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Abstract
Concurrent with a worldwide trend of decriminalization, medical or recreational use of cannabis

(Cannabis sativa spp.)  is now legal in over 60 countries and US states. There is therefore an

urgent  need  to  understand  how  cannabis  production  and  consumption  may  impact  the

environment.  Research  documenting  the  environmental  impacts  of  cannabis  remains  limited.

Nevertheless,  an  emerging  body  of  literature  provides  insights  which  could  inform  the

sustainable development of growing cannabis industries. Our review identifies six documented

environmental  impact  pathways  from  cannabis:  water  use,  energy  use,  land-cover  change,

pesticide use, as well as air and water pollution. Based on reviewed findings for these pathways,

we suggest policy directions for water, energy and pesticide use as well as land planning. We

further highlight the need for additional research on this topic and discuss how science might

contribute to minimize environmental risks and improve the sustainability of the global cannabis

industry. 
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Introduction
The  last  two  decades  have  seen  a  worldwide  liberalization  of  cannabis  production  and

consumption (e.g. Bahji and Stephenson 2019). As of January 2020, recreational use of cannabis

is legal in Uruguay, Canada and 12 US states, and medical use is partially or fully legal in 36

countries  (Chouvy 2019). As legal markets for cannabis develop, policy makers are tasked to

regulate its production, distribution and consumption in new ways. 

With  rising  liberalization,  researchers  have  taken  a  growing  interest  in  the  potential

environmental impacts of cannabis – a dynamic partly fueled by growing public concerns and

news coverage of  the  topic,  which increased  by over  500% from 1992 to  2019 (Fig.  1).  If

implemented successfully, legalization could give regulators a chance to anticipate and regulate

the environmental outcomes of the cannabis industry as it expands (Bodwitch, et al. 2019). Some

current regulatory schemes (California 2016, Canada 2018) already reflect this priority through

the inclusion of specific language meant to reduce environmental impacts which can arise from

land, water and energy use, application of chemicals, or other pathways (e.g., Carah, et al. 2015).

There are four primary classes of cannabis production (indoor, mixed-light, outdoor and trespass)

which may impact the environment through different pathways and at different magnitudes (Fig.

2). These production systems are not always clearly distinct in practice: for instance, in a single

farm, mother plants may be kept indoors while cloning occurs in mixed-light and full crops are

produced outdoors. Aside from trespass systems (Fig. 2d), which we describe separately due to

the specific practices associated with them, the cannabis production systems we describe can

exist legally or illegally. 

There are distinct trade-offs between production systems. Indoor systems are associated with few

concerns  about  wildlife  habitat  destruction,  water  diversion  or  pollution,  but  require  high

external  inputs  such as  energy and fertilizers.  Conversely,  outdoor  farms may require  fewer
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resource inputs,  but poor management or siting could disrupt surrounding ecosystems. Well-

managed systems (both indoor and outdoor) can minimize environmental impacts. We note that

trespass grows are generally only associated with negative environmental impacts.

Researchers investigating interactions between cannabis and the environment have faced historic

hurdles – often due to cannabis’ legal status – which include societal stigma, funding restrictions,

safety  concerns  and difficult  access  related  to  remote  cultivation  sites,  as  well  as  regulatory

obstacles  such as  complex licensing  requirements  and restrictions  on cultivar  testing (Short-

Gianotti  et  al.  2017).  Despite  such  limitations,  a  new  science  around  cannabis  and  the

environment is starting to emerge. 

Our  objective  here  is  to  review  existing  literature  documenting  environmental  impacts  of

cannabis,  to identify  significant  research findings and knowledge gaps and to suggest  policy

recommendations. As shown in Fig. 3, before 2012 only a handful of studies suggested links

between cannabis and environmental degradation  (e.g., Carah, et al. 2015, Chouvy and Afsahi

2014,  Miller  2018).  Recent  empirical  studies,  however,  have  started  to  quantify  specific

environmental impacts of cannabis cultivation and consumption. While limited in size and scope,

this first generation of studies provides an opportunity to identify and summarize both what is

known about  cannabis  and  the  environment,  and what  knowledge  gaps  persist.  This  review

highlights the emerging science around cannabis and the environment. We hope it can serve as a

catalyst  to  encourage more  research in  this  area  and as  a  resource  to  provide science-based

guidance for policy-makers.  

Identification and Selection of Studies
We  evaluated  peer-reviewed  and  non-peer-reviewed  sources  that  quantified  the  effects  of

cannabis cultivation or consumption on the environment. We excluded studies and reports that:

(i) addressed other impacts of cannabis such as on human health; (ii) focused on other plants or

other illicit drugs; or (iii) commented on environmental impacts without providing data. 

Based on published commentaries on cannabis and the environment (Carah, et al. 2015, Miller

2018,  Gianotti,  et  al. 2017),  we identified a list  of  terms to  search  the Web of  Science  for

relevant studies in June-July 2019 (Table 1). We screened titles and abstracts of resulting studies

according to the three eligibility criteria noted above, yielding a total of 14 peer-reviewed articles
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for which we reviewed the full text. We incorporated nine additional studies referenced in these

studies  in  our  final  review (Table  2).  We also  searched for  non-peer-reviewed  literature  on

Google in July-August 2019 (using the same search criteria) and included documents found in

the first five pages of results.  Our final review includes two non-peer-reviewed reports and a

book series (Table 2). 

Results
Water Use

We found six peer-reviewed studies that investigated the water footprint of cannabis cultivation

(water extraction, storage and use), all of which focus on northern California. Bauer, et al. (2015)

used satellite imagery to estimate the number of cannabis plants in northern California and used

this to predict that watershed-scale water consumption may exceed local streamflow during the

growing season. These results were based on assumptions that: (i) on average, a cannabis plant

consumes 22.7 liters (6 gallons) of water per day throughout the growing season; (ii) this water is

predominantly  accessed  through  surface-water  diversions;  and  (iii)  water  application  equals

water  extraction.  The  authors  suggested  that  during  dry  years,  cannabis  farming  could

completely dewater some streams. Butsic and Brenner (2016) applied a similar methodology to

estimate annual water use for cannabis irrigation at 11,000 m3 – equivalent to 0.001% of annual

agricultural water use (Schultz 2017) – in Humboldt County, California.

These findings highlight the potential impacts of cannabis on water resources, but their accuracy

is limited by a lack of actual water use data. Three additional studies in California examined

cultivator-reported water use for cannabis at the farm scale. High variability in water use and

extraction practices was documented – likely driven by variation in seasonal growing patterns,

farm size or cultivation methods.  Wilson,  et al. (2019; independent respondents n = 58) and

Dillis, et al. (2019; n = 600) both confirmed that water use rates among California cannabis

farmers approximated the 6 gallon per-plant figure reported by  Bauer, et al. (2015). However,

this was only the case during peak growing season and respondents reported lower water use

rates throughout the rest of the year. Wilson, et al. (2019) also documented monthly water use on

average-sized  farms  in California  and found that  while  water  application  to  cannabis  plants

exceeded this rate during cannabis’ growing season, water extraction from rainwater, surface and
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sub-surface sources remained far below it for most of the year. In separate assessments of farm-

scale water extraction practices, Wilson, et al. (2019) and Dillis, et al. (2019; n = 901) (n = 901)

showed that sub-surface wells, rather than surface-water diversions, may be the primary source

of  water  for  many  northern  Californian  growers.  Sub-surface  water  extraction  may  threaten

connected watersheds if annual extraction exceeds recharge rates, as sub-surface water reserves

tend to recover more slowly from overuse than surface sources. 

Energy Use

We found one peer-reviewed study and one gray literature report focused on cannabis and energy

use.  Mills  (2012) estimated  that  indoor  US cannabis  production  uses  20  TWh of  electricity

annually, leading to the annual emission of 15,000,000 tons of CO2. This value is equivalent to

the energy consumption of the entire US agricultural sector (Schnepf 2004), or to 1% of US total

national electricity use. Mills’ calculations were based on national cannabis cultivation estimates

and assumed “typical” energy use for indoor production and relevant transportation processes. A

more  recent  report  (NewFrontierData  2018) combined  estimated  US  cannabis  demand  and

cultivation area with self-reported data from cultivators (n = 81) to provide a detailed assessment

of current cannabis energy use. Combined illicit and legal cultivation were estimated to consume

4.1 MWh annually, equivalent to 472,000 tons of associated CO2 emissions. These estimates did

not  account  for  off-grid  energy  use,  transportation,  fertilization  or  irrigation,  but  were

significantly lower than the numbers reported by Mills (2012). We note that Mills’ findings may

not accurately represented energy use by the US cannabis sector today, as cultivation practices

have likely become more efficient in recent years. 

Land Cover Change 

Studies quantifying land-use impacts  of cannabis remain scarce despite reports  of significant

cannabis  cultivation  activity  in  North and Sub-Saharan  Africa,  the  Americas  and Asia  (e.g.,

Bradford  and Mansfield  2019,  Laudati  2019,  Moore,  et  al. 1998).  We found five empirical

studies from the US which assessed cannabis and land-use dynamics. Satellite data for California

showed a high concentration of cultivation sites in remote, ecologically sensitive areas (Butsic, et

al. 2018). In Humboldt County, cannabis’ impact on land cover change from 2000 to 2013 was
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relatively limited, contributing 1.1% of forest canopy area loss compared to 53.3% from timber

harvest  (Butsic,  et  al. 2018).  However,  remote  cultivation  sites  were  linked  to  landscape

perforation as they created gaps in forest patches, reducing forest core areas and increasing open

edges. This could contribute to landscape-wide forest fragmentation and resulting wildlife habitat

degradation if current expansion rates persist  (Wang,  et al. 2017). The spatial  distribution of

cannabis farms, in addition to total land-use footprint, may thus be significant determinant of

potential environmental impacts. 

These reported spatial dynamics suggest that the factors driving the location of both legal and

illegal  cannabis  cultivation  are  distinct  from those  of  other  crops.  Cannabis  prices  and  law

enforcement  related  risks  emerged  as  important  factors  determining  siting  decisions  in

California, Oregon and Washington’s illicit markets  (Koch, et al. 2016).  Butsic, et al. (2017)

documented  strong  network  effects  amongst  growers  in  Humboldt  County,  which  led  to

clustering of cultivation sites and appeared to be more important than biophysical factors such as

soil quality or terrain.  Klassen and Anthony (2019) identified state enforcement capacities and

poverty  and  unemployment  rates  as  potential  factors  leading  to  a  decline  in  illegal  farms

discovered in Oregon, but not Washington, following legalization in both states. 

Pesticide impacts

Although pesticides used in cannabis production are likely to impact the environment, to our

knowledge  no  quantitative  studies  have  documented  these  impacts  on  private  land  or  legal

cannabis production systems. We found five peer-reviewed studies which focused on impacts of

anticoagulant rodenticides (ARs) on local wildlife species in trespass grows. ARs are presumably

used to control rodent populations; they are frequently encountered on trespass production sites

(Fig. 2d) in California and can bioaccumulate in the food chain  (Thompson,  et al. 2014). In

northern and central California, field-studies documented contamination by highly toxic ARs in

an endangered predator, the Pacific fisher (Pekania pennanti), using a combination of field-data

collection, lab data analysis and spatial correlation (Thompson, et al. 2014, Gabriel, et al. 2012).

Despite high AR exposure levels (79% of sampled 58 animals and 85% of 46 sampled animals,

respectively),  both  studies  reported  very  low numbers  of  animals  dying  primarily  from AR
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exposure.  Nevertheless,  AR poisoning  may  significant  impact  mortality  rates  in  Californian

fisher populations  (Gabriel, et al. 2015; number of sampled fishers n = 167), with increasing

prevalence  from  2007  to  2014.  AR  contamination  is  not  limited  to  mammals.  It  was  also

documented in northern spotted owl (Strix occidentalis  caurina)  and barred owl (Strix varia)

populations,  likely  through  secondary  poisoning  from  predation  on  contaminated  rodents

(Franklin, et al. 2018, Gabriel, et al. 2018). Despite some limitations due to small sample sizes

(e.g. Franklin et al.’s study with n = 1), these studies draw attention to a potential ecological

threat posed by illicit cultivation methods. 

Far less is known about application of chemicals in legal growing operations, which vary greatly

by region and country. While some ARs are illegal or heavily restricted in the United States,

various other pest-control methods have been reported for cannabis (Wilson, et al. 2019). In the

US, due to the crop’s federally illegal status, no commercially available pesticides have been

approved for use on cannabis (although states with legalized cannabis provide lists of allowed

pesticides). In Canada, 25 pesticide and fungicide compounds have been approved for legal use

on cannabis (HealthCanada 2019). 

Air Pollution

We  found  two  peer-reviewed  studies  assessing  cannabis  cultivation  impacts  on  air  quality.

Wang, et al. (2019) measured biogenic volatile organic compounds (BVOC) emitted by cannabis

plants  grown  under  conditions  mimicking  greenhouse  cultivation.  Results  suggested  BVOC

emissions from indoor cultivated cannabis in Colorado could contribute to ozone formation and

particulate matter pollution. The authors acknowledged limitations due to small sample sizes,

sub-optimal growing conditions, and a focus on only 4 out of 620 reported cannabis strains. In a

follow-up study,  Wang, et al. (2019) estimated terpene emissions and regional ozone impacts

from indoor cannabis cultivation facilities in Colorado using the Comprehensive Air Quality

Model.  Results  predicted increases  in  hourly  ozone  concentrations  which  may  have

consequences for regional air quality. This approach was limited by reliance on estimates and

assumptions in the absence of data regarding emission capacity of most cannabis strains, number

of  plants  and  plant  biomass.  Nevertheless,  preliminary  findings  indicated  that  concentrated
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indoor  cannabis  cultivation  could  influence  ozone  pollution  through  BVOC emissions  from

terpenes,  particularly  in  areas  where  nitrogen  oxides  are  not  the  limiting  factors  in  ozone

formation (Wang, et al. 2019). 

Water Pollution

Surface- and ground-water pollution from the cannabis industry, including from soil  erosion,

pesticide and fertilizer in run-off, chemical processing or waste disposal operations, is a likely

risk  (e.g. Carah, et al. 2015). Nevertheless, we found no peer-reviewed study quantifying the

impacts of cannabis cultivation on water quality, although current pilot projects in California are

underway.  We  did  find  an  academic  book  series  and  five  peer-reviewed  publications

documenting the effects of pollution from cannabis consumption on water quality. These studies

used  THC-COOH  concentrations  in  sewage  systems,  presumably  originating  from  human

consumption,  as  a  proxy.  Evidence  of  THC-COOH  presence  was  found  in  both  raw  and

biologically  treated  wastewater  across  major  European  cities  (Castiglioni  and Zuccato  2010,

Terzic, et al. 2010, Thomas, et al. 2012) as well as in raw wastewater in the US (Burgard, et al.

2019). Concentrations of chemical compounds derived from cannabis were lower in treated than

in raw wastewater. Nevertheless, accumulation of these compounds may contribute to waterway

contamination downstream from wastewater effluent discharges in urban areas, although likely to

a lesser extent than other illicit drugs (Zuccato, et al. 2008). While these studies primarily aim to

document urban cannabis consumption, they also point towards potential contamination issues

impacting downstream freshwater ecosystems. 

Our  current  understanding  of  the  consequences  of  wildlife  exposure  to  cannabis-related

chemicals remains limited. Parolini, et al. (2017) sought to bridge this gap through experimental

exposure of zebra mussels to concentrations of cannabis active compounds Δ-9-THC and THC-

COOH.  Results  showed  that  prolonged  exposure  could  contribute  to  oxidative  and  genetic

damage in the mussels. Still, given the lack of knowledge regarding actual Δ-9-THC and THC-

COOH concentrations in aquatic ecosystems, and the lack of documentation of the compounds’

effects on mussels or other organisms in the wild, it is difficult to draw broader conclusions about
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potential environmental risks posed by exposure to active compounds in cannabis for aquatic

organisms.

Policy Recommendations
Results  from  existing  studies  already  point  towards  specific  policy  suggestions  regarding

cannabis: 

1. Managing the timing and location of water extraction may minimize cannabis’ water-use

impacts. Though cannabis’ water-use footprint may be small relative to other agricultural

crops  (Butsic  and Brenner  2016, Schultz  2017),  managing the timing and amount of

water extracted for cannabis cultivation may reduce future water-use impacts, particularly

in drought-prone habitats. Incentivizing efficient water management (e.g. through modern

irrigation  practices,  surface-water  diversion  and  impoundments  or  sustainable

groundwater  extraction)  could  further  alleviate  pressure  on  stream  ecosystems  and

groundwater reserves. 

2. Incentivizing  best-practices  could  reduce  the  energy  footprint  of  indoor  cannabis

cultivation. Lower  energy use at  indoor  or  mixed-light  production  facilities  could  be

encouraged through mechanisms like tax incentives or low interest loans. For example,

regulations in Massachusetts  (2019) require indoor cultivators to develop energy plans,

comply with existing best-practice standards, and monitor and report energy usage. This

type of policy may be useful in building baseline datasets needed to inform decisions

while allowing regulators to set realistic energy efficiency goals.  Similar laws could be

applied  broadly  to  ensure  indoor  and  mixed-light  cultivators  are  maximizing  energy

efficiency. 

3. Cannabis’ land-use footprint  is  still  small  and comprehensive land-use planning may

minimize future environmental impacts. As the total production area of cannabis is small

relative to other land-use activities (Wang, et al. 2017), land use planning strategies could

encourage  the  protection  of  natural  areas  without  necessarily  affecting  production
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outcomes. For instance, policies could encourage land-efficient cannabis production, limit

cannabis  farming  to  existing  agricultural  land  and  prevent  expansion  into

environmentally sensitive areas. 

4. Eradication and clean-up actions may mitigate chemical use in trespass cultivation sites.

In the US, the persistent finding of ARs at trespass cultivation sites suggests that they are

a significant source of environmental contamination. Strengthening institutional capacity

and resources  to  support  enforcement  activities,  near-term remediation  and long-term

monitoring at these sites can minimize environmental contamination from left-over and

already dispersed AR products. In addition, given evidence that ARs deployed outside of

the  cannabis  sector  also  negatively  impact  predator  species  (Herring,  et  al. 2017),

restrictions on the production and sale of these chemicals should be explored. 

5. Rigorous chemical residue testing may discourage use of harmful chemicals. Developing

rigorous testing guidelines for contaminant residues on legal cannabis products, coupled

with certification schemes and educational  resources for producers on alternative pest

control  methods,  could  contribute  to  market  normalization  of  pesticide-free  cannabis.

California, for instance, currently tests for residue from 66 pesticides in all legal cannabis

products  (Seltenrich  2019).  Such  initiatives  may  limit  pesticide  contamination  by

incentivizing legal producers to avoid the use of non-permitted chemicals.  

Because there are environmental trade-offs across production methods, it is important for policy

makers to consider the potential unintended consequences of policy decisions. For example, in

California, stringent water-use regulations for outdoor production may incentivize cultivators to

turn  to  alternative  indoor production  methods.  While  this  shift  may alleviate  water-stress  in

sensitive  ecosystems,  it  may  also  increase  the  carbon  footprint  of  cannabis  by  encouraging

energy-intensive indoor production. Identifying and understanding trade-offs within and across

systems is thus important, and cannabis regulation should be comprehensive in order to prevent

impacts from being displaced from one pathway to another. 
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Frontiers of future research and policy
The emerging literature on cannabis and the environment already provides useful insights to

guide policy. Still, the majority of studies reviewed here were individual case studies, mostly

geographically centered in Northern California. There is a tremendous need for similar studies to

be carried out across different biophysical, socioeconomic, historical and cultural contexts, both

to confirm the generalizability of these results and to avoid exporting environmental problems

from the developed to the developing world. We expect that continued liberalization worldwide

will provide expanded geographic scope for this work for years to come, and researchers should

be ready to act on this expansion.   

Most  of  the  literature  reviewed  here  relies  on  observational  or  model-based  methodologies

(Table 2). While these approaches provide insights, experimentation is fundamentally needed to

understand basic agroecological functions and processes governing cannabis cultivation. Trials

quantifying the energy footprints, water use, and nutrient requirements of different cultivation

and management  methods  are  also needed  to improve  the  efficiency  of  production  systems.

Given  increased  liberalization  trends,  we  expect  to  see  a  normalization  of  cannabis-related

research. Scientists should be encouraged to carry out a range of experiments (Crowder 2019) to

bolster scientific capacity to assess the environmental impacts of an expanding cannabis sector.

Additionally, as regulations around cannabis cultivation are implemented, long-term studies are

needed to understand how these regulations affect cannabis cultivation practices.

Cannabis cultivation may lead to additional environmental impacts, which remain scientifically

undocumented to our knowledge. For instance, solid waste management of materials originating

from cultivation, packaging, or other production processes, will need to be addressed. Life-cycle

assessments of the cannabis sector could provide information on how to minimize such waste

and more generally increase the efficiency and sustainability of cannabis production processes.

Other  potential  areas  for  future  research  include  odor  pollution  risks  in  communities  where

increased  cannabis  production  has  led  to  farms  being  sited  near  residential  areas,  cross-

pollination issues between cannabis and hemp  (DeDecker 2019), alternative cannabis farming

(e.g.,  aeroponics or agroecological approaches) or transportation efficiency. These topics, and
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many  others,  should  make  the  study  of  cannabis’  environmental  impacts  a  rich  field  for

discovery for many years to come. 

Traditionally, cannabis has been cultivated remotely and at small scales. Legalization is altering

this through cultivation expansion, shifts toward urban areas, and increased size of production

facilities (California 2019), which may in turn affect the environmental impacts of the industry.

The intensification of cultivation activities at large-scale facilities may magnify negative impacts.

Conversely, economies of scale may increase the efficiency of larger facilities which may have

broader capacities to invest in sustainable production processes. Larger facilities are also less

likely to be located in remote sensitive areas than historical smaller farms, but may lead to land-

use  trade-offs  with  other  forms  of  agriculture.  Continued  diligence  by  policy  makers  and

consumers is needed to ensure that the move towards industrialization is not a move away from

sustainability  -  and  researchers  must  continue  to  document  shifts  in  the  industry  and  their

environmental impacts.

In  conjunction  with  legalization,  social  and  ecological  certification  schemes  could  increase

environmental  performance  of  the  industry.  Emerging  programs  such  as  Sun  and  Earth

Certification  (Sun+EarthCertified 2019) or planned appellation designations in California  (Stoa

2017) constitute  first  steps  in  this  direction.  By  contributing  to  consumer  awareness  and

providing incentives for growers to produce in sustainable ways, these programs may pave the

way for the development of a more sustainable cannabis sector. 

In many ways, the question of how to best produce and consume cannabis while protecting the

environment echoes larger debates about the environmental impacts of agricultural production in

general. Current discourse on the optimal ways to address shifts in the cannabis sector touches

upon fundamental sustainability framings such as land sparing vs. land sharing, intensification

vs. expansion, technology-driven agriculture vs. agroecology, the role of smallholder farmers vs.

industrial-scale  facilities.  Policy  makers  working  with  cannabis  have  strong  interests  in

developing  effective  regulations  following  legalization  and  are  also  dealing  with  regulatory

“blank  slates”.  This  may  equip  them  with  a  novel  combination  of  increased  freedom  and
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institutional  capacity  to  test  and  evaluate  the  effectiveness  of  multiple  policy  approaches.

Ultimately,  failures  and  successes  of  environmental  regulations  for  cannabis  may  lead  to

important lessons-learned for agriculture more broadly. 
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Cannabis OR Marijuana AND Environm*

Deforestat*

Pollut*

Pesticide

Rodenticide

Ecology

Biodivers*

Wildlife

Water use

Air quality

Energy use

Waste
Table 1. Search terms used for literature retrieval on the Web of Science database (for peer-

reviewed publications) and Google (for non-peer-reviewed sources).

Authors Year
Geograp
hic Focus

Cannabis
Production

Environmental
Impact

Pathway

Methodologies Peer-
Review

edObs. Exp. Surveys Model

Bauer et al. 2015 California b, c, d Water use Y Y Y

Butsic & Brenner 2016 California b, c, d Water use Y Y Y

Dillis et al. 2019
a

California a, b, c Water use Y Y

Dillis et al. 2019
b

California a, b, c Water use Y Y

Grantham et al. 2019 California NA Water use Y Y

Wilson et al. 2019 California a, b, c Water use Y Y

Mills et al. 2012 US a Energy use Y Y

New Frontier 
Data 

2018 US a Energy use Y N

Butsic et al. 2017 California b, c, d Land cover 
change

Y Y Y

Butsic et al. 2018 California b, c, d Land cover 
change

Y Y Y

Klassen & 
Anthony

2019 Western 
US

d Land cover 
change

Y Y

Koch et al. 2016 Western 
US

d Land cover 
change

Y Y

Wang et al. 2017 California b, c, d Land cover 
change

Y Y Y

Franklin et al. 2018 California d Pesticide Y Y Y

Gabriel et al. 2012 California d Pesticide Y Y Y

Gabriel et al. 2015 California d Pesticide Y Y Y

Gabriel et al. 2018 California d Pesticide Y Y Y

Thompson et al. 2013 California d Pesticide Y Y N

514

515

516

517



Wang et al. 2019
a

CO a Air pollution Y Y

Wang et al. 2019
b

CO a Air pollution Y Y

Castiglioni et 
al. (ed)

2010 EU, UK, US NA Water pollution Y N

Parolini et al. 2017 Italy NA Water pollution Y Y

Terzic et al. 2010 Croatia NA Water pollution Y Y

Thomas et al. 2012 EU NA Water pollution Y Y

Burgard et al. 2019 US NA Water pollution Y Y

Zuccato et al. 2008 Italy, UK NA Water pollution Y Y

 
Table 2. List of 26 references included in our literature review. Columns provide details regarding:
year  of  publication;  geographic  focus;  environmental  impact  pathway;  relevant  cannabis
production systems studied (indoor (a), mixed-light (b), outdoor (c) or trespass (d)); whether results
were generated through observation (Obs.), experiments (Exp.), self-reported surveys (Surveys), or
model-based estimates (Model); and peer-review status. Y/N refers to yes/no.
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