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DIFFUSION AND BACK-FLOW MODELS FOR TWO-PHASE AXIAL DISPERSION
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Denartment of Chemical Engineering
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and
Theodore Vermeulen
Department of Chemical' Engineering

and Lawvrence Radiation Laboratory
University of California, Berkeley

ABSTRACT

Two-phase flow operations are described by a generalized
model which assumes back flow, superimposed on the net flows
through a column, with perfectly mixed stages 1n cascacde. The
diffusion model, which is used extensively to describe longi¥
tudinal dispersion, is derived as an extreme case of the back-flow
model. The perfectly mixed stage (or cell) model is lerived as
another extreme. It is shown that the'dispersed phase for these
models may be treated as a second continuous-phase. The nature

of thellongitudinal—dispersion coefficient 1s also examined.
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Introduction

Axlal-mixing effects in agitated countercurrent equipment
may be describved by a detailed analysis of back flows between
discrete segments of the "cascade', ffequently with greatef rigor
than by assuming a differentially-continuous diffusion mddel with
a constant axial-dispersion coefficient for each phase. For
single-phase operations, the relations between a multicompartment
(or mixing-cell) nonequilibrium model and the diffusion model
.have been ekploréd widely, although usually without considerihg
back flow. Ior two-phase operations, relative to the diffusion
model, the cell model 1is undefdefined if vack flows are neglected
and it 1s overdefined 1f they are specified for both phases. |
Thus we find 1t worth while to explore the mathematical‘relation
between these models in some detail.

An added Jjustification for this work is the onc of providing
adequate background for design calculations that can take into
account the axial-dispersion effects in countercurrent operations.
For overall calculations under conditions of constant mass-transfer
coefficients and linear equilibrium, integrated solutions based on‘
the diffusion model are now availabie to describe the system. If,
however, the parameters are not held constant; a stepwlse numericai
calculation must be undertaken which inherenﬁly resembles the
cell-model treatment. |

Figure 1 éhpws the "back;flow" model schematically. It
" consists of np perfectly mixed stages with stage helght Lo, each
having the same volume; Exchange of material between two adjacent

stages is due to (a) net flows, F# and‘F&, of main streams, and



-3- . . UCRL-11016

(o) an aodiuional back flow F of the miAed phases,}which ocnirs
.liﬁ each cirection and is tne sum of indivioual phase back. flows
of FX and Fy. Thus th¢ total flows between adjacent.staggs are
) (ﬁk + F_ +'Fy) and (?& + Fy + Fx)' | | |

For the limiting case of F( = F, +F ) — 0, this system
reduées to a "stage model" (of perfectly mixed cells in cascade)
typified by the usual mixer-settler extractor. For another
'limiting case, with np >> 1, 1t will be shown later that the‘v-
system reduces to the "diffusional model" which assumes mean
diffusivities and mean veloclties for both continuous‘and“

dispersed phases (16,21).

A particular case of this model has been utilized by Hill
'(1) for calculatiods on salt-metal extraction processes. SherwoodA
and Jenny (20) and Colburn (2) have utilized a similar concept to
treat the effect of entrainment on tray efficlency. For single-
phase flow Latinen and Stockton (2) have discussed the relation
between the model and the diffusign model. Sleicher (gg) has

developed a similar treatment foz/mixer-settler extractor with

interstage entrainment.

DISPERSED-PHASE BEHAVIOR
For two-phase flow operations in a perfectly mixed stage,
one phase 1s usually dispersed into the other in the form of
bubbles or droplets. If enough coalescence and redispersion take
place, the concentration of each droplet is the same, and the
Clspersed phase may be considered as a second continuous phase.
If not, the overall rate process in the stage should be treated

on the basis of the residence-tlime distrlibution of droplets and
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of fhéir concentration distribution as they enter.

To formulate the rate process, phase X 1s taken as con-
tinuous and phase Y as dispersed. ' The
‘direction of mass transfer is from phase X to phase Y. (The
final conclusion is indepencent of these arbitrary choices.) Ve
consider first the:limiting case of no concentration variation
'from droplet to droplet in a glven stage; and later, in less

etall, the case of no coalescence (and hence no redispersion)

[o))

between droplets.

Calculation Using a Mean Concentration

This case is-conéistent with the assumptlon that the
‘ dispersea phase behaves as a second continuous phase. When the
equilibrium relation is linear (tﬁat is, x¥* = b + my), the
material balance and the rate equation taken fof the jth stage

give the following dimensionless relations:

(1 + a}'()(xj_l- xJ) “x(xj‘ xjﬂ) = Noxo["j‘ (b + mSFJ)] )
1

L+ e )y Vi) - o 1= 7y) = NoyO[xJ- (b + mFJ)J

i = 7 7 ' = T = K F \ =
vhere o bx/’rx, a, Fy/’Fy, Nox0 _koxapo/’FX, hoyo
-koxaLO/'Fy;‘§j is the mean concentration of dispersed phase Y in

th

{or leaving) the j stage (the mean concentration is taken on a

- volume basis); and koxa is assumed constant thrbughout the column.

Behavior Without Coalescence and Redispersion

For this case, in any given stage, the concentration of

‘each droplet is7différent; depending on the time it has been in

-

the stage, its size, and its entering concentration. The
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. v (Sce Appendix)
equations developed nere/are a. generalization of previous work

(31,15).

Uniform Drop Size

Consider thé jth stage, under.a‘steady continuous operatién ’
with flow rates of ?ﬁ + F, and f& + F, where the contents‘are
 mixedvperfect1y, with a uniform drop diameter cp and a uniform
volume fraction EY for the dispersed phase. ‘Assume further Athat
the paftition coeffiqientyﬁ is constant, and that the ovéfall
coefficientfof mass transfer 1s a constant. As shown in the
‘,Appendix, ahy assumed cbncentration distribution in a stage will
determine the mean concentration, and integration of the changes
that occur in the input concentration-distribution leads to an
output distributidn which conforms to Equation 1 . Ir sbme
coalescence and redispersion do oceur, as has been observed fof
agitated liquid-liquid systems (12,24,25), it may be possible
To relax some of the restrictions Jjust stated, and stlill apply.
Eguation 1 . These conclusilons apply even for the stage model
.(ay =a, = 0). Thus, i1f the foregoing conditions are satisfied,
1t 1s entirely permissible to treat the dispersed phase as 1if

i1t were a second continuous phase.

TWO-PHASE FLOW SYSTEMS

Countercurrent Baclk-Flow Model

From the assumption that the dilspersed phase can be charac-
teérized by mean concentration values, and from a materizl balance
th

around the J stage as diagrammed 1n Figure 1, the basic race

equation has the form of Egquation 14. Solving this equatwou-is
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tedious, as the solution contailns five variable parameters: ay,
v Ny Noxo and A . A machine computation and an approximate
- calculation method have been presented by Sleicher (22). Here,

a

o

nowever, instead of the eqguations b 1 g solved, they will be

| used to deVelop the dllfuglon noegﬁ/to show that the model is
applicable td the behavior of the dispersed phase(with some
-restrictionsjéven without coalescence and redispersion of liquid

droplets.

Diffusion loccel

The diffusion;médel‘equations (16,21) utilize the éssumption
that the dispersed phase can be treated as a second Qontinuous
phase. Since this assumption has been found reasbnably satisfac~-
tory for the back-flow model,'ité-use in.the diffusion model will
be particulariy justifiable if the lattef model can be derived
from the'geﬁeralvbaCKQflow case."Such a derivation willvbé

shovm in tlls section.

The diffusion-model equations in dimensionless form are as

follows:
(l/PXB) dzx/dzz - dx/dz - Ny [x - (b + myﬂ =0
: o | (2)
(l/PyB) dzy/dzz + dy/dzZ + Noy [ - (b + my)]v= 0
where N_ = X aL,/F and N__ = -k aL,’?-. If lowest-order

oy
cenural differences are useo, Equation 2 becones, for phase X

(1/P83}(lj+l .ZXJ- - l)/ Az)z (X J—l)/(2Az>

= Nox [% - -+ my)]

with another similar equation for phase Y. TFor a total number:

/3)
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of'segments,'np, the size of each segment (AZ) 1s equal to l/np.

With this equalilty, Equation 3 1is transformed to
Lng/z,2) + (a/2)] Geyg= xp) = [(n/2,00- (2/2) ] (g = xp,)

= N_.o [xj - (b + myj)] . , (4).

Tnis eQuation.iSvseén to be essentlally the same as Equation 1 ,
when the following equality is satisfied for phase X (and also

for phase Y; i = x or y):

c.
&.i I p
or ' 1im  (PiB) ='np/'ai» | h (5)

—

The boundary conditions (16,21) af the.fwo ends of the
'cdlumn, for sdlving Equatién 2 , are derived from the end con-
ditions for the back-flow model, by putting AZ —>- 0. |

For‘single—phase.flow with np >> 1, Latinen and Stdckton (g)
have derived Equation ?' from Einstein's "random walk" diffusion
equation (§%l§), and they thﬁs reléte a longltudinal-dispersion
. coefflclent to‘the rate of change of a series of discrete rluid
displacementéo For a finite number of stages they adopt the
following form for both physical transients and homogeneous

first-order reaction:

_l_____. 1 + Q (
B le(n, - 1)) (n, - 1)

(6)]
~

Use of the term'Z(nD - 1) is based upon Kramers and Alberda's

treatment for the cell model (8).
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Equations S5 or 6 also serve to carry out the reverse
reduction of Equation 1 into Egquation 3 , which 1s then con-
verted into Equation 2 with a sufficiently large number of
segments (nD >> 1): this procedure justifies applying the
diffusion model to the dispersed phase, and also renders the
diffusion model applicable to a stagewice system. Nevertheless,
these two models are basically different from each other; hence

the conversion relation will vary somewhat, depending upon what

Hy

basls is taken for comparison. We note that Equation 5 applies
only’for np >> 1. The question of obtaining more accurate con-
version relations is discussed below in three special cases, to
examine the conditions under which the two models behave

identically.

CONVERSION RELATION FOR TRANSIENT BEHAVIOR

One workable and representative link between the two models
is provided by comparing tne variance for residence-time dlstribu-
tion of fluid elements. The procedure used by Van der Laan (23)

glives the variance 6D 2

5 of residence times, for phase 1, based on

.

the diffusion model:
(1/2) 6.2 =1/p.B - (1/P.B)%(1 - e~PiB) (7)
‘ D1 1 i
with 1 = x or y.
The basic transient equatlons for the back-flow model are
vritten without difficulty for phase 1 from the material balance
taken for each stage. The variance 6B12 of residence times, for

phase 1, is then given by solving the transient equations in a

similar manner: - ‘ _ N
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o1 21 Yy [<1v- ai) <].>.]'[ '.{ L 1]
5 Oy Es— A v =) T 1 - exp{- —— .
2. "Bi 2np : np an np | vnp | (4/[2n-p)+ (G'j_/vnp))l

'<8),

. | - 0 S
1o 1 -E 1
f. = (~ + a-).ln (l + ——) =1+ : : ]
o Tk %7 7 kel (ekel)(2a,+1)E

where

As a'mafter.of-definitioh, the mean residence time GTi for

= 7 /€ » ‘ .
4. L/(bi/ i) in the foregoing treatme@t | o
~ The conversion relatlon for phasé 1, based on the variances,‘v

| ié_obtained by setting 6D12 = 6B12' Thevfollowing simple empirical

" phase i is o,

'iéQﬁations'epress the equality aimost éxactly'for the entiré range

of'np; Cy s andvay:

- 1)1+ /zn) T (g - 1/2) S

P,B 2(np

For np >> 1, Equation 8' reduces to Equation 5 as expected.

CONVERSION RELATION FOR TWO-PHASE MASS TRANSFER

Another workable link between the two models is provided
by equating the extents of mass-transfer for countercurrent flow
at infinite NOx° With this limiting condition the diffusion-model

solution, as given by Miyauchi and Vermeulen (16), is

X, - (b + myF) ./\.-.A.z (10)

X = =
xp = (o +myp)  exp [(1 -/\)PoyB] - A2
with , '
1 _ JK.<+ 1
P,yB P2 PB

and the back-flow model solutlon by Sleicher (g;), originally "
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obtained for a multistage mixer-settler extractor with entrain-

ment, and with each stage at equilibrium, rearfanges to the form:

- o) A oA

X = Xp - (d» + myF) B 5‘(hp‘1)_ Ae (11)
with - e=1-01 -A)/(/\ax+ oyt 1),
and ‘ ' O’i = Fi/—F-i )

Equating the above two relations, the exact conversion relation

for phase 1 ( = x or y) is

a ' '
1 1 i
= + - (12)
P,B 2(np - l)fT (np - 1)fT .

where

= (2 z//) ln(l " %’7> - +k=Zl (2 + 1)%211/ + 1)K

. witn v = [A*‘(A"‘x £ ay)]/} AY

The correction factor fT is seen to have essentlally the same

form as fc, and 1s shown in Figure 2 as a function of N and

A + a : }
J\ax . With (J\ax y) > 0.5, ?T,is nearly equal to 1
irrespective of A.. '

Equation 12 may be used to compute the countercurrent-
diffusion-model solution with the back-flow—modelbresult, at

finite values of'Nbxa For this comparison, calculations were

made at the relatively severe condltions of n_ = 2, over the

p
range of variables . of 1<K N, <o, 0.56 < (Aa+ ay)

< 32, and 0.0625 ¢ /L. < 16. Under theselcohditions,Athe
fraction unextracted usually agreed to well within *5% in 1its

absolute vaiue.'_At“increasing n,, @, and N, the

P’ ox?
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approximation improves rapidly.. |
Agreement to within ¥ 10% was obtained under the same

conditions by taking fT = i thrgughout.

Apolication to Liguid Extraction

-We take as an example the operation of pulsedperforéted;-
plate‘columns; a similar treatment shouldvbe applicable to |
rotatinb-shaft equipment such as the RDC or Milxco extfactors.

Now we let:m;'L,_and 61 be réspectiveiy the pulse frequency{
.pulsé amplitudé,'andvvolume-fraction of phase i in the column.
The rate of ihtefstage mixing Fi may'be considered equallto,a |
. pﬁlse velocity wie, . 'According‘to’eXperimental observations,
~ a given stage 1s seen to behave as p perfectly mixed stages in
v,sefies; and~hence‘the total éffective humber'of stages may be

takenlas fn as a first apprdximation,' Since np is usuaily at.

P
least eight to ten stages, Equation 9 { or Equation 12 with
fT = 1) is.épplicable:to glve a longitudinal-dispersion'COeffie
cient. The following equation is obtained’fOr‘"emulsion—type .
 operation" in the sense of Sege and Woodfield (;g); we intro-
duce o, = w&€i/‘FE, and pn, as the total effective number of
stages, and neglect the terms (l/nb) and (1/2) in comparison
with np5 in E&Zuaﬁ’ot‘" 9: : o
By R/es

oLy "z - (1/np>+§ (13)

 -For ideal "mixer-settler" operation, the restriction wi = Fi

is needed to give steady flow of each phase through the coluan.

This may be written in its alternative form of m£€i/,§i = €i< 1.
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Iﬁtroducingcxi = 0, with the actual number of stages as Ny

E, 1s obtained as follows:

E fi/w;ei

1
wee Ly 2 - (l/np) : | :

(14)

Figure 3 compares Equations 13 and 14 with experimental'

continuous-phase data calculated from extraction-runs by Eguchi

and Nagata (g)‘(open circles), and‘from_physical-transient runs -
by Oya (17). Curve MM' i1s for the "mixer-settler" operation,
‘Equation 14 ; and curves BB' (B = 1) and CC' (B = 2) are for

"emulsion-type" operation, Equation 13 . Point P is the upper

1imit for the former, and point Q the lowér_l1m1t for the‘latter. ff

-Forfﬁ-—-i .
 The 1ideal-pass curve should be along MPQB', but the actual pass
- . A

‘seems to be along MPQ'B'; this suggests that-the_flow-mechapism
changes gradually from the mixer-settler type to the emulsioﬁ
type. Experimentalvvalues of B are cbmmonl&vbetween 1l and 2;
further 1nvéstigations,are neéded_before B -can be adequately'-

correlated, particularly for the behavior of the dilspersed

" phase. .

CONVERSION RELATION FOR HOMOGENEOUS REACTION

In singlefphase systems, chemical reaction may provide a
source or sink for the individual componénts which 1Is analogous
to the effeét of having a.second phase. It 1s therefore of
interest to examine such}systéms here. The conversion relation
1s derlved on the basis of obtaining the same extent of reac-
tion for the two models. . For a diffusion-model reactor in

which isothermal qtheorder homogeneous reactlon oceurs,
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mathematical solutions are available for q = 1 (3,26), and q =

0.5 and 2 (6,10). The basic rate equation‘for the back-flow model -
is given by Equation 1, if the parameters x, o, and N__g are '
replaced by ¢, a ( = F/F), and N,C.to (= Nq/np) respectively; here
(a-1); /5 | ) ‘
N =kc¢ L/ F.
9 aF / |
The analytical solution for q = 1 is:

cr n, A
X ;g‘—: = (wr1 - Yz)(l + 1/a) ghy - gzhl) (15)
where ' | n, '

' = a(v,- 1); n, = (v, - 1), (k=1 and 2)

T +\/:2 - (1 +1/a) ; Y2'= T -\/r2 - (1 + 1/a)

<
i

r=1+[(1+ Nlb_o)/ 2a]; Ny o= k L/ Fn, = leO/F X%

For arbltrary reaction-order, the back-flow-model solution
can be obtained numeridally,-starting from the outlet concentration
cL,vand continuing stage by stage to reach the feed concentration
Cp- |

Equating the diffusion-model X with the back-flow-model X,

the following empilrical relation is found for q = 0.5, 1, and 2.

1 1 o
PB 2(n, - 1)1 - (1/n,)] ¥ n, +1-gq (18)

Under the szt severe conditions tested, np = 2 with varibus
a, and a = 0 with various np; in both cases the fraction unreacted
covers X > 0.007 for g = 2, X > 0.0007 for ¢ = 1, and X > 0.59 for
q = 0.5. The fraction unreacted agrees to within ¥ 10 percent
in 1ts absoiute value when calculated from Equation 16 , e#en

at the lowest a and By ,
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DISCUSSION

Purtbet Prooerties of the Relations

| When the contribution of back flow entirely dominates
longitudinal dispersion, the conversion relations glve the follow-
ing.simple fornula for higher values‘of np: - |
‘PyB=n /a or E; = F,Ly | (i = x or y) n"(l7)
where the relation L = ano is utilized. Equation 17’ simpli"ies ;
'further when Fi = €iF, where F is the superficial rate of inter- )
dstage mixing of the mixed phases ' | |

=Ey/€ =FL - (18)
Vhen the contribution of the cell mooel entirely dominates

longitudinal dispersion, the following two equations are obtained

from Equations ‘9 and 16, depending upon' the situation treated

'For physical transient behavior,

P, = FLy/E = 2(1 —(l/np)][l +{1/2 n )] (19)

and for homogeneous chemical reaction,
P, = FL,/E = 2(1 -(1/np)} (20)
Furthermore Equations 10 and 12 give the following exact
oonversion relations for the equilibrium-stage model and the

equllibrium-diffuslon model:

| n A
P.B = Py.B = (A + 1)(]3{——_—1-)(% - 1) (21)
PoyB = jl\r_}_j\l . (np - 1) | (22)

These two slmple equations . show clearly how the number of equil-
librium stages and the extent of longitudinal dispersion behave

as the limiting factors for mass transfer in counterflow column

operations.
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Mathematically Equivalent Systems
" Once the conversion equation is selected, we can in principle
equate a staged cascade described by n_, ax;'ay,.Agand”NO} to a

P
vdifferéntially‘continuous column described by PxB’ PyB, and‘the'
séﬁe.ﬁuand.NO#. No ambiguity 1s invol&ed if the phy;1ca1»syst¢m

is staged, the a's_havé beeﬁ‘heasured in some way, and -we wiSh to 
use colunn mathematics (;ﬁ,;@). If stepwiée calculation of a

column is required, however, thére is a relatively free cholce

.of" cascades. _

A useful quel 1s obtained by letting the stream with the
1arger PB'correspona to a = 0. 'It will prov;de the simplest s@hemel
for numerical computatlion, but willl tend to describe a column less
accurately, always wilth the restriction of np = PB/2. 'Seléction
arbiltrarily of»larger np’s, in succession, used with the convergénce»
equatlion, can be expected to show a convergence to concentration
profiles that are insensitilve to the particular choilce.

wben packed beds are operated in the fully turbﬁlent region,

- as may sometimes occuf in gas absorption (;Llé), the equivalent
stage helght LO can be taken equal to ndp. Equations 19 and 20 are
then easily modified to formulas basgd on dp, where np is glven by

L/ndp, Filgure 4 shows P or P, ( = FLO/’Ei) as a function of L/LO,

in this case.
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NOMENCLATURE

specific interfacial area of mixed phases (cm2/cm3)

Iritercept value for pariition eqﬁilibrium, 1n'the.reiatiéh
#* =b +ny (g or mole/cms)

L/é¢ (dimensionless)

concentration of reactant (g or mole/cms)

representative length (cﬁ) |

packing-particle diameter (cm) .

longitudinal-dispersion coefficlent (cmz/SeC)

concentration-distribution function based on number of

droplets

fcorredtion'factor,'Equation 8

correction factor,tEquatidn 12

| volumetric rate of interstage mixing (cm3/0m2~sec)

mean volumetric flow rate of main (through) flow (cm3/cm2-sec)

constants 1in Equation 15

'integer,'index in series summation' (d;mensionless)

overall coefficient of mass-transfer based on phase 1
(cm/sec) |

rate coefficient for qth—order reaction (g or rnole/cms)l'q
| (sec)-l

pulse ampiitude (cm)

height of column (cm)

equilibrium partition coefficient, in the relation

x* = b + my (dimensionless)

total number of droplets per unit volume of dispersed phase
(1/cm)

total number of stages (dimensionless)
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N number of transfer units or reaction unilts (dimensionless)
-l /= R .
N ¥ ¢. 2L /F dimensionless
. e ( ontess)
P Peclet number for single phase (F.d /E ); or for phase 1
(rio,/ni) dimensioi.. 3)
q reaction-order (dimensionless)
r constant, in Equation 15
Y volume of a single stage (cms) \
v, mean volume per droplet (cm®)

X,y concentration of transferring component in phases X and Y

respectively (g or mole/cms)

X ratio of X—phase concentrations out ahd'in, Equation 10
z axial distance measured from the phase-X inlet (cm)

yA z/L  (dimensionless)

a F/F (dimensionless)

B factor in Equation 11

¥1,Y2 constants, Equation 15 (dimensionless)

€ volume fraction of phase 1 (dimensionless)

1 Lo/dp (dimensionless)

© mean résidence time (sec)

A extraction factor (= M§x/'Fy) (dimensionless)

¢ traveling variable for 4 (dimensionless)

5t variance of residence times (dimensionless)

T elapsed time (sec); Tpgy = Superficial mean holdiﬁg time
of phase 1; Ty = & TTOi//(l + 2a,), net mean holding
time of phase 1. - ‘

o] time ratio T/TTy, Equation A-i '

W factor in Equation 12 L |

se frequency (cycles/sec)

11
A

[
(&%)

IS
K@/

(dimensionless)
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Subscripts

B Back-flow model value
C Continuous~phase value
D Diffusion-model value
F Feed-end valﬁe
| 1>‘ Phase 1
J Stage J
.k Index in summation
L outlet-end value
L] 6ver-a11' |
- p  Plates or stages; particle‘(in dp)
T Total; two-phase ’ ' B
x ;Phase*x'
¥ Phase j"
6 Trahsiént-behavior value
0 Single-stage value

* (superscript) equilibr;um value
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APPENDIX

We'conéidef'the Jth Stage under.steady continuous operation
‘with flow rates of F, + F and F, + F (with F = F, + F), where
the contents are mixed perfectly, with a uniform drop size dp for
' the dispersed phase. The operational condition is the same as
shown in Figure 1. Let yJ be the concentration of a dfoplet 1n‘
. the jth stage, iﬁ‘the mean value for all the droplets in

that stage, and n_ the total number of droplets per unit volume

o
of the dispersed phase. With these notations, the number of

droplets per unit time 1s given as follows for each stream:

th th, (% th _qyth,
From (J-1)"" to §°: no(Fy + Fy) From J°" to (J-1)""": n,Fy

th th, th th, _ /=
)Y to §Ys noFy From J°" to (J+1)"": nO(Fy + Fy)

 (From (J+1
The fraction of droplets leaving the,Jth stage during any
time interval from T to t + dt (with T measured from the time of
their introduction), relative to the number of droplets introduced.

in thls stage during the interval v = 0 ~ 0 + dr, isvgiven by
F_+TF) + -# . -
no[k v x) Fle” ad ° ar (A-1)

where 4 =,r/rTy = 7(1 f<2ay)//'eyTTQy 5

T = €. F +2F) = ¢ V'//'F' : = // .

Ty yys// ( v ) Yo y(1 + 2ay) €T 0y (1 + Zay)f

da =F /F . o
and a, = F,/Fy
For the droplets coming.in from the (J-l)th stage, the

concentration distribution may be quite random in y]'(feed

concentration of phase Y) and yjf'(concentration of droplets in

equilibrium with phase X at the final or JTth stage) as their
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lower and upper limits respectively, as shown in Fig. 5. This
condition is a natural result of the back flow. We define this
concentration distribution for the droplets from the (J-l)th

stage as fj—l(yj-l)’ such that

it |
X; £yq(ry vy =1 | (a-2)
y

' Then the fraction of the dispersed phase leaving from the Jth

. stage, which orig;nally had a concentration between yJ_l,and
Vi1 ¥ d(yj-l)’ is given in the time interval =< to Tt + 4t after
‘the lapse of time by -
no(ﬁ& + Fy) e'¢ fj—l(yj-l)d¢ dyJ_1 * dt (A-3)

‘The concentraﬁion of this fraction changes from the initial value
Y41 to the final-value'(yJ)J_l during travel through the Jth
stage. Since the stage 1s mixed perfectly, the rate of total
solute 1éaving thé:Jth stage (accompanied‘by tﬁe-dispersed phase -

)th

from the (Jj-1 stage) 1s given by

Y*jT .o N
0 (F, + Fy) 5 TR IROL R g (74) j.1ex0(-6)af (a-0)"
¥ | Y |

This amount of solute'returns partly to the original (3-1
)th

)th,

/ stage, and the rest of 1t goes to the (J+1 stageo'

* The integra1 with,respect to time is.written'exﬁctly.as
x (v4) 4oy exp C—(;d-é)]dfev»
=00 . g Lo R

S . (footnote continued)
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The rate of droplets leaving the Jth stage, corfesponding
to the same stream, is '
| V¥ g , @
n,(F, + Fy) & fj_l(yj_l)éyj_l_ % exp(-4)dd (A-5)
_ y1 B 0
where the double integral isiobviously equal to 1.
For the droplets, entering from the (J+1)th stage and
departing from the Jth stage to the (J+l)th and (J-l)th stages,
a similar consideration gives Equation A-6 corfesponding‘to
Equation A-4, and simply noFy in place of Equation A-5. Thus,
YjT : @
noFy-& £, (Vg40) @y S (v) 5 exp (-F)od (A-6)
yl v 5 : .
where fj+l(y3+l) is the concentration distrib&@ion for the droplgts

from the (J+1)th stage. -

The mean concentration §J for the'dispersed phase going from
the Jth stage to the upper and lower stages is given by
Equation A-T. The total rate of solute leaving is the sum of

Equations A-4 and A-6; the total flow rate is no(?&+ Fy) + nOFy;

. (footnote)

However, this express;on is formally equivalent to the integral
used in Eq.(Ar4); The same formal simplification is utilized in

the following steps. = _ -
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and the stage is miked'perfectly.
v T
— ¥
- /F_+F SJT
y TSyl

: @ _ -
£3-0(v500) avyy g (v4) 4y exp (-B)od
Hy; ' - j; o0 o
A, .
B P @ - o o s
N <=—L—) 8 Fralvgald dys+1§ (v5) yup o0 (-Adag (a-7)

Ao | '._‘0 | _ S

' where, as 1ndicgted-bef6re, (y_J)J_l is the concentration of_.
droplets leaving the Jth stage at é =g, after introductiqn
" from the (j-l)th stage at .= 0. Also, (yJ)J%i 1s a similar
COhcenﬁrationg relative to the (J+1)t0 stage,‘ -

Do expréss?J as an explicit function of NoyO’ y?, ?3‘1,‘

and y further relations are needed to conbine (YJ)J 1 and

J+1l’
'(yJ)J+1 with ﬁ, Vo1 and yj+l ' Consider a single droplet with
- Tthe concentration yJ 15 ‘introduced from the (J 1)th stage to the
_Jth

-through the Jth stage, according to the reiation:
v GYJ/dT = koy O(YJ y,j) C (A"’S)

with the conditions that yJ =¥y at' Tt = 0, and vy = (YJ)J , at

stage at T_=.O. Its concentration yJ changes during travel

T = 7. Integration of the equation under the given qonditions

yields :
* »*
(yJ)J"l = y,)' - (YJ = yj-l) exP{" [Noyo (1+ zay) ﬁ‘} (A—S)
where Noyo is equal to ey(ao/'v Yk OyTToyo It is easily showm to

be equivalent to Noyb glven in Equatlion 1, except for a slight

medification. Simiiarly, for (yJ)J+1-we get the egquation:
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(vi)jpp =935 = ¥y = ¥5,9) exp {- [Noy0/41 + 2ay{}¢} (a-10)
To derive Equations A-9 and A-10, koy 1s assumed to remain
' constant.

Integration of Equation A-T7, introducing Equations A-9 and
A-10 into it, ylelds exactly Equation 1, where the following

~ obvious relations have been utilized.
*

Vi1 7 % V-1 T30 0g) 5o

vy

*
Vi
Vi = % Vg £5aga) W
y} | |
Thus 1t has been proved entlrely permissible and exact to
treat the dlspersed phase as a second continuous phase, 1n so far
'as the following four conditions are satisfied: (a) drop-size is’
uniform; (b) overall coefflclent of mass transfer is constant;
(¢) volume-fraction (holdup) of the dispersed phase is constant
throughout the column; and (d) a 1inear-equilibrium holds.
These restrictions may be relaxed,' depending upon how fast
coalescence and redispersion of the dispersed phase take'place
" in the system. There 1s a positive indication of coalescence and
redispersion of liquid droplets for agitated liquid-liquld systems,
making the restrictions less.necessary.in such instances.
Since for the limilting case of a&_——» O the back-flow model

i1s reduced to the stage model, the statement glven above is also

-~
.
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trué even fdr this model; For'examplé,.it 1s'permissib1e to say
that the dispefsed phase in ' mixérééeftier,extréqﬁorsvcéhbe’
'treated’as_a second contlinuous phase. In.additioh,-i£ is»n6t_
__néceésaryvthat the dispersed droplets.be separated into a , .
homogenébus phase'before enéering,the next stage.

- The bésic relation for the stage'médel,éorresponding'tb
| EQuations A-?‘and A-9, is. n

*

iz =% | ;‘J_l(yj__l) 'dyJ_lg' ¥y €xp (-8) af (A-ll‘}"‘
‘with vy‘l ‘ ‘ | 0 : ‘
| ' * * ) ) . . |
Yy=79y - (yJ - ¥yoq) exp‘(-Noyod) | (A-12)

As stated before, Equation A-12 is derived under the premise of

a constapt NoyO‘
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1. Back-flow model for countercurrent operation--

(a) Multicompartment contactor; (b) Identification

" of flows, with internal flow F = F* + F

ye"

L5 /5)-/



-28- UCRL-10116
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B
ol 0.2 0.5 1,0 2 5
Aax+ay for A <'.I | -
(ax-lfaY/A for A >1)

2. Correction factor f‘I‘ in Equation 12, computed from.

anm— °
Nox <o

{95"523;*/



1 n-unl | | B I B
C & ]
’\/’l//\«\/ . A _
0)2) | P =2 (calcd.) a
o _ - C
C B Rt Bp
, L ' o OA :
<é%909wﬂ6 T \dD“d) MRS L-’0 -
'-/c%% oo oo A
- . o B =1 (calc'd.) |
rd | o | |
[B | - EMULSION-TYPE OPERATION i
R SRR I S A
05 10 2 S5 10 20

- 3. Longitudinal-dispersion coefficlent for the.

continuous phase, in pulsed sieve-plate columns.

50 100

for— 1 A

..62..

911071-T¥DN



2.0

REACTION

iHOMOGENEOUS

e

ol l'f‘,lllll'
2 5 (0]
L /L,
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