
UC Irvine
ICS Technical Reports

Title
Back-annotation for interactive data path synthesis

Permalink
https://escholarship.org/uc/item/29w198zm

Authors
Wu, Allen C.H.
Chaiyakul, Viraphol
Gajski, Daniel D.

Publication Date
1991-04-09

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/29w198zm
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Back-Annotation for
Interactive Data Path Synthesi~

Allen C-H. Wu_,_
0- ::-./

Viraphol Chaiyakul
Daniel D. Gajski

Technical Report #91-29
April 9, 1991

Dept. of Information and Computer Science
University of California, Irvine

Irvine, CA 92717
(714) 856-8059

Abstract

In order to take into account physical design effects, a designer needs a feedback
mechanism during interactive data path synthesis. In this paper, we propose a hy­
pergraph model and a back-annotation algorithm which provide a feedback mecha­
nism for back-annotation from physical designs to behavioral descriptions. Given a
control-data flow graph and its structural design, this back-annotation technique can
not only evaluate the design quality but can also feedback the delay to each edge and
node in the graph. Therefore, a designer can identify the critical paths and improve
the design. The hypergraph model and the back-annotation algorithm allow us to
bridge the gap between the behavioral description and the physical design.

Contents

1 Introduction

2 Formulation

2.1 The relationships between DFG and structure .

2.2 The hypergraph

2.3 DFG-hypergraph formation

3 Back annotation of physical design

3.1 Layout model

3.2 Delay model .

3.3 The back-annotation procedure

4 Experiments and results

4 .1 A walk-through example

4.2 An application example

5 Conclusions

6 Acknowledgements

2

4

4

6

6

10

11

13

14

16

17

20

20

21

List of Figures

1 (a) Traditional data path synthesis, (b) Data path synthesis with feedback
of physical information. 2

2 (a) The data flow between two operations and it's structural model, (b) The
var node insertion, (c) The data transfer model. 5

3 Hypergraph formation: (a) Data flow graph and schedule, (b) Variable and
operation assignments, (c) var node insertion, (d) Structural netlist, (e) Hy-
pergraph. 7

4 The edge mapping (a) case 1 and (b) case 2. 8

5 Two data path layout architectures 11

6 The clock estimation model. 15

7 The layout of the Figure 2. example (a). Routing track assignments and (b).
The final layout. 18

8 (a) Back-annotation of wire lengths and component delays and (b) Back-
annotation of delay information to the DFG. 19

9 The layout of the Elliptic Filter example. . . 22

10 The Area-Clock tradeoffs of the Elliptic Filter example: (a) 4-bit, (b) 8-bit,
(c) 16-bit, and (d) 32-bit. 23

1

1 Introduction

Data path synthesis for digital systems has been an active research topic in recent

years ([3],[6],(7],[20],(22),(25),(27]). Data path synthesis usually consists of two phases:

(i) scheduling and (ii) allocation. In the scheduling phase, operations are scheduled

and assigned to the control steps to satisfy timing and resource constraints. In the

allocation phase, operations are mapped into functional units, storage elements are

allocated for variables, and connections are assigned to wires between units.

(a) (b)

Figure 1: (a) Traditional data path synthesis, (b) Data path synthesis with feedback
of physical information.

Much research has been reported for solving the scheduling and allocation prob­

lems ([8],[14),[19],[21),[22],[24),[12],[18]). Most of the research deals with scheduling

and allocation separately. However, some approaches have also tried to perform the

scheduling and allocation problems simultaneously [2]. Furthermore, very little syn-

2

thesis research has taken into account physical design effects ([4],[17],[29]). Critics

point out that performing scheduling and allocation tasks without considering physi­

cal design effects results in impractical design. This has driven morerecent interest in

including layout information into the scheduling and allocation tasks. Since schedul­

ing and allocation are interdependent, the results of one task will affect the other. On

the other hand, the detailed physical layout information (including interconnect and

register costs in terms of area and delay) can not be obtained until allocation process

is completed. One practical approach [13] is to perform initial scheduling first, then

retrieve physical layout information, and finally reschedule by taking into account

physical design effects. This problem becomes even more difficult when manual or

interactive synthesis is considered. A designer usually must find a control path and

reassign several operations to different steps or to different execution units. Therefore,

fast feedback is needed to assess consequences of such local changes.

Traditionally, data path synthesis performs in a straight line fashion as shown in

Figure 1(a). The data path synthesizer first takes a data flow graph as input and

performs scheduling and allocation tasks. Then, the synthesizer produces a structural

netlist and passes it to a layout generator to produce the final layout. However, this

methodology does not provide a feedback mechanism to back-annotate the layout

information. In order to retrieve physical information, a feedback mechanism for

data path synthesis is required.

In this paper, we describe a back-annotation technique to feedback physical in­

formation for a given data flow graph and its corresponding structural design. We

use a hypergraph model which provides the mapping capability between the data

flow graph and the corresponding physical design (Figure l(b)). We describe the

formulation from a structural netlist to a hypergraph. In addition, we describe the

mapping between the data flow graph, the hypergraph, and the structural netlist.

Furthermore, we describe the back-annotation procedure of physical layout including

3

area and delay. We also describe using the back-annotated information to estimate

clock rates.

The remainder of this paper is organized as follows: Section 2 describes the re­

lationships and mapping techniques between the data flow graph, the structure, and

the hypergraph. Section 3 discusses the procedure of back-annotation of the physical

design. Section 4 presents the experimental results. Finally, Section 5 summarizes

our approach.

2 Formulation

In this section, we first describe the relationships between data flow graph and struc­

ture. Second, we describe the hypergraph model. Finally, we discuss the transforma­

tion procedure from the data flow graph to the hypergraph.

2.1 The relationships between DFG and structure

In general, a data-transfer-path can be viewed as follows: a functional unit fetches

variables from a set of storage elements (registers, memories) via a set of inter con-
•'

nect units, performs the data computations, then stores the output variable back

to the storage elements via a set of interconnect units. From the above obser­

vations, the data transfer between two operations in the data flow graph can be

viewed as follows (Figure 2(a)): The function unit FUl generates the output (a

variable) and stores in a register reg via a set of interconnect units. The func­

tional unit FU2 then fetches that variable via a set of interconnect units from

the register reg. Thus, an edge in the data flow graph is equivalent to a path of

interconnecLunitl=?-reg=?-interconnecLunit2.

For mapping the data flow graph to the data-tranfer-path, we introduce an in-

4

FU1(op1) FU1 (op1)
reg(var1)

e
var

FU2(op2) FU2(op2)
reg(var2)

(a) (b) (c)

Figure 2: (a) The data flow between two operations and it's structural model, (b)
The var node insertion, (c) The data transfer model.

termediate var node for each edge between two operations in the data flow graph

as shown in Figure 2(b). By adding the var node, each edge is transformed to an

edge* var node*edge path. For example, the edge e in Figure 2(a) is trans­

formed into the ei *var:=:>e2 path shown in Figure 2(b). Edge ei corresponds to

interconnect_unitl while edge e2 corresponds to interconnect_unit2. Using the

intermediate nodes, the data-transfer model is shown in Figure 2(c). Each var node

corresponds to a storage element, while each edge corresponds to an interconnect

unit. For example, nodes varl and var2 in Figure 2(c) correspond to reg(varl)

and reg(var2) respectively, while ei and e2 correspond to interconnect_unitl and

interconnect_unit2 respectively.

5

2.2 The hypergraph

Let H =(V,E) denote a hypergraph, V=VfoUVregUViugUV0 p, in which there are

four types of hypernodes: (i) input/output, (ii) register, (iii) interconnect, and (iv)

operation. Vio= { vk I k = 1 .. t} is a set of i/ o hypernodes which denote the input

and output ports in the DFG. Vreg={vg I g = 1 .. u} denotes a set of register

hypernodes where each register hypernode contains a set of variables : vg={ zk I

k=l..q}. Each register hypernode denotes a register which contains a set of non­

overlapping variables. Viu={ Vf I f == 1 .. r} denotes a set of interconnect hypernodes.

Each interconnect hypernode denotes an interconnect unit such as multiplexer or

bus. Vop={ Ve I c == 1 .. p} denotes a set of operation hypernodes. Each operation

hypernode denotes a particular functional unit such as adder/subtracter, multiplier,

or shifter. Each operation hypernode contains a set of operation nodes in the DFG

such as Vc=={vi I i==l..n}.

Let E=={ egc I { vg, vc}E V}, denote a set of hyperedges and w(egc) denote the

weight of egc· Each hyperedge represents the physical connection between two hy­

pernodes. The weight of a hyperedge is the number of dependency edges between

two hypernodes. This also can be viewed as the number of variables communicating

between two hypernodes.

2.3 DFG-hypergraph formation

We are given a data flow graph G == (V, E), a set of variables Z, and a structural

netlist with variable and operation assignments, where V =={Vi I i= 1..n} is a set of

operation nodes, E=={ ejm I { Vj,Vm}EV} is a set of dependency edges, and Z=={ Zk

I k=l..q} is a set of variables in DFG, Zk={ ejm I { Vj,Vm}EV}, where each edge

corresponds to a variable. V var is a set of var nodes. In addition, G' == (V', E'),

where V' == VUVvar and E'=={ej'm' I {vy,vm1}EV'}.

6

step step

0
FU(+) I add1 ,add2,add3

0 eo

FU(-) I sub1 ,sub2
CD : var nodes.

R1 la<0-1) ld<1-3) ~(3-4) I
d 91 2 2

R2 lb<0-2) le<2-3) ~(3-4) 1 var,

3
I I 3 92

R3 c(0-2) f(2-3)

4
variable(birth-death)

4

(a) (b) (c)

(d)

(e)

Figure 3: Hypergraph formation: (a) Data flow graph and schedule, (b) Variable and
operation assignments, (c) var node insertion, (d) Structural netlist, (e) Hypergraph.

7

The transformation from a structural netlist to a hypergraph is a one-to-one map­

ping. The input/output ports, functional units, interconnect units, and registers are

first mapped to a set of hypernodes. Each wire in the structural netlist is then mapped

to a hyperedge. For example, Figure 3(e) shows a hypergraph which is mapped from

the structural netlist in Figure 3(d).

The mapping from a data flow graph to a hypergraph consists of two steps: (1)

operation and variable node mapping and (2) edge mapping. As described in the

previous section, we first insert an intermediate var node on each edge in the D FG

as shown in Figure 3(c).

i/o or operation hypernodes

•••••••

.......

0
register hypernodes

(a)

interconnect
hypernodes

register hypernodes

•••••••

.......

0
i/o or operation hypernodes

(b)

Figure 4: The edge mapping (a) case 1 and (b) case 2.

In the node mapping step, the variables and operations are assigned to their cor­

responding hypernodes. In addition, the variables and their corresponding register

hypernodes are assigned to the corresponding var nodes in the DFG. For exam­

ple, Figure 3(a) shows a data flow graph and its schedule. In this example, three

8

registers, one adder, and one subtracter are used to perform data transfer. The

variable and operation assignments are shown in Figure 3(b). Operations subl

and sub2 are assigned to the subtracter and operations addl, add2, and add3

are assigned to the adder. The hypergraph shown in Figure 3(e) consists of a

set of input/output hypernodes Vio={v1,v4,v6,v15,v16}, and a set of three regis­

ter hypernodes Vreg={vs,vg,v10} where vs and vg consist of three variables, and

v10 consists of two variables: vs={a,d,h}, vg={b,e,g}, and v10={c,f}. In addi­

tion, there are two operation hypernodes Vop={ v13,v14} where v13={subl, sub2},

v14={ addl, add2, add3}. Furthermore, there are a set of interconnect hypernodes

vi u= { v2 'v 3' v 5'v7'v11 'v 12}.

In the edge mapping step, each edge is mapped to a set of interconnect hypernodes.

The process of edge mapping consists of two cases: (1) from an operation or i/ o

node to a var node (Figure 4(a)) and (2) from a var node to an operation or i/o

node (Figure 4(b)). Each edge mapping performs depth-first search from the source

hypernode to the destination hypernode via a set of interconnect hypernodes. For

example, the edge ei between operation add2 and var node var1 (Figure 3(c)) is

mapped to v7 (interconnect unit4) (Figure 3(d and e)). On the other hand, the

edge eo between input node a and var node varo is mapped to { v2, v3} since input

node a stores variable a to register Ri via interconnect unitl and interconnect

unit2.

Algorithm I. Hypergraph formation
Let

S=(N,W) be a given netlist where N is a set of components such as registers,
interconnect units,i/o ports, and functional units and Wis a set of wires;

hypergraph_formation(G,S,Z) {
/*hypergraph mapping*/
H = hypergraph_mapping(S);
/*variables and operations mapping*/
var _op_mapping(Z, V ,H);
/*edge mapping*/
for (ejmEE){

9

}
}

/*locate ejm 's corresponding variable*/
Zk == find_ variable(ejm);
/*locate the hypernode Vs such that VjEVs*/
Vs == findJiypernode(vj);
/*path searching from Vs to the hypernode v d such that ZkE v d * /
v d == depth_first_search(Vs,zk);

/*insert var node Vp and map Vp to vd*/
insert_var_node(ejm, vd,vp);
/*map edge ejm to a set of corresponding interconnect units*/
interconnectJnapping(vp, Viu);
Vs== vd;
/*locate the hypernode vd such that VmEvd*/
v d == findJiypernode(v m);
/*path searching from Vs to the hypernode Vd such that VmEvd*/
v d == depth_first_search(Vs,Vm);
/*map edge ejm to a set of corresponding interconnect units*/
interconnectJnapping(vm, Viu);

Complexity analysis. The DFG-Hypergraph mapping consists of three procedures:
(1) Hypergraph mapping, (2) Variable and operation mapping, and (3) Edge mapping.
The complexity analysis of the three procedures is as follows:

(1). Hypergraph mapping takes 0 (V + E) time since the structure to hypergraph is a
one-to-one mapping.

(2). Variable and operation mapping takes O(V +E) time, where V and E are the
number of edges and the number of operations in the data flow graph respectively.

(3). Edge mapping. Using depth-first search, each edge mapping takes O(V+E) time.
Since each edge is split into two edges by inserting a var node, the edge mapping
takes 0(2E(V+E)) time.

3 Back annotation of physical design

The main objective of the back annotation is to retrieve the physical design of a netlist

back to its corresponding data flow graph. The back annotation consists of two parts:

(i) Area and (ii) Delay. In this section, we first describe the layout and electrical

10

models. Then, we present the back annotation procedure. Finally, we describe the

clock estimation using back-annotated physical information. In this paper, we only

focus on the back-annotation of physical designs in data paths.

3.1 Layout model

data
lines

(metal2

LSB

~

)

(a)

MSB

bit
slice

~ control
./lines

'(meta11)

routing
channel (met~l1 or poly)

bit
slic

control/
lines~

(metal2),._.._.,..__....., _,.........,.._+-

LSB MSB
(b)

Figure 5: Two data path layout architectures

There are two common layout architectures for data paths: (1) bit slices with

abutment and (2) macrocells with routing channel ([10],(16],(15],[1],(26]). The first

layout architecture is shown in Figure 5(a), it uses abutment to connect different

bit slices (in metall) and over-the-cell routing (in metal2) to connect different units

inside one bit slice. In this architecture, each bit-slice has the same width, but unit

heights vary with the unit functionality. The stack grows horizontally when the bit­

width increases, and vertically when the number of units increases. Data signals

run vertically in second metal over the bit slices. Power, ground, and control lines

are routed in the first metal or poly between the bit slices. In the second layout

11

architecture (Figure 5(b)), bit-sliced macrocells or standard cells of each bit slice are

placed vertically and a routing channel is used for connecting different cells inside

one bit slice (in metall). Using either layout architecture, the area cost consists of

four parts [32]: (1). Functional unit area, (2). Register area, (3). Interconnect unit

area, and (4). Wiring area. We use the transistor counts as a function of the area

consumptions. The transistor counts of the functional units and registers can be

obtained by examining the component library [28]. The number of transistors in a

selector is proportional to the number of inputs of the selector, which also can be

obtained from the component- library. Since the first architecture (abutment) has a

fixed number of available over-the-cell routing tracks, if the required routing tracks are

less than or equal to the available tracks then the wiring area is not needed. On the

other hand, the second architecture needs a wiring area which is always proportional

to the number of required tracks. In addition, we treat multiplier as a separate

macroscell using our layout model. The overall area cost is:

n m p

A total w (a (L trs(FUi) + L trs(REGj) + L trs(IUk)) + Awire)
i=l j=l k=l

where
Atotal is the area of the data path;
a is the transistor area coefficient correlating to the layout technology;
trs(FUi) is the number of transistors in functional unit i;
trs(REGj) is the number of transistors in register j;
trs(IUk) is the number of transistors in interconnect unit k;
n is the number of functional units;
m is the number of registers;
p is the number of interconnect units;
Awire is the area of routing channel;
w is the bit widths of the data path.

12

3.2 Delay model

We divide the delay calculation into two parts: (i) Component delay and (ii) Path

delay.

Component delay. The delay of a component is due to the internal and the total

load capacitances. The load capacitances of a component consists of two elements:

(i) the input capacitances of the fanout components and (ii) the total wire capaci­

tances connected from the component to its fanout components. The total delay of

a component i is:

dtotal(i) = dint(i) + cC1oad(i)

and

where

dtotal(i) is the total delay of component i;
dint(i) is the delay due to component internal capacitances;
c is a constant;
C1oad(i) is the total capacitive load of component i;
Cwire is the interconnect capacitances;
Cin(j) is the input capacitances of component j.

Path delay. The path delay is the total delay from a source to a destination in

a data path. The delay of a path k is:

Dtotal(k) = L:m dtotal(m), mEthe components along the path k

where

Dtotal(k) is the total delay of path k.

13

3.3 The back-annotation procedure

The back-annotation procedure consists of four steps described as follows:

(1). Hypergraph formation. We are given a data flow graph G, a structural netlist

S with variable and operation assignments. The algorithm first performs hypergraph

transformation as described in Section 2.3.

(2). Stack placement. The algorithm uses the min-cut partitioning to perform stack

placement, and then uses the left-edge algorithm to assign routing tracks.

(3). Delay calculation. The algorithm calculates the wire length for each net and

the capacitive load and delay for each unit. The delay of each unit is the unit logic

delay plus the delay from the unit's driven loads using the previously described delay

model.

(4). Back annotation. The algorithm back-annotates the delay information to each

node and edge in the data flow graph. For example, the delay of eo in Figure 3(c) is

the sum of the delays of components interconnect unitl and interconnect unit2

(Figure 3(d)) while the delay of the operation add2 is equal to the delay of the

adder.

Using the back-annotated information, the algorithm can also perf01Jns clock esti­

mation. The delay of each data transfer is calculated using the reg=} interconnect_unit =}

FU =} interconnect_unit =}reg model as shown in Figure 2(c). Using this data

transfer model, the data transfer of an operation opi, i= 1. .q in the data flow graph

can be formulated as follows (Figure 6): the function unit fetches input data from

n registers via interconnect uni ts IU in_1 .. IU in...n, performs computation, and stores

data to registers via interconnect units IUouLl··IU0 uLm· Thus, the delay of opera-

tion opi is:

delay(opi) = Max(delay(IUin...j)) + delay(FU) + Max(delay(IU0 ut-1c+delay(regk)))

14

regln_1

reg
out 1

Figure 6: The clock estimation model.

where j=l..n and k=l..m

and the minimal clock cycle for this design is:

Clock= Max(delay(opi)), i = 1 .. q

Algorithm II. Back Annotation
Let

delay(vi) be the delay of node Vi;
Vinterconnect be a set of interconnect hypernodes;

Back_Annotation(G,S,Z){
{H, G'} = hypergraph_formation(G,Z,S);
stack_place_route(H);
unit_delay _calculation(H);
/*ba.ck_a.nnotation * /
for (Vi EV') {

/*locate hypernode vs where Vi Ev s * /
Vs = findJiypernode(vi);
delay(vi) = delay(Vs);

}
for (ej'm'EE'){

15

reg
in n

reg
out_m

Clock
Cycle

}

.}

/*locate interconnect hypernodes associated with ej'm' * /
Vinterconnect = find.Jiypernode(ej'm');
delay(ej'm') = l:k delay(vk) where VkEVinterconnect;

/*clock estimation*/
for (vmEVop){

delay(vm) = delay _calculation(vm);
}
clock = Max{ delay(Ym) I YmE Vop };

complexity analysis. The complexity analysis consists of five parts:

(1). Hypergraph formation. Described in the previous section.

(2). Stack placement. Our algorithm performs stack placement using the KLFM
([5], [11]) partitioning algorithm to minimize routing density. Using the bucket list
data structure [5] which has the complexity of 0 (p) time where p is the number of
pins in the netlist. In addition, the algorithm performs routing track assignments
using the left-edge algorithm. The complexity of routing track assignments takes
O(mlogm) time where mis the number of nets in the netlist.

(3). Delay calculation. It takes O(E) time to calculate the wire lengths of nets. In
addition, it takes 0(V) time to calculate delays for all components.

(4). Back annotation. Since each edge in the data flow graph is divided into a
edge=?-var-node=?-edge path, it takes O(V + 3E) time to annotate physical infor­
mation to the data flow graph.

(5). Clock estimation takes 0 (V) time.

4 Experiments and results

In this section, we first present a walk-through example showing how to back-annotate

the physical information using the Figure 3 example. Next, we show an application

example using the back-annotation technique.

16

4.1 A walk-through example

We assume the data path bit-width of this example is eight. The final layout (area=

1040µm X 1960µm) shown in Figure 7 is generated by [31]. In the delay calculation,

we only take into account the data path delay. The back-annotation of the delay

information consists of five steps as follows:

(1). The algorithm performs hypergraph transformation and stack placement.

(2). After performing the placement, the algorithm calculates the wire length for

each connection. For example, c9 (Figure 8(a)) is connected from muxl to regl, is

230µm.

(3). The algorithm calculates component delay by taking into account wire capaci­

tance. The algorithm first calculates the total capacitive load for each component.

For example, the capacitive load of regl in Figure 8(a) is the sum of the wire ca­

pacitance of en, the input capacitance of mux5, and the input capacitance of the

subtracter. Then, the algorithm calculates the component delay using the described

delay model. For example, the delay of regl is 5.8ns.

(4). The algorithm retrieves delay for each edge of the data flow graph. For example,

the delay of edge ei (Figure 8(b)) between input node a and var node varl is lOns

which is equal to the delays of muxO and muxl.

(6). Clock estimation. The delay of operation addl in Figure 8(b) is Max(delay(e2),

delay(e10))+delay(adder)+Max((delay(e3) + delay(var6)), (delay(e4) + delay(var7)))

such that delay(addl)=Max(4.8, 0)+22+Max((5.3+5.8), (5.3+5.8))=37.3ns. The

delays of operations add2, add3, subl, and sub2 are 38.2ns, 37.3ns, 36.5ns, and

41.Sns respectively. As a result, the minimal clock cycle for this design is 41.Sns.

17

1: TEXT M•IBB R'J0 (-167.75,469) block Lt1

I
f­
Q_
w
0

f-
0
_J
Q_

I
f-­
Q_

w
0

f---
0
_J
Q_

Figure 7: The layout of the Figure 2. example (a). Routing track assignments and
(b). The final layout.

18

C11

step

0

2

3

4

b

Cs

mux2

Ca

0 : var nodes.

c

q,

C1

C2

C4

conned ion wire length(um) component delay(ns) •
cO 130 muxO 5.0
c1 130 mux1 5.0
c2 1,040 mux2 5.3
c3 260 mux3 52
c4 2,040 mux4 5.0
c5 10 mux5 4.8
d) 660 reg1 5.8
c7 280 reg2 5.2
c8 230 reg3 5.7
c9 230 21.0 **
c10 410 + 22.0 ..
c11 1,160 *:Delay calculation by taking into
c12 500 account wire capacitance.
c13 1,760 **: Delay wtth 8-blt component.

(a)

connection delay(ns)
var-node delay(ns) e1 10.0

e2 4.8 1 5.8
e3 5.3 2 5.2
e4 5.3 3 5.2
es 0.0 4 5.7
e6 0.0 5 5.7
e7 10.0 6 5.8
ea 0.0 7 5.8
e9 5.3 8 5.2
e10 0.0 9 5.2
e11 5.3 10 5.7
e12 5.3 11 5.8
e13 5.2 12 5.2
e14 5.2
e15 5.0
e16 4.8
e17 5.3
e18 5.0
e19 5.3
e20 0.0
e21 5.2
e22 4.8
e23 5.3
e24 0.0

(b)

Figure 8: (a) Back-annotation of wire lengths and component delays and (b) Back­
annotation of delay information to the D FG.

19

4.2 An application example

In exploring the design space, it is possible to tradeoff the registers and interconnect

units. Back-annotation allows us to select the best solution that satisfies the given

constraints. Using the hypergraph model, we first used an allocation algorithm [30]

to perform registers and interconnect units tradeoffs. Then, we back-annotated the

physical information using the described back-annotation procedure. We applied two

single-level interconnect models, multiplexer and bus.

Table 1 shows the results of the 19-step Elliptic Filter example with a 2-adder

1-piped multiplier. Figure 9 shows the layout of the Elliptic Filter example which

was generated using [31). Using the multiplexer model, the results show that the

design with 11 registers and 6 multiplexers produces the minimal area. Using the bus

model, the design with 13 registers and 5 multiplexers produces the minimal design.

For 4-bit, 8-bit, and 16-bit designs, the design with 13 registers and 5 multiplexers

produces the shortest delay using either multiplexer or bus model (Figure 10(a) (b)

(c)). However, for the 32-bit design, the designs with 11, 12, and 13 registers have

the same delay for both interconnect models (Figure 10(d)).

5 Conclusions

We have proposed a layout back-annotation technique for data path synthesis. The

use of a hypergraph provides a feedback mechanism for back-annotation of the phys­

ical design. We have described a back-annotation procedure to re.trieve the detailed

physical information including area and delay. Given a data flow graph and its struc­

tural design, this back-annotation technique can not only evaluate the design quality

but can also feedback the delay to each edge and node in the data flow graph. This

allows designers to perform scheduling/ allocation by identifying the critical paths

and improving the design. Using this back-annotation technique, we can perform the

20

The 19-step Elliptic Filter Example
with 2-adder and 1-plped multiplier Clock (ns) (Mux/bus)

#of #Of
#of Area (s_q. um I bit) Area (sq. um I bit) Mux 4-bit 8-blt 16-bit 32-bit Reg. Mux. l~s

(multiplier) (Mux/bus)

10 10 36 145,680 125,376/148,896 31.4/25.0 37.4/31.0 54.4/48.0 94.3/91.0

11 6 28 145,680 113, 136/133,536 29.4/23.2 35.4/29.2 52.4/46.3 90.3/88.3

12 6 26 145,680 115,696/132,576 29.7/23.8 35.7/29.8 52.7/46.8 90.3/88.3

13 5 23 145,680 113,696/129,216 25.2122.4 31.2128.4 48.3/46.3 90.3/88.3

Table 1. The results of the 19-step, 2-adder, 1-piped multiplier EJliptic Filter example.

Clock (na)

(#Of Reg.,# of Ml.Ix.,# of Ml.Ix. Input•)

Clock (ne)

30

25

20

(10,10,36)

•
(12,6,26)

(11,6,28) ••

(13,5,23)

•
(12,6,26)

I

(10,10,36)
•

I (11,6,28)

•
(13,5,23)

250 260 270 280 290
Area

300 (4X1000 eq.um)
• : Mux. • : Bua.

(a)

Clock (ns)

55

50

45

(10,1.°,36)

(11,6,28) •• (12,6,26)

(13,5,23)

•
(12,6,26)

•

(10,10,36)

•
(13,5,23) I • (11,6,28)

Area
250 260 270 280 290 300 (16X1000 sq.um)

• : Mux. • : Bua.
(c)

38

35

30

28

(10,10,36)

•
(12,6,26)

(11,6,28) ••

(13,5,23)

• (10,10,36)

250 260

(12,6,26)

•
• (11,6,28)

I
(13,5,23)

270 280 290

• : Mux. • : Bua.
(b)

.

Area
300 (8X1000 sq.um)

Clock (na)

95

90

85

(10,10,36)
•

(10,10,36)

(11
6,28) (12,6,26) I . T (12,6,26) t

I • (11,6,28)
(13,5,23) (13,5,23)

Area
250 260 270 280 290 300 (32X1000 sq.um)

• : Mux. • : Bua.
(d)

Figure 10: The Area-Clock tradeoffs of the Elliptic Filter example: (a) 4-bit, (b)
8-bit, (c) 16-bit, and (cl) 32-bit.

23

References

[1] H. Cai, S. Note, P. Six, and H. De Man, "A data Path Layout Assembler for
High Performance DSP Circuits," Proc. 27th DAG., pp.306-311, 1990.

[2) R. J. Cloutier and D. G. Thomas, "The Combination of Scheduling,Allocation,
and Mapping in a Single Algorithm," Proc. 27th DAG, pp. 71-76, 1990.

[3) H. De Man, et. al., "CATHEDRAL II - A Computer-Aided Synthesis System
for Digital Signal Processing VLSI Systems", IEE GAE Journal, April 1988.

[4] E. Dirkes Lagnese and D. E. Thomas, "Architectural Partitioning for System
Level Design," Proc. 26th DAG, pp. 62-67, 1989.

[5] C. M. Fiduccia and R. M. Mattheyses, "A Linear-Time Heuristic for Improving
Network Partitions," Proc. 19th DAG, pp. 175-181, 1982.

[6] B. S. Haroun and M. I. Elmasry, "Architectural Synthesis for DSP Silicon Com­
piler," IEEE Trans. on Computer-Aided Design, vol. 8, no. 4, pp.431-447, April
1989.

[7] C. Y. Huang, Y. S. Chen, et. al., "Data Path Allocation Based on Bipartite
Weighted Matching", Proc. 27th DAG, pp. 499-504, June, 1990.

[8] C. T. Hwang, Y. C. Hsu, and Y. L. Lin., "Optimum and Heuristic Data Path
Scheduling," Proc. 27th DAG, pp. 65-70, June 1990.

[9] K. S. Hwang, A. Casavant, et. al., "Scheduling and Hardware Sharing in
Pipelined Data Paths", Proc. IEEE Intl. Conf. on Computer-Aided Design,
Nov. 1989.

(10] Jamier, R. and Jeraya, A., "APOLLON: A Datapath Compiler,".Proc. ICCD,
1985.

[11] K. H. Kernighan and S. Lin, "An Efficient Heuristic Procedure for Partitioning
Graphs," Bell System Technical Journal, vol. 49, no. 2, pp. 291-307, Februry,
1970.

[12] K. Kucukcahar and A. C. Parker, "Data Path Tradeoffs Using MABEL," 4th
International Workshop on High-Level Synthesis, 1990.

[13] D. W. Knapp, "Feedback-Driven Datapath Optimization in Fasolt," Proc. IEEE
Intl. Conf. on Computer-Aided Design, 1990.

[14] F. J. Kurdahi and A. C. Parker, "REAL: A Program for REgister ALlocation,"
Proc. 24th DAG, pp. 210-215, 1987.

24

[15] L. L. Larmore, D. D. Gajski, and Allen C-H Wu, "Layout Placement for Sliced
Architecture," IEEE Trans. on Computer-Aided Design, to appear.

[16] Luk, W. K. and Dean, A. A., "Multi-Stack Optimization for Data-Path Chip
(Microprocessor) Layout," Proc. 26th DAG, pp.110-115, 1989.

[17] M. C. McFarland., "Using Bottom-Up Design Techniques in the Synthesis of
Digital Hardware from Abstract Behavioral Descriptions," Proc.23th DAG,
June, 1986.

[18] A. Mignotte and G. Saucier," A Generalized Model for Resource Assignment,"
Fifth International Workshop on High-Level Synthesis, pp.37-43, 1991.

[19] B. Pangrle, and D. Gajski, "Design Tools for Intelligent Silicon Compilation",
IEEE Trans. on Computer-Aided Design, vol. CAD-6 no. 6, Nov. 1987.

[20] N. Park, and A. Parker, "Sehwa: A Software Package for Synthesis of Pipelines
from Behavioral Specifications", IEEE Trans. on Computer-Aided Design, vol.
CAD-7 no. 3, March 1988.

[21] A. C. Parker, J. Pizarro and M. Mlinar, "MAHA: A Program for Datapath
Synthesis," Proc. 23rd DAG, pp. 461-466, 1986.

[22] P. G. Paulin, J. P. Knight and E. F. Girczyc, "HAL: A Multi-Paradigm Ap­
proach to Automatic Data Path Synthesis," Proc. 23rd DAG, pp. 263-270, 1986.

[23] P. G. Paulin, and J. Knight, "Force-Directed Scheduling for the Behavioral
Synthesis of ASICs", IEEE Trans. on Computer-Aided Design, vol. CAD-8 no.
6, June 1989.

[24] R. Potasman et. al., "Percolation Based Synthesis," Proc. 27th DAG, pp. 444-
449, 1990.

[25] D. Thomas, et. al., "Methods of Automatic Data Path Synthesis", IEEE Com­
puter, December 1983.

[26] M. T. Trick and S. W. Director, "Lassie: Structure to Layout for Behavioral
Synthesis Tools," Proc. 26th DAG., pp.104-109, 1989.

[27] C. J. Tseng and D. P. Siewiorek, "Automated Synthesis of Data Path in Digital
Systems," IEEE Trans. on Computer-Aided Design, vol. CAD-5, no.3, pp. 379-
395, 1986.

(28] "Data path Library," VLSI Technology, INC., 1988.

(29] J.P. Weng and A. C. Parker, "3D Scheduling: High-Level Synthesis with Floor­
planning," Fifth International Workshop on High-Level Synthesis, pp.1-7, 1991.

25

[30] Allen C-H Wu and D. D. Gajski, "Layout-Driven Allocation for Data Path
Synthesis," Tech. Rpt. No. 91-30, res Dept., UC Irvine, 1991.

[31] Allen C-H Wu, G. D. Chen and D. D. Gajski, "Silicon Compilation from
Register-Transfer Schematics," Proc. ISCAS, pp.2576-2579, 1990.

[32] Allen C-H Wu, Viraphol Chaiyakul and D. D. Gajski, "Layout Models for High­
Level Synthesis," Tech. Rpt. No. 91-31, res Dept., UC Irvine, 1991.

26

..J I..

~Ill 111111 I II Ill Ill Ill Ill\ I Ill I I Ill I Ill II II Ill I I II Ill II Iii\~
3 1970 00882 4358

