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Abstract

Background and Aims: Grade 3–4 hepatic encephalopathy (advanced HE), also termed brain 

failure (BF), is an organ failure that defines acute-on chronic liver failure. It is associated 

with poor outcomes in cirrhosis but cannot be accurately predicted. We aimed to determine 
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the admission metabolomic biomarkers able to predict the development of advanced HE with 

subsequent validation.

Methods: Prospective inpatient cirrhosis cohorts (multi-center and 2-center validation) without 

BF underwent admission serum collection and inpatient follow-up. Serum metabolomics was 

analyzed to predict BF on random forest analysis (RFA) and logistic regression. A separate 

validation cohort was also recruited.

Results: The multi-center cohort included 602 patients, of whom 144 developed BF (105 

only BF) 3 days post-admission. Unadjusted RFA showed that higher admission microbially-

derived metabolites and lower isoleucine, thyroxine and lysophospholipids were associated with 

BF development (AUC 0.87 all, 0.90 BF only). Logistic regression AUC with only clinical 

variables significantly improved with metabolites (0.65 to 0.75; p=0.005). Four metabolites 

that significantly added to BF prediction were low thyroxine and maltose and high methyl-4-

hydroxybenzoate sulfate and 3–4 dihydroxy butyrate. Thyroxine alone also significantly added to 

the model (p=0.05). Validation cohort: prospectively included 81 patients, of whom 11 developed 

BF. Admission hospital laboratory thyroxine levels predicted BF development despite controlling 

for clinical variables with high specificity.

Conclusions: In a multi-center inpatient cohort, admission serum metabolites, including 

thyroxine predicted advanced HE development independent of clinical factors. Admission low 

local laboratory thyroxine levels were validated as a predictor of advanced HE development in a 

separate cohort.

Graphical Abstract
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INTRODUCTION:

Inpatient hepatic encephalopathy (HE) management requires a rapid and flexible strategy 

to protect the airway, correct precipitants, and initiate HE-specific therapy1. However, 

developing advanced HE (grades 3–4 HE) necessitates transfer to monitored units for airway 

protection and if not anticipated or treated in time, can result in aspiration pneumonia, 

and need for intubation1, 2. The prognosis of patients in advanced HE is often worse than 

earlier grades, and is considered “brain failure” in acute-on-chronic liver failure (ACLF) 
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definitions.3–5. Also, the development of advanced HE complicates transplant candidacy5. 

Current studies have focused on the outcomes after advanced HE development, but it is 

unclear which subgroup of inpatients will develop this complication. Identification of this 

subgroup could improve prognostication, encourage transfer to monitored settings, such as 

intensive care units (ICU), reduce chances of aspiration pneumonia and falls, and reduce the 

time before second-line therapies are initiated2. Metabolomics, or the analysis of metabolites 

in a sample, is a promising approach to biomarker discovery, especially in easily collectable 

samples such as serum6–8. Metabolomics has been used in cirrhosis and may be important to 

improve detection of complications and improve prognosis9–11.

Our aim was to determine if admission serum metabolites can predict the development of 

advanced HE in patients with cirrhosis admitted without this complication and validate them 

in a separate inpatient cirrhosis cohort.

MATERIALS AND METHODS:

Multi-center cohort:

North American Consortium for the Study of End-Stage Liver Disease (NACSELD-2) 

cohort consists of prospectively recruited cirrhosis inpatients from multiple North America 

centers. Cirrhosis was defined by liver biopsy, evidence of varices on endoscopy or imaging 

or thrombocytopenia in chronic liver disease patients, or prior or current decompensation.

Consent was obtained from patients or representatives. We included only patients with 

confirmed cirrhosis were admitted non-electively, without advanced HE or ACLF on 

admission and could provide serum within 12 hours of hospitalization. Patients with unclear 

cirrhosis diagnosis, HIV, admission ACLF or advanced HE, or prior organ transplants and 

those in whom samples could not be obtained, were also excluded.

We recorded demographics, cirrhosis details, admission laboratory values, inpatient course 

including infections, organ failures, ACLF (NACSELD criteria), ICU transfer and death. HE 

was defined using the West-Haven criteria using local PI assessment12.

Serum was collected, stored at −80 degrees, and sent for analysis using published LC/MS 

metabolomics to Metabolon Inc (Morrisville, NC, supplement)13. We first performed 

ANCOVA metabolite analysis adjusted for admission MELD, Sodium (Na), albumin, 

WBC, age, gender, alcohol-related etiology, rifaximin use and infection status to determine 

differences between groups. Subsequently a random forest analysis (RFA) was performed 

between those who developed advanced HE or not based on admission metabolomics 

expressed as mean decrease in accuracy (MDA) for the top metabolites.

Finally, logistic regression models for advanced HE were developed for the base model and 

then for the base model plus metabolites that were significant on RFA. The base model 

was created using age, WBC, Na, Albumin, rifaximin, prior HE, infection, and MELD at 

the time of admission. The serum metabolites that were statistically significant on RFA 

were then added to this base model. From these models, receiver operator characteristic 

(ROC) curves and the areas under these curves (AUC) were created, as well as their 95% 
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confidence intervals were calculated. The AUC values for the base model and the base plus 

metabolite models were compared using the non-parametric method of DeLong for two or 

more correlated ROC curves14. Finally, we performed the net reclassification index (NRI) 

analysis to determine the impact of metabolites over the clinical model.

Validation cohort:

A separate group of inpatients with cirrhosis with similar eligibility criteria as the 

NACSELD-2 cohort was enrolled in Richmond VA and VCU medical centers. Consent 

was obtained from patients or legally authorized representatives and patients were followed 

for development of advanced HE during the hospitalization. All eligible subjects were 

free of ACLF or advanced HE on admission and provided serum. The serum was stored 

at −80 degrees and used for local validation testing at the CLIA-certified laboratory at 

Richmond VAMC. Significant metabolites in the multi-center cohort that could be analyzed 

locally were evaluated to determine differences between those who developed advanced HE 

or not with multi-variable logistic regression was also performed using clinical data and 

metabolites (Figure 1). The IRBs at all sites approved the protocol before study activities 

were initiated.

RESULTS:

Patient Characteristics:

Derivation cohort: 602 inpatients of which 24% (n=144) developed advanced HE median 

3 (2–8 days IQR) days after admission (Table 1). Of these, the majority (N=105) had 

isolated advanced HE without other organ failures. Patients who developed advanced HE 

had higher MELD scores, disease severity by laboratory values, admission rifaximin use, 

and percent with infection on admission but a similar percent with prior TIPS. The profile 

of infections was largely similar, although there was a higher rate of spontaneous bacterial 

peritonitis and urinary tract infections in those who developed advanced HE versus not 

(Supplementary table 1). Only twelve patients had current alcohol misuse on admission. 

There was a higher rate of admissions for GI bleeding, AKI, anasarca, and patients with 

prior HE without infection in those who developed advanced HE. This translated into a 

higher rate of ACLF and other organ failures, length of stay, ICU transfer, and inpatient 

death compared to patients who did not develop advanced HE.

Metabolomics:

Using RFA the AUC for all advanced HE prediction was 0.87 and the thirty highest 

metabolites on RFA and LS-means in figures 2 and 3. Similar metabolites were found for the 

advanced HE only patients with AUC of 0.90. Thyroxine (total thyroxine), isoleucine and 

lysophospholipids were lower but potential microbial metabolites i.e., aromatic amino acids 

and benzoate metabolites, were higher in those who developed advanced HE, regardless 

of whether in combination with other failures or alone. Especially since >72% of patients 

developed isolated advanced HE as the only organ failure. The specific directions of change 

are also shown in table 2 and least-squares means in figures 2 and 3 with fold changes using 

ANCOVA are in tables S2.
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Logistic regression: We used the clinical model for logistic regression for the prediction 

of advanced HE using age, gender, MELD score, serum Na, WBC count and albumin levels, 

admission infection and prior HE. The AUC for prediction using the clinical model was 0.65 

(95% CI 0.60–0.70), which was improved after adding metabolites that were significant on 

RFA (Table 2) to an AUC of 0.75 (95% CI 0.68–0.79). This improvement was statistically 

significant at p=0.0005 and involved four admission metabolites (1) thyroxine (lower), (2) 

methyl-4-hydroxybenzoate sulfate (higher), (3) 3–4 dihydroxy butyrate (higher), and (4) 

maltose (lower). Using only thyroxine as the metabolite added to the clinical model, there 

was again a significant increase in prediction of the AUC to 0.72 (0.63–0.75) with p=0.05 

compared to the clinical model alone. The NRI was 0.1219 (95% CI: 0.0562, 0.1877) which 

is significantly different from the clinical model alone (0) (z = 3.64, p = 0.0003).

Given the findings above, the ability of clinical laboratories to perform thyroid hormone 

levels in clinical laboratories, we focused on validating whether this is lower in those who 

developed advanced HE in a separate validation cohort.

Validation cohort:

Patient cohorts: Eighty-one patients admitted at VCU/Richmond VAMC (59 men, 

MELD 17.5±8.9) for infections (n=24), ascites or anasarca (n=18), acute kidney injury 

(n=16), HE (n=16), other liver-related causes (n=8) and liver-unrelated causes (n=9) were 

included. None had advanced HE on admission. Eleven patients developed advanced HE a 

median of 5.3±2.2 days post-admission. None were on thyroid medications, while 41 had 

prior HE and 27 were on rifaximin therapy. Patients who developed advanced HE had a 

higher rate of grade 1–2 HE on admission while other factors, including prior TIPS, were 

not significant (Table 3).

Thyroid hormone levels: Using the clinical laboratory, we found significantly lower 

admission total thyroxine and Free (FT4) levels and higher thyroid uptake in those who 

developed advanced HE versus not while TSH levels were statistically similar(Table 3). 

Using FT4 levels, the AUC to predict advanced HE was 0.72 (95% CI 0.57–0.88, p=0.02), 

while for total thyroxine was 0.74 (0.59–0.89, p=0.01). Since we were aiming for greater 

specificity, a cut-off of >0.72 uIU/mL of FT4 gave 95.7% specificity and 37% sensitivity 

while a cut-off of >4.3 ug/dl of total thyroxine had 91.4% specificity and 37% sensitivity.

On multi-variable logistic regression, low thyroxine (OR 0.67, CI: 0.48–0.89, p=0.01) 

and presence of grade 1–2 HE on admission (OR 7.32, CI 1.68–19.43, p=0.008) were 

significantly predictive of development of advanced HE.

DISCUSSION

We found that serum metabolites focused on microbially-generated products and low 

thyroxine were associated with the risk of subsequently developing advanced HE either 

alone or in combination with other organ failures in a large prospective multi-center 

inpatient cirrhosis cohort, which was independent of clinically available demographics 

and characteristics. Ultimately, despite concomitantly present organ failures, infections 

and adjustments for cirrhosis-related medications, low thyroxine levels on admission were 
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unique to the prediction of advanced HE development. Further, low admission thyroid 

hormone levels run in a local laboratory were then also associated with an increased risk for 

advanced HE development in an independent inpatient cirrhosis cohort.

Development of advanced HE represents a major change in the natural history of inpatients 

with cirrhosis that is difficult to predict using current clinical prediction tools3, 5. This 

was also underscored by the modest AUC for the ROC curve generated through logistic 

regression of clinical factors alone. This can result in aspiration pneumonia, falls, infections 

and precipitate a cycle of readmissions if not prevented or treated quickly 1. There remains 

room for improvement in the management of these patients even in tertiary care centers 2. 

Therefore, refining prediction is needed and the addition of metabolomics could be used as a 

means towards this goal. However, the role of the individual metabolites needs to be studied 

in the context of (a) association with brain dysfunction and gut-brain axis, (b) potential 

specificity for advanced HE vis-à-vis generalized liver dysfunction and other organ failures, 

and (c) additive value over current clinical biomarkers for brain failure prediction.

Overall, since most patients who developed advanced HE actually had this as their only 

organ failure, the AUC for prediction with metabolites was similar regardless of advanced 

HE plus other organ failures or advanced HE alone in this context. Alteration of the 

gut-brain axis with metabolites related to bacteria are associated with the pathogenesis of 

HE and brain failure15. Microbial composition on admission for patients who subsequently 

developed advanced HE versus those who do not is enriched with higher Enterobacteriaceae 

and lower Fusobacteriaceae16, but analysis of their products may be more important17. 

Therefore, it is interesting that several major serum metabolites of microbial origin were 

different on admission between patients who did vs did not go on to develop advanced 

HE, and two of them (3,4-dihydroxybutyric acid and methyl-4-hydroxybenzoate sulfate) 

persisted in predicting this outcome despite adjustment for clinical factors. Since most 

patients did not provide stool, we were not able to link these specific metabolites with 

the microbiome; however, there have been prior studies linking these metabolites with 

bacterial and non-human metabolic processes. Several of these metabolites are tryptophan, 

benzoate, and polysaccharide fermentation products of bacteria18. 3,4-dihydroxybutyric acid 

is associated with E.coli and is formed through degradation of di- and polysaccharides19, 

20. Accumulation of 3,4-dihydroxybutyric acid results in multiple neuromuscular deficits 

and is associated with brain dysfunction21. 3,4-dihydroxybutyric acid is an intermediate in 

GABA metabolism, which is also implicated in HE pathogenesis. 7alpha-Hydroxy-3-oxo-4-

cholestenoate is involved in the primary bile acid biosynthesis pathway and is a measure 

of blood brain barrier permeability and neurodegeneration22, 23. Methyl-4-hydroxybenzoate 

sulfate, which is a widespread benzoate and xenobiotic metabolite, has been associated 

with the impact of alcohol on the brain through phytochemical modification24. Our major 

etiology was alcohol-related cirrhosis but not active alcohol intake, and as such this is 

unlikely to be due to alcohol intake per se. Therefore, several metabolites have been 

associated with brain dysfunction in patients with and without cirrhosis, which enhances 

the biological plausibility of these results.

In addition to the linkage with brain dysfunction, we evaluated the potential specificity 

towards advanced HE, which overall was defined by similar AUCs regardless of HE being 
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the only organ failure or not. However, few metabolites such as lower phospholipids and 

branched chain amino acids, and higher methyl-4-hydroxybenzoate sulfate and phenyllactate 

overlapped between advanced HE and overall ACLF development as reported in our cohort 

and others previously7, 13, 18, 25, 26. Therefore, these selected metabolites (phospholipids, 

branched chain amino acids, phenyllactate and methyl-4-hydroxybenzoate sulfate) are likely 

a reflection of liver disease progression over time rather than specific for advanced HE.

It is important to reiterate that the remaining metabolites are distinct from prior published 

studies that evaluated metabolomics in established ACLF and those that predicted the need 

for dialysis or development of acute kidney injury11, 27, 28. Moreau and Claria et al found 

changes focused on energy metabolism and the specific kynurenine pathways in patients 

who had already established ACLF compared to others, while those who developed AKI and 

needed dialysis had a specific profile of uremic toxins in blood which does not overlap with 

these metabolites significantly11, 27, 28.

The most accessible result of these was the low thyroxine levels in serum of patients who 

developed advanced HE, which significantly added to the ROC prediction in the derivation 

cohort beyond the clinical model. Given the metabolomic analyses performed, specific 

quantitation was not possible in the derivation cohort, but the fold-change and direction of 

changes can be gleaned. Therefore, to translate this potentially into practice, a validation 

cohort using the local clinical laboratory was needed. We chose this thyroxine levels as a 

proof of concept for the validation cohort rather than the other three because most clinical 

laboratories can readily perform this assay. The association of low thyroid hormone levels 

with fatty liver and cirrhosis has been described in outpatients and inpatients but often this 

is related to the underlying liver disease 29, 30. Hypothyroidism is often a mimic for HE 

and there is evidence that this may precipitate hyperammonemia31, 32. The relatively low 

T4 levels are likely specific for advanced HE rather than just overall sickness because in 

the same population where renal failure and mortality was the outcome, thyroxine levels 

were not significantly predictive11, 33. Moreover, thyroxine levels were associated with 

development of advanced HE despite controlling for clinical data and was independent 

of grade 1–2 HE on admission. Similar patterns of thyroxine levels between our larger 

multi-center cohort using LC/MS and the smaller validation cohort using standard clinical 

techniques point towards a major prognostic role of hospital admission thyroxine levels.. 

This indicates a role of FT4 as a prognostic factor for advanced HE which could be linked 

with altered microbiota and immune dysfunction34. These processes could then predispose 

towards further brain dysfunction and alterations in mental status leading to advanced HE.

The results are clinically relevant because unlike prior metabolomic studies, which do not 

have a rapid clinical throughput, we found similar findings of lower total thyroxine in 

a separate smaller cohort using our local laboratory. However further external validation 

is needed after which, these levels could be used to triage patients at greatest risk 

for development of advanced HE to: (i) be monitored more closely, (ii) have a lower 

threshold for initiating second-line therapies and (iii) earlier transfer to a higher level of 

monitoring35. As also mentioned above these metabolites are likely specific for advanced 

HE development because our prior studies in this cohort showed differing metabolites 
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that predict ACLF, death or kidney-related outcomes,11, 13 and they are associated with 

neurological impairments in other disease processes.

Our study is limited by its cross-sectional analysis of serum metabolites in a tertiary-

care setting, which may not be applicable at other sites. We did not study ammonia or 

inflammatory markers, which would also be interesting as part of future studies36, 37. We 

were also unable to evaluate the impact of sarcopenia, minimal HE, and porto-systemic 

shunts, which have been associated with outpatient HE development in outpatients38, 39. The 

diagnosis of advanced HE was made by the local PIs according to best clinical practice and 

other causes of altered mental status could have been missed1. We only used serum, while 

a prior study had shown good results using CSF metabolomics40. The rate of advanced HE 

differed between the two cohorts, which could have affected the outcomes. Since thyroxine 

could be readily performed in the clinical laboratories, we focused only on it although 

it is possible that prediction using all 4 discovery-cohort biomarkers could yield better 

predictions. The validation cohort is relatively small but similar results were seen with 

respect to prediction of advanced HE; larger cohorts may be needed in future studies.

We conclude that in a large multi-center prospective inpatient cirrhosis cohort, admission 

serum metabolites associated with gut microbiota and low serum thyroxine predicts the 

future development of advanced HE independent of clinical biomarkers. The pattern of 

low serum thyroxine in patients who developed advanced HE was also found in a separate 

small prospective cohort using a clinical laboratory. Therefore, the use of serum metabolites, 

especially thyroxine, could provide useful prognostication on admission to the hospital and 

ensure rapid interventions to prevent the development of advanced hepatic encephalopathy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ICU intensive care unit

NACSELD North American Consortium for the Study of End-Stage Liver 

Disease

ACLF acute on chronic liver failure

FT4 free thyroxine
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What you need to know

Background

• Advanced or grade 3–4 hepatic encephalopathy (HE) using the West-Haven 

criteria, is an important component of acute-on-chronic liver failure (ACLF) 

associated with high mortality and morbidity due to falls and aspiration 

pneumonia, but clinical predictors are suboptimal

• Metabolomics have been used to predict ACLF, death and renal outcomes but 

their impact on advanced HE is unclear

• It is also difficult to translate platform-based metabolomics into clinical 

practice due to time, cost, and turn-around issues.

Findings

• In a multi-center cohort of 602 inpatients with cirrhosis, serum metabolites 

drawn on admission showed differences in microbially-generated metabolites, 

thyroxine, phospholipids, isoleucine, and maltose in the 24% who developed 

advanced HE versus the rest.

• Four metabolites (low thyroxine and maltose and higher methyl-4-

hydroxybenzoate sulfate and 3–4 dihydroxybutyrate) significantly improved 

the prediction of advanced HE when added to the clinical model; thyroxine 

alone was also significant in improving prediction.

• This low thyroxine as a predictor of advanced HE was validated in a separate 

inpatient cirrhosis cohort using a clinical laboratory.

Implications for Patient care

• These findings of low admission serum thyroxine levels detected in the local 

clinical laboratory could help select patients at highest risk for development 

of advanced HE and offering second-line therapies, airway protection and 

enhanced monitoring could improve outcomes
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Figure 1: Schema of Study
Schema of the two cohorts
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Figure 2: Random Forest Analysis and Least Squares Means of Metabolites
Random Forest Analysis and Least square means

2A: Biochemical importance plot of RFA showing the top 30 metabolites with the highest 

mean decrease accuracy (MDA) color-coded by pathways.

2B: Least-squares means (LS Means) of the four metabolites that were significant on logistic 

regression independent of clinical biomarkers (all p<0.05) with advanced HE or Brain 

failure (BF, brain failure) and those who did not (No)
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Figure 3: Least Squares means comparisons of other significant metabolites all p<0.05
Metabolite LS Means significantly different between those who developed advanced HE or 

BF (brain failure) versus not (No) (all p<0.05), excluding four metabolites already in figure 

2

3A: Potential microbially-derived metabolites

3B: Lipids

3C: Branched chain amino acids (BCAA)

3D: Sugars
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Table 1:

Clinical comparisons and outcomes between those with did and did not develop brain failure

Did not Develop Advanced HE 
(n=458)

Developed Advanced HE (n=144) P Value

Age (years) 56.3±10.0 55.3±8.1 0.25

Men (%) 279 (61%) 82 (57%) 0.40

Etiology (Alcohol, HCV, HCV+ alcohol, 
NASH, others)

128/115/70/84/61 49/33/16/22/24 0.36

Admission MELD score 18.6±7.5 22.0±7.8 <0.0001

Admission Na (mmol/L) 134.2±5.8 132.0±6.7 0.001

Admission WBC (/103/ml 7.9±5.0 8.2±4.8 0.49

Admission Albumin (g/dl) 2.85±0.7 2.68±0.68 0.01

Prior TIPS placement 50 (11%) 20 (14%) 0.33

Reason for admission*

-Infections 151 (33%) 82 (57%) <0.0001

-GI bleeding 73 (16%) 35 (24%) 0.012

-HE without infection 55 (12%) 52 (36%) <0.0001

-Acute kidney injury 55 (12%) 27 (19%) 0.10

-Electrolyte changes 18 (4%) 5 (4%) 0.59

-Anasarca 59 (13%) 6 (4%) 0.001

-Liver-unrelated 82 (18%) 14 (10%) 0.08

Admission Rifaximin 140 (31%) 51 (35%) 0.03

Admission SBP prophylaxis 42 (9%) 14 (10%) 0.53

Hospital course

Developed NACSELD-ACLF 34 (7%) 54 (38%) <0.0001

Developed Respiratory failure 37 (8%) 35 (24%) <0.0001

Developed Circulatory failure 40 (9%) 37 (26%) <0.0001

Developed Renal failure 45 (10%) 36 (25%) <0.0001

Developed AKI 169 (37%) 79 (55%) <0.0001

Needed ICU transfer 86 (19%) 52 (36%) <0.0001

Length of stay (days) 10.8±16.6 14.2±16.2 0.035

Inpatient death 9 (2%) 31 (22%) <0.0001

*
adds to more than the total due to >1 causes of admission listed.
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Table 2:

Metabolites and direction on Random Forest Analysis between those with did and did not develop advanced 

HE

Did not Develop advanced HE (n=458) Developed advanced HE (n=144)

Aromatic amino acid metabolites ↑3-(4-hydroxyphenyl)lactate*

↑ phenyllactate*
↑ N-formylphenylalanine

↑4-methoxyphenol sulfate*
↓ thyroxine

Branched chain amino acid metabolites ↑Isoleucine ↑2,3 dihydroxy-2-methyl butyrate

Benzoate metabolism ↑Propyl-4-hydroxybenzoate sulfate*

↑methyl-4-hydroxybenzoate sulfate*

Short-chain fatty acid metabolites ↑3–4 dihydroxybutyrate

Carbohydrates ↑ maltose ↑ lactose, ↑galactonate

Lipids ↑1-Stearoyl-GPC
↑1-Palmitoyl-GPC
↑2-Palmitoyl-GPC

↑ 7alpha-Hydroxy-3-oxo-4-cholestenoate

*
microbially-derived metabolites, Bold text: four metabolites that were also significantly additive to the basic clinical model on logistic regression
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Table 3:

Characteristics of the validation cohort with respect to advanced HE

Developed advanced HE P value

No (n=70) Yes (n=11)

Age (years) 54.5±9.3 51.8±13.4 0.542

Admission MELD-Na 20.9±8.9 22.0±7.9 0.53

Prior HE 33 (47%) 8 (73%) 0.11

Prior TIPS placement 5 (7%) 0 (0%) 1.0

Admission Lactulose 33 (47%) 8 (73%) 0.11

Admission Rifaximin 21 (30%) 6 (55%) 0.12

Admission Beta-blocker use 31 (44%) 3 (27%) 0.28

Admission SBP prophylaxis 7 (10%) 0 (0%) 0.58

Admission Serum albumin (g/dl) 2.8±0.6 2.99±0.52 0.37

Admission WBC count (/mm3) 7.9±4.3 8.2±4.6 0.81

Infections on admission 21 (30%) 5 (45%) 0.32

Grade 1–2 HE on admission 10 (14%) 6 (55%) 0.005

Admission Total thyroxine (ug/dL) 8.35±3.03 5.85±3.03 0.008

Admission Free T4 (uIU/mL) 1.13±0.23 0.92±0.26 0.026

Admission Thyroid uptake (%) 36.34±4.41 39.27±2.80 0.009

Admission TSH (ng/dl) 2.55±3.51 1.96±1.39 0.33

HE: hepatic encephalopathy, Data presented as mean±SD or in raw numbers (%). Comparisons performed using unpaired t-tests, Chi-square, or 
Fisher’s exact test as appropriate
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