
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Inference on Graphs: From Probability Methods to Deep Neural Networks

Permalink
https://escholarship.org/uc/item/29k2m4p2

Author
Li, Xiang

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/29k2m4p2
https://escholarship.org
http://www.cdlib.org/

Inference on Graphs: From Probability Methods to Deep Neural Networks

by

Xiang Li

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Statistics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

David Aldous, Chair
Joan Bruna

Lauren Williams

Spring 2017

Inference on Graphs: From Probability Methods to Deep Neural Networks

Copyright 2017

by

Xiang Li

1

Abstract

Inference on Graphs: From Probability Methods to Deep Neural Networks

by

Xiang Li

Doctor of Philosophy in Statistics

University of California, Berkeley

David Aldous, Chair

Graphs are a rich and fundamental object of study, of interest from both theoretical and
applied points of view. This thesis is in two parts and gives a treatment of graphs from two
differing points of view, with the goal of doing inference on graphs. The first is a mathe-
matical approach. We create a formal framework to investigate the quality of inference on
graphs given partial observations. The proofs we give apply to all graphs without assump-
tions. In the second part of this thesis, we take on the problem of clustering with the aid of
deep neural networks and apply it to the problem of community detection. The results are
competitive with the state of the art, even at the information theoretic threshold of recovery
of community labels in the stochastic blockmodel.

i

To my parents.

ii

Contents

Contents ii

List of Figures iv

1 Introduction 1

I A Probabilistic Model for Imperfectly Observed Graphs 3

2 The Framework 4
2.1 Analysis of Probability Models . 4
2.2 Algorithmic Efficiency/Computational Complexity 5
2.3 The Model . 5
2.4 Related Literature . 7

3 Estimators given by Large Deviation Bounds 10

4 Maximum Matchings 14
4.1 Bounding the Negative Contribution . 16
4.2 The Upper Bound . 19

5 Concentration Inequalities for Observed Multigraph Process 25
5.1 Markov Chain Preliminaries . 25
5.2 Multigraph Process Formulation . 25
5.3 Measuring Connectivity via Multicommodity Flow 28
5.4 Logic of Inference between Observation and Truth 31

6 First Passage Percolation 32
6.1 A General Conjecture Fails . 34

iii

II Graph Clustering with Graph Neural Networks 36

7 Clustering on Graphs 37

8 A Primer on Clustering in the SBM 39
8.1 Regimes of Clustering: Sparse to Dense . 42
8.2 Spectral Clustering for the SBM . 43
8.3 Thresholds for Detectability and Exact Recovery 45

9 The Graph Neural Network Model 48
9.1 Graph Neural Network . 48

10 Experiments 51
10.1 Spectral Clustering on the Bethe Hessian for the SBM 51
10.2 GNN Performance Near Information Theoretic Threshold 57
10.3 Future Directions . 61

Bibliography 62

iv

List of Figures

2.1 Observed Graph . 6

6.1 First passage percolation to the boundary of a lattice graph with exponential
edge weights. Figure taken from [18]. 32

6.2 Network G1 . 35

7.1 A sampling of a Facebook friend network.[7] . 37
7.2 A result of image segmentation.[5] . 38
7.3 A protein to protein interaction network.[8] . 38

8.1 Instantiation 1 of SBM with p = 1.0, q = 0.15. 40
8.2 Instantiation 2 of SBM with p = 1.0, q = 0.15. 40
8.3 Instantiation 3 of SBM with p = 1.0, q = 0.15. 40
8.4 Coloured and ordered adjacency matrix of SBM. Figure taken from [15] 41
8.5 Ordered by uncoloured SBM adacency matrix. Figure taken from [15] 41
8.6 Uncoloured and unordered adjacency matrix of SBM. Figure taken from [15] . . 42
8.7 Underdetermined labels due to isolated vertices. 43
8.8 Random Embedding . 46
8.9 Spectral Embedding . 46

9.1 An example of an architecture constructed from operators D, W and θ 49

10.1 Spectral clustering with the Bethe Hessian compared to other popular methods
that work at the limit of clustering detectability. Average degree of all SBM
graphs is 3 (extremely sparse regime). This graph of results is taken from [16]
and shows the optimality of using BH, allowing spectral methods to be efficient
even at the informational theoretic boundary of this problem. 52

10.2 p = 0.4, q = 0.05, 50 iterations . 53
10.3 p = 0.4, q = 0.05, 5000 iterations . 53
10.4 Bethe Hessian loss surface 1. 54
10.5 Bethe Hessian loss surface 2. 54
10.6 Bethe Hessian loss surface 3. 55
10.7 Bethe Hessian loss surface 4. 55

v

10.8 Graph Neural Network architecture for information theoretic boundary for com-
munity detection. 57

10.9 Performance of GNN against BH baseline for n=1000 at information theoretic
threshold with assortative communities. 59

10.10Performance of GNN against BH baseline for n=1000 at information theoretic
threshold with dissortative communities. 60

10.11Performance of GNN against BH baseline for n=1000 at information theoretic
threshold with 3 communities. 60

vi

Acknowledgments

First and foremost I want to thank my advisor David Aldous, for the supportive environment
he has created for me to explore my interests during my PhD and for the guidance he has
given me. David is a venerable mathematician and a joy to be around. I have learned so
much from him and it was an honour to have been his student.

I want to thank Joan Bruna for giving me such an exciting problem to work on at the very
novel intersection of deep learning and clustering. His deep understanding of the subject has
been a great source of inspiration, and from which I have learned so much. I’ve thoroughly
enjoyed doing the Graph Neural Network project with him.

I also want to thank Balazs Szegedy, for the deeply beautiful view of mathematics he shared
with me when I was starting out as a research mathematician. The joy of doing math that
he has imparted made a lasting impression and is something I will always cherish.

To the many friends I have made along the way throughout my journey at Berkeley, starting
in the logic group and mathematics department, and then moving into statistics and deep
learning: My time with you make up most of this experience, and I thank you all for making
it special. It was a luxury to spend my 20s delving into interesting ideas and research and
being in the company of smart and wonderful people.

My parents, to whom I have dedicated this thesis, I thank them for their love and encour-
agement. Their grit in life I have held as inspiration for the effort I put into my own.

And finally, I want to thank Slater for his constant love and support. This journey is all the
better because of him.

1

Chapter 1

Introduction

Graphs, also known as networks in applied fields, are rich objects that enjoy study by
mathematicians, physicists, computer scientists and social scientists. Graph structure is
fundamental and its applications are many and varied, including social networks, collabo-
rative filtering, epidemiology, protein interactions, and image segmentation, to name just a
few. Even the theoretical underpinnings of much of the analysis tools in these disciplines are
rooted in graph theory; for instance graphical models in machine learning and clustering as
a general tool for simplifying data in both theory and application.

The mathematical treatment of graphs has been approached from many directions, from dis-
crete mathematics and combinatorics, to analysis and probability. Randomness is oftentimes
used as a tool for investigation as well a generator of interesting objects of study. Of note
is the probabilistic method and random graphs, starting from the work of Paul Erdős. The
modern theory of Markov Chains is not to be left out given its intimate relationship with
graph theory, and it will also make an appearance in this thesis. The theory of Graphons, a
modern development of the past 2 decades concerns a particularly natural completion of the
discrete graph space, thus allowing the theory of these discrete objects to benefit from the
rich array of tools in analysis and topology. It goes without saying that graphs have proved
rich objects of study for mathematicians.

On the other hand, applied fields have borrowed the tools and theorems proven in math-
ematics to inspire algorithms. A exciting young field with many such applications is the
field of deep neural networks. Deep neural networks have been extremely successful in many
supervised domains, among them object detection in computer vision and machine transla-
tion are examples of applications with near human level performance or super human level
performance. This has been a demonstrated success of optimization via gradient descent
like methods to gather statistical features of the large training sets. Training sets that have
become readily available to us in the last couple of years, along with the much more powerful
level of computing power compared to when neural networks were first introduced more than

CHAPTER 1. INTRODUCTION 2

40 years ago.

This thesis is in two parts. In the first part, we create a framework for studying the quality of
inferences from a partially observed graph. Given no assumptions on the underlying “true”
graph, we are interested in rigorously understanding how to quantify a functional on the
observed graph that best approximates the functional of interest on the true graph. This
is all based on joint work with David Aldous. In part two, we make inferences on graphs
from an empirical point of view. Focusing on the problem of clustering, we design a deep
neural network that has the expressive power to approximate a rich family of algorithms, and
a much more expressive reach beyond that. We test the architecture and its performance
on the stochastic blockmodel as well as real data sets with community labels. We show
that our graph neural network performs competitively in these settings with no parameter
assumptions as well as with less computational steps. This work is only scratching the surface
of the ability of these architectures and exciting extensions are discussed. This second part
is all based on work with Joan Bruna.

3

Part I

A Probabilistic Model for Imperfectly
Observed Graphs

4

Chapter 2

The Framework

Two broad themes in the analysis of graphs emerge in how the theory is both related to and
inspired by applications. Let’s dive in.

2.1 Analysis of Probability Models

One topic naturally emerging from a mathematical treatment involves the analysis of prob-
ability models on graphs. These models are usually inspired by a particular property of real
world networks, and provide a more simple, contained setting in which we can test hypothe-
ses on how such properties affect more complicated behaviour. For instance, the small worlds
network is an example of a probabilistic generative model that exhibits degree distributions
similar to social networks, and so one justification for studying these graphs is that it would
reveal insights into real networks. Given such a network, one would then try to quantify
some random process on the graph (for instance, a random walk: what can we say about its
long term dynamics as a random walk explores the graph, or how easy is it to cluster nodes
so that flow is mostly trapped within clusters?). Another way to go about it is to analyze
how the family of graphs in a particular model exhibits different graph-theoretical measures.
For instance, natural ones that are motivated from applications include clustering statistics
(triangle density, clique statistics, degree distributions...etc).

In abstracted terms, the investigations above concern some graph G (stochastically or de-
terministically specified) and some functional Γ(G), where oftentimes we are estimating and
getting a hold of the behaviour of moments of Γ(G) depending on parameters defining G.
So for example in the case of G is the stochastic block model (defined in Part II), Γ can be
the edge density.

CHAPTER 2. THE FRAMEWORK 5

2.2 Algorithmic Efficiency/Computational

Complexity

This approach falls within the empirical regime, where algorithms take in a graph G and
outputs Γ(G). Different algorithms are compared for their performance on benchmarked
data (real G) or well known graphs and various classical algorithms. Examples of works in
this regime include Jaewon et al.’s study of the quality of community labels in a bunch of
data sets as well as the performance of clustering algorithms on them in [20], and Lu and
Zhou’s link prediction survey in[10].

2.3 The Model

Given the two aforementioned treatments of network analysis, we place our project in be-
tween the two paradigms. We model the process of observing a true graph G via another
graph G′. The theoretical question then is to understand how Γ(G′) relates to Γ(G).

Consider the basic structure of a social network, we have the individuals modeled as nodes
of a graph and relationships between individuals modelled as edges. In the real world,
relationships are not homogeneous and a simple extension into weighted graphs can make
the formalism better accommodate this richness. To be precise, the graphs we wish to analyse
are of the form:

G = (V,E,w)

, triples we call edge weighted graphs. w = {we : e ∈ E} are interpreted as the strength of
interaction between vertices in V . It is thus natural to model observing stronger interactions
as easier than observing the weaker ones. Our choice of how to formalize this is via the
counts of a Poisson process. That is, if we is the edge weight between vertex x and y,
then within a period t we witness in our observed graph G′ Poisson(we) number of edges
(call them ”interactions”). Thus any G gives rise to a dynamic multigraph G′ that depends
on elapsed time t. Another representation of this data is to transform the Poisson counts
Ne(t) ∼ Poisson(we · t) into a point estimate w̄e := Ne(t)

t
for we. We denote the former

multigraph as (MG(t), 0 ≤ t ≤ ∞) and the latter as (Gobs(t), 0 ≤ t ≤ ∞). Although they
are representations of equivalent graphs, these two different representations will encourage
different treatments of the problem.

Note that in our setting the weights represent the strength of interaction, so this is not to
be confused with weighed graphs where the we’s are regarded as cost. In those cases we
are oftentimes trying to minimize some aggregate quantity involving weights (such as travel
distance, for example).

CHAPTER 2. THE FRAMEWORK 6

Figure 2.1: Observed Graph

Estimating Functionals

The setting we have formalized gives a clear mathematical problem. Given functionals Γ
of interest, and Gtrue unknown, what is the best way for us to estimate Γ(G) given our

observations of Gobs(t). An immediate and naive frequentist approach is to first use Ne(t)
t

as
an estimate of we, it is the maximum likilihood estimator. This gives us Gobs(t), a weighed
graph which we use in place of the original to obtain Γ(Gobs(t)). As natural as this definition
is, we may be suspicious of Γ(Gobs(t))’s ability to approximate Γ(Gtrue(t)) in different regimes.
For instance, suppose a functional we care about is the total interaction rate of a vertex

wv :=
∑
y

wvy

Weighted graphs require a different distinction than the classic sparsedense dichotomy, one
that is meaningful for weighted graphs. For instance, even if a weighted graph is complete
it may have very small weights in all but an O(1) number of edges–this scenario calls for
a definition that can detect the sparsity of interaction despite a densely connected graph
structure. Define

w∗ := max
v
wv,

w∗ := min
v
wv.

For any sequence of graphs, we rescale the weights so that w∗ = Ω(1), that is maxv∈V(n) w
(n)
v

is bounded; this is a weighed graph version of bounded degree. We also assume w∗ = Ω(1),
so the graphs are connected. Then

CHAPTER 2. THE FRAMEWORK 7

• The diffuse case occurs when limn maxewe = 0.

• The local-compact case where limε↓0 lim supn maxv
∑
{wvy : wvy ≤ ε} = 0

If we had infinite time to observe the network, the naive Frequentist estimator we suggested
would be a reasonable one. In fact, there are three regimes of time that this problem can be
broken down into.

• Short-term: t = o(1). This regime is too short and we have not yet seen an
interaction at a typical vertex yet. The only aspects of the unknown G we can estimate
relate to ”local” statistics of O(1)-size subgraphs (ex. triangles and other ”motifs” in
the applied literature).

• Long-term: t = Ω(log(n)). This regime is enough observation time for the graph
to be connected, typically. Thus, at this point we can expect Γ(Gobs(t)) to be a good
estimate of Γ(G). However, since the time required grows with n, in many applications,
we do not have the luxury of such long observation times, especially with increasingly
large graphs at our disposal for analysis.

• Medium-term: t = Θ(1). This is a hard regime, and our project focuses here. This
regime in a real world is akin to saying that no matter how large the graph grows, we
have finite time resources that cannot be scaled with the graph size n. A very likely
constraint!

A compactness argument shows us that wn can be decomposed as a sum of a diffuse sequence
and of a locally compact one. So in that sense, the diffuse and local-compact weighted graphs
form the dichotomy of limiting behaviour for weighted graphs.

2.4 Related Literature

“Imperfectly-observed networks” has been studied from different viewpoints. In the graph
theory and complex networks literature, the treatment has mostly been on unweighted
graphs. We discuss here a couple of popular approaches in the literature and highlight
how our approach is different.

1. Sampling vertices from a large graph and looking at their neighbourhood structure.
This approach aims to gather statistics of local structure in the graph. One can see the
algorithmic advantages of only gathering local data, and hence theory in the direction
of inferring global guarantees from the local statistics are sought after.The paper [21]
gives a recent account of work in this direction. The statistic they are concerned with is

CHAPTER 2. THE FRAMEWORK 8

the degree distribution. Which can be estimated from sampled data via the empirical
degree distribution. Yaonan et al. derive an estimator that performs much better
under some contraints then using the naive empirical degree estimator.

2. The area of link prediction is another perspective where after observing some revealed
part of the network edges, we can produce a ranking of possible edges that exist in the
true network. The ranking is based on the likilihood of these edges to be present given
the observed data. This is a popular field, with obvious applications in recommendation
systems. The 2011 survey [10] on the topic of link prediction has been cited 752 times.

3. Community detection in the Stochastic Blockmodel. This area has some approaches
that frame the problem as an imperfectly observed network problem. For instance
Jaewon et al. try to cluster real social networks by fitting a generative model via
maximum liklihood to social network data in [19]. Since the networks are labelled,
they can test their accuracy against other clustering algorithms.

To better illustrate how our regime is different from the above, let’s dive deeper into what
is being done in the degree distribution from sampling problem mentioned in 1. In the
framework in [21], they sample k vertices and look at their degrees. This gives them an
estimate of the degree distribution, which has O(1/

√
k) independent of graph size n. In

our framework we are constrained by time. Given O(1) observation time, what can we
observe? Thus it doesn’t make sense to talk about peering into all the edges of k sampled
vertices. A statistic that does make sense to talk about in the O(1) observation time regime
is w = 1

2

∑
v wv =

∑
ewe, the total edge density. Another statistic in the weighted graph

setting is the average vertex weight, given by w = 1
2

∑
v wv =

∑
ewe. We can try to estimate

the distribution of W := wv for random v ∈ V . A natural question to ask then, is what time
frame is needed to give a good estimate of W?

Let
Q(i, t) = number of vertices with i observed edges at time t.

For t = o(1) we have

EQ(i, t) ≡ ntiEW i

i!

In t = Ω(1) the mean number of observed edges that are repeated (so between the same two
vertices) is about

∑
ew

2
et

2/2. So in our diffuse network , this ends up being only o(n) edges
rather than Θ(n).

Another point of difference is that, with the exception of the community detection exam-
ple above, which sometimes involves analysis of the stochastic blockmodel as an artificial
dataset to benchmark performance, the aforementioned areas of research do not involve a

CHAPTER 2. THE FRAMEWORK 9

probability model. The general line of reasoning is to first derive an algorithm, then compare
to benchmarks established on real networks. Hence there is no hope for guarantees when
dealing with real data, except for some measure of how well the application dataset mirrors
the distribution of previous applications.

Our approach does not make assumptions on the underlying graph. It does so by first
considering a weighted graph instead of a non-weighted one, and secondly demanding the
theorems to be uniform over all edge weights. This makes the framework very difficult,
and perhaps not possible in many cases. However the thesis moves in some very promising
directions to obtain theorems of this flavour.

10

Chapter 3

Estimators given by Large Deviation
Bounds

A lot of functionals of interest concern the maximum of the sum of edge weights. In partic-
ular, they can be expressed in the form

Γ(G) := max
A∈A

∑
e∈A

we (3.1)

where A can be any collection of edge sets. For instance, if you wanted to find a subset
of vertices of size k that are highly connected (oftentimes the kind of property desired in a
theoreticaly defined graph community), we can ask for |A| = k.

The naive estimator of the functional above, in the form Γ(Gobs(t)) given in the previous
section, is particularly amenable to a large deviation bounds type argument because we are
studying the maximum of a sum of independent Poisson random variables. Recall the large
deviation bounds for Poisson(λ) random variable are given by

logP(Poi(λ) ≤ aλ)

λ
≤ −φ(a), 0 < a < 1

logP(Poi(λ) ≥ aλ)

λ
≤ −φ(a), 1 < a <∞.

(3.2)

Where φ(a) = a− 1− a log a, 0 < a <∞.

Weights of Communities

Community detection falls under the general umbrella of clustering problems. The term
community is motivated by social network applications, where nodes are people and com-
munities capture the idea of a group of more interconnected people, for example, a group

CHAPTER 3. ESTIMATORS GIVEN BY LARGE DEVIATION BOUNDS 11

of people that share much more interactions than with people outside the group. Naturally
once this goal is specified, to find a community within a network is to optimize for intercon-
nectedness. A more in depth treatment of the clustering and community detection literature
is given in Part II of this thesis.

A simple formulation in our graph terminology is to maximize the sum of the edge weights
within a subset of fixed size:

wm = max{
∑
e∈A

we : |A∗| = m}. (3.3)

Where A∗ ⊂ V and A ⊂ E where A includes all edges where end-vertices are in A∗. The
maximum is taken over all vertex groups of cardinality m.

We don’t pay attention to computational cost and compute the naive frequentist estimator
of wn via observing G(t):

Wn(t) := max{
∑
e∈A

Ne(t)

t
: |A∗| = m}. (3.4)

Since we are taking a max of a sum of independent variables, this sum will oftentimes be
larger than the sum of their means, that is We(t) tends to be larger than wm. In the case
where the interaction rate at vertex v denoted wv is O(1) and we fix m, Wn(t) → ∞ as
n → ∞. In this case, it’s natural to normalize the total interaction in a community of size
m by the number of edges in the complete subgraph of size m. In other words, we define

community as
∑

e∈A we

m2 . Communities of size m thus exist if they are not
∑

e∈A we

m2 6= o(1) (so
at least the pairwise interactions is at least constant order).

Note that

V ar(
Wn(t)

m2
) = V ar(

∑
e∈maxA

Ne(t)

t
) =

wm
m2 · t

so the first order estimation error decreases as 1
t1/2

uniformly over n and over weighted graphs
(no dependence on we’s).

To get a hold of how our frequentist estimate behaves in the limit, suppose the size m of
communities we care about is order log(n):

By the union bound and using the fact that there are
(
n
m

)
subsets of size m in Gn, we arrive

at:

P(Wm(t) ≥ βm) ≤
(
n

k

)
P(Poi(wmt) ≥ βm2t). (3.5)

CHAPTER 3. ESTIMATORS GIVEN BY LARGE DEVIATION BOUNDS 12

Given wm < βm2 we are in the position to apply large deviations bound on Wn(t) (since
E(Wn(t)) = wn, we have

logP(Wm(t) ≥ βm) ≤ log

(
n

m

)
− wmtφ(

βm2

wm
)

≤ m log n− wmtφ(
βm2

wm
)− logm!.

(3.6)

Our original assumption was that m = γ log n, and set wm = αm2 for some α < β (so we
can still apply large deviation bounds), then

logP(Wn(t) ≥ βm2) ≤ (γ − γ2αtφ(β/α)) log2 n− logm!. (3.7)

So if β = β(α, γ, t) is the solution of

γαtφ(β/α) = 1 (3.8)

then we can simplify the expression and tease out the asympotitics of the tail behaviour of
Wm(t) with

P(Wm(t) ≥ βm2) ≤ 1

m!
. (3.9)

This tells us that in the case of m = γ log n and outside of the event {Wm(t) ≥ βm2}, which
tends to 0 as n→∞ as show in (2.9), we can bound the estimation error

Wm(t)− wm
m2

≤ β − α. (3.10)

Where α = wm/m
2 and β given as the solution of equation (2.8).

The bound above is actually very general as it holds over all networks without assumptions
on the distribution of weights we. Another way to read this asymptotic bound is to consider
how φ(a) behaves as a ↓ 1. By taking the first two terms of its Taylor series expansion,

φ(a) ∼ (a−1)2

2
we get that

β − α ∼
√

2α

γt
as t→∞ (3.11)

CHAPTER 3. ESTIMATORS GIVEN BY LARGE DEVIATION BOUNDS 13

We follow the frequentist setup of generating confidence intervals by assuming the existence
of a true rate, and having hold of the distribution of observations. Thus, after observing the
value of Wn(t)

m2 we can be confident, based on the vanishing tail bound derived above, that
wn

m2 , our true community interaction rate, lies in the interval

[
Wm(t)

m2
−

√
2Wm(t)

m2γt
,
Wm(t)

m2
+

√
2Wm(t)

m2γt

]
. (3.12)

14

Chapter 4

Maximum Matchings

Suppose we have a weighted graph G = (V,E) with an even number of vertices. We can
always assume G is complete by assigning weight 0 to edges not in E.

Definition 4.0.1. A matching is a set π of n
2

edges such that each vertex is in exactly one
edge.

Definition 4.0.2. The weight of a matching is given by

weight(π,w) :=
∑
e∈π

we.

The maximum weight is taken over all possible matchings:

Γ1(w) := max
π

weight(π,w)

We care about maximal matchings because weights in our model indicate closeness (similar
to how we maximized interactions in the previous section to define communities).

What can we say about estimating Γ1(w) by observing Gobs(t) in our regime of interest of
large but constant times t = O(1)? The naive estimator Γ1(Gobs(t)) has several undesirable
properties. Consider graphs Gtrue with interaction rates of vertices (wv) of O(1). For locally
compact graphs (where the intuition is that we do not have a growing number of small
weighted edges per vertex) the matching Γ1(w) is of order θ(n). In this case, the naive esti-
mator may not perform so poorly, even though we construe t as fixed, we still have growth
in n, so the naive estimate improves as n→∞

Suppose instead we observe a diffuse graph, an example of such a Gtrue is the complete
graph with we = 1

n
for all edges e. Then necessarily Γ1(w) = n/2

n
= 1

2
. However, Gobs

is essentially the Erdös-Rényi random graph G(n, t/n). From results in [2] we have that

CHAPTER 4. MAXIMUM MATCHINGS 15

Γ1(Gobs(t)) ∼ c(t)n for a certain function c(t).

So this is clearly incorrect. Thus, if our Gtrue contains a non-trivial component of a diffuse
graph, we are in trouble when using the naive estimator, as it is off by a factor of O(n).

We can circumvent the problem by reweighing the quantity of interest. Consider Γ1(w)
n

.
This ratio can be read as the weight-per-vertex of the maximum-weight matching. We can
effectively ignore edges of weight o(1). We also consider edges for which we have observed
at least two interactions.

Definition 4.0.3. Adjusted Vertex Weights

weight2(π,Gobs(t)) := t−1
∑

e∈πMe(t)IMe(t)≥2

Γ2(Gobs(t)) := maxπ weight2(π,Gobs(t)).

This new definition will be useful if we can show that

n−1|Γ2(Gobs(t))− Γ1(w)| is small for large t, uniformly over all w. (4.1)

Note that we cannot do better than O(t−1/2); consider a graph with one edge. Then we have
an exact hold over the variance of the Poisson counts for one edge, which is of order t1/2.

Proposition 1. Assume Gtrue satisfies

we ≤ 1∀e ∈ E (4.2)

then

E
[
n−1(Γ2(Gobs(t))− Γ1(w)

]−
≤ t−1/2 +

1 + log t

2t
, ∀w∀t ≥ 1. (4.3)

Assuming the even stronger condition of

wv ≤ 1,∀v ∈ V (4.4)

we have

CHAPTER 4. MAXIMUM MATCHINGS 16

[
n−1(Γ2(Gobs(t))− Γi(w)

]+

≤ Ψ(t), ∀w (4.5)

where

Ψ(t) = O(t−1/2 log t) as t→∞ (4.6)

and [·]+, [·]− refer to the negative and positive portions respectively.

The proof works to bound Γ2(Gobs(t)); the contribution from small, i.e o(1), weight edges can
be controlled given our assumptions. We prove a lemma that deals with it. The contribution
from Θ(1)-weight edges can be controlled with large deviations type arguments because the
assumptions limit the number of matchings with such weights to be exponential.

4.1 Bounding the Negative Contribution

Here we derive the bound from the negative contribution in Proposition 1

E
[
n−1(Γ2(Gobs(t))− Γ1(w)

]−
≤ t−1/2 +

1 + log t

2t
,∀w∀t ≥ 1

by finding a lower bound for Γ2(Gobs(t)).

If we fix matching π, the sum of edge weights in the observed graph belonging to the matching
is distributed as a Poisson random variable, since we are summing together independent
Poissons.

∑
e∈π

Me(t) ∼ Poisson(t · weight(π,w)).

If we fix π to be the matching attaining the maximum in

Γ1(w) := max
π

weight(π,w)

we get that

CHAPTER 4. MAXIMUM MATCHINGS 17

Γ2(Gobs(t)) ≥ weight2(π,Gobs(t)).

This follows from the fact that π is not necessarily the matching that attains the maximum
for Γ2, despite being the matching that attains the maximum for Γ1.

Thus to lower bound Γ2(Gobs(t)), it suffices to lower bound weight2(π,Gobs(t)).

Since weight2 does not include contributions from edges that have less than 2 counts from
Poisson(we) we can rewrite the following difference as∑

e∈π

Me(t)− t · weight2(π,Gobs(t)) =
∑
e∈π

Me(t)1Me(t)=1.

Apply expectation on both sides gives us

E
(∑

e∈πMe(t)− t · weight2(π,Gobs(t))

t

)
=
∑
e∈π

we exp(−twe).

Note that since π attains the maximum for Γ1, we actually have∑
e∈π

Me(t) ∼ t · Γ1(w)

.

Our goal is to upper bound the right side using 0 ≤ we ≤ 1 and
∑

e∈π we = Γ1(w) ≤ n/2. To
control different portions of the contribution from we large and small, let’s bound separately
we ≤ b and we > b for some b, which we choose a value for b based on the final expression.
Immediately we have

∑
e∈π

we exp(−twe) ≤
n

2
b+ Γ1(w) exp(−tb).

So to get the tightest bound we minimize the right side over b > 0. This gives us

n−1
∑
e∈π

we exp(−twe) ≤
1

2t
ψ(

2tΓ1(w)

n
)

where

ψ(x) = 1 + log(x), x ≥ 1

= x, 0 < x ≤ 1.
(4.7)

CHAPTER 4. MAXIMUM MATCHINGS 18

So to simplify the expression, if we defined

D2 := n−1

(
t−1
∑

e ∈ πMe(t)− weight2(π,Gobs(t))

)
≥ 0

then we have shown that

ED2 ≤ ψ(
2tΓ1(w)

n
).

Recall that
∑

e∈πMe(t) has Poisson(t · Γ1(w)) distribution, and since we were intersted in
showing the difference in expectation of

D1 := n−1

(
t−1
∑
e∈π

Me(t)− Γ1(w)

)

in the negative direction, so let us control

P(D1 < δ) = P
(
t−1
∑
e∈π

Me(t) < tΓ1(w)− ntδ
)

.

We can set λ = tΓ1(w) and a = 1 − nδ/Γ1(w) and use the first large deviations bound in
(2.2), giving us

P(D1 < −δ) ≤ exp(−tΓ1(w)φ(1− nδ)).

And since φ(1− η) ≤ η/2, we can further simplify to

P(D1 < −δ) ≤ exp(
tn2δ2

2Γ1(w)
).

But by assumption Γ1(w)
n
≤ 1/2 and n ≥ 2 so we get

P(D1 < −δ) ≤ exp(−2tδ2).

Integrating over δ gives us

Emin(0,−D1) ≤ 2−3/2π1/2t−1/2.

CHAPTER 4. MAXIMUM MATCHINGS 19

So using the estimates from D1 and D2 we are able to lower bound D:

D := n−1
(
Γ2(Gobs(t))− Γ1(w))

)
≥ n−1

(
weight2(π,Gobs(t))− Γ1(w))

)
= D1 −D2.

(4.8)

So

Emax(0,−D) ≤ Emax(0, D2 −D1)

≤ ED2 + Emax)0, D1)

≤ 2−3/2π1/2t−1/2 +
1

2t
ψ(t)

(4.9)

using also that Γ1(w) ≤ n/2. This implies the first lower bound cited in Proposition 1.

4.2 The Upper Bound

If we fix a matching π, the sum of our edge counts in π given by
∑

e∈πMe(t) has Poisson(t ·
weight(π,w)) distribution. since weight(π,w)) ≤ Γ1(w) we can use the second large devia-
tions bound given at the beginning of the chapter, with λ = t · Γ1(w) to get

1

t · Γ1(w)
logP

(∑
e∈π

Me(t) ≥ nt(
Γ1(w)

n
+ a)

)
≤ −φ(1 +

an

Γ1(w)
), a > 0.

Multiplying 1/n by both sides and rearranging some terms within and outside of P we get

n−1 logP
(
n−1

∑
e∈π

Me(t)/t ≥
Γ1(w)

n
+ a

)
≤ −tn−1Γ1(w)φ(1 +

an

Γ1(w)
), a > 0. (4.10)

Which will be easier for us to parse in terms of the following matchings. For k ≥ 2 let Πk

be the set of partial matchines pi that only use edges with weight greater than 1/k, and
suppose that the matchings are maximal with respect to this constraint (i.e they are the
largest matchings given all we > 1/k). Since we have paths of length n and we have at most
k such we to choose from, if we had more we would violate the assumption that total weight
is less than 1. From this we can at infer |Πk| ≤ kn. Note that if we take any matching π

CHAPTER 4. MAXIMUM MATCHINGS 20

(doesn’t have to be from Πk), the subset of edges with we > 1/k still form part of a partial
matching in Πk, so it follows from |Πk| ≤ kn and (3.10) that

n−1 logP
(
∃π ∈ Πk : n−1

∑
e∈π,we>1/k

Me(t)/t ≥
Γ1(w)

n
+ a

)
≤ −tn−1Γ1(w)φ(1 +

an

Γ1(w)) + log k
). (4.11)

To control the contribution from the low weight (less than 1/k) edges let us define

∆k(π) :=
∑

e∈π,we≤1/k

Me(t)1Me(t)≥2.

But by definition a matching uses only one edge per vertex so we can bound this using
M∗

v := max{Mvy(t) : wvy ≤ 1/k} to get

max
π

∆k(t) ≤
1

2

∑
v

M∗
v 1M∗v≥2 (4.12)

Lemma 4.2.1. Let (Ni, i ≥ 1) be independent Poisson(λi), and write N∗ := maxiNi. Sup-
pose s :=

∑
i λi ≥ 1 and choose lambda∗ ≥ 1 such that maxi λi ≤ λ∗ ≤ s. Then we have

EN∗1N∗≥2 ≤ Cλ∗(1 + log(s/λ∗))

for some constant C.

Proof. Given at end of section.

To apply Lemma 3.2.1 we note that Mvy(t) has Poisson(twvy) distribution and∑
u:wvy≤1/k wvy ≤ 1 by our assumption that wv ≤ 1,∀v. So regarding s = t and λ∗ = t/k

gives us the lemma result that

EM∗
v 1M∗v≥2 ≤ Ctk−1(1 + log k), k ≤ t

Applying (3.12) gives us

CHAPTER 4. MAXIMUM MATCHINGS 21

1

n
E[max

π
∆k(π)] ≤ 1

2
Ctk−1(1 + log k), k ≤ t (4.13)

We are trying to upper bound

D := n−1
(
Γ2(Gobs(t))− Γ1(w)

)
so let us call the event in the probability in (3.10) B. By definition, Bc is the event that

n−1Γ2(Gobs(t)) ≤ n−1Γ1(w) + a+ n−1t−1 max
π

∆k(π).

So this gives us

D ≤ a+ n−1t−1 max
π

∆k(π).

Let F be the event that {n−1t−1 maxπ ∆k(π) > a} then the above simplifies to

D < 2a, on Bc ∩ F c

and from Markov’s inequality and 3.13 we have

P(F) ≤ Ck−1(1 + log k)/a, k ≤ t.

Summing up, 3.10 gave a bound on P(B), we just gave a bound on P(F), and also dervied
a bound on Bc ∩ F c. So putting these together we get

P (D > 2a) ≤ exp(n(−tn−1Γ1(w)φ(1+
an

Γ1(w)
)+log k))+Ck−1(1+log k)/a, k ≤ t. (4.14)

Our goal now is to optimize over the choice of k.

Let us continue the calculations using leading terms to clarify the exposition. In particular
we use the asymptotic relation φ(1 + δ) ∼ δ2/2, δ ↓ 0. This allows us to simplify the term,
along with using Γ1(w) ≤ 1/2

CHAPTER 4. MAXIMUM MATCHINGS 22

Γ1(w)φ(1 +
an

Γ1(w)
) =

a2n

2

n

Γ1(w)
≥ a2n.

This allows us to rewrite 3.14 as

P(D > 2a) ≤ kn exp(−nta2) + Ck−1(1 + log k)/a, k ≤ t. (4.15)

Most notably, this bound does not depend on w! Integrating over a allows us to get an
expression in terms of E(D).

∫ 1

a0

P(D > 2a)da ≤ kn
1

2nta0

exp(−nta2) + Ck−1(1 + log k) log 1/a0 (4.16)

Recall that k was our parameter to separate the big we and small we, where we isolated the
contribution from we ≤ 1/k. If we now set k = t and a0 = t−1/2 log t for large t our bound
becomes

∫ 1

a0

P(D > 2a)da ≤ exp(−n(log2 t− log t))

2n1/2 log t
+
C log2 t

t
(4.17)

The right hand side is in fact uniformly bounded in n by a function that decays as o(t1/2)
as t→∞.

So

∫ 1

a0

P(D > 2a)da = o(t−1/2) as t→∞, uniformly in n

So finally we have

ED+ = 2

∫ 1

a0

P(D > 2a)da+

∫ ∞
2

P(D > a)da

The last term we are able to control because D ≤ n−1Γ2(Gobs(t)) and clearly Γ2(Gobs(t)) ≤
t−1
∑

eMe(t) since any matching is bound by the total sum.

CHAPTER 4. MAXIMUM MATCHINGS 23

But
∑

eMe(t) has Poisson(t
∑

eMe(t)) distribution so by the assumption that wv ≤ 1∀v we
have that

D is stochastically smaller than 1
nt

Poisson(nt/2)

So using the large diviation upper bound stated at the beginning of this chaper we can
conclude that

∫∞
2

P(D > a)da → 0 exponentially fast in nt. Thus the asmptotic behaviour

of ED+ is dominated by the first term, which means it is O(t−1/2 log t) as t→∞, uniformly
in n.

Proof. Lemma 2.

Recall that Lemma 2 states that given (Ni, i ≥ 1) are independent Poisson(λi). Suppose
that N∗ := maxiNi. Suppose s :=

∑
i λi ≥ 1, and suppose we choose λ∗ ≥ 1 such that

maxi λi ≤ λ∗ ≤ s. Then we have

EN∗1N∗≥2 ≤ Cλ∗(1 + log(s/λ∗))

for some constant C.

Let’s regard Ni as the counts of a rate-1 Poisson point process on the interval [0, s] in
successive intervals of lengths λi. Let k = ds/λ∗e be successive intervals of length λ∗. By
definition of λ∗, each intervals in the first collection must be contained in the union of two
successive intervals in the second collection. This observation allows us to simplify our proof,
since it would be sufficient to prove that there exists a constant C such that if (Ni, 1 ≤ i ≤ k)
are i.i.d Poisson(λ∗) with λ∗ ≥ 1 and

EN∗1N∗≥2 ≤ Cλ∗(1 + log k)

Clearly, if λ∗ ≥ 1 there is some constant B such that for i ≥ Bλ∗

P(Poisson(λ∗ ≥ i+ 1))

P(Poisson(λ∗ ≥ i))
.

Using this for the last step in the inequality below we have

CHAPTER 4. MAXIMUM MATCHINGS 24

EN∗ =
∑
i≥1

P(N∗ ≥ i)

≤
∑
i≥1

min(1, kP(Poisson(λ∗) ≥ i))

≤ 1 + max(Bλ∗,min{i : P(Poisson(λ∗) ≥ i) ≤ 1/k}).

(4.18)

Finally by the large deviations uppers bound we have that there exists C∗ <∞ such that

P(Poisson(λ∗) ≥ i) ≤ 1/k, λ∗ ≥ 1, i ≥ C∗λ∗(1 + log k).

25

Chapter 5

Concentration Inequalities for
Observed Multigraph Process

5.1 Markov Chain Preliminaries

Recall that a discrete state Markov Chain is a sequence of random variables X1, X2, X3...
with the property that the probability of moving to the next state only depends on the
previous state. This is commonly referred to as the Markov property. More formally

P(Xn+1 = x|X1 = x1, X2 = x2, ..., Xn = xn) = P (Xn+1 = x|Xn = xn)

where x, xi ∈ S, the countable state space of possible values of X ′is.

5.2 Multigraph Process Formulation

Recall that our weighted graph model can also be construed as a multigraph process by
looking at the multigraph induced by the Poisson counts of the Poisson random variable
with mean given by the edge weights. More formally, let m = (me, e ∈ E) be a multigraph
on a given vertex set V . Here we let me ≥ 0 denote the number of copies of edge e ∈ E that
links vertices in V . Our model naturally associates an observed multigraph process denoted
by

(M(t), 0 ≤ t <∞) = (Me(t), e ∈ E, 0 ≤ t <∞).

Note that this is a continuous time Markov chain. It’s state space is the set M of all
multigraphs over V where the transition rates

m→ m ∪ {e}, are given by rate we.

where ψ(x)

CHAPTER 5. CONCENTRATION INEQUALITIES FOR OBSERVED MULTIGRAPH
PROCESS 26

Definition 5.2.1. Standard Process

The Markov chain given by (M(t), 0 ≤ t < ∞) = (Me(t), e ∈ E, 0 ≤ t < ∞), where M(t)
starts from the empty set ∅.

Definition 5.2.2. Multigraph Monotonicity Property

Let
T = TA = inf{t : M(t) ∈ A}

be the stopping time where A ⊂M is the set of multigraphs such that

if m ∈ A then m ∪ {e} ∈ A, ∀e.

For the chain started at some state m, define

h(m) := EmTA.

By the monotonicity property we have that the hitting time of a set in A is lower bounded
by the hitting time of sets above it in the chain. That is

h(m ∪ {e}) ≤ h(m). (5.1)

Naturally then, starting from ∅ will give h(∅) that upper bounds all such h(m).

In this setting we can quote the following concentration bound from [3].

Proposition 2 ([3]). For the standard chain, for a stopping time T defined above we have

varT

ET
≤ max

m,e
{h(m)− h(m ∪ {e}) : we > 0}

Two examples of such a stopping time where we can estimate the bound well with the
appropriate monotonic proces:

T triak := inf{t : M(t) contains k edge-disjoint triangles}

T spank := inf{t : M(t) contains k edge-disjoint spanning trees}

CHAPTER 5. CONCENTRATION INEQUALITIES FOR OBSERVED MULTIGRAPH
PROCESS 27

Proposition 3 ([3]). Let s.d. denote the standard devation.

s.d.(T triak)

ET triak

≤
(

e

e− 1

)
k−1/6, k ≥ 1

s.d.(T spank)

ET spank

≤ k−1/2, k ≥ 1

This is a setting in which the above bounds actually do not depend on w, so it is uniform
over all weighted graphs.

This bound will be useful for obtaining an estimator of a functional when we have a stopping
time T that is concentrated around its mean that also does not depend on w. In that case we
will be able to use the proposition to provide a bound uniform over all w of some functional
Γ(w) defined by the expectation of the stopping time.

The proof of the proposition requires special structural properties of spanning trees and
triangles. The technique for triangles also hold for analogs of similar subgraphs. The question
of whether this argument can apply to ”k copies of substructure” is open, however it does
not apply as easily in all cases. In section we show a case in which the argument does not
apply easily.

For proposition 2 to be useful, we need maxm,e{h(m)−h(m∪{e}) : we > 0} to be bounded.
If we instead require {h(m)− h(m∪ {e}) be bounded for the most possible transitions, it is
possible to obtain applications of the monotonicity argument to first-passage percolation[3]
and the appearance of a incipient giant component in in-homogenous bond percolation[3].
These problems lie outside the current framework.

In this multigraph Markov chain setting, our stopping times T also satisfy the submulti-
plicative property

P(T > t1 + t2) ≤ P(T > t1)P(T > t2), t1, t2 > 0. (5.2)

Submultiplicative properties of random variables are know to give a right exponential tail
bound:

sup{P(
T

ET
> t : T submultiplicative } decreases exponentially as t→∞ (5.3)

CHAPTER 5. CONCENTRATION INEQUALITIES FOR OBSERVED MULTIGRAPH
PROCESS 28

We can also bound the left tail by iteratively applying the monotonicity property to get
P(T < kt1) ≤ P(T > t1)k, which gives us

ET ≤ t1
P(T ≤ t1)

P(T ≤ t1) ≤ t1
ET

P(T ≤ aET) ≤ a, 0 < a < 1.

(5.4)

By setting t1 = aET .

In other words, if our stopping time T enjoys the submultiplicative property (4.2), then after
observing the value of T in the observed process

we can be (1− a)-confident that ET ≤ T/a in the true process . (5.5)

Note that Markov’s inequalty, which states that P(T ≥ a) ≤ ET
a

gives us a different confidence
statement, namely that

we can be (1− a)-confident that ET ≥ aT.

5.3 Measuring Connectivity via Multicommodity

Flow

A key open problem in our framework is to prove a result of the following type. Given
our observation time is large, but of order t = O(1), the observed Gobs(t) will have a giant
component of some size, say (1 − δ)|V |. However, this graph may not be completely con-
nected. We want a statement that allows us to conclude that G enjoys a ”well-connected”
connectivity property within a large subset of its vertices if we observe that Gobs(t) has a
”well-connected” property within its giant component.

Recall that the graph Laplacian is a well studied way to quantify connectedness in graphs.
In particular, the spectral gap gives bounds for many quantities that relates to the connect-
edness qualities of a graph. We discuss the Laplacian in detail in part II of this thesis so
don’t provide definitions here.

Proving bounds on the spectral gap in our regime without assumptions on w is quite difficult.
However to give a push towards results of this flavour, we provide a result not in terms of
connectedness as quantified by spectral gap, but by measuring connectivity in terms of the
existence of flows whose magnitude is bounded relative to edge-weights. Note that our

CHAPTER 5. CONCENTRATION INEQUALITIES FOR OBSERVED MULTIGRAPH
PROCESS 29

observed graph G(t) may very well be disconnected in the time regimes of t = O(t), so we
cannot hope to get a flow between all vertex pairs in G. Instead our definition must use
information of flows between most pairs.

Definition 5.3.1. A path between vertex x to vertex y is a set of directed edges that connects
x to y; a flow, denoted by φxy = (φxy(e), e ∈ E) is a vector indexed by edges of a path, where
each φ is given by

φxy(e) := νP(e ∈ γxy)

where γxy is some random path from x to y. We let |φxy| denote the volume ν of a flow.

Definition 5.3.2. A multicommodity flow Φ is a collection of flows (φxy, (x, y) ∈ V × V)
(including flows of volume zero). We let

Φ[e] :=
∑
(x,y)

φxy(e)

denote the total flow across edge e.

Let’s consider the following function on the network. Suppose Φ is constrained by the
following:

The volume |φxy| is at most n−2, where (x, y) inV × V (5.6)

Φ[e] ≤ αwe. (5.7)

The first condition allows us to somewhat normalize the total flow, whereas the second let’s
us control how much flow flows through edge e via its weight.

Definition 5.3.3.

Γα(w) := max
Φsatisfies two conditions above

∑
(x,y)∈V×V

|φxy|.

By our conditions, Γα(w) ≤ 1. The smallest α for which Γα(w) = 1 also bounds the spectral
gap. This is known as the canonical path or Poincaré method[6].

CHAPTER 5. CONCENTRATION INEQUALITIES FOR OBSERVED MULTIGRAPH
PROCESS 30

Let’s define the (α, δ)-properly to hold if Γα(w) ≥ 1 − δ. If we have the property holds for
small δ, we are quantifying via lower bounding the flow that the network has a well-connected
component. As α ↓ and δ ↓, our property becomes stronger and the degree with which it
has a large well-connected component is also larger.

Returning back to the observed networks framework we aim to prove a statement of the
form: If Gobs(t) has (α, δ)-property, then we are 95% confident that the unknown Gtrue has
(α∗, δ∗)-property for some (α∗, δ∗) independent of w.

Let
Tα,δ := inf{t : Γα(M(t)) ≥ 1− δ}.

where we interpret the multigraph M(t)’s edge count as integer edge-weights.

M(T) by definition allows a total flow of volume greater than 1 − δ, and by assumption
satisfies the normalizing property (4.5) as well as the analogue of property (4.6) for the
multigraph (using Ne(t)/t ∼ we). If we take expectations over realizations of M(T) we get
Γα(w) ≥ 1− δ and furthermore

Φ[e] ≤ αEMe(T) = αweET, for all e.

Recall Wald’s inequality, which applies to a sequence (Xn)n∈N of independent identically
distributed random variables. If N is some non negative integer valued random variable we
have

E(X1 + ...+Xn) = NE(X).

Applying this to Me(t) = Ne(t)/t we get that

Φ[e] ≤ αEMe(T) = αweET.

So summarizing, we were able to derive from Gobs satisfying (4.5) and the analogue of (4.6)
that

GTrue has the (αET, δ) property

But we have just shown in the last section in (4.5) that we can be (1 − a) confident that
ET ≤ T/a. So it follows that

we are (1− a)− confident that Gtrue has the (αT/a, δ)− property. (5.8)

CHAPTER 5. CONCENTRATION INEQUALITIES FOR OBSERVED MULTIGRAPH
PROCESS 31

5.4 Logic of Inference between Observation and Truth

Though we are quite used to citing confidence intervals in statistical jargon, it is worth
spending some time spelling out the underlying logic of the inference being made. Though
it follows basic forms of inference, it’s worth discussing here as it may seem intuitive to want
proofs along the lines of wanting to establish desirable properties in the observed graph given
desirable properties in the real graph. However the correct direction of the inference is in fact
the converse of that. Particularly in the context of our applications, this inference appears
counter-intuitive. To formalize:

Suppose P is some property of a network we care about. The statements we wish to prove
follow the inference format

If Gobs has property P then we are ≥ 95% confident that Gtrue has property P ∗.

Where P ∗ is reasonably related to P . For instance, both measure connectedness. To prove
a statement of the above form, we actually need a theorem of the following form (using the
contrapositive):

Theorem: if Gtrue does not have property P ∗ then with ≥ 95% probability Gobs does not
have property P .

The reason for using the contrapositive is because it would be very difficult to enumerate all
instances of graphs with property P , so instead we assume the negation of the conclusion
and deduce that the observed graph cannot have property P .

What this means for our program is that in order to establish desirable properties in our
random graphs, we work in its negative form. So for instance in the case of P representing
connectivity properties of the graph, we must show that given the true graph is not well
connected, the observed graph cannot be either. We are not showing that the observed
graph is well connected given the true graph is (converse). Happily, this is typically false in
our time scale as well.

32

Chapter 6

First Passage Percolation

The first passage percolation (FPP) literature has been an extremely well studied on in
probability theory. Though originally inspired by models of water percolating in soil, the
general field, which is characterized by studying paths in a random medium. Nowadays the
field’s theorems lend themselves well to studying the spread of information over networks,
such as virality in social networks, or actual pathologies in a biological network. The notion
of first passage percolation is formulated as follows in our setting.

Figure 6.1: First passage percolation to the boundary of a lattice graph with exponential
edge weights. Figure taken from [18].

Let G = (V,E,w) be a network and suppose u, v are two distinct vertices in G. Let ξe ∼
Exponential(we). We interpret our weights we as the parameters of these random edge
traversal times. The random first passage percolation time from u to v, denoted by X(G), is
the minimum value of

∑
e∈π ξe over all paths π from u to v. Note the that is not necessarily

achieved by the path that minimizes
∑

e∈π we since ξ is a random variable so even though
some paths may have greater total weight sum, there is still a small probability that the

CHAPTER 6. FIRST PASSAGE PERCOLATION 33

traversal time realization can be smaller than that of a smaller total weight path. Hence
X(G) is a random FPP.

The functional that interests us in this setting is

Γ(G) := EX(G).

Note that to estimate X(G) from the observed process, we actually have two layers of
randomness here. First the randomness contribution from X(G) (which we smooth over
with E) and then a contribution from Ne(t), the multi-edges of Gobs.

The following lemma gives us an idea of how X(Gobs) relates to X(G). In particular to study
the functional Γ we use the following lemma.

Lemma 6.0.1.
P(X(Gobs(t)) ≥ x) ≥ P(X(G) ≥ x), 0 < x <∞.

Let’s tease out why this lemma is phrased in such a way. For any fixed t we have P(X(Gobs(t)) =
∞) > 0 since v and u may not be in the same connected component since the edges arrive as
a Poisson process in Gobs. Note this is trivially true if u, v not connected, so we are assuming
u and v are connected in Gtrue. So estimation procedures should involve the stopping time
for when u and v are connected. The lemma unfortunately does not extend easily to stopping
times.

Proof. The unconditional distribution of X(Gobs(t)) is the distribution of FPP times for
which edge-traversal times ξ∗e (t) are independent with distributions given by:
the conditional distribution of ξ∗e (t) givenMe(t) is Exponential(Me(t)/t), where Exponential(a)
denotes the exponential distribution with parameter a. So it is sufficient to show that ξ∗e (t)
stochastically dominates Exponential(we) distribution of ξe.

We have

P(ξ∗e (t) ≥ x) = E(P(ξ∗e (t) ≥ x|Ne(t))

= E(exp(−xNe(t))

≥ exp(−xE(Ne(t)/t))

= exp(−xwe)

(6.1)

where the last step follows by Jensen’s inequality.

CHAPTER 6. FIRST PASSAGE PERCOLATION 34

6.1 A General Conjecture Fails

Observing Gobs will eventually give us a good estimate of X(G), since we can simulate it
from Gobs once t is large enough that its own FPP process is distributed as X(G). That is,
it is clear that

On every network G we require at most O(Γ(G)) observation time. (6.2)

One may expect however, that for certain types of networks, in particular with a more
constrained geometry, we may be able to estimate Γ(G) := EX(G) quicker than having to
wait for such a stopping time. Consider the linear graph G as an example. It is a naturally
example since the FPP between edges are much simpler, in fact it is by necessity the path
the unique path that connects two nodes. Suppose G has m edges where each edge weight is
of order Θ(1). Then instead of having to wait for Θ(m) time in order to , we simply have to
wait for Ne(t)/t to be good estimators for we, which occurs in Θ(logm) time (by arguments
following from the coupon collector’s process). Another candidate for such an observation
time is the following stopping time, inspired from Proposition 3 (section 4.2).

Tk := inf{t : M(t) contains k edge-disjoint paths from u to v}. (6.3)

Where k is large and fixed. This is a natural candidate since the reason why Γ(G) is hard
to calculate is because we need to take the infimum over many different paths. However, a
result in this direction is not likely. Our argument below offers an explanation why.

Claim: For any estimator satisfying (5.2), the observation time required must be Θ(Γ(G))
for every G.

To see this, let G1
n be a network with n two-edge routes running between vertices v∗ and v∗∗.

And let the edge weights on all edges in these routes be n−1/2.

In this case, the observation stopping time defined in 5.3 requires as much time as the FPP
time for Γ(G1

n). Now if we had an estimator that satisfies 5.2, it would have to decide whether
to stop at time t or continue observing. If the decision were based on M(t) it should only use
the subset of M(t) that consists of paths from v∗ to v∗∗. Suppose by way of contradiction
that we have an estimator that requires observation time T̃n << Γ(G̃n). Let’s rescale the
edge weights so we can normalize their times so that T̃ is o(1) and Γ(G̃n) is Ω(1). We can
now create a new graph Gn which is the union of G̃n and G1

n (by identifying vertices with
the same index and taking the union of edges). Now if we wait T̃n time as dictated by graph
G̃n, it will sometimes see the same subset of edges that we would have seen in the case of

CHAPTER 6. FIRST PASSAGE PERCOLATION 35

Figure 6.2: Network G1

observing Gobs corresponding to G̃n. At that point we are in the same empirical position as
we would have been if Gtrue were G̃n, so we would be confident enough to stop observing, as
in the case of G̃n. However the availability of the many paths to choose from in G1

n requires
that Γ(Gn) is in fact Θ(1). In other words, we need to observe much longer to get the true
min of all passage times. So we we really were incorrect in stopping our observations, since
G is a union of G1

n and G̃n.

36

Part II

Graph Clustering with Graph Neural
Networks

37

Chapter 7

Clustering on Graphs

Finding clusters is an important task in many disciplines, whether to uncover hidden func-
tional similarities in protein interaction networks, to compress data, or to improve ecommerce
recommendations. The second part of this thesis studies how we can use neural networks to
do clustering on graphs.

Figure 7.1: A sampling of a Facebook friend network.[7]

Clustering is a procedure applied to datasets in which we output a community label for
each vertex. All vertices that have the same label are referred to as cluster. Points within
a cluster share some kind of similarity, more so with each other than with points outside
the cluster. The definition is not precise because clustering can span the spectrum between
supervised (eg. community detection with ground truth) and unsupervised problems (eg.
data exploration). Graph clustering is the clustering procedure applied to a dataset that has
graph structure. The goal here is to use the extra topological information of the network to
do clustering and inform choices of similarity measures.

Applied to social networks, clustering is oftentimes referred to as community detection. The

CHAPTER 7. CLUSTERING ON GRAPHS 38

Figure 7.2: A result of image segmentation.[5]

Figure 7.3: A protein to protein interaction network.[8]

procedure can be data driven or model driven. In the former we let the features in datasets
motivate definitions of similarity metrics and even suggest ground truth. In the latter, a
probabilistic generative model is often used, where the generative mechanism defines the
ground truth communities. The two approaches are not unrelated. Generative models, for
instance, are designed to mimic statistics of real graphs. The Stochastic Blockmodel is an
example of such a benchmark artificial dataset and we will discuss it in detail.

The benefit of the neural network approach is that we do not have to choose what algorithm
to use via heuristics or local statistics gathered from the network. Instead it is data driven.
The model will learn by gradient descent, fitting the best parameters given the distributions
of the graphs it learns from. We will first go over the well studied Stochastic Blockmodel
and some of the algorithmic challenges of community detection in this model. Then we will
introduce the Graph Neural Network, a model we designed that can successfully do clustering
on the SBM, even in the hardest regimes. We will present our experimental results in the
last section.

39

Chapter 8

A Primer on Clustering in the SBM

In this chapter we will introduce the Stochastic Blockmodel, as well as discuss the challenges
in performing clustering on it. This will set the stage for discussing the experiments we
performed with our Graph Neural Network to compare its clustering performance against
the algorithmic benchmarks available for clustering on the Stochastic Blockmodel literature.

The two challenges before us in studying clustering procedures rigorously are:

What is the ground truth?
What are the algorithmic guarantees?

Approached from a theoretical point of view, progress on these questions comes from studying
special cases, oftentimes derived from generative probability models that capture much of
the empirical behaviour. One extremely well studied model is the Stochastic Blockmodel
(one quick Google scholar search reveals about 8000 papers written on this topic, around
3000 of which since 2014). It’s a particularly simple and natural extension of the Erdős
Renyi random graph model, which exhibits community structure. The randomness involved
in the construction of the graph allows one to prove properties of the graph that hold
asymptotically. Despite the simplicity of its definition (given below), the SBM has proved
fertile ground for testing algorithmic performance. Additionally, theoretical guarantees for
community detection in different families of the SBM have only been established in the last
couple of years, with many more open problems. Techniques used in these proofs come from
a broad range of disciplines, including branching processes in probability theory to Ising
models in statistical physics. This suggests that establishing theoretical guarantees for this
simply defined model is not simple.

CHAPTER 8. A PRIMER ON CLUSTERING IN THE SBM 40

Definition 8.0.1. The Stochastic Block Model (SBM) is a random graph model that can be
defined by the following three parameters.

n : The number of vertices in the graph.

c = (c1, ...ck) : A partition of the vertex set{1, 2, ..., n} into k disjoint subsets.

W ∈ Rk×k
≥0 : A symmetric matrix of probabilities of connections between the k communitites.

Given the above parameters, one can sample a SBM(n, c,W) graph, call it G = (V,E) (where
V is the vertex set and E is the edge set, and n = |V |) by connecting two vertices u, v ∈ V
with probability Wij, where Wij is the ijth entry of W , v ∈ ci and u ∈ cj. Whether one edge
is in the SBM or not is independent of other edges and is solely determined by W and c.

In the easiest case with two communities of the same size, we can define the SBM with 3
scalar paramters n, p, q, where n is the number of vertices, p is the probability of connecting
two vertices if they are from the same community and q is the probability of connecting
between two vertices of different communities.

Since the SBM is a random graph, a given set of parameters will give rise to a distribu-
tion of graphs. For instance, the following three graphs come from the same parameters:
n = 8, c = ({0, 1, 2, 3}, {4, 5, 6, 7}), and W = ([1, 0.15], [0.15, 1]). In the simpler 3-scalar
parametrization, we have that figures 8.1, 8.2 and 8.3 are all instantiations of SBM with
parameters p = 1.0, q = 0.15 and n = 8.

Figure 8.1: Instantiation 1 of
SBM with p = 1.0, q = 0.15.

Figure 8.2: Instantiation 2 of
SBM with p = 1.0, q = 0.15.

Figure 8.3: Instantiation 3 of
SBM with p = 1.0, q = 0.15.

So why is clustering on the SBM hard? Clustering the above three graphs seem easy to do,
but let’s consider another example.

Figure 8.4 is a coloured adjacency matrix representation of a SBM graph. Here we represent
the adjacency matrix by colouring a square in figure 8.4 if there is an edge, and leaving it
white if there is no edge. The red and yellow colouring differentiates the different community

CHAPTER 8. A PRIMER ON CLUSTERING IN THE SBM 41

Figure 8.4: Coloured and ordered adjacency matrix of SBM. Figure taken from [15]

membership relationships (red for edges that are between two vertices of the same community,
and yellow for edges between nodes that differ in their community membership). The number
of nodes n is much bigger in figure 8.4 than in figure 8.1. Clearly p and q also don’t seem too
far apart. Although the difference is still perceptible in the densities of the red and yellow
regions, it is not a great difference. In a real clustering problem we don’t know the actual
colouring, as in the case in figure 8.5.

Figure 8.5: Ordered by uncoloured SBM adacency matrix. Figure taken from [15]

And most importantly, we don’t actually know the order of the nodes as is the case in figure
8.6. As in the previous two representations of the same graph, we ordered the nodes so
that the nodes of one community proceed the other. Of the n permutations, there’s only a
few that makes that true, a diminishing small percentage of the total possible number of
orderings of n nodes.

CHAPTER 8. A PRIMER ON CLUSTERING IN THE SBM 42

Figure 8.6: Uncoloured and unordered adjacency matrix of SBM. Figure taken from [15]

In 8.6 we don’t have any hope of eyeballing all possible partitions of this graph into two
communities.

8.1 Regimes of Clustering: Sparse to Dense

One of the things figures 8.4, 8.5, and 8.6 help highlight is how much more difficult clustering
can be if the difference between p and q, the in-community probability of connecting and
out-community probability of connecting (respectively), is small. In fact, there is a rigorous
quantification of this heuristic, as it drives a dichotomy in the quality of community recovery
we can achieve. To talk about asymptotic behaviour of the SBM, let’s confine our discussion
to the the balanced SBM with two communities. The definitions are easily extendable to
SBM in general, however focusing on this balanced two community SBM makes clear what
is being held constant and what is growing when we talk about asymptotic behaviour.

Definition 8.1.1. We say a clustering of SBM(n, p, q) gives an Exact Recovery if the
probability of estimating the correct cluster assignments on SBM(n,p,q) goes to one as the
number of nodes n grows. A clustering of the nodes {1, 2, ..., n} is a partition of the nodes
into communities. We can encode that as a binary valued function F : V → {0, 1} in the
case of the two community SBM(n, p, q). So the exact recovery regime can be stated as

P(Fn = F̄n)→n 1

where Fn corresponds to the correct clustering for SBM(n, p, q) and F̄n is the predicted
cluster assignments.

Definition 8.1.2. We say the clustering of SBM(n,p,q) gives detection of the true commu-
nities if the predicted clusters correlate with the true communities. Using the same Fn (true

CHAPTER 8. A PRIMER ON CLUSTERING IN THE SBM 43

community assignments) and F̄n (predicted community assignments) as above, that means

∃ε > 0 : P(|Fn − F̄n| ≥ 1/2 + ε)→n 1.

To adapt this definition to SBMs with k communities, the 1/2 inside the probability changes
to 1/k.

The detection regime is not just a weaker regime, it is actually impossible to obtain exact
recovery for some families of {SBM(n,p,q)}n. Consider for instance when the SBM is not
connected. In that case, the isolated vertices would have underdetermined community mem-
bership. See figure 8.7 for a diagram of such an SBM. The results in [14] prove what sparse
regimes of the 2 community SBM allow for partial recovery.

Figure 8.7: Underdetermined labels due to isolated vertices.

Algorithmic Challenge

In terms of the algorithmic challenge, the optimization problem is quite clear. We are trying
to find a graph partition that satisfies the minimum cut problem. This problem is famously
known to be NP -hard. In the balanced communities (communities of the same size) case, the
problem is NP -complete. For large n graphs, we want to do better than just brute force go
through all possible partitions. Here relaxing the problem has presented many opportunities
to apply spectral algorithms, semi-definite programming and belief propagation methods.
Since spectral methods have been shown to achieve the information theoretic threshold
mentioned in the previous section, and because it provides the inspiration for our Graph
Neural Network model, we will give an exposition of spectral clustering algorithms here.

8.2 Spectral Clustering for the SBM

Spectral clustering is based on studying the spectrum of the graph Laplacian.

CHAPTER 8. A PRIMER ON CLUSTERING IN THE SBM 44

Let G = (V,E) be a graph, possibly weighed graph where {wij} are the weights. The degree
of vertex vi is given by

di :=
n∑
j=1

wij.

The degree matrix D then is the diagonal matrix with entries d1, ..., dn along its diagonal.
Let W be the adjacency matrix of G.

Definition 8.2.1. The unnormalized graph Laplacian is defined as

L := D −W.

Definition 8.2.2. The symmetric graph Laplacian is defined as

Lsym := I −D−1/2WD−1/2 = D−1/2LD−1/2.

Definition 8.2.3. The random walk Laplacian is defined as

Lrw := I −D−1W = D−1L.

The graph Laplacians above enjoy some nice properties. In particular:

Proposition 4. [11]

• For every v ∈ Rn we have

vLvT =
1

2

n∑
i,j=1

wij(vi − vj)2.

• L is symmetric and positive semi-definite.

• The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant one
vector 1. 0 is also an eigenvalue of of Lrw and Lsym, corresponding to the constant
one vector 1 and D−1/2as eigenvectors respectively.

• L has n non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ ... ≤ λn.

Spectral clustering algorithms generally use some version of graph Laplacians, either one of
the three classical ones above, or some matrix that is a perturbation of a Laplacian. We will
discuss one such perturbation when we define the Bethe Hessian matrix in the next chapter.
As for the steps of a generic spectral clustering algorithm, it follows roughly the following
algorithm.

CHAPTER 8. A PRIMER ON CLUSTERING IN THE SBM 45

Algorithm 1 General Spectral Clustering Algorithm

Input: A graph adjacency matrix W corresponding to graph G = (V,E). Let k be the
number of clusters desired.

1. Create L, Lsym, Lrw from W . Let us call the matrix we are finding the spectrum of Q.

2. Take eigendecomposition of Q.

3. Take the k dimensional eigenspace associated with biggest or smallest eigenvalues of
Q. Choose the eigenspace corresponding to the biggest eigenvalues if Q = L, and the
eigenspace corresponding to the smallest eigenvalues if Q = Lsym or Q = Lrw.

4. Project the vertices v ∈ V onto this k dimensional subspace.

5. Perform the k-means algorithm on the projected vertices.

Output: A clustering of the vertices v into k clusters. This can be encoded as a function
F : V → {1, 2, ..., k}.

Choosing what matrix to use for Q (defined in the algorithm above) is somewhat of an art
in clustering problems, especially when it comes to applying it to real data. In the case of
generative models, we have a better understanding of what the cuts should look like. Are
we minimizing cuts while normalizing by volume? Is our graph extremely sparse that the
extreme eigenvalues exhibit large fluctuations? In short, there are many versions of spectral
algorithms that differ on what matrix the spectral algorithm is applied to. A bulk of them
is based on the Laplacian, some on other matrices we can derive from the adjacency matrix
of a network.

One way of seeing how spectral clustering works is to regard the spectral decomposition as a
particularly useful embedding of v ∈ Rn (as represented by the adjacency matrix) to v̄ ∈ Rk

(where k is how many clusters we want to extract). The eigenbasis is informative because it
provides us the most extreme directions that highlights where connections are most sparse
(the eigenproblem is in fact a relaxation of min cut). For instance, consider an instantiation
of SBM(n = 40, (p = 0.5, q = 0.05)). Here k = 2. In figure 8.8 and figure 8.9 we compare a
random projection of our vertex set to R2 with a projection using the spectral basis.

8.3 Thresholds for Detectability and Exact Recovery

In this section we discuss what is the relationship between parameters of the SBM and the
performance of clustering algorithms. To characterize this relationship, we need to use the
constant degree parametrization of the SBM so that we can talk about sparse and dense
graphs. In particular, in the two balanced community SBM(n, p, q) we can reparametrize

CHAPTER 8. A PRIMER ON CLUSTERING IN THE SBM 46

Figure 8.8: Random Embedding Figure 8.9: Spectral Embedding

with a := p · n and b := q · n. Where a, b are the average within-community and out-of-
community average degrees respectively. The regimes where exact recovery and detection
can be made are the following (the definitions of exact recovery and detection were given in
section 8.1).

Definition 8.3.1. The exact recovery information threshold is the point in which we cannot
recover the correct community labels with probability one in the limit. Given p = alog(n)

n
, q =

blog(n)
n

, we can only achieve exact recovery if and only if a+b
2
≥ 1 +

√
ab as was shown in [14]

and [1].

In [14], Mossel, Neeman, and Sly provide a polynomial time algorithm that is capable of
recovering the parameters in the exact recovery threshold (the threshold which they prove
below which no algorithm can recover the communities). The proof has three stages. First
classical spectral clustering is to compute an initial guess. A replica stage is then used to
reduce error by holding out subsets and repeating spectral clustering on remaining graph.
And finally, on a small number of uncertain labels, majority rule to refine their assignments.
Abbe, Bandeira and Hall showed in [1] that they can provide an algorithm using semi definite
programming to achieve the state of the art in the same sparse regime as above.

Definition 8.3.2. The detection information theoretic threshold applies to the SBM with
paramters p = a

n
, q = b

n
. That is, when there is a constant degree sequence of SBM graphs

as n → ∞. It was shown in [13], [12] and [16] that detection is possible if and only if
(a− b)2 > 2(a+ b).

Mossel, Neeman and Sly showed in [13] that they can do partial recovery with spectral
clustering with initial guess, then finish the algorithm with belief propagation to refine

CHAPTER 8. A PRIMER ON CLUSTERING IN THE SBM 47

the guess. Massoulie showed in [12] that spectral clustering can be applied successfully
in this regime using the non-backtracking matrix, a matrix that counts the number of non
backtracking paths from each vertex of a given length. Saade, Krzakala and Zdeborov showed
in [16] that a type of deformed Laplacian via a 1-dim parameter that shares eigenvalues with
non-backtracking matrix for spectral decomposition can be used successfully in this regime.
This deformation Laplacian is called the Bethe Hessian.

Note first that these results are all very recent. They are also not trivial. The proofs
require tools form random matrix theory, the theory of branching processes and semi definite
programming, to name a few, so a fairly deep level of machinery and theory was required.
Also notice that in each regime there is a spectral approach that can successfully achieve
recovery/detection down to the information theoretic threshold. The only catch is the what
type of matrix to apply the spectral method to. Thus the takeaway is that there is no one
size fits all model. Clustering, even in the two community case of the SBM requires a lot
of expertise to refine the right matrices whose spectrum will amplify the signals required to
achieve detection/recovery up to the information theoretic threshold.

Given all this, the present work’s contribution is the following. We will design a neural
network architecture that is expressive enough to approximate these spectral algorithms.
Then we will show that the GNN can achieve detection down to the information theoretic
threshold, thus showing the GNN is competitive with the state of the art algorithms while
requiring less computational steps. The nice thing about bringing neural networks to bear
on the problem is to let gradient descent replace the“ingenuity” aspect of clustering. We
no longer need to meticulously choose the right matrices to apply spectral clustering to.
Gradient descent will learn the correct parameters, in a data driven way.

48

Chapter 9

The Graph Neural Network Model

In this chapter we introduce our Graph Neural Network model and discuss related literature
that use neural networks for classification problems on graph structured data.

9.1 Graph Neural Network

The Graph Neural Network (GNN) is a flexible neural network architecture that is based
on two local operators on a graph G = (V,E). Given some l-dimensional input signal
F : V → Rn×l on the vertices V of an n-vertex graph G (we call such a function a l-
dimensional signal on graph G, where l is arbitrary), we consider two operators that act
locally on this signal as well as a non-linearity operator.

Definition 9.1.1. Define the degree operator as a map D : F 7→ D(F) where

(D(F))i := deg(i) · Fi

where deg(i) is the degree of vertex i ∈ V .

Definition 9.1.2. Define the adjacency operator as a map W : F 7→ W (F) where

(W (F))i :=
∑
j∼i

Fj

where i ∼ j means vertex i is adjacent to vertex j.

Definition 9.1.3. Define the pointwise nonlinearity operator as a map ηθ : Rp · Rp → Rq

parametrized by some θ ∈ Rl trainable. An example of such an operator is the convolution
operator used in convolutional neural networks.

CHAPTER 9. THE GRAPH NEURAL NETWORK MODEL 49

Figure 9.1: An example of an architecture constructed from operators D, W and θ

One layer of applying D and W allows us to recover the graph Laplacian operator. To be
precise, let F be a p-dimensional signal on G , then if we define

η(DF,WF) := DF −WF

we can recover the unnormalized graph Laplacian. If we further define operators D−1/2 and
D−1 (which will be analogously defined to the degree operator D, only with entries mul-
tiplied by the entriees of D−1/2 and D−1 instead of that of D), we will similarly be able
to recover the symmetric and random walk Laplacians. Furthermore, by stacking together
several of the Laplacian operators above, and allowing ourselves to renormalize the signal
after each application, we are able to recreate the power method. This is because we are sim-
ply applying the Laplacian operator many times while renormalizing before each application.
Therefore the expressive power of this GNN includes approximations to eigendecompositions.

Related Work

The GNN was first proposed in [17] as a way to approximate signals on graphs. Bruna
et al. also generalized convolutions for signals on graphs in [4]. Their idea was that the
convolution neural network architecture, so successful for image data, can be interpreted

CHAPTER 9. THE GRAPH NEURAL NETWORK MODEL 50

as learning to representing image signals in the very rapidly decaying Fourier basis. The
coefficients of representing the signals in this basis is rapidly decaying because images lie
on very regular graphs (in particular grids). This generalization of the convolution allowed
them to use the graph Laplacian’s eigenbasis to create a general graph convolution. The
authors successfully applied this neural network for signals on meshes. Kipf and Welling
showed more recently in [9] the GNN with only two symmetric Laplacian layers, can be
quite effective as a embedding procedure for graph signals. They applied their network to
semi-supervised learning problems where some graph nodes were labelled but others were not.

The present work is the first time a neural network has been applied to community detection.
Furthermore because we are applying it to SBMs at the information theoretic threshold, the
graphs we are dealing with are far sparser then all previous applications. We are able to
show that our version of the GNN can compete with algorithms doing clustering on the
SBM in even the hardest of regimes (detectability). This will not work with previous GNN
architectures mentioned above. In addition, we are not doing an eigendecomposition, which
is required of spectral algorithms, thus making the network more efficient computationally.

51

Chapter 10

Experiments

In this chapter we give the results of our experiments on the SBM.

10.1 Spectral Clustering on the Bethe Hessian for the

SBM

Definition 10.1.1. The Bethe Hessian is a one parameter perturbation of the unnormalized
graph Laplacian. Let D be the diagonal matrix of degree of graph G and I be the identity
matrix in n dimensions (where G has n vertices). We define the Bethe Hessian as a matrix
that depends on r ∈ R as

BH(r) := (r2 − 1)I− rA+D.

Saade et al. showed in [16] that the Bethe Hessian was a competitive matrix to do spectral
clustering on when close to the information theoretic threshold of detection of the SBM.
It has the benefit of being easily computed from the adjacency matrix. Recall that the
information theoretic threshold for SBM(n, a/n, b/n) occurs for bounded degree graphs G
when (a − b)2 = 2(a + b). When (a − b)2 > 2(a + b) we can recover the communities,
when (a − b)2 < 2(a + b) we cannot. Saade et al. did an experiment to compare bounded
degree graphs with average degree 3, and compared various spectral methods, as well as
belief propagation with spectral clustering on the Bethe Hessian. The best r to use for the
Bethe Hessian was motivated by results in statistical physics. It was empirically shown to
give good accuracy for r equal to the root of the average degree of the graph in the case of
the SBM, but in general requires one to solve an eigenproblem on the graph zeta function.
See [16] for details.

Our first experiment is to see if the GNN can learn the optimal scalar r such that spectral
clustering with BH(r) becomes informative. Of course, since r is a scalar, it is more effi-

CHAPTER 10. EXPERIMENTS 52

Figure 10.1: Spectral clustering with the Bethe Hessian compared to other popular methods
that work at the limit of clustering detectability. Average degree of all SBM graphs is 3
(extremely sparse regime). This graph of results is taken from [16] and shows the optimality
of using BH, allowing spectral methods to be efficient even at the informational theoretic
boundary of this problem.

cient to brute force search for the solution rather than use gradient descent. However this
preliminary experiment is meant to show that gradient descent can retrieve the optimal r
given the GNN architecture’s ability to approximate the power method in order to find the
eigenvectors of BH(r).

To be clear, the experimental task is as follows.

• Input: Adjacency matrices A (instantiated from specific SBM(n, a/n, b/n)).

• The parameter to be learned via gradient descent is r of BH(r).

• Output: A community assignment of vertices : F : V → {0, 1}.

The model was able to decrease loss, converge and get close to the theoretically verified
optimal r.

CHAPTER 10. EXPERIMENTS 53

Figure 10.2: p = 0.4, q = 0.05, 50 iterations

Figure 10.3: p = 0.4, q = 0.05, 5000 iterations

CHAPTER 10. EXPERIMENTS 54

Figure 10.4: Bethe Hessian loss surface 1.

Figure 10.5: Bethe Hessian loss surface 2.

CHAPTER 10. EXPERIMENTS 55

Figure 10.6: Bethe Hessian loss surface 3.

Figure 10.7: Bethe Hessian loss surface 4.

CHAPTER 10. EXPERIMENTS 56

Learning a one dimensional parameter r is a proof of concept. It forces an artificially hard
bottleneck on our gradient optimization problem since the one dimensional loss surface is
clearly non-convex and contains lots of non-optimal local optima. The optimization land-
scape is also highly varied depending on the instantiation of SBM. What this section serves
to confirm empirically is that the power method for a very specific matrix is within the
expressive power of the GNN and that gradient descent can successfully find the scalar that
best optimizes the spectral signal in that case.

CHAPTER 10. EXPERIMENTS 57

10.2 GNN Performance Near Information Theoretic

Threshold

Figure 10.8: Graph Neural Network architecture for information theoretic boundary for
community detection.

CHAPTER 10. EXPERIMENTS 58

For the main experiment, we consider a GNN with the structure shown in figure 10.8.

In figure 10.8, our input is F ∈ Rn×k where n is the number of nodes and k is the dimension
of the signal. In a clustering problem, k can be the number of communities we want to
detect, where Rn×k is a one-hot encoding of the clustering (an encoding where a categorical
vector with k categories is replaced with k column vectors where each entry is 1 if it is in the
category and 0 otherwise). At each layer, the input signal F is transformed via a convolution
applied to the following array of operators: [Iden,A,A2, D]. Iden is the identity matrix the
size of the graph adjacency matrix. A is the graph adjacency matrix. And D is a matrix
with the degree of each vertex on its diagonal (and zeros everywhere else).

In the language of operators introduced in the previous section, each layer we have the
following

F n+1
1 = η(Iden · F n, A · F n, A2 · F n, D · F n)

and
F n+1

2 = Relu ◦ η(Iden · F n, A · F n, A2 · F n, D · F n)

and
F n+1 = F n+1

1 + F n+2
2

where η is a spatial convolution and Relu(x) := max(0, x) (Relu applied to vectors is just
Relu applied elementwise). For our network applied to the SBM, we used 16 channels per
layer, and 20 layers for a 1000 node graph. In the first layer each layer we apply a k × 4
convolution to each of the 16 output channels. The number of communities is given by k.
The final layer outputs to k channels, to correspond to the k dimensional one hot encoding
of the community labels. We furthermore normalize and center after each layer for stability.

The accuracy measure is given by the overlap.

Definition 10.2.1. The Overlap between a true community label g : V → V where g(u) :=
gu, and the predicted community label ḡ : V → V where ḡ(u) := ḡu, is given by(

1
n

∑
u δgu,ḡu −

1
k

)
(1− 1

k
)

where δ is the Kronecker delta function.

The clustering overlap performance of the GNN in the information theoretic threshold for
the SBM in both assortative and dissortative regime are in graphs 10.9, 10.10 and 10.11. The
regime is extremely sparse, where n = 1000 and the average degree is 3. The x-axis is gives
the difference in average degrees of the subgraph induced by nodes in the same community
and between nodes in different communities: cin − cout. Another way to interpret cin and

CHAPTER 10. EXPERIMENTS 59

cout is via cin/n = p and cout/n = q. The clustering problem becomes easier as |cin− cout|
grows.

Figure 10.9: Performance of GNN against BH baseline for n=1000 at information theoretic
threshold with assortative communities.

CHAPTER 10. EXPERIMENTS 60

Figure 10.10: Performance of GNN against BH baseline for n=1000 at information theoretic
threshold with dissortative communities.

Figure 10.11: Performance of GNN against BH baseline for n=1000 at information theoretic
threshold with 3 communities.

CHAPTER 10. EXPERIMENTS 61

10.3 Future Directions

We have shown the success of the graph neural network on even the most extreme cases
of the SBM. Current extensions of this work is being done by the author and Joan Bruna
to apply to real datasets in the area of community detection in social networks, as well as
more diverse problems that involve signals on graphs, including ranking, entity detection in
databases and protein interaction detection.

62

Bibliography

[1] Abbe, Emmanuel, Bandeira, Afonso S., and Hall, Georgina. “Exact Recovery in the
Stochastic Block Model”. In: arXiv:1405.3267v4 (2014).

[2] Aldous, David J. “The incipient giant component in bond percolation on general finite
weighted graphs”. In: Electron. Commun. Probab. 21.68 (2016).

[3] Aldous, David J. “Weak concentration for first passage percolation times on graphs
and general increasing set-valued processes”. In: ALEA Lat. Am. J.Probab. Math. Stat.
13.2 (2016).

[4] Bruna, Joan et al. “Spectral Networks and Locally Connected Networks on Graphs”.
In: arXiv:1312.6203. (2013).

[5] Couceiro, Micael. Multiple Image Segmentation using PSO, DPSO, FO-DPSO and
exhaustive methods. [Online; accessed April 27, 2017]. 2012. url: https : / / www .

mathworks.com/matlabcentral/fileexchange/29517-segmentation?requestedDomain=

www.mathworks.com.

[6] Diaconis, Persi and Stroock, Daniel. “Geometric bounds for eigenvalues of Markov
chains”. In: Ann. Appl. Probab. 1.1 (1991.), pp. 36–61.

[7] Griffen, Brendan. The Graph Of A Social Network. [Online; accessed April 27, 2017].
2016. url: https://griffsgraphs.wordpress.com/tag/clustering/.

[8] Huang, Hsuan-Ting et al. A proteinprotein interaction network for the 425 human
chromatin factors screened. [Online; accessed April 27, 2017]. 2013. url: http://www.
nature.com/ncb/journal/v15/n12/fig_tab/ncb2870_F7.html.

[9] Kipf, Thomas N and Welling, Max. “Semi-Supervised Classification with Graph Con-
volutional Networks”. In: arXiv preprint arXiv:1609.02907 (2016).

[10] Lu, Linyuan and Zhou, Tao. “Link prediction in complex networks: A survey”. In:
Probability on discrete structures. Encyclopaedia Math. Sci. 110.. (1979), pp. 1–72.

[11] Luxburg, Ulrike von. “A Tutorial on Spectral Clustering”. In: U. Stat Comput 17.395
(2007).

[12] Massoulié, Laurent. “Community detection thresholds and the weak Ramanujan prop-
erty”. In: arXiv:1311.3085 (2013).

BIBLIOGRAPHY 63

[13] Mossel, Elchanan, Neeman, Joe, and Sly, Allan. “A Proof Of The Block Model Thresh-
old Conjecture”. In: arXiv:1311.4115 (2016).

[14] Mossel, Elchanan, Neeman, Joe, and Sly, Allan. “A proof of the block model threshold
conjecture”. In: arXiv:1311.4115 (2014).

[15] Ricci-Tersenghi, Federico. Community Detection via Semidefinite Programming. Jour-
nal of Physics Conference. 2016. url: http : / / www . lps . ens . fr / ~krzakala /

LESHOUCHES2017/talks/LesHouches2017_RicciTersenghi.pdf.

[16] Saade, Alaa, Krzakala, Florent, and Zdeborová., Lenka. “Spectral Clustering of Graphs
with the Bethe Hessian”. In: arXiv:1406.1880v2. (2016).

[17] Scarselli, Franco et al. “The Graph Neural Network”. In: IEEE Transactions on Neural
Networks 20.1 (2009), 6180.

[18] Thiery, Alexandre. First passage percolation to the boundary with exponential weights.
2011. url: https://mathoverflow.net/questions/83802/correlations- in-

last-passage-percolation.

[19] Yang, Jaewon and Leskovec, Jure. “Community-Affiliation Graph Model for Overlap-
ping Network Community Detection”. In: Proceeding ICDM ’12 Proceedings of the 2012
IEEE 12th International Conference on Data Mining 390.. (2012), pp. 1170–1175.

[20] Yang, Jaewon and Leskovec, Jure. “Defining and Evaluating Network Communities
based on Ground-truth”. In: ICDM. 7.2 (dfd), pp. 43–55.

[21] Zhang, Yaonan, Kolaczyk, Eric, and Spencer, Bruce. “Estimating network degree dis-
tributions under sampling: an inverse problem, with applications to monitoring social
media networks”. In: Ann. Appl. Stat. 9.1 (2015), pp. 166–199.

