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Here we shall use the same notations of the original paper. The references
to equations, lemmas, propositions, theorems are with respect to the paper
unless stated otherwise.

The argument provided for the proof of Proposition 3.1 is not complete.
It overlooks the fact that the solution 2-form η(x, t) of the problem (3.1)
may contain non-trivial (2,0) and (0,2) parts. Hence Proposition 3.1 needs
a correction. We thank Gilles Carron for pointing out this oversight in the
original proof of Proposition 3.1 and his comments. We also thank Luen-Fai
Tam for helpful related discussions. We refer interested reader to [5] for an
alternate proof of Theorem 1.2.

Since the preservation of the positivity for solution 2-forms solving the
problem (3.1) in the paper, without knowing that the 2-form being (1,1)-type,
seems elusive (even for the (1,1) part projection of the 2-form solutions) we
replace (3.1) with the following initial boundary value problem on (1,1)-
form η. Let Ω be a smooth bounded domain in M . For a given point p ∈
∂Ω , let ν be the unit outward normal in a small neighborhood near p. We

The online version of the original article can be found under
doi:10.1007/s00222-012-0375-6.

L. Ni (B)
Department of Mathematics, University of California at San Diego, La Jolla, CA 92093,
USA
e-mail: lni@math.ucsd.edu

http://dx.doi.org/10.1007/s00222-012-0375-6
http://dx.doi.org/10.1007/s00222-012-0375-6
mailto:lni@math.ucsd.edu


512 L. Ni

also extending ν(x) by parallel transport along the geodesic expx(tν(x)), for
|t | ≤ ε and x ∈ ∂Ω , to a neighborhood of ∂Ω . For any p ∈ ∂Ω , pick a small
neighborhood of it and choose a unitary frame {ei}, 1 ≤ i ≤ m, so that em =
1
2(ν − √−1Jν). Let {e∗

i } be the dual. For η = √−1
∑

1≤i,j≤m ηij̄ e
∗
i ∧ e∗

j we
define a boundary operator N (η) by

N (η) = √−1
∑

1≤i,j≤m−1

∇νηij̄ e
∗
i ∧ e∗

j .

One can check that this is well-defined. Now we replace (3.1) with the fol-
lowing initial boundary value problem:

⎧
⎨

⎩

( ∂
∂t

+ �∂̄)ημ(x, t) = 0, on Ωμ × [0,∞),

ινημ = 0, N (ημ) = 0, on ∂Ωμ × [0,∞),

ημ(x,0) = Ric(x), on Ωμ.

(0.1)

Here ινη (which is the same as nη in the paper) denotes the contraction
with the unit exterior normal vector ν. It can be checked that this is a parabolic
initial boundary value problem. In particular, the total number of the boundary
conditions matches with the number of unknowns (unlike the problem (3.1)
restricted within the space of (1,1)-forms).

Proposition 0.1 Assume that Ω is a smooth bounded domain. Let η(x, t) be
the unique solution of the initial-boundary value problem (0.1). Then η(x, t)

is a real nonnegative (1,1)-form provided that η(x,0) is real nonnegative.

Proof With the above local frame, the boundary conditions amount to ηim̄ =
ηmī = ηmm̄ = 0 and ∇νηij̄ = 0 for 1 ≤ i, j ≤ m − 1. The original proof can
be carried over verbatim. �

Now we have to modify the proof of Theorem 1.2 accordingly since we
no longer have the d-closedness of the solution. First let uμ(x, t) = Λημ.
The boundary value conditions imply that ∇ν(ημ)iī = 0 for 1 ≤ i ≤ m − 1
and ∇ν(ημ)mm̄ ≤ 0 due to that (ημ)mm̄ ≥ 0 and (ημ)mm̄ = 0 on the boundary.
Under the assumption (1.1) of the paper, uμ(x, t) as a solution to the heat

equation, satisfying ∂uμ

∂ν
≤ 0. Moreover, by the argument on page 754 of the

paper, {uμ} is bounded over K × [0, T ] by a constant C(K,n,S, T ). Since
uμ(x, t) dominates ‖ημ‖, this shows that problem (0.1) has a long time solu-
tion and moreover one can find a convergent subsequence out of {ημ} and ob-
tain, as the limit, a global (1,1)-form η(x, t), a solution to the Hodge-Laplace
heat equation on M × [0,∞). Since Λη(x, t) solves the heat equation and is
positive, the uniqueness theorem implies that Λη(x, t) = u(x, t).
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To prove Theorem 1.2, we also need that u(x, t) satisfies the Li-Yau-
Hamilton type estimate, in particular, ∂

∂t
(tu(x, t)) ≥ 0. Now we apply The-

orem 1.1 of [2], which after taking V = 0 asserts, via the Kähler identities,
that

ut + 1

2

(
∂̄∗Λ∂̄ + ∂∗Λ∂

)
η + u

t
≥ 0.

The proof will be completed if we can establish that σ1 � Λ∂̄η and σ2 � Λ∂η

vanish on M .
To prove σ1 = 0, we observe that we may also construct η as follows. First

construct η(i), a global (1,1)-form solving the Hodge-Laplace heat equation,
obtained as the above via exhaustion domains with the initial data η(i)(x,0) =
φ(i)(x)Ric(x), where 0 ≤ φ(i) ≤ 1 being cut-off functions with support in
ball Bo(Ri) centered at some fixed point o ∈ M and |∇φ(i)| ≤ C

Ri
with C > 0

independent of i and Ri → ∞. Then obtain η(x, t) as the limit of a convergent
subsequence of {η(i)(x, t)}. We shall also denote φ(i)(x)Ric(x) by ρ(i)(x).
Correspondingly we have σ

(i)
1 � Λ∂̄η(i) and σ

(i)
2 � Λ∂η(i), which converge

to σ1 and σ2 respectively.
Let η

(i)
μ be the solution to the initial boundary value problem on Ωμ. For

the boundary problem (0.1) it is easy to see that

∂

∂ν

∥
∥η(i)

μ

∥
∥2 = 2

〈∇νη
(i)
μ , η(i)

μ

〉 = 0.

On the other hand, we have the Kodaira-Bochner formula below for any
(1,1)-form η

�∂̄ηij̄ = −1

2
gst̄ (∇t̄∇sηij̄ +∇s∇t̄ ηij̄ )+

1

2

(
Rl

iηlj̄ +Rk̄

j̄
ηik̄

)−Rij̄
kl̄ηkl̄ . (0.2)

Hence it implies that
(

∂

∂t
− �

)
∥
∥η(i)

μ

∥
∥2 = 2

〈
∂

∂t
η(i)

μ − �∂̄η
(i)
μ , η(i)

μ

〉

− 2
∥
∥∇η(i)

μ

∥
∥2

− gpt̄gsj̄
(
Rl

p

(
η(i)

μ

)
lj̄

+ Rk̄

j̄

(
η(i)

μ

)
pk̄

)
(η(i)

μ )st̄

+ 2Rpj̄
kl̄

(
η(i)

μ

)
kl̄

(η(i)
μ )st̄

≤ −2
∥
∥∇η(i)

μ

∥
∥2

.

This, together with the boundary condition ∂
∂ν

‖η(i)
μ ‖2 = 0, in particular (as in

[3] and [5]) implies that

2
∫ t

0

∫

Ωμ

∥
∥∇η(i)

μ

∥
∥2

(x, s) dμds ≤
∫

Ωμ

∥
∥η(i)

μ

∥
∥2

(x,0) dμ.
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Letting μ → ∞ we obtain that

2
∫ t

0

∫

M

∥
∥∇η(i)

∥
∥2

(x, s) dμds ≤
∫

M

∥
∥ρ(i)

∥
∥2

. (0.3)

Now observe that ‖σ (i)
1 ‖(x, t) is a sub-solution to the heat equation since

σ
(i)
1 (x, t) is a (0,1)-form satisfying the Hodge-Laplace heat equation. Hence

by (0.3) the L2-maximum principle (see for example Theorem 1.2 of [4])
implies that

∥
∥σ

(i)
1

∥
∥(x, t) ≤ max

x∈M

∥
∥σ

(i)
1

∥
∥(x,0).

Moreover if we let

v(i)(x, t) =
∫

M

H(x, y, t)
∥
∥Λ∂̄

(
ρ(i)

)∥
∥(y) dμ(y)

by (0.3) and the L2-maximum principle we have that ‖σ (i)
1 ‖(x, t) ≤ v(i)(x, t).

By Lemma 1.1 of [3] we have that

1

Vo(r)

∫

Bo(r)

v(i)(x, t) dμ ≤ ε(r)

for some ε(r) independent of i with ε(r) → 0 as r → ∞. Here we have
used assumption (1.1) in the paper and explicit estimates satisfied by φ(i).
Letting i → ∞ we have that ‖σ1‖(x, t) = 0 by Theorem 1.2 of [1] (applying
to p = 1). The proof of that σ2 = 0 is similar.

This method of getting the monotonicity via the sharp Li-Yau-Hamilton
type estimate also works for solution constructed by solving the Dirich-
let boundary problems, namely requiring that tημ = 0 and nημ = 0 on the
boundary ∂Ωμ. Another way of proving that η ≥ 0 is to apply Theorem 2.1
of [3] to η(i) and show that η(i) ≥ 0.
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