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ABSTRACT

A discrete choice experiment (DCE) is a survey method that gives
insight into individual preferences for particular attributes.
Traditionally, methods for constructing DCEs focus on identifying
the individual effect of each attribute (a main effect). However, an
interaction effect between two attributes (a two-factor interaction)
better represents real-life trade-offs, and provides us a better under-
standing of subjects’ competing preferences. In practice it is often
unknown which two-factor interactions are significant. To address the
uncertainty, we propose the use of minimum aberration blocked
designs to construct DCEs. Such designs maximize the number of
models with estimable two-factor interactions in a DCE with two-level
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attributes. We further extend the minimum aberration criteria to

DCEs with mixed-level attributes and develop some general theore-
tical results.

1. Introduction

A discrete choice experiment (DCE) is a survey method used to quantify subject preferences
for various attributes, and to gain insight into how attributes influence subject choices. In a
DCE, subjects are offered choice sets that contain questions. Each choice set is made up of
several options and each option is made up of several attributes with two or more levels.
Subjects are asked to select a single option in each choice set. Grossmann and Schwabe (2015)
reviewed various designs for constructing DCEs and Lancsar and Louviere (2008) and
Johnson et al. (2013) provided checklists for good research practice in conducting a DCE.

DCEs combine ideas from economic theory with experimental design. In each choice
set, the option chosen by the subject is assumed to have the highest utility, where the
utility is the benefit that the subject experiences by selecting a particular option. In this
article, we assume the option chosen by the subject implies an implicit trade-off between
attributes, and the responses from a DCE are modeled using the multinomial logit (MNL)
model, which is the sum of two parts: (1) an explainable systematic component based on
the observed attributes and (2) a nonexplainable random component that captures other
attributes that may be relevant but not specified. The parameters in the MNL model
provide information on the relative importance of each attribute (i.e., its main effect) or its
interaction with other attributes (i.e., its two-factor interaction).
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The design of the DCE plays a critical role because it determines how the attributes and
their levels are combined to form choice sets. One common method is to use fractional
factorial designs (FFDs) to construct DCEs; see Street and Burgess (2007) and Bush
(2014), among others. These designs are based on a starting design that is either a full
factorial or an FFD, for which the entries represent the first option in each choice set.
Generators are then added component-wise to the starting design to form the remaining
options in each choice set. These methods are flexible for constructing DCEs for estimat-
ing main effects only. Because both main effects and two-factor interactions can jointly
determine whether DCEs are successfully used to accurately assess real-life decision-
making processes, designs that can also accurately estimate two-factor interactions are
more desirable. Our work in this article focuses on constructing more effective designs for
estimating main effects and two-factor interactions simultaneously.

Jaynes et al. (2016) proposed using existing blocked fractional factorial designs (BFFDs)
to construct DCEs for estimating main effects and select two-factor interactions. Such an
approach assumes that it is known in advance which two-factor interactions are significant.
This is problematic as significant interactions are often unknown in practice. Here we take
an alternative approach and propose using minimum aberration (MA) criteria for selecting
BFFDs to construct DCEs. MA designs are model robust and tend to have large capacity in
estimating various models involving two-factor interactions (Mukerjee and Wu 2006;
Cheng 2014). We review several MA criteria for comparing BFFDs and present examples
to illustrate the benefits of MA designs. Our main innovations are to extend the MA criteria
to DCEs with mixed-level attributes and to develop some general theoretical results.

Section 2 briefly reviews two-level FFDs and BFFDs. Section 3 describes how BFFDs can be
used to construct DCEs for the MNL model and a simulation study to compare DCEs
constructed from different BFFDs. In section 4, we introduce the MA criteria, present
examples to illustrate the advantages of MA designs, and justify the MA criteria in the concept
of estimation capacity. Section 5 discusses construction methods and section 6 shows how to
construct DCEs with mixed-level attributes under generalized MA criteria. Section 7 offers a
summary and a discussion on the use of MA BFFDs to construct DCEs.

2. Fractional and blocked fractional factorial designs

A FFD with k two-level attributes is said to be a 27Pth fraction of the full 2% design if it has
2K=P runs. The fraction is determined by p defining words, where a word describes the
relationship between columns in an FFD. The p defining words, and their products, form
the treatment defining contrast subgroup (Wu and Hamada 2009). In the treatment
defining contrast subgroup, there are 27 — 1 distinct words plus the identity, where each
element within the treatment defining contrast subgroup is called a word, except the
identity. The number of letters in a word is called its length. The length of the shortest
word in the treatment defining contrast subgroup is the resolution of the design. The
larger the resolution, the better is the design. The resolution of a design also determines
which effects can be identified. Let A; be the number of words of length i (i = 1,...,k) in

k

the treatment defining contrast subgroup, such that )  A;o =27 — 1. Then the vector
i=1

Wi = (A1p,Az, ..., Axp) is called the treatment wordlength pattern. In practice, we use
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designs with resolution III or higher with A,g=A,90=0, so for simplicity, we
write Wt = (A37(), NN 714]<7()>.

Example 1. Suppose we have k = 5 two-level attributes and we wish to construct a half
fraction from the full 2° factorial design. We set p = 1 and we determine the fraction by
specifying a defining relation, say E = ABCD. Since there is only a single defining word for
this design, this defining word forms the treatment defining contrast subgroup
I = ABCDE. This results in 2? — 1 = 2! — 1 distinct words plus the identity I. Since the
only word in the treatment defining construct subgroup is of length five, this design is said
to have resolution V with treatment wordlength pattern W, = (As, A4, As0) = (0,0, 1).

In experimental design, BFFDs are commonly used for reducing systematic variations
and increasing precision of parameter estimation. To construct a BFFD we confound an
interaction effect with a block effect. This means that the design is unable to estimate the
two effects separately. To construct a two-level BEED, we block a 25? FFD in 27 blocks
defined by q block defining words, with blocks of size 2¥"7~49, which leads to two defining
contrast subgroups: the treatment defining contrast subgroup and the block defining
contrast subgroup. The g block defining words and their products form the block defining
contrast subgroup, which consists of 27 — 1 distinct words.

Any effects, including any aliased effects, associated with these blocking variables are
confounded with the blocks (Wu and Hamada 2009). This means that if an effect is
confounded with a block effect, it cannot be estimated, and if an effect is aliased with
another effect (not a block effect), it can be estimated only if all the aliased effects are
negligible. A main effect or a two-factor interaction is clear in a BFFD if it is not aliased with
any other main effects or two-factor interactions, or confounded with any block effects (Wu
and Hamada 2009). A clear main effect or two-factor interaction can be estimated without
having to assume negligibility of other two-factor interactions that may be of interest.

In a BFFD, each block effect is confounded with 27 treatment words (or effects). Let A;;
be the number of treatment words of length i that are confounded with a block effect, such

k
that > A;; = 2P(29 — 1). Then the vector W, = (A11,A4,1,...,Ak;1) is called the block

i=1
wordlength pattern. However, a blocking scheme is only feasible if none of the main effects
are confounded with block effects, that is, A; ; = 0, and we write Wj, = (Az1,...,Ak1).

Example 2. Suppose we wish to divide the 2°~! FED in Example 1 into 27 = 22 blocks, each
of size 2571 = 257172, This design has treatment defining contrast subgroup I = ABCDE and
we can choose the block defining contrast subgroup b; = AB, b, = AC, and b5 = b b, = BC
(which consists of 27 — 1 = 22 — 1 distinct words). With this design, additional effects are
confounded with the three block effects. For instance, when we multiply the treatment defining
contrast subgroup I = ABCDE with the block defining contrast subgroup, we obtain b; =
AB = CDE, b, = AC = BDE, and b; = b;b, = BC = ADE. In this design, all five main effects
are clear plus seven two-factor interactions. This design has block wordlength pattern:
Wy = (A21,A31,A41,A51) = (3,3,0,0); that is, three two-factor interactions (AB, AC, BC)
and three three-factor interactions (CDE, BDE, ADE) are confounded with block effects.
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3. Blocked fractional factorial designs for discrete choice experiments

A main advantage of using BFFDs to construct a DCE is that the entire aliasing structure of a
BFFD is known in advance and consequently we also know which effects are estimable in the
DCE (Jaynes et al. 2016). The number of blocks in the BFFD represents the number of
choice sets in the DCE, and the size of the block represents the number of options within
each choice set. If we use a 2°th fraction of a 2F experiment in 27 blocks, the number of
choice sets in a DCE is 29 and the number of options in each choice set is 27774,

3.1. Multinomial logit model

The multinomial logit (MNL) model is a common model for modeling responses and
analyzing data from a DCE. The parameters in the model measure the usefulness of the
attributes and their interactions with other attributes. Specifically, suppose the DCE has S
choice sets and J options in each choice set. We assume that the responses from the
subjects are analyzed using random utility theory and define the utility for a subject that
chooses option j in choice set s to be

]5— B+€]s (1)

Here xj; is a k* x 1 vector containing the model expansion of the attribute levels of option j in
choice set s, k* is the number of parameters to be estimated, 8 is the k* x 1 vector of model
parameters representing the effect of the attribute levels on the utility and g is an error term
following an independent identically distributed extreme value type 1 distribution.
Under the MNL model, the probability that a subject selects option j in choice set s is
(xB)
- @)
2 e
r=1

where 3 is estimated using maximum likelihood estimation. It is assumed in the MNL
model that B is the same for every subject and that subjects” preferences for the attribute
levels are homogeneous across the population (Kessels et al. 2011). We also assume all
subjects are given the same choice sets and the choice of the option in each choice set is
independent because the errors are assumed to be independent. The log-likelihood func-
tion for the MNL model is

pjs =

S ]
=" yilog(pi), (3)

s=1 j=1

where yj; is a choice indicator, which equals 1 if the subject chooses option j in choice set
s, and zero otherwise (Gerard et al. 2008).

The optimal design X = [x;] for estimating 8 in the MNL model depends on the Fisher
information matrix (Kessels et al. 2011). This matrix is the covariance of the derivative of
the log-likelihood function with respect to 8 (Sandor and Wedel 2001):

S
= Z XIS(PS - pspls)x57 (4)
s=1
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where X, = [Xy;, ..., Xy is a submatrix of X that corresponds to choice set s, p, =
[pis,---,pp] and P, = diag[pis,...,ps]. When all subjects are shown the same choice
sets, X; is the same for all subjects. If the information matrix is diagonal, estimates of the
parameters are uncorrelated.

The design with the largest determinant of the information matrix M(X, p) is said to
be the D-optimal design. Such an optimal design provides the most precise estimates for
the model parameters (Atkinson and Donev 1992). However, the optimal design depends
on the unknown parameter 3, so design strategies cannot be implemented unless the
parameters are known. One approach to overcome this problem is to construct a locally
optimal design assuming nominal values for the parameters are available from pilot
studies or experts’ opinion.

We construct locally D-optimal designs and assume that each option has an equal
probability of selection, that is, the nominal values are 3 = Oy, where 0 is a k* x 1
vector of zeros. When 8 = 0y, the information matrix for a locally optimal choice design
under the MNL model is proportional to the information matrix for a BFFD with blocks
of size J under the general linear model (Kessels et al. 2011). Consequently, “locally
optimal DCEs obtained assuming 8 = Oy are exactly the same as optimal designs for
blocked experiments when the model of interest is linear and the block effects are treated
as fixed parameters” (Kessels et al. 2011, 176).

3.2. Simulation study

We now perform a simulation study using various DCEs constructed from different
BFFDs to compare estimates for the parameters in the MNL model. We consider a
DCE with five two-level attributes, and four choice sets each with four options. The
three designs labeled S1, S2, and S3 in Table 1 are 2°~! FFDs in 2* blocks taken from
Table 4 in Sun et al. (1997). Each design has a different treatment defining construct
subgroup and block defining words, which leads to different treatment, and block,
wordlength patterns. Table 1 also displays the two-factor interactions confounded with
block effects, the aliasing structure between main effects and two-factor interactions, and
the aliasing structure between two-factor interactions. S1 is the same design used in
Example 2. For the simulation study, we assume that the true model has five main effects
plus three two-factor interactions given by

pu=0.5x4 — 0.5xp + 0.5x¢c — 0.5xp + 0.5xg + 0.25x4xc — 0.25x4xp + 0.25xpxE, 5)

where y is the utility for the option (A, B, C, D, E). We first compute the MNL probability
of selecting each option within each choice set using Eq. (2). We then use these prob-
abilities to simulate a response according to the multinomial distribution for each of the
three designs. Each DCE is replicated 500 times to represent 500 subjects.

To illustrate the consequences of confounding and aliasing, for each design, we fit two
models: (i) a model with main effects only, and (ii) a model with all main effects and all
clear two-factor interactions plus one two-factor interaction from each aliased set that is
not confounded with a block effect. Tables 2 and 3 show the parameter estimates and
standard errors, respectively, from each design. We observe from Table 2 that parameter
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estimates from the model with only main effects are not consistent with the coefficients in
the true model (5) because the model does not contain the significant two-factor interac-
tions in the true model (5). Under the MNL model, these missing significant two-factor
interactions bias the estimates of the main effects even though all main effects are clear for
designs S1 and S2, and C and D are clear for design S3. This would not be possible in a
linear model.

For design S1, three two-factor interactions (AB, AC,BC) are confounded with the
three block effects and cannot be estimated. The remaining seven two-factor interactions
are clear. Comparing the parameter estimates from design S1 in Table 3 with those from
the true model (5), we observe that all five main effects are consistent with the coefficients
in Eq. (5). Both AD and BE, which are included in Eq. (5), are also consistent because they
are clear in the BFFD. However, AC, which is included in Eq. (5), cannot be estimated
because it is confounded with the block effect b,. Even though AC cannot be estimated it
does not bias the estimates of the clear effects in the true model (5).

For design S2, four two-factor interactions (AD, BD, CD, DE) are clear. The remaining
six two-factor interactions form three alias sets. One of the alias set is confounded with b3,
and cannot be estimated. We include one two-factor interaction (say AC, AE) in the model
from each of the other two alias sets. Comparing the parameter estimates for design S2 in
Table 3 with the true model (5), we see that all five main effects are consistent with the
coeflicients in Eq. (5). The estimate for the two-factor interaction AD, which is included in
Eq. (5), is consistent with the coefficient in Eq. (5) because AD is clear in the BFFD. Since
AC and BE are aliased, and are both included in Eq. (5), in Table 3 the estimate for AC is
the sum of the estimates for AC and BE in the the true model (5).

Table 2. Main effect estimates (and standard errors) from the simulation study.

Effect Design S1 Design S2 Design S3

A 0.604 (0.032) 0.772 (0.033) 0.889 (0.041)
B -0.455 (0.032) -0.391 (0.033) -0.567 (0.040)
C 0.509 (0.032) 0.609 (0.029) 0.471 (0.032)
D -0.557 (0.027) -0.502 (0.026) -0.606 (0.028)
E 0.387 (0.026) 0.341 (0.029) 0.512 (0.037)

Note. True model: u= 0.5x4 — 0.5xp + 0.5x¢ — 0.5xp + 0.5xp + 0.25x4x¢c — 0.25x4xp + 0.25xpXE.

Table 3. Main effects plus two-factor interactions (and standard errors) from the simulation study.

Effect Design S1 Design S2 Design S3
A 0.506 (0.048) 0.555 (0.044) 0.792 (0.051)
B -0.524 (0.048) -0.503 (0.045) -0.533 (0.051)
C 0.549 (0.048) 0.464 (0.044) 0.497 (0.051)
D -0.484 (0.048) -0.435 (0.046) -0.456 (0.041)
E 0.454 (0.048) 0.482 (0.045) 0.502 (0. 051)
AB —

AC 0.467 (0 045) —

AD -0.246 (O 048) -0.28 (0.038) -0.262 (0.039)
AE 0.028 (0.048) -0.025 (0.041) —

BC — — 0.029 (0.050)
BD 0.038 (0.048) 9 (0.045) —

BE 0.239 (0.048) —

b -0.005 (0.048) -0.015 (0.038) 0.011 (O 029)
CE 0.012 (0.048) — -0.053 (0.051)
DE -0.017 (0.048) -0.041 (0.045) -0.057 (0.041)

Note. True model: y = 0.5x4 — 0.5x5 + 0.5x¢c — 0.5xp + 0.5xg + 0.25x4xc — 0.25x4%p + 0.25xpXE.
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For design S3, two two-factor interactions (AC, BD) are confounded with two block
effects, b; and b3, and cannot be estimated. Three two-factor interactions (BE, AE, AB) are
aliased with main effects and cannot be estimated either. The remaining five two-factor
interactions are clear. Comparing the parameter estimates of the main effects from design
S3 in Table 3 with those from the true model (5), we observe that only four of the main
effects are consistent with the coeflicients in Eq. (5). The main effect A, which is aliased
with BE, is biased by BE because BE is included in the true model (5). Comparing the
estimates of the two-factor interactions from design S3 in Table 3 with those from the true
model (5), AD is consistent because AD is clear in the BFFD. Since AC is confounded with
the block effect b;, AC cannot be estimated.

From this simulation study, we have shown that a misspecified model can lead to biased
and misleading estimates, even if the effects are clear. This illustrates the importance of
including all significant effects in the model, particularly significant two-factor interac-
tions. For example, if there are significant two-factor interactions (such as in our true
model), and a main effects only model is fit, then the estimates of the main effects are
biased by the significant two-factor interactions, even if the main effects are clear. By
considering a BFFD, we present the following advantages: (1) Effects confounded with
block effects are not estimable, but do not bias the estimate of other effects; (2) aliasing
causes bias, but aliased effects are estimable if all the aliases are negligible; and (3) aliasing
or missing a significant two-factor interaction can bias the estimation of main effects even
if all main effects and two-factor interactions are clear. Hence, it is essential at the design
stage to know the aliasing and confounding structure of the designs in order to construct
an efficient DCE.

Viney et al. (2005), Bliemer and Rose (2011), and Burgess et al. (2011; 2015) reported
some empirical comparisons of DCEs and concluded that the choice of designs is not as
crucial when the sample size is reasonable. When the sample size becomes smaller, the
choice of designs matters more. Our simulation shows that the three designs differ sub-
stantially when some two-factor interactions are included in the true model, even though
they are equally good when the true model contains the main effects only. In the next
section, we propose the MA criteria for choosing BFFDs to construct DCEs.

4. Minimum aberration criteria

The choice of the BFFD for constructing a DCE depends on the number of attributes k,
the desired size of the choice set or the number of options, and which effects are to be
identified as clear. Sun et al. (1997), Sitter et al. (1997), Chen and Cheng (1999), Cheng
and Mukerjee (2001), Cheng and Wu (2002), Xu (2006), Xu and Lau (2006), and Xu and
Mee (2010), among others, discussed optimal choice of blocking schemes for FFDs. Jaynes
et al. (2016) focused on the choice of BFFDs to maximize the number of clear main effects
and two-factor interactions. This method is beneficial if it is known in advance which two-
factor interactions are significant; however, in practice, it is not known in advance which
two-factor interactions are significant. One way to select a BFFD is to use the total number
of clear effects to compare and rank order the different blocked 2k=p designs. However,
this is not always the best approach because it depends on the aliasing structure of the
designs being compared.
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In this article, we propose the use of the minimum aberration (MA) criteria to select
BFFDs to construct efficient DCEs, which maximizes the number of models with estim-
able two-factor interactions by minimizing the confounding or aliasing of two-factor
interactions. There are various approaches for applying MA criteria to select a BFFD
because of the presence of the two defining contrast subgroups, one for the treatment
effects and one for the block effects. One approach is to apply the MA criterion to the
treatment and block wordlength patterns separately; however, an MA design with respect
to one wordlength pattern may not have MA with respect to the other wordlength pattern.
Another approach is to combine the treatment and block wordlength patterns into one
sequence and apply the MA criterion to the combined wordlength pattern. With this
approach, the MA criterion ranks BFFDs according to their combined treatment and
block wordlength patterns. Several combined wordlength patterns have been proposed in
the literature:

Wer = (A30,A2,1,A40,431,A50, A4, ) (6)
Wee = (3As0 + Az1,A40, 10450 + A3 1, Agp - - ) (7)
Wi = (As0,A40,A21,A50,A60,A31,...) (8)
Wy = (As30,A2,1,A40,A50,A31, 460, - - .). 9)

These sequences were proposed by Sitter et al. (1997), Chen and Cheng (1999), and Cheng
and Wu (2002). Based on these combined wordlength patterns, several authors have
provided collections and tables of MA BFFDs based on the W-criteria for both two and
three-level attributes:

e Sitter et al. (1997): provide MA BFFDs based on the W criterion for all 8 and 16
run designs; for 32 run designs up to 15 attributes, and for 64 and 128 run designs up
to 9 attributes.

o Chen and Cheng (1999): provide MA BFFDs based on the W,, criterion for 8, 16, and
32 runs up to 19 attributes.

e Cheng and Wu (2002): provide MA BFFDs based on the W; and W, criteria for all
27 run designs, and for 81 run designs up to 10 attributes.

e Xu and Lau (2006) and Xu (2006): provide MA BFFDs based on the Wy, Wy, W,
and W, criteria for all 32 run designs, for all 81 run designs, and for 64 runs up to 32
attributes.

e Xu and Mee (2010): provide MA BFFDs based on the W, criterion for 128 runs and
up to 64 attributes.

Several authors have compared and commented on the advantages and disadvan-
tages of the four sequences (6)-(9); see Chen and Cheng (1999), Zhang and Park
(2000), Cheng and Wu (2002), and Xu and Mee (2010). Xu and Lau (2006) and Xu
(2006) summarized the situations in which MA BFFDs differ under the different
criteria (6)-(9). Cheng and Wu (2002) argued that both W; and W, are appropriate
sequences because they allow for a large number of two-factor interactions to be
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estimated. The following example illustrates the benefits of using the W; and W,
criteria for selecting BFFDs to construct DCEs.

Example 3. Consider the three designs S1, S2, and S3 in our simulation study and two of
the three designs used in the simulation study by Jaynes et al. (2016). For reference, we
denote the other two designs as S4 and S5. S4 has treatment defining word I = ABCE and
block defining words b; = AB = CE, b, = AC = BE, and b; = BC = AE; S5 has treatment
defining word I = ADE and block defining words b; = AB = BDE, b, = AC = CDE, and
b; = BC = ABCDE. A direct calculation shows that we have:

Design S1: Wy = ( ), Wy =(0,3,0,1,3,...).
Design S2: Wy = (0,1,2,0,...), W, =(0,2,1,0,4,...
Design S3: Wy = (1,0,2,0,...), W, = (1,2,0,0,3,...
( ), Wa = (
( ), Wa = (

Design S4: W, = =(0,6,1,0,0,...
Design S5: W; = 1,3,0,0,2,...

N e e

Both S3 and S5 have one word of length three (A;o = 1), which causes three two-factor
interactions aliased with three main effects. They are worse than designs S1, S2, and S4 in
terms of both W, and W,. Both S2 and S4 have no words of length three (A3, = 0) and one
word of length four (A4 = 1), but in design S2 two two-factor interactions are confounded
with block effects (A, ; = 2), while in design S4 six two-factor interactions are confounded
with block effects (A, = 6). Therefore, S2 is better than S4 in terms of both W; and Ws.
Design S1 has MA with respect to W; because it has smaller A, than design S2 (0 vs. 1),
which implies that in design S1 no two-factor interactions are aliased with other two-factor
interactions, whereas in design S2 three sets of two-factor interactions are aliased with other
two-factor interactions caused by one word of length four. Design S2 has MA with respect to
W, because it has smaller A,; than design S1 (2 vs. 3), which implies that two two-factor
interactions are confounded with block effects in design S2 versus three two-factor interac-
tions confounded with block effects in design S1. Both S1 and S2 are better than the other
three designs in the capacity of estimating two-factor interactions.

Example 3 illustrated that by minimizing aliasing and confounding of two-factor
interactions, we maximize the number of estimable two-factor interactions. The As
value captures the number of two-factor interactions aliased with main effects; the A,
value captures the number of two-factor interactions confounded with block effects. By
minimizing A3y and A,;, we maximize the number of estimable two-factor interactions
besides the estimation of main effects. This is further described by the concept of
estimation capacity later.

The choice between the W; and W, criteria depends on whether aliased effects or
confounded effects are viewed as less desirable. For resolution IIT and IV FFDs, the choice
between W; and W, depends on whether A, or A, is less desirable, since both A4, and
A, pertain to either aliasing or confounding of two-factor interactions. Similarly for
resolution V and VI FFDs, the choice between W; and W, depends on whether Ag( or
As is less desirable, since both Ag and Ajz; pertain to either aliasing or confounding of
three-factor interactions.
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The next example further illustrates the differences between choices of W; and W,.

Example 4. Consider a DCE with eight two-level attributes and eight choice sets each with
four options. We need a 257 =2%3 FFD in 27=2°=8 blocks each of size
2k=P=a = 28-3-3 = 22 that is, eight choice sets each with four options. Table 5 in Xu and
Lau (2006) lists two possible MA BFFDs, labeled as 8-3.1/B3(W)) and 8-3.2/B3(W, W),
which can be used to construct such a DCE. We call them D1 and D2, where D1 is optimal
under the MA W, criterion and D2 is optimal under both the MA W, and W criteria.

Design D1 has treatment defining contrast subgroup I = ABCDF = ABEG = ACEH =
CDEFG = BDEFH = BCGH = ADFGH and treatment wordlength pattern W, =
(0,3,4,0,0,0). This design has block defining words b; = ABC,b, = AD, b; = AE and
block wordlength pattern W;, = (8,16, 11,...). For this design, all eight main effects and
eight two-factor interactions (BD, BF, CD, CF, DG, DH, FG, FH) are clear.

Design D2 has treatment defining contrast subgroup I = ABCDEF = ABCG = ABDH =
DEFG = CEFH = CDGH = ABEFGH and treatment wordlength pattern W, =
(0,5,0,2,0,0). This design has block defining words b; = AB,b, = ACD, bs; = CE and
block wordlength pattern W, = (7,18,10,...). For this design, all eight main effects and
four two-factor interactions (AE, AF, BE, BF) are clear.

Table 4 compares D1 and D2 and shows the main effects and two-factor interactions
associated with the 31 columns in Yates order. Comparing the W; and W, combined wor-
dlength patterns, D1 has W; = (0, 3,8,4,...) and W, = (0,8,3,4,...), and D2 has W, =
(0,5,7,0,...) and W, =(0,7,5,0,...). The MA W, criterion favors D1 because it has a
smaller A4 (3 vs. 5), while W, favors D2 because it only confounds seven two-factor interac-
tions with blocks, A, ; = 7 (vs. 8). Comparing the aliasing and confounding structure for each
design: D1 has (20 — 6 =) 14 degrees of freedom for two-factor interactions; that is, D1 has six
sets of aliased two-factor interactions sacrificed for six block effects (for a total of eight two-
factor interactions sacrificed for block effects) out of 20. However, D2 has only (15 — 3 =) 12
degrees of freedom for two-factor interactions; that is, D2 has only three sets of aliased two-
factor interactions sacrificed for three block effects (for a total of seven two-factor interactions
sacrificed for block effects) out of 15. Furthermore, D1 has eight clear two-factor interactions (vs.
D2 which has four clear two-factor interactions); therefore, D1 under the MA W, criterion may
be preferred.

In Example 4, the W, optimal design, D1, has less aliasing and is less likely to require a
follow-up experiment than the W, optimal design. If there is a follow-up experiment, the W
design will most likely be preferred because it has 14 degrees of freedom for two-factor
interactions not confounded with blocks, whereas the W, design has 12. Xu and Mee (2010)
argued that follow-up experiments are less likely for large experiments.

4.1. Estimation capacity

The MA criteria can be justified by the concept of estimation capacity. Cheng, Steinberg, and
Sun (1999) showed that for unblocked FFDs, the MA criterion is a good surrogate for some
model-robustness criteria. We now extend this justification for blocked FFDs. Assume that the
main effects are of primary interest and their estimation is required. A model can be estimated
by a design D if all the effects in the model are jointly estimable. Fori =1, ..., (]2‘), let E;(D) be
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Table 4. Comparison of two 2873 designs in 23 blocks.

Column D1 D2

1 A A

2 B B

3 AB = EG AB = CG = DH = BLOCK
4 C C

5 AC=EH AC =BG

6 BC=GH BC = AG

7 DF = BLOCK G

8 D D

9 AD = BLOCK AD = BH

10 BD BD = AH

11 CF H

12 CD CD = GH

13 BF = BLOCK

14 AF = BLOCK = BLOCK

15 F EF = DG = CH
16 E E

17 AE = BG = CH = BLOCK AE

18 BE = AG BE

19 G

20 CE=AH CE = FH = BLOCK
21 H

22 = BLOCK

23 CG =BH DF = EG = BLOCK
24 DE = BLOCK DE = FG

25 = BLOCK

26 FH = BLOCK

27 DG CF =EH

28 FG

29 DH BF

30 AF

31 EF = BLOCK F

Table 5. A 25! design in 2 blocks.

A B C D E AB AC AD BC BD (D ABC ABD ACD BCD ABCD Block
1 0o 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 1
2 0o 0 0 1 1 0 0 1 0 1 1 0 1 1 1 1 1
3 0o 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 2
4 0o 0 1 1 0 0 1 1 1 1 0 1 1 0 0 0 2
5 o 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 3
6 o 1 0 1 ©0 1 0 1 1 0 1 1 0 1 0 0 3
7 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 4
8 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 4
9 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0 1 4
M 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 0 4
1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 3
12 1 0 1 1 1 1 0 0 1 1 0 0 0 1 0 1 3
13 1 1 0 0 O 0 1 1 1 1 0 0 0 1 1 0 2
14 1 1T 0 1 1 0 1 0 1 0 1 0 1 0 0 1 2
15 1 1 1 0 1 0 0 1 0 1 1 1 0 0 0 1 1
16 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 1

Note. E = ABCD, bl = 14B7 bz = AC, and bg, = blbz = BC.

the number of models containing all main effects and i two-factor interactions, which can be
estimated by design D. It is desirable to have E;(D) as large as possible. A design D is said to
dominate D, if E;(D;) > E;(D,) for all i, with strict inequality for at least one i. A design is said
to have maximum estimation capacity (Chen and Cheng 1999; Cheng and Mukerjee 2001) if it
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maximizes E;(D) for all i. It is easy to see that E;(D) = (5) — 34;(D) — A5,(D) so that
minimizing 3A; (D) + A, (D) would maximize E; (D). Cheng and Mukerjee (2001) argued
that further minimizing A4 (D) tends to make other E;(D) large. For resolution IV or higher
designs, A3 o(D) = 0; therefore, the MA criteria are good surrogates of the maximum estima-
tion capacity criterion although they are not exactly equivalent. For a 2¥? design in 27 blocks,
there are k main effects and 29 — 1 block effects. We can estimate at most f = 257 — k — 24
two-factor interactions so that E;(D) = 0 for i > f and we only consider (Ei, ..., E).

Example 5. Consider the five designs in Example 3. Their estimation capacities are:

Design El Ez E3 E4 E5 E6 E7
S1 7 21 35 35 21 7 1

S2 8 26 44 41 20 4 0
S3 5 10 10 5 1 0 0
54 4 6 4 1 0 0 0
S5 4 6 4 1 0 0 0

S4 and S5 have the same estimation capacity although they are different. Both S1 and S2
dominate the other three designs in terms of estimation capacity and MA. S1 can estimate
all main effects and up to seven two-factor interactions (as E; = 1), whereas S2 can
estimate all main effects and at most six two-factor interactions (as E; = 0). S1 can
estimate more models than S2 if more than four two-factor interactions are important.
On the other hand, S2 can estimate more models containing all main effects and up to
four two-factor interactions than S1.

Example 6. Consider the two designs in Example 4 and a third design, called D3, which has
the same treatment defining contrast subgroup as D1 but different block defining words. The
independent block defining words for D3 are b; = AB, b, = AC, b; = AE and the block
wordlength pattern is W, = (15,6,12,...). D3 has five more (13 vs. 8) clear two-factor
interactions than D1 but it has larger A, ; (15 vs. 8) than D1. The estimation capacities are:

Design E;, E, E; E, Es E¢ E; Eg Ey Eyo Eyy  En E;z Eu Es Eg

D1 20 184 1032 3942 10848 22180 34232 40081 35436 23292 11040 3568 704 64 0 0
D2 21 200 1142 4353 11665 22526 31572 31864 22576 10656 3008 384 0o 0 0 O
D3 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1 0 0 0

Both D1 and D2 can estimate more models than D3 even though D3 has more clear two-
factor interactions. D3 is dominated by D1 in terms of both MA and estimation capacity.
D1 can estimate more models than D2 and so is preferred if seven or more two-factor
interactions are important. We note that there are many other designs that are dominated
by either D1 or D2 in terms of MA and estimation capacity.

As Examples 5 and 6 show, the W criterion would be a better choice if the number of
possible two-factor interactions is large, while the W, criterion would be a better choice if
that number is thought to be smaller.
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5. Construction methods

We present two methods to construct MA BFFDs. A regular 25 FFD can be viewed as k
columns of an N x (N — 1) matrix, which consists of k — p independent columns and all
possible interactions among them, where N = 2¥~7. To arrange a regular 2¢~? FFD in 2 blocks,
one must choose g columns from the remaining N — 1 — k columns as possible generators. The
method presented by Xu and Lau (2006) uses coding theory to screen out infeasible block

schemes when searching over all possible (N 7;") combinations of g block generators, which is

fast when g is small.

The method proposed by Xu and Mee (2010) directly partitions a regular 257 FFD into
21 blocks of size 2™ (with m = k — p — q). For two-level and multilevel blocked designs,
Theorem 1 from Xu and Mee (2010) presents a method to partition a regular FFD directly
into blocks. For convenience, we restate their theorem.

Theorem 5.1 (Xu and Mee, 2010). A regular s*? design D can be properly partitioned into s1
blocks of size s™ (withm = k — p — q) if and only if there exists an m x k submatrix V of D such
that V has full row rank and every column of V is not a null vector.

Given an unblocked N = 27 design, we choose m rows from the N — 1 nonzero rows
to form a matrix V and check whether both conditions in Theorem 5.1 are satisfied.
Theorem 5.1 is most useful when m is small.

Example 7. Consider the following example to block the MA 2°~! design defined by
E = ABCD, given in Example 2 and Design S1 from the simulation study. This design is given
as the first five columns in Table 5. Theorem 5.1 states that there exists a matrix V that is a subset
of the design matrix given in Table 5. To partition this design into 2> blocks, rows 15 and 16
satisfy both conditions in Theorem 5.1. Therefore, this 2°~! MA FFD can be directly partitioned
in 2% blocks of size 2°~!72. To determine the block generators we examine the 11 remaining
columns. Looking at rows 15 and 16, there are three columns (AB, AC and BC) where both
elements are zero at rows 15 and 16. These columns correspond to the block columns
b, = AB, b, = AC, and b; = b;b, = BC. The principal block consists of rows {1, 2, 15, 16},
rows {3, 4, 13, 14} form block 2, rows {5, 6, 11, 12} form block 3, and rows {7, 8, 9, 10} form
block 4.

If m = 1, then V is a row vector, and a regular 2¥~? design can be partitioned into 2k—7~!
blocks if and only if the design consists of a row of k ones. In this case, the unblocked FFD is a
foldover design, and each row and its foldover form a block (Xu 2006). A regular foldover design
is known as an even design, where all of the treatment words are of even length. Xu (2006)
presented Corollary 3 for this special case, which states: “A regular 27 design containing the
null treatment can be partitioned into maximal 2k=P=1 blocks as a regular main effect (RME)
design if and only if it is an even design.” Here, an RME design is a design such that no main
effects are aliased with other main effects, and no main effects are confounded with block effects.
The treatment word (ABCDE) for the design in Example 7 is not of even length, and hence, there
is not a row of ones in this design. Consequently, the design is not an even design and cannot be
partitioned into maximal blocks. Let us consider another example.
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Table 6. A 2°~! design in 2° blocks.

A B C D E AB AC AD BC BD (D ABC ABD ACD BCD ABCD Block
1 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 1
2 0o 0 O 1 0 0 0 1 0 1 1 0 1 1 1 1 2
3 0 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 3
4 0o 0 1 1 1 0 1 1 1 1 0 1 1 0 0 0 4
5 0 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 5
6 0 1 0 1 1 1 0 1 1 0 1 1 0 1 0 0 6
7 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 7
8 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 1 8
9 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0 1 8
10 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 7
1" 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 6
12 1 0 1 1 0 1 0 0 1 1 0 0 0 1 0 1 5
13 1 1 0o 0 O 0 1 1 1 1 0 0 0 1 1 0 4
14 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 3
15 1 1 1 0 1 0 0 1 0 1 1 1 0 0 0 1 2
16 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 1
Note. E = ABC, bl = AB7 bz = AC7 b3 = AD7 b4 = b]bz = BC7 b5 = b1b3 = BD,bé = bzbj, = CD, and b7 = b1b2b3 =

ABCD.

Example 8. Suppose we wish to block the 2°~! design defined by E = ABC into maximal
blocks. This design is given as the first five columns in Table 6. We note that row 16 does
not contain any zeros in the first five columns. Based on Theorem 5.1, this design can be
arranged into maximal blocks, that is, eight blocks (2°) of size 2 (2" =257173). The
treatment word (ABCE) for this design is of even length, and thus this design is an even
design, and each row and its foldover form a block. For example, row 16 is the foldover of
row 1. Looking at row 16, there are seven columns (AB, AC, AD, BC, BD, CD, and ABCD)
where the elements are zero. These seven columns form the block columns:
bl = AB, b2 = AC, b3 = AD, b4 = blbz = BC, b5 = b1b3 = BD, b6 = b2b3 = CD, and
b; = b1b,b; = ABCD. Rows 1 and 16 form the principal block, rows 2 and 15 form
block 2, rows 3 and 14 form block 3, and so on. With this design all five main effects
are clear, and all two-factor interactions are confounded with block effects.

6. Extensions to mixed-level and nonregular designs

We now extend our approach to construct DCEs with mixed-level k attributes. Let D =
(T,B) be an N x (k 4 1) matrix, where T is an (N X k) matrix for the k attributes and B is
an (N x 1) vector for b blocks or b choice sets. The matrix D is a mixed-level orthogonal
array (OA) of strength 2 or higher, which can be used to construct a DCE with k attributes
each at sy, ..., s; levels, and b choice sets each with N /b options. We denote such an OA by
OA(N,s; X ... X sg X b). Table 5 shows the 2°~! design in 4 blocks from Example 2
representable by D = (T, B), where the first five columns form the matrix T and the last
column forms the vector B. In this case, D is an OA(16, 2541). As another example, consider
Table 6, where columns 1-5 and 13-15 define the 16 x 8 matrix T and the last column
defines the vector B. Then D = (T, B) is OA(16,288'), which defines a DCE with eight two-
level attributes in eight choice sets and each choice set consists of a foldover pair.

When we use one of the columns in an OA to define a blocking scheme, all main effects
are orthogonal to block effects and the resulting block design is universally optimal for the
main effects model (Dey and Mukerjee 1999, Theorem 7.4.1). The connection between the
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MNL model and the linear model for blocked designs in section 3.1 implies that such a
blocked design used as a DCE is a locally optimal design for the main effects MNL model
assuming 3 = 0.

Theorem 6.1. When D = (T,B) is a mixed-level OA(N,s; X ... X s X b), all main
effects are orthogonal to block effects. This is a locally optimal design for the main effects
MNL model assuming 8 = 0.

Although all mixed-level OAs are locally optimal designs for the main effects model,
they have different properties when some two-factor interactions are significant. To
further distinguish them, we extend the MA criteria to the mixed-level case. We first
review the generalized minimum aberration (GMA) criterion due to Xu and Wu (2001).

Following Xu and Wu (2001), for design T with N runs and k attributes, the full
analysis of variance (ANOVA) model is

Y:X()e() +X191 +X292+...+Xkek+£ (10)

where y is the vector of N observations, 6 is the general mean, 0; is the vector of jth-order
factorial effects, X, is the vector of 1’s, X; the matrix of orthonormal contrast coefficients
for 0;, and & the vector of independent random errors. Note that jth-order factorial effects
represent main effects when j =1 and interactions when j > 2. Note that the contrast
matrix X; is different from X defined in section 3.1.

For j=1,...,k, Xuand Wu (2001) defined A;, a function of Xj, to measure the overall
aliasing between all jth-order factorial effects and the general mean. Specifically, let X; = [xg)]
and define

nj N . 2
A(T) =NXX1=N2Y" (Zx%”) (11)
=1 \i=1

where 1is the N x 1 vector of ones and #; is the number of all jth-order factorial effects. The
value of A; is independent of the choice of the orthonormal contrasts used. The vector
(A1, ..., Ax) is called the generalized wordlength pattern (GWLP), because for a two-level
regular design, A; is the number of words of length j. The GMA criterion (Xu and Wu 2001)
is to sequentially minimize A;, A;, As, .. .. A design that does this is said to have GMA.

To use a mixed-level design D = (T, B) for a DCE, we define the treatment and block
wordlength patterns similarly to the two-level FFDs and BFFDs presented in section 2. For
a blocked design D = (T, B), we define A;(D) as Eq. (11) by treating D as an unblocked
(mixed-level) design, and then define two types of wordlength patterns:

Ajo(D) = Ai(T) (12)
and
Ai11(D) = Ai(D) — A(T). (13)

When D = (T, B) is a mixed-level OA (of strength 2), A;(T) = A,(T) = 0 and A,(D) =
A;(D) =0 so that A;o(D) = A,0(D) =0 and Ay (D) = Ay(D) — Ay(T) = 0. Then we
can apply the GMA criterion to the sequences (6)-(9) for mixed-level designs as in the
two-level designs. We use an example to show that for two-level designs the definitions of
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treatment and block wordlength patterns in this new formulation are consistent with the
original ones.

Example 9. Consider the 2°~! FFD in 2* blocks in Example 2 defined by I =
ABCDE and b; = AB,b, = AC. The treatment and block wordlength patterns are
Wi = (Asp,A40,A50) = (0,0,1) and W, = (Az1,A31,A41,451) =(3,3,0,0). Table 5
displays the blocked design D = (T, B), where the first five columns form the treat-
ment matrix T and the last column is the block column B. It is obvious that
Ai(T) = Ajo(D). To show the new formulation is consistent with the original one,
we explain how to compute A;(D) as a mixed-level OA(16,2°4!) according to the
definition (11). The block column B has four levels, so it has three degrees of
freedom, which can be represented by the contrasts by = AB,b, = AC,b; = BC.
From Eq. (10), X; has 543 =8 columns (i.e., five main effects plus three block
effects), X, has (5x4)/2+5 x 3 =25 columns (i.e., 10 two-factor interactions plus
each block times each main effect), X; has (5x4x3)/6+3 x (5% 4)/2 =40 col-
umns (i.e., 10 three-factor interactions plus each block times each two-factor inter-
action), and so on. From this, we can see that A;(D) is connected with the treatment
and block wordlength patterns. For example, A3(D) = A3(T)+A,(D)=0+3=3
because three two-factor interactions are confounded with block effects. Similarly, we
have A4(D) = A4(T) + A31(D) =0+3 =3, As(D) = As(T) +A41(D)=1+0=1. In
general we have A;(D) = A;(T) + A;_11(D) so Eq. (13) holds.

In general, for D = (T, B), if B has b blocks, it has b — 1 contrasts. A generalized word
of length i in the mixed-level design D falls into one of two types: (i) It involves i factors
from T only, which defines a treatment relation, and (ii) it involves i — 1 factors from T
and one contrast from B, which defines a block relation. The numbers of words of these
two types are A;(T) and A;(D) — A;(T), respectively. This justifies the definition of the
treatment and block wordlength patterns in Egs. (12) and (13).

Example 9 shows that it is cumbersome to compute the GWLP according to the
definition (11). Xu and Wu (2001) developed a fast computation method based on coding
theory. The GWLP function in the R package “DoE.base” (Groemping, Amarov and Xu
2015) implements this method and can compute the GWLP for mixed-level designs
efficiently.

Example 10. Table 7 gives an OA(20,285'), which has 20 runs, eight two-level factors,
and one five-level factor. Suppose we want to study five two-level attributes with five
choice sets and four options in each choice set. We can choose any five two-level columns
as the treatment design T and the last column as the block column B, which defines five
blocks. There are in total (2
designs. The first design uses columns: 2, 3, 5, 6, 8, 9. The block and treatment wordlength
patterns for this blocked design are W, = (A39,A40,450) = (0.4,0.2,0) and W, =
(A21,A31,A41,A5,) = (2.4,2.8,1.2,0), respectively. The second design uses columns: 1,
2, 3,4, 5, 9. The two wordlength patterns for this blocked design are W, = (0.72,0.2,0)
and W;, = (2.40,2.48,1.2,0). The third design uses columns: 1, 3, 6, 7, 8, 9. The two

) =56 choices to form an OA(20,2°5'). Consider three
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wordlength patterns are W; = (0.72,0.52,0) and W, = (3.20,1.68,0.88,0). Among these
three designs, the first design is the best and the third design is the worst with respect to
all four sequences (6)-(9). Indeed, it can be verified that the first design has GMA with
respect to all four sequences (6)-(9) among all possible OA(20,2°5') derived from the
OA(20,285') given in Table 7.

We now develop some general theoretical results. A two-level design T is called an
even design if all its words have even length, that is, A;(T) = 0 for odd i. It is known
that all even regular designs are foldover designs and can be used as a paired
comparison design with each foldover pair as a choice set; see section 5. This can be
generalized to nonregular designs so that the number of blocks is not necessarily a
power of two. It is known that a two-level design, regular or nonregular, is an even
design if and only if it is a foldover design (Cheng, Mee, and Yee 2008). Together with
Theorem 6.1, we have the following result.

Theorem 6.2. A two-level OA, regular or nonregular, can be used to define a locally
optimal paired comparison design for the main effects model if and only if it is an even (or
foldover) design and each foldover pair forms a choice set.

When a two-level regular even design is used to define a paired comparison design, all two-
factor interactions are confounded with block effects; see Example 8 and Table 6. We cannot
estimate any effects that are confounded with block effects, but they do not bias the estimation of
main effects. This is true for paired comparison designs in general. When each choice set
consists of a foldover pair, the probability p;; in Eq. (2) does not change whether some two-factor
interactions are included in the MNL model (1) or not.

Theorem 6.3. When a two-level foldover design, regular or nonregular, is used as a paired
comparison design, the estimates of all main effects are not biased even if some two-factor
interactions are significant.

Table 7. OA(20,285%).

A B C D E F G H Block
1 1 1 1 1 1 1 1 1
1
-1
-1

1 1 1 1 -1 1 -1 -1
1 -1 -1 -1 -1 -1 -1 1
-1 1 -1 -1 1 1 1 1
-1 -1 1 1 1 -1 1 -1
1 1 1 -1 -1 1 1 1
10 1 -1 -1 1 1 -1 -1 1
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Theorem 6.4. If a two-level OA, regular or nonregular, has GMA among all even (or
foldover) designs, then it can be used to define a paired comparison design that has GMA
with respect to all four criteria.

Bunch et al. (1996) and others used foldover pairs to construct DCEs. Theorem 6.3
provides a good theoretical justification for the popularity of two-level paired comparison
designs for estimating main effects in practice. Theorem 6.4 further shows that such
designs have GMA properties over all possible designs. The next result gives a sufficient
condition for a blocked design to have GMA properties with respect to all four criteria.
The corresponding result for regular designs was obtained by Xu (2006).

Theorem 6.5. If T has GMA among all designs and D = (T, B) as an unblocked design
has GMA among all designs, then D = (T, B) as a blocked design has GMA with respect to
all four criteria.

Example 11. Consider a paired comparison design with 252 choice sets for k two-level
attributes. The MA 2k! design has resolution k and GWLP: Ay = 1 and other A; = 0. For
even k, it is a foldover design and defines a GMA paired comparison design where each
foldover pair forms a choice set. For odd k, the MA design is not a foldover design as
Ag = 1. The regular 257! design with resolution k — 1 is a foldover design and has GMA
among all possible 2¥~! even designs. By Theorem 6.4, this resolution k — 1 design can be
used to define a GMA paired comparison design; see Example 8.

Example 12. Suppose we have k three-level attributes for 2 < k < 6 and we wish to construct
a DCE with six choice sets and three options each. We start with any OA(18, 3°6!), and choose
the six-level column as the vector B and any other k three-level columns as the matrix T. Xu
(2003) showed that T has GMA among all possible designs with 18 runs and k three-level
factors. We can further show that D = (T, B) has GMA among all possible OA(18, 3%6!).
Therefore, such a DCE has GMA with respect to all four criteria.

Butler (2004) showed that some two-level foldover designs have GMA among all possible
designs for N = 24, 32, 48, 64 runs. These GMA foldover designs can be used to define GMA
paired comparison designs. There are many other results on the construction of GMA designs;
see Xu, Phoa, and Wong (2009) and Xu (2015) for recent developments of nonregular designs.

Cheng, Li, and Ye (2004) studied blocked nonregular two-level designs and proposed four
versions of GMA criteria. It can be shown that two of their criteria are special cases of the GMA
criteria defined here with respect to W, and W,. Their other two criteria can be extended by
considering projections and the concept of generalized resolution proposed by Groemping and
Xu (2014) for mixed-level OAs. We do not pursue this here. We note that our formulation of
blocked designs for nonregular designs is more natural and more general than the approach by
Cheng et al. (2004), even for two-level designs. In their approach, blocks are defined by
independent generators as in regular designs so that the numbers of blocks are limited to a
power of two. In our approach, blocks are defined by an individual column of a mixed-level OA
so that the number of blocks are not limited to a power or a multiple of two; see Examples 10 and
12. Our approach relies on the existence of mixed-level OAs. There are various studies of the
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existence and construction of mixed-level OAs; see, for example, Dey and Mukerjee (1999) and
Hedayat, Sloane, and Stufken (1999). Many mixed-level OAs are available in the R package
“DoE.base,” and Kuhfeld and Tobias (2005) provide an SAS macro to generate thousands of
mixed-level OAs.

7. Summary and discussion

In this article, we have illustrated the use of MA BFFDs for constructing DCEs by building on
the research performed by Jaynes et al. (2016). By considering the use of MA BFFDs we can
maximize the number of models with estimable two-factor interactions by minimizing the
confounding or aliasing of two-factor interactions. We presented and compared various MA
criteria for selecting BFFDs. The choice of which MA criteria to use to construct a DCE depends
on the goals of the study. We focused on the choice between W, and W,, depending on whether
aliased effects or confounded effects are viewed as less desirable. With the simulation study and
various examples thereafter, we illustrated the following: (1) Effects confounded with block
effects are not estimable, but do not bias the estimate of other effects; (2) aliasing causes bias, but
aliased effects are estimable if all the aliases are negligible; and (3) aliasing or missing a significant
two-factor interaction can bias the estimation of main effects even if all main effects and two-
factor interactions are clear. The MA criteria deal with the intrinsic aliasing and confounding of
a design per se and so work for linear models as well as generalized linear models. In this article
we proposed the use of MA criteria for selecting BFFDs for constructing DCEs assuming the
MNL model. There is potential for future work considering various models other than the MNL
model and their properties.

Finally, we extended our approach to construct DCEs with mixed-level attributes through
the use of mixed-level OAs, as a combination of an unblocked FFD and a column for blocks,
that is, choice sets. This approach for constructing DCEs with mixed-level attributes relies on
the existence of mixed-level OAs and is flexible for constructing DCEs because the blocks are
defined by an individual column of a mixed-level OA and the number of blocks is not limited
to a power or a multiple of two. We further extended the MA criteria to the mixed-level case
and obtained some general theoretical results.

We demonstrated that MA designs tend to have large estimation capacity; that is, they
tend to maximize the number of estimable models involving two-factor interactions. This
is a desirable model-robustness property. To address uncertainty of potential important
two-factor interactions, Li et al. (2013) proposed model-robust DCEs by considering
models with all main effects and few two-factor interactions. They used a Bayesian
approach to evaluate design performance in terms of an average information criterion.
Their approach requires intensive computation and would not work well when the
number of total runs or factors is large. On the other hand, the MA criteria are fast to
compute and many MA designs have been tabulated for practical use.
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