages - LB 2, 438.30 1, 539.83 3, 385.41

Outsider damages - UB 7, 074.81 4, 911.70 9, 181.49

Misallocation damages 3, 000.26 952.90 5, 331.35

Cartel damages 4, 937.94 3, 808.12 6, 100.61

Mean inefficiency due to Misallocation (efficient cartel)

per half-pint ($) 0.00394 0.00249 0.00560

in percentage loss 0.03723 0.02494 0.06895

per contract ($) 2, 909.34 747.15 5, 677.51

per contract (whole white only) ($) 788.55 294.23 1, 430.84
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Inefficiencies introduced by the (efficient) cartel agreement are measured by the

difference in the winner’s cost in the competitive and collusive auctions. These two

costs differ only in the case of misallocation damages, when the outsider firm wins the

collusive auction, while the cartel would have won the competitive auction. Inefficien-

cies amount to an increase of 3.7% of the winner’s cost, equaling 788$ per contract

in the whole white category, or 2, 909$ per contract.37

Damages caused by the outsider’s bidding behavior form a non-negligible frac-

tion of cartel damages. These umbrella damages can be decomposed into outsider

damages and misallocation damages, as defined above. Per contract, outsider dam-

ages (conditional on the outsider winning) are estimated to be at least 47% of cartel

damages (conditional on the cartel winning). In other words, the ratio of expected

damages to the auctioneer conditional on the non-cartel firm winning over the ex-

pected damages to the auctioneer conditional on the cartel firm winning, is estimated

to be at least 47%. This lower bound is obtained with an efficient cartel. If the cartel

is inefficient, outsider damages are as large as cartel damages. Misallocation damages

are estimated to be as large as 64% when the cartel is efficient, and the auction is

asymmetric. The estimates found for outsider damages, between 2.9% and 8.5% of

the competitive winning bid, are consistent with the overcharge of 6% estimated in

the reduced form section.

2.6.3.2 Robustness of the Assumptions underlying the Estimation Ap-

proach

The validity of the assumptions made so far is discussed here. The model is cast within

the symmetric IPV framework (Assumption 1). A bidder’s cost can be decomposed

37If the cartel is inefficient, misallocation damages might arise. However they are due to the
random selection of the cartel bidder rather than asymmetries between bidders. If the competitive
auction would have been won by a cartel member that is not selected as the cartel bidder, there will
be loss of efficiency. This type of misallocation is left aside as it is not stemming from asymmetries.
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into : (1) a component common to all bidders, which includes not only observed

auction characteristics, but also common processing, packaging and labor costs38

(2) an idiosyncratic part which is bidder specific. The symmetric IPV assumption

is imposed on the idiosyncratic part of costs (i.e once the common component of

costs has been filtered out). A bidder’s idiosyncratic cost depends on how close the

school district is to its current delivery route. This delivery route depends on the

bidder’s current portfolio of clients (which include government agencies, hospitals,

military bases etc). In the same line, a bidder’s idiosyncratic cost depends on its

current capacity utilization. Finally, idiosyncratic costs include a bidder’s efficiency

in packaging, loading trucks, managing the machinery etc39. Clearly, such factors are

private to each bidder, as they do not affect its competitors’ costs. Moreover, these

factors are fairly independent across bidders. However, one might argue that firms

could monitor each other’s capacities and portfolio of clients, and therefore derive

information about how far a competitor’s route is from a school district of interest. If

this was indeed the case, one way of controlling for such public information would be to

add ex-ante asymmetries across bidders: the cost distribution of a bidder depends of

its plant-school district distance. Nonetheless, the symmetry assumption is imposed.

A first justification is that in the vast majority of cases, firms favour closer school

districts. Second, information about competitors’ distance from the school district

of interest will be more important to infer competitors’ participation decision rather

than to get a precise estimate of their cost.

The multiplicative separability assumption of firms’ idiosyncratic costs and auc-

tion characteristics (Assumption 2) can be tested. By Lemma 2, bids inherit the

multiplicative structure. As noted in Asker (2010), this implies in particular that

within auction, the standard deviation of bids depends on auction characteristics.

38See evidence found in Porter and Zona (1999).

39According to interviewed bidders.
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Figure 2.4: Within-auction mean of bids against standard deviation for auctions with

3 bidders

With an additive separable structure this will not be the case. As within-auction av-

erage bids also depends on auction characteristics, one expect a positive correlation

between within auction average bid and standard deviation. Figure 2.4 shows these

two variables plotted. The within-auction standard deviation varies with the average

bid.

In order to conduct the structural estimation of the cost distribution, indepen-

dence of idiosyncratic costs across school districts and years is needed (Assumption

3). The use of time fixed effects in the first step of the estimation approach help

capture any within-year correlation between cost drawn. The use of county dummies

controlls for within-county correlation of costs.

Another crucial assumption for the structural analysis is that the equilibrium
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derived is played in the data (in the competitive auctions from which we estimate

the cost distribution). In particular, bidders know the number of firms participating

in the auction. While this assumption is usually standard, additional evidence was

found by interviewing managers who participated in the school milk procurements.

According to interviewed bidders, the number and the identity of the firms who are

likely to bid for a given contract is usually known in advance. This is due to the

fact that firms bid for the same set of contracts every year and therefore develop

a good understanding of which competitors will be interested in a given contract.

Information about which competitors are the closest to the school district of interest

also helps in refining their estimate of the number of bidders.

A last issue to deal with concerns endogenous selection in the case of the outsider.

Indeed, it is assumed that the cost distribution of the outsider is the same in the

competitive and the collusive auctions. This need not be the case if there is selection

on observable auction characteristics (i.e the characteristics of the competitive and

collusive auctions in which the outsider participates are systematically different) or

on idiosyncratic costs (for instance if the outsider bids against the cartel only when

the cost drawn is favourable enough). The first type of selection is dealt with by the

separability assumption. Indeed, damages are estimated by drawing from the empir-

ical distribution of collusive auction characteristics (cf step 4). The second type of

selection, on idiosyncratic costs, seems less of a concern: according to the interviewed

non-cartel bidder, the main factor driving participation in collusive auctions was the

size of the contract. Figure 2.5 shows the empirical distribution of Pure Milk’s bids

when facing the cartel (triangle markers). This empirical distribution can be com-

pared to the bid distributions predicted by the structural model. In particular, the

bid distributions of : (1) the non-cartel firm facing an efficient cartel (solid line), (2)

an efficient cartel (dashed line), and (3) an inefficient cartel/non-cartel firm (dotted

line), are plotted. Although of a limited sample size, Pure Milk’s bid distribution
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Figure 2.5: Cumulative distributions of normalized bids for three-bidder auctions

estimated from the data is close to the distribution predicted for the non-cartel firm

facing an efficient cartel.

2.7 Conclusion

This paper examines how non-cartel firms’ bidding behavior can be affected by the

existence of a cartel in a first-price procurement auction. In the case of the Texas

school milk cartel, the analysis shows that the largest non-cartel firm bid significantly

higher when facing the cartel (relative to when facing non-colluding firms).

The structural model shows that conditional on the non-cartel firm winning against

the cartel, damages to the auctioneer (in the form of inflated winning bids) are a non-

negligible fraction of the damages caused when the cartel wins. These results provide
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new evidence on the potential severity of umbrella damages, i.e damages caused to

buyers by non-cartel firms adapting to the cartel supra-competitive price. As shown,

umbrella damages broaden the scope of cartel damages in a non negligible way. The

recent decision by the ECJ allowing ”umbrella claimants” to pursue treble damages

against cartels seems to recognize the latter fact, albeit at the same time pointing

to the difficulty of proving such claims. Assessing umbrella damages is nonetheless

feasible, as shown here in the case of procurement auctions, as long as claimants have

access to prices when the cartel competes against outsiders.

A number of open questions remain. First the paper focuses on the school milk

industry in which contracts are awarded via first-price procurement auctions. But

umbrella damages might not be restricted to auction environments. Alternative envi-

ronments include industries where firms compete in quantities (an example would be

the vitamin market and other similar commodities markets). Investigating the preva-

lence of such damages in alternative environment is left for future research. Second,

in auction environments, the framework presented does not address the potential

effect of a cartel existence on outsiders’ participation decision. If entry is endoge-

neous and selective, in the sense that only firms with a cost realization (or signal)

below a certain threshold enter, a cartel will induces more entry of outsiders (relative

to a competitive environment with the same number of bidders).40 This is because

conditional on entry, the outsider’s profits are strictly larger when his competitors

collude (see section 1.1). This raises interesting predictions, which could be tested in

environments where participation decisions are better observed.

40The two extreme models of entry being Levin and Smith (1994) in which firms pay an entry
cost to learn their private cost, and Samuelson (1985), in which firms know their cost before making
their entry decision. The former features no selection, while the latter features selection.
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APPENDIX A

Appendix to Chapter 1

A.1 Panel of Digital-Projector Acquisitions

Table A.1 presents the observation dates for the panel of digital projector adoption

by data sources. The table also shows the periodic subsample selected. The periods

selected are such that there is a previous observation period 6 months earlier (in

some exeption it is 5 or 7 months). For instance, “May 2012” is selected because

the industry is observed on November 2011. The observation periods selected are

represented in blue in Figure A.1.

Figure A.1: Share of digitally equipped screens and observation times
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Table A.1: Observation times by data source

Date Source Periodic sample

July 2005 Media Salles X

January 2006 Media Salles X

July 2006 Media Salles X

January 2007 Media Salles X

July 2007 Media Salles X

January 2008 Media Salles X

July 2008 Media Salles X

January 2009 Media Salles X

July 2009 Media Salles X

September 2009 Cinego

Jarnuary 2010 Media Salles X

April 2010 Cinego

July 2010 Media Salles X

January 2011 Media Salles X

November 2011 Cinego

January 2012 Media Salles

May 2012 Cinego X

June 2013 Cinego
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A.2 Reduced Form Analysis

This section details the construction of the variable “share of digital screens” for the

art house and commercial networks. Denote by pi the share of art house movies

screened by theater i in 2015. Recall that art house theaters are defined as theaters

with pi ≥ 0.8, while commercial theaters are defined as theaters with pi ≤ 0.2. The

share of art house digital screens in period t is defined by:

st,a
Sa

=

∑
i∈I
pisit∑

i∈I
piSi

(A.1)

Similarly the share of commercial digital screens is defined by:

st,c
Sc

=

∑
i∈I

(1− pi)sit∑
i∈I

(1− pi)Si
(A.2)

note that in both cases the share is computed with respect to the total number of art

house (resp. commercial) screens, not the total number of screens. This is because the

analysis focuses on specialized art house theaters (pi ≥ 0.8) and commercial theaters

(pi ≤ 0.2).

Table A.2 shows the reduced-form regression under the logit specification for the

error term. The effect of a 10% increase in the industry share of digital screens in

shown in Figure A.2. The predicted magnitude of network effect is 10% − 14% at

a 50% share of digital screens. The results are similar to the predictions under the

probit specification.
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Table A.2: Share of screens converted sit/Si conditional on si(t−1)/Si = 0 (ordered

logit)

Share of screens converted sit/Si conditional on si(t−1) = 0

(1) (2) (3)

Estimate s.e Estimate s.e Estimate s.e

Industry share of d-screens 4.174 2.276 4.878 2.383 5.596 3.545

Adoption cost -6.160 2.302 -6.437 2.361 -6.873 2.646

Own screens 0.142 0.107 0.170 0.110

Seats 0.301 2.396 0.346 2.633

Art house 0.133 0.257 0.130 0.273

Competitor d-screens 0.024 0.019 0.024 0.020 0.029 0.024

Competitor f-screens -0.007 0.008 -0.011 0.009 -0.008 0.010

Year FE Yes Yes Yes

Region FE No Yes No

market size FE No Yes No

Chain FE No Yes No

Box-office FE No Yes No

Theater RE No No Yes

Observations 1, 563 1, 563 1, 562

-log Likelihood 392.490 373.389 385.241

AIC 818.980 804.777 800.482

Note: ∗∗∗ 0.1% ; ∗ 10%. D-screen = screen equipped with a digital projector. f-screen = screens

equipped with a film projector. For market dummies, the omitted category is “ urban unit - 20 to

100k inhabitants”. For the chain dummies, the omitted category is “single firm and small chains”.
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Figure A.2: Effects of the industry share of digital screens and adoption cost on the

probability of adoption

Note: The effect of a 10% increment in the industry share of

digital screen, on the probability of adoption, evaluated at the

mean, as a function of the initial industry share of digital screens

is represented.
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A.3 Industry Model

A.3.1 Perceived Transition Kernel

Let P̂a′,a be defined as follows (where the subscript t is omitted and next-period

variables are marked with a prime):

P̂a′,a(x̃
′
i, p
′, s′|x̃i, p, s) = P̂a′,a(x̃

′
i, p
′|x̃i, p, s)P̂a,a(s

′|p, s) (A.3)

The first sub-kernel P̂a′,a(x̃
′
i, p
′|x̃i, p, s) gives firm i’s assessment of its next-period

state (including competitors’ total number of digital screens) and the exogenous price

process. The second sub-kernel P̂a,a(s
′|p, s) gives firm i’s assessment of next-period

industry moment. Note this definition of the perceived kernel P̂a′,a(x̃
′
i, p
′, s′|x̃i, p, s)

implicitly assumes that firm i ignores its own impact on the evolution of the industry

moment: x̃′i and s′ are independent conditional on (x̃i, p, s). This assumption is

realistic if the number of firms is very large, and therefore a single firm has a negligible

impact on the aggregate industry state (and corresponding moment).

The perceived transition kernel for the moment s, P̂a,a(s
′|p, s), is first defined. The

analysis focuses on short-run dynamics (i.e., the diffusion phenomenon) rather than

the (adoption) steady state reached by the industry. The perceived kernel is meant

to capture the short-run dynamics of the industry moment starting from the initial

industry state (y0, p0). It is defined to coincide with the average observed transitions

from the current moment-based state (s, p) to the next, the average being taken over

many finite and short trajectories that start from the initial state of the industry.

The perceived kernel corresponds to the observed frequencies of these transitions

under adoption strategy a. Following Ifrach and Weintraub (2017) (Appendix A),

P̂a,a(s
′|p, s) is defined as follows:

126



P̂a,a(s
′|p, s) =

1

L

L∑
l=1

T∑
t=1

1{(plt, slt) = (p, s), slt+1 = s′}

T∑
t=1

1{(plt, slt) = (p, s)}
(A.4)

where T is fixed to the time horizon of interest (in this case, 20 years covering the

diffusion duration, or 40 periods), and {(plt, slt), T ≥ t ≥ 0)}Ll=0 is a random sample of

size L drawn from the distribution of the process {(pt, st), t ≥ 0)} generated by the

adoption strategy a, and initiated at the true initial industry state and exogeneous

price (y0, p0).

The sub-kernel P̂a′,a(x̃
′
i, p
′|x̃i, p, s) can be further expressed as

P̂a′,a(x̃
′
i, p
′|x̃i, p, s) = Pa′,a(τi, s

′
i|x̃i, p, s)P̂a′,a(z

′
i|x̃i, p, s)P(p′|p) (A.5)

where Pa′,a(τi, s
′
i|x̃i, p, s) is firm i’s assessment of its next-period state,

P̂a′,a(z
′
i|x̃i, p, s) is firm i’s assessment of competitors’ next-period digital screens, and

P(p′|p) is the exogenous hardware price process. Equation (A.5) makes explicit three

elements: (1) because firms use moment-based strategies, firm i’s assessment of its

next-period state is correct (so (x̃i, p, s) is sufficient to determine the transition prob-

abilities of si, given the strategy profile (a′, a)); (2) competitors’ aggregate state (total

number of digital screens) is approximated because only the first moment is tracked

(3) the hardware price process is exogenous. The perceived kernel for competitors’

next-period number of digital screens is defined similarly to the industry moment

sub-kernel, to coincide with the average observed transitions over many finite and

short trajectories starting from the initial industry state (y0, p0):

P̂a′,a(z
′
i|x̃i, p, s) =

1

L

L∑
l=1

T∑
t=1

1{(zli) = z′i, (x̃
l
i, p

l, sl) = (x̃i, p, s)}

T∑
t=1

1{(x̃li, pl, sl) = (x̃i, p, s)}
(A.6)
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where T is defined as in equation (A.4), and {(zlit, plt, slt, x̃lit), T ≥ t ≥ 0)}Ll=0 is a ran-

dom sample of size L drawn from the distribution of the process {(zit, pt, st, x̃it), t ≥

0)} generated by the adoption strategies (a′, a) and initiated at the true initial indus-

try state and exogenous price (y0, p0).

Equations (A.4) and (A.6) are used to define the perceived kernel for all states

visited over the L simulation runs. The perceived kernels are defined arbitrarily

outside this set. In particular, for non-visited states, the paper uses “status-quo”

perceptions, as in Ifrach and Weintraub (2017), assuming the current state of the

variable remains the same in the next period.

A.3.2 Multi-homing

This appendix presents the estimation and counterfactual results under the “wide

multi-homing” assumption. This assumption stands as the polar case to the “no

multi-homing” assumption detailed in the main text. Setting hdt = 0 for all t, and

defining ht ≡ hmt (so that 1 − ht = hft ), the single-period operating profits under

“wide multi-homing” are given by:

π(x̃it, ht) = R(τi)×


sit
Si
πd(x̃it) + (1− sit

Si
)πf (x̃it) if sit

Si
≤ ht

htπd(x̃it) + (1− sit
Si

)πf (x̃it) if sit
Si
≥ ht

(A.7)

Under “wide multi-homing”, theaters adopt the digital projection technology solely

for cost-reduction purposes. Therefore, only the difference between profits from a

digital and a film screening (πd(x̃it)− πf (x̃it)) can be identified from theaters’ adop-

tion times and units of technology adopted. Profits per film screening πf (x̃it) are

normalized to zero.

The model predicts profits per screen πd(x̃it)/Si (or equivalently cost-reductions

per screen) between e7, 917 and e19, 890. Figure A.3 shows predicted profits per

screen as a function of theater size and market size. Profits per screen are increasing

in theater size, with a decreasing marginal effect. As in the “no multi-homing” case,
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Figure A.3: Predicted annual profits per screen as a function of firm size

Note: Predicted profits are calculated fixing other characteristics

to: monopolist, non art house theater, not horizontally integrated

estimates point to the presence of economies of scale in operation. The counterfactual

exercise of section 1.8.1 is conducted using the estimated model. Figure A.4 presents

the diffusion paths under the equilibrium played in the data and the counterfactual

best-response (with no intra-firm margin). The qualitative results are similar to

the ones obtained under “no multi-homing”. The results are robust to the multi-

homing assumption imposed because they are driven by heterogeneity in profits across

theaters (which stem from differences in adoption times and units adopted across

theaters), not by the absolute level of profits. The assumption on ht only affects the

absolute level of profits.
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Figure A.4: Aggregate adoption rate with and without the intra-firm adoption margin

Note: The diffusion curves are obtained by gener-

ating 500 sample paths with a length of 20 years.

The sample average of these paths are reported.
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A.4 Estimation: Adoption Policy Rule (1st Step)

First step estimates for the adoption policy rule are obtained by estimating an or-

dered probit model. Denote by Pij the probability that theater i transitions to state

j. Possible states are {0, 1
4
, 1

2
, 3

4
, 1} in the case of miniplexes (4 − 7 screens), and

{0, 1
8
, 2

8
, ..., 7

8
, 1} in the case of multi/megaplexes (8 screens or more). In constructing

the likelihood, one has to account for the fact that theaters cannnot divest the new

technology, and therefore cannot transition to lower states: the dependent variable

sit/Si satisfies sit ≥ si(t−1). The log likelihood is constructed as follows:

lnL =
∑

i:4≤Si<8

1∑
j=si(t−1)/Si

dijlnPij +
∑
i:8≤Si

1∑
j=si(t−1)/Si

dijlnPij (A.8)

where dij is an indicator for firm i transitioning to state j.
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APPENDIX B

Appendix to Chapter 2

B.1 Algorithm for solving the asymmetric auction (Step 3)

The details of the numerical method used to solve the asymmetric auctions are pre-

sented here. Recall that the cartel and non-cartel bidders’ equilibrium inverse bid

functions, denoted φ1 and φ2 respectively, are the solutions of:
dφ1
db

= 1−F1(φ1(b))
f1(φ1(b))

(b− φ2(b))

dφ2
db

= 1−F2(φ2(b))
f2(φ2(b))

(b− φ1(b))

(B.1)

where Fi (resp. fi) is the cumulative distribution (resp. density function) of

costs of the cartel (i = 1) and the outsider firm (i = 2). Along with the boundary

conditions φ1(b) = φ2(b) = c (for some b, lower bound of the support of bids) and

φ1(c) = φ2(c) = c. The location of the left-boundary b is unknown. As shown in

Fibich and Gavish (2011), the system of differential equations B.1 can be recast as a

system in φ1 and b (instead of φ2) as functions of φ2. After this change of variable,

the new BVP is given by:


dφ1
dφ2

= 1−F1(φ1)
f1(φ1)

f2(φ2)
1−F2(φ2)

b−φ1
b−φ2

db
dφ2

= f2(φ2)
1−F2(φ2)

(b− φ1)

(B.2)

with the boundary conditions: φ1(φ2 = c) = b(φ2 = c) = c, and φ1(φ2 = c) = c. This

BVP is defined on a known domain φ2 ∈ [c, c]. Fibich and Gavish (2011) propose

fixed point iterations as one possible method for solving B.2. Iterations are given by:
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
(

d
dφ2

+
1−F1(φ

(k)
1 )

f1(φ
(k)
1 )

f2(φ2)
1−F2(φ2)

1
b(k)−φ2

)
φ

(k+1)
1 =

1−F1(φ
(k)
1 )

f1(φ
(k)
1 )

f2(φ2)
1−F2(φ2)

b(k)

b(k)−φ2(
d
dφ2
− b(k)−φ(k+1)

1

b(k)−φ2
f2(φ2)

1−F2(φ2)

)
b(k+1) = − b(k)−φ(k+1)

1

b(k)−φ2
f2(φ2)

1−F2(φ2)
φ2

(B.3)

with the boundary conditions: φ
(k+1)
1 (φ2 = c) = b(k+1)(φ2 = c) = c, and φ

(k+1)
1 (φ2 =

c) = c. In the case of this particular empirical application, the initial guess used are:

φ
(0)
1 (φ2) = φ2 and b(0)(φ2) = 0.9 + (c− 0.9)/c ∗ φ2. Although convergence of the fixed

point iterations is not guaranteed, since a unique solution exists, if the algorithm

converges to a function satisfying the BVP, this function is the solution to the BVP.
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