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Abstract

We discuss N =1 supergravity coupled to gauged chiral matter. We
retain noncanonical kinetic energy terms for both matter and gauge
fields. The tree level spontaneous breaking of supergravity in such
theories is investigated. Emphasis is placed on general results rather
than any particular model. o

The tree level mass matrices are calculated, and used to derive a
(mass)? sum rule that retains the effects of the noncanonical kinetic
energies. Even in the presence of noncanonical kinetic energies it is
shown that under not too restrictive conditions we can relate the masses
of leptons and quarks to the masses of their scalar partners by

mot=|m3/2imw|.

Attention is also drawn to the crucial role played by the analyticity
of the superpotential at the origin of field space.

~ This work was supported by the Director, Office of Energy Research,
Office of High Energy and Nuclear Physics, Division of High Energy Physics of the
U.S. Department of Energy under Contract DE-AC03-76SF00098.
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Introduction

If supergravity has anything at all to do with the real world, then certainly it is a broken
symmetry. Explicit symmetry breaking is inelegant and teaches us very little. On the other hand,
if the underlying real theory is an extended (N>>1) supergravity, the spontaneous breaking of the
extended supergravity may take the theory through a N=1 symmetric phase. For these reasons
the study of N=1 supergravity coupled to gauged chiral matter is interesting in that it provides a

framework that may be relevant to supergravity theories in general.

Now N=1 supergravity coupled to matter is a nonrenormalizable theory {1,2]. Thus
radiative corrections should not be taken particularly seriously. Perhaps the best viewpoint to adopt
is that N=1 supergravity is a low energy effective theory engendered by some as yet not understood
microstructure. Note that low energy in this case means E < mp = 10'° GeV. If we adopt this
viewpoint then N=1 supergravity is not to be thought of as a fundamental theory. Rather its status
is similar to that of the non-linear sigma model for pions. In particular, there is no justification
for enforcing canonical kinetic energy terms in the Lagrangian. If nothing else we would expect
poncanonical kinetic energies to be generated by radiative corrections in the underlying true theory.

(For similar comments see [3]).

For the reasons discussed above, all comments made in this thesis will apply at tree level
only. In particular, I shall discuss the construction of acceptable vacua using tree level symmetry
breaking only (for alternatives see [4]). Breaking the supergravity in an acceptable way is not
trivial. Even if one succeeds in breaking the supergravity itself, it is distressingly easy to generate
multiple vacua. The extra unwanted vacua commonly possess negative cosmological constant [5), or
they may fail to break the gauge symmetry [6]; the extra vacua may even be degeneratg with the

phenomenologically desired vacuum [6). At the very least the following must be satisfied:

1) supergravity must be broken (mas2 > 0).
2) The cosmological constz;nt must be zero (A = Vi]yacyum = 0).
3) The gauge symmetry must be broken.
4) Higgsinos and gaugino§ should be massive.
In addition it is very desirable that:
5) The vacuum occurs at the unique absolute minimum of the scalar potential V.

Many models have been constructed that violate condition 5 (eg [7]), these models then have to
deal with the problem of the decay of the false vacuum, a problem that I shall eliminate by flat by

imposing condition 5.

In this thesis I shall discuss general theorems indicating when these conditions may be
satisfied at tree level. In addition an exhaustive discussion of mass matrices and sum rules is
presented. The (mass)® sum rule of Cremmer et ol.[2] is generalized to include the effect of non-
canonical kinetic ener@ terms. The leptoquark sum rule of Cremmer et al.[6] is shown to be in-
sensitive to the occurrence of moncanonical kipetic energies. The effect of nonanalyticity in the

superpotential is also discussed.

The main tool used in this analysis is the component Lagrangian for N=1 supergravity
as constructed by Bagger [1], Witten and Bagger [1], and Cremmer et al.[2]. These papers differ in
that Bagger shows how to gauge symmetries that are realised in a nonlinear fashion. Also, Bagger
uses a notation that is vastly superior in that it makes manifest the geometrical structure of the
various terms appearing in the Lagrangian. On the other hand, the work of Cremmer et al. uses only
Jinearly realised gauge symmetries but allows noncanonical! kinetic energies for the gauge bosons.

Cremmer et al. also calculate the (mass)? sum rule, which is not done by Bagger.

For this thesis, I shall be using the Lagrangian of Cremmer et al.[2], but the notation

will essentially be that of Bagger {1]. Esxtensive use will be made of the geometry of Kihler

-
-
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manifolds and in particular of the concept of the Kahler covariant. derivative. This will unfortunately
necessitate a short chapter reviewing Kahler geometry. If one had attempted to use the notation of
Cremmer et al.[2], the retention of noncanonical kinetic energies would quickly lead to calculations

so cumbersome as to be prohibitive.

ihle i

In N==1 supergravity coupled to matter the self-interactions of the scalar fields are described
by a generalized nonlinear sigma model where the manifold of scalar field values is a Kahler manifold

1,2).

The geometry of Kihler manifolds is well understood. Easily accessible references are the
books of Goldberg [8] and Flaherty 19].. AKahler manifold 7 is a complex manifold whose geometry
is specified by a real valued function, the Kahler potential K. Complex coordinates on the manifold
will be denoted by ¢, their complex conjugates are denoted by ¢".. .The metric tensor of a Kihler

manifold is given by:

gij* =

S K(4,9)= 00K,
giopr.

The metric tensor is thus automatically Hermitian. By assumption the metric shall be taken to be

positive deflnite on m. Indicgs may be raised and lowered using the metric and its inverse:
¢ = (957",
for example:
X=gXp; ¥ =gy i’. =gjeX7; etc.
Note in particuiar that:
XYY, = XoY¥ = (X,YY) # X,Y".

Christoffel symbols may be calculated in the usual manner. Because of the Kibler structure the

_ expressions simplify radically.



Tk = ¢ Oa(gjme) = (§"™ Om*)0i0; K.
r T¥ joke = 0™ 84 (9mg*) = (g™ Om )0y O K = (I'30)".

all other components are zero.

Kihler covariant derivatives will be denoted by 4; we have
5:X7 =8, X7 + TV i X™,
5x73 =8,x7,
6.‘XJ‘ = O;XJ' el I"":,-.-X,,,,
i Xjo = 0 X,
Naturally the covariant derivative has been chosen so that the metric is covariantly constant
digjxs = 0= biogjp.
The expression for the Riemann tensor simplifies to
Rijime = 8,oT% 5y = g™ (810megsue) + (Brme0™ }(Big58°)-
The only nonzero components of the Riemann tensor are
Rijim*s R'jtm; R' jrm; apd R jope.
In fully covariant form
Rijotm* = ~010m=0i7* + (819ix=)g"* (Om*gis*)-
The only nonzero components of the fully covariant Riemann tensor are
Rijer*;  Riea*t; Rivjirr; and Ryger.
The Riemann tensor possesses the symmetry

Rijpe = 4R g = — R jyox.

The Ricci tensor may be defined by
Rij» = g“'Ril'kj‘ = QH‘R.'J*M' = 9“.Ru'.'j°-
Observe that the Ricci tensor is Hermitian. The contracted Bianchi identities read
OxRi;* = 8;Ryje,
Or*Rij» = 8;*Ryxe.
The contracted Bianchi identities are automatically satisfied in view of the relation
" Ryj» = —8:8;~{Indet(gn*)}.

Acting with covariant derivatives on the Kihler potential yields
0if K = 00K = gij,
FHK = g% g = 8%,

8 0K = 8" 5.

The noncommautativity of the covariant derivatives is described by the Riemann tensor, in general:
[ba, B]X° = —R°gas X ®.

For the particular case of a Kahler manifold
[6i)050]X* = —RE o X™,
5:; 8;1X* =0,
(6, 6;21Xx = 4R X m,
[6s, 8] X% =0,

ete.



On a Kihler manifoid it is possible to define two distinct Laplacians
a = 8%,

B =(8)" =66 = 6;6°# A.

Acting on scalars A = A; acting on vectors however they differ by a term proportional to the Ricci

tensor
(8 —B)X* =—g [by, 001X
= g7 Rr Xt

= R* X!,

The lack of commutativity of the covariant derivatives will prove nseful when calculating the scalar

mass matrix.

The Lagrangian

The superspace form of the action for N=1 supergravity coupled to gauged chiral matter

is given in Cremmer et al.[2].

/..l‘ diz= / d*z d‘OE( - 3‘exp(- $K(9,9¢2))
+ RelZW(o)]
+ Rel g fap(9) WS(V) w{(vn).
Here

E gs the sl;persﬁa;e determinant.

R is the chiral scalar curvature superfield.

¢ is the superfleld describing chiral matter.

'V is the superfield describing the gauge maultiplet.

W2(V) is the ﬂeld. strength superfleld, a function of V.

K is the Kihler potential.

W(¢) is the superpotential, a function of ¢ only.

Jap(¢) describes the noncanonical kinetic energy terms of the gauge bosons;

it is a function of ¢ only.

Both W and f,s are analytic, since they are funetions of ¢ onlj.'Bowever.they need not be entire—
isolated singularities and/or branch cuts are acceptable. There will be more discussion of this point
Jater. The superpotential W may be thought of as a scalar, though at a more technical level'Witten
and Bagger [i] have shown the supérpotential should actually be interpreted as an analytic section

of some holomorphic line bundle whose base space is the Kihler manifold of scalar fields. The gauge



metric fap(¢) is an analytic function transforming as a symmetric tensor in the adjoint representation

of the gauge group.

Note that the chiral matter has been gauged by making the substitution
K(4,9)~ K(¢,8¢%V).

Thus the Lagrangian of Cremmer e? al.[2] presupposes that the gauge group acts on the chiral
matter fields according to a linear representation. Bagger [1) has extended this analysis to the
gauging of symmetries represented nonlinearly on the K&hler manifold, but we shall not take up this
particula‘r possibility. Following Cremmer et al. then, we demand that the gauge group acts linearly
on the Kahler manifold #/. This condition is obviously not maintained under arbitrary coordinate
reparameterizations of the Kihler manifold #7]. Though there are many coordinate systems available
on the Kihler manifold, we shall only be interested in using a restricted set of coordinate systems,
namely those coordinate systems in which the action of the gauge group is linear.

¢ ¢+ 00" dod’ = i€ [ta's]¢)
¢ = ¢ o8 bot” = —ig* [ta” 41¢)

Here the £ are a set of real parameters while the [to°;] are a (in general reducible) representation

of the gauge symmetry Lie algebra.
[Note: to¥ ;o = (ta's)"]).

The invariance of the action under the action of the gauge symmetry thus forces us to take:

10

1) K the K#hler potential is an jnvariant.
2) W the superpotential is an jnvarjant.
3)fap the gauge metric is covariant.

In terms of explicit coordinates then

oK
a¢°

0K .
lcK=0= 5 bcé' + L

80

OK i1 i (BK e e OK
(Wltazld”)—(‘twj[ta J]V)—(W[faj]tﬁ’)-

While for the superpotential we see

ow ;
oW =0= W bgd*,

so that

ow

8¢ ta*;1¢* = 0.

To discuss the behaviour of fop, first recall that the t, constitute a (possibly reducible) represen-

tation of the gauge group
[fc,, tp] = ica,g7 ty.

Then, since fop is covariant in the symmetric adjoint representation,

bfaﬁ

0¢,- 6G¢iv

JGfaﬂ =

4 L s L 4 (4
—é;_"’ [t‘l J]W = Cqa faﬁ +C7p Jao-

fa
-
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Note that my generators are normalized in a nonstandard way so that they contain a factor of the

gauge coupling constant.

The geometrical interpretation of the gauge metric fo5(¢) is not patticularly obvious. Let
us interpret the gauge flelds (A%, A, etc) as lying in some vector bundle over the Kihler manifold
. while Jap itself is complex analytic the real part fRo5 = $(fas + fag) is real and symmetric.
If we assume that [ R,, is positive definite over all of m, then we can interpret /7 op(®) as a metric
in the vector space fibre over ¢. This now raises the question as to the appropriate definition for
the covariant derivative acting on fap . We shall define the covariant derivative acting on fog to be

just the ordinary derivative
bifap = Bifap,
b fop = 0.

At first glance, this definition looks highly noncovariant. We shall now give it a prop‘er geometrical

interpretation.

If we make no assumptions concerning the afine connexion in the vector bundle we may

write
bi(ta? 1) = B8i(ta”s) = TPai [ta” 1] + T mi ta™x] — ™ x; [ta? m],
60"(tajk) = 8:‘('ajk) - Fg.‘ [tﬂjkl-

Recall that the mixed components I“',-,‘- are zero. Now we have already argued that we should
choose the coordinate system on M so that the gauge group is realized linearly. In particular, this

implies that the répresentation matrices are constants,

Bilta’a] = 0 = B¢ [ta”a].

12

Then
8lta’s) = —'réas [t974] + Domi ta™s] + Tk o),
ir(tads) = —_rﬁm" [ts?s].
It is now natural to demand the covariant con;iraint
8ilta’s) = 0= bio(ta’s).

The covariant constancy of the generators then implies that in the special class of coordinate systems

where the gauge group is realized linearly

rjmi ['amk] — T [‘ajm} =0. -
The first of these relationship.s implies that, in this special class of coordinate systeﬁxs,
b6ifas = Bifas,
b fas = 0.

This now provides a geometrical im.erbretation of the Kahler covariant derivative acting on adjoint
indices in terms of the covariant constancy of the generators.
To check the consistency of this interpretation, we should show that in the special linear
class of coordinate systems
rjmi [tamk] = rm'“ [tajm]-
This is in fact easily seen as follows. The vector fields that generate infinitesimal gauge transfor-

mations are

Va‘ = '.([ta‘j] ¢J)
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The related one-forms
Vaie = 1(gi* [takj] ¢J)
are by hypothesis Killing one-forms of the metric gi;» [1). This implies
gi°k [ta‘j] = gjk* [fak‘-']-
Differentiate with respect to ¢*
Ougiek [tah 5] = Bugpae It o],
Tt [to* ] = Taoys ta* o] g%

=Teg g% * [ta's)

=T*; [t,%s] as required.

Our proposed definition of the covariant derivative of the gauge metric is thus consistent. By
hypothesis fR4p is positive definite and symmetric. Therefore the inverse ( fR“)°ﬁ exists and is
well defined over the whole of the Kihler manifold #/. /B and fr—! will be used to raise and
lower adjoint indices. Note however that the action of raising and lowering adjoint indices does not

commute with the action of the covariant derivative.Finally, observe
SR = 8RN = —(IRT G IE IRV,

1 1
oiffp = aiffp = Eaifaﬁ = §6§faﬂ-

We are now almost ready to write down the component Lagrangian for N=1 supergravity

coupled to gauged chiral matter.

Let us deﬁ‘ne

G=K+hW+hW,

and further

o = 6iG [ta';]¢’ = 6K [ta’;]¢’ = D...

Dgﬂne a differential operator d by
d = (65°G)6; = (¢ 6, G)oi,
50 that
(é! Jag = 8'G bifap.
Following Cremmer et al.[2], we split the Lagrangian into

oL =L +Lrx+Lrpm.

14



15

The individual pieces may now be transcribed as follows:

1Ly = — gir Dyt D47
= fRap Fop FP#
- *f'aﬂ F“Aw Fﬂ w
-_ &R

- eG(.6.~G6"G —8)— §Do(fr—1)*#D;. -

'Lk =—3fRap X (1- DD
— {9i°XL'(v- Dixr? +1he)})
— e {($, 151 Dy¥o) +hic}
— e 1 apDu(eX 157* M)
+ 3R (Lo MRPN6:G Dyt') + hic)
+ 1/Rap{(X 1*(0 - FIP¥,) + he}
— (XL  6ifap (0 FYALP) + h;c.}
— e P (F,m, 0, X0:G Dot + 620G Dot”)
+ {95 (@Lul(r- D) WPxe ) + he}

+ (XL (- DY )xr* X0:8;0x°G — 49:4=6,G) + hc.).

16
e L =+ Y 0"y,

+ 3eS/2(@f 4 sXROMR? + dfapdL "N F}

— ¢%2{(6:6;G + 6:G8G)XL *xL?) + (6:085G + 6:2G6,2G)Tr" xr7 )}
'+ 4Da{(Fy - ™a®) + )
4¢P (Fp 1161 X + he )

— {[2(6# Da) ("r°xr* )| + be}

— 4D {(i(5; fapXLIAL?)) + hic )

= {6 16 Sap) 162 Frs AL N2 YRR AR )

+ B {(/Ras B 1mAr?))?}

+ 8/ (X 1077 0uXT,7% M) + hee}

+ 3{(6: S (XL 0" M B WAR?) + §(Pr - TXLHALEAL)]) +hec)

— ${l9:5°XR" 1a XL X2 [Ty ¥e] — @ 157*%a))] + hoc)

+ 3 {0 L 1 xrT NIR ap RO WAL T + he} .

+ Fo{(6 S0 Um ™11 6T o0 XX e X7 XFR7 M)} + e}

+ HIR XL NRLONLENEils ap — }biSaol TR )2 8 1ps)) + bic )

— P {[(XL 0" XLINXLOOu AL Nbifao( SR 6;fpp)] + Doc.}

+ 3{{(Rijoms — i g XYL‘XL‘*YRj.. xr") +he.}

This component Lagrangian should be compared to the ones exhibited by Bagger [1], by
Witten and Bagger [1], and to the Lagrangian exhibited by Cremmer et al.[2]. Note that the benefits
of the covariant notation at this stage appear to be modest. The benefits at this stage amount to the
recognition of the presence of the Riemann tensor in the quartic spin 1/2 term, the mild simplification
of the quadratic spin 1/2 term when written using covariant derivatives, and the supression of many
explicit occurrences of the metric. It js true that the covariant notation has not led to anS‘ great

simplification in the component Lagrangian itself. However when we proceed to the calculation of



17
mass matrices the covariant notation will lead to immense simplifications.

For the expert in the field I shall now give a brief critique contrasting the covariant notation

used here with the notation of Cremmer et al.[2], and that of Bagger [1].

1) In the notation of Cremmer et al.[2] the Kihler metric G”¢7 is negative deflnite. To conform to
standard usage I replace G by —G wherever it occurs in the expressions of Cremmer et al. This

is trivial. Nevertheless it does improve the readability of subsequent calculations.

2) The index usage is completely different. Cremmer et al only distinguish between index up and
index down. The covariant notation uses four types of index; up without star; down without star;

up with star and down with star;

X% Xi X‘.; Xio.

These index conventions may be related to those of Cremmer et al. by inspection of the following

table:

Cremmer et al. Covariant Notation

5 'y

. " o .
X; b ¢l
Y? Ys

G"iX; Xio = ginX7

G"'Yd Y, =giY?

G"';jG"’j" 9'.’.' 01' 88,6 = gij' o (Flj’) =T m

18

As ap immediate consequence of this table we see that many explicit occurences of G* and G"—!
may be swept under the rug by being replaced by appropriate index contractions. Occurrences of
G" may often be converted into Christoffe] symbols and then combined with partial derivatives

to yield covariant derivatives.

3) Note that the indices occurring on the spin 1/2 partners of the scalar fields are related to their

chirality thusly
xt'; X' and  xm'; XR'.

Bagger [1] does not choose to use this notation and must instead rely upon explicitly exhibiting
(1 4 ~ys) factors in his Lagrangian. This leads to odd looking (but correct) terms involving
contractions such as X "._Yi, ie contracting on mixed starred and unstarred indices. That the left
and right chirality pieces of x transform differently follows from the fact that x is a Majorana

spinor:

x=Cx'=Cx",

therefore

xr=Cr"(x)
So if x ~ Ux. then xg U’xr, and so the left and right chirality pieces of x transform
according to complex conjugate representations.

This completes our comparison of the various notations and we now turn attention to the

computation of various mass matrices.



!

19

The Mass Matrices

The tree level mass matrices are obtained by looking at the quadratic pieces of the expansion

" of the Lagrangian oL about the vacuum. Note that it is not sufficient to look at the quadratic pieces

in the potential, it is also necessary to investigate the behaviour of the kinetic energy terms at the
vacuum. This arises because the noncanonical form of the kinetic energy terms introduces what may
be thought of as s tree level wave function renormalization, which must be eliminated in order to

properly normalize the fluctuations and so define the masses.

The scalar potential of N=1 supergravity coupled to gauged chiral matter is given by
V = ¢%(5,G6°G — 3)+ 4D, D*

= eC(5;G6°G — 3) + M fr 1)’ Do D;s.

The vacuum by definition occurs at a minimum of V (i.e. &V = 0). Further, the vacuum is

assumed t0 5atisty V]ugeuum = O 50 that there is no induced cosmological constant at tree level.

Observe that
5:V = e%{(6:6;G + 6:G8;G)07 G — 25,G] + 46(DaD*)

= ¢C[(6:6;G + 6;G6;G)67G — 28,G) + (6:Do)D* — ¥(8i fRog)D>DP.
It is sometimes more convenient to ‘separa.tely define
Vo = gG(6¢Gé‘G- 3),
so that
V = Vy + 4D, D*.
Note that Vj is the limit of V as the gauge coupling g is set to zero. Again observe that

5:Vo = €C[(6:6,G + 6,G6;G)6’G — 26,G).

§

This particular combination of terms shall appear many times in the calculations that follow.

Before proceeding with the calculations we introduce the concept of the vielbein. We have
two metrics present in the problem, one for matter (g;;+) and one for radiation {fRap). We define

vielbeins ¢ and A by
gir =il ¢j I e,
IRap = ho? hg® Sap.
The vielbeins have inverses in the usual fashion
est el =6,
') =eel,

hp® ho = 552,

We can use the inverse vielbeins to construct a noncoordinate basis for the tangent space to the

Kihler manifold by employing
6' = cliﬁ,'.

In such a basis the commutator of §; with §» picks up extra contributions due to the aholonomicity
of the basis.With these preliminaries disposed of, let us turn to the j)roblem of evaluating the mass

matrices.
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Spin 2

The graviton remains massless:

Spin 3/2

The gravitino acquires a mass:

Mgy = eG/3,

In obtaining this mass the gravitino absorbed the “would be Goldstino” and so finally has four

polarization states. For more details, see the calculation of the spin 1/2 mass matrix.

22
The relevant part of the Lagrangian is:
e, = —ifRap Fouy PR — go(Dud' X D7),
where
D¢’ = (8,85 — ilta’;]47 )¢’

Suppose the vacuum occurs at the point ¢§. Then expanding around the minimum and throwing

aw:.;y fluctuations in ¢/
_ 1 L ) . .
4 10[’1 =— z!RaﬂFa;wFﬂ“y - gij‘(—' [ta'j]Aall %X'f" [tﬁJ k']Aﬂ“ ¢3 )
_ 1 o e o
€ l"'l,l = _z!RaﬂFava"w - gij'(¢(k) [tﬂ] k'] /3 [ta'j] %)Aa“Aﬂy.
Now observe
8iDa = 835G [to? 1] 9*")

= (6:6;C)ta’ se]¢*

= gij lta? ) 8%
This allows us to write

e—‘..['x = _%fRapFa””Fﬂyu - (JiD’J‘D‘,)A°“Aﬁ“.

‘We define properly normalized gauge boson fields by

AR = bt A%
Then

el Ly = —%F",,,,F"“" — [ha®hB®(6:Ds8 Da))A? LAPE.



The (mass)® matrix is now just read off as

(m1 )2AB = 2hAahBB(6iDa6iDﬂ)y

tr(m; 2 = 2(fr1)*#(6;Dab'Dp).

23
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Spin 1/2

Isolating the spin 1/2 mns; matrix requires a little subtlety. The quadratic part of the
fermion Lagrangian is:
e L1y +Laj2)=— §1Rap X (v- DN
— {0s5%."(v-D)xr?" +be}
— $e 1P (9,757 D, ¥0) + hic}
+ 612 E,,a‘“’w.,
+ $¢C/2{@] oy Xr®Ar? + dfap XLONLP)
— O13(88,G + 8:GE;GXXL XLT) + (605G + 2G5 G)Tr* xR )
+ 4D {(#¥, - Y AR*) + hoc.}
+ ¢ {(Fr - v 16:6)xL") + hc.}
— {(2i[6De)("r®XR" ) + he.}

— 3D {(i6; fas (Xt M%) + hoc ).

To get canonical kinetic energies for the spin 1/2 fields we must rescale using the vielbeins. Define
xi’ =ei' xi?,

M= deha? e,

The somewhat peculiar looking factor of v/2 in the definition of XA is not an error. It will prove to

be an essential part of the algebra. ‘
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After rescaling the spin 1/2 flelds,

e Ly jo +oLoy2) == X7 DB
— (x."(v-Dxr" +hec}
— de ek (P15, Dy¥s) + hoc.)
+ 52 G 0mvy,
+ 4e8/2([ha*hp?df s INRANRE + [ha”hpPdfag]NL AN P}
— €92 {Jes'es7(6:6;G + 6:G8;G))(x, x.7)
+ ler'er? (3106;°G + 80G8 G )RR xR )
+ % Dalli¥s - 72r*) + he}
+e%/2{(r -7 16:61xL") + he.)
— {(V2[(2i[6:+Da)ba® ero* ("rAxa" )} + bhc}

- -\/LED"{(iIijapler hp? (XL A B)) + hee}

The “would be Goldstino”™ may be isolated as that linear combination of x and A that couples to

the gravitino . Thus the “would be Goldstino” # is given by

n ~ (/201G xL” — g Dadit).

To properly fix the normalization, consider the vector

o _L( aeG )
V3 ﬁe-c/ﬁDA

& = .}_3(6,0; ——\/‘tge—c/’DA),
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then

'€= §(6:G61*G + 4e~CDaD,)

=§B+e"%V)
=14 4 GV
=1,

where we have finally used the condition that V' = 0 at the minimum.

The properly normalized “would be Goldstino” is now
1
= gt{ XL ) = (.6/2 I_ & A
nL=¢§ ()\LA) (2 [0rGlxL” = F=Da M4).
The gravitino-Goldstino coupling may now be written as

V312 {En-'r m.}+ be.

The terms quadratic in the spin 1/2 fields can be read directly from the Lagrangian. These quadratic
terms will not yet be the spin 1/2 mass matrix because we have not yet eliminated the contribution
of the “would be Goldstino”. Let us call the terms quadratic in the spin 1/2 fields the pseudo mass

matrix Pyo. For left handed flelds we have

Py PIA]

Py =
w2 Pg; Pap

Prs = —e5%{e1%e,7](6:8;G + 6:G5;G))},
Pia = +iV2{ha®e/*[(6:Da) — 4DP(5:fRap)l},

Pag = 4eC/2{(ha™ hg? dfas).

Note that the pseudo mass matrix for right handed flelds is just P, o, the complex conjugate of
Pl /2.
The key to the problem of fermion masses is to realize that the “would be Goldstino” is an

“eigenvector” of the pseudo mass matrix, specifically:

Py € = (—~2¢%/2)¢".
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This seemingly odd “eigenvector” equation, with one vector complex conjugated and the other not

is a reflection of the fact that Pz is a symmetric, complex, but not necessarily Hermitian, matrix.

Establishing the “eigenvector” equation is unfortunately a matter of brute force:

Pirt -L(_ea’ 26,616 + BGHGWIG + (WD~ er([6De] ~ D7I6iS )
T (HVDha(6D — $DA6: /R 0g)5G + (ANEDIA" dfup DP '
Now ‘ ) .

(6iDo — $DP[6; 1R ap))D™ = 6i(4DoDps(fr 1)) = 6,(3 Do D).

While
[d/ap)D? = 6°Gl6i fap)D? = 26°Gl6;/ " ap))D”.
So
—e—6/2¢,%(e5(8,6,G + 6,G6;G)67G + 6i(3Do D*)]
Pypé= 2 el : )
3 +iv/2 6°G[6;Dalh o
But
5°G6:Da = 6'G 6(6;°Glta’ 110"

= 6'G gijolta? »l8*

= Jj'G[taj.k'Mk. - -

= D,.
So °

—e=G/2 ¢35,V + 2¢C 6;G
P1/25=-\/L§( (6 * ])

+iv2D4

Finally we use the extremum condition 6,V = 0 and obtain

Piy2 € = (—2¢9/2)¢",
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Harving established the “eigenvector” equation we define
mx}z =Pyjp+2e572 ¢
Note that, because éte =1=¢ T(', it follows that my 2 is a complex symmetric matrix satisfying
mia€=0=~¢"my.

Now m,/, is in fact the physical mass matrix after eliminating the “would be Goldstino™. This

may seen by observing

(Y,X)Px/z(’)f) = (5.?5)["'!/2 —29%¢’ f*l(f)
= {(7, Ny /z(i)} _ 2¢5/23n

= {(7, M — € €TImyyall — ecf](;‘)} — 2¢5/27m

{(Y’X)P"p my/2 (i) }_ 250/2777)
perp

thus showing that the fields perpendicular to the “would be Goldstino” do indeed have mass matrix
mi /12-

* Now observe -

6/G6;G . —-e~%/2,GD
236/26’61 = §¢G/2 . theed ) \/Ee ! A
—ﬁe_c/zDBJJG - &e"GD,aDe

2 vz
3|—4L6,GDp —4e¢—9/2D,Dg

2[:‘7/2610610 —<=6/GDa ]
vz

Thus we may explicitly evaluate the spin 1/2 mass matrix as



M1 e Now define
My = [ ]

Mas MaB

or i s trHdfrfRTVAfRIRTY) = }ldfap (R T d s (fRT1)P0]
myy = —e” {e/'es7[0:8;G + §6:G8;Gl},
mia = +ivV2{ha®er'[(6iDo) — 4DP(6:fRap) — $(8:G)Dal}, Then
map = {ha®hf§¢°/2dfap — §¢=/2DaDy]). : tr(Pyj2Piy2) = e9(6:6;G + 6:G6;GX8°87G + 0°Go7G)
+ 4[6:Do[6°Dp)(fr ™1 )*

+eCtrdfrfr~dfr 1Y)

This finally is the full spin 1/2 mass matrix in all its glory.
~ ~ 28 Da SR [ fR 6] D)

To calculate the spin 1/2 contribution to the (mass)® sum rule we need to evaluate ]
— A" Dol SR )7 [6: R 15) D®)

tr(myj2™i/z). This could be calculated by inserting the mass matrix just calculated and tracing. )
+ D% (6 fRagl (fr P 16° 51 D°.
This is the strategy adopted by Cremmer et a!l.[2]. This strategy is however grossly inefficient when

noncanonical kinetic terms are kept. A much more tractable strategy is to observe
Recall that fap transforms like a symmetric tensor in the adjoint representation. This means that

mygaTiTz = (P2 + 2¢C72 6" €Y Pz + 2¢5/2¢€7)
= PyjoPrja + 26C72(€°(— 26072 €T) + (—2e5/2€°)€T + 269/2¢7¢7] » bafap = Oifaplt,';]1¢7 €7 = (6:fasX6'D,)E,
= PijaPrjs — 4°¢"¢".
(6if¢ﬂ)(6iD7) = an’faﬂ + Cqﬁ’fao-

T
hen Applying this, we see that

tr(ma o 773) = 1r(Pi /2P jz) — 4e. 6' Dalfr ™) (8f 7 16) D = }{(0*DaXbi fr}fr ") D?
= i[caq"fcﬁ + ca&’fo'y](fn_! )7aD6
== écaﬁa(fRoq + if’qufR_l)7aD6

= 005" Db + il3Cas® [ on( fr—1 Y1007,

But now

tr(Py2Pij2) = PrsPrey» + 2ParPrea + PasPas
= ¢%(6;6;G + 8;,G5;G)6°67G + §'G67G)
+ 2[2(6:Do — 3DP §;fRapXfr™1)*(6° Dy — $D° 6°fR5,))
_ where we have already used the antisymmetry of the structure constants in the first two indices. The
+ 4eCldfap(fr— 1 Y Ta] s fr1 0.

purely imaginary piece will be cancelled when we add the complex conjugate term. Also cap* =0

since we can always choose the structure constants to be completely antisymmetric.
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Now observe that

A(fr~")=6%(fr™")

= +r=8 frlfr— )6 fr] — [fr =16 frlfr =) + (R =) fr (SR )6 Ir],

and note that 6°5; fr = 46%(6;f) = 0, since / is chiral. In particular,
D® [8:fRagl (fR™1 7 [6°47 0] D° = }Dal6'8i(fr™")*41Dy.

The trace now becomes

tr(my oTii7z) = €°(6:6;G + q;éo,cxa‘afc +6'GH7G)
+ 4(6:Da )X SR~ ) (6°Dp)
+eCirdfrfr~ dfrfR)
+ 3D A((fr™1)P)Dp

— 4¢S.

Utilizing the results obtained for higher spin we finally obtain

tr(my/2Pii7z) = mas2(8:5;G + 6:G8;G)6°67G + 6"(:6"6)
+ 2tr(m,
+ map2tr(dfrfr T dfrIR™Y)
+ 4DaA((fr~1)*#)Ds

- 4ma/22.
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Spin 0

Finally we calculate the mass matrix for the scalar-bosons. - The relevant part of the
Lagrangian is
e 'Ly = —gi7*Dud' DP¢ — (8:G6°G — 3) ~ 3Dalfr—")** Dy

= =g Du$'D*¢’ — V(9,9).

Now suppose that V' has its minimum at ¢%; and define the fluctuation A¢® = ¢* — ¢%s. Now by
hypothesis V' and 8V are zero at the minimum. So expanding in terms of the fluctuations we see

e 1oLy = —[gi°]D,(AS)DH(AY)

& [0V 0,"8,""]( AW)
- (A¢* ,A9* N
( ¢ ¢ ) 0.~0,~V 8,~8,—-V A¢]

+ o(|agf?).

Properly normalized fluctuations may be defined using the vielbeins
¢ =elag’,

¢I. = c'_.rA¢i"



Then

e—]ﬂl'o R au¢lay¢]'

— ") ert e300,V erV eyl o,..aj.v](d,J)

-c,‘e,M.«&,V c,‘e;--f'a,-a,--V . ¢J.

+ o(j6[®).

The (mass)® matrix is now seen to be

(mof = e,-".e,fa.v-a,-v e,-"e,-f'_ 8;8;*V
| er‘es79:0;V erleye? 80,7V

(e, €760,V eretesod 6,06,V
L e;"eﬂ'é.ﬁjv C["C]‘j'ail’j“’

_ [T FA % 61‘6]'V]
6185V 816,V

where we have repeatedly used the fact that 6V = §V = 0 at the minimum.

Evaluating the trace of the (mass)? matrix is relatively easy. Evaluating the (mass)?
matrix itself is straightforward but tedious. Let us split the problem into manageable chunks as

follows

808,V = 66,V + 6:26,(3DoD%),

8:8;V = 6;8;Vy + 8,6;(3DoD?).

The gauge contributions are

58;(4Da(fR ™11 Dp) = (64; D)D" + 4Da(8ie85(fr™")**)Ds

+ 6 Dalfr™')*?4;Dp

+ 6 Dot;(fr " ** D + ;D ({5 )? Dy
5:85(4 Dalfr ™" Y** Dg) = (6:8;D4)D° + 3 Dalbbi{ fr™")**)Ds

+ 6:Dalfr™")*#6;Dp

+ 6:Dabi(fa~")*? Dy + §;Dabi( fr~1)** D.

In general, nothing particularly enlightening can be said about the gauge contributions to the
(mass)? matrix. One simplification is to note that 8i6;Dq = 0, since 6;6;Do = 6i(g;x* [ta"'p]qb") =

0. In a similar fashion-

5:6;Da = bin(gae [ta* 1+14")
= gj* [ta* 4']6'.."
= gjk* [ta* i)

= taji'-

Now consider the contribution é5V to the (mass)® matrix. We observe

6:26;Vo = 852 [e9{(5;6x G + 6,G8: G)6* G — 26,G)]
= eCl§G {8,606 G + 6;G6G)6* G — 26,G)
+ {(626;61G + 0,6,G0x G + 6,G6,-6,G)6* G}

+ {(6;6xG + 6;G5xG)b:i6% G — 26;6;G}).
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Now recall §;6;°G = g;;°. Also observe
8i28;0x G = [b;+,05]6x G + 85628, G
= R™4i*j 6mG + 8;(gri*)

= Rmk."j §mG.

Combining these results

8i26;Vo = e%{(6:26* G + 6 GE* G Y81 6;G + 8, G5;G)
— 29i; + 90 §(5x GE* G) — 6G6;G

4+ R™ 425 6mG 5% G).

Notice in particular that the Riemann tensor contributes to the scalar masses. The final term of

interest is now

8:6;Vo = &;[eC{(6;60G + Jjaokc)a*c_ — 28;G})
= eO(5,G[(6,;6,G + 6;G6,G)*G — 26,G]
+ (8:6;64G + 6:6,G 6,G + 6;G 6:6,G)6* G
+ (6,66 + 5,GHGNG

— 26:8;G).

Observing that §%6;G = &%;, we see that

6:8;Vo = eC{(6:6,G + 6,G8;G) + 6;8;G[0, G6*G — 2] + 66,6, G)6* G
+ (665 G6*G6;G + 6;6,G6*G5,G) + 6;G6;G(6,G5*G — 2)}
= % {(6;6;G + 6:G8;G)[6:G6*G — 1] + (6:8;6:G)6* G

+ 6:60G6*GE;G + 8;6,GE*Go;G).

Now define
G = ¢/%,G,
Gi1 = er'e;78:6,G,

Gk = er*e/Tex*0,8;6,G.

The (mass)? matrix decomposes to

= sy et
(Mo} 1oy = map2®{(61°s + (G + G G¥)[Gk s + Gk G )
+0r5(GxGX —3)— GrG;
+ RrsxtGXGL}
+ tasre D* + 61°Do (fR™Y)? 0;Dg
+ 8Do(er e 160850 fr= 1Dy -

+ 61 Dabs(fR=")*" Dy + 6:Dabr+(fr )P Dp

(mo)?;; = msp2?{(0:6,G + GG )G GF — 1]+ Gk GK
. 4GkGXGs+GkGXGy)
+0:Da(fR™1)*#6:Dp
+ 4Da(er'e /11665 /R 1P DDy

+ 6:Dabs(fR™")** D + 6;Dabi(fr")*? Dp.

This finally is the full expression for the scalar (mass)? matrix. In its present form it is too unwieldy

to be of any great use. Some simplifying ansétze will be discussed in subsequent chapters.



Fortunately, the trace of the (mass)® matrix is now very easy to evaluate

ff(mo)z. = (mo)? ;1 + (Mmoo
= §'6,V + 6;6°V
=(A+3)W

=24V,

since A = A when acting on scalars. The explicitly calculated formula for (mo2);+s now yields

tr(mo)? = 2maya2{{n + (6:6,G + 86;G6;G)(6°67G + 6'G67G)|

+ n(8G6'G —3)

— &G 6'G
- + R'y! %G 6,G)
+ 2tr(ty)D*

+ 206:Da X SR ) (6'Dy)
+ Do (A(fR™)*) Dy

+ 2A6*Da)bi( fr ™) D + 28:Da)8*(fr )P Ds.

The last two terms occurring here are complex conjugates of each other and have previously been
shown to cancel against each other (recall the spin 1/2 calculation). We also utilize the fact that the

condition V == 0 at the minimum implies

| 9ms /2 2(8:G6°G — 8) = — Do D°.

Additionally, recall
tr(m1)* = 26: Do X fr™1)*2(5°Dp).

So we see
tr(mo)? = n[2mg/2? — D, D*]
+ 2m3/22%(6:6,G + 6,G5;GN6°67 G + 6G67G)
— {6m3y2? — Do D)
+ 2ma o2 (RI6GE,G)
_+ 2tr(ta)D*
+ tr{m

+ Da(A(fr™*)*P)Dp.

And finally

tr(mo)? = mas22(8:6,G + 6:G6;G)667G + 6°'G6' G)
+ (n — 1)[2ms /22 — Do D7) .
— dmgp?
+ 2map(5°GRI5;G)
+ 2tr(t, )D*
+ tr(my )

+ Da(A(fr™1)?)Ds.

Having now exhaustively and explicitly evaluated the (mass)® matrices and their traces,

the (mass)2 sum rule itself will be trivial.



The Sum Rule

Str(m?) = tr(mo)? — 2tr(my g2} + 3tr(m1? — atr(mapn?)
= (n— 1)[2my2? — Do D?|
+ 2753,,2(6.»6,0 + 6,G8;GX6°87 G + §°Go'G)
— 4m; /22
+ 2my,*(F'G R 69G)
+ 2tr(ta)D*
+ tr(my)?
+ Da(ART)**)Dp
— 2ma%(8:8;G + 6:G5,GN6%87G + 6°G67G)
~ 4tr(my )
. = 2map?tr(dfrfr A fRIRTY)
— Do(A(fR™1)*")Dp
+ 8mgy?
+ 3tr(m,

bt 477I3/22.

Collecting terms,

Str(m?) = 2(n — 1)[m32® — $DD°)
+ 2tr(ta)D”
+ 2ma2%(6°G Ri? 6,G)

— 2maptr(dfr fR dfR fRTY)

“This should now be compared to the sum rule of Cremmer et al.[2]. It is remarkable that the extra
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contributions due to noncanonical kinetic energies are so simple. When comparing to the results of

Cremmer et al.[2], recall that (5 )rere = 9(a)Cremmer, a0d that (Do )here = —(Da)Cremmer-

Having now exhibited the mass matrices and the sum rule assuming that V]vscuum == 0,

we shall turn to the more general question of just how a vanishing cosmological constant may be

obtained.
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Tuning the Cosmological Constant

The scalar potential for N=1 supergravity coupled to gauged chiral matter is [1,2]
V = ¢C(8:G6°G — 3)+ 4D, D°.

We shall define the cosmological constant to be the value of V' at its absolute minimum. More
carefully we can account for the possibility that the sbsolute minimum occurs at infinity in field

space by defining -

A==infV.
Here the infinum is to be taken over the entire Kahler manifold M of scalar field values. The key
to this section lies in the following simple obsevation.

Theorem
It 3go e M :8Gl4, =0
then 1) ¢; is a critical point of V (8V]4, = 0)

2) Vig, < 0.

Corollory
I A = 0 and supergravity is broken

then v¢ € M,08G 0.

Proof

The proof is trivial. We just observe that
5V = eC[(6:6;G + 6:G6;G)IG — 26:G] + 48:(DaD”)

= eCY(6,6;G + 6:G5;G)67G — 26,G} + (6:D,)D* — ¥(6:/Rap)D*D?

and

Do = 6:G [ta*;]¢7.
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Note that the use of covariant notation has allowed the proof to be derived for noncanonical kinetic
energies with essentially no extra work over that which would be required for the canonical case.
Observe further that the above theorem shows us that the search for the zeros of 8G is as important
for the breaking of supergravity as is the search for the zeros of 8f in rigid supersymmetries. In the
supergravity case the nonanalyticity of G leads to extra technical difficulties. We shall not pursue

this subject, rather we shall prove a sort of converse to the previous theorem.
Let V; denote the potential V' with all occurrences of G replaced by ¢G, being careful to -

remember that the index contraction §;G6*G hides an occurrence of the inverse metric. Thus:

Ve = eC[e6;G6°G — 3]+ 4e2Do D°.

Theorem
It inf(6,G6°G) =1n > 0

then 3¢o € (0,3/9) : V,, has A =0.

Proof
Let A, = inf V,. Then
1) lim V, = ~3,
=0
2Va 2 exp(£G)[2n — 3] + H(2)PD.D> 2> 0.
So

1)lim A, = —3,
=0

Ag) 2 0.

Since A, is continuous in ¢, it follows that 3¢, € (0, 3/n] such that A, = 0. Note that inf(V;) is a

continuous function of ¢ even if the location of the absolute minimum is not a continuous function
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of e. Further observe that in terms of the superpotential W the scaling transformation adopted here
is:

G~ G,
K = K,
W W,

Some comments oil the analytic structure of the supérpotential W are in order. It was pointed out
by Bagger and Witten [1] that the superpotential W is an anaiytic section of some holomorphic line
bundle constructed ov?r’the Kihler manifold /. The word analytic is potentially-misleading. What
is really required [2] is that W be a function of the ¢'s only, not of the &'s lie W = W(g)]. But the
superpotential does not lu_we to be everywhere differentiable in order for the Lagrangian to make
sense. In particular both poles and branch cuts are upermissible, though they may be considered

unpleasant. It is useful at this stage to classify superpotentials as follows.

Class] : W uialy\‘,ic but not entire on 9/

—s30 that poles/branch cuts exist.

Class I : W entire but In W not entire

—30 that W has seros on M.
Class IIl: 1o W entire on M].

It is common to restrict attention to Class II superpotentials. This would be inappropriate in our

discussion, since Class II is not closed under the action of the scaling transformation W — We..

Indeed, elements of Class I are in general mapped into Class I by this transformation. While
commonly occurring superpotentials are of Class II, the other possibilities should not be ignored. In
particular, if the K&hler manifold #/ is compact (1], then the superpot‘ential is either identically zero

oris 6f Class I

4
It is possible to arrange for supergravity breaking with A = 0 by using superpotentials

from any of the Classes LI, or Ill. This may best be seen by explicit examples.

Class I
Take
K=3% W=¢k
G=2¢¢+ §1nP¢.
A quick computation yields

V = exp(d9) [69]~% (36— 4.

The absolute minimum occurs at ¢@ = §, V = 0 with maz = ¢9/2 = eK/2|W] = (§e)t.
This potential has been discussed by Ferral;a et al.[10], by Deser and Zumino [11}, and by Gaillard

et al[12]. We shall later return to this example in a new disguise.

Class I

Take the Polonyi potential [13):
K=% W=¢+02-v3),
. G=3¢+ {6+ (2— V3)?}.
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Take
K =3¢; W= 3¢*+iV3g;
G=0¢+46*+iV30+ 49 — V3.
8G =F+¢+iv3.
V=cClF+¢+ivER -3
=%(p+ 9.

The absolute minimum occurs at V = 0; Re¢ = 0; and Im¢ arbitrary, while
gy ® = ¢ = exp(4(Re)? — 2v3 Img),

Mgz = exp(— V3 Img).

These examples are sufficient to indicate that all oi" the Classes I, I, and III are potel_nially
of interest. We shall now leave these toy models and return to a more general analysis. One reason
that we have emphasised the different possible analyticity structures of the superpotential W is given
by the following theorem.

heorem
If A = 0 and supergravity is broken,
then either the superpotential W is not analytic at the origin,

or the model contains at least one gauge singlet superfleld.

Proof

Assume the contrary, that the superpotential is analytic at the origin, and that the model

contains no gauge singlet superfields. We shall show that under these conditions either supergravity

is unbroken or A 3 0.

If the superpotential is analytic at zero field, and does not depend on any gauge singlets,

then the gauge invariance of the superpotential implies

aw
— =0,
8¢* $m0
Now noting that D, = 0 at ¢ = 0 we see that
V(¢ = 0) = X {(6;W + WK Y(6'W + W6*K) — 3WW} + 4D, D>

= KWWK K — 3).

The Kihler potential must itself be differentiable (though certainly not analytic) at the origin. Then

gauge invariance of the Kihler potential implies

K| _,
80 lgmo
Therefore V(¢ = 0) = —3eXWW.

Thus, either A < 0 or ¢ = 0 is a minimum of V' that does not break supergravity .

The significance of this theorem is that it informs us that supergravity breaking is always
technically ugly. Either the model contains gauge singlet fields, [a fact that is mysterious at best,
and at worst neatly foils any attempts at family unification], or, a scarcely more palatable possibility,

the superpotential is not analytic at zero field.

It is relatively easy to guarantee a zero cosmological constant but the price is high. To get
A == 0 one need merely construct a nonanalytic real function G(¢, @) such that 8,G(¢, @) possesses
no zeros. [More rigorously: we really want inf(6;G9°G) £ 0]. Having found such a G it can always

be tuned to set A = 0. Unfortunately, this is unnatural in two senses:
1) The set of G's leading to A = 0 is of measure zero in the set of all G’s.

2) One must live with either gauge singlets or a nonanalytic superpotential.
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‘While some papers have appeared claiming to lift the unnatualness of the A = 0 condition (eg (14]),

this can onlj be done by acts of severe violence to the framework we have been discussing.

‘We shall now exhibit 8 model that uses the nonanalyticity of its superpotential to simul-

taneously break supergravity and its gauge symmétry. ‘We shall then turn to a general discussion of

models containing gauge singlets.

Nonanalyticity of ‘the Superpotential

In the previous section we argued that supergravity breaking with A = O requires either
a nonanalytic superpotential, or the existence of gauge singlet fields. However we have not yet
exhibited any specific examples of how the nbnanalyticity of W allows us to avoid the presence of

gauge singlets.

My attention was first drawn to models of this type by the work of S.Rudaz [15]. Rudaz

considers 8 model with

W(B) = majop?e— /26l V3—1—a)ls/u]—) £ —-a+1),
‘ M

= ¢‘H‘j¢5.

Here H;; is some gauge invariant matrix. Rudaz was able to show that this choice of superpotential
simultaneously breaks supergravity and the gauge symmetry and that A = 0 at the minimum. The

analysis of the previous section indicates that the branch cut singularity in z is an essential ingredient

in this result. We note that

ow H"W
—_— R —— for ¢ near zero.
8¢' V& Hué

ow

The fact that ( 3 ¢'.) is not well behaved as ¢ ~ 0 is what permits us to avoid the use of gauge

singlets.

We shall now exhibit a somewhat simpler example that exhibits the same behaviour. The

example will be constructed by utilizing a systematic search among all power law superpotentials.
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Consider a model of the form

K=%¢=0¢"¢
W = (¢¢)7 = (¢'¢")"
G = ¢¢ + 7In[(¢¢)$¢)]

Then
inf(6,G6°G) = inf(]0G|?)
=i+ 1551
. - 3¢
= inf(27+ 39+ [ E2L))

20

Thus, applying the theorems of the previous section, we see that:

¥y >0 3¢ such that the model
K = €(99),
W =(¢¢)"7,
G = €(#¢) + 7 1nl(¢$)(#P)]]

hasA=infV =0.

Note that, because of the simple form of the Kihler potential, we can further simpify this by
defining new = v/€@Pota. Then deflning v = €7 ; g = —vIne, we see that the model
K = ¢¢,
W= p(¢¢)"

G = $¢ + vIn{(#¢)39)] + 24,

has A = 0 for at least some choices of ¥ and u.

Let us now evaluate the scalar potential
V= eC{[+ 208512 — 3) + 3(S107,

V= CG($¢[1 + E;:;(:;_ﬂ] + 4 — 3} + §($t¢)21

V = (e%(¢¢) " ($0) " Hool(0X58) + 4v°] + Uv — 390X P8)} + 4(Ft9)?,

2
V= {%¢¢)"'(¢9)"" }{Easl 6] — 2v| +2v|¢\/96 — BVoo

2
+ (8 — 3)(¢¢XW)}

+ ¥(@tg)2.

The potential has thus been reduced to a sum of squares. It is now easily seen that A=infV =0

it and only if » = +§. For v = +§ the model reduces to

K = ;¢1
W= (¢o)t,
G = ¢4+ & In[(¢6X59)] + 24,

- —— -— 2 oy by
V= ezne(“)(w)-i(w)-i{ 6 ||¢¢1 -§ + §|¢\/5 - 6V%6

2
} + 4(dte).

The absoulute minumum occurs at

8) |(¢¢) = §
b)¢ = ¢
¢)D=0
dA=0

€) a2 = €912 = eK/3W] = (3ot

Note that the condition |(¢¢)] = § leaves undecigled the direction of the gauge symmetry breaking.
Also note that all factors of Mp;eu.x have been absorbed into my definition of the fleld variables.
Consequently the physical scale of the gauge symmetry breaking in this model is Mpiancs, While the

scale of supergravity breaking is given by the free parameter mz/2.
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This example shows that it is possible to simultaneously break both supergravity and gauge
symmetry at the tree level. This is as far as I wish to pursue this particular avenue and we shall

now return to a more general setting to consider the case of models with gauge singlets.

52

Sector Structure

‘We shall now turn to the possibility of achieving supergravity breaking by the inclusion
of gauge singlet;s. The analysis so far has avoided making any simplifying assumptions about the
structure of the Kéhler potential (K), the superpotential (W), or the gauge metric (fag ). To leave
the model so unconstrained would, at this stage, lead to unmanageable algebraic difficulties. To
simplify life, we shall assume that the models divide into uncoupled sectors. The different sectors
catnot be completely uncoupled, since, if nothing else, they all couple to gravity. At best we can

try to minimize the cross-coupling.

‘We shall start by assuming that the Kéhler manifold describing the scalar flelds is a pfoduct
manifold M= M, ® )., and that the metric on M) is the natura! one induced from M/, ® m..

Splitting the coordinates on m according to ¢ = (¢;, $=), this means that we may write

K(¢1 a) = Kl(¢l vax) + K2(¢21 32):

91 0
gij* = =0 g
: Fadise

This further implies
o = (0:G [‘a‘j] ¢i) = Da,x + Dc,z-

A subtle point is the choice of condition to be imposed on the- 'supérpotentia]. ‘The best choice

appears to be

W(¢) = Wi(d1) X Walsa).



For this choice
G(¢» E) =G, (¢h$1) + G2(¢l ’$2)’

thus leading to a clean separation when G is inserted into the scalar potential. This choice (W =
W1 W) is the one advocated by Cremmer et al.[6]. An alternative choice W(¢) = Wi(¢1) + Wa(¢2)
championed by Hall et al[3], fails in its primary objective, that of obtaining a clean separation of

the sectors.

There is no particularly appealing choice for the gauge metric /2,4 and we shall leave it
arbitrary. We observe
V = ¢%(5,G6°G — 3)+ 4D, D*
= $1+G2(5,G,6'G, + 6,G26°G2 — 3) +‘ #(Da,; + Do gD%1 + D)
= e%[¢C1(8,G16°G1 — 3)+ 4Da,1 D)

+ ¢€1[¢9%(6,G26°G2)} + 4[Da,2D*2 + 2Da 1 D).

Our previous arguments have shown that in order to break supergravity and have an analytic
superpotential we must have gauge singlets present in the model. Accordingly let us assume that
sector 1 consists solely of gauge singlets, while sector 2 may contain both gauge singlets and gauge
multiplets. Under this assumption D,y = 0 and we have

V = % [e%1(6,G16°G, — 3)]
+ [e9(e926:G26°G2) + 4 Do 2 D%2)

V=%V + Vil

Here V; is just the usual scalar potential for gauge singlets coupled to supergravity , while V5 is by
construction positive semi-definite. We shall adopt the suggestive nomenclature of calling sector 1

the cosmological sector (A sector), and calling sector 2 the matter sector.

Indeed let us now write

V =eC=V) + Va,
Va = eF2(8:G26°Gp — 3),

Vin = €946%(6,G 1 6'Gm) + 4DaD®.

Suppose now that the cosmologicﬂ sector has been chosen so that V, has an absolute minimum
at ¢4 with V4 = 0. Suppose further that the matter sector satisfies 6;Gs = O at ¢,,°. Then
the point (¢A°,¢,,,-°) is an absolute minimum of the full scalar potential V with zero cosmological
constant. This jﬁstiﬂes the terminology “cosmological sector” since it is the cosmological sector that
is responsible for setting the cosmological constant equal to zero. It may be tempting to consider
renaming the cosmological sector the hidden sector. Résist this temptation. While it may often be

the case that the particles in the cqsmological sector are very heavy this need not in general be true.

It should be noted that this analysis has provided a useful constructive technique for
building models with zero cosmological constant. One starts with any set of gauge singlets whose
mutual interactions satisfy A = 0. (Many such examples are known. For instance, recall the
models we exhibited when discussing Class LI, and IIl superpotentials.) Now one just pastes on any
arbitrary collection of fields such that the equation 8;Gnewfictas = O has one (or more) solutions.

Any model constructed in this way will still have A = 0 after inclusion of the new fields.

The most important result of hypothesizing a sector structure as detailed above is that it

implies a radical simplification of the mass matrices.
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By hypothesis the vacuum in such a sector model satisfies
W=V, =V,=0.
2)6iGm = 0.
3)Do = 0.

4)0,V = §;Vp = 8,V = 0.

(Naturally these conditions are interrelated.) Consider now the terms contributing to the spin 0

mass matrix

(8i872V) = eO=[6:6,2 VAl + €96, 164 Cn6* G m] + 48:8;2[Dalfr— )P Dy)

= eOn[6:67Va] + Clgis» + 6:6xGmb;26* G ] + 6:Da(fr 2 )P 6;2Dp.

Now also
. (8:8;V) = €O [6:8;VA) + €C5:8; (64 Gmb6* Gon] + §6:65;(Da(fr—2)*4 Dg)
= ¢Om [6:8;VA) + €©(26:6,Grm) + 6:Do(fR1)*P6;Ds.

" This tells us that the scalar (mass)® matrix decomposes into a direct sum '

(mo)’_ = (mol) & (Mo,

. 51705Va 00 Va
(mo), =€ ‘[ X ]
JIGJVA_ 6102V

(mof. = ca["'l + Grk*Gks 2Grese ]
m 2G;s 01s* + Gk Gkes*

[6]‘DA6]DA GI'DAsl'DA]
01Da6sDa  61DabsDa

In the fermion sector the “would be Goldstino” now resides solely in the cosmological sector

where we have used the fact that D, = 0 in the vacuum to write:

61Da = 6/(ha®Da) = ha® (61Da).

Because Dy = 0 at the minimum, the mass matrix for gauge bosons may be written

L(m;)’ 5 = 2(6:D4 6'Dp).

L= J=(6:Ga xL’).

Thus the fermion mass matriz also decomposes into a direct sum .

where

The matter spin 1/2 mass matrix mixes gauge non-singlet matter fields with the gauginos

myifa =my2, @ M2,

(myga, )10 = —e®l2{es%e ;9 [5:6;Gr + §6:Ga8;Ga)).

(myp2,,)10.=—m3/2616,Gpm

(ma2,,)1a = iV28rDa

(myf2,.)a8 = &"‘Ia,z hAahB’ dfap-

Where df,p now only picks up a contribution from the cosmological sector

Uap = (CAX0ifas).
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This direct sum structure for the (mass)? matrices means that we can construct separate (mass)?

sum rules for the cosmological sector and the matter sector.

Str(Pam?) = tr{mo)?, — 2tr(my 2, — dmyse®

= 2m3/32[(n,\ - 1) + J‘GA R.'j 6,'GA].

In the matter sector we see
tr(mo ), = 2masa®Inem + 86:6;G 6°67G] + tr(m, P,

tr(myy2)?,, = may22[6:6;G 667G + tr(dfrfr™ dfrfr~" )} + 2r(my 2,

Str(Pm m?) = tr(mo)?,,, — 2tr(my 2P, + 3tr(m 2,

= 2mg 2% [nm — tHdfafr " IR "))

Indeed the restrictions imposed by the assumed sector allow us to go even further in the reduction

of the mass matrices.

The Matter Sector: Leptoquarks and Higgses

The matter sector by construction contains both the leptoquark and Higgs fields of the

model. Let us define the leptoquarks as those superfields whose scalar components do not acquire a

gauge symmetry breaking vacuum expectation value. All other superfields (including gauge singlets)
will be called Higgs flelds. Consider the object 5Dy = gij*[ta’ k*]¢*". Then by definition, 8 Do =
0 for the leptoquarks. Thus we see that among the spin 1/2, flelds leptoquarks do not mix with
gauginos, though in general Higgsinos do mix with gauginos. For the scalar (mass)? matrix we see
that at least the gauge contribution does not mix sleptosquarks wih Higgses. Indeed, we see that
if any sleptosquark Higgs mixing, or leptoquark Higgsino mixing does occur, this mixing can only

arise from the terms involving 6;;G .

‘We shall now assume that §;0;Gm is a direct sum
8:8;Gm = (6:8;G)Lq ® 6:8; Gy

A decomposition of this type could certainly be achieved if the matter sector itself had sector
structure (K, = K1LQ + Kn;Wm = WrgWy). The sector structure hypothesis is unfortunately
too strong since in such a case leptoquark masses are independent of the Higgs vacuum expectation
values. Thus leptoquark multiplets get gauge invariant masses. To avoid this problem, a sufficiently

general ansatz is
Gm = Grq + Gy + Cmis,

where G, is at least quadratic in leptoquark fields. An even more restrictive ansatz is
m=Ki1q+Kn

'm = Wy gWie?,

where {1, taken to be at least quadratic in leptoquark fields, is responsible for the mass splittings

within leptoquark multiplets. However, it should be noted that the only assumption that is really
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necessary is that 66G,, decomposes into a direct sum when evaluated at the vacuum. Under this
condition, the matter sector mass matrices themselves decompose into direct sums:
(mo),, = (mo)1q & (Mo)ly,

(mis2)m = (M1s2)Lg © (Myg2)n.

It is now easy to see that
.
6oy + (618K G5 6r°G)q 26r+6,*G)Lg ]

(Mmo)Pro=m ’[
e s . 618,61 8100 + (616 G)o(6% 6G)iq

8 105G Sice Sicob oG
= myz? K (605 )LQ][( K UL )LQ]

(®réxG)Lq S1xce 5x81G)Lg ok

The scalar mass matrix is

ory (6r+6,G)Lg
{mo)Lg == may2
(6185G)Lg 810

For the spin 1/2 particles

(myy2)Lg = —rﬁap[(31510)bq]. ]

Warning: (6;0,G)Lq = 6165(GLg + Gmis)- The Higgs sector has not been improved by our ansatz.

Indeed,
‘ ~ fr 6rs 667G (6r»DabsDa) (6rDAb6s*Da)
(moPy = mapa? '
o 6r6;Gn b1 (6:1DA6sD2a) (6:DabsDa)
—may2bi6,Gy - iV26:Da
(myp2) =1}
4 v26;Dp mgpha®hp?dfFog
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‘While the masses in the Higgs sector are in general quite complicated the masses in the leptoquark

sector are now easily diagonalized.

Since (6;6,G) is a complex symimetric matrix it may be decomposed as follows
(6:6:G) = (UuUT )1,.

Here U is a unitary matrix, UT is its transpose , and # may be chosen to be a real, positive

semidefinite and diagonal matrix.

Now observe that

M T
LIT

So diagonalizing (m) s2)Lg leads to .
(mys2)Lg = —may2n,

- [ p
(mo)Lg = ms/zL ]
I
The eigenvalues of the scalar mass matrix are seen to be
[ )
AE = mgya(1 £ 4°).

In terms of tree level masses we now see -

[ (mof)Lq = Imasa & (my2)ql-

This sum rule now connects thq;_ma_s_ses;pt..the'.leptol'ug and qnnrks:withthou.@flthe sleptons and
squarks. This sum rule has previously been discussed by Cremmer et al.[6], but emerges in this
context in a more. general framework. In particular the analysis presented here does not require
canonical kinetic energy terms for leptons and quarks. This sum rule is rather robust, the technical

assumptions we. have made to enable derivation of this sum rule may be summarized as:
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1) Grotat = Ga + Grigge + Gleptoguark + Grmis-
2) (8) G, is chosen so that A = 0.
(b) 6iG Higge = O has a solution at ¢* 1,44, 7 0.
(¢) 6:Gieptoguort = 0 8t ¢'teptoquart = 0.
An approximate sum rule may be obtained for the Higgs sector. Thé derivation we used

in the leptoquark sector is spoiled in the Higgs sector by terms proportional to §;D4. Thus we may

write

[ (mot‘)ﬂ = lm3/2 + (m!/2i)HI + o(myauge)' J

This approximate sum rule relates the masses of the scalar Higgs particles to those of their associated
Higgsinos. Unfortunately, in realistic models m g, is likely to be of order my/; or of order mgur,

80 that this sum rule is likely to be very badly broken.

This completes our analysis of the matter sector.
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Masses in the Cosmological Sector

In this section we shall only be discussing the cosmological sector, so we may without
ambiguity drop the subsctipt A. The cosmological sector by hypothesis has no gauge interactions,
while its vacuum occurs at V = 0, §V = 0. These constraints imply that

(8 G;G' =3,
S ) G el =—G;.
These constraints have not yet been utilized to their fullest extent. Explicitly evgluating our general

formulae for the scalar (mass)® matrix leads to

i( ? [(”'0)21'1 ("‘0)21'1']
mo)” ==

(Mo, (Mmoo

(mo) e, = map2®l6r s + Grg+Gry + Rrosrch G GL]

(mo)1; = ma2?(2G s + Grsk G¥)

(moP . 2[61‘1( 4GI'K.‘]["K’J GK'J']
Mo )" = may/2

Gixk  fiks WGks  Oxcs

A

+ 2[R"1KLGKGL Grrxoak']
Mg /2
Gy GX Ry kGG

The fermion masses are

. W/z,, = ma2l6:6:G + §G1G ).

These matrices may be partially diagonalized. Let the index / run from 0 to n — 1. Then the

vielbein ¢;° may be chosen in such a manner that G; lies along the 0 direction and is real. That is:

Gr= \’560[ =c! = Gpe.
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This implies Note that if both Ry seoe* and Gyso are zero at the minimum, then this predicts the existence of

Goo =—1 an exactly massless scalar in the cosmological sector. Indeed, particles in the cosmological sector

Gor=0, I€[1,2,...,(n—1) are not necessarily heavy; it is in general misleading to refer to the cosmological sector as a hidden

Grs  sbitrary, IJe€[L,2,...,(a— 1) sector.

The Class I example previously considered may be used to illustrate this phenomena.

;
Now diagonalize Gy, using Gpy = (UpUT where 4 is real and diagonal and we may choose ‘
og Gty = (UBU )1, # 8o ¢ may Consider the 1-dimensional model defined by

#rs = p16; (no summation),
K=3%¢ W= }¢*+iv/3
fioo = pip == —1; all other u; positive semidefinite.

G =3¢+ 46" + V30 + 43 — W33

. _ 6 -
There are n — 1 physical fermions after elimination of the “would be Goldstino”, and their masses V=c0+9
are: N
The scalar potential is -
("'1/2)1 = maﬂ'l‘l'- le lly 2: coe ,(" - l)’.
V = {exp(2[Re¢]* — V3Im¢)}[2Reg]".
There are 2n scalars whose mass matrix reads
1t WY [3Reree VEGE e Then
(mo)? = myy2 + _ . \
I Lv3Gi 3Rspre m(Reg) = 2ma/z,
If we assume that the contributions from the Riemann tensor and from G;sx are small, then the . m(Im¢) = 0.
scalar masses are :
Returning to our general analysis, it must be emphasized that the corrections to our approzimate
7 I i : -
(mo)" = maya|1 & | l| + oR,Grsx)- mass spectrum [ o R, G1sx ) ] are typically large, often being so large that the approzimate spectrum
In particular is not useful.
(mo)—° —_ o(R,Grix) To cqmpleu the analysis there is one special case that: is-amen.able to further processing.
(mo)*® =2 mas2 + oR, GriK). Let us assume that the cosmological sector is minimal, in'the sense'that it is of complex dimension
1. In this case mo spin 1/2 particles remain after elimination of the “would be Goldstino”. The
‘While for / running from 1 ton— 1: ‘ Riemann tensor has only one nonzero component.

! — lma [ ). .
(mo) Imasz2 £ mip2’l + AR, Grak )J - Ruotos* = Rop = R.
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The scalar (mass)? matrix is now {e) io

- J 2+3R =24 VE(Go)
Mo} = mgaf2 : ‘We have investigated the vacuum structure of N=1 supergravity coupled to gauged chiral
—2+4+ V3G 24 3R ga pergravity coup! gaug

So matter with general noncanonical kinetic energies for both matter fields and gauge fields. We have

explicitly calculated the tree level (mass)® matrices , and have seen how the supertrace of the (mass)?
L tr(mo) = (4 + 6R)masa?, |

matrix is affected by noncanonical kinetic energies. The sum rule relating Lepton and Quark masses

while the masses themselves are to those of their scalar partners (mgf = |maz2 & myal) was derived in this more general context

and so holds even for noncanonical kinetic energies. Some general theorems on the occurrence of

moﬂ: = M3/2\/(2 + 3R) :h |2 - \/§GOOO|-

supergravity breaking were established. In particular, attention was drawn to the crucial role played

by the analyticity of the superpotential at zero field.
This now completes our analysis of masses in the cosmological sector.
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