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Berkeley, CA 94720
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Abstract

This report describes the formulation and numerical implementation of a contact
detection algorithm for multi-body contact problems in the context of the finite ele-
ment method. In particular, a contact algorithm for two dimensional contact/impact
problems is enhanced by the addition of a sorting algorithm. The binary space parti-
tioning method combined with a binary tree database is used to perform a geometric
sorting of all the bodies involved in the contact problem by detecting possible con-
tacting pairs. These pairs consist of a particle (a surface node of a body in the finite
element sense) and a body. Ultimately, contact is determined by means of a closest
point procedure among the possible contacting pairs yielded by the sorting scheme.
Detailed information is given related to the implementation of such a scheme in FOR-
TRAN 90. Numerical experimentation confirms the expected O(NN log N ) behavior of
binary space partitioning based methods as compared with an all-to-all methodology

with a worse-case cost of O(N?), for a problem involving N bodies.



1 Introduction

We can distinguish two conceptually different parts in the numerical algorithms employed
in the simulation of contact problems. The first part of the scheme deals with the contact
detection whereas the second part involves different techniques and approaches to enforce the
impenetrability constraints between two surfaces in contact. The role of the contact detection
algorithms become particularly critical when simulating multi-body systems, in terms of
speed and memory usage. The contact detection procedure may become cumbersome as the
system of bodies becomes large. In a standard scheme, this task would include performing
N2 contact detection procedures between any two bodies in a problem involving N bodies.
Therefore, the need arises for a more efficient way of determining the geometric relationships
among objects within a working space when N is large, since this process accounts for a
significant portion of the computational effort of solving contact/impact problems among

many bodies.

Contact detection can be defined as finding the members of a set of points that lie
inside a sub-region of an ng;, dimensional space. In the finite element context, the set of
points could be interpreted as the set of nodes which lie on the surface of one body and, in
turn, each body defines a sub-region. The two dimensional case is considered in the actual
numerical implementation described in this report. In a multi-body system, it is appropriate
to distinguish two phases in the contact detection procedure: a spatial sorting phase and a
contact resolution (or searching) phase; see e.g. WILLIAMS & O’CoNNOR [7]. The spatial
sorting enables to find all the pairs of bodies which could be potential contactors, and the
contact resolution phase finds the actual two points in contact on the surface of each pair of
bodies.

We describe in this report several issues involved in the formulation and numerical
implementation of a spatial sorting phase of the contact detection algorithm within a finite
element formulation. The described sorting/resolution scheme has been implemented in the
Finite Element Program Analysis FEAP (see [8]). The numerical simulations presented
herein employ the energy-momentum conserving contact algorithms proposed recently in
([1, 2]) by the authors.

An outline of the rest of this report is as follows. Section 2 presents a brief summary of
the available techniques to perform spatial sorting procedures. In Section 3, we elaborate on
the concept of binary space partitioning and its role in a sorting algorithm, which is presented
in Section 4. We develop in Section 5 the notion of the resolution phase in the contact



detection algorithm. Different details of the implementation are presented in Section 6 and

we asses in Section 7 the performance of the scheme in a series of representative simulations.

2 Overview of various sorting techniques

Consider a general system of bodies whose configuration changes in time. The efficiency of
the contact detection algorithm can be greatly improved if one can assume a priori knowledge
of how this system will evolve; however the range of problems that can be tackled may be
limited. Following verbatim WiLLiaMs & O’CONNOR [7], the kind of a prior: knowledge
that can be used to produce an efficient detection algorithm can be classified as follows:

1. Fixed topology
Fixed topology can be found in finite element algorithms when the relative position of

the elements remains unchanged during the simulation of a particular problem.

2. Slowly varying topology
The objects move around only a small amount, so that each object only interacts with
its neighbors and we only keep track of a small number of possible contactors per body.
If one can keep track of the characteristic velocities in a problem, then it is also possible
to check for contact after only a certain number of time steps instead of after every

one.

3. Spatially sparse systems
If the system is very sparse, it makes sense to project trajectories in such a way that

we only check for the intersection of cones or cylinders in a space-time system.

4. Exhaustive spatial schemes
In this case, the scheme makes no a priori assumptions about the evolution of the
problem and it is based only on the present geometric configuration. These schemes

are more general and complete, but are potentially slower than non-exhaustive schemes.

5. Spatial sorting algorithms
Spatial sorting gives a valuable tool to decide which bodies should be considered for a
more detailed contact resolution. It seeks to avoid the all-to-all body search for contact
at each time step. For a small quantity of objects, this all-to-all method is acceptable,

but it can become computationally prohibitive as the number of objects increases.



In this work, we use a spatial sorting technique that does not make use of any a priori
knowledge of the system for the sorting phase. The more traditional closest-point projection
is used for the contact resolution phase. Below, we present a review several of the most
common methods to perform spatial sorting, following again WiLLIAMS & O’CONNOR [7]

(we refer to this reference for a complete discussion of these different methods):

1. Grid subdivision
The grid subdivision method divides in a uniform way the simulation volume or area
into rectilinear cells, each cell enclosing one or more objects. Objects are associated
with a cell. Neighboring objects are detected by their cell assignment. The performance
of this method depends greatly on the homogeneity of the spatial distribution of the
objects within the working space and is not a good overall methodology for a wide

range of problems.

2. Adaptive grid methods
Adaptive cell methods are used to avoid the problems associated with simple grid sub-
division, though at the cost of managing multiple cell dimensions. With this approach,

the scheme suffers when the distribution of objects becomes homogeneous.

3. Body based cells
In this case, the cell surrounding an object is based on its centroid. Objects lying

within this cell are considered to be a potential contactor and added to a neighbor list.

4. Spatial heap-sort
Heap-sort is one of several algorithms used to sort the objects into an ordered list
which at the same time gives an indication of the location of each particular object.
In this case, the key to the ordered list is the object’s coordinate along one or more
global axes. A heap-sort algorithm called DFR has been developed by WILLIAMS &
O’CONNOR [7] and applied to baseline granular simulation problems.

5. Tree methods
Binary sort/search algorithms provide a flexible and general methodology for contact
detection in two dimensional problems. The octree sort/search algorithm was derived
from the binary one to handle problems in three dimensions. The method considers
objects as associated with rectilinear cells and ordered into a tree data structure. We
refer to the classical work of KNUTH [5] for a complete account on the creation and
handling of trees. In particular, the time required to create a binary tree is of the order
O(Nlog(N)), where N is the total number of objects in the problem; the same applies
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for the traversing of the tree. In short, such an algorithm is a valuable improvement
over an all-to-all search, which is O(N?).

In this work, we choose the binary space partitioning implemented with a binary tree
database structure to perform the sorting for the two dimensional problems under consid-
eration (see e.g. BONET & PERAIRE[3] and MUNJIZA ET AL[6] ). It has proven to be a
versatile tool that performs efficiently when applied to a wide range of problems in the area
of contact/impact simulations, without making use of any a priori knowledge of the problem
at hand.

3 Binary space partitioning

We describe in this section several fundamental concepts used in a binary space partitioning
(BSP) scheme implemented in this work. For completeness, primary computational tools,
like a binary tree, and their role in the BSP scheme are defined and presented in detail.

3.1 Binary tree structure

A tree structure stores in a systematic way a collection of data in order to enable a quick
access and retrieval of the information. A tree consists of nodes where the actual data is
stored. Each node is extended by the addition of two links to two other nodes known as the
left child and the right child. The node from which a particular node springs is called the
parent node. Each tree has a starting node which we name root. Also, at each node, there

is a subtree originating from it so that the node becomes the root of this subtree.

This definition establishes a hierarchy of nodes: the root at the top level; 0, 1 or 2
nodes at the next level, each of which in turn has 0, 1 or 2 nodes at the next level of hierarchy;
and so forth. The quantity of levels indicate the depth of the tree. A node without children
is said to be a leaf. This hierarchical structure inspires the graphical representation shown

in Figure 1.

3.2 Space partitioning using a binary tree

We describe below the procedure by which we construct the binary tree. Consider a problem

with N bodies within an area which is called the searching space or working space. The
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Figure 1: Schematic drawing of a binary tree

searching space may be redefined for each sorting procedure. If this space is not redefined
for an interval of time, during which we may perform any number of sorting procedures,
its position should be chosen such that during this time interval of interest the bodies in
question never leave the searching space. To maximize the efficiency of a binary tree based
sorting scheme, one can redefine the working space at each instant one performs the sorting
procedure. This last consideration tends to maximize the homogeneity of the distribution
of the bodies in the problem; thus the depth of the tree decreases making the subsequent

retrieval of information much faster.

Consider the set of surface nodes corresponding to the surfaces of the N bodies and
denote by myea the size of this set of nodes. From the point of view of the widely used
slave/master methodology for contact problems (HALLQUIST ET AL [4]), this set of nodes
corresponds to the surface nodes of the slave and master bodies which participate in the
contact problem prior to any closest point projection procedure. No such distinction is
needed in the discussion that follows. Figure 2 shows a typical configuration of two bodies.

Figure 3 shows the corresponding system of particles in a chosen working space.

Remark 3.1 In the rest of this paper, we refer as particles to the set of nyo0; nodes belonging
to the surfaces of the bodies participating in the contact problem, and we give the name

nodes to the nodes of the binary tree used in storing the data.
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The root of the binary tree is associated with the chosen searching space. Consider
a particle with its corresponding current coordinates. We divide the working space in half
in a particular direction, say vertically, and then determine on which side this particle falls;
then, we create a child which we associate with that half space. We think of this procedure
as inserting the particle in a node. Next, we consider another particle. If this new particle
falls in the same half space as the previous one, we subdivide the half space and we move the
previously inserted particle into the corresponding quarter space, and insert the new particle
into the quarter space where it belongs. The procedure is repeated until each particle resides
on aleaf. On the other hand, if the new particle falls on the opposite half space as the previous
one, we just create the second child in the tree and continue the process by considering the
next particle in the queue. When we finish inserting all the particles in the tree, they all

reside on leaves, i.e. there is a unique particle residing in each cell.

Remark 3.2 Notice that a child node is not created unless there is a particle occupying
it. This is a modified way of building a tree and avoids the creation of nodes which later
would have to be deleted because they are empty. Other authors use different versions of
tree building algorithms which are more suitable for their purposes (see e.g. BONET &
PERAIRE([3)).

To clarify the particle insertion procedure, we present in Figures 4 and 5 a straight-
forward example of five particles within a square working space. Figure 4 shows the con-
figuration of the particles and Figure 5 depicts the corresponding binary tree when all the

particles have been inserted.

3.2.1 Binary tree construction program

Given a list of particle coordinates, the binary tree can be constructed recursively as follows:

Procedure BintreeBuild
Bintree = {empty}
doi = 1:noa
Call BinInsert(i,root)
end do



Figure 4: Schematic drawing of a set of particles within a square working space

C B

Figure 5: Binary tree structure corresponding to the example shown in Figure 4



Procedure BinInsert(i,n)...insert particle i in node n

if the subtree rooted at n contains more than 1 particle
Determine which child ¢ of node n particle i lies in
Call BinlInsert(i,c)

else if the subtree rooted at n contains I particle, n is a leaf
Consider n’s 2 children, create the child in which
the particle already in n lies and move particle i into it.
Let ¢ be the child in which particle i lies
Call BinlInsert(i,c)

else if the subtree rooted at n is empty, n is a leaf
Store particle i in node n

end if

As may be observed from the previous pseudo-code, the algorithm is recursive. This
aspect of the algorithm may be managed by using a programming language that permits
recursive subroutines or, alternatively, by the use of stacks; the latter is explained extensively
in KNUTH[5]. As described in more detail below, we use the first option, taking advantage
of the recursive access of routines in FORTRAN 90.

4 Spatial sorting using a binary tree

Once the binary tree has been constructed, as described in the previous sections, we proceed
to the actual sorting phase of the algorithm. We describe in this section a general sorting

algorithm; see [6] for a similar procedure.

The sorting task consists in looking for all possible contact pairs between any of the
Niotar Particles and the N bodies. Recall that the particles are the actual surface nodes (in the
finite element sense) of these bodies; therefore we retain the information of the provenance of
each particle. To simplify the description of the implementation herein, and with no loss of
generality, we assume that a node cannot penetrate the body it belongs to, thus eliminating

self contact cases from the algorithm.

We construct a buffer zone around each body to simplify contact detection [6]. The
simplification comes from the fact that a body with a complicated shape can be bounded

by a simple geometric shape, like a rectangle. In a two dimensional space, an example of
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buffer zone

body

Figure 6: Schematic drawing of a body and its corresponding buffer zone

a buffer zone is the circumscribing rectangle which is aligned with the reference coordinate
system (see Figure 6). The coordinates of this rectangle are the minimum and maximum
coordinates in each space dimension that bound the object. In this work, we use this type

of buffer zone, which does not assume any a priori knowledge of the problem.

Remark 4.1 The calculation of the buffer zone is related to the sorting scheme, since it
depends on how often one performs a sorting procedure. If a sorting procedure is performed
every n time steps, the buffer zone may be chosen so that its thickness b is at least b >

NVUmae AL, Where U, is the maximum velocity among all the bodies.

4.1 Traversing the binary tree

The contact search is performed by traversing the tree. The binary tree is traversed IV times
(once for each body). We wvisit each node on the tree, which has a subpartition or cell of
rectangular shape. The task called wisiting a tree node involves checking for superposition
between the target body with its designated buffer zone and the corresponding cell of this
tree node. The key advantage of using the binary tree formulation is that if no superposi-
tion with a node is detected, then no further contact detection need be performed for the
corresponding subtree rooted at that node, thus generating a quite efficient methodology for
contact detection. When a leaf of the tree which contains an actual particle is reached, the

particle is checked for inclusion within the body in question.

To traverse the tree we use the recursive preorder scheme. See KNUTH[5] for the
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basics on traversing trees and preorder schemes. The traversing scheme employed in the

actual numerical implementation involves traversing the tree from the root.

4.1.1 Preorder scheme

We present the pseudo-code for the preorder scheme used in the actual implementation.
subroutine preorder(current-address)

call visit (Visit node stored at current-address)
if (cont = .true.) then
if (current-left-child exists) then
call preorder(current-left-child-address)
end if
if (current-right-child exists) then
call preorder (current-right-child-address)
end if
end if
stop
end

With the previous interpretation, visiting a node involves checking for superposition
between two rectangles (the subpartition associated with the tree node and the buffer zone
rectangle) or checking whether a particle lies within a rectangle (the finite element node
and the buffer zone rectangle). During the “visit”, then, we recognize a pair consisting of
a particle and a body as being in possible contact. This pair, which we call bp-pair for

body-particle-pair, is then added to the list of possible pairs in contact.

Remark 4.2 Even though we do not assign slave and master categories to the particles
before the sorting phase, the categorization comes up automatically. The closest-point pro-
jection phase to follow considers that the particle in the bp-pair is the slave node to be
checked for penetration into the body belonging to the bp-pair.

Remark 4.3 In addition, as every particle is checked for inclusion within every body, the
set of bp-pairs corresponds effectively to a double pass contact detection procedure in the
context of a typical master/slave methodology HALLQUIST ET AL[4] where only slave nodes

12



are checked for penetration. Recall that in the double-pass methodology, the set of slave
nodes becomes the set of master nodes and viceversa.

5 Contact resolution phase

After the sorting phase is completed, that is, the binary tree is constructed and traversed the
contact resolution phase is performed. As noted above, the resolution phase is accomplished
in the present work by the closest-point procedure which defines a gap function. The gap
function measures the penetration of the particle into the body, both belonging to the bp-

pair, and is given by

g(x): =minyera {l®(¥) - (X} (1)
=v- [pV(X) - P (¥(x))] 20, (2)

in terms of the closest-point projection mapping ¥ (X) of a material point X € I M (bound-
ary of solid (1)), the deformations (current positions) ¢® i = 1,2 of the two solids in
contact, and the resulting “unit normal” v to I’ (2). If there were no sorting, the closest point

projection would have to be performed for every particle with respect to N —1 bodies.
The closest-point projection involves the following procedure for bilinear elements (in-
volving linear boounding segments, 2D):
1. Finding the closest node to the particle S (for slave), denoted by Mc.
2. Find which neighboring node to M¢, My or Mpg, forms the master segment whose

distance to M is minimal.

The concept of the closest-point projection is illustrated in Figure 7.

6 Implementation of a sorting algorithm

The type of database involved in the sort /search procedure requires the use of data structures
and pointers. FORTRAN 90 provides the necessary tools to define structures or data-types
that are a collection of previously defined numbers, arrays and pointers. The design and
definition of the database structure developed in this work are of the main importance, as
they affect the efficiency and memory usage of the algorithm. We present below some of the

most important structures and related issues involved in the implementation.
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closest point

McoMpg: master segment

Figure 7: Schematic drawing of the closest point procedure on a discrete space setting in
two dimensions. In the case shown, contact is detected for the particle S and the surface

element McMpg.
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6.1 Binary tree
A node in the tree is defined as follows:

type node

type(particle) ,pointer :: part-in-node

real(8), dimension(2) :: xmin,xmax

type(node) ,pointer :: parent,left-child,right-child
end type node

Pointers are used to point to other data, thus eliminating the need to make multiple
copies of the data. For example, when traversing the binary tree, we need to go down to
the children of a certain node, so we include in the node data structure two pointers, one to
each child.

The first part of the node data structure is the part-in-node, which is a pointer to a
particle type structure. If the node is not a leaf then this pointer is nullified (does not point
to any data). When this happens, the pointer is said to be disassociated.

6.2 Body, surface and particle

A body is formed by a set of surfaces and each one of these surfaces consists of a set of
particles. Following this reasoning, we can think of a particle as being a substructure of a

surface and a surface as a substructure of a body.

Keeping this in mind, we define the following structures:

type body
integer :: num-surf
type (surface) ,dimension(:),pointer :: id-surf
real(8), dimension(2) :: lim-min,lim-max

end type body

The integer num-surf indicates the number of surfaces that define the body. The real
numbers lim-min and lim-maz contain the data of the buffer zone rectangle. The pointer

array id-surf points to each surface data structure, as described.

Remark 6.1 The capability of defining a body by means of multiple surfaces enables the

15



scheme to simulate a body with different surface properties. For example, a body may have

different surface finishes, each with a different friction coefficient.

type surface
integer :: num-part ‘
type(surface) ,dimension(:),pointer :: id-part
end type surface

The integer num-part indicates the number of particles that define the surface. The

pointer array id-part points to each particle data structure as described.

type particle
integer :: glob-num,b-id,s-id
real(8) :: X,y

end type particle

The integers glob-num, b-id and s-id represent the global node number (in the finite
element sense), the body number and surface number which this particle belongs to, respec-

tively.

Remark 6.2 The inclusion of the body identifier b-id is useful to eliminate detecting false
contacts; that is, a node cannot be in contact with the body to which it belongs. Other
means can be similarly developed when considering problems where the deformations may

involve self-contact situations in a body.

6.3 Linked lists

The output of the sorting phase, the set of bp-pairs, is stored in a linked list. The data

structure bp-pair is defined as follows:

type bp-pair

type(body) ,pointer :: bp-pair-body

type(particle) ,pointer :: bp-pair-part

type (bp-history) ,pointer :: bp-pair-hist1, bp-pair-hist2
end type bp-pair

16



The pointer bp-pair-body points to the body data that is in contact with the particle
whose data is pointed to in turn by bp-pair-part. The data bp-pair-hist! and bp-pair-hist2
correspond to two history arrays belonging to data at ¢, and t,41, respectively. These arrays
make the storage easy for calculations that involve data from previous time steps. The

history arrays have the following data structure:

type bp-history
logical :: cont
integer,dimension(3) :: ix!
real(8) :: norm(2), gap
_ other data needed for the calculation of the force and tangent matrix contribution

end type bp-history

The logical variable cont is the contact flag for the considered time step considered.
The integer array izl contains the global node numbers (in the finite element sense) of the
three nodes that form the three-node contact element (which is the result of the closest-
point projection). The real variable gap is the gap which is generally needed for most
contacting schemes to enforce the impenetrability constraint. The real vector norm contains
the normal to the master segment which is generally used to determine the direction of the

normal contact force.

When the sorting scheme detects a possible contact, the bp-pair is added to a linked
list. When no contact is detected by the closest point projection procedure, these bp-pairs
are taken out from the linked list and the space allocated for them is then deallocated. This

procedure has the advantage of using memory in a dynamic way thus saving memory storage.

A linked list is composed of list-nodes. The structure of a list-node is as follows:

type list-node
type(bp-pair) ,pointer :: elem
type(list-node) ,pointer :: prev,next
end type list-node

The pointer elem points to the information of the bp-pair that is contained in the
given list-node and the pointers prev and nezt point to the previous and next list-nodes in

the linked list, respectively.

17



6.4 Auxiliary tools

In addition to all the previously defined data structures, we use some auxiliary arrays. One
of the most important is an array of pointers called pairs-table, of dimension 7q X N.
These pointers are initially nullified, but if a particular bp-pair (with particle number np
and body number nb), was active at the converged state of the previous time step, then
pairs-table(nb,np) points to that particular bp-pair, and the algorithm neither allocates
more memory nor generates a second copy of the same bp-pair. On the other hand, if pairs-
table(nb,np) is nullified then it is evident that this particular bp-pair was not active at the

previous time step, and the algorithm must allocate memory to create it.

6.5 Basic algorithm

With the salient points of the proposed database explained, we detail in Table 1 the ba-
sic sorting/search algorithm used in the implementation of the considered contact/impact
scheme. We denote by a%b the element b of a certain type, where a is of that type. For
example, using FORTRAN 90, we can declare

type(node) :: a (a is a node in the binary tree) ,
so that we have access to the left or right child of a, respectively by
| = a%left — child or r = a%right — child
where [ and r are declared as
type(node) :: [,r (I and 7 are nodes in the binary tree) ,
Remark 6.3 Notice that the binary tree is constructed for each sorting phase and deleted

as soon as we form the linked list containing all the bp-pairs in possible contact. In this way,

the coordinates of the working space can be recalculated every time.

Remark 6.4 The numerical simulations presented in Section 7 have been obtained using the
energy-momentum conserving schemes for the enforcement of contact constraints presented
recently by the authors in [1, 2] for general dynamic contact problems. Briefly for the normal

contact component (e.g. frictionless case), these schemes involves two basic ingredients.
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BASIC ALGORITHM FOR THE SORT/SEARCH PROCEDURE

e Create root
e Update particle coordinates
o Calculate buffer boxes
DO i =1": nyta
e Insert particle i in the binary tree
END DO
DOi=1:N
e Traverse the tree and check for contact between body i and
the particles in each leaf of the tree
END DO
e Delete binary tree
DO WHILE list%bp-pair exists
IF (list%bp-pair existed at time ¢, (check pairs-table)) THEN
e Perform closest point projection
e For EM scheme: calculate the dynamic gap g2, ,; check for

ELSE
e Perform closest point projection
e For EM scheme: follow closest-point at t,, calculate gy,

END IF
IF (cont = .true.) THEN
e Calculate the contact force
END IF
list = list%mnext
END DO

contact based on g4,

and the dynamic gap g¢.,; check for contact based on 94,

Table 1: Basic algorithm for the sort/search procedure: EM = energy-momentum scheme

presented in (1, 2];

see also Remark 6.4. In this case, the geometric sort and closest-point

projection are performed at tn41/2-
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First, one defines the so-called “dynamic gap” g2, for a typical time step [tns trt1]

g% i1 = 9t ntrntrye - [ (‘PS-Z-l(XS) - <Pffll(17'n+1/z(xs))) - (3)
(‘P%D (Xs) - 90%2)(?n+1/2(xs))) :| ) (4)

for the closest-point projection map Yy41/2(X;,), defined by 1, at the midpoint t,41/2 with
the unit normal direction v,41/2 to the corresponding position of the solids (defined by the
configurations 9 at times t, and tn41). In this last relation, the gap g¢ is initialized with
the real gap g, in the first time increment in contact. Then, the contact pressure is obtained
from a penalty regularization as

u (g?,gﬂ) U @) i U = Ly g% if g9 <0, .
Jsn+1 ~ s 0 otherwise,

Ps = —

for a penalty parameter ky > 0. We refer to [1] for additional extensions, and to [2] for the

development of dissipative schemes for the frictional case

7 Numerical assessment

As an illustrative example of the type of problems most appropriately handled by the pro-
posed contact detection scheme, we show the simulation of the impact of 49 elastic disks
enclosed within four rigid walls. The disks have Lamé constants A = 2000.0 and G = 1000.0,
and density p = 1.0. The left-most column of disks is given an initial velocity vp = (0.5,0.1).
Figures 8 and 9 show the evolution of the system. Frictionless contacts are assumed and the
newly proposed energy-momentum conserving scheme presented in [1] is considered. Notice
that clusters of bodies are formed at various instants, i.e. a particular body may be in

contact with many others at certain time steps.

As stated above, the addition of a sorting phase decreases the computational effort
involved in the contact detection part of the contact algorithm in multi-body problems. In
this section, we measure (1) the average CPU time for sorting/searching in each time step,
and (2) the average CPU time for the entire step, for a sample problem while we vary the
number of bodies involved. These measurements give an estimate of the speed increase
provided by the sorting procedure as the number of bodies increases. It is also of interest to
see the fraction of time the contact detection part takes within an overall time step.
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Figure 8: Impact of 49 quasi-rigid disks. Evolution of the system.
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Figure 9: Impact of 49 quasi-rigid disks. Evolution of the system (continued).
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N Sorting No sorting

CPU getection | CPUtotat | CPUaetection | CPUtotal

13 0.0085 0.07 0.1244 0.29
53 0.0361 0.90 2.7050 3.60
104 0.0732 1.80 10.8600 12.80
196 0.1386 3.60 40.3800 44.23
400 0.3030 7.64 - -
900 0.7540 16.60 - -

Table 2: Average computation times in seconds per iteration for various numbers of bodies.

Theoretical calculations show that for a homogeneous concentration of particles, which
should produce a well-balanced tree, the times for building and traversing the tree should
behave as O(N log(N)), where N is the number of particles. See [5] for details. The detection
part of the algorithm with no sorting phase, i.e. an exhaustive search, behaves as O(N?).
For simplicity and without loss of generality, all the bodies are assumed to have the same
order of possible contacting particles in these considerations and in the numerical examples
presented in this section. In Table 2, we show the CPU time in seconds for different problems.
All the simulations have been run with a DEC Alpha 3000 Model 700 with 128MB RAM.

A regression analysis has been performed with the times from Table 2 to evaluate
the behavior of each algorithm. With the sorting algorithm, the tested times for detec-
tion followed the expected logarithmic dependence on N with a correlation coefficient of
R = 0.99985, while the times required without sorting matched a quadratic curve with a
correlation coefficient of R = 0.999991. Figures 10 and 11 show the curves obtained through

regression analysis of the data in Table 2.

The ratio between the CPU time for the detection phase and the CPU time for the
solver procedure is also of interest, since without the addition of a sorting phase the detection
algorithm would dominate the CPU time for large N. We denote this ratio by 4, i.e.,

case CP case
A = CPUdetection ~ _w (6)
case CP case __ CP case — . y
total detection CP ase

solver

where case refers to sorting or no sorting. In Table 3 we show these values for different
number of bodies. One may observe that the ratio A increases linearly with N for the non-
sorting algorithm, while the value is independent of N when sorting is added to the search

algorithm.
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N | Asorting | Ano sorting
13 | 0.0012 0.74
53 | 0.0418 291

104 | 0.0424 5.60

196 | 0.0400 10.49

400 | 0.0413 -

900 | 0.0476 -

Table 3: CPU ratios for various numbers of bodies.

Remark 7.1 A skyline direct solver has been used in the preceding simulations. Therefore,
the cost associated with the solver can be estimated as O(Nf,,4 Neg) for Neq equations with
bandwith Npsng. For the case of interest considered in this section with IV bodies, we can

then write the estimates

NlogN logN

Asor in - = tant ’
ting N NbZand szand ( constan ) (7)
and
N? N
Ano sortin = li . ’
ting & 7 NI~ N, (linear in N) (8)

assuming Npgng = constant (best possible case for the solver), and thus explaining the results
reflected in Table 3.

8 Concluding remarks

We have presented in this report the formulation and finite element implementation of a
sorting/searching scheme for multi-body contact problems. The scheme involves a sorting
phase based on a binary space partitioning (BSP) strategy, leading in the considered two
dimensional setting to a storage of the finite element nodes candidates for contact in a binary
tree structure. The sorting of the possible body/particle contact pairs is then efficiently
accomplished, leading to a linked-list of such possible contact pairs. Important specific
issues, like the handling of the history arrays associated to these pairs, have been addressed
in detail. A second resolution (or searching) phase based on the traditional closest-point
projection identifies the actual active contact points at the local level of the body/particle

pairs.
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Special attention has been given to the implementation issues that need to be con-
sidered when designing an all-purpose contact detection algorithm. In particular, we have
described the different database structures employed in the actual implementation. Details
of the different routines have been presented in FORTRAN 90, making use of several new
features of this most recent version of this programming language common in finite element

codes (namely, pointers, structures or types, and recursive routine access, among others).

The need for the consideration of this type of contact detection sorting scheme to sim-
ulate contact problems in many body systems has been illustrated in representative dynamic
simulations of these systems. Actual CPU times of the presented implementation shows the
theoretically optimal cost of O(NN log N) versus the worse case of O(N?) for a system with
N bodies. In addition, these long-term simulations have shown also the improved numerical
stability properties of the conserving contact algorithms presented recently by the authors
(see [1, 2]). Current efforts include the extension of the contact detection scheme presented

herein to the three dimensional case.
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