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The Road goes ever on and on

Down from the door where it began.

Now far ahead the Road has gone,

And I must follow, if I can,

Pursuing it with eager feet,

Until it joins some larger way

Where many paths and errands meet.

And whither then? I cannot say.

J.R.R. Tolkien
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This work utilizes various computational techniques to study the turbulent mechanisms

found in stratified shear flows. Three-dimensional DNS was used to investigate the influence of

stratification on turbulence and mixing within a shear layer between two currents. Similarities in

the development of secondary instabilities during transition to turbulence and discrepancies in flow

evolution are seen between the case of uniform stratification considered here and the two-layer

density profile of prior works. Vertical contraction of the shear layer is identified in cases with low

Richardson number and determined to be the result of the flattening of Kelvin-Helmholtz billows

before the flow becomes fully turbulent. Transition layers with enhanced shear and stratification

form at the periphery of the shear layer and are found to support turbulent mixing. In an effort

to find a less computationally costly tool than DNS, the Dynamic Smagorinsky, Ducros, and
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WALE subgrid-scale models were chosen for an LES study of the stratified shear layer. This

investigation revealed the Ducros model to the least computationally costly LES option and the

most reliable with coarsening grid resolution. A subgrid analysis revealed the LES models to be

largely unsuccessful in capturing convective turbulence though the mean flow and turbulent kinetic

energy were well-captured.

To address the limitations of DNS and LES, a hybrid spatially-evolving DNS model was

developed. The wake of a sphere towed in a stratified background was selected for validation. The

hybrid model involves extracting planes from a spatially-evolving, body-inclusive simulation and

feeding the planes as inflow into a body-exclusive simulation thereby eliminating the need for a

highly resolved grid to capture flow near the body. This study revealed that particular attention

should be paid to the extraction location, grid resolution, and time step between extractions. Planes

must be extracted downstream of the recirculation region behind the body and sufficient grid

resolution is required in the body-exclusive simulation to capture small-scale turbulence. Results

show the hybrid DNS model to be an effective tool in the study of the stratified turbulent wake. The

combination of results presented herein offer computational techniques and cost-saving options for

future studies of shear flows.
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Chapter 1

Introduction

Turbulence is a complex phenomenon observed in a myriad of diverse fields including

astrophysics, naval engineering, climatology, and combustion to name a few. As turbulence is

characterized by chaotic behavior over a wide range of length and time scales, it has proven to be

a historically interesting and challenging subject of study. Scientists and engineers have sought

to better understand the physics of turbulent flow and transport using experiments, theoretical

tools, and numerical models. With vast improvements in computational tools over the past few

decades, there has been particular interest in numerical modeling of turbulent geophysical flows

for the purposes of improved environmental forecasting and engineering of technologies which

operate in the natural environment. In such flows, it is important to consider the variability of

density in the environment also known as its stratification. Nonhomogeneity in density greatly

impacts flow evolution and turbulence and is, thus, a crucial consideration in studies which seek to

characterize turbulence and mixing. While there exist many canonical shear flows which can be

used in such studies, this work specifically addresses the numerical modeling of shear layers and

wakes in stratified environments in an effort to improve fundamental knowledge of such flows.

Turbulent mixing in the environment is a combination of both shear-driven and buoyancy-

driven processes. Buoyancy is known to stabilize turbulence and a variety of instabilities that are

found in stratified shear flows. The physical mechanisms resulting from the interaction of parallel
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shear flows in a stably stratified environment are observed in the ocean where shear instabilities

generate turbulent mixing. Consequently, the accurate prediction of such mixing and turbulent

energetics is key in the design of many naval applications.

In a stably stratified shear layer with moderate stratification, Kelvin-Helmholtz (KH) insta-

bilities are generated by inflectional shear and their evolution is modified by stratification. These KH

billows are followed by secondary instabilities that eventually break down into three-dimensional

turbulence. The shear layer thickens by entrainment until the potential energy barrier to overturning

motions at the scale of the shear layer thickness becomes sufficiently large to arrest shear layer

growth which is an inevitable consequence of stratification even if its value is small relative to

the initial shear. The creation of these billows, transition to turbulence, and decay of turbulence

have been widely studied using a variety of laboratory experiments (Thorpe, 1973; Lawrence et al.,

1991; Schowalter et al., 1994; De Silva et al., 1996) and simulations (Smyth & Moum, 2000b,a;

Brucker & Sarkar, 2007; Pham et al., 2009; Pham & Sarkar, 2010, 2014; Khani, 2018; Kaminski

& Smyth, 2019). Particular attention has been paid to the influence of turbulence on the density

field of a stratified fluid and mixing mechanisms (Peltier & Caulfield, 2003; Salehipour et al., 2015)

as well as the development and evolution of instabilities in stratified shear flows (Mashayek &

Peltier, 2012a,b). In a stably stratified mixing layer, buoyancy effects are constrained to larger

scales such that the smallest scales of turbulent motion are not initially impacted. However, the

scales of turbulence increase in size as the mixing layer evolves and buoyancy increasingly inhibits

turbulent motions.

Quantifying the rate of mixing has important implications in large-scale ocean and atmo-

spheric models. Ocean models often parametrize mixing efficiency (Γ) with a constant empirical

value, where Γ is understood to be the ratio of the gain in the background potential energy over

the sum of the gain plus the dissipation rate of turbulent kinetic energy. A typical value of approx-

imately 0.16 is used although the physics behind the mixing processes and the dependence of Γ

on flow conditions are not yet clearly understood (Osborn, 1980). In the past two decades, there

has been a sustained effort to more accurately quantify mixing efficiency using three-dimensional,
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turbulence-resolving direct numerical simulations (DNS). Smyth & Moum (2000b) and Caulfield &

Peltier (2000) performed some of the first DNS of three-dimensional turbulence in a stratified shear

layer and were able to quantify the rate of mixing despite being at a low Reynolds number. Since

then, due to the benefits of increased computational power, DNS have been able to examine higher

Reynolds numbers, most notably in the recent works by Mashayek & Peltier (2013); Mashayek

et al. (2013); Salehipour et al. (2015); Salehipour & Peltier (2015); Kaminski & Smyth (2019).

The Reynolds numbers in these simulations reach up to 40,000, a value considered high enough to

reflect turbulent dynamics at geophysical scales. Some significant results from these simulations

are: (1) Γ can have a significantly higher value than 0.16 and (2) the value varies significantly with

Reynolds number (Re), Prandtl number (Pr), stratification (via using Richardson number, Ri), and

even the amount of pre-existing turbulence in the shear layer (Brucker & Sarkar, 2007; Kaminski

& Smyth, 2019). For a review of these effects on Γ, readers are referred to the work of Mashayek

& Peltier (2013) (hereafter referred to as MP13) and Mashayek et al. (2013) (hereafter referred

to as MCP13). Their studies indicate that mixing efficiency depends on the route to turbulence,

namely how the two-dimensional Kelvin-Helmholtz billows transition into fully three-dimensional

turbulence. They found a myriad of secondary instabilities to develop during the transition period

that controls the mixing rate. Interestingly, they assert the existence of an intermediate value of

stratification, Ri ≈ 0.16, which produces the optimal turbulent mixing given that the secondary

shear instabilities are richest in this regime of Ri. They find that the mixing efficiency decreases as

Ri deviates from this value, either larger or smaller.

Nearly all DNS of stratified layers at high Reynolds numbers use a hyperbolic tangent profile

for velocity and density in order to represent a shear layer that develops at an interface between

two layers having different but constant density. In the oceans and atmosphere, it is typical that

the stratification extends beyond the region of the shear layer such that a uniform stratification

is a more appropriate representation of the density gradient than the two-layer profile. There are

intrinsic differences between these configurations. In particular, for the same value of Ri at the

center of the shear layer, the density difference across the layer is larger in the case with uniform
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stratification. In other words, the average value of the stratification is larger, leading to the possibility

of different physics associated with turbulent mixing. Furthermore, Pham et al. (2009) show that

the external stratification, when sufficiently strong, can support propagating internal waves. At low

Re = 1,000, they show that the internal wave flux can be as large as 15% of the turbulent production

generated in the shear layer. The strength of the internal wave reduces as Re increases to 5,000

(Pham & Sarkar, 2010). Recent DNS of shear layers with uniform stratification in Watanabe et al.

(2018) (hereafter referred to as WR18) at Re = 6,000 reveal interesting turbulent dynamics at the

turbulent/non-turbulent interface (TNTI). These authors also find that at low Ri, though internal

waves do not propagate far from the shear layer, the wave flux measured at the TNTI can reach up

to 50% of the dissipation rate generated inside the shear layer. The effect of uniform stratification

on the mixing rate at high Reynolds number is presently unknown. Table 1.1 lists the parameters

of recent two-layer and uniformly stratified DNS at high Reynolds number. It is clear from the

table that DNS of shear layers with uniform stratification at high Reynolds number would improve

the present understanding of stratified turbulent mixing. It is noted that, according to Mashayek &

Peltier (2013), the dynamics of mixing is richest when Re≥ 24,000.

There is also a need to quantify flow dynamics of the transition layers which develop at the

edges of the shear layer during transition to fully three-dimensional turbulence. Previous simulations

have shown enhanced shear and stratification in the shear layer. However, it is presently unknown

how the uniform stratification of the ambient can impact the development of the transition layer

as well as the turbulent and mixing physics therein. In oceans, a transition layer is often located

between the surface mixed layer and the thermocline below (Johnston & Rudnick, 2009). Here, the

transition layer controls the rate of heat flux at the base of the mixed layer. Given its influence, it is

necessary to explore the turbulent physics which arise in the layer.

Specifically, recent observations and simulations reveal nightly bursts of deep-cycle turbu-

lence in the Pacific Equatorial Under-Current (EUC) which are triggered by descending transition

layers (Smyth et al., 2013; Pham et al., 2013). It has been shown that, as the transition layer

descends down from the base of mixed layer to depths, it enhances the local shear rate, reduces the
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Table 1.1: Parameters used in recent DNS of stratified shear layers with high Reynolds number.
Listed are simulations using a two-layer density profile with a sufficiently large Re. For the case
of uniform stratification, the highest Reynolds number simulated is 6,000. Note that the Reynolds
numbers for the two-layer cases given in this table are a factor of four larger than the number
stated in the works referenced above due to differences in notation.

Re Ri Density profile Source

16,000 0.16 two-layer Kaminski & Smyth (2019)
16,000 0.20 two-layer Kaminski & Smyth (2019)
24,000 0.12 two-layer MP13, MCP13, Salehipour & Peltier (2015)
24,000 0.14 two-layer MP13, MCP13
24,000 0.16 two-layer MP13, MCP13
24,000 0.18 two-layer MP13, MCP13
24,000 0.20 two-layer MP13, MCP13
32,000 0.12 two-layer MP13
40,000 0.04 two-layer MP13
40,000 0.12 two-layer MP13
6,000 0.01 uniform WR18
6,000 0.04 uniform WR18
6,000 0.08 uniform WR18
24,000 0.04 uniform present study
24,000 0.08 uniform present study
24,000 0.12 uniform present study
24,000 0.16 uniform present study

local gradient Richardson number, and triggers shear instabilities and turbulence. It is presently

unclear what factors control the turbulent momentum flux associated with the descending transition

layer. Pham et al. (2017) suggest there are seasons in which the deep-cycle turbulence does not

occur, possibly because the turbulent flux in the transition layer is not sufficiently strong when the

stratification in the ambient is too strong. It is, therefore, of interest to understand how the transition

layer develops and propagates with different levels of stratification in a canonical problem that is

simpler than the EUC.

To improve our knowledge of mixing in stratified shear layers and the transition layers

which develop therein, an investigation in which four DNS with differing Richardson number (Ri)

indicative of the stratification strength were compared. Chapter 2 provides a detailed analysis of

this study and quantifies the influence of stratification on shear layer flow dynamics.
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For temporally-evolving DNS, an increase of the Reynolds number corresponds to a reduc-

tion of the smallest scales of motion and a consequent increase in the number of grid points required

to resolve all scales, which leads to a prohibitive increase of computational expense. Simulations

of stratified shear flows performed at a high Reynolds number are especially significant as they

are directly relevant to realistic environmental flows. As such, LES models are often used as an

alternative to DNS. LES studies are appealing because they reduce computational cost by using a

subgrid-scale (SGS) model for small-scale turbulence while only larger scales are resolved. This

allows for more flexibility in simulation design, avoiding many limitations of DNS although sacrific-

ing the fact that all scales of motion are not solved for directly as in DNS. A number of LES models

have been employed in the study of stratified flows (Armenio & Sarkar, 2002; Chamecki et al.,

2007; Scotti, 2010; Pham & Sarkar, 2014; Chongsiripinyo & Sarkar, 2017; Khani, 2018). Although

specific SGS models have been utilized in stratified flows, there is need for a comprehensive and

direct comparison of widely used LES models. This need motivates another component of the

present work.

To that end, three LES models, namely the Dynamic Smagorinsky, Ducros, and Wall-

Adapting Local Eddy-Viscosity (WALE) models, were used to simulate a shear layer in a uniformly

stratified flow environment. In brief, the Dynamic Smagorinsky model uses two filters (a grid and

a test filter) and dynamically calculates the coefficients used to model eddy viscosity as opposed

to setting a coefficient a priori (Germano et al., 1991; Lilly, 1992). A version of this model was

recently used by Chongsiripinyo & Sarkar (2017) in their study of the impact of stratification on

flow evolution in the turbulent wake behind a sphere at a moderate Reynolds number. In contrast,

the Ducros model is a filtered structure-function (FSF) model which applies a high-pass filter to

the LES field in order to obtain a filtered version that retains the smaller scales of the LES field

and uses a second-order structure function of the explicitly filtered LES field to estimate eddy

viscosity (Ducros et al., 1996). Sundermeyer et al. (2014) utilized this model in their investigation

of turbulent mixing in the surface ocean boundary layer. Furuichi & Hibiya (2015) employed

the Ducros model in their study of upper-ocean mixing. In the WALE model, eddy viscosity is
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determined without explicit filtering and instead employs a tensor invariant that takes into account

the influence of both strain and rotation. This model is well suited to the simulation of complex

geometries and wall-bounded flows as it uses only local gradients to compute eddy viscosity and

reproduces proper wall scaling (Nicoud & Ducros, 1999). The WALE model was recently used

by Posa & Balaras (2018) to study the physics of towed and self-propelled submarine geometries.

Details concerning these models and the results of their use in studying a stratified shear layer can

be found in chapter 3.

Of additional interest are the physical mechanisms within turbulent wakes. In a broad sense,

a wake is created as flow encounters an obstacle and disturbances are noted in the lee of the body.

The study of wakes in stratified flow environments is important to many naval and environmental

applications including ship and submersible movement, marine swimmers, and flow over topography

in the atmospheric boundary layer and on the ocean floor. Over the length scales observed in such

stratified flows, buoyancy effects are important to the quantification of turbulence. The near wake

is a complex flow that involves flow separation dependent on boundary layer dynamics, vortex

shedding from the body, and recirculation regions. The far wake is a canonical turbulent shear flow.

Like the shear layer studied in chapter 2, the wake has vertical mean shear that competes with the

stabilizing effect of stratification but a key difference is the added presence of mean horizontal

shear.

Lin & Pao (1979) provide a comprehensive review of wakes in stratified flows prior to 1979

which highlights interesting large-scale structures in self-propelled and towed bodies. More recently,

Riley & Lelong (2000) discussed a wide range of numerical simulations, laboratory experiments, and

theory for low Froude number (Fr) flows while progress specific to wake detection, geophysical and

marine swimmer flow evolution, and related laboratory experiments is reviewed by Spedding (2014).

Several experimental studies have investigated bluff body wakes using towed or self-propelled

spheres in a stratified fluid (Pao & Kao (1977); Chashechkin (1989); Lin et al. (1992b,a); Chomaz

et al. (1993b,a); Spedding et al. (1996); Spedding (1997); Bonnier et al. (2000); Bonnier & Eiff

(2002)). Chashechkin (1989) studied the hydrodynamics of stratified flow past a sphere using
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optical methods noting clear differences in the internal wave propagation and the high-gradient

flow envelope in the lee of the body for different Froude numbers. Lin et al. (1992b) and Lin et al.

(1992a) analyzed linearly stratified fluid past a towed sphere for a variety of Fr and Re. They

determined that many flow features are dramatically influenced by the level of stratification. In

particular, horizontal scales of motion are notably larger than vertical scales owing to the inhibition

of vertical modes by stratification. Observations of vortex shedding as well as a variation in the size

and behavior of an attached region in the near wake behind the sphere are noted. They also assert

that sufficiently large Fr and Re > 2000 are criteria for the existence of turbulence. Chomaz et al.

(1993b) investigated the near wake structure behind a sphere, identifying four flow regimes with Fr

dependence: a quasi-two-dimensional (Q2D) regime when 0.25 < Fr < 0.8, a lee wave dominated

regime when 0.8 < Fr < 1.5, a transition region between lee wave domination and stratification

independence when 1.5 < Fr < 4.5, and a three-dimensional regime independent of stratification

when Fr > 4.5.

The work on the near wake was extended by Chomaz et al. (1993a) to document the Q2D

regime and transition in the far wake. Bonnier et al. (2000) investigated the vortical structure of

the far wake and observed the same Q2D behavior seen in previous works suggesting universal

behavior in stratified flows. Late wake evolution was further explored for Re = [103,104] and

Fr = [1,10] by Spedding et al. (1996) who observed flow dominated by coherent vortices and

provided scaling arguments for various flow parameters. Spedding (1997) later extended the study

to high Fr = [10,240] where an intermediate non-equilibrium (NEQ) regime which precedes the late

wake was identified. In this region between the three-dimensional near wake and the Q2D regimes,

buoyancy effects become increasingly important. Eventually, vertical motions are suppressed by

the effect of stratification and the coherent vortices known as “pancake eddies” characteristic of

the Q2D regime emerge. Bonnier & Eiff (2002) used hot-film measurements and particle image

velocimetry to characterize the impact of buoyancy on the transition from the near to far wake

and analyze the far wake in detail. Investigation of the transition region in stratified wakes led to

identification of a subregion within the NEQ regime, termed the accelerated collapse (AC) region,
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located approximately between 2≤ Nt ≤ 7, during which the mean defect velocity briefly increases

before continuing to decay. Another region, termed buoyant collapse (BC), was proposed by

Meunier et al. (2006) to appear within the NEQ regime at high Re. A reproduction of figure 9

from Brucker & Sarkar (2010) is given in Figure 1.1 to illustrate the various flow regimes in the

development of the towed wake in a stratified fluid. It should be noted that these simulations were

temporally evolving.

Figure 1.1: Reproduction of figure 9 from Brucker & Sarkar (2010) to illustrate the various flow
regimes in the development of the towed wake in a stratified fluid. Specifically shown is the
evolution of peak defect velocity plotted as U0(t)Fr2/3 versus Nt. [D061] corresponds to the data
from the simulations of Diamessis & Spedding (2006) with Re = 5.0×103 and Fr = 2. [D062]
corresponds to the data from the simulations of Diamessis & Spedding (2006), Re = 1.0×105

and Fr = 8. The cases T R50F04, T R10F02, and T R10F20 are temporally-evolving towed sphere
simulations with Re = 5.0×104, 1.0×104, and 1.0×104 and Fr = 4, 2, and 20, respectively.

In addition to the study of the mean defect velocity scale, the far wake is of particular interest

due to the aforementioned formation of coherent vortex structures. It was originally thought that

the appearance of these late wake structures was due to the propagation of instabilities in the near

wake (Chomaz et al. (1993b); Spedding (1997)). However, more recent experiments (Bonnier et al.

(1998)) and simulations which were initialized with a prescribed flow field (Gourlay et al. (2001);

Dommermuth et al. (2002); Diamessis & Spedding (2006); Brucker & Sarkar (2010)) have shown

that upstream instabilities are not a necessary condition for the coherent formation of late wake
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structures. Performed by Gourlay et al. (2001), the first fully three-dimensional temporally-evolving

direct numerical simulation (DNS) of its kind found “pancake eddies” despite initial conditions

not containing so called “coherent seeding” from the flow past a body. The emergence of these

structures was, therefore, concluded to be independent of coherence in the initial conditions.

Numerical simulations using a temporally-evolving flow model have been used extensively

to study the turbulent wake. Temporal evolution neglects streamwise flow evolution, thereby

allowing the use of periodic boundary conditions which significantly reduces the computational

cost of a simulation. DNS temporal flow studies have been employed to gain insight into flow

dynamics, parameter dependency, energy budgets, and scaling including, but not limited to, the

study of towed and self-propelled wakes by Brucker & Sarkar (2010) who found a longer NEQ

regime at the higher Re = 50,000, Prandtl number study by de Stadler et al. (2010), and the weakly

stratified wake investigation by Redford et al. (2015).

LES have also been employed to study the physical mechanisms of the turbulent wake.

Dommermuth et al. (2002) simulated the wake behind a towed sphere at Re = 104 and Re = 105.

Diamessis et al. (2011) performed implicit LES of a wake and found that turbulence at large Nt

(where N is the buoyancy frequency and t is the turbulent time scale) is enhanced when Re is large,

up to Re = 105 in their simulations. Constantinescu & Squires (2003) also performed LES of flow

over a sphere at Re = 104.

Despite the abundance of temporally-evolving DNS and LES, there exist drawbacks to their

use. One such limitation is that an approximation of initial fluctuations which is often taken from

measurements of the unstratified downstream wake is necessary and, as such, it may not be possible

to accurately capture buoyancy effects in the near wake. An alternative is a spatially-evolving

simulation including the body that resolves the boundary layer, flow separation, and the near wake.

Simulations of this sort for the stratified wake have successfully documented vortex shedding,

boundary layer dynamics as well as turbulence in the near and intermediate wake (Orr et al. (2015);

Pal et al. (2016, 2017); Chongsiripinyo et al. (2017); Chongsiripinyo & Sarkar (2017)). Pal et al.

(2017) performed spatially-evolving DNS of flow past a towed sphere at Re = 3700 and Fr = 1, 2,
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3 and found strong buoyancy effects such as a decrease in the recirculation length, increase in near

wake turbulence anisotropy, lee waves, and oscillatory modulation of the streamwise velocity.

Although illuminating results are found by body-inclusive, spatially-evolving simulations,

there is a limitation to their practicality. Because a large number of grid points are required near

the body to resolve the boundary layer and flow separation, the simulations are computationally

expensive and unable to extend far downstream without prohibitive cost. The final contribution

of this work is the development of a hybrid spatially-evolving DNS model which addresses these

drawbacks. For the cases in chapter 4, the model uses inflow conditions generated from a well-

resolved, spatially-evolving, body-inclusive DNS of the wake past a towed sphere and performs

a separate spatially-evolving simulation without including the body. Pasquetti (2011) suggested

a similar idea in which a spatial development study was carried out to generate initial conditions

although these conditions were used in a temporally-evolving simulation. Although additional

research has been performed concerning the generation of realistic initial conditions to be used in

numerical simulations (Lund et al. (1998); Xiang et al. (2015)), the work presented herein is the

first hybrid spatially-evolving study of its kind for stratified flows.

The remainder of this work is structured as follows. Chapters 2 and 3 discuss the evolution

of turbulence in a shear layer in a uniformly stratified background using DNS and LES, respectively.

The work in chapter 3 is under consideration for publication in Computers & Fluids while that of

chapter 2 is in preparation for publication. Chapter 4 focuses on an investigation of the turbulent

wake and provides details concerning the formulation and validation of the hybrid model which

is published in Computers & Fluids. A final evaluation of this work and its contribution to the

scientific community is given in chapter 5.
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Chapter 2

Evolution of turbulent shear layers with

uniform stratification at high Reynolds

number

There is need for an investigation of turbulent mixing physics in shear layers at high Reynolds

number using density profiles of uniform stratification as evidenced in chapter 1. Specifically, results

of the current investigation are compared to those of MP13, MCP13 and WR18 in table 1.1 in order

to answer the following: (1) Is the effect of uniform stratification similar to what has been observed

in prior two-layer simulations and (2) at what value of Ri does the shear layer have optimal mixing?

Particular attention is paid to the flow dynamics of the transition layers which form at the

periphery of the shear layer and have yet to be studied within the framework of a canonical stratified

shear layer. DNS with varying background stratification are performed to assess the impact of

buoyancy effects on the development of, and mixing mechanisms within, transition layers.
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2.0.1 Formulation

2.0.1.1 Stratified shear layer

The problem of a temporally evolving stratified shear layer with uniform stratification is

considered. A sketch of the shear layer with relevant initialization parameters is shown in figure

2.1. The flow is initialized similarly to previous works (Brucker & Sarkar, 2007; Pham & Sarkar,

2010, 2014; Watanabe et al., 2018) with a streamwise velocity field (u) continuously varying in the

vertical direction (z) as given by

〈u∗〉(z∗, t = 0) =−ΔU∗

2
tanh

(
2z∗

δ ∗
ω,0

)
, (2.1)

where ΔU∗ denotes the velocity difference across the shear layer and the initial vorticity thickness

of the shear layer is given by

δ
∗
ω,0(z

∗, t = 0) =
ΔU∗

(d〈u∗〉/dz∗)max
. (2.2)

Note that in this configuration, maximum shear at initial time (t = 0) occurs at the centerline of

the shear layer where z∗ = 0. A superscript ∗ denotes a dimensional quantity while the 〈〉 operator

indicates horizontal averaging.

Various configurations of density-stratified shear layers have been studied (Pham et al., 2009;

Pham & Sarkar, 2010; Watanabe et al., 2018). Pham & Sarkar (2010) compared the mechanisms

present in the well-known two-layer case with the Jd density profile characteristic of observations

in the ocean pycnocline. Instead, this work utilizes a uniformly distributed stratification, a choice

motivated by atmospheric and ocean observations in which stratification extends beyond regions of

shear (Fritts, 1982; Smyth et al., 2001). In the stably stratified fluid considered, uniform stratification

is characterized by a constant background density gradient in the vertical direction such that density

is initialized by 〈ρ∗〉(z∗, t = 0) = ρ∗b (z
∗)+ ρ̃∗ where ρ∗b denotes the time-invariant background

density profile and ρ̃∗ is the deviation from the background. A reference density (ρ∗0 ) represents
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Figure 2.1: Sketch of the stratified shear layer with the velocity difference across the shear
layer (ΔU∗), initial vorticity thickness of the shear layer (δ ∗

ω,0), and initial density profile (〈ρ∗〉)
identified.

the value of ρ∗b (z
∗ = 0). Therefore, the background buoyancy frequency of the ambient fluid (N∗0

2)

has a constant value given by N∗0
2 =−(g∗/ρ∗0 )dρ∗b/dz∗. Gravitational acceleration (g∗) acts in the

vertical.

The governing equations for this problem are the three-dimensional Navier-Stokes equations

for unsteady, incompressible flows with the Boussinesq treatment of density such that density

variations are considered only where they contribute to a gravitational force. A Cartesian frame of

reference is used to represent the streamwise, spanwise, and vertical coordinates such that spatial

orientation and velocities are given by xi = (x,y,z) and ui = (u,v,w), respectively. These equations

can be nondimensionalized using the following reference quantities: velocity difference across the

shear layer (ΔU∗), initial vorticity thickness of the shear layer (δ ∗
ω,0), and a reference value for
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density deviation (Δρ∗ = δ ∗
ω,0 dρ∗/dz∗). The resulting nondimensional equations are given by

∂u j

∂x j
= 0 , (2.3a)

∂ui

∂ t
+

∂ (u jui)

∂x j
=− ∂ p

∂xi
+

1
Re0

∂ 2ui

∂x j∂x j
−Ri0ρ̃gi , (2.3b)

∂ ρ̃

∂ t
+

∂ (u jρ̃)

∂x j
=

1
Re0Pr

∂ 2ρ̃

∂x j∂x j
−w

dρ̄

dz
. (2.3c)

Here, the density equation is solved for the nondimensional density deviation (ρ̃) from the uniform

background. Nondimensional parameters, namely the initial Reynolds number (Re0), initial gradient

Richardson number at the center of the shear layer (Ri0), and Prandtl number (Pr) are given by

Re0 =
∆U∗δ ∗

ω,0

ν∗
, Ri0 =

N∗20 δ ∗2
ω,0

∆U∗2
, Pr =

ν∗

κ∗
. (2.4)

Here, ν∗ and κ∗ are the kinematic viscosity and thermal diffusivity, respectively. The pressure

(p) denotes deviation from the mean pressure in hydrostatic balance. The velocity and pressure

fields are decomposed using Reynolds decomposition into mean and fluctuating components while

density is composed of a constant reference density, a horizontally averaged mean component, and

a fluctuating component. These decompositions are given by

ui(xi, t) = 〈ui〉(xi, t)+u′i(xi, t) , (2.5a)

p(xi, t) = 〈p〉(xi, t)+ p′(xi, t) , (2.5b)

ρ(xi, t) = ρ0 + 〈ρ〉(z, t)+ρ
′(xi, t) , (2.5c)

where 〈〉 and ′ indicate a mean and fluctuating value, respectively.
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2.0.1.2 Numerical methods and simulation setup

The numerical methods employed to solve the governing equations are similar to DNS

of previous works (Brucker & Sarkar, 2007; Pham et al., 2009; Pham & Sarkar, 2010; VanDine

et al., 2018). A staggered grid approach wherein normal velocities are located at the cell faces

while pressure and density are located at the cell center is used. The Williamson low-storage,

third-order Runge Kutta method is employed for time advancement while discretization of spatial

derivatives is achieved using a second-order, central finite difference scheme. The Poisson pressure

equation is solved using a parallel multigrid solver and Red-Black Gauss-Seidel smoothing. Parallel

computations and message-passing interface (MPI) are also utilized throughout the numerical

scheme. In a sponge region near the vertical boundaries in the regions z > 10 and z < 10 (sufficiently

far from the shear layer), a Rayleigh damping function gradually relaxes the density and velocities

to their corresponding boundary values in order to damp propagating fluctuations and prevent

reflections of features such as internal waves which have propagated far from the shear layer.

The flow is initialized using velocity perturbations for which the broadband spectrum is

given by

E(k) ∝ k4exp

[
−2
(

k
k0

)2
]
, (2.6)

where the peak spectrum is found at k0 = 1.1, e.g. the fastest growing mode of the Kelvin-Helmholtz

instability, and the initial velocity fluctuations have peak values at 0.1% ΔU .

The streamwise and spanwise directions utilize periodic boundary conditions. In the vertical

direction, vertical velocity uses a Dirichlet boundary condition while Neumann boundary conditions
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are enforced for density, pressure, and the remaining velocities as follows:

∂ ρ̃

∂ z
(−Lz/2) =

∂ ρ̃

∂ z
(Lz/2) = 0, (2.7a)

∂ p
∂ z

(−Lz/2) =
∂ p
∂ z

(Lz/2) = 0 , (2.7b)

∂u
∂ z

(−Lz/2) =
∂u
∂ z

(Lz/2) =
∂v
∂ z

(−Lz/2) =
∂v
∂ z

(Lz/2) = 0 , (2.7c)

w(−Lz/2) = w(Lz/2) = 0 . (2.7d)

For this work, an isotropic grid is used in the central region of the shear layer with grid

spacing of Δx = Δy = Δ0.0074δω,0. The streamwise and spanwise grids have uniform spacing

while mild stretching is used in the vertical outside the region |z| < 2.5. Throughout the entire

grid, this grid spacing is less than 2.75η where η = (ν3/ε)1/4 (ε denotes turbulent kinetic energy

dissipation rate) is the Kolmogorov length scale thus indicating appropriate resolution for capturing

small-scale fluctuations. The number of grid points in the streamwise, spanwise, and vertical

directions are given by (Nx,Ny,Nz) = (1536,768,1024) such that the domain extent is (Lx,Ly,Lz)≈

(11δω,0,5.7δω,0,32δω,0).

Four DNS cases are presented herein. All cases have Re0 = 24,000 and Pr = 1 while the

strength of stratification is varied such that Ri0 = [0.04,0.08,0.12,0.16] encompasses a range of

fluid types from weakly stratified at Ri0 = 0.04 to strongly stratified at Ri0 = 0.16. It should be

noted that the value of Pr = 1 is chosen as in a number of other studies so that the scalar field does

not require finer resolution than the velocity field. For the remainder of this work, Ri will be used in

lieu of Ri0.
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2.0.1.3 Statistical analysis

In later discussions, both two-dimensional (K2d) and three-dimensional (K) turbulent kinetic

energy (TKE) are evaluated where each is defined as

K2d =
1
2
(
〈u′〉2 + 〈w′〉2

)
, K = K2d +

1
2
〈v′〉2 . (2.8)

The TKE budget will be used to examine the routes to turbulence and is given by

DK
Dt

= P− ε +B− dT3

dz
, (2.9)

with production (P), dissipation (ε), buoyancy flux (B), and the transport term (T3) specified as

P =−〈u′w′〉d〈u〉
dz , ε = 2

Re0
〈s′i js

′
i j〉, s′i j =

1
2

(
∂u′i
∂x j

+
∂u′j
∂xi

)
,

B =−Ri0〈ρ ′w′〉, T3 =
1
2〈w

′u′iu
′
i〉+ 1

ρ0
〈w′p′〉− 2

Re0
〈u′is′3i〉 .

(2.10)

In order to calculate mixing efficiency, Mashayek & Peltier (2013) computed the change

in background potential energy by sorting the density field. Instead, we use the dissipation of the

density field as a surrogate to the change in background potential energy such that the mixing

efficiency (Γ) is given by

Γ=
ερ

ε + ερ

, ερ =
1

Re0Pr
g2

ρ2
0 N2

0

〈
∂ρ ′

∂xi

∂ρ ′

∂xi

〉
, (2.11)

where ερ is the dissipation rate of the potential energy.
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2.0.2 Flow evolution

2.0.2.1 Linear stability analysis of Kelvin-Helmholtz shear instability

We first examine the effect of stratification on the growth rate of the KH shear instability

using linear stability analysis (LSA). The LSA of a stratified shear layer with a two-layer density

profile indicates that the shear instability develops when Ri < 0.25. The growth rate (σ ) of the

fastest growing mode (FGM) reduces significantly as Ri increases toward 0.25 (Hazel, 1972). This

analysis assumes that the fluid is inviscid and the shear layer is located inside an infinite domain.

Here, LSA is performed, taking into account the effect of viscosity, diffusivity, and a finite

domain, to examine the FGM when the shear layer is uniformly stratified. The theory and numerical

implementation of the LSA is given in Smyth et al. (2011). In the LSA, the Reynolds number, the

Prandtl numbers, and domain size (Lz) have the same values as in the DNS. The grid spacing is

Δz = 0.1. Free-slip and fixed buoyancy conditions are used at the top and bottom boundaries. The

LSA of the two-layer profile is also performed for comparison.

Figure 2.2(a,b) contrasts the mean profiles of the squared buoyancy frequency (N2), squared

rate of shear (S2), and gradient Richardson number (Rig) in the two-layer shear layer to those in

the linearly stratified shear layer. The same level of stratification at the center of the shear layer,

N2 = 0.12, is used. Away from the center, N2 decreases to zero in the two-layer case while it

remains constant in the other case. As a result, the Rig in the two layer case is smaller than that in

the case with linear stratification throughout the shear layer except at the center where Rig = 0.12

in the both cases. With the same amount of mean kinetic energy, e.g. the same velocity profile,

the potential energy barrier inside the shear layer is significantly higher in the case with linear

stratification, thereby inhibiting the growth of the KH shear instability.

Results of the LSA are shown in figure 2.2(c,d). In the two-layer case, the growth rate (σ )

is similar to that of Hazel (1972) in the region with low k and Ri. However, as k and Ri increase,

the growth rate becomes smaller than the value from Hazel (1972) due to the effect of viscosity,

diffusivity, and a finite domain. The FGM at various Ri, marked by the white line, suggests that the
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critical Richardson number for the two-layer case is 0.18. At higher stratification, the growth rate of

the KH mode is still positive. However, there exist higher modes with faster growth rate. In the

case of uniform stratification, the critical Richardson number for the KH mode becomes smaller,

approximately 0.15.

Figure 2.2(e,f) contrasts how the growth rate varies with wavenumber between the two cases

for five values of Ri. At the same Ri, the growth rate of the KH mode is higher in the two-layer case

which suggests that the KH shear instability in the case with uniform stratification would be weaker.

In the case with uniform stratification, when Ri = 0.16, the KH shear instability is not the FGM, but

the growth rate is still positive so the instability develops as will be examined later.

In the cases with weaker stratification, e.g. Ri < 0.18, the KH shear instability develops

but does not excite propagating internal waves. The KH mode perturbs the pressure field in the

region above and below the shear layer, but the perturbation decays exponentially with the distance

away from the shear layer as evanescent waves. Pham et al. (2009) also suggest that turbulence also

can excite propagating internal waves which are significantly weaker than those excited by the KH

instability. In the present study, turbulence also excites internal waves in the cases with Ri < 0.18.

The characteristics of the turbulence-generated internal waves will be addressed in a later section.

2.0.2.2 Routes to turbulence: Kelvin-Helmholtz shear instability and secondary instabilities

In a stratified shear layer with large Re, it is understood that there is a strong primary

instability in the form of a Kelvin-Helmholtz (KH) shear instability. This instability manifests

as a series of vortices which roll up over time (termed billows) and are connected by vorticity

filaments (termed braids). As the KH billows evolve, secondary instabilities develop throughout the

shear layer. Mashayek & Peltier (2012b) provide a compilation of such secondary instabilities, of

which, secondary shear instabilities (SSI), stagnation point instabilities (SPI), secondary convective

instabilities (SCI), secondary core deformation instabilities (SCDI), secondary vorticity bands

instabilities (SVBI), and localized core vortex instabilities (LCVI) are also identifiable in the results

presented herein. SSI, SCI, and SCDI are typically categorized as early-time secondary instabilities
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Figure 2.2: Effect of stratification on the KH shear instability using linear stability analysis (LSA)
giving (a,b) mean initial profiles of the squared shear rate (S2), squared buoyancy frequency (N2),
and gradient Richardson number (Rig) as well as (c,d) contours of growth rate (σ ) at various
Richardson numbers (Ri) and wave number (k). The variability of the growth rate with wave
number at fixed Richardson numbers is shown in (e,f). Results in (a,c,e) are from the two-layer
density profile while those in (b,d,f) are from the linear density profile. In (c), a dashed magenta
line marks the stability boundary, Ri = k(1− k) where k is the non-dimensional wavenumber
(Hazel, 1972). Solid white lines in (c,d) indicate the FGM. The dashed black line in (f) marks the
modes used to excite the KH shear instability in the present study.
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whereas SPI, LCVI, and SVBI are associated with late-time shear layer evolution (Mashayek

& Peltier, 2012b). The appearance and behavior of these instabilities varies with background

stratification (as will be discussed later) but a brief explanation of each follows from Mashayek &

Peltier (2012a,b); Arratia (2011); Arratia et al. (2013); Salehipour et al. (2015).

As KH billows roll up, they extract kinetic energy from the shear layer and transfer it to

available potential energy as they grow vertically. SCI form as convectively unstable regions appear

inside the billow during this roll-up. Mashayek & Peltier (2012b) see increasing growth rates of

these instabilities between 0.04≤ Ri≤ 0.12 due to increasing density gradients across the unstable

regions. However, SCI are suppressed at higher values of Ri due to decreased growth of the KH

billow and weaker overturning associated with higher stratification. SSI develop along the braids

between billows due to velocity shear along the filament. The strain field is shown to suppress

the instability and, as such, SSI develop in areas of relatively weak strain and diminish under the

influence of high strain. Mashayek & Peltier (2012b) saw enhanced SSI with increasing Ri until

Ri = 0.12, at which point, the growth of SSI is diminished due to a stronger strain field induced

by core growth. SCDI form in regions nearly parallel to the braid inside the KH billow core. As

their presence is responsible for an observable inflation of the core itself, it is more prevalent in less

stratified flows. As Ri increases, the vortex core becomes smaller due to the enhanced stratification

and SCDI are suppressed.

The core vortex bands become sufficiently close to the braid as KH billows develop causing

perturbations from which a SPI emerges. Mashayek & Peltier (2012b) observe the growth rate of

SPI to increase between 0.04≤ Ri≤ 0.12 and decrease at higher values of Ri. They also note that

SPI developed high growth rates at large wavenumbers. As the core vortex bands grow and achieve

sufficiently large magnitude, counter-clockwise vortices (LCVI) form at the tips of the negative

vorticity bands within the core. The appearance of LCVI is particularly apparent at high Re because

the KH billows roll up faster and there is less time for the vorticity bands in the core to diffuse.

Mashayek & Peltier (2012b) assert that both SPI and LCVI could trigger SSI by inducing braid

deformation. The interaction of SPI and LCVI near the braid are responsible for the generation of
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SVBI.

The elliptical instability characterized by Arratia (2011) and Arratia et al. (2013) and the

eyelid instability described by Salehipour et al. (2015) are also observed in this work. The eyelid is

distinguished as the region surrounding the core of the KH billow. Flow instabilities are largely

responsible for momentum transport from the center of the shear layer towards the periphery as well

as the development and evolution of the transition layer which will be discussed later. A discussion

of the instabilities relevant to the cases in this work follows.

The Ri = 0.04 case is used to outline the general development of the stratified shear layer

while differences between the various Ri cases are discussed thereafter. Figures 2.3 and 2.4 show

cross-sectional snapshots at early times of the density (ρ), spanwise vorticity (ω2 = ∂u/∂ z−

∂w/∂x), and dissipation rate (ε). The creation of the primary shear instability is clearly illustrated in

figure 2.3 in the form of two KH billows. As the billows grow vertically, they extract kinetic energy

from the shear layer. At their maximum vertical extent, the billows contract vertically. As seen

in figure 2.4, in the Ri = 0.04 case, the primary KH instabilities deform into elliptical instabilities

similar to those described at length by Arratia (2011). A spanwise instability visualized in figure 2.4

is also generated which further disrupts the flow. The billow continues to develop lateral motions

and r.m.s. spanwise velocity fluctuations (not shown) increase in this case. Note that there is no

broadband turbulence as yet in the development. As small-scale fluctuations are allowed to develop

due to low viscosity (high Re), the billows begin to break down with turbulent motions concentrated

in the core of the billow. Due to the weak stratification, this case is dominated by core-centered

vortices and SCI caused by the convectively unstable regions within the billow. As SCI develop,

SCDI are observed inside the billows as evidenced in figure 2.5 by the region of elevated positive

vorticity and strong dissipation rate near the lower core periphery of the central billow. Eventually,

the breaking billows become localized turbulent patches with the majority of overturning occurring

at the core of each billow.

As seen in figure 2.6, the flow evolves similarly in the Ri = 0.08 case with the KH billows

exhibiting vertical growth followed by contraction which is accompanied by lateral motions and
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Figure 2.3: Cross-sectional snapshots of the (a) density (ρ) and (b) spanwise vorticity (ω2) fields
for the Ri = 0.04 case at S0t = 53. For this and future similar plots, the y/δω,0 - z/δω,0 and x/δω,0 -
z/δω,0 planes are extracted at the centerline streamwise and spanwise locations where x/δω,0 = 5.7
and y/δω,0 = 0, respectively.
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Figure 2.4: Cross-sectional snapshots of the (a) density (ρ), (b) spanwise vorticity (ω2), and (c)
dissipation rate (ε) fields for the Ri = 0.04 case at S0t = 78.
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Figure 2.5: Cross-sectional snapshots of the (a) density (ρ), (b) spanwise vorticity (ω2), and (c)
dissipation rate (ε) fields for the Ri = 0.04 case at S0t = 92.
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deformation into elliptical billows. However, in this case, the increased effect of buoyancy prevents

the extent of the lateral motion observed in the Ri = 0.04 case. Instead, the billows experience

shorter vertical contraction and weaker lateral motions. The billows first begin to break down in the

lower periphery of the billow in the form of an eyelid instability from which SCI are generated by

convectively unstable regions. The spanwise snapshots show the emergence of SCI in the eyelid

rather than in the core of the billow as seen in figure 2.6(b). The y/δω,0 - z/δω,0 planes in this figure

reveal much more coherent behavior at the edges of the shear layer than in the Ri = 0.04 case with

secondary instabilities clearly observed and little turbulence noted at the billow core. Eventually,

patches of turbulence develop with elevated turbulence along the braids where weak SSI evolve due

to weakening strain and strengthening shear.

The Ri = 0.12 case is particularly interesting. In this case, more obvious differences are

observed in the evolution of the flow and instabilities as compared to the low Ri cases. The effect of

buoyancy inhibits large vertical growth of the billows, thereby preventing the elliptical instabilities

caused by the collapse and redistribution of the billow. Figure 2.7 depicts the density, spanwise

vorticity, and TKE dissipation rate fields at S0t = 101 for the Ri = 0.12 case. As the primary KH

instability grows, a number of distinct secondary instabilities are observed. Eyelid instabilities

which prompt SCI near the peripheries of the billow are stronger than in the weakly stratified cases

due to the stronger density deviation across the core and unstable regions. Localized weak strain

promotes the development of SSI and their propagation along the braids (not shown). An SPI

for which dissipation rate is strong and vorticity is strongly negative is identifiable on the braid

of the billow in figure 2.7 due to the destabilizing interaction of the core vortex bands with the

stagnation point. Near the connection of the braids with the eyelid of the billow where the influence

of the internal vorticity bands is strong, LCVI are seen to form as counter-clockwise vortices. The

appearance of LCVI is more prolific in this investigation than in other works due to the increased

Re, at which, the KH billows roll up faster, reducing the time available for vorticity bands to diffuse.

SVBI are observed along the braids as SPI and LCVI interact (not shown). Overall, turbulence is

strongly isolated to the edges of the billows in the form of these instabilities.
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Figure 2.6: Cross-sectional snapshots of the (a) density (ρ), (b) spanwise vorticity (ω2), and (c)
dissipation rate (ε) fields for the Ri = 0.08 case at S0t = 86.
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Figure 2.7: Cross-sectional snapshots of the (a) density (ρ), (b) spanwise vorticity (ω2), and (c)
dissipation rate (ε) fields for the Ri = 0.12 case at S0t = 101.
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At early time in the Ri= 0.16 case, the primary KH instability develops (not shown) although

not to the same vertical height as in the low Ri cases due to the suppressing influence of buoyancy in

the highly stratified environment. By the same mechanisms described in the Ri = 0.12 discussion,

secondary instabilities take the form of eyelid, SCI, SSI, SPI, LCVI, and SVBI. Eyelid instabilities

are clearly seen in the billow periphery in figure 2.8. Strong mushroom-like instabilities (alluded

to as secondary convective instabilities (SCI) in Mashayek & Peltier (2012b)) are observed to

propagate from the eyelid in the spanwise plane at locations near the edges of the shear layer in the

x/δω,0 - z/δω,0 planes of figure 2.8 at S0t = 138. These regions show elevated positive spanwise

vorticity and high rates of TKE dissipation and grow in vertical extent until the entirety of the shear

layer in the spanwise is disturbed. As such, they are highly influential in the breakdown of billows.

Unlike in the Ri = 0.12 case in which a SPI appears followed by SVBI, two distinct SVBI are seen

to form (see the location of elevated vorticity and dissipation rate in figure 2.8) and propagate along

the braid before a SPI is observed (see figure 2.9). As in the Ri = 0.12 case, LCVI appear, leading

to braid deformation and the appearance of secondary shear vortices (and therefore, late-time SSI)

on the braid. In this case, there are only weak SCDI (see the right side of the central billow core in

figure 2.9) due to the enhanced stratification and smaller vortex core sizes. As in the Ri = 0.12 case,

edge breaking is noted such that turbulence is concentrated away from the center of the shear layer

as the flow becomes fully turbulent.

2.0.2.3 Effect of stratification on the growth of the shear layers

The growth of the shear layer can be quantified using the momentum thickness which is

defined by

Iu =
∫ 5

−5

[
1−4〈u〉2

]
dz . (2.12)

Figure 2.10(a) compares the temporal evolution of the normalized momentum thickness (Iu/Iu,0)

for all Ri and a number of distinct flow regimes are identified. At early time, (approximately

30 < S0t < 60 in the Ri = 0.04 case, 40 < S0t < 70 in the Ri = 0.08 case, and 50 < S0t < 90 in the

Ri = 0.12 case), the shear layer thickens rapidly due to the growth of the KH shear instability. In
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Figure 2.8: Cross-sectional snapshots of the (a) density (ρ), (b) spanwise vorticity (ω2), and (c)
dissipation rate (ε) fields for the Ri = 0.16 case at S0t = 138.
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Figure 2.9: Cross-sectional snapshots of the (a) density (ρ), (b) spanwise vorticity (ω2), and (c)
dissipation rate (ε) fields for the Ri = 0.16 case at S0t = 146.
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all cases, except for the Ri = 0.16 case, there is a period where the shear layer briefly shrinks or

stops growing before beginning to grow once again (approximately 60 < S0t < 80 in the Ri = 0.04

case, 70 < S0t < 90 in the Ri = 0.08 case, and 90 < S0t < 100 in the Ri = 0.12 case). In the case

of Ri = 0.12, the layer does not contract significantly as in the Ri = 0.04 and Ri = 0.08 cases but

there is stagnation in shear layer growth. The contraction of the shear layer persists longer with

smaller values of Ri and is not seen at all in the Ri = 0.16 case indicating that stratification plays a

key roll in this flow feature.

The period of contraction occurs during the transition regime from flow dominated by

two-dimensional KH rollers to fully three-dimensional turbulence. Figures 2.10(b-e) illustrate the

evolution of two-dimensional TKE (K2d) and three-dimensional TKE (K) as defined in equation

2.8. The terms are vertically integrated across the shear layer in the region bounded by |z| < 5.

When K is larger than K2d by 1% (marked as t2d), the KH rollers begin to transition into turbulence.

Turbulence in the shear layer becomes fully developed when K reaches its maximum value denoted

as t3d in figures 2.10(b-e). It is clear that the contraction of the shear layer occurs between t2d

and t3d . After the growth stagnation and contraction, the shear layer thickness resumes growing

until reaching S0t ≈ 150 in all cases except the Ri = 0.16 case which plateaus at S0t ≈ 180. At this

time, buoyancy effects become sufficiently strong to cause turbulence decay and the shear layer

can no longer thicken. In the Ri = 0.04 case, a second period of contraction is noted after reaching

maximum momentum thickness at S0t ≈ 150. Overall, the rate of growth decreases with increasing

Ri and the ultimate thickness of the shear layer is much smaller. The Ri = 0.04 case shows an

eventual normalized momentum thickness of approximately 3.5 while the Ri = 0.16 case barely

reaches 1.8 indicating a much more vertically confined shear layer in the higher Ri case.

Snapshots of the density field are shown in figure 2.11 at times before (S0t = 53), during

(S0t = 73), and after (S0t = 81) the first contraction. As previously discussed, the primary KH

instability grows vertically until the potential energy barrier becomes too large, at which point, the

billow contracts vertically and expands horizontally in the streamwise direction. The deformation of

the billows occurs coherently without inciting broadband turbulence. The change in vertical extent
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Figure 2.10: S0t evolution of the (a) normalized momentum thickness (Iu/Iu,0) and (b-e) integrated
two-dimensional and three-dimensional turbulent kinetic energy in the (b) Ri = 0.04, (c) Ri = 0.08,
(d) Ri = 0.12, and (e) Ri = 0.16 cases. Integration is performed between z =±5. Dotted lines in
(b-e) mark the transition from two-dimensional KH billows to three-dimensional turbulence while
dashed lines denotes the time of peak three-dimensional TKE.
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is clear between figures 2.11(a) and 2.11(b). The development of subsequent spanwise instabilities

visible in figures 2.11(b,c) break down the billows. The y/δω,0 - z/δω,0 snapshot in figure 2.11(d)

shows a mushroom-like structure at y/δω,0 = 1.5 in the core of the billow suggesting that a SCI

is responsible for the transition to fully three-dimensional turbulence in the shear layer during the

period of contraction.

The contraction of the shear layer influences the energetics of turbulence since the evolution

of the momentum thickness is directly related to the mean kinetic energy (MKE) defined as

K̄ = 1
2〈u〉

2. Therefore, the change in momentum thickness is given by

dIu

dt
=
∫ 5

−5
−8

∂ K̄
∂ t

dz. (2.13)

From the Navier-Stokes equation, the evolution of MKE can be obtained as follows:

DK̄
Dt

=−P− ε̄− ∂ T̄3

∂ z
, (2.14)

with turbulent production (P), viscous dissipation (ε̄), and transport term (T̄3) specified as

P =−〈u′w′〉∂ 〈u〉
∂ z

, ε̄ =
1

Re0

(
∂ 〈u〉
∂ z

)2

, and T̄3 = 〈u〉〈u′w′〉−
1

Re0
〈u〉∂ 〈u〉

∂ z
.

Equations 2.13 and 2.14 are combined to yield

dIu

dt
=
∫ 5

−5
−8

∂ K̄
∂ t

dz≈
∫ 5

−5
8Pdz, (2.15)

where the small contribution of the viscous dissipation of MKE inside the shear layer as well as the

small transport term at z =±5 have been neglected. Equation 2.15 indicates that, when the shear

layer contracts, e.g. dIu/dt < 0, the integrated turbulent production becomes negative and MKE

(integrated across the shear layer) increases.

During the contraction of the shear layer, MKE increases due to negative production and the
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Figure 2.11: Cross-sectional snapshots of the density (ρ) field for the Ri = 0.04 case at various
times: (a) S0t = 53, (b) S0t = 73, and (c) S0t = 81. The x/δω,0 - z/δω,0 and y/δω,0 - z/δω,0
planes are extracted at the centerline spanwise and streamwise locations where y/δω,0 = 0 and
x/δω,0 = 5.7, respectively.
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decrease in potential energy. Figure 2.12(a) shows the evolution of the density deviation from the

initial linear profile. As the KH billows develop, they transport heavy fluid upward and light fluid

downward which stirs the density gradient. Consequently, density increases in the upper half of the

shear layer while it decreases in the lower half. As the shear layer contracts, the density in the upper

half of the shear layer decreases releasing the available potential energy that was previously gained.

The density flux, which is positive during the growth of the KH billow, changes sign during the

contraction suggesting the buoyancy flux becomes a source of TKE at this time (see figure 2.12(b)).

The increase in the MKE can be seen in 2.12(c) which illustrates how the streamwise velocity (〈u〉)

deviates from the initial values during the contraction. Before the contraction, as the KH billows

form, the velocity deviation increases in the upper half of the shear layer and decreases in the lower

half. Recalling that the streamwise velocity is negative in the upper half and positive in lower

half, the magnitude of the velocity decreases in both layers during the growth of the billows. As

the billows contract, the magnitude of the velocity deviation decreases throughout the shear layer,

and therefore, the velocity magnitude increases. The shear layer accelerates and MKE increases

during the contraction period. A change in sign during the contraction period is also observed in

the Reynolds stress, 〈u′w′〉 as shown in figure 2.12(d). Since the shear (∂ 〈u〉/∂ z) remains negative

across the shear layer throughout the contraction period, the turbulent production changes sign.

Before and after the contraction, shear production is a source of TKE while it is a source of MKE

during the contraction. The negative 〈u′w′〉 and, therefore, the negative production are consistent

with the relationship derived in equation 2.15.

To better understand the change in density flux during the contraction period, figure 2.13

compares snapshots of the flux during the contraction. Before the contraction, the density flux is

negative in the braid region and in the billow core while positive density flux occupies the periphery

of the billows. When averaged over the horizontal plane, the net density flux (〈ρ ′w′〉) is positive as

shown in figure 2.13(a). As the KH billows deform during the contraction, the region with positive

density flux becomes thinner while the peak positive value becomes significantly smaller. As a

result, the horizontal average becomes negative near the center of the shear layer as shown in figure
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Figure 2.12: Evolution of the (a) density deviation from the initial profile (〈ρ〉− 〈ρ〉(t = 0)),
(b) density flux (〈ρ ′w′〉), (c) Reynolds stress (〈u′w′〉), and (d) buoyancy frequency (N2) for the
Ri = 0.04 case. Dashed lines in (a) marked the boundaries of the shear layer defined as z =±Iu/2.
Vertical dotted lines denotes the three times at which snapshots of the KH billows are shown in
figure 2.11. White regions in (d) denote N2 < 0.
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2.13(b,c). It is noted that a negative density flux gives rise to a positive buoyancy flux (B) which

acts to extract energy from the potential energy and contributes to the negative turbulent production

in the TKE budget. Furthermore, the negative production transfers energy from TKE to MKE as

seen by the increase in the velocity magnitude in figure 2.12(c) during the contraction.

2.0.2.4 Effect of stratification on the TKE budget and mixing efficiency

The effect of the contraction on the TKE budget and mixing efficiency is illustrated in

figure 2.14. When the stratification is weak as in the Ri = 0.04 and Ri = 0.08 cases, there are time

intervals when the integrated production has significantly negative value. The magnitude of the peak

negative values in these cases can be as large as 20% of the magnitude of the peak positive value.

The production acts as a transfer term between MKE and TKE in two ways. During the growth of

the KH billows as well as the growth of turbulence at the later time, production transfers energy

from MKE to TKE. During the contraction, the transfer reverses in direction such that the available

potential energy is released through positive buoyancy flux to generate TKE and negative production

acts to increase the MKE. It is noted that, during the second contraction in the Ri = 0.04 case which

commences at S0t ≈ 150, the production has negative value and the buoyancy flux has positive

value similar to what is observed during the first contraction and these anomalous values last for a

longer time than during the first contraction. The difference between these two contractions is in

the dissipation rate which is negligible during the first contraction. During the second contraction,

the two KH billows evolve into two isolated turbulent patches that are able to meander far from

the center of the shear layer due to the weak stratification. The meandering acts to increase MKE,

e.g. the negative production, and at the same time reduce the available potential energy, e.g. the

positive buoyancy flux. As stratification increases in the other cases, the turbulent shear layer does

not meander and the second contraction is not seen.

The first contraction in the Ri = 0.04 case has a profound effect on the dissipation rate of the

potential energy (ερ ). Figure 2.14(d) shows that ερ has a local peak during the contraction period

in this case while it increases monotonically in the other cases. Noting that the TKE dissipation
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Figure 2.13: Cross-sectional snapshots of the density flux (ρ ′w′) field for the Ri = 0.04 case
at various times: (a) S0t = 53, (b) S0t = 73, and (c) S0t = 81. The y/δω,0 - z/δω,0 planes are
extracted at x/δ ,ω0 = 5.7. Dashed lines show the isopycnal contour of ρ = 0. Profiles of
horizontally-averaged density flux (〈ρ ′w′〉) at the same times are shown in the panels on the right.
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Figure 2.14: Evolution of the depth-integrated TKE budget and the potential energy dissipation
for all Ri: (a) production (P), (b) buoyancy flux (B), (c) TKE dissipation (ε), and (d) dissipation of
the potential energy, (ερ ). Integration is performed over the region bounded by z =±5.

rate (ε) is insignificant during the period of the elevated ερ , the mixing efficiency reaches up to

0.8 during this period. As previously shown, during the deformation of the KH billows, density

filaments/wisps inside the billows become significantly thinner. The filaments reduce the density

gradient in the shear layer down to the diffusive scale where it is dissipated by molecular diffusion.

Interestingly, turbulence does not have a role in the mixing during this period despite the high

Reynolds number.

Figure 2.15 shows the evolution of integrated mixing efficiency, Γ =
∫

ερ dz/(
∫

ε dz+∫
ερ dz) with Ri. We first examine the cumulative mixing efficiency (ΓC) by integrating ερ and ε

over the time duration of the simulations. The maximum value of ΓC is approximately equal to 0.34

and occurs in the Ri = 0.12 case. The Ri = 0.08 and Ri = 0.16 cases have smaller values. Relative

to the results of Mashayek & Peltier (2013) (denoted in figure 2.15 as MCP13), the peak value
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of ΓC in the present study is smaller due to the stronger stratification associated with a uniform

density gradient across the shear layer. A key result of the work by Mashayek & Peltier (2013)

is that there exists a range of Ri for which the mixing efficiency is optimal. They report optimal

mixing to occur at Ri = 0.16. When stratification deviates from this value, the mixing efficiency

decreases. Interestingly, a similar trend is observed in the present study. Here, optimal mixing

occurs in the Ri = 0.12 case in which there are rich dynamics of secondary instabilities during the

transition from KH billows to turbulence. Relative to the results of Mashayek & Peltier (2013) in

figure 2.15, optimal mixing occurs at a slightly smaller Ri due to the smaller critical Richardson

number in the present study as discussed in the linear stability analysis section.

The mixing efficiency due to fully-developed three-dimensional turbulence (Γ3d) is found

by starting integration from the time of fully-developed turbulence, t3d . The maximum value of

Γ3d also occurs in the Ri = 0.12 case and is slightly smaller than the value seen in Mashayek &

Peltier (2013). The most notable difference between their work and the present study concerns the

Ri = 0.04 case. Mashayek & Peltier (2013) suggest the mixing efficiency to decrease monotonically

for Ri < 0.12. The results of this study do not yield a similar result when the shear layer is uniformly

stratified. Dynamics during the first and second contraction of the shear layer in the Ri = 0.04 case

provide an additional route to mixing, such that the mixing efficiency can be significant even at low

values of Ri. It should be emphasized that Γ3d is computed without the early elevation in ερ during

the first contraction shown in figure 2.14(d) and that Γ3d in the Ri = 0.04 case is larger than that in

the Ri = 0.08 case.

2.0.3 The transition layer

During the evolution of the turbulent shear layer as illustrated in the previous section, shear

instabilities and the resulting turbulence transport a significant amount of momentum and energy

toward the edges of the shear layer. Turbulent fluxes induce the formation of transition layers in

which the local stratification has the largest value relative to any other location inside the shear

layer. The shear also peaks inside the transition layers at late time. The previous examination of the
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Figure 2.15: Effect of stratification on mixing efficiency: (a) ΓC computed by integrating ερ and
ε over the time duration of the simulations and (b) Γ3d computed by starting integration from
the time of fully-developed turbulence, t3d . Mixing efficiency in the two-layer simulations of
Mashayek & Peltier (2013) (denoted MCP13) is shown for comparison. A dashed line indicates
the optimal mixing efficiency suggested by the theory of Caulfield et al. (2004).

turbulent physics at the turbulent/non-turbulent interface (TNTI) by Watanabe et al. (2018) suggests

a significant amount of TKE in the layer. Unlike Watanabe et al. (2018) who focus specifically on the

TNTI (as an instantaneous spatially-varying interface inside the transition layer), this investigation

takes a broader approach and evaluates the dynamics inside the entirety of the transition layer. In

the following section, we examine the transition layer using horizontally-averaged flow statistics.

2.0.3.1 Mechanisms within the transition layer

For the purposes of this work, the transition layer boundaries are defined using the nor-

malized buoyancy frequency, N2/N2
0 . The inner and outer boundaries of the transition layer are

identified by the locations at which N2/N2
0 is approximately equal to unity such that the interior

of the transition layer has N2/N2
0 > 1. Figure 2.16 uses S0t - z/δω,0 contours to illustrate the half

plane of the normalized buoyancy frequency (N2/N2
0 ) inside the transition layer for all Ri. The

inner (TLi) and outer (TLo) transition layer boundaries are each identified using a dashed black

and white line while the location of maximum N2/N2
0 inside the shear layer (TLm) is shown with a
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magenta and white line. Note that the maximum N2/N2
0 is variable and closer to the inner boundary

of the transition layer at early time while located more centrally between the two boundaries at late

time. There is a sharp increase in N2/N2
0 in the lower half of the transition layer before and during

the growth stagnation and contraction regimes for the Ri = 0.04, Ri−0.08, and Ri = 0.12 cases.

In all cases, as the flow transitions from being dominated by two-dimensional instabilities to fully

three-dimensional turbulence, there is a time period when the peak N2/N2
0 decreases (approximately

80 < S0t < 160 in the Ri = 0.04 case, 90 < S0t < 110 in the Ri = 0.08 case, 100 < S0t < 150 in

the Ri = 0.12 case, and 140 < S0t < 170 in the Ri = 0.16 case). After turbulence decays at late

time, N2/N2
0 increases and concentrates at the center of the transition layer with the transition layer

edges characterized by lower N2/N2
0 . The overall value of N2/N2

0 decreases with strengthening

background stratification (N2
0 ) due to the decreased turbulent mixing of momentum near the center

of the shear layer when background stratification is increased. At late time, the flow has arranged

itself into layers with varying N2/N2
0 . Take the Ri = 0.16 case of figure 2.16 in which this is most

evident. As seen in the vertical profile panel to the right of figure 2.16(d), at late time (S0t ≈ 250),

there is a region at the center of the shear layer where N2/N2
0 ≈ 1 above which is a layer with

N2/N2
0 < 1. Moving outwards from this layer, there is a region of moderate N2/N2

0 before reaching

the maximum value in the center of the transition layer of N2/N2
0 ≈ 1.8. At the outer edge of the

transition layer, N2/N2
0 is reduced and values of order unity are seen outside of the transition layer.

In general, as background stratification increases, the transition layer becomes thinner while the

local stratification becomes stronger.

The evolution of the normalized squared rate of shear (S2/S2
0 where S = ∂ 〈u〉/∂ z) for all

simulated cases is given in figure 2.17 using S0t - z/δω,0 contours. The lines bounding the transition

layer are included for clarity. The transition layer develops as shear is reduced inside the shear layer

by the influence of KH instabilities extracting kinetic energy from the flow at early time. However,

at the peripheries of the shear layer, shear becomes elevated as turbulence induces momentum

transport away from the center of the shear layer outwards. As such, the strongest shear at late

time is located in the transition layer, close to its inner boundary, with shear intensity increasing
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Figure 2.16: Evolution of the normalized squared buoyancy frequency (N2/N2
0 ) shown using S0t -

z/δω,0 contours for the (a) Ri = 0.04, (b) Ri = 0.08, (c) Ri = 0.12, and (d) Ri = 0.16 cases. The
inner (TLi) and outer (TLo) transition layer boundaries are each identified using a dashed black
and white line while the location of maximum N2/N2

0 inside the shear layer (TLm) is shown with a
magenta and white line. Panels are given on the right for each case to illustrate vertical profiles of
N2/N2

0 at late time, S0t ≈ 250.
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with strengthening background stratification (increased Ri). At early time in all cases, a region

of strong shear directly corresponds to the region of large N2/N2
0 in the transition layer. The

previously discussed reduction in N2/N2
0 coincides with a brief reduction in shear in the Ri = 0.04

and Ri = 0.08 cases. In the more strongly stratified cases, there is less signficant reduction in shear.

At late time in the highly stratified cases, a similar layered structure to that described in figure 2.16

is observed. The panel to the right of figure 2.17 shows the center of the shear layer to have a region

of moderate shear bounded by a layer of weaker shear. As we move farther from the center of the

shear layer, shear increases to a peak value seen near the center of the shear layer (S2/S2
0 ≈ 0.35).

At the outer boundary and outside of the transition layer, S2/S2
0 becomes negligible.

The gradient Richardson number (Rig) given by Rig = N2/S2 is a measure of the balance

between buoyancy and shear. Figure 2.18 uses S0t - z/δω,0 contours to illustrate Rig with the

boundaries of the transition layer included. In all cases, the inner portion of the transition layer has

lower Rig than the outer half. As expected, this indicates that the outer portion of the transition layer

is dominated by buoyancy while inner region is most influenced by effects of shear. Linear stability

theory suggests an assumed critical gradient Richardson number of Ric ≈ 0.25 (Hazel, 1972). As

the flow evolves, turbulence mixes the density and momentum fields thereby increasing Ri until is

exceeds the critical value. In all cases, this behavior is observed within the transition layer with Rig

beginning small and eventually becoming much larger than Ric, growing continuously in all but the

Ri = 0.04 case. In the Ri = 0.04 case, mixing causes an increase in Rig until the increase in shear

noted at late time, at which point, Rig decreases. At late time, in the Ri = 0.16 case, the interior of

the shear layer is dominated by Rig > 0.75 while the inner boundary and lower half of the transition

layer see slightly smaller values of 0.5 < Rig < 0.75. Only in the Ri = 0.04 case does Rig attain

values of approximately Ric at late time. In the Ri = 0.12 case, intermittent regions of Rig > 0.75

and 0.25 < Rig < 0.5 are observed, in contrast to the two-layer simulations of Mashayek & Peltier

(2013) who saw Rig ≈ 0.5 across the entire shear layer at late time in their comparable simulation.

The higher Rig found here is due to the large vertical fluxes of momentum and energy between the

shear layer and the transition layers.

46



Figure 2.17: Evolution of the normalized squared rate of shear (S2/S2
0) shown using S0t - z/δω,0

contours for the (a) Ri = 0.04, (b) Ri = 0.08, (c) Ri = 0.12, and (d) Ri = 0.16 cases. Panels are
given on the right for each case to illustrate vertical profiles of S2/S2

0 at late time, S0t ≈ 250.
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Figure 2.18: Evolution of the gradient Richardson number (Rig) shown using S0t - z/δω,0 contours
for the (a) Ri = 0.04, (b) Ri = 0.08, (c) Ri = 0.12, and (d) Ri = 0.16 cases. Panels are given on
the right for each case to illustrate vertical profiles of Rig at late time, S0t ≈ 250.
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The development of small-scale fluctuations as the flow becomes fully turbulent leads to a

rapid increase in the dissipation rate (ε) shown in figure 2.19. Peak ε is seen immediately before

the KH billows are broken down to full turbulence at S0t ≈ 100 in the Ri = 0.04 and Ri = 0.08,

S0t ≈ 120 in the Ri = 0.12 case, and S0t ≈ 160 in the Ri = 0.16 case. At late time, dissipation rate

is strongest at the periphery near the inner boundary of the transition layer due to the evolving

secondary instabilities. Because the shear layer core is relatively quiet at late time, ε is much smaller

near the center of the shear layer. Dissipation rate is seen to be strongest at late time and persist

longer in the Ri = 0.04 case.

The buoyancy Reynolds number (Reb) can be used to quantify turbulent mixing and is given

by Reb = ε/νN2. Figure 2.20 depicts the evolution of Reb for all Ri. The peak magnitude of Reb

occurs during the development of KH billows and is largest in the most weakly stratified case

(Ri = 0.04). As stratification increases, the magnitude of Reb decreases. After transition to fully

three-dimensional turbulence and as turbulence begins to decay, the magnitude of Reb decreases

though it remains strongest at the periphery of the shear layer near the inner boundary of the

transition layer at late time. This is most clearly observed in the Ri = 0.04 case where Reb remains

relatively large at late time. Shih et al. (2005) employ simulations of a flow with homogeneous shear

(uniform shear over an unbounded domain) to suggest a Reb criterion for determining the extent of

turbulent mixing. They assert that Reb > 102 in order for there to be energetic mixing. Using this

criterion, only the inner boundary of the transition layer sees energetic mixing as turbulence begins

to develop in all cases. Despite the somewhat low values of Reb seen in figure 2.20 throughout the

region of the upper transition layer, turbulent mixing is still present in the case of localized shear as

a result of the late-time shear instabilities previously discussed.

Turbulent mixing influences the density field by reducing the gradients near the center of

the layer and enhancing those at the periphery. Figure 2.21 shows the evolution of the mixing

efficiency (Γ) given by equation 2.11 using S0t - z/δω,0 contours for all Ri with the boundaries of

the transition layer also depicted. Overall, mixing efficiency is much higher throughout the shear

layer as KH billows are forming. As they break down into turbulence, strong mixing efficiency is
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Figure 2.19: Evolution of the dissipation rate (log10(ε)) shown using S0t - z/δω,0 contours for the
(a) Ri = 0.04, (b) Ri = 0.08, (c) Ri = 0.12, and (d) Ri = 0.16 cases.
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Figure 2.20: Evolution of the buoyancy Reynolds number (log10(Reb)) shown using S0t - z/δω,0
contours for the (a) Ri = 0.04, (b) Ri = 0.08, (c) Ri = 0.12, and (d) Ri = 0.16 cases.
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seen at the outer boundary of the transition layer while the core becomes relatively quiet with low

mixing efficiency. This large mixing efficiency occurs after the secondary peak in production in

the low Ri cases and is associated with the concentration of TKE in lobed structures. The inner

boundary of the transition layer has comparably low mixing efficiency. As stratification increases

and buoyancy effects suppress vertical motions, mixing efficiency becomes smaller as evidenced

by the visualization of the Ri = 0.16 case of figure 2.21 at early time. At late time in all but

the Ri = 0.04 cases, the majority of mixing occurs within or above the transition layer. In the

Ri = 0.04 case, there is a reasonably high mixing efficiency remaining in the core as well with

a region of low efficiency mixing above the core near the inner boundary of the transition layer.

Turbulence-generated internal waves found outside of the transition layer in the background of the

flow at late time have a high value of mixing efficiency. In these regions, Γ is approximately equal

to 0.5 which implies ερ ≈ ε for propagating internal waves. The presence of these internal waves is

more apparent with increasing stratification as clearly seen at late time in figure 2.21 for all Ri.

Integrated mixing efficiency is shown in figure 2.22 for all Ri where the panels on the left

are the result of integrating from the centerline of the shear layer up to the inner boundary of the

transition layer (representing the core of the shear layer) and the panels on the right were obtained

by integrating over the transition layer from the inner boundary (TLi) to the outer boundary (TLo)

(representing the transition layer itself). In the core-integrated panel on the left, the peak mixing

efficiency is associated with the KH billow formation and ranges from Γ ≈ 0.80 in the weakly

stratified case to only Γ ≈ 0.58 in the strongly stratified case. Mixing efficiency significantly drops

as the flow transitions to fully three-dimensional turbulence with all cases reaching a local minimum

between approximately 100 ≤ S0t ≤ 120 in the Ri = 0.04, Ri = 0.08, and Ri = 0.12 cases. This

drop is less severe with increasing stratification and the Ri = 0.16 case sees a minimal drop to its

local minimum at S0t ≈ 160. All cases see late time mixing efficiency in the core of Γ ≈ 0.20.

Figure 2.22(b) indicates similar behavior in terms of the peak mixing efficiency during the KH

billow formation for the Ri = 0.04, Ri = 0.08, and Ri = 0.12 cases. However, the Ri = 0.16 case

shows a higher peak in the transition layer than in the core. Late time mixing efficiency in all cases
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Figure 2.21: Evolution of mixing efficiency (Γ) shown using S0t - z/δω,0 contours for the (a)
Ri = 0.04, (b) Ri = 0.08, (c) Ri = 0.12, and (d) Ri = 0.16 cases.

53



Figure 2.22: S0t evolution of the mixing efficiency: (a) ΓSL integrated from the center of the shear
layer to the inner boundary of the transition layer (TLi) and (b) ΓT L integrated over the transition
layer from the inner boundary (TLi) to the outer boundary (TLo) for all Ri.

is higher than in the core for all but the Ri = 0.12 case with approximately 0.25≤ Γ ≤ 0.35.

In the highly stratified Ri = 0.16 case, at late time, the transition layer is energetic with sig-

nificant turbulent activity. Small-scale instabilities (specifically SSI caused by the braid deformation

of LCVI) can be clearly seen in the density and vorticity fields at late time (S0t = 229) in figure

2.23. These residual instabilities grow and persist in the transition layer at the upper and lower

periphery of the shear layer at late time. As such, Rig increases in this case. The presence of these

instabilities indicates a much more energetic flow at late time in strongly stratified cases.

2.0.3.2 Internal wave flux

Simulations by Watanabe et al. (2018) suggest internal wave flux to be strong at the TNTI

interface. They report that the peak value of 〈p′w′〉 can be as large as 50% of the integrated

dissipation rate across the shear layer when the shear layer becomes turbulent. It is of interest to

compare the role of internal wave flux as the Reynolds number increases from 6,000 to 24,000.

Figure 2.24(a) illustrates the evolution of internal wave flux in the Ri = 0.08 case, in which, the

magnitude of 〈p′w′〉 is largest during the transition from two-dimensional KH billows to three-
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Figure 2.23: Cross-sectional snapshots of the (a) density (ρ) and (b) spanwise vorticity (ω2) fields
for the Ri = 0.16 case at S0t = 229.

dimensional turbulence. As the billows grow, they create perturbations in the pressure and velocity

fields that extend beyond the boundaries of the shear layer (denoted by the dashed lines in figure

2.24(a)). The perturbations generate evanescent waves whose amplitude decays exponentially with

the distance away from the shear layer. The wave flux is initially positive in the upper shear layer

and negative in the lower shear layer, and as a result, TKE is transported outside of the shear layer

during the growth of the KH billows. It is noted that, since the waves are evanescent, energy does

not propagate. As the shear layer grows in size, the energy that was previously transported outside

contributes to the turbulence mixing in the transition layer. The wave flux in the transition layers is

significantly weaker when the shear layer is turbulent.

The role of the wave flux is further examined by integrating the TKE budget from the lower

transition layer to the upper transition layer. The result is shown in figure 2.24(b) where 〈p′w′〉I

denotes the net wave energy that crosses the upper and lower transition layers. During the growth of

the billows, waves transport energy outside the shear layer. As the shear layer becomes turbulent,

the wave flux changes sign which extracts energy from the outside into the shear layer. During the

period of turbulence, the peak inflow of the wave energy is approximately 33% of the peak integrated
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Figure 2.24: Evolution of the internal wave flux: (a) S0t evolution of the internal wave flux
(〈p′w′〉) and (b) a comparison of the net internal wave flux across the upper and lower transition
layers (the dashed boundaries shown in (a)) given by 〈p′w′〉I with respect to the other terms in the
integrated TKE budget for the Ri = 0.08 case. White and magenta lines in (a) denote the location
of maximum N2/N2

0 within the transition layer.

dissipation rate, 22% of the peak integrated production, and 70% of the peak integrate buoyancy

flux. The wave flux seen in the present study is smaller than the value reported by Watanabe et al.

(2018). Since the route to turbulence in the shear layer is different at high Reynolds number, so is

the wave flux.

2.0.4 Conclusions

In the present study, DNS of a shear layer with uniform stratification were performed to

investigate the evolution of turbulence and mixing in a stratified shear layer at Reynolds number,

Re0 = 24,000, a value considered high for DNS. The background density gradient is varied in four

56



cases to examine the effects of stratification, Ri= [0.04,0.08,0.12,0.16], where Ri is the Richardson

number at the center of the shear layer. One of the objectives of the present work is to compare

the rate of mixing in a shear layer between two layers with constant density as was investigated by

Mashayek & Peltier (2013).

Linear stability analysis (LSA) of shear layers with uniform stratification as well as a

two-layer density profile are performed to examine the fastest growing mode (FGM) of Kelvin-

Helmholtz shear instabilities. While the inviscid linear stability theory of Hazel (1972) indicates

that the critical Richardson number (Ric) is 0.25, when the effects of viscosity and a finite domain

are included in the analysis, the value of Ric becomes smaller (approximately 0.18 in the two-layer

case and approximately 0.15 in the uniform stratification case). At the same Richardson number

less than the critical value, the FGM in the two-layer case has higher growth rate than the uniform

stratification.

Results of the DNS indicate that routes to turbulence in the uniformly stratified shear layer

are similar to those depicted in Mashayek & Peltier (2013). The transition from two-dimensional KH

billows to three-dimensional turbulence consists of a large family of instabilities. The Ri = 0.04 case

clearly illustrated the development of elliptical instabilities, SCI, and SCDI. Additional secondary

instabilities were observed in the Ri = 0.16 case (eyelid instabilities, SCI, SSI, SPI, SVBI, and

LCVI). SSI were seen to be far less prevalent in cases with weaker stratification in which SCI are

the dominant driving instabilities. Mashayek & Peltier (2013) suggested the existence of an optimal

range of Ri such that the mixing efficiency is maximized. They report that in the two-layer case,

mixing efficiency is largest at Ri = 0.16 and that as Ri deviates from this value, the mixing efficiency

decreases. For the case of uniform stratification, we found optimal mixing in the Ri = 0.12 case

which is smaller than the value reported in the two-layer case. This lower value is due to the larger

density gradients inside the shear layer and the smaller growth rate of the FGM as indicated by the

LSA. It should be noted that although this work explores the dependence of mixing on Rig, other

studies are being performed to establish the dependence of mixing efficiency on parameters other

than Rig, e.g. Mater & Venayagamoorthy (2014).
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The present study includes cases with weak stratification, e.g. Ri = 0.04 and Ri = 0.08. At

low Ri, a contraction of the shear layer occurs when KH billows flatten in the streamwise direction

without any development of turbulence. As the KH billows enlarge, the available potential energy

in the shear layer increases. When the billows deform, the available potential energy is released

back to the mean kinetic energy via a positive buoyancy flux and a negative turbulent production.

During the period of contraction, density filaments inside the billows become so thin that the billow

is dissipated by molecular diffusion in the absence of turbulence. As a result, the mixing efficiency

reaches up to 0.8. The contraction is observed in the Ri = 0.04 and Ri = 0.08 cases but not in the

other cases, indicating that background stratification plays an important role in this process. In

the Ri = 0.04 case, there are two contractions, the second of which is driven by the meandering of

turbulent patches resulting from the breakdown of the billows.

During the evolution of the shear layer, vertical fluxes result in the formation of transition

layers at the edges of the shear layer. The transition layer is identified by large stratification and

large shear due to turbulent mixing inside the shear layer. Analysis of the transition layer shows

that, as the background stratification increases, the transition layer becomes thinner while the local

stratification becomes stronger. Despite having the largest values of stratification, the transition

layers see significant turbulence at late time long after turbulence at the center of the shear layer

has subsided. The buoyancy Reynolds number in the transition layer is high, on the order of 102

while mixing in the transition layer is as efficient as near the center of the shear layer. Unlike the

two-layer case reported by Mashayek & Peltier (2013) in which the Richardson number is equal to

0.5 throughout the shear layer at late time, the uniformly stratified shear layers considered herein

evolve into multiple layers with differing gradient Richardson numbers. At late time, the Richardson

number within the transition layer is observed to be smaller than the values found near the center of

the shear layer.

Chapter 2 is a reprint of material in preparation for publication as follows: A. VanDine, H.

T. Pham, S. Sarkar, “Evolution of turbulent shear layers with uniform stratification at high Reynolds

number”, 2019. The author of this dissertation is the primary investigator and author of this work.
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Chapter 3

Investigation of LES models for a stratified

shear layer

As detailed in chapter 1, a comprehensive analysis of various LES models was performed in

order to assess their performance in the modeling of a vertical shear layer. A DNS of a uniformly

stratified shear layer with initial Reynolds number, Re0 = 24,000, and initial centerline gradient

Richardson number, Ri0 = 0.12, is used as the benchmark for the LES models in this work. The

initial Richardson number (Ri0 as defined by equation 3.5b) is a measure of the stabilizing effect of

stratification based on the squared ratio of the initial centerline buoyancy frequency to the initial

centerline shear. Figure 3.1 depicts snapshots of density perturbations over the x - z plane at various

times (N0t) in the DNS in order to illustrate the formation of KH billows and their transition into

turbulence. Of particular interest are the creation and evolution of secondary instabilities which

form along the braid of the billow and are clearly visible in the N0t = 35 snapshot. The instabilities

and their breakdown into turbulence exhibited by the DNS are distinctive and this work assesses

the ability of the LES models to capture said shear instabilities, depict transition to turbulence, and

quantify turbulence decay. A detailed description of the SGS models used in this work is provided.

The performance of the SGS models at varying grid resolutions is assessed while their relative

computational costs are quantified.
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Figure 3.1: Snapshots of density perturbations over the x - z plane at various times in the DNS.

3.0.5 Formulation

3.0.5.1 Stratified shear layer

As in previous literature (Brucker & Sarkar, 2007; Pham & Sarkar, 2010, 2014), the

temporally-evolving shear layer has an initial horizontal velocity (u) which varies continuously in

the vertical direction (z). This initial profile at time, t = 0, is given by

〈u∗〉(z∗, t = 0) =−∆U∗

2
tanh

(
2z∗

δ ∗
ω,0

)
(3.1)

where a superscript ∗ denotes a dimensional quantity, the 〈〉 operator indicates horizontal averaging,

and ∆U∗ indicates the velocity difference across the shear layer. The initial vorticity thickness of

the shear layer is given by

δ
∗
ω,0(z

∗, t = 0) =
∆U∗

(d〈u∗〉/dz∗)max
, (3.2)
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where the maximum shear at t = 0 occurs at the centerline (z∗ = 0). The density profile at time,

t = 0, corresponds to a uniformly stratified environment and is given by

〈ρ∗〉(z∗, t = 0) =
−ρ0N∗20

g∗
z∗ , (3.3)

where N∗20 is the squared buoyancy frequency of the ambient fluid which has constant value. Figure

2.1 provides a visualization of the stratified shear layer with key parameters noted for future

reference.

3.0.5.2 Governing equations

The filtered three-dimensional Navier-Stokes equations for unsteady, incompressible flows

with the Boussinesq treatment of density are utilized in their nondimensional form in equations

3.4a-3.4c. The overline ¯ operator is an indicator of spatial filtering. A Cartesian frame of reference

is used such that xi = (x,y,z) and ui = (u,v,w) represent the streamwise, spanwise, and vertical

directions and velocities, respectively. The nondimensional equations are as follows:

∂ ū j

∂x j
= 0 (3.4a)

∂ ūi

∂ t
+

∂ (ū jūi)

∂x j
=− ∂ p̄

∂xi
+

1
Re0

∂ 2ūi

∂x j∂x j
−Ri0ρ̄

′gi−
∂τi j

∂x j
(3.4b)

∂ ρ̄

∂ t
+

∂ (ū jρ̄)

∂x j
=

1
Re0Pr

∂ 2ρ̄

∂x j∂x j
−

∂λ j

∂x j
(3.4c)

These equations were obtained using the following reference quantities: velocity difference (∆U∗),

initial thickness of the shear layer (δ ∗
ω,0), and the constant background buoyancy frequency (N∗0 ).

Relevant nondimensional parameters are the initial Reynolds number (Re0), initial gradient Richard-
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son number at the center of the shear layer (Ri0), and Prandtl number (Pr) given by

Re0 =
∆U∗δ ∗

ω,0

ν∗
, (3.5a)

Ri0 =
N∗20 δ ∗2

ω,0

∆U∗2
, (3.5b)

Pr =
ν∗

κ∗
. (3.5c)

Here, ν∗ and κ∗ are the kinematic viscosity and thermal diffusivity, respectively. Although Pr = 5

to 7 is typical for heat transport in water, the value of Pr = 1 is chosen as in several other studies so

that, in the DNS, the scalar field does not require finer resolution than the velocity field.

The pressure (p) denotes deviation from the mean hydrostatic pressure. The Boussinesq

approximation is employed such that density variations are considered only where they contribute

to a gravitational force. Gravity acts in the vertical direction (z) and is given by gi. Reynolds

decomposition is used to decompose the velocity and pressure fields into mean and fluctuating

components as follows where 〈〉 and ′ indicate a mean and fluctuating value, respectively:

ui(xi, t) = 〈ui〉(xi, t)+u′i(xi, t) , (3.6a)

p(xi, t) = 〈p〉(xi, t)+ p′(xi, t) . (3.6b)

Density is composed of a constant reference density, a horizontally averaged mean component, and

a fluctuating component as follows:

ρ(xi, t) = ρ0 + 〈ρ〉(z, t)+ρ
′(xi, t) . (3.7)

The LES contributions to equations 3.4b and 3.4c are the subgrid stress (τi j) and the subgrid

buoyancy flux (λ j). The parameterization of these terms is detailed in a later section.
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3.0.5.3 Numerical method

The numerical methods employed here are similar to those of our previous work (Brucker

& Sarkar, 2007; Pham & Sarkar, 2010, 2014; VanDine et al., 2018). Equations 3.4a-3.4c are

solved using a staggered grid approach in which pressure and density are located at a cell center

while normal velocities are located at cell faces. A second-order, central finite difference scheme

is used for discretization of spatial derivatives. Time advancement is performed explicitly with

the Williamson low-storage, third-order Runge Kutta method. A parallel multigrid solver which

uses Red-Black Gauss-Seidel smoothing solves the Poisson pressure equation. A sponge region is

employed in the regions z > 10 and z <−10 at the vertical boundaries in order to prevent reflections

and damp propagating fluctuations. In this sponge region, a Rayleigh damping function gradually

relaxes the density and velocities to their corresponding boundary conditions. This region does not

inadvertently affect the simulation as it is sufficiently far from the shear layer.

Periodic boundary conditions are used in the streamwise (x) and spanwise (y) directions. In

the vertical direction, a Dirichlet boundary condition is used for vertical velocity while Neumann

boundary conditions are enforced for density, pressure, and the remaining velocities as follows:

∂ρ

∂ z
(−Lz/2) =

∂ρ

∂ z
(Lz/2) =

d〈ρ∗〉
dz∗

, (3.8a)

∂ p
∂ z

(−Lz/2) =
∂ p
∂ z

(Lz/2) = 0 , (3.8b)

∂u
∂ z

(−Lz/2) =
∂u
∂ z

(Lz/2) =
∂v
∂ z

(−Lz/2) =
∂v
∂ z

(Lz/2) = 0 , (3.8c)

w(−Lz/2) = w(Lz/2) = 0 . (3.8d)
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3.0.5.4 SGS models

The subgrid stress (τi j) and subgrid buoyancy flux (λ j) are parameterized using eddy-

viscosity type models with

τi j =−2νsgsS̄i j , λ j =−κsgs
∂ ρ̄

∂x j
. (3.9)

The velocity gradient tensor is composed of a symmetric component (the rate of strain tensor, Si j)

and an anti-symmetric component (the rate of rotation tensor, Ωi j) which are given by

S̄i j =
1
2

(
∂ ūi

∂x j
+

∂ ū j

∂xi

)
, Ω̄i j =

1
2

(
∂ ūi

∂x j
−

∂ ū j

∂xi

)
. (3.10)

Particulars concerning the calculation of subgrid eddy viscosity (νsgs) and subgrid thermal diffusivity

(κsgs) in the Dynamic Smagorinsky, Ducros, and WALE LES models are given in sections 3.0.5.5,

3.0.5.6, and 3.0.5.7, respectively. In all models, a grid filter width is defined as ∆ f and taken to be

∆ f = (∆x∆y∆z)1/3 where ∆x, ∆y, and ∆z indicate grid spacing along the orthogonal coordinates.

3.0.5.5 Dynamic Smagorinsky model

Although a number of variations on the Dynamic Smagorinsky model exist, the implemen-

tation in this work is adapted from that of Germano et al. (1991) and Lilly (1992). In the version

of the model presented herein, eddy viscosity and thermal diffusivity are calculated locally using

the smallest resolved scales of the flow in the velocity and density fields. In addition to the always

present LES grid filter given by the overline ¯ operator, an additional spatial test filter is applied to

the LES field. This coarser test filter given by the ˆ operator uses the explicit trapezoidal rule with a

three-point stencil. The ratio of the grid filter to the test filter is taken to be
√

6 as is typical. Eddy

viscosity and thermal diffusivity are modeled as

νsgs =Cd∆
2
f |S̄| , κsgs =Cθ ∆

2
f |S̄| . (3.11)
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The dynamic coefficients are calculated using

Cd =−1
2
〈Mi jLi j〉s
〈Mi jMi j〉s

, Cθ =−1
2
〈PjQ j〉s
〈Q jQ j〉s

. (3.12)

where
Li j = ̂̄uiū j− ̂̄uî̄u j , Mi j = ∆̂ f

2
|̂̄S|̂̄Si j− ∆̂2

f |S̄|S̄i j ,

Pj = ̂̄ρ ū j− ̂̄ρ̂̄u j , Q j = ∆̂ f
2
|̂̄S| ∂̂ ρ̄

∂x j
− ̂

∆2
f |S̄|

∂ ρ̄

∂x j
.

(3.13)

The 〈〉s operator in equation 3.12 indicates spanwise averaging. This is used to avoid issues with

computational stability by smoothing outlier values of the coefficients. In the interest of preserving

numerical stability, averaged coefficients with negative value are set to zero.

3.0.5.6 Ducros model

Implementation of the Ducros model is adapted from the work by Ducros et al. (1996). In

the Ducros model, eddy viscosity is calculated using F̄(3)
2 which denotes a second-order structure

function of the LES velocity field obtained after applying a high-pass filter to eliminate the larger

scales of the field. Thus, the subgrid eddy viscosity is modeled as

νsgs = 0.0014C−3/2
K ∆ f

[
F̄(3)

2

]1/2
. (3.14)

The high-pass filter is given by a four-neighbor formulation of a discrete Laplacian filter,

L{ui, j,k}= ui+1, j,k−2ui, j,k +ui−1, j,k +ui, j+1,k−2ui, j,k +ui, j−1,k . (3.15)

This filter is applied three times sequentially to the LES field to obtain U as given by

Ui, j,k = L(3){ūi, j,k} . (3.16)
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The second-order filtered structure function, F̄(3)
2 , found in equation 3.14 is computed using the

following four-neighbor formulation:

F̄(3)
2 =

1
4

[
||Ui+1, j,k−Ui, j,k||2 + ||Ui−1, j,k−Ui, j,k||2

+ ||Ui, j+1,k−Ui, j,k||2 + ||Ui, j−1,k−Ui, j,k||2
]
.

(3.17)

The Kolmogorov constant (CK) that appears in equation 3.14 is set to 0.5. Given an assumption of

Prsgs = 1, the subgrid thermal diffusivity (κsgs) is equivalent to the subgrid eddy viscosity (νsgs).

3.0.5.7 WALE model

Implementation of the WALE model is adapted from the work by Nicoud & Ducros (1999).

In the WALE model, eddy viscosity is calculated using a tensor invariant (Si jSi j) which incorpo-

rates the effects of both the rate of strain and rotation. This tensor invariant is sufficiently small

in the case of pure shear and can reproduce laminar to turbulent flow transition which is a distinct

advantage over other LES models. As the WALE model uses only local gradients and does not

require filtering, this model is considered computationally inexpensive as compared to many existing

models (Nicoud & Ducros, 1999; Posa & Balaras, 2018). Eddy viscosity is modeled as

νsgs =C2
ω∆

2
f

(
Si jSi j

)3/2(
S̄i jS̄i j

)5/2
+
(
Si jSi j

)5/4 (3.18)

where the tensor invariant is given by

Si jSi j =
1
6
(
S2S2 +Ω

2
Ω

2)+ 2
3
(
S2

Ω
2)+2IV SΩ ,

S2 = S̄i jS̄i j , Ω2 = Ω̄i jΩ̄i j , IV SΩ = S̄ikS̄k jΩ̄ jlΩ̄li .

(3.19)

In the above equations, the overline ¯ operator is an indicator of LES grid filtering. Unlike in the

Dynamic Smagorinsky and Ducros models, a secondary filter is not employed in the WALE model.

The coefficient Cω is set to a reasonable value of 0.575 based upon the range, 0.55≤Cω ≤ 0.60, set
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forth by Nicoud & Ducros (1999). Given an assumption of Prsgs = 1, the subgrid thermal diffusivity

(κsgs) is equivalent to the subgrid eddy viscosity (νsgs).

3.0.5.8 Simulation setup and parameters

A total of six LES cases are performed and tested against an existing DNS (denoted in table

4.2 as DNS) which has Re0 = 24,000, Ri0 = 0.12, and Pr = 1. The DNS has an isotropic grid in the

central region of the shear layer with mild stretching in the vertical. The grid spacing in the DNS

at all times is less than 2.5η where η = (ν3/ε)1/4 (ε denotes turbulent kinetic energy dissipation

rate) is the Kolmogorov length scale. To better quantify the performance of the LES models, a grid

influence study is performed wherein horizontal grids of both four times coarser and eight times

coarser resolution than the DNS are utilized. These grids are respectively indicated in the case

names of table 4.2 by either “x4” or “x8”. The shear turbulence arising in the present problem is

homogenous in the horizontal directions where LES subgrid models are known to perform well

(Ducros et al., 1996; Nicoud & Ducros, 1999; Germano et al., 1991; Lilly, 1992). The vertical grid

has the same resolution as in the DNS in order to resolve the large vertical gradients of mean velocity

and density. Capturing secondary instabilities which develop due to these sharp gradients such as

that noted at the approximate location (x,z) = (8.5,0.5) in the N0t = 35 panel of figure 3.1 requires

a certain fineness of resolution which motivates this choice. The streamwise and spanwise grids

have uniform spacing with ∆x = ∆y = 0.03 in the “x4” cases and ∆x = ∆y = 0.06 in the “x8” cases.

The vertical grid is conservatively stretched outside of the uniformly-spaced region −2.5 < z < 2.5

around the center of the shear layer. A summary of the parameters for each simulation is provided

in table 4.2.

Buoyancy preferentially affects the large scales of fluid motion. The Ozmidov scale defined

by Loz = (ε/N3)1/2 is a measure of the largest length scale of turbulent motions that is not directly

affected by buoyancy. It is thought that LES of stratified turbulence should have a grid spacing that

resolves Loz. This is true for the vertical grid spacing (∆z) in both the “x4” or “x8” cases. In the

“x4” cases with horizontal grid spacing ∆x f , the value of Loz exceeds ∆x f over the entire period of
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Table 3.1: Simulation parameters. The computational modeling approach used for each case is
noted as either DNS, Dynamic Smagorinsky LES, Ducros LES, or WALE LES. The subscripts x,
y, and z refer to the streamwise, spanwise, and vertical directions, respectively. The number of grid
points in all directions (Nx,Ny,Nz) are given for each case. The initial Reynolds number is taken to
be Re0 = 24,000, initial Richardson number Ri0 = 0.12, and Prandtl number Pr = 1 for all cases.

Case Model Nx Ny Nz

DNS DNS 1536 768 1024
DSx4 Dynamic Smagorinsky LES 384 192 1024
Dx4 Ducros LES 384 192 1024
Wx4 WALE LES 384 192 1024
DSx8 Dynamic Smagorinsky LES 192 96 1024
Dx8 Ducros LES 192 96 1024
Wx8 WALE LES 192 96 1024

turbulence except at late time (N0t > 70) when TKE and dissipation are weak. During the period

of strongest turbulence, the “x4” cases have grids which show excellent resolution of the large

eddies with Loz/∆x f ≈ 10 while the “x8” cases have grids which yield Loz/∆xc ≈ 5 where xc is

the horizontal grid spacing of the “x8” cases. The “x8” grid has Loz/∆x f > 1 during the interval

35 < N0t < 60, implying possibly inadequate resolution of the large eddies during the early and late

time evolution of turbulence that falls outside this time interval.

3.0.6 LES performance at fine grid resolution

We begin with an analysis of the flow evolution and turbulent kinetic energy capture in the

“x4” grid resolution LES cases as compared to the DNS.

3.0.7 Flow evolution

Of key importance is the ability of the LES models to capture the growth of the shear layer

in time as well as the evolution of the mean velocity (ū). The evolution of momentum thickness,

δθ =
∫ 5

−5

[
1
4
−〈ū〉2

]
dz, (3.20)
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Figure 3.2: N0t evolution of momentum thickness (δθ ) normalized by initial momentum thickness
(δθ ,0) in the DNS and “x4” resolution LES cases.

normalized by its initial value (δθ ,0) is given in figure 3.2. N0t where N0 is the background buoyancy

frequency is used in plots throughout this work to quantify time in units of buoyancy time scale.

For this and all future temporal integration profiles, quantities are obtained by averaging in the

horizontal (x and y directions) and depth integrating in the vertical (z). In the DNS, approximately

linear growth is noted between 20 < N0t < 30 when the KH billows form. After a short period

of arrested growth, the layer resumes to thicken over 35 < N0t < 50 during which time there is

a linear rate of growth due to a spurt of turbulence as will be discussed later. The momentum

thickness stabilizes at N0t ≈ 55 and no further growth is noted. The capping of shear layer growth

is a buoyancy effect that becomes sufficiently strong to cause turbulence decay and therefore a

reduction of turbulent entrainment. All of the “x4” grid resolution LES models capture this effect of

buoyancy on δθ although the onset of plateau at N0t = 50 occurs slightly earlier than in the DNS.

Consequently, the maximum momentum thickness of the LES cases is approximately 4% smaller

than that of the DNS indicating a slight underestimation in turbulent entrainment. Despite this slight

discrepancy, the momentum thicknesses yielded by the LES models are deemed acceptable.

Another indicator of mean flow evolution is shear, S = d 〈ū〉/dz. A direct comparison

of the evolution of the normalized squared shear rate in the DNS and “x4” grid resolution LES
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cases is provided in figure 3.3 using N0t - z plots to illustrate both vertical and temporal variation.

For this and all future N0t - z plots, quantities are averaged over the spanwise (y) and streamwise

(x) directions and then plotted as a function of z and N0t where z is the vertical coordinate made

nondimensional using the initial vorticity thickness (δω,0). In both the DNS and “x4” grid resolution

LES, a high concentration of shear is noted at the center of the shear layer until N0t ≈ 20 at which

point the Kelvin-Helmholtz (KH) shear instabilities extract kinetic energy from the flow and reduce

the shear. After N0t = 20, weaker shear is noted in the core of the shear layer as the result of the

mixing of momentum. At the same time, transition layers of enhanced shear develop at the top

and bottom of the shear layer. Here, oceanographic practice is adopted wherein the transition layer

refers to the layer over which there is a transition from a mixed region to a stratified background

(Johnston & Rudnick, 2009). Elevated shear at the edges is induced by momentum transport from

the center of the shear layer toward the periphery by turbulence. The LES models are able to capture

the thickness and magnitude of the shear in these thin layers. This is possible because a fine grid

spacing equivalent to that of the DNS was chosen in the vertical. The transition layer seen here

is similar to the turbulent/non-turbulent interfacial layer reported by Watanabe et al. (2018). In

the DNS as well as the LES, there is a period (30 < N0t < 35) when the boundaries of the sheared

region stop expanding and shear weakens at the edges. At N0t ≈ 35 in the DNS and slightly later in

the LES, the boundaries resume expansion in the vertical. The vertical expansion continues until

N0t ≈ 55 at which point the mean shear gradually weakens throughout the shear layer. The phases

evident in the evolution of shear are consistent with those noted in the previous discussion of the

momentum thickness.

To ensure that the LES models are able to capture the large eddies, the local stratification is

also studied. Figure 3.4 shows N0t - z plots of the local buoyancy frequency (N2(z, t)) normalized

by the background buoyancy frequency (N2
0 ) for the DNS and “x4” resolution LES cases where

N2 =−g/ρ0∂ 〈ρ〉∂ z, and N2
0 = 0.12(∆U∗/δ ∗

ω,0)
2. In figure 3.4, the DNS and “x4” grid resolution

LES cases show similar evolution. The turbulent mixed core of the shear layer is well captured in all

LES cases. Larger values of buoyancy frequency are observed at the edges of the shear layer after
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Figure 3.3: Comparison of squared shear rate (S2) normalized by initial squared shear (S2
0) using

N0t - z contours in the DNS and “x4” resolution LES cases. For this and all future N0t - z plots,
quantities are averaged over the spanwise and streamwise directions and then plotted as a function
of z and N0t where z is the vertical coordinate made nondimensional using the initial vorticity
thickness (δω,0).
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Figure 3.4: Comparison of local buoyancy frequency (N2) normalized by the background buoy-
ancy frequency (N2

0 ) using N0t - z contours in the DNS and “x4” resolution LES cases.

transition to turbulence. Similarly to the results for shear, stratification is enhanced in the transition

layers at the top and bottom of the shear layer. Turbulent mixing reduces the density gradient in

the center of the shear layer while enhancing gradients at the periphery. The LES models are able

to capture the development of the strongly stratified sheared transition layer and show excellent

agreement with the DNS.

The gradient Richardson number, Rig = N2/S2, measures the relative strength of the stabiliz-

ing density gradient and the destabilizing shear. From linear stability theory, KH shear instabilities

develop from a laminar shear flow when Ri < 0.25 (Hazel, 1972). As the flow evolves, the local

shear and stratification changes to create patches that become less or more susceptible to instability.

An overall effect of turbulence is that it mixes the momentum and density fields such that Ri

increases and eventually exceeds the critical value throughout the shear layer. Figure 3.5 gives
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Figure 3.5: Comparison of the gradient Richardson number (Rig) using N0t - z contours in the
DNS and “x4” resolution LES cases.

the N0t - z plots of Rig for the DNS and “x4” grid resolution LES cases. In the DNS, as the KH

billows grow and amalgamate during the period 20 < N0t < 30, Rig increases from its subcritical

value of Rig = 0.12 in the core of the shear layer while decreasing at the periphery. The central

value of Rig exceeds 0.25 at N0t ≈ 30 which is also when the initial phase of linear growth of the

momentum thickness tapers off (figure 3.2). Later, between 40 < N0t < 45, Rig decreases in the

sheared transition layers. While the “x4” grid resolution LES cases are able to capture the behavior

of Rig and show good agreement with the DNS, there are slight differences after N0t ≈ 40.

3.0.8 Turbulent kinetic energy evolution

The capture of turbulence is of paramount importance in assessing the performance of the

LES models. The TKE is averaged in the horizontal (x and y directions) and depth integrated in the

73



vertical (z) to obtain its temporal evolution as shown in figure 3.6a with TKE given by K = 1
2〈ū
′
iū
′
i〉.

Transition to turbulence at N0t ≈ 15 is captured by the LES and the rapid growth of the TKE until

N0t ≈ 30 occurs at the same rate in both the DNS and “x4” resolution LES cases. It is worth noting

that this phase between 20 < N0t < 30 of rapid growth of integrated TKE coincides with the initial

phase of the linear growth of momentum thickness. The “x4” grid resolution LES cases and the

DNS peak at N0t ≈ 40 followed by a period of consistent decay. Apart from a slight overestimation

between 35 < N0t < 45, the LES models capture well the TKE evolution.

The LES models contribute two relevant subgrid terms to the TKE budget equation, namely

the subgrid dissipation and transport. The TKE budget equation used in this work is given by

dK
dt

= P− ε +B− ∂T3

∂ z
− εsgs−

∂T3,sgs

∂ z
. (3.21)

with production (P), dissipation (ε), buoyancy flux (B), and transport term (T3) specified as follows

P =−〈ū′w̄′〉∂ 〈ū〉
∂ z , ε = 2

Re0
〈S̄′i jS̄

′
i j〉, S̄′i j =

1
2(

∂ ū′i
∂x j

+
∂ ū′j
∂xi

),

B =−Ri0〈ρ̄ ′w̄′〉, T3 =
1
2〈w̄

′ū′iū
′
i〉+ 1

ρ0
〈w̄′ p̄′〉− 2

Re0
〈ū′iS̄′3i〉

(3.22)

and the subgrid dissipation (εsgs) and transport (T3,sgs) contributions given by

εsgs =−〈τ ′i j
∂ ū′i
∂x j
〉, T3,sgs = 〈τ ′i3ū′i〉. (3.23)

After horizontally averaging and depth integrating the TKE budget terms as was done with

the TKE, a direct comparison between the DNS and LES results is performed. Figure 3.6 gives the

temporal evolution of integrated production, total dissipation, and buoyancy flux for the DNS and

LES cases. It should be noted that integration yields resolved and subgrid transport terms which

are nearly zero and for that reason, they are neglected. In figure 3.6b, there is good agreement in

production capture between the DNS and “x4” grid resolution LES cases. In the DNS, there are two

notable peaks in the production. The first occurs at N0t = 25 and corresponds to the development of
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two-dimensional secondary instabilities along the braid of the KH billows. The second, occurring at

N0t ≈ 40 concerns the transition to fully three-dimensional turbulence. This is known because, at the

time of the first peak in production, there is no dissipation as would be the case in the development

of two-dimensional KH instabilities. However, the second peak in production corresponds to the

peak in dissipation indicating transition to fully three-dimensional turbulence. This point will be

elaborated upon later. Although the LES cases perfectly capture the first peak, there is a slight

delay in the second peak of production attributed in part to the positive buoyancy flux noted at

this time and not observed in the DNS. The initial negative peak in buoyancy flux at N0t ≈ 25

and subsequent decay to zero (figure 3.6c) is well captured in the “x4” grid resolution LES cases.

Slight differences with the DNS are noted during the short period of positive integrated buoyancy

flux between 35 < N0t < 40 as well as at later time. There is little difference among the LES

models in capturing either production or buoyancy flux. In contrast, there is variability in the

capture of dissipation by the different LES models. In the dissipation plot of figure 3.6e, a 12%

underestimation of peak dissipation by the Dynamic Smagorinsky and WALE models is observed.

The Ducros model results in 6% stronger peak dissipation than the DNS. Of the three LES models,

the Dynamic Smagorinsky and WALE models are the least dissipative while the Ducros model is

the most dissipative. Despite the discrepancies in peak value at N0t ≈ 40, the overall dissipation

growth and decay are well captured in the “x4” grid resolution LES cases. The ratio of the subgrid

dissipation in the LES models to the resolved dissipation (εsgs/ε where εsgs = 0 in the DNS) is

shown in figure 3.6f. The Ducros model yields the largest subgrid dissipation relative to resolved

dissipation with the peak ratio reaching approximately 2.3. In contrast, the Dynamic Smagorinsky

and WALE models showed nearly equivalent quantities of subgrid and resolved dissipation at their

peak with ratios of 0.7 and 0.9, respectively.

The LES models also capture well the internal wave energy fluxes as indicated by the

pressure-vertical velocity correlation, −〈p′w′〉, in figure 3.6d. The wave energy flux is a sink of

TKE, i.e. internal waves carry energy away from the shear layer. Since stratification in the ambient

fluid is weak, wave energy fluxes are more than two orders of magnitude smaller than other terms in
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the integrated budget. During the evolution of a stratified shear layer, internal waves are excited by

two sources: first by KH instabilities and subsequently by broadband turbulence when billows break

down with the instabilities producing a large wave flux. Furthermore, in order for KH instabilities

to excite internal waves, the stratification must be sufficiently strong so that Ri0 > 0.18 (Pham et al.,

2009). Since Ri0 = 0.12, the KH instability in the present study does not excite internal waves. The

wave energy flux is produced by the broadband turbulence where it should be noted that the peak

energy fluxes occur after peak integrated dissipation. The evolution of the internal waves in the LES

models shows good agreement with the DNS. In figure 3.6d, the peak wave fluxes produced by the

LES fall within 5% of the value of the DNS.

The horizontally averaged and depth integrated values of TKE and terms in the TKE budget

provide an overall view of LES model performance. We now move to the evolution of vertical

profiles to better characterize the spatial dependence of LES model performance. Figure 3.7 shows

the temporal evolution of TKE in the vertical using N0t - z plots for the DNS and “x4” grid resolution

LES cases. In the DNS, after transition to turbulence at N0t ≈ 20, TKE is concentrated in the core

of the shear layer until N0t ≈ 40 at which time a double-lobed configuration is apparent with TKE

concentrated at the edges of the billows in the transition layer. In the LES models, this trend is

well captured although the concentration of TKE noted in the lobes at the billow edges between

40 < N0t < 45 is stronger than in the DNS.

Figure 3.8 shows the development of TKE production using N0t - z plots for the DNS and

“x4” grid resolution LES cases. In the DNS, production increases after transition to turbulence

while its centerline value peaks at N0t ≈ 25. This behavior is also observed in the LES cases. Also

apparent in the DNS is a near total collapse of production at N0t ≈ 35 followed by a secondary

period of TKE production which persists until N0t ≈ 50. This late time production is contained in

a double-lobed structure corresponding to the transition layers near the billow edges where shear

intensifies. It is worth noting that the doubled-lobed feature in production has a counterpart in the

N0t - z plot of TKE. The “x4” resolution LES cases shown in figure 3.8 are able to capture the

collapse in production followed by a period of recovery in the form of a double-lobed feature as
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: N0t evolution of the nondimensional integrated TKE and TKE budget terms in the
DNS and “x4” resolution LES cases: (a) TKE, (b) production, (c) buoyancy flux, and (e) total
dissipation. The N0t evolution of (d) −〈p′w′〉 at z = 5 as well as (f) εsgs/ε are also shown. TKE
is normalized by ∆U∗2

δ ∗
ω,0 while production, buoyancy flux, and dissipation are normalized by

∆U∗3. Values of −〈p′w′〉 are normalized by ρ0∆U∗3.

77



Figure 3.7: Comparison of TKE (K) using N0t - z contours in the DNS and “x4” resolution LES
cases.
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Figure 3.8: Comparison of TKE production (P) using N0t - z contours in the DNS and “x4”
resolution LES cases.

noted in the DNS.

Concurrent with the strong production at N0t = 25 is the peak negative buoyancy flux seen

in the DNS panel of figure 3.9. This behavior is well captured in the “x4” grid resolution LES cases.

In the LES, there is stronger positive buoyancy flux at the center of the shear layer at N0t ≈ 35

which is consistent with the previous discussion of LES capture of integrated flux in figure 3.6c.

The development of total dissipation rate (ε + εsgs where εsgs = 0 in the DNS) of TKE is

depicted in figure 3.10 using N0t - z plots. Here, clear differences are noted between the DNS and

LES cases. The turbulent dissipation is significant during the second phase of production, after

N0t ≈ 35, and not the earlier phase of turbulent production when the KH billows form. Although

peak dissipation occurs at N0t ≈ 40 in all cases, there are differences in magnitude among the

different models. A subtle double-lobed structure is observed in both the DNS and “x4” grid
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Figure 3.9: Comparison of TKE buoyancy flux (B) using N0t - z contours in the DNS and “x4”
resolution LES cases.
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Figure 3.10: Comparison of TKE dissipation (ε + εsgs where εsgs = 0 in the DNS), using N0t - z
contours in the DNS and “x4” resolution LES cases.

resolution LES cases. This indicates that, at certain times, turbulence is not being dissipated as

strongly at the center of the shear layer. The Ducros model is shown to be better performing than

the Dynamic Smagorinsky or WALE models at capturing dissipation rate and local dissipation

magnitudes.

The depth integrated TKE budget terms can be further reduced to single, overall values by

time integration where iP represents the value for production, iD the value for dissipation, and iB

the value for buoyancy flux. Table 3.2 lists these values for the DNS and “x4” grid resolution LES

cases. Using the DNS values as a benchmark, it is clear that all of the LES models sufficiently

resolve the large scales of motion given that their maximum deviation from the value for production

in the DNS is 6% while that of buoyancy flux is less than 1%. In the case of dissipation, which is

dominated by smaller unresolved scales and is a more stringent test of subgrid model performance,
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there are clear differences in the performance of the various LES models. Deviation from the DNS

benchmark value ranges from nearly 20% in the Dynamic Smagorinsky and WALE cases to less

than 4% in the Ducros case.

Table 3.2: Capture of TKE budget terms for the “x4” grid resolution LES cases. Singular values
are obtained via trapezoidal time integration of the depth integrated TKE budget terms with results
given for production (iP), dissipation (iD), and buoyancy flux (iB), in the DNS and “x4” grid
resolution LES cases.

Case Model iP iD iB

DNS DNS 0.1542 0.0806 0.0622
DSx4 Dynamic Smagorinsky LES 0.1506 0.0656 0.0624
Dx4 Ducros LES 0.1456 0.0777 0.0616
Wx4 WALE LES 0.1485 0.0647 0.0617

3.0.9 LES performance at coarse grid resolution

In an effort to quantify the performance of the LES models for a variety of circumstances,

additional simulations were performed for each of the three subgrid models with a horizontal grid

that is coarser that the “x4” grid resolution cases by a factor of two. The following section reports

the evolution of the shear layer captured in these “x8” grid resolution LES cases as compared to the

DNS.

3.0.10 Flow evolution

Even with “x8” grid resolution, all of the LES models are able to capture the evolution of

the primary KH shear instabilities which have large horizontal wavelengths. Take for instance,

the density perturbations at time N0t = 32 in figure 3.11 depicting the instabilities over the x - z

plane in the Ducros LES case. The nonlinear development of the KH instabilities into billows is

well captured by the LES with coarser grid resolution. However, the development of secondary

shear instabilities along the braids between the billows which is observed in the DNS and well

captured by the finer grid resolution LES, is obscured at the coarser grid resolution. This is evident

on comparison of the DNS (braid and billow periphery between 4 < x < 7 in the N0t = 35 panel of
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Figure 3.11: Snapshots of density perturbations over the x - z plane at various times in the Ducros
“x8” grid resolution LES case.

figure 3.1) with the corresponding region in the LES (N0t = 36 panel of figure 3.11). Furthermore,

the distinct pockets of heavier (lighter) fluid in the upper (lower) side apparent in the DNS at the

two later times are mixed in the LES.

As in the “x4” grid resolution LES cases, momentum thickness (δθ ) normalized by initial

momentum thickness (δθ ,0) is used to illustrate the growth of the shear layer. Figure 3.12 gives a

comparison of the “x8” grid resolution LES cases with the DNS. The periods of linear growth of δθ

noted between 20 < N0t < 30 and 35 < N0t < 50 are again captured by the LES cases as are the

plateaus indicative of growth stagnation. As in the “x4” grid resolution LES cases, the final plateau

commences slightly earlier in the “x8” grid resolution LES cases than in the DNS. However, the

maximum momentum thickness in the LES is again only 4% less than the DNS and as such, the

coarser grid resolution LES cases still pick up the evolution of the mean velocity.

There were no significant differences in the capture of shear (S2), local buoyancy frequency

(N2), or gradient Richardson number (Rig) between the “x4” and “x8” grid resolution LES cases.

These results are not included for conciseness.
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Figure 3.12: N0t evolution of momentum thickness (δθ ) normalized by initial momentum thick-
ness (δθ ,0) in the DNS and “x8” resolution LES cases.

3.0.11 Turbulent kinetic energy evolution

The temporal evolution of TKE and TKE budget terms are shown using horizontally averaged

and depth integrated values in figure 3.13. Although the trends in the DNS are captured by “x8”

grid LES cases, there are some quantitative differences with the finer resolution cases as elaborated

below.

In figure 3.13a, the transition to turbulence and the final decay rate are well captured,

although the peak TKE in the “x8” grid resolution LES cases is larger in magnitude than in the “x4”

grid resolution LES cases by nearly 15%. Figure 3.13b gives the evolution of integrated production.

The initial peak in production at N0t ≈ 25 is well captured indicating proper representation of the

primary and secondary instabilities. However, the fully three-dimensional regime associated with

the secondary peak in production is not well represented and the second peak at N0t ≈ 40 is much

higher than either the DNS or the “x4” grid resolution LES cases. In particular, the maximum

value of the second peak is nearly 25% larger than in the finer resolution LES cases. The buoyancy

flux profiles of figure 3.13c also show increased discrepancies between the DNS and “x8” grid

resolution LES cases. There is overestimation of the positive buoyancy flux between 30 < N0t < 35
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as in the finer resolution LES cases. However, there is now a much larger overestimation in the

secondary peak of negative buoyancy flux at N0t ≈ 45. This is consistent with the overestimation

of production around this time. Figure 3.13e shows the temporal evolution of total dissipation for

the DNS and “x8” grid resolution LES cases. The location of peak dissipation at 40 < N0t < 43

in the different models is consistent with the DNS and the finer resolution LES cases. There was

negligible change in the magnitude of peak dissipation between the “x4” and “x8” grid resolution

Dynamic Smagorinsky and WALE cases. However, there was an approximately 10% increase in the

magnitude of peak dissipation in the “x8” grid resolution Ducros model case. Also of interest are

the steeper (relative to the DNS) decay rates of dissipation in the “x8” grid resolution LES cases. At

coarser grid resolution, the subgrid stresses become stronger and the resolved turbulence decays at

a faster rate relative to the turbulence in the DNS. This is consistent with the larger ratios (relative

to the “x4” grid resolution LES cases) of subgrid dissipation in the LES models to the resolved

dissipation (εsgs/ε where εsgs = 0 in the DNS) shown in figure 3.13f. In the case of the Ducros

model, the ratio of these quantities nearly tripled those of the “x4” grid resolution results while the

values in both the Dynamic Smagorinsky and WALE cases doubled.

Finally, coarsening the grid resolution increases the internal wave energy flux as indicated

in figure 3.13d. Recall, the peak wave fluxes in the “x4” grid resolution LES cases are at most

5% larger than the value seen in the DNS (figure 3.6d). As seen in the “x8” grid resolution LES

cases shown in figure 3.13d, the discrepancy increases to 30% with the Dynamic Smagorinsky

and Ducros models having the largest difference with the DNS. The larger internal wave flux in

the LES is due to increased production at N0t ≈ 40 in figure 3.13b. When the billows break down

into turbulence, the LES models produce a stronger Reynolds stress, 〈u′w′〉, and thus, a stronger

production. Stronger Reynolds stress also results in a stronger internal wave field. Nevertheless,

since the wave energy fluxes are small relative to other terms in the TKE budget, the discrepancy in

the wave flux between the LES and the DNS does not affect the overall evolution of the TKE.

Focusing now on the spatial variation of TKE, figure 3.14 depicts the temporal evolution

of TKE in the vertical using N0t - z plots for the DNS and “x8” grid resolution cases. While the
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(e) (f)

Figure 3.13: N0t evolution of the nondimensional integrated TKE and TKE budget terms in the
DNS and “x8” resolution LES cases: (a) TKE, (b) production, (c) buoyancy flux, and (e) total
dissipation. The N0t evolution of (d) −〈p′w′〉 at z = 5 as well as (f) εsgs/ε are also shown. TKE
is normalized by ∆U∗2

δ ∗
ω,0 while production, buoyancy flux, and dissipation are normalized by

∆U∗3. Values of −〈p′w′〉 are normalized by ρ0∆U∗3.
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Figure 3.14: Comparison of TKE (K) using N0t - z contours in the DNS and “x8” resolution LES
cases.

redistribution of shear to the billow edges at N0t ≈ 40 is captured in the coarser resolution LES,

even stronger packets of TKE are noted in the lobes at the billow edges between 40 < N0t < 45

than in the DNS or finer resolution LES cases.

Taking a closer look at the spatial variation of the budget terms, figure 3.15 shows the N0t

evolution of vertical profiles of turbulent production for the DNS and “x8” grid resolution LES

cases. Although the peak and subsequent collapse at N0t = 35 are correctly represented, production

is noted to have higher concentration in the lobes of the “x8” grid resolution LES cases than in

the DNS or finer resolution LES cases. The subsequent decay of production is also observed to be

much more rapid in the “x8” grid resolution LES cases.

The buoyancy flux N0t - z plots of figure 3.16 tell a similar story. While the overall behavior

is consistent with the DNS and finer resolution LES cases, the pockets of strong positive buoyancy
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Figure 3.15: Comparison of TKE production (P) using N0t - z contours in the DNS and “x8”
resolution LES cases.
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Figure 3.16: Comparison of TKE buoyancy flux (B) using N0t - z contours in the DNS and “x8”
resolution LES cases.

flux are enhanced in the “x8” grid resolution LES cases.

The total dissipation rate (ε + εsgs where εsgs = 0 in the DNS) of TKE is analyzed in the

N0z - t plots of figure 3.17. Although the Ducros model remains the best performing of the three

LES models employed, dissipation decays more rapidly with smaller dissipation seen at the edges

of the shear layer in the “x8” grid resolution LES cases. The Dynamic Smagorinsky and WALE

model cases have lost much of their double-lobed structure indicating that dissipation is occurring

fairly evenly throughout the shear layer as opposed to being concentrated at the billow edges and

turbulent core in the DNS. Thus, the spatial distribution of the dissipation is not well captured at

such coarse grid resolution as that in the “x8” LES cases.

As in the case of the “x4” grid resolution LES cases, integration in time can be used to

reduce the depth integrated TKE budget terms to single values where iP represents the value for
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Figure 3.17: Comparison of TKE dissipation (ε + εsgs where εsgs = 0) in the DNS, using N0t - z
contours in the DNS and “x8” resolution LES cases.
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production, iD the value for dissipation, and iB the value for buoyancy flux. Table 3.3 lists these

values for the DNS and “x8” grid resolution LES cases. As in the “x4” grid resolution LES cases,

the results of the coarser simulations indicate that all of the LES models still sufficiently resolve

the large scales of motion given that their maximum deviation from the DNS value for production

is 7% while that of buoyancy flux is approximately 3%. Clear differences in the performance

of the various LES models are again apparent in the capture of dissipation. Deviation from the

DNS benchmark value ranges from 28% in the WALE case to less than 4% in the Ducros case.

Interestingly, the WALE model exhibits high variability with differing grid resolution. It yields a 8%

drop in dissipation capture with the coarsened grid resolution in contrast to the smaller percentage

losses of the Dynamic Smagorinsky and Ducros cases. The Ducros case shows negligible change

in dissipation with the coarsened grid and little variability among production and buoyancy flux

suggesting possibly higher reliability when utilizing different grids than the other models.

Table 3.3: Capture of TKE budget terms for the “x8” grid resolution LES cases. Singular values
are obtained via trapezoidal time integration of the depth integrated TKE budget terms with results
given for production (iP), dissipation (iD), and buoyancy flux (iB), in the DNS and “x8” grid
resolution LES cases.

Case Model iP iD iB

DNS DNS 0.1542 0.0806 0.0622
DSx8 Dynamic Smagorinsky LES 0.1560 0.0614 0.0628
Dx8 Ducros LES 0.1429 0.0766 0.0601
Wx8 WALE LES 0.1559 0.0580 0.0618

3.0.12 Turbulent transport in the LES

In previous sections, it was demonstrated that the evolution of the shear layer is similar

between the DNS and various LES models in terms of the shear layer thickness and mean statistics

as well as the first and second moment turbulence statistics. In this section, a comparison is

performed to investigate whether the LES models are successful in capturing the turbulent transport

coefficients that are produced in the DNS. Specifically, the evolution of the eddy viscosity (νT ) and

eddy diffusivity (κT ) are quantified. These terms are responsible for mixing of the momentum and
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density fields, respectively, and are defined as follows

νT = νsgs +
〈u′w′〉

d〈u〉/dz
, (3.24a)

κT = κsgs +
〈ρ ′w′〉

d〈ρ〉/dz
, (3.24b)

where the second terms on the right hand side of both equations are the contribution of resolved

eddy motions.

Figure 3.18a compares the evolution of the subgrid viscosity (νsgs) at the center of the shear

layer among the simulations with “x4” grid resolution. Since the LES are well resolved, νsgs is

at most twice as large as the molecular viscosity (ν). The Ducros model produces the largest νsgs

which is consistent with the large subgrid dissipation noted for this model when compared to the

other LES models. It is noted that the subgrid viscosity of the WALE model is elevated during

the growth period of the KH instability, i.e. between 20 < N0t < 35. During this time period, the

KH instabilities generate fluctuations in the velocity and density fields although the fluctuations

occur at scales that are orders of magnitude larger than the diffusive scale, e.g. the Kolmogorov

length scale. The fluctuations generate strain and vorticity fields which cause the WALE model

to produce its increased νsgs. The subgrid viscosity increases as the grid resolution becomes

coarser as demonstrated in figure 3.18b. In the “x8” grid resolution LES cases, the peak νsgs in

the Ducros model reaches up to 5.5 times larger than ν while the values in the other two models

are approximately 1.5 times larger. The larger value of νsgs in the Ducros model is responsible for

producing more turbulent dissipation than seen in the DNS as shown in the “x8” grid resolution

cases in contrast to the underestimate by the other two models.

The evolution of eddy viscosity normalized by the molecular value (νT/ν) at the center

of the shear layer (z = 0) is compared among the cases in figures 3.18c-3.18d. Overall, the LES

models capture the evolution of νT/ν well during the growth period of the KH shear instabilities

until N0t ≈ 35 regardless of grid resolution. When the KH rollers break down into turbulence

at N0t = 40, the value of νT/ν in the LES models surpasses that of the DNS. For the “x4” grid
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resolution LES cases, the WALE model produces the largest peak value of eddy viscosity while

the value in the Ducros model is closest to that of the DNS. During the turbulence decay period,

i.e. after N0t ≈ 40, the values of νT/ν in the LES cases decrease at a faster rate relative to the

DNS. The eddy viscosities in the LES also decrease faster than the subgrid viscosity during this

period. This suggests that the reduction in eddy viscosity is dominated by the fast reduction of the

resolved turbulence. The overshoot of peak eddy viscosity in the LES cases at N0t = 40 causes the

turbulence to decay faster than in the DNS. As the grid resolution is coarsened, the difference in the

peak value of νT/ν between the DNS and LES becomes more pronounced as shown in figure 3.18d.

The Dynamic Smagorinsky and WALE models show peak values nearly three times larger than that

of the DNS while the peak value in the Ducros model is in closer agreement. With the increased

overshoot of peak νT/ν , turbulence in the “x8” grid resolution LES cases decays significantly faster

than in the “x4” grid resolution LES cases.

Since the Ducros and WALE models use a subgrid Prandtl number of unity, i.e. νsgs (already

reported in figures 3.18a-3.18b) and subgrid diffusivity (κsgs) are equal, attention is focused on

the performance of the eddy diffusivity (κT ) in the LES cases. Figures 3.18e-3.18f compare the

evolution of κT/κ at the center of the shear layer. It is clear that the evolution of κT/κ is quite

different from that of νT/ν , notably during the later stage of turbulence driven linear growth of δθ

when the transport of momentum and density are driven by different physics. During the earlier

stage corresponding to the growth period of the KH instabilities, a positive 〈ρ ′w′〉 is produced as

the instability disturbs the density interfaces. While values of νT in the LES agree well with DNS

during this early period, κT is similarly under predicted by the LES models. Differences between

the LES and the DNS suggest that Prsgs < 1 during N0t < 25, i.e. the use of a unity Prsgs, may not

be appropriate during this period when the flow is dominated by large-scale instability fluctuations.

As the KH billows develop between 35 < N0t < 40, heavier fluid from the lower half of the shear

layer is transported upward while lighter fluid from the upper half is transported downward resulting

in an unstable density gradient with a significant amount of available potential energy to drive

convective turbulence, i.e. the negative 〈ρ ′w′〉 during this period. All of the LES models overshoot
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the magnitude of negative eddy diffusivities in the DNS during this period. This is consistent with

the large positive buoyancy flux previously noted. The magnitude of negative κT becomes larger

in the “x8” grid resolution LES cases. Coarser grid resolution further exaggerates the effects of

convective turbulence resulting in an overestimation of the density field mixing. Overall, the LES

models do not accurately capture density transport during the stage of the stratified shear layer in

which convective turbulence dominates.

3.0.13 Computational cost

The relative computational cost of the LES models is assessed by calculating the required

CPU time per grid point per time step (TCPU ) given by

TCPU =
Np×Twall,275

Nt×Ng
(3.25)

where Np is the total number of processes, Twall,275 is the simulation wall time required to reach

t = 275, Nt is the total number of time steps, and Ng is the total number of grid points (Nx×Ny×Nz).

The total cost of each simulation (T ) is thus calculated using T = TCPU ×Nt ×Ng. The values of

TCPU (given in CPU seconds/time step/grid point) and T (given in CPU hours) are summarized in

table 3.4 for the DNS and LES cases. All simulations (DNS and LES) were performed on the Cray

XC40 Navy DSRC machine, Gordon.

Table 3.4: Computational cost assessment. An estimation of the required CPU time per grid point
per time step (TCPU ) and the total computational cost (T ) are given for the DNS and LES cases.
The units for TCPU are CPU seconds/time step/grid point while T is given in CPU hours.

Case Model TCPU T

DNS DNS 3.95×10−6 3.7×104

DSx4 Dynamic Smagorinsky LES 2.34×10−5 5.1×103

Dx4 Ducros LES 4.60×10−6 9.7×102

Wx4 WALE LES 5.39×10−6 1.1×103

DSx8 Dynamic Smagorinsky LES 1.83×10−5 7.5×102

Dx8 Ducros LES 4.89×10−6 1.9×102

Wx8 WALE LES 5.45×10−6 2.2×102
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(a) (b)

(c) (d)

(e) (f)

Figure 3.18: N0t evolution of (a,b) normalized subgrid viscosity (νsgs/ν), (c,d) normalized eddy
viscosity (νT/ν), and (e,f) normalized eddy diffusivity (κT/κ) at the center of the shear layer
where z = 0 in the DNS and LES cases: (a,c,e) “x4” grid resolution LES cases and (b,d,f) “x8”
grid resolution LES cases.
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Of the LES models, the Dynamic Smagorinsky model incurs the highest computational

cost with TCPU values on the order of O(10−5). In contrast, the WALE and Ducros models

have TCPU values 3 - 5 times smaller. The WALE model is slightly more computationally costly

(TCPU ≈ 5.4×10−6) than the Ducros model (TCPU ≈ 4.7×10−6).

From the values of T in table 3.4, the computational cost of the DNS is 3.7×104 CPU hours

to reach t = 275. As expected, the LES models are shown to be much less computationally costly.

The “x4” grid resolution cases require anywhere from approximately 7 - 40 times fewer CPU hours

than the DNS with the Ducros model requiring the least amount of CPU hours and the Dynamic

Smagorinsky the most. Coarsening the horizontal grid resolution by a factor of two between the

“x4” and “x8” grid resolution LES cases results in at least an order of magnitude difference in the

total computational cost. The “x8” grid resolution cases require approximately 50 - 200 times fewer

CPU hours than the DNS. The Ducros model required only 200 CPU hours, a small fraction of the

3.7×104 CPU hours required in the DNS to reach t = 275.

3.0.14 Conclusions

A comprehensive investigation of three LES models was performed to assess their ability in

simulating the evolution of a localized layer of vertical shear in a uniformly stratified background.

The Dynamic Smagorinsky, Ducros, and WALE models were chosen due to their use in previous

literature and a comparison was performed to assess potential advantages for future work. The

results of simulations with moderate Reynolds number, Re0 = 24,000, were compared to a DNS at

the same Re0 to assess their performance. The LES were conducted on a fine grid (“x4” series) with

a fourth of the DNS grid spacing in the horizontal and also another grid coarsened by another factor

of two (“x8” series). Flow evolution was quantified using plots of momentum thickness which

showed good agreement between the DNS and all LES cases. The LES models were also shown to

accurately capture the vertical profiles of mean shear, buoyancy frequency, and gradient Richardson

number, thereby assuring that the mean flow was well handled by the models. Billow evolution and

development of secondary instabilities were consistent with DNS results although the “x8” grid
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resolution tended to obscure small-scale features present in the DNS such as secondary billows and

pockets of relatively unmixed fluid.

The growth and decay of turbulent kinetic energy are well captured by all of the LES models

although there was a 10% increase in the magnitude of peak TKE in the “x8” grid resolution

LES cases when compared to their finer resolution counterparts. The TKE production in the DNS

exhibits two distinctive peaks with a collapse in between. Both peaks in production as well as

the total collapse observed at N0t ≈ 30 are well captured in the LES models, regardless of grid

resolution, although there are some differences in the magnitude of the second peak. The first phase

of TKE production is associated with the roll up of the KH billow and has negligible dissipation.

The dissipation becomes appreciable later during the second phase of TKE production. An analysis

of the dissipation revealed discrepancies between the DNS and the LES models. The Ducros model

is found to better capture the dissipation rate profiles.

The buoyancy flux is negative definite during the initial development (N0t < 30), a period

when the LES results are accurate. Later in time, there are regions of convective turbulence where

the magnitude of the buoyancy flux is overestimated leading to a discrepancy in the horizontally

averaged and depth integrated value that is minor in the “x4” series but larger in the “x8” series.

When comparing turbulent transport of the momentum and density fields, it was found

that the all three LES models capture well the eddy viscosity during the growth period of the KH

billows, i.e., the first phase of TKE production. When the KH billows break down, the LES models

overshoot the value of eddy viscosity seen in the DNS with the Ducros model producing the smallest

discrepancy. Similarly, the eddy diffusivity of density attains larger values than those of the DNS.

The LES models do not sufficiently capture the physics of convective turbulence.

Recent work, e.g. Khani (2018), has shown the Dynamic Smagorinsky model capable of

capturing turbulence evolution in homogenous stratified turbulence. The evolution of the stratified

shear layer configuration of the present study involves a combination of physics characteristic to

both shear driven and convectively driven turbulence. Future development of subgrid models and

their evaluation over a broad range of flows will help make progress in LES of stratified turbulent
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flow.

An analysis of the relative computational costs revealed the LES models to require anywhere

between 7 - 200 times fewer CPU hours than the DNS. The Ducros model is shown to be the least

expensive LES model employed in terms of CPU time per grid point per time step as well as overall

CPU hours while the Dynamic Smagorinksy is deemed the most expensive. Although the Dynamic

Smagorinksy and WALE models have benefits and may be appropriate choices for certain flow

configurations, given the results presented, the Ducros model is the most appropriate choice for

future work similar to the problem described in this work.

Chapter 3 is a reprint of material under review for publication as follows: A. VanDine, H. T.

Pham, S. Sarkar, “Investigation of LES models for a stratified shear layer”, Comput. Fluids, 2019.

The author of this dissertation is the primary investigator and author of this work.
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Chapter 4

Hybrid spatially-evolving DNS model of

flow past a sphere

The specific case of the wake produced behind a towed sphere is considered for the intro-

duction of the hybrid spatially-evolving DNS model. Experiments for a towed wake are typically

conducted by towing the body and taking measurements in a region that is fixed in space. In a

frame that moves with the body, the velocity profile of the fluid behind the body shows a defect with

respect to the free-stream velocity of the surrounding fluid (U∞). The representation of a towed wake

utilized in this work is shown in figure 4.1 with a mean streamwise velocity profile, 〈u1(x2,x3)〉.

A spatially-evolving approximation of the flow is given, whereby streamwise evolution of statis-

tics rather than their temporal evolution may be examined. In comparisons with corresponding

temporally-evolving simulations, the downstream distance (x1) relates to time (t) as x1 = tU∞. As

such, a nondimensional time unit (used in averaging during the calculation of statistics) can be

defined as tU∞/D where D is the characteristic diameter of the sphere.

As previously discussed, highly resolved body-inclusive simulations have been successfully

used to analyze key features of a towed wake. However, due to the drawbacks discussed, there

is need for a tool which can simulate as effectively but with less computational expense than a

body-inclusive simulation. Detailed herein is a hybrid spatially-evolving model which addresses the
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Figure 4.1: Illustration of a towed wake in a Cartesian frame of reference with a corresponding
mean streamwise velocity profile (〈u1(x2,x3)〉) and gravity (g) acting in the negative x3 direction.

limitations of body-inclusive models while still satisfactorily capturing key flow features. It should

be emphasized that this hybrid investigation remains a spatial development study and thus cannot

necessarily compete with temporally-evolving models which are able to extend far downstream

of the body. The presented work extends to a downstream distance of approximately ninety body

diameters with comparisons given for nearly fifty body diameters. Temporally-evolving simulations

have provided results much farther downstream to distances of O(1000D). The proposed model is,

however, a computationally less intensive tool than has previously been used in spatial development

studies and allows for analysis farther from the body, though perhaps still not as far as in certain

temporal investigations. The current study is a validation of the hybrid method which lays the

groundwork for utilization of the model in future work.

4.0.15 Formulation

4.0.15.1 Hybrid model

The hybrid model utilized in this work addresses the computational limitations of both

temporally-evolving and spatially-evolving body-inclusive simulations. In this model, cross-

sectional data planes are extracted from a spatially-evolving body-inclusive simulation at some

point downstream of the body and over a time interval that starts after the flow has achieved
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Figure 4.2: Illustration of the setup for the hybrid simulation showing a three-dimensional view
of the body-inclusive domain and planes at x1/D = 3, x1/D = 6, and x1/D = 10 indicating the
different starting point choices for the hybrid model simulation domain. The Cartesian grid and
corresponding coordinate reference frame are noted.

statistical steady-state. Data at a chosen downstream location are used as inlet conditions in a

spatially-evolving simulation without a body which has a coarser grid than that of the body-inclusive

simulation. The body-inclusive simulations from which inlet planes were extracted for the purposes

of this work are documented extensively by Pal et al. (2017). A spatially-evolving approximation of

the flow is used, whereby streamwise evolution of statistics may be examined. Figure 4.2 illustrates

the setup for the hybrid model simulation.

It is first necessary to choose a location at which to extract data in the body-inclusive

simulation. In order to investigate the flow sensitivity to extraction location, three locations

downstream of the body were analyzed, x1/D = 3, 6, and 10. Figure 4.2 depicts these locations with

reference to the body in an unstratified body-inclusive simulation. Note the location of x1/D = 3

is at the tail end of the recirculation region. These locations are chosen to include the near wake

dynamics captured by the body-inclusive simulation. However, the richer spectrum of turbulence

in this region demands higher computational cost and sufficiently refined grid resolution. Data

planes are extracted over a specified time interval during which the body-inclusive flow is deemed

to be at steady state. Time steps, ∆t, in the body-inclusive simulation are determined by a Courant-

Friedrichs-Lewy (CFL) condition resulting in a variable ∆t between 0.0002 and 0.0009. Planes
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are extracted every one hundred time steps in the body-inclusive simulation thus corresponding to

0.02 ≤ ∆t ≤ 0.09 between inlet planes in the hybrid model simulation. This choice of a coarser

(relative to the body-inclusive simulation) time step in the hybrid simulation is sufficient to resolve

the dynamics downstream of the inlet plane as will be demonstrated. Inlet planes are interpolated

to a coarser grid as described in the subsequent section and fed as inflow in a spatially-evolving

simulation with far less computational cost than a comparable body-inclusive simulation.

4.0.15.2 Governing equations

For an unsteady, incompressible flow subject to the Boussinesq approximation in which

density variations are considered only where they give rise to gravitational force, the nondimensional

conservation equations for mass, momentum, and density are taken in a Cartesian coordinate frame

as follows:

∂uk

∂xk
= 0, (4.1a)

∂ui

∂ t
+

∂ (ukui)

∂xk
=− ∂ p

∂xi
+

1
Re

∂ 2ui

∂xk∂xk
− 1

Fr2 ρ̃δi3, (4.1b)

∂ρ

∂ t
+

∂ (ukρ)

∂xk
=

1
RePr

∂ 2ρ

∂xk∂xk
(4.1c)

In the above equations, xk = (x1,x2,x3) represent the streamwise, spanwise, and vertical directions,

respectively. Density is decomposed into a constant reference density, mean, and fluctuating

components respectively designated as follows where an ∗ indicates a dimensional value,

ρ
∗ = ρ0 + ρ̄

∗(x3, t)+ ρ̃
∗(xi, t) . (4.2)

102



The equations were nondimensionalized using the following characteristic scales:

t = t∗U∞/D, xi = xi
∗/D, ui = ui

∗/U∞,

ρ = ρ∗/ρ0, ρ̃ = ρ̃∗/(DC∗), p = p̃∗/(ρ0U∞
2) .

(4.3)

Here, C∗ = |dρ̄∗/dx3
∗|(t = 0) is the dimensional density gradient. The nondimensional parameters

Reynolds number (Re), Froude number (Fr), and Prandtl number (Pr) are given by

Re =U∞D/ν , Fr =U∞/(N∗D), Pr = ν/κ. (4.4)

Here, U∞ is the characteristic body velocity, D is the characteristic sphere diameter, ν is the kinematic

viscosity, and κ is the thermal diffusivity. The buoyancy frequency is given by N∗ = [−gC∗/ρ0]
1/2.

Pr = 1 for all simulations.

4.0.15.3 Numerical method

The governing equations given in equation 4.1 are solved using direct numerical simulation

on a staggered grid, where pressure and density are stored at the cell centers and velocities are

stored at the cell edges. It should be noted that after the simulation during post-processing and the

calculation of statistics, all variables are interpolated to the cell center.

Discretization of spatial derivatives is performed with a second-order, central finite difference

scheme. Time is advanced explicitly using the Williamson (1980) low-storage Runge Kutta method.

Convergence of the Poisson pressure equation used to project velocity into divergence-free space

is accelerated via a parallel multi-grid solver which employs Red-Black Gauss-Seidel (RBPGS)

smoothing. During coarsening, an increasing number of relaxation sweeps accelerates convergence.

Detailed information concerning the spatial discretization, time integration, and multi-grid solver

can be found in the work by Brucker (2009).

A sponge region of thickness equivalent to 1.2 body diameters in the body-inclusive simula-

tions is utilized in the form of a Rayleigh damping function at the spanwise and vertical boundaries
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to prevent reflections of internal gravity waves (Brucker & Sarkar (2010)). Velocities and densities

are gradually dampened using the damping terms

−φ(xi)[ui(xi, t)−Ui,∞] , −φ(xi)[ρ(xi, t)−ρ∞(x3)] (4.5)

which are added to the momentum and density equations given respectively in 4.1. Here, φ(xi)

behaves quadratically over the specified region, free-stream velocity is given by Ui,∞ = [1,0,0],

and ρ∞(x3) =−ρ0C∗x3/D. This sponge region does not affect the flow given its distance from the

wake. This damping function relaxes all variables in the interior of the domain to their value at the

boundary. Brucker (2009) also provides a detailed description of this sponge implementation.

The codes used in this work are parallelized over multiple nodes which communicate using

MPI libraries. A domain decomposition method divides the domain into blocks, assigns each

block ghost cells for padding, and distributes the blocks to specific nodes. Simulations are carried

out using supercomputers managed by the Department of Defense High Performance Computing

Modernization Program (DoD HPCMP).

Density gradients corresponding to a specific Froude number are used to initialize the

background density field in the domain. The density and velocities at t = 0 in the hybrid spatially-

evolving simulation are prescribed as follows. The first realization of ρ , u1, u2, and u3 from the

extracted inlet plane time series is imposed at the x1 = 0 plane. The field variables at all subsequent

downstream planes are taken to be equal to those at x1 = 0 so that, at t = 0, there are no streamwise

(x1) gradients in ρ , u1, u2, or u3. The time series of instantaneous density fluctuations and three

instantaneous velocity components (u1, u2, and u3) extracted from the body-inclusive simulations

are then fed into the domain at the inlet.

Neumann boundary conditions are enforced for the velocity components and density at

the spanwise and vertical boundaries. Pressure is assigned a Dirichlet boundary condition. In the

streamwise direction, pressure is subject to a Dirichlet condition at the inflow and a Neumann

boundary condition at the outflow. Inflow-outflow boundary conditions are employed for the velocity
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components and density in the streamwise direction where the inflow is read from an inlet data file

and outflow is treated using a second-order extrapolation boundary condition with numerical error

of O(∆x2
1). A summary follows in table 4.1.

Table 4.1: Boundary conditions. L1, L2, and L3 are the domain lengths in the streamwise (x1),
spanwise (x2), and vertical (x3) directions, respectively. The subscript m given in the outflow
conditions represents the coordinate index in the streamwise (x1) direction while the subscript n
indicates time level.

Boundary Location Velocity, ui Pressure, p Density, ρ

x1 = 0 read p = 0 read

x1 = L1 un
i,m+1 = 2un

i,m−un
i,m−1 ∂ p/∂x1 = 0 ρn

i,m+1 = 2ρn
i,m−ρn

i,m−1

x2 =±L2/2 ∂ui/∂x2 = 0 p = 0 ∂ρ/∂x2 = 0

x3 =±L3/2 ∂ui/∂x3 = 0 p = 0 ∂ρ/∂x3 =−ρ0C∗/D

As time steps used in the hybrid model are given by the time lapse between every one

hundred time steps of the body-inclusive simulation, adherence to the CFL condition limits the

grid spacing of the hybrid model. Grid spacing cannot be arbitrarily small without violating the

CFL condition. Thus, when using grids with finer resolution, the time steps must also be altered

(either by saving data more frequently from the body-inclusive simulation or interpolation in time)

to accommodate the reduction in grid spacing.

Statistics are calculated via time-averaging over a nondimensional time t ≈ 80. This time

interval is the exact interval used by the body-inclusive simulations documented by Pal et al.

(2017) for calculations, occurring after the flow had reached statistical steady-state. The fully

three-dimensional statistics are decomposed into mean and fluctuating components using Reynolds

decomposition given by

ui = 〈ui〉+ui
′
, ρ = 〈ρ〉+ρ

′
, p = 〈p〉+ p

′ (4.6)

where a 〈〉 denotes a mean quantity.
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4.0.15.4 Simulation parameters

A total of nine hybrid model simulations are presented for Fr = ∞, 3, and 1. Each Fr

case was simulated three times with differing inlet extraction locations, x1/D = 3, x1/D = 6, and

x1/D = 10. The naming convention for the cases is the Froude number followed by the extraction

location, e.g. Fix3, Fix6, and Fix10 represent the Fr = ∞ cases with extraction locations, x1/D = 3,

6, and 10, respectively. The original body-inclusive simulations are denoted FiBI, F3BI, and F1BI

for Fr = ∞, 3, and 1, respectively. For all cases, the hybrid model simulation uses a Cartesian

grid with streamwise (x1), spanwise (x2), and vertical (x3) directions. However, the body-inclusive

simulations were performed using a cylindrical computational domain given by the radial (r),

azimuthal (θ ), and streamwise (z) directions. As the originally extracted data planes are on a

cylindrical grid, coordinate mapping using a cubic spline interpolation scheme is used to map the

data from cylindrical to Cartesian coordinates.

Tables 4.2 and 4.3 detail the parameters for the hybrid model simulations and body-inclusive

simulations, respectively. The Reynolds number, Froude number, number of grid points, domain

sizes, and minimum grid spacing in each direction are specified. More specific information

concerning the body-inclusive simulations can be found by referring to Pal et al. (2017). For the

hybrid model simulations, the streamwise grid distribution is uniform while the spanwise and vertical

grids are stretched at 1.6% outside of the uniformly-stretched regions −2.0 < x2/D < 2.0 and

−2.0 < x3/D < 2.0. In the stretched regions, this indicates a ratio of 1.016 between a stretched grid

cell and its smaller neighboring cell. Grid spacing in the streamwise direction is ∆x1 = 0.06 while

the minimum grid spacing in the spanwise and vertical directions is min(∆x2) =min(∆x3) = 0.04.

The minimum streamwise grid spacing is approximately forty times larger than the body-inclusive

simulation minimum streamwise grid spacing of min(∆z) = 0.0016. It should be noted that the grid

spacing in the body-inclusive simulations is smallest close to the sphere where higher resolution is

required to resolve the boundary layer. This grid size increases with downstream distance. Take

for instance the extraction location of x1/D = 6 where the grid spacing in the body-inclusive

simulations is ∆z = 0.0121. This is approximately five times smaller than the grid cell size of the
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hybrid model simulations at the same location. Note that the final number of grid points required in

the body-inclusive simulations is approximately 400×106 grid points while the hybrid simulations

use around 100×106 grid points.

An investigation of flow physics farther downstream than previously studied using spatially-

evolving simulations is planned but is not the focus of this work. Validation is performed to

approximately eighty body diameters downstream based solely on the downstream distance of the

body-inclusive simulations used for direct comparison. Given the end of the near wake regime at

Nt ≈ 2 and the start of the quasi-two-dimensional regime at Nt ≈ 50, the current simulations seek

only to validate the use of the hybrid model for study of the intermediate wake and the so-called

nonequilibrium regime in stratified wakes.

Table 4.2: Hybrid simulation parameters. The subscript x1 refers to the streamwise direction
while x2 and x3 refer to the spanwise and vertical directions, respectively. The Reynolds number
(Re), Froude number (Fr), number of grid points (Nx1 ,Nx2 ,Nx3), domain lengths (Lx1 ,Lx2 ,Lx3), and
minimum grid spacing (min(∆x1),min(∆x2),min(∆x3)) in all directions are given for each case.
The total number of grid points, N is also given where N = Nx1×Nx2×Nx3 .

Case Re Fr Nx1 Nx2,Nx3 Lx1 Lx2,Lx3 min(∆x1) min(∆x2,3) N

Fix3, Fix6, Fix10 3700 ∞ 1536 256 92.2 15.6 0.06 0.04 ≈ 101×106

F3x3, F3x6, F3x10 3700 3 1536 256 92.2 15.6 0.06 0.04 ≈ 101×106

F1x3, F1x6, F1x10 3700 1 1536 256 92.2 15.6 0.06 0.04 ≈ 101×106

Table 4.3: Body-inclusive simulation parameters. The subscript z refers to the streamwise direction
while r and θ refer to the radial and azimuthal directions, respectively. The Reynolds number (Re),
Froude number (Fr), number of grid points (Nr,Nθ ,Nz), domain lengths (Lr,Lθ ,Lz), and minimum
grid spacing (min(∆r),min(r∆θ),min(∆z)) in all directions are given for each case. The total
number of grid points, N is also given where N = Nr×Nθ ×Nz.

Case Re Fr Nr Nθ Nz Lr Lθ Lz min(∆r) min(r∆θ) min(∆z) N

FiBI 3700 ∞ 630 128 4608 16.3 2π 93.9 0.0016 4×10−5 0.0016 ≈ 372×106

F3BI 3700 3 690 128 4608 59.8 2π 93.9 0.0016 4×10−5 0.0016 ≈ 407×106

F1BI 3700 1 690 128 4608 59.8 2π 105.9 0.0016 4×10−5 0.0016 ≈ 407×106

As previously mentioned, inlet planes are extracted every one hundred time steps of the

body-inclusive simulation. The time steps of the body-inclusive simulations are quite small so as

not to violate the CFL condition. A range of time steps and estimated CFL numbers are given in
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table 4.4. Note that the CFL ranges are locally calculated at a downstream distance of z/D = 6

in the body-inclusive simulations and at the inlet of the hybrid model simulations with extraction

location x1/D = 6. The given CFL numbers are estimated using a representative average of the

velocity field (free-stream velocity, U∞) and streamwise grid spacing by

CFL = U∞∆t
∆z , CFL = U∞∆t

∆x1
(4.7)

for the the body-inclusive simulations and hybrid model simulations, respectively.

The decrease in the total number of grid points, coarser minimum grid cell size, and

increase in time step owing to extraction at every one hundred of the original time steps results

in a computational run time measurable in hours as opposed to weeks. For instance, the Fr = 3

body-inclusive simulation required approximately 256,000 CPU hours while the corresponding

hybrid simulations required only 1,400 CPU hours.

Table 4.4: Time step and CFL ranges for the hybrid model simulations extracted at x1/D = 6 and
the body-inclusive simulations. Note the time steps between the hybrid model simulations and
body-inclusive simulations differ by a factor of one hundred as data planes were extracted every
one hundred time steps. The range of CFL numbers for the body-inclusive cases is calculated
locally using ∆z at z/D = 6.

Case ∆t CFL

Fix6 0.029≤ ∆t ≤ 0.083 0.49≤CFL≤ 1.39

F3x6 0.026≤ ∆t ≤ 0.084 0.44≤CFL≤ 1.40

F1x6 0.032≤ ∆t ≤ 0.087 0.54≤CFL≤ 1.44

FiBI 0.00029≤ ∆t ≤ 0.00083 0.02≤CFL≤ 0.07

F3BI 0.00026≤ ∆t ≤ 0.00084 0.02≤CFL≤ 0.07

F1BI 0.00032≤ ∆t ≤ 0.00087 0.03≤CFL≤ 0.07

4.0.16 Extraction location

As mentioned, the sensitivity of extraction location is explored using three streamwise points,

x1/D = 3, 6, and 10. Figures 4.3a - 4.3c show the evolution of streamwise mean defect velocity (UD)
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where UD =U∞−〈u1〉 at the centerline where x2/D = x3/D = 0 for Fr = ∞,3, and 1, respectively.

While the monotonic decay trend expected for Fr = ∞ is captured, there is some deviation from the

body-inclusive simulation at all extraction locations. This is attributed to differences in the grid

resolution: first, the streamwise grid used in the hybrid model is approximately five times coarser

than the body-inclusive simulation as seen from the minimum grid spacing parameters in tables 4.2

and 4.3 and, second, the cylindrical grid of the body-inclusive simulation leads to an azimuthal grid

spacing which becomes progressively larger with radial distance. The smallest scales of turbulent

motion increase in size with downstream distance from the body and it is clear in figures 4.3a - 4.3c

that while extraction at x1/D = 3 is the least successful case, agreement between the body-inclusive

and hybrid simulations improves as the extraction location is moved farther downstream. In the

Fr = 3 cases of figure 4.3b, the first minimum is achieved at a streamwise location corresponding

to half of the buoyancy period, x1/D = πFr, also noted by Chongsiripinyo & Sarkar (2017). Figure

4.3c shows the “oscillatory modulation” indicative of a steady body-generated lee wave as identified

by Pal et al. (2017) and Chongsiripinyo & Sarkar (2017). These modulations are magnified in

figure 4.4 to clearly show successive minima and maxima, and a wavelength which is consistent

with the body-inclusive simulation. Figure 4.4a shows the intermediate wake until a downstream

distance of x1/D = 40 while figure 4.4b extends into the far wake until a downstream distance of

x1/D≈ 70. While the amplitude of oscillatory modulations differs slightly from the body-inclusive

simulation, the discrepancy gradually improves until x1/D ≈ 35 where the amplitude is almost

identical to the body-inclusive simulation for the cases of extraction at x1/D = 6 and x1/D = 10.

Only in the strongly stratified Fr = 1 cases are differences between extraction at x1/D = 6 and

x1/D = 10 notable and these differences become minor farther from the body. Even the extraction

location of x1/D = 3 appears to improve in amplitude farther downstream although it remains the

case of least agreement with the body-inclusive simulations.

From these results, it is concluded that the extraction location x1/D = 3 is too close to

the body to accurately capture flow physics. Here, at the tail end of the recirculation region, the

bell-shaped mean wake signature is not completely formed because of the presence of transient
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(a)

(b)

(c)

Figure 4.3: Streamwise normalized mean defect velocity (UD/U∞) at the centerline: (a) Fr = ∞,
(b) Fr = 3, and (c) Fr = 1.
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(a) (b)

Figure 4.4: A zoomed view of the streamwise mean defect velocity shows oscillatory modulation
induced by the steady lee waves: (a) Near the body, (b) Farther downstream.

regions of reverse flow towards the sphere. However, x1/D = 6 and x1/D = 10 are found to be

effective extraction locations which capture much of the flow physics. For the remainder of this

work, x1/D = 6 is chosen for further analysis as this choice requires a shorter and, therefore, less

expensive body-inclusive domain for obtaining the inflow of the hybrid simulation.

4.0.17 Flow visualization

Instantaneous vorticity comparisons between the body-inclusive and hybrid model simula-

tions at nondimensional time, t = 125, are given for the stratified cases in figures 4.5 and 4.6 using

vertical (x1− x3) and horizontal (x1− x2) plane cuts for the azimuthal/lateral and vertical vorticity

components, respectively. Overall, the figures indicate good qualitative agreement between the

hybrid model and body-inclusive simulations. However, it is clear that more small-scale motions

are captured in the body-inclusive simulations owing to the much finer grid resolution.

For Fr = 3, the visualization of azimuthal/lateral vorticity in figure 4.5a confirms capture

of the layered structure indicative of fluctuation decay observed in the body-inclusive simulations.

Faint phase lines resulting from the propagation of internal waves to the background are also evident.

Large-scale vortex shedding is clearly captured by the hybrid model as evidenced by the wake
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(a)

(b)

(c)

(d)

Figure 4.5: Azimuthal/lateral and vertical vorticity visualizations at nondimensional t = 125
shown on x1− x3 and x1− x2 plane cuts, respectively, for the hybrid model simulations (4.5a
and 4.5c) and the body-inclusive simulations (4.5b and 4.5d) for Fr = 3 and extraction location,
x1/D = 6.
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(a)

(b)

(c)

(d)

Figure 4.6: Azimuthal/lateral and vertical vorticity visualizations at nondimensional t = 125
shown on x1− x3 and x1− x2 plane cuts, respectively, for the hybrid model simulations (4.6a
and 4.6c) and the body-inclusive simulations (4.6b and 4.6d) for Fr = 1 and extraction location,
x1/D = 6.
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structure and downstream formation of coherent vortical structures in figure 4.5c. In figure 4.6,

similar behavior is noted for Fr = 1. The layered structure is even more pronounced in figures 4.6a

and 4.6c than in the corresponding Fr = 3 visuals. Additionally, the internal wave propagation

angle observed in the hybrid model simulations agrees with the body-inclusive simulations.

4.0.18 Turbulence

Turbulence representation by the hybrid model is analyzed by means of r.m.s. velocities,

area-integrated t.k.e., and t.k.e. budget terms. Beginning with the r.m.s. velocities shown in figure

4.7, decay trends are consistent with the body-inclusive simulations with only minor deviations

for most Fr. Oscillatory modulations in the vertical r.m.s. velocity profiles have a frequency

that increases with background buoyancy frequency (N) as seen in figure 4.7c. The most notable

deviation is found in the u3,rms profile for Fr = 1 which captures the wavelength of the oscillatory

behavior seen in the body-inclusive simulations but underpredicts magnitude. While phasing is

consistent, the amplitude of the oscillatory modulations differs in the region x1/D > 30. For

stratified cases where x1/D > 30, horizontal motions dominate as shown by the magnitude of the

u1,rms and u2,rms plots versus that of u3,rms. The differences in u3,rms for the Fr = 1 case are not

minor but as the r.m.s velocity is nearly an order of magnitude smaller than the u1,rms and u2,rms plots,

these differences are acceptable. Figure 4.7 serves to emphasize that the influence of changing Fr is

captured for less computational cost than performing the corresponding body-inclusive simulations.

The evolution of t.k.e. in the streamwise direction is given by area-integration of the x2− x3

plane in figure 4.7d with t.k.e. (K) given by K = 1
2〈ui

′
ui
′〉. Decay trends are captured for all Fr

although in the region x1/D > 30, the hybrid method results begin to decay more quickly than the

body-inclusive cases for Fr = ∞ and Fr = 3. As with the r.m.s velocities, the effect of varying Fr

on t.k.e is captured for less computational cost than performing the corresponding body-inclusive

simulations.
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(a) (b)

(c) (d)

Figure 4.7: Evolution of centerline turbulence statistics: (a) streamwise velocity (u1,rms), (b)
spanwise velocity (u2,rms), (c) vertical velocity (u3,rms), and (d) area-integrated t.k.e.. Body-
inclusive and hybrid simulations are compared for Fr = ∞, Fr = 3, and Fr = 1.
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The t.k.e. budget in the Cartesian coordinate system used for this analysis is given by

∂K
∂ t

= P− ε +B−A− ∂Ti
′

∂xi
(4.8)

with production (P), dissipation (ε), buoyancy flux (B), advection (A), and transport term (Ti
′
)

specified as follows.

P =−〈ui
′
u j
′〉∂ 〈ui〉

∂x j
, ε = 2ν〈si j

′
si j
′〉, si j

′
= 1

2(
∂ui
′

∂x j
+

∂u j
′

∂xi
),

B =− g
ρ0
〈ρ̃ ′u3

′〉, A = 〈u j〉 ∂K
∂x j

,

Ti
′
= 1

2〈ui
′
u j
′
u j
′〉+ 1

ρ0
〈ui
′
p
′〉−2ν〈u j

′
si j
′〉

(4.9)

Figures 4.8, 4.9, and 4.10 compare the t.k.e. budget terms, integrated over a x2− x3 cross-

section, from the hybrid model and body-inclusive simulations. There are discrepancies in some

of these terms, e.g. turbulent dissipation in the intermediate wake, x1/D < 20, as shown in figure

4.8. The majority of budget-term inconsistencies is attributed to the coarseness of the grid in

comparison to that of the body-inclusive simulations. To support this assertion, three additional

simulations were performed using a grid with higher resolution than the previous hybrid simulations.

Inlet planes for these cases were generated via linear interpolation in time of the coarser grid

data planes. Using Cases Fix6, F3x6, and F1x6 as benchmarks, the grid resolution is doubled in

the spanwise (x2) and vertical (x3) directions and tripled in the streamwise (x1) direction. This

results in grid spacing of ∆x1 = 0.02 in the streamwise direction and minimum grid spacing of

min(∆x2) =min(∆x3) = 0.02 in the spanwise and vertical directions. The new simulations are

referred to as cases Fix6HR, F3x6HR, and F1x6HR corresponding to the Fr = ∞, 3, and 1 higher

resolution cases, respectively. For these cases, the number of grid points in the streamwise (x1),

spanwise (x2), and vertical (x3) directions are Nx1 = 2560, Nx2 = 512, and Nx3 = 512, respectively.

The domain lengths in the streamwise, spanwise, and vertical directions are Lx1 = 51.2, Lx2 = 15.5,

and Lx3 = 15.5, respectively. The streamwise grid distribution is uniform while the spanwise and
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(a)

(b)

(c)

Figure 4.8: Area-integrated production (P) and dissipation (ε) evolution in the streamwise direc-
tion: (a) Fr = ∞, (b) Fr = 3, and (c) Fr = 1.
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(a)

(b)

(c)

Figure 4.9: Area-integrated advection (A) and transport (∂Ti
′
/∂xi) evolution in the streamwise

direction: (a) Fr = ∞, (b) Fr = 3, and (c) Fr = 1.
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Figure 4.10: Area-integrated buoyancy flux (B) evolution in the streamwise direction for Fr = 1.

vertical grids are stretched at 0.75% outside of the uniformly-stretched regions −2.0 < x2/D < 2.0

and−2.0 < x3/D < 2.0. In the stretched regions, this indicates a ratio of 1.0075 between a stretched

grid cell and its smaller neighboring cell.

When compared to the corresponding cases with coarser grid resolution, it is clear that the

higher resolution cases better capture turbulence, particularly in the region x1/D < 15.0 as seen

in figures 4.8 and 4.9. As seen in figure 4.8, the production (P) is well-captured regardless of the

grid resolution for all Fr. However, the dissipation (ε) is clearly better captured with the higher

resolution cases. In the coarser grid cases for all Fr, there is a notable underestimation in dissipation

near the domain inlet which is corrected with grid refinement. Production is characterized by low

frequency modes which are well-captured in the coarse and fine grids. In contrast, small-scale

structures and higher frequency modes responsible for dissipation are not necessarily captured in

the coarse grid, resulting in the aforementioned underestimation. It should be noted that while

the higher resolution cases do not result in an exact recovery of dissipation, the results are far

better than the corresponding coarser cases. Although resolution has been tripled in the streamwise

direction and doubled in the spanwise and vertical directions, the resolution remains coarser than

the body-inclusive simulations. Given further refinement, the results are expected to continue to

approach the dissipation of the body-inclusive simulations but this level of refinement is deemed

sufficient to illustrate the sensitivity of certain terms to grid resolution.

Advection and transport are similarly examined in figure 4.9. Regardless of Fr, the hybrid
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model results in an overall underestimation in advection (A) although with higher grid resolution,

the results are in slightly better agreement with the body-inclusive simulations. While differences

attributed to spatial resolution have been addressed, another source of error concerns the temporal

resolution. These terms are particularly difficult to capture given the coarseness of the time series

used in post-processing to obtain area-integrated streamwise-evolving statistics. The low and high

frequency modes associated with these terms are sensitive to both time interval as well as the number

of temporal ensembles used in post-processing. The coarser temporal resolution representative

of the time variation of any given data plane is almost entirely responsible for the overall error in

advection. Transport is overestimated by the hybrid model despite increasing resolution for all Fr.

With further analysis of the individual transport components given in equation 4.9, little change is

noted in the triple correlation and pressure transport components with improved grid refinement.

However, the viscous component shows significant change particularly near the inlet where it is

magnified in the higher resolution cases. This is consistent with the underestimation of dissipation

previously noted and its increase with improved grid resolution. Additional grid refinement and

improved temporal resolution would lead to better agreement with the body-inclusive simulations.

Buoyancy flux (B) is an important term in the t.k.e. balance for Fr = 1. Figure 4.10 shows

that both the coarse and higher resolution simulations agree well with the body-inclusive simulations

for Fr = 1, capturing the phase and amplitude of the buoyancy flux oscillations. As noted by Pal

et al. (2017) and Chongsiripinyo & Sarkar (2017), body-generated lee waves are responsible for

wake expansion and contraction occurring at intervals of half the wavelength of the lee wave. This

behavior is also reflected in the buoyancy flux which shows peaks of modulation at intervals of πFr

in figure 4.10.

Given even further grid refinement, the results are expected to be increasingly consistent

with the body-inclusive simulations. As the majority of discrepancies occur in the near wake, in

the vicinity of the inlet plane of the hybrid simulation, and the focus of this work is not to capture

detailed physics in this region, it is asserted that the hybrid model is an effective tool for the future

study of downstream turbulence.

120



4.0.19 Conclusions

An investigation of a spatially-evolving hybrid model which utilizes data downstream of a

sphere in a spatially-evolving, body-inclusive simulation as inflow conditions has been performed

using DNS at Re = 3700 and Fr = ∞,3, and 1. Instantaneous flow data in the form of spanwise-

vertical (x2− x3) plane cuts were extracted every one hundred time steps upon reaching statistical

steady-state in the body-inclusive simulation. These planes were subsequently mapped from a

cylindrical to a Cartesian grid with coarser resolution and fed as inflow into a new simulation

without a body. The sensitivity of the hybrid model inflow location was assessed via comparison of

three different choices, namely x1/D = 3, x1/D = 6, and x1/D = 10. Validation of the method was

performed by comparing key results to those of body-inclusive simulations including mean flow

evolution, flow visualization, and turbulence.

Mean flow analysis revealed that inflow location requires careful consideration. It was

determined that locations which coincide with complex flow (as in the case of x1/D = 3 in the

recirculation region) are not ideal choices and sufficient distance must be placed between the body

and extraction location so as to avoid issues associated with this region. The other choices of

location, x1/D = 6 and x1/D = 10, were found to be appropriate choices as they provide this

separation between the body and the extraction location.

Vorticity visualizations for the stratified cases illustrated the strong qualitative agreement

between the body-inclusive and hybrid model simulations. A two-layered flow structure, phase

lines of internal wave propagation, and vortex shedding were all shown to be consistent. Minor

differences in small-scale capture were attributed to the coarseness of the hybrid model simulation

grid. Analysis of r.m.s velocities and area-integrated t.k.e showed decay rates to be captured using

the hybrid model. Higher resolution simulations were performed to demonstrate the impact of

varying grid resolution on t.k.e budget terms. It is clear that production and buoyancy flux are

well-captured by the hybrid method regardless of grid resolution. Dissipation and transport are

better captured with the fine grid.

These results validate the hybrid model as an effective tool to study body-inclusive problems
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when faced with computational resource limitations. A spatially-evolving, body-inclusive simulation

can be performed to a short distance downstream and the time history of two-dimensional planes

saved to be used as inflow in a separate spatially-evolving simulation. The grid size of the spatially-

evolving simulation can be designed using the Kolmogorov scale at the inflow and its expected

downstream variation either known from a test case or, more generally, estimated from an assumed

power law. The time step is calculated using the CFL condition. This new simulation does not

include a body and is therefore able to use a coarser grid, resulting in a less computationally

expensive alternative to a body-inclusive simulation. The hybrid model is also of interest given

its adaptability to a variety of flow problems. In practice, flow initialization can be taken from

any source including experiments and observational data. Domains can easily be extended far

downstream, addressing a limitation to the use of spatially-evolving body-inclusive simulations

when studying the non-equilibrium regime and far wake. In addition, though this investigation

utilized flow past a sphere, the model could be extended to a variety of flow geometries and

parameterizations, further emphasizing its robustness as a computational tool for studying flow over

bodies into the far wake.

Chapter 4 is a reprint of material published as follows: A. VanDine, K. Chongsiripinyo, S.

Sarkar, “Hybrid spatially-evolving DNS model of flow past a sphere”, Comput. Fluids, 171, 41-52,

2018. The author of this dissertation is the primary investigator and author of this work.
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Chapter 5

Conclusion

Although specific conclusions were included throughout this work at the end of each chapter,

a brief summary of the overall contributions of the dissertation follows. The physical mechanisms

present in stratified shear flows have been studied using a variety of computational techniques, e.g.

temporal DNS, temporal LES, and a spatially-evolving hybrid DNS model. The particular canonical

examples of a stratified shear layer and the wake behind a towed sphere were considered. Varying

background stratifications were used to assess the influence of buoyancy effects on turbulence

development. A number of SGS models for LES and a spatially-evolving hybrid DNS model were

introduced as alternatives in cases, for which, traditional DNS is made infeasible by the immense

computational cost.

In chapter 2, DNS was used to investigate the flow dynamics of a shear layer in the presence

of varying levels of uniform stratification. LSA showed a higher growth rate of the fastest growing

mode in the two-layer configuration relative to a shear layer in uniform background stratification.

A variety of secondary instabilities documented in prior works were also observed in the cases

presented herein, albeit with slight differences in their emergence and growth. A distinct contraction

of the shear layer thickness was observed in cases with low Ri due to the flattening of KH billows

in the streamwise direction before the development of turbulence. Optimal mixing was observed

in the Ri = 0.12 case. An investigation of the transition layers which form at the periphery of the
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shear layer revealed unique mixing mechanisms and late-time turbulence. These layers thin and see

stronger local stratification at late time with increasing background stratification.

Though the DNS presented in chapter 2 were enlightening, DNS can be computationally

expensive with increasing Re due to the decrease in the smallest scales of turbulent motion. As

such, chapter 3 evaluated different SGS models in order to assess the performance of LES when

simulating stratified shear layers. The Dynamic Smagorinsky, Ducros, and WALE models were

chosen for their use as subgrid models in previous literature. While all of the models were able

to accurately capture the mean flow, the Ducros model proved the most effective in capturing the

small-scale statistics such as TKE dissipation rate. Overall, the LES models were shown not to

sufficiently capture convective turbulence. A grid resolution study determined the Ducros model to

be the most consistently performing model whereas the Dynamic Smagorinsky and WALE models

showed a notable performance drop with coarsening grid resolution. The Ducros model proved to be

the least computationally expensive LES model and showed great cost savings over the comparable

DNS. It is asserted to be the best choice for similar work involving stratified shear layers in the

future.

A hybrid spatially-evolving DNS model was developed and tested in chapter 4 to address

the limitations of both DNS and LES. This model involves extracting data downstream of a body

in a spatially-evolving, body-inclusive simulation and using said data as inflow conditions for a

new body-exclusive simulation. The hybrid model was employed for a towed sphere under the

influence of varying levels of stratification. A number of extraction locations were tested to evaluate

the sensitivity of the resulting hybrid model simulation with distance downstream of the body. It

was determined that extraction could not occur too close to the body due to the influence of the

recirculation region directly behind the body. Visualizations and a grid resolution study revealed the

hybrid model to be an effective tool for future use as long as the time between plane extraction and

the resolution of the body-exclusive grid are carefully considered. The hybrid DNS model proved

to be much less computationally expensive than the comparable body-inclusive simulation.

The next logical step in this research is the use of the hybrid model for more complex
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body geometries and realistic flow scenarios. The hybrid model will allow for the extension of

computational domains farther downstream of the body than previously feasible due to the grid

requirements close to the body in body-inclusive simulations. More extensive parameter studies

(such as higher, more application-relevant Re) are also accessible. The hybrid model presented

herein could be further adapted using the Ducros LES model employed to study the stratified shear

layer in chapter 3. This would result in even higher savings in computational cost and allow for an

abundance of future research that has, until now, been deemed prohibitively expensive.
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