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ABSTRACT OF THE DISSERTATION

Modeling of Protein Flexibility and Inter-Molecular Interactions: Applications to
Computer-Aided Drug Design and Discovery

by
Rizi Ai
Doctor of Philosophy, Graduate Program in Genetics, Genomics and Bioinformatics

University of California, Riverside, September 2012
Dr. Chia-en A. Chang, Chairperson

Computer-aided drug design (CADD) represents computational methods and
resources that are used to facilitate the design and discovery of new therapeutic
solutions. It has been applied at almost all stages in the drug discovery pipeline.
CADD has the advantage of reducing the cost and time for the expensive and
extensive laboratory-based experiment. In CADD, protein flexibility has long been
recognized as a complicating factor. Proteins are in constant motions in their
physiological environment and their conformational dynamics play important roles in
various biological functions and regulating ligand binding. My research focuses on
modeling of protein flexibility and inter-molecular interactions and their applications
to CADD. Detailed projects include method development for analyzing protein

conformational changes using Perl and applications of various computing tools to
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study protein dynamics and protein-ligand interactions. In addition, ligand-specific
molecular model was constructed on cannabinoid CB1 receptor, a G-protein coupled
receptor, with protein flexibility considered. To discover novel antimicrobial agents
against tryptophan synthase, another project was carried out using structure-based
virtual screening method. Recently, nanoparticles have been applied to therapeutic
use. To promote safer implementation of nanotechnology and reduce nanotoxicity
for drug delivery, dynamics and interactions between human serum albumin and

nanoparticles were studied.
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Chapter 1

Overview of Computer-Aided Drug Design and Discovery

1.1. Drug discovery process and computer-aided drug design

Drug design and discovery is an expensive process due to the high research and
development costs and extensive clinical testing. Typically, it takes about 10-15 years
to develop one new medicine from the time that it is discovered to treat the patients.
The average cost to research and develop a successful drug is estimated to be more

than $800 million.*

Computer-aided drug design (CADD) represents computational methods and
resources that are used to facilitate the design and discovery of new therapeutic
solutions.” It plays a critical role in screening new potential drug candidates in
medicinal chemistry and has been applied at almost all stages in the drug discovery
pipeline. Using CADD can avoid performing expensive and extensive
laboratory-based experiment and therefore reduce the cost and time significantly.
For example, CADD allows the design and modification of ligands to optimize the binding

on targets and a prediction of their binding affinities before carrying out experiment on



large database of compounds.** With constant improvements in both computer

power and algorithms, CADD become more and more powerful.

Methods utilized in CADD can be classified into two major categories:
structure-based drug design and ligand-based drug design.® Structure-based drug
design depends on the three dimensional structures of receptors, often obtained by
X-ray crystallography or NMR. Molecular docking is one of the most common
methods used in structure-based drug design. The docking methods allow the quick
prediction of the binding modes and binding affinities between ligands and receptor.
In addition, virtual screening based on molecular docking is widely used to predict
potential drugs from large dataset of compounds before carrying out expensive and
time-consuming experiment.® Without experimentally available three dimensional
receptor structures, computational methods such as homology modeling, fold
recognition or AB initio protein modeling can be used to computationally construct
the protein structures based on the amino acid sequences.” Moreover, ligand-based
drug design, which relies on the biological and physicochemical properties of known
molecules that can bind to the target, is another popular approach when the target
structure is not available or cannot be predicted by computational methods.
Quantitative structure-activity relationship (QSAR) and pharmacophore modeling

typical methods for ligand-based drug design. ®



1.2. Current challenges in CADD

Considering receptor flexibility has long been recognized as a complicating factor in
CADD.° Molecular receptors, such as proteins, are in constant motions in their
physiological environment. The conformational dynamics of proteins play important
roles in various biological functions and regulating ligand binding. ®*°. During ligand
binding, protein undergoes various conformational changes, from side chain
rotations to backbone shift, towards the most adapted conformation to
accommodate ligands. However, traditional docking programs only rely on a single,
rigid receptor conformation which can be problematic to accurately predict the
binding activity."* Docking programs allow the searching for the translational and
rotational degrees of freedom of the ligand within the receptor binding site; but
mostly only for ligand itself. Although some docking programs may allow certain
protein side chain flexibilities, most of them still works better with rigid proteins.***

Computational power has increased dramatically over the last decade. However, fully

allowing protein flexibility is still prohibited due to the high computational intensity.

Since most docking software prefers proteins to be rigid to avoid intensive
computational effort, a promising strategy is to dock ligands into protein
conformation ensembles obtained from MD simulations®*® . Molecular dynamics
(MD) simulations provide powerful tools for the exploration of the conformational

energy landscape accessible to protein molecules because multiple conformations

3



are difficult to probe experimentally*®*®

. Atomistic computer simulations of
macromolecular receptors and their associated ligands play many roles in drug
discovery, such as allosteric binding sites identification, virtual screening
methodologies enhancement, and binding energies prediction.'* To consider the

protein flexibility, using multiple conformations could avoid single biased binding site

for docking screening.

1.3. Focus of this work

To explore new methods to overcome the limitations of currant CADD obstacles and
facilitate the future drug design and discovery, my PhD research mainly focuses on
modeling of protein flexibility and inter-molecular interactions and their applications
to CADD. Detailed projects include method development for analyzing protein
conformational changes using Perl, applications of various computing tools to study
protein dynamics and protein-ligand interactions; ligand-specific molecular modeling
on G-protein coupled receptors with protein flexibility considered; virtual drug
screening against tryptophan synthase for antimicrobial agents; and molecular

dynamics studies on interactions between protein and nano-particles.
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Chapter 2

T-Analyst: A Program for Efficient Analysis of Protein Conformational

Changes by Torsion Angles

2.1. Abstract

T-Analyst is a user-friendly computer program for analyzing trajectories from
molecular modeling. Instead of using Cartesian coordinates for protein
conformational analysis, T-Analyst is based on internal bond-angle-torsion
coordinates in which internal torsion angle movements, such as side chain rotations,
can be easily detected. The program computes entropy and automatically detects
and corrects angle periodicity to produce accurate rotameric states of dihedrals. It
also clusters multiple conformations and detects dihedral rotations that contribute
hinge-like motions. Correlated motions between selected dihedrals can also be
observed from the correlation map. T-Analyst focuses on showing changes in protein
flexibility between different states and selecting representative protein
conformations for molecular docking studies. The program is provided with

instructions and full source code in Perl.



2.2. Introduction

The conformational dynamics of proteins play important roles in their functions and
regulating ligand binding. A fundamental appreciation of how proteins work requires
study of conformations and dynamics, as well as changes between states of protein
motions, such as folded/unfolded and ligand-bound/-free states. For example,
protein allosteric effects may be related by either or both conformational and
dynamical changes.’? Molecular dynamics (MD) simulations provide powerful tools
for the exploration of the conformational energy landscape accessible to protein
molecules because multiple conformations are difficult to probe experimentally.*®
Moreover, recent computer-aided drug discovery studies have focused on protein
flexibility in molecular docking processes.”” Since most docking software prefers
proteins to be rigid to avoid intensive computational effort, a promising strategy is to
dock ligands into protein conformation ensembles obtained from MD

10,11

simulations. Several programs provide general tools or special modules for

analysis of MD results and clustering conformations, but most are based on

12-17

Cartesian coordinates. T-Analyst uses internal bond-angle-torsion (BAT)

coordinates, which are efficient in capturing side-chain rotamers and most

low-frequency motions.*%

Our program provides useful tool to analyze MD
trajectories. For example, users can easily view proper rotameric states of dihedrals

from the output files instead of plotting and correcting them manually. This program



allows for efficient analysis of MD simulations to study protein flexibility and extract

structural information for virtual screening.

2.3. Methods

2.3.1. Data manipulation and output

T-Analyst reads NAMD, Amber or CHARMM trajectory files and Amber topology file.
The CHARMM-type topology files can be converted to Amber topology files easily
with the freely available CHAMBER program.”’ The program implements
amber2accent to transform Cartesian coordinates to BAT coordinates.?? To eliminate
repeats, only heavy-atom side-chain torsion angles and w, ¢ and { angles in
backbones are considered. Users can choose angles and residues for analysis, and a
dihedral distribution and its rotations during a simulation are output as .agr-format
files, which can be viewed with Xmgr/Grace. Moreover, results generated by
T-Analyst can be visualized by freely available packages such as VMD, Xmgr/Grace or
R.12232% ysers can output a series of files, such as distributions of all or selected
torsion angles in a protein, or sorted and/or unsorted standard deviations and
entropy. T-Analyst also groups different conformations based on rotameric states of
residues of interest and outputs coordinates of grouped conformations into different
trajectory files. The program also computes pairwise cross-correlation coefficients

for all pairwise dihedral angles that users selected. By examining the output

correlation map, dihedrals that correlate with each other can be observed.
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2.3.2. Torsion angle correction

To correctly reflect rotameric states and capture the angle periodicity, T-Analyst
detects the angle population in margins, such as +180° and 360°/0°, depending on
how users output the angles. If discontinuity in a dihedral distribution is detected
(see Fig. 2.1A and C), the output angle range will be corrected; thus, energy wells can
be illustrated and defined properly (Fig. 2.1B and D). For example, Fig. 2.1C
illustrates a rotameric state of side-chain lle 153 of ligand-bound tryptophan
synthase (TRPS), whereby one energy well is split into two wells near -180° and
+180°. T-Analyst automatically detects the peak discontinuity at each edge of -180°
and +180° and determines the range of each discontinued peak. Later, the whole
population will be divided into left set (-180° to 0°) and right set (0° to +180°) and be
counted in each set. T-Analyst angle correction is then applied by moving the
discontinued peak on the set with smaller population to the set with larger
population. For example, in Fig. 2.1C, the set from 0° to +180° has the smaller
population, so the peak near the +180° margin was shifted by -360° and merged with

the other margin at -180°.

2.3.3. Configurational entropy calculation and dihedral correlation
T-Analyst calculates configurational entropy, Sconf, for each torsional degree of
freedom by the Gibbs entropy formula: TSconsy = -RT Z P; In(Pj), where P; is the

probability distribution of angle i, R is the gas constant and T is the absolute

10



temperature. T-Analyst calls Xmgr/Grace to generate histogram for each degree of

freedom. The bin size for each P; is 0.5° for m angle, 1° for ¢ and  angles and 5° for
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Figure 2.1 Torsion angle distribution of side-chain x2 of lle153 of TRPS. Torsion angle:
(A) before angle correction and (B) after angle correction. Histogram of torsion angle
distribution output by T-Analyst: (C) before angle correction and (D) after angle
correction.
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side-chain dihedrals. The value of TSconf;) has unit of kcal/mol, which allows for direct
comparison with energy calculations. Summing TScnfi) provides a quick
approximation of the entropic contribution of a system, although coupling between

torsions is ignored.”

T-Analyst also computes the quasi-harmonic approximation (QH) from BAT
coordinates. The covariance matrix C can be computed, with the probability
distribution functions approximated by a multidimensional Gaussian distribution
function.?® The configurational entropy from QH is computed by TSon = 1/2 nRT+
1/2RTIn[(2m)" det(C)], where n is the number of torsions. Although QH assumes
that the probability distribution function is Gaussian, which is accurate for torsions
that have only one rotameric state, TSqn provides an upper bound limit for the

2327 Moreover, the off-diagonal elements of the covariance

configurational entropy.
matrix indicate the degree of significance of the coupling between the given
torsions. Entropy computed from only the diagonal elements of the covariance

matrix, TSau_diag, iS also computed. If TSqn equals TSqn_diag, then there is no coupling

among these torsions.

The extent to which pairs of dihedrals are correlated with one another can be
assessed by examining the magnitude of their cross-correlation coefficients.

T-Analyst computes a correlation matrix of dihedrals and calls levelplot function in R

12



to plot a correlation map. Users can select dihedral angles, e.g. backbone phi and psi
angles of selected residues, to plot a correlation matrix. Typical characteristics of a
correlation map include a line of strong cross-correlation along the diagonal (where
matrix element i = j), and off-diagonal cross-correlations. The high diagonal values
are set to 1.00. Off-diagonal correlations can be either positive or negative, and
non-zero values may indicate potentially interesting correlations between two close

proximity or non-contiguous regions of a protein system.

2.3.4. Clustering protein conformations

Our program clusters protein conformations on the basis of user-selected rotameric
states of residues. Although RMSD-based clustering methods are mostly applied to
group conformations with significant difference, small fluctuations are challenging to
detect with classical RMSD-based clustering methods. This module is particularly
useful for choosing representative conformations based on side-chain rotations of
key residues. Users can input specific torsions with rotameric states of interest and
the range of each torsion to run T-Cluster, the second part of T-Analyst. T-Analyst
will provide all the combinations of groups for further analysis. The program is
sensitive to dihedral rotations and can efficiently group user picked backbone or
side-chain dihedrals into separate trajectory files. A report file is also generated to

record information about each group.
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2.3.5. Molecular dynamics simulations

Molecular dynamics simulations on ligand-free and ligand-bound TRPS were
performed using the NAMD package.?”® Standard simulation procedures (e.g. (%)
were followed using the Amber 10 package and ff03 Amber force field and general
Amber force field.>* Initial coordinates of TRPS were taken from PDB code 2J9X and
3CEP**3!, Briefly, after preparation of the system by sequential steps of energy
minimization and equilibration, the 30ns production runs were carried out at 298 K
and 1 atm. The systems were solvated by a 12A TIP3P water box. Snapshots of the
atomic coordinates were recorded every 1 ps. As T-Analyst does not require too
many frames to run the analysis, snapshots were saved every 20 ps for T-Analyst and
1500 frames were used. Molecular dynamics simulations on HIV-1 protease were
initiated from crystallographic coordinates with a semi-open flap conformation (PDB
code 1HHP).>? Amber f99 force field was used for the protein. Aqueous solvation
was modeled implicitly by using the Generalized Born approach®® and temperature
was maintained at 298 K by using Langevin dynamics. Standard simulation
procedures (e.g. (3*)) were followed with the Amber 9 package. Since the free
protease predominantly populates the semi-open conformation, we took a 1.5 ns
MD simulation and saved it as one 1500 frame trajectory which had one flap open

state for our analysis.
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2.4. Analysis of MD simulations

2.4.1. Analysis of protein conformations

Analysis of small backbone fluctuations, as well as conformational changes, involves
investigating loop or side-chain motions. T-Analyst adopts torsion angle analysis,
which allows for accurate expression of bond rotations. For example, Fig. 2.1A shows
a rotameric state of side-chain lle 153 of ligand-bound TRPS. Standard deviations of
this torsion before and after angle correction are 136.4° and 49.4°, respectively.
Large differences in standard deviations usually indicate changes in rotameric states.
Of note, proper angle correction is necessary for computing accurate rotamers and

their standard deviations.

With careful superposition, flexible regions in proteins can be revealed by computing
root mean square deviation and fluctuation (RMSD and RMSF, respectively) in
Cartesian coordinates.> Sometimes one or a few residues may serve as “hinges,”
which mainly control movements of a flexible region. While the RMSD/RMSF method
may not be sensitive enough to detect hinges, T-Analyst can illustrate torsion angles
in hinges, which are associated with protein motions. User can compare multiple
torsion distributions with protein motion to detect the hinge region. Fig. 2.2 A shows
MD simulations of HIV-1 protease with open flaps, and the distance between flap
tips is in Fig. 2.2 C. Highly flexible regions such as flaps and elbows are shown in the

RMSF plot (Fig. 2.2 B) but determining whether any residues behave as hinges is not
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straightforward.>* Data from T-Analyst imply that the flap B-hairpins move relatively

rigidly, but some residues of the elbow, such as Gly 40, act as hinges (Fig. 2.2D).

One common method to express protein flexibility is by showing their rotameric
states computed from corrected torsion angle distribution. When comparing the
rotameric states for proteins between different states, e.g. ligand-bound/-free states,
folded/unfolded states, users can have valuable information regarding the protein
conformational or flexibility changes between different states. Different ligand
mechanisms, such as induced fit or conformational selection (population shift) can

be studied.™*®

Here we use TRPS, a protein with strong allosteric regulation of substrate binding, as
an example. In both ligand-free and ligand-bound TRPS, the major peak of Glu 49
remains for both states to keep its favorite rotameric state (Fig. 2.3 A and E), which is
often assumed.®” However, instead of dropping the minor peak, the peak changed
while the substrate binds. We found that the change may be due to different
hydrogen-bonds formations. In the ligand-bound state, Glu 49 form stable
hydrogen-bonds with ligand 3-indole-D-glycerol-3’-phosphate (IGP), Tyr 173 and Val
23, and a residue near Glu 49, Tyr 175, also forms a hydrogen-bond with IGP. These
interactions stabilize the local environment for the ligand which is necessary for

catalysis. In the ligand-free state, since there is no ligand to interact with the protein
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Figure 2.2 Analysis of the hinge regions of HIV-1 protease. (A) An open conformation
of HIV-1 protease obtained from the MD simulation. Flaps: residues 43-58, yellow;
elbows: residues 37-42; hinge: Gly 40, red. (B) RMSF of Ca atoms. (C) Distance
between two flap tips: residues lle 50 and lle 50’. (D) W angle distribution of Gly 40’;
values within the dashed lines, between 720-880 ps, correspond to open flap
conformations shown in (C)

in the binding site, more free space is allowed for side-chains to move around,
though less stable hydrogen-bonds between side-chains can still formed. Without

the ligand, the hydrogen-bond between Glu 49 and Tyr 173 is absent and Tyr 173
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flips away from the binding site. Further detailed analysis shows that the distance
between Tyr173:0H and Glu49:CD changes from 3.6+0.16 A in ligand-bound state
(red dashed lines in Fig. 2. 4 A) to 17.5+0.63 A in ligand-free state (red dashed lines in
Fig. 2.4 B). As a result, instead of completely diminishing one rotameric state of Glu
49, the interaction induces a new rotameric state to alter the local environment to
accommodate the ligand. Similarly, the major peak of residue Ile 153 in Fig. 2.3B and
F remains in the same position in both states, but it is more populated in the
ligand-bound state. Upon IGP binding, the methyl group of lle 153 interacts with the
non-polar region of the ligand and stays in one peak. Therefore, the population of

the rotameric states is shifted.

2.4.2. Clustering protein conformations

Docking potential ligands to target protein is one of the key steps in drug design and
discovery process. During ligand-protein docking process, the position of side-chains
in binding site can affect ligand-protein interaction significantly and directly,
especially when using rigid protein conformations. Here we use the program to
group conformations and then select representative conformations for performing
docking studies to the a-subunit of TRPS. TRPS is a potential antibiotic target, and
two torsion angles, Glu 49 and lle 153, are known to directly involve in ligand-protein
binding (see Fig. 2.3). Fig. 2.3A and B show the distribution of side-chain torsion

angles in both residues in ligand-free state which is output by T-Analyst after angle
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correction. Two populations are shown in each of the torsion angle distributions.
T-Analyst can group the trajectories into four groups which are characterized by —
group 1 (Glu 49-a, lle 153-a), group 2 (Glu 49-a, lle 153-b), group 3 (Glu 49-b, lle
153-a), group 4 (Glu 49-b, lle 153-b). Fig. 2.3 C and G show the RMSD distribution of
Glu 49 and lle 153 with simulation time. Fig. 2.3 D and H are the group distributions
for the two torsion angles. Notably, although different protein conformations are
usually clustered based on computed RMSD, the value is less sensitive to small scale
conformational changes, such as side-chain rotations in a protein’s active site. As
illustrated in Fig. 2.3 C and G, there is no clue from RMSD that may be used for
grouping. In contrast, T-Analyst also provides information regarding jumping

between groups during a course of MD simulation, see Fig. 2.3 D and H.

2.4.3. Configurational entropy

Protein allosteric effects or post-translational modifications such as phosporylation
do not always involve substantial conformational changes. Recent experiments
confirmed that in some cases, visual inspection of the active/inactive states may not
reveal differences in the shape of the ligand binding site, but changes in protein
dynamics.® Therefore, the magnitude of configuration entropy computed from

dihedral degrees of freedom provides a direct way to examine protein dynamics.
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Figure 2.4 Snapshots of surrounding residues of Glu 49 in (A) ligand-bound and (B)
ligand-free state. Grey dotted lines indicate stable hydrogen-bonds in (A) and green
dotted lines indicate weak hydrogen-bonds in (B). Red dashed lines indicate the
distance between Tyr173:0H and Glu49:CD. The circle labeled with IGP in (B)
indicates the position of the ligand binding pocket.

The total entropy of a molecule in solution can be separated into two parts: solvent
entropy associated with water motion and configurational entropy (Sconf) associated
with molecular motion. The latter can be used to represent protein flexibility.
Therefore, quantifying the configurational entropy, especially changes, could help
explain important biochemical processes such as protein folding and ligand-protein
binding. Fig. 2.5 shows Scns calculated from selected backbone and side-chain
dihedrals in the binding site of TRPS. T-Analyst suggested that the flexibility of a loop

region changes significantly when the ligand binds into the pocket.
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The calculations can provide quantitative information regarding entropy gain or loss.
For example, in Fig. 2.5B, the side-chain entropies of Tyr 175 and Thr 183 drop
notably, around 0.7 and 0.6 kcal/mol, respectively. In the ligand-bound state, Tyr 175
forms a stable hydrogen-bond with ligand IGP which stabilized the phenol ring, and
Thr 183 also forms hydrogen-bonds with Asp 60 and Gly 61. In ligand-free state, both

side-chains move more freely as there is no stable hydrogen-bond formed.

Although in most cases, one can observe entropy decrease upon ligand binding,
there may be some exceptions which are of particular interest and worth further

analysis. The entropy changes computed by T-Analyst provide guidance for users to
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Figure 2.5 Entropy distributions in the binding site of TRPS. (A) Entropy distribution
of W torsion angles of residues within 8A of ligand IGP and (B) side-chain torsion
angles that directly interacting with IGP.
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pick up regions of a protein to do detail dynamic analysis. For example, T-Analyst
showed an entropy gain in the second side-chain of Asp 60 in the presence of ligand,

though not largely. Based on the information, we carried out further investigation
near Asp 60, and found that 2 oxygen atoms in carboxyl group can form
hydrogen-bonds with Tyr 102 and Thr 183 in both ligand-bound and ligand-free
states. Interestingly, in the ligand-bound state, the 2 oxygen atoms of Asp 60 can flip
very often but retain two stable hydrogen-bonds with Tyr 102 and Thr 183
alternatively. The presence of IGP provides a more hydrophilic environment around
the carboxyl group of Asp 60; thus, the oxygen atoms can flip more freely. As a result,
the local entropy increases without losing hydrogen-bonding and reducing
electrostatic attraction. In contrast, when IGP is absent, the local environment
around Asp 60 is mainly hydrophobic. Therefore, Asp 60 forms hydrogen-bond with

Thr 183, the other hydrophilic residue, and the residues become less flexible.

2.4.4. Dynamical cross-correlation between dihedral angles

T-Analyst also performs cross-correlation analysis of a trajectory. The resulting
cross-correlation map allows the identification of the correlated and anti-correlated
motions involved in an entire protein or user selected dihedrals. Similar to calculating
standard deviations, dihedral angles used to generate a correlation plot also need to
run angle correction, or discontinuities in margins (+180° or 360°/0°) can cause errors

when computing their cross-correlation coefficients.
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Here we use HIV-1 protease as a test case, which continues to be one of the primary
targets of anti-AIDS drug discovery. Understanding the dynamics of free HIV-1
protease has profound implications for designing new therapeutic agents, such as
allosteric inhibitors. Fig. 2.6A shows the structure anatomy of the protein. Yellow
boxes in the correlation map, computed by the backbone ¢ and  angles with
T-Analyst (see Fig. 2.6B), show the highly correlated regions within the HIV protease
monomer. For example, boxes |, IV, VIl and X indicate flexible and concerted motions
within fulcrum, flap, cantilever and loop regions. Other boxes highlighted in Fig. 2.6 B
indicate the correlations between flap elbow, flap tip, cantilever, fulcrum and loop
regions. It has been suggested that motions of the flap tip and elbow are highly
correlated, which is illustrated in our plot as well® . Interestingly, correlations
between the flap elbow and cantilever are identified (Box VI), and the motions of flap
tip and cantilever are also correlated (Box VII), thought not quite strongly. We
compared our plot to another correlation map generated by the use of the backbone
Ca and N atoms and the Cartesian coordinates with the Bio3D package (Fig. 2.6 C)* .
Both plots suggested similar correlations. However, because of the nature of

Cartesian coordinates, patterns of correlations are harder to distinguish in Fig. 2.6 C.
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Figure 2.6 Structure anatomy of HIV-1 protease and correlation maps of one subunit
of HIV-1 protease in BAT coordinates and Cartesian coordinates. (A) Structure
anatomy of HIV-1 protease. Color indicates distinct regions. Flaps: residues 43-58,
red; flap tips: residues 49-52, yellow; flap elbows: residues 37-42, magenta;
cantilevers: residues 59-75, green; fulcrums: residues 10-23, orange; loop area near
flaps: residues 76—84, grey; and interleaved R-strand motif forming the dimer
interface: residues 1-4 and 96—99, blue/cyan. (B) ® and W torsion angle correlation
map generated by T-Analyst using BAT coordinates. Yellow lines and boxes indicate
correlations between I: fulcrum; Il: flap elbow, lll: flap with flap elbow, IV: flap, V:
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backbone Ca and N atoms and the Cartesian coordinates with the Bio3D package.

25



2.5. Conclusions

MD simulations provide invaluable conformational and dynamical landmarks useful
for designing new experiments and for theoretical studies. The current analysis
method we describe, T-Analyst, can help in examining protein motion, to identify
structural and dynamic features, reveal changes of flexibility in different states, and
group conformations based on dihedral rotamers. Analyzing the growing MD data
may be the most time-consuming step in simulation studies, and our program
facilitates this work. The program <can be freely downloaded from

http://research.chem.ucr.edu/groups/chang/tools.htm.
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Chapter 3

Ligand-Specific Homology Modeling of Human Cannabinoid (CB1)

Receptor

3.1. Abstract

Cannabinoid (CB1) receptor is a therapeutic drug target, and its structure and
conformational changes after ligand binding are of great interest. To study the
protein conformations in ligand bound state and assist in drug discovery, CB1
receptor homology models are needed for computer-based ligand screening. The
known CB1 ligands are highly diverse structurally, so CB1 receptor may undergo
considerable conformational changes to accept different ligands, which is challenging
for molecular docking methods. To account for the flexibility of CB1 receptor, we
constructed four CB1 receptor models based on four structurally distinct ligands,
HU-210, ACEA, WIN55212-2 and SR141716A, using the newest x-ray crystal
structures of human B, adrenergic receptor and adenosine A,a receptor as templates.
The conformations of these four CB1-ligand complexes were optimized by molecular
dynamics (MD) simulations. The models revealed interactions between CB1 receptor
and known binders suggested by experiments and could successfully discriminate

known ligands and non-binders in our docking assays. MD simulations were used to
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study the most flexible ligand, ACEA, in its free and bound states to investigate
structural mobility achieved by the rearrangement of the fatty acid chain. Our
models may capture important conformational changes of CB1 receptor to help

improve accuracy in future CB1 drug screening.

3.2. Introduction

Cannabinoid (CB1) receptor belongs to class A G-protein coupled receptors (GPCRs)
that represent the largest membrane protein family and are of great pharmacological
importance. Currently, nearly one-third of marketed pharmaceuticals target GPCRs."
CB1 receptor is a therapeutically useful target involved in a wide variety of
physiological processes, including metabolic regulation, craving, pain, and anxiety.>?
Licensed drugs target cannabinoid receptors for treating chemotherapy-induced
nausea and vomiting, relieving neuropathic pain, and as an appetite stimulant for

AIDS patients. Drugs targeting CB1 receptor are continually being developed.”®

Because no crystal structure of CB1 receptor is available, computational methods

9-12

have been used to model the receptor.” ™ Up to late 2007, the CB1 receptor model

was built based on bovine rhodopsin, a GPCR, because of its available high-resolution

10,11,13-16

structure as a template for CB1 receptor modeling. In recent years, with

more GPCR structures being crystallized, new templates such as human adenosine

A areceptor (AAz4R) and B, adrenergic receptor (B,AR) have become available.'>'"*®
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The x-ray structures of different GPCRs share overall topology, but local structures
can differ.® Molecular dynamics (MD) simulations and docking methods have been
used to further study the conformational changes of CB1 receptor and the
interactions between ligands and CB1 receptor. MD simulations of CB1 receptor
embedded in a lipid bilayer have been used to gain insight into the interhelical and

protein-ligand interactions.'’?%*

Because we lack ligand—CB1 receptor experimental
structures, mutation experiments are commonly used to help determine functional
residues that affect ligand binding and can be guidelines to evaluate modeling

22-2
results.”?* %

Cannabinoid ligands are highly diverse structurally. CB1 agonists can be classified into
four groups: classical cannabinoids (1, 2, Fig. 3.1), non-classical cannabinoids (3, 4,
Fig. 3.1), endogenous cannabinoids (5, Fig. 3.1) and aminoalkylindoles (7, 8, Fig. 3.1).
CB1 antagonists/inverse agonists are diarylpyrazoles (9, 10, Fig. 3.1) or in other
chemical series.”® Representative ligands in each group are in Figure 3.1. The groups
differ greatly in constitution of rings and hydrocarbon chains. Although the
endogenous cannabinoids do not have a ring conformation, the flexible long

hydrocarbon chains can adopt conformations with high affinities.
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Figure 3.1. Molecular structures of cannabinoid ligands in (1, 2) classical
cannabinoids, (3, 4) non-classical cannabinoids, (5) endogenous cannabinoids, (7, 8)
aminoalkylindoles and (9, 10) diarylpyrazoles. (1) (-)-A*-THC, (2) HU-210, (3) CP55940,
(4) CP47497, (5) anadamide, (6) ACEA, (7) WIN55212-2, (8) JWH-015, (9) SR141716A,
(10) AM2381.

In this study, in order to study the conformational changes in the ligand bound states
and consider the flexibility of CB1 receptor for drug screening, we constructed four
CB1 receptor homology models based on four structurally different tight binders:
(—)—11—hydroxydimethylheptyI—AS—tetrahydrocannabinol (HU-210) (2, Fig. 3.1),
arachidonyl-2-chloroethylamide (ACEA) (6, Fig. 3.1),
(R)-(+)-[2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzox
azin-6-yl](1-naphthalenyl)methanone  (WIN55212-2) (7, Fig. 3.1) and
N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-

carboxamide (SR141716A) (9, Fig. 3.1). The classical cannabinoid agonist HU-210 is a
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structural analog of (-)-A%-tetrahydrocannabinol (THC) (1, Fig. 3.1) but with higher
binding affinity. Because the classical and non-classical cannabinoids share overall
structural features, HU-210 was selected to represent ligands in these two groups.
ACEA is a selective CB1 agonist that is an endogenous cannabinoid analog but with
higher binding affinity than a natural ligand anadamide (AEA) (5, Fig. 3.1).
WIN55212-2 is a typical aminoalkylindole, and SR141716A is the first reported CB1
antagonist to display nanomolar CB1 receptor affinity.” We first constructed
homology models using the newest GPCR crystal structures, B,AR and AAR, as
templates and then used MD simulations and protein threading to train the models.
To reveal changes in ligand flexibility in the free and bound state, motions of key
ACEA dihedral angles were analyzed.”” Since SR141716A is an antagonist to CB1
receptor, whole-protein MD simulations was used to adjust the model for
antagonist/inverse agonist binding. The models can successfully discriminate known
binders, compounds that are structurally similar to the binders and randomly chosen

compounds by molecular docking and re-scoring.

3.3. Methods

3.3.1. Homology modeling

Construction of CB1 receptor homology models involved several essential steps. First,
human brain CB1 protein sequence (Gl: 237681175) was downloaded from the NCBI

protein database (http://www.ncbi.nlm.nih.gov/protein). Two templates, B,AR (PDB
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code: 3KJ6) and AA,AR (PDB code: 3EML), were selected to construct CB1 model. 2829
For multiple sequence alignment, GPCRs with similar protein sequences with CB1
receptor were identified by gapped BLAST search and HHSearch in template library of
SWISS-MODEL.*® 3! Multiple sequence alignment was performed at T-Coffee

(http://www.ebi.ac.uk/Tools/t-coffee/) using sequences of bovine rhodopsin (PDB

code: 1F88 and 1U19), B,AR (PDB code: 2R4R, 2RH1 and 3KJ6) and AA,4R (PDB code:
3EML) (Table 3.1).*** To ensure that the alignment correctly placed the sequences
of transmembrane helices (TMHs), PsiPred for secondary-structure prediction of CB1
receptor was used as guidelines to correct alignment.®” Finally, with the two selected
templates and the multiple sequence alignment, SWISS-MODEL

(http://swissmodel.expasy.org/) Alignment Mode was used for CB1 receptor

homology modeling.®® Two models were built initially; one is based on template B,AR

and the other is based on template AA4R.

3.3.2. Model refinement

To further refine the transmembrane region of CB1 model, each helix and loop
fragment was also constructed individually by SWISS-MODEL. The shape of each
individually built helix in the transmembrane region was compared with models
generated with the full-length CB1 protein sequence by two templates (AA,AR and
B,AR). Based on the templates and PsiPred secondary-structure prediction, the

best-shaped helix and loop pieces were isolated and assembled into a new hybrid
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model (Fig. 3.2).” For example, compared helix 1 built by template AAR (Fig. 3.2

Al), template B,AR (Fig. 3.2 A2) and individual built helix 1 fragment (Fig. 3.2 A3), the

beginning part of helix 1 built by template AA;sR (Fig. 3.2 Al) did not show

well-shaped helix compared to the other two structures which are both

well-constructed.

After generating the backbone, sidechains were added by use of SCWRL4.*° Quick

conjugate gradients energy minimization and MD simulations were performed on

CB1 hybrid model by NAMD/VMD in AMBER force field. **** Because this study

focuses on the ligand binding site, extensive loop conformational search was not

performe

Table 3.1 Sequence Alignment of Helix Regions of Multiple GPCR Sequences.

44,45
d.

Helix | Start Sequence Alignment End
residue residue

35 | 1U19 PWQFSMLAAYMELL IMLGFP INFlTLYVTVQ 65

1 23 | 3EML VY--— ITVELAIAV-LA- 1 LGEVEBVCWAVWL 48
32 | 3KJ6 VWWVGMG IVMSL IV-LAIVFGEVEBVI TAIAK 61

113 | CB1 PSQQLAIAVLSLTLGTFTVLENLBVLCVILH 143

T Rl

72 | 1U19 PLN-YILLNBBVEBLFVMVFG-GFTTTLYTSL 100

2 55 | 3EML VIN-YEVVSEBABBIAVGVL-AIPFA--ITI 81
68 | 3KJ6 VTN-YF I TSHBCEBLVVGLA-VWPFGAAHIL 96

150 | CB1 RPSYHFIGSIVABLLGSV I FVYSFIDFHVF 180

*x KKk -
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106 | 1U19 FGPTGCNLEGFFATLGGE I ALWSHVVLEIERNVVVC 141
87 | 3EML AACHGCLEIACFVLVLTQSSTFSHLA IBIDEMI1AIR 122
102 | 3KJ6 FGNFWCERWTS IDVLCVTASIETHCV 1 BVDRMFANT 137
186 | CB1 RNVFLFKLG--GVTASFTASVGSHEFLTHIDE 1 SIH 219
151 | 1U19 ENHE 1MGVAFTIIVMALACAA-PPLVG 175
133 | 3EML GTREKG 11AICHIVLSFAIGL-TPMLG 157
148 | 3KJ6 KNKERV 1 1 LMVl 1 VSGLTSFLP 1QH 173
230 | CB1 RPKEVVAFCEMETIAIVIAVL-PLLG 254
o S A -
201 | 1U19 NESFV1Y-MFVVHF 1 IPBIVIFFClGQLVFTVKEAAAQQ 238
188 | 3EML PMNYMVYFNFFACVLVPELLMLGVELRIFLAARRQ---- 222
197 | 3KJ6 NQAYAIA-SS1VSFYVPIV IMVFVESRVFQEAKRQ---- 230
272 | CB1 DETYLMFW- 1GVT-SVLIBLFIVYARMY I LWKAHSHAVRM 308
DRIl * -
246 | 1U19 KAEKEVTRMV 1 IMV I AFL IBlLEYAGVAFY IFT 278
389 | 3EML KEVHAA-KSLALIVGLFALBHLBLH 1 INCFTFF 420
268 | 3KJ6 KEHKAL-KTLGHIMGTETLElLEFF 1VN1VHV I 299
337 | CB1 MDIRLA-KTLVEILVVLE 1 IBllcBELLAIMVYDVF 368
: oIl IoIFRF :
285 | 1U19 GPIEMT 1-PAFFAKTSAVYREVIR 1 v 309
427 | 3EML APLWLMYLAIVLSHTNSVVEEFINAY 452
306 | 3KJ6 KEV¥-1LL-NwilcYVNSGFEELINC- 328
376 | CB1 KTVE-AFC-sMLCLLNSTVER 1 IllAL 399
: : LD KRR
312 | 1U19 KQFNCMVTTL 322
455 | 3EML REFRQTERKI 465
331 | 3KJ6 PDFR1AFQELL 341
402 | CB1 KDLFHAFRSMF 412

GPCR sequences included rhodopsin (PDB code: 1U19), B, adrenergic receptor (B,AR;
PDB code: 3KJ6), human adenosine A, receptor (AA,aR; PDB code: 3EML) and CB1
receptor, shown in helix regions only. Conservancy of the aligned sequence is

represented by consensus symbols: for identical residues (red); “:” for conserved

uxn

substitutions (cyan); and “” for semi-conserved substitutions (yellow).
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Therefore, helix 1 structure constructed by template B,AR (Fig. 3.2 A2) was selected
for CB1 model. In addition, helix 2 and 3 were further modified by MD simulations
and protein threading. Finally, we adopted the conformation generated by protein

threading at WURST (http://www.zbh.uni-hamburg.de/wurst/) (Table 3.2) *°.

3.3.3. Modeling the binding site by four types of ligands

To more accurately construct the binding site of CB1 receptor, CB1 models were
further optimized by four tight binders of CB1 receptor, HU-210, ACEA, WIN55212-2
and SR141716A, using MD simulations. Before optimizing, the CB1 model underwent
MD simulations, with explicit water molecules included only in the protein binding
site. After that, HU-210 was docked to the binding site of CB1 model using Vdock to
obtain the initial conformation for MD simulations.*® Antechamber in AmberTools
was used to assign parameters to the ligand—protein complex.®” MD simulations were

carried out using the NAMD package implemented in VMD, with Amber ff99SB and

Table 3.2. Conformations of Helix 2 and 3 in CB1 Model Modified by Protein
Threading.

PDB Code
Residue Tyrl72 to Aspl76 3DAH
Residue Phel77 to Phel80 1SFS
Residue His181 to Ser185 1UDL
Residue Arg186 to Phe189 1SFS
Residue Leu190 to Gly194 1W85
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Figure 3.2. CB1 receptor hybrid model built by template-based fragment assembly.
(A1-3) Helix 1 built by template (A1) AAAR, (*A2) B2AR and (A3) individual helix 1
fragment; (B1-3) Helix 2 built by template (B1) AA,AR; (B2) B,AR and (*B3)
individual helix 2 fragment; (C1-3) Helix 3 built by template (*C1) AA4R, (C2) B,AR
and (C3) individual helix 3 fragment; (D1-3) Helix 4 built by template (*D1) AAAR,
(*D2) B,AR and (D3) individual helix 4 fragment; (E1-3) Helix 5 built by template (*E1)
AA4R, (*E2) B2AR and (E3) individual helix 5 fragment; (F1-3) Helix 6 built by
template (*F1) AA2aR, (F2) B-AR and (F3) individual helix 6 fragment; (G1-3) Helix 7
built by template (*G1) AA,4R, (G2) B,AR and (G3) individual helix 7 fragment; (H)
assembled CB1 receptor hybrid model. *, structures assembled into the hybrid
model. For helix 4 and 5, part of the helix is from structure built by AA;AsR and the
other part is by B,AR.
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general Amber force field (GAFF) for CB1 receptor and ligands, respectively.*"* All
MD simulations were performed under the NVT ensemble at 300 K with a time step
of 1 fs. Residues within 12 A of HU-210 were set as mobilized. When CB1 receptor
was in the ligand free state, several polar residues, such as K3.28(192), formed
hydrogen bonds with themselves and neighboring residues. To more efficiently relax
the sidechain conformations, residues within 12 A of HU-210 were heated to 500 K
shortly (around 0.1 ns) each time to rearrange sidechain conformations and re-form
proper ligand—CB1 receptor intermolecular interactions. The system was then
followed by 1000 steps quick energy minimization and longer MD simulations in 300
K to prevent secondary structure changes. MD simulations were performed at 500 K
and 300 K alternately and in total 1.2 ns at 500 K and 5.2 ns at 300 K. Afterwards,
quick conjugate gradients energy minimization (1000 to 3000 steps) in AMBER force
field was used to obtain a local energy minimum conformation of the CB1 receptor

model for molecular docking studies.*

We optimized the other three CB1 models using ACEA, WIN55212-2 and SR141716A
with the same procedure described in Method 2.3. Root-mean-square deviation
(RMSD) of residues that were within 12A of ACEA during MD simulations of
ACEA-CB1 complex is shown in Fig. 3.3. Since SR14176A is an antagonist for CB1
receptor, training the CB1 model based on SR141716A toward inactive state was

necessary. Since both WIN55212-2 and SR141716A share certain structural
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Figure 3.3. RMSD of residues that were within 12A of ACEA during MD simulations of
ACEA-CB1 receptor complex.

similarities and were identified to share the same microdomain in CB1 receptorg, we
constructed inactive CB1 receptor model using the initial model trained by
WIN55212-2. Four ns whole-protein MD simulations were used to adjust the model

for antagonist/inverse agonist binding.

3.3.4. Model verification

Four CB1 receptor models were then tested by docking known binders, compounds
that are structurally similar to the known binders and random compounds with
vdock.”® AutoDock 4 and AutoDock Vina were also used; however, both programs

48,49
k.

failed to dock ACEA ligand, so we reported only results from Vdoc Structures of
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CB1 binders are listed in Fig. 3.4. Compounds with similar structures to each known
binder were selected by substructure search and similarity search (similarity = 50%)
from the ZINC database (Fig. 3.5).%° The resulting compounds were further screened
to avoid highly similar structures. For example, compounds that are structurally
similar to HU-210 were selected using substructure search (Fig. 3.5 A1-4) and
similarity search (similarity = 50%) from the ZINC database and 59 of them (Table 3.3)
were picked to dock to the CB1 model trained by HU-210. In addition, 25 random
compounds (Fig. 3.6) were chosen from the NCI diversity set |l

(http://dtp.nci.nih.gov/branches/dscbh/div2 explanation.html).

3.3.5. Energy calculation

In addition to docking, energy calculation was applied for re-scoring. In total, 3000
steps of energy minimization were used to relax the binding sites of the best-docked
ligand—CB1 complexes. Total energy (E) was calculated by NAMDEnergy in VMD.*
Binding energy between protein and ligand was calculated as follows:

AEping = Ecomplex - (Eprotein + Eligand)

Because ligands that are similar to HU-210 are smaller than other types of CB1
ligands, for the CB1 model optimized by HU-210, 500 to 1000 steps, instead of 3000
steps, of energy minimization were used before energy calculation. The minimization

was terminated when the dihedral energy reached a plateau.
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3.3.6. Flexibility analysis of ACEA

To study motions of the unsaturated acyl chain of ACEA, we used T-Analyst®’ to
analyze the flexibility of each rotatable bond for trajectories from MD simulations.
We performed three 3 ns MD simulations for ACEA in different environments:
ACEA—-CB1 bound state, free ACEA in a 10 A x 10 A x 10 A cubic TIP3P water box, and
free ACEA in vacuum. Frames were saved every 3 ps, for a total of 1000 frames. The
MD simulations all started from the same initial ACEA conformation, with a folded
structure from the ligand bound state. The configurational entropy of 17 dihedral

angles of ACEA was computed using T-Analyst.

3.4. Results and Discussion

3.4.1. CB1 receptor models

In considering ligand-induced conformational changes in the binding site of CB1
receptor and the highly diverse structures of CB1 ligands, we constructed four CB1
receptor models based on four types of ligands: HU-210, ACEA, WIN55212-2 and
SR141716A. The four CB1 ligands are in similar positions in the binding sites (Fig. 3.7).
However, because the compounds have various scaffolds, the backbones of the four

CB1 receptor models are slightly different to accommodate the ligands.

45



Al

HU-210 CPS5940 JWH-051

= C\/?/J\u/x/c' 9 _\/:\’/\’iﬁ’/\ 5 <m>ﬁA\L)LHJ\/°H

ACEA ACPA 0-1812

B4

2-Arachidonylglyceryl ether Methanadamide E j

c2 O D1 D3 |
[0 "
Il N\\ o
O s,
T EE: = ol
&,
7N
&—O \ /
cl cl

D4 D5

Figure 3.4. CB1 binders docked to models built by (A1-3) HU-210, (B1-5) ACEA, (C1-2)
WIN55212-2 and (D1-5) SR14176A
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Figure 3.5. Substructures of (A1-4) HU-210, (B1-3) ACEA, (C) WIN55212-2 and (D)
SR141716A used for substructure search in the ZINC database.

Table 3.3. Average Interaction Energy of Known CB1 Binders, Compounds Structurally
Similar to Binders and Random Compounds in the Four CB1 Models. (kcal/mol).

Compounds with Similar

Binders . . Random Compounds
Binder Structures
Model No. Binding E. No. Binding E. No. Binding E.
22 -31.58 £9.39
HU-210 Model ~ 3°  -50.43+1.37 59 -36.73 £7.57 3 Failed to dock
15 -48.94 +13.56 23 -44.43 £13.23
ACEA Model 57  -62.42+2.81 5 Failed to dock 2 Failed to dock
36 -45.12 £9.76 24 -44.63 £14.6
WIN55212-2 b - -
2 -62.12+5.82 3 Failed to dock 1 Failed to dock
Model
38 -50.59 £11.98 20 -37.83 £11.83
SR141716A c . .
-66.53+6.10 27 Failed to dock 5 Failed to dock
Model

*, compounds structurally similar to binders were selected by substructure and
similarity search (similarity = 50%) from ZINC database; **, random compounds were
chosen from the NCI diversity set Il; ***, docking failed because the docking software
failed to dock the ligand in the binding site of the protein or the ligand was docked in
an inappropriate position. a, b and c refer to references 21,50 and 51.
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Figure 3.6. Molecular structures of 25 random non-binders from NCI diversity set II.
(1) NSC1614, (2) NSC1620, (3) NSC5069, (4) NSC14304, (5) NSC29073, (6) NSC35930,
(7) NSC41805, (8) NSC47881, (9) NSC54509, (10) NSC55957, (11) NSC57608, (12)
NSC67436, (13) NSC70980, (14) NSC76484, (15) NSC80997, (16) NSC91398, (17)
NSC94600, (18) NSC166846, (19) NSC171303, (20) NSC197049, (21) NSC227186, (22)
NSC288686, (23) NSC308848, (24) NSC401077, (25) NSC515893.
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Figure 3.7. Alignment of the four ligand-CB1 models. (A) Side view. (B) Top view.
Seven transmembrane helices are indicated (H1-7). Colors represent models trained
by HU-210 (red), ACEA (green), WIN55212-2 (blue) and SR141716A (cyan).

3.4.1.1. CB1 model trained by HU-210

HU-210 is an analog to (-)-A°-THC, with higher binding affinity than natural THC, so it
was selected to represent structurally similar classical and non-classical cannabinoids.
In this model, HU-210 binds to the TMH3-6-7 region of CB1 receptor. The alkyl chain
of HU-210 points to the inside of the binding cavity and locates near 16.46(354),
C6.47(355), W6.48(356), L6.51(359) and L6.52(360), and the tricyclic scaffold of
HU-210 is toward F2.64(177), F3.25(189), K3.28(192), M6.55(363), F7.35(379) and

$7.39(383) (Fig. 3.8 A). Mutation study®? showed K3.28(192) is an important residue
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involved in HU-210 binding, and the phenolic oxygen of HU-210 formed a hydrogen
bond with K3.28(192) in our complex conformation. In addition, the binding affinity
of HU-210 was reduced 50- to 100-fold when mutating $7.39(383) to alanine.** In our
model, K3.28(192) acts as a hydrogen bond donor to F3.25(189) which locates near
the tricyclic scaffold of HU-210 and helps stabilize HU-210 binding. The pyranyl
oxygen of HU-210 acts as a hydrogen bond acceptor to S$7.39(383). Besides,
C6.47(355) is in close contact with the end of the alkyl chain of HU-210, which is also

consistent with previous docking and site-directed mutagenesis study.”

3.4.1.2. CB1 model trained by ACEA

ACEA is a selective CB1 agonist that is structurally similar to endogenous
cannabinoids such as AEA but with higher binding affinity. The long unsaturated acyl
chain distinguishes itself from other groups of cannabinoid ligands. In our model,
ACEA binds to TMH2-3-6-7 region and adopted a folded J-shape to form hydrophobic
intermolecular contacts with CB1 receptor. U-shaped endocannabinoids

conformations were also found in others studies.'*®

ACEA is located at the lipophilic
region of the binding site and in the vicinity of residues such as K3.28(192),

$7.39(383), F3.25(189), F7.35(379), F7.37(381), Y5.39(275), F3.36(200) and
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Figure 3.8. Binding sites of CB1 receptor models trained by (A) HU-210, (B) ACEA, (C)
WIN55212-2 and (D) SR141716A. Ligands are in ball-and-stick depiction. Residues
that that are directly contact with ligands are in opaque stick depiction. Residues that
are within 6 A of the ligands are in transparent stick depiction (see Table 3.4 for
details).
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Table 3.4. Residues within 6 A of Ligands in Ligand-CB1 Complex.

Model Residues

HU210 model 174,177,178, 187 to 194, 276, 280, 353 to 363, 376, 378 to
384, 386

ACEA model 126, 171, 172, 174, 177, 187 to 196, 200, 275 to 277, 279,

280, 356, 357, 360, 363, 379, 381 to 384, 386, 387, 389

WIN55212-2 model 174, 177,178, 187 to 195, 200, 201, 275 to 277, 279, 280,
356, 357, 360, 363, 379, 381, 383, 384, 386, 387

SR14176A model 126, 171 to 174, 177, 187 to 195, 200, 275, 276, 279, 280,
355, 356, 360, 363, 378, 379, 381 to 384, 386, 387

W6.48(356). According to mutation study, K3.28(192) is a critical residue for AEA
binding®?, and the carbonyl oxygen of ACEA formed a hydrogen bond with K3.28(192)
in our model. Moreover, K3.28(192) formed another two hydrogen bonds; one, an
intra-molecular hydrogen bond with its own carbonyl oxygen and the other with
N3.23(187) (Fig. 3.8B). Mutation study revealed that the binding affinity of AEA
decreased an approximate 13-fold by mutating Y5.39(275) to phenylalanine, but
mutating Y5.39(275) to isoleusine could abolish ligand binding and receptor
signaling.”® In addition, mutation of F3.25(189) to alanine moderately (approximately
6-fold) decreased AEA binding affinity.” In our model, Y5.39(275) locates very close to
ACEA and should contribute to the ligand binding, as suggested by experiments. The
C5=C6 double bond of ACEA interacts with F3.25(189), which was also reported

previously.’

52



3.4.1.2.1. Flexibility study of ACEA

ACEA is significantly more flexible than most drug-like compounds. A large penalty in
configuration entropy is expected, which opposes binding. However, the unsaturated
acyl chain of ACEA can adopt many energetically equivalent conformations that may
help compensate potential entropy loss due to rigidifying the flexible compound.> To
reveal the most rigid/flexible regions of ACEA and how the conformational changes
of ACEA may affect binding, we therefore examined the changes in ACEA flexibility in
three states: ACEA-CB1 bound state, free ACEA in a water box and free ACEA in
vacuum. Notably, docking such a highly flexible ligand can be challenging, because
the acyl chain of ACEA may cause an insufficient search for docking programs to find

the best ligand-binding mode.

MD simulations were performed on ACEA in different environments: ACEA-CB1
bound state, free ACEA in a 10 A x 10 A x 10 A cubic TIP3P water box, and free ACEA
in vacuum. Conformations were analyzed by T-Analyst. In free states, ACEA could
adopt many conformations, such as extended linear structures, folded J-shape, and
U-shaped conformations. In contrast, in the bound state, ACEA adopted a curved

J-shape and had fewer conformations.

We computed the configurational entropy of each ACEA dihedral angle for each

simulation (see Fig. 3.9 A, B): the values for the ACEA unsaturated acyl chain were
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significantly lower in the bound state than the free states in water or in vacuum.
Therefore, the unsaturated acyl chain of ACEA became significantly rigid after binding
because of the confined binding site. Interestingly, the free ACEA in the aqueous
environment was less flexible than that in vacuum, which shows diminished
hydrophobic effects. The entropy of dihedrals 9 and 11 was significantly lower in the
free state in water than in the bound state. Figure 3.9 C-E shows the distribution of
dihedral 9 in the bound state and free states in water and in vacuum. In the bound
state, dihedral 9 samples one more conformation than in its free form in water,
where the binding site of CB1 receptor provides a more non-polar environment than
in the aqueous environment. In analyzing the MD trajectories, we found that
dihedral 9 acts as a “hinge” in the middle of ACEA to keep the free ACEA partially
folded in water; while the long chains on both sides of the “hinge” move flexibly. In
the bound state, the protein binding site confines the movement of the long acyl
chain, but it brings new ACEA conformations by rearranging the “hinge”, dihedral 9,
to adjust the conformations of long chains on both sides. However, observed from
the conformations of ACEA displayed in Fig. 3.9 C-E, although dihedral 9 can adopt
more conformations in the ACEA-CB1 bound state, the entire ligand is rigid as

compared to the ACEA free states in a water box or in vacuum.
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Figure 3.9. Entropy and distributions of ACEA dihedrals. (A) 17 dihedrals of ACEA
analyzed by T-Analyst. (B) Configurational entropy of each ACEA dihedral angle. Blue
and green lines show ACEA entropy of the free ligand state in a 10 A x 10 A x 10 A
cubic TIP3P water box and in vacuum, respectively; red line shows the entropy in the
ACEA—CB1 bound state. (C-E) Distributions of dihedral 9 and ACEA conformations in
(C) ACEA—CB1 rbound state, (D) free state in water box and (E) free state in vacuum.
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3.4.1.3. CB1 model trained by WIN55212-2

WIN55212-2 is a typical aminoalkylindole, with relatively more ring scaffolds and a
larger structure than HU-210 and ACEA. Therefore aromatic stacking can be
important for binding WIN55212-2 and its analogs to CB1 receptor.’ Different from
models built by HU-210 and ACEA, this model shows no hydrogen bonds between
WIN55212-2 and K3.28(192), which agrees with mutation results.?> In our model,
WIN55212-2 is located at TMH 3-5-6-7 region. An aromatic microdomain constitutes
the binding region for WIN55212-2 which includes F2.61(174), F2.64(177),
F3.25(189), F3.36(200), Y5.39(275), WS5.43(279), W6.48(356), F7.35(379) and
F3.37(381) (Tables 3.5, 3.6 and Fig. 3.8C). The arrangement of residues in the binding
site can be further supported by mutagenesis results, which indicated that the
aromaticity of Y5.39(275) is crucial for WIN55212-2 binding.® McAllister and
co-workers suggested that WIN55212-2 binds within TMH3-4-5-6 aromatic
microdomain and directly interacts with F3.36(200), W5.43(279) and W6.48(356)
with aromatic stacking.9 In our model, residues that are in close contact with
WIN55212-2 are as follows: for the naphthyl ring, F2.61(174), F2.64(177), F3.25(189),
F7.35(379) and F3.37(381); for the indole ring, F3.25(189), Y5.39(275) and
W5.43(279); and for the morpholinyl moiety, F3.36(200), W5.43(279) and
W6.48(356). Our model showed different but more toward the “Aroyl-upl”
WIN55212-2 binding mode compared to the binding conformations proposed by

Shim and and Howlett.”® Experimental studies suggested that F3.36(200) and
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W5.43(279) play critical roles in providing bulky groups for WIN55212-2 binding.”
When the aromatic residues F3.36(200), W5.43(279), and W6.48(356) were replaced
by alanine, the binding of both WIN55212-2 and SR141716A to CB1 receptor was
significantly reduced.”® In addition to F3.36(200), F7.35(379) directly interacts with
WIN55212-2 by aromatic stacking, and a few more aromatic stacking interactions
were observed among F2.61(174), F2.64(177), F7.35(379) and F3.37(381) in our

model (Tables 3.5 and 3.6).

3.4.1.4. CB1 model trained by SR141716A

SR141716A is the first reported CB1 antagonist that displayed nanomolar CB1
receptor affinity and stabilized the receptor in its inactive state.” Our SR141716A
model was trained toward inactive state by 4 ns MD simulations on the ligand-CB1
complex. In this model, SR141716A locates at the TMH 3-4-5-6-7 region and binds to
the same aromatic microdomain with WIN55212 (Tables 3.5 and 3.7). Overall, the
binding site of this model is composed of F2.61(174), F3.25(189), K3.28(192),
F3.36(200), Y5.39(275), W5.43(279), W6.48(356), F7.35(379), F7.37(381), S7.39(383)
and M7.40(384) (Fig. 3.8D). McAllister and co-workers suggested that SR141716A

binds within TMH3-4-5-6 aromatic microdomain in
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Table 3. 5. Key Ligand-Aromatic Clustering in CB1 Models Optimized by WIN55212-2
and SR141716A.

WIN55212-2 SR141716A
NAP? IND® MC* DC®

d* o d o d o d a

F2.61(174) 7.99 69.57  13.45 78.96 - - - -

F2.64(177) 6.15 87.40  10.90 53.29 - - - -
F3.25(189) 8.19 88.53 7.98 88.23 6.22 81.98 7.91 49.68
Y5.39(275) 10.97 78.51 5.81 38.26 6.18 33.85  10.32 75.99
W5.43(279) 12.81 24.83 7.24 86.44  7.00 52.09 7.18 87.56
F7.35(379) 4.27 32.87 8.69 89.48 7.66 82.97 6.89 73.34

F3.37(381) 6.26 88.69  11.78 30.42 - - - -

®Naphthyl ring. ®Indole ring. “Monochlorophenyl ring. d Dichlorophenyl ring. € The
distance between the centroids, in A. ' The angle between the ring planes, in degrees.

Table 3. 6. Key Aromatic Clustering in CB1 Models Optimized by WIN55212-2.

F2.64(177) F7.35(379) F3.37(381)

d o d a d a
F2.61(174) 6.86 64.06 9.25 79.72 6.16 82.31
F2.64(177) - - 6.54 60.75 7.78 34.70
F7.35(379) - - - - 5.03 58.22

? The distance between the centroids, in A. °The angle between the ring planes, in
degrees.
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CB1 inactive state and directly involves aromatic stacking interactions with
F3.36(200), Y5.39(275) and WS5.43(279), as well as hydrogen bonding with
K3.28(192).° Hurst and co-workers hypothesized that, in ligand free state, the salt
bridge between K3.28(192) and D6.58(366) appears to be important to position
K3.28(192) for ligand interaction.”*® In our model, with SR141716A binding,
K3.28(192) forms a hydrogen bond with the carbonyl oxygen of SR141716A and also
two more hydrogen bonds with nearby N3.23(187) and S$2.60(173). F3.25(189) and
Y5.39(275) directly form single aromatic stacking interactions with the
monochlorophenyl ring of SR141716A. W5.43(279) interacts with both the
monochlorophenyl and the dichlorophenyl ring of SR141716A, which is consistent
with the modeling studies by McAllister and co-workers.” Besides, F3.36(200),
W6.48(356) and F7.35(379) interact with the dichlorophenyl ring of SR141716A.
F7.35(379) directly stacks with F3.25(189) (Table 3.7). Mutagenesis study showed
that mutation of F3.36(200), W5.43(279) or W6.48(356) to alanine significantly
reduced the binding of SR141716A to the CB1 receptor.”>*** Studies suggest that the
interaction between F3.36(200) and W6.48(356), representing a “toggle switch”, is an
important constrain that keeps CB1 receptor in its inactive state and the salt bridge
between K3.28(192) and D6.58(366) stabilizes CB1 in its inactive state .>**> In our
model, F3.36(200) and W6.48(356) form a parallel-displaced stacking (Table 3.7) and

both constitute the aromatic microdomain for SR141716A binding. Moreover,
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C7.42(386) is right located at the dichlorophenyl ring of SR14176A in our model while

the introduction of a bulky group on C7.42(386) may inhibit SR141716A binding.>’

3.4.1.5. Model comparisons

Although the ligand binding sites of the four models were similar, different residues
and various sidechain rearrangements characterized each binding pocket. For
example, the slightly different sidechain positions of F7.35(379) and F7.37(381) could
result in binding to dissimilar ligands (Fig. 3.10). As well, the backbones that
constructed each model varied, so mobilizing sidechains in the binding site might not

be enough for CB1 receptor to accept different types of ligands. The models also

Table 3. 7. Key Aromatic Clustering in CB1 Models Optimized by SR141716A.

ol o’
F2.61(174) F2.64(177) 6.75 75.19
F2.61(174) F3.37(381) 6.40 53.83
F3.25(189) F7.35(379) 5.13 23.82
F3.36(200) W6.48(356) 7.42 6.42

? The distance between the centroids, in A. °The angle between the ring planes, in
degrees.
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illustrated the flexibility of CB1 receptor and showed that multiple models were
necessary for ligand screening; typical molecular docking programs cannot mobilize

protein backbone structures.

3.4.2. CB1 receptor model validation

CB1 receptor models were assessed by docking and scoring known binders,
compounds that are structurally similar to the binders and random compounds to
determine whether the models could successfully rank known binders. We first
performed molecular docking to place ligands into the binding site and quick energy

minimization was then followed. To rank ligands, interaction energy between ligand

Figure 3.10. Residue (A) F7.35(379) and (B) F3.37(381) in the binding sites of the four
models. Red: HU-210 model; green: ACEA model; blue: WIN55212-2 model and
cyan: SR141716A model.
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and protein was calculated. The average binding energies for known binders,
compounds with similar structure to the binders and random compounds (Table 3.3)
validated that the four CB1 receptor homology models can distinguish known binders
from the unknown compounds. Note that the energy computed does not include
entropic contribution, but the binders clearly showed considerably stronger

energetic attraction.

To gain insight into the ligand-induced conformational changes in the binding site of
CB1 receptor, cross docking was performed by docking binders of one model to other
models. Similar to with model validation, energy minimization was applied, and
interaction energy was calculated to obtain average interaction energy for
comparisons (Table 3.8). The four CB1 receptor models could reasonably
accommodate all CB1 binders, which suggests that although the models were
optimized by four structurally distinguishable ligands, the binding sites maintain key
characters for CB1 ligand binding. The SR141716A model has the most unique nature
in failing to bind most analogs of THC and AEA but only accepts analogs of
WIN55212-2, which may due to their structural similarity. Of note, SR141716A is a
known CB1 antagonist. Although simulating the active and inactive CB1 receptor
structures is beyond the scope of this study, the distinct SR141716A model suggests
possibly substantial conformational changes between the active and inactive states

of CB1 receptor.
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The cross-docking results suggested that CB1 ligands may be able to bind in each
optimized model. However, if a certain type of ligand was docked to a CB1 model
optimized by other types of ligands, the key interactions between the ligand and
CBlreceptor were rarely observed. As a result, if the scaffold of a ligand is decided,
choosing a model optimized by that class of ligand is preferred. For example, if

compounds with similar scaffolds as WIN55212-2 need to be screened, choosing CB1

Table 3.8. Interaction Energy of Cross Docking Results (kcal/mol).

HU-210 ACEA WIN55212-2 SR14176A

Model Model Model Model

HU-210 -48.85 -43.85 -45.19 Failed to dock®
CP55940 -51.25 -58.17 -64.86 -56.7

JWH-051 -51.18 -63.12 -62.15 Failed to dock
ACEA -62.64 -60.54 -66.67 -62.29

ACPA -38.82 -58.79 -60.63 Failed to dock

0-1812 -55.07 -64.64 -68.03 Failed to dock

2-Arachidonylglyceryl ether -52.24 -62.57 -73.32 Failed to dock

Methanadamide -47.36 -65.56 -63.74 Failed to dock
WIN55212-2 -65.91 -62.93 -66.23 -61.87
CHEBI309167 -48.81 -60.34 -58 -51.39
SR14176A -62.62 Failed to dock  Failed to dock -61.66
Binder 1 similar to SR14176A -48.04 -64.22 -62.72 -64.57
Binder 2 similar to SR14176A -43.23 -58.2 -58.38 -61.19
Binder 3 similar to SR14176A -45.13 -56.31 -63.51 -65.05
Binder 4 similar to SR14176A -56.29 -62.24 -64.28 -75.32

Interaction energy was calculated after 3000 steps of energy minimization. * Docking
failed either because the docking software failed to dock the ligand in the protein
binding or the ligand was docked in an inappropriate position.
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model optimized by WIN55212-2 should be preferred. Compared with other CB1
ligands, HU-210 is relatively small in size, so the model optimized by HU-210 has the
smallest binding pocket. Thus, the HU-210 model is the most ideal to screen
high-affinity binders with less bulky structures. For screening compounds with linear
forms, the ACEA model is the most suitable because it can accept highly flexible long
acyl chains. However, ligands with flexible long chains are challenging for docking
programs to find the correct binding modes, which must be carefully considered

when screening ligands.

3.5. Conclusions

To study ligand-induced conformational changes in the CB1 receptor binding site, we
constructed four homology models based on HU-210, ACEA, WIN55212-2 and
SR141716A. Each of these four ligands represents one group of structurally diverse
cannabinoid ligands. The interactions in the binding site of each model were carefully
studied to ensure that our models reproduce known interactions suggested by
experiments. Molecular docking results showed that our models can distinguish
known binders from compounds with similar structures to binders and random
compounds. Although all models can accept most CB1 ligands, they have preferences
for different ligand scaffolds. Therefore, determining which of the four models is the
most suitable one when screening a particular type of ligand can help achieve the

most accurate results. The coordinates of the CB1 models are available upon request.
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Chapter 4

Discovery of Antimicrobial Agents for a-Subunit of Tryptophan

Synthase by Molecular Docking Studies and In Vitro Assays

4.1. Abstract

Tryptophan biosynthesis pathway is essential for bacterial growth but absent in
higher animals and humans. Drugs that can inhibit bacterial biosynthesis of
tryptophan offer a potential new class of antibiotics. In this work, we reported a
structure-based virtual screening targeting a-subunit of tryptophan synthase, an
enzyme that catalyzes the final two steps in the biosynthesis of L-tryptophan.
National Cancer Institute (NCI) Diversity Set of around 1800 compounds was
screened by computational docking and in silico ADME study. Four of 28 in silico hit
compounds showed promising activity in whole-cell minimum inhibitory
concentration test. Three hits were determined to target tryptophan biosynthesis
pathway. Our study shows that using virtual screening can efficiently enrich the hits
rate, which supports the use of computational methods in future antimicrobial drug

discovery efforts.
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4.2. Introduction

Infectious diseases are responsible for greater than 25% of the world’s annual death
rate and bring a large burden of disease and economic impact.* For billions of years,
bacteria encountered various naturally occurred antimicrobial agents which made
bacteria developed antibiotic resistance mechanisms to survive. Some bacteria
produce biofilms to make them extremely antibiotic resistant which can be very
dangerous patients.” Bacteria resistance to almost all available antimicrobial agents
continues to increase progressively which affected the effectiveness of current
developed antibiotics over the past 50 years.>* New antibiotics are very much
needed especially for resistant pathogenic microorganisms. > Besides bacteria
resistance, new antibiotics are continually needed to tackle the new diseases caused
by new emerging pathogens which are still not eliminated by any antibiotic, e.g.,

AIDS, Pseudomonas aeruginosa, Hantavirus. 6

Tryptophan (Trp) is critical for all living organisms. For higher organisms, Trp is an
essential amino acid that can be obtained through diet. Bacteria, yeast, molds and
plants can synthesize Trp through tryptophan synthase (TRPS) biosynthesis pathway
encoded by the Tryptophan Operon.” Enzymes that are essential to Trp biosynthesis
pathway can be new drug targets for antibiotics. Herbicides have been developed
targeting TRPS for agricultural use, while not existing drugs inhibiting Trp

biosynthesis pathway in human pathogens.® Auxotrophic mutants of pathogenic
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bacteria that defects in Trp biosynthesis lost virulence within a host organism.
Although host organism can acquire Trp from diet, the concentration of Trp in the

9,10

host is too low for patheogenic bacteria to retain virulence. Therefore, drugs that

can inhibit the Trp biosynthesis pathway offer as a new class of antibiotics.

TRPS is a a,B, bienzyme complex that catalyzes the last two steps of L-tryptophan
biosynthesis. The a-subunit catalyzes the cleavage of 3-indole-D-glycerol
3’-phosphate (IGP) to indole and D-glyceraldehyde 3’-phosphate (G3P) (Scheme
4.1A). Indole is then channeled to B-subunit via a 25 A long tunnel. Within the B-site,
indole and L-Serine react in the presence of pyridoxal 5’-phosphate (PLP) cofactor in
a two-stage reaction to produce L-Tryptophan (Scheme 4.1B). In Stage |, L-Ser forms
an external aldimine, E(Aex;), which converts to the a-aminoacrylate aldimine, E(A-A).

In stage Il, indole reacts with E(A-A) to give L-Trp. **'*®

Scheme 4.1. a-site reaction
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Scheme 4.2. B-site reaction

The conformational dynamics of proteins play important roles in regulating ligand
binding. To consider the protein flexibility, using multiple TRPS conformations could
avoid single biased binding site for docking screening. Long-equilibrium molecular
dynamics (MD) simulations of TRPS from previous studies provided TRPS
conformational ensembles in its ligand-free state.'* Choosing representing snapshots
from MD trajectories are critical. In this study, we employed T-Analyst™ to cluster
MD ensembles based on the sidechain conformations of key residues in the TRPS

binding site and sample representative conformations for flexible-receptor docking.

4.3. Methods

4.3.1. Protein conformations selection

Target conformations were selected both from x-ray crystal structures and MD
simulations, which include ligand-free and ligand-bound states. In total, seven TRPS
conformations were selected as target conformations, which include three from

crystal structures and four from MD simulations. X-ray crystal structures were taken
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from PDB codes: 3PR2, 3CEP, 2CLO.** ™ 7 60 ns molecular dynamics (MD)
simulations were performed on TRPS aB-ligand-free state in our previous study.* In
order to select representative TRPS conformations for virtual screening, T-Analyst
was used to analyze the dynamics of protein-ligand complex. Based on the side chain
configurational entropy and standard deviations, large conformational changes were
observed for 10 key residues (Fig. 4.1) in the protein binding site upon ligand binding.
MD ensembles was then grouped based on the side chain rotations (Fig. 4.2) of the
10 key residues, which included Glu 49, lle 64, Leu 100, Leu 127, lle 153, Tyr 175, Leu
177, Arg 179, Thr 183 and Phe 212. Finally, four most populated clusters were
selected and one representative TRPS conformation from each cluster was sampled

for flexible-target docking.

4.3.2. Docking based virtual screening

NCI diversity set of around 1800 compounds were screened against seven target
frames using the Linux version of Vdock.'® Two independent docking runs were
carried out on each TRPS conformation with different random number seeds. While
in theory, the two independent rounds of virtual screening can be replaced by a
single run with larger number of runs. In practice, two independent rounds with
different random number seeds increase the varieties of docking poses. A 10 A cubic

grid box was placed at the ligand binding site at a-site.
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Figure 4.1 Side chain conformations of key residues in the binding site of TRPS.

20 -—+—1+-—-"+—-"+—+r+t -+ttt
154+ Glu49 1llebd Jd Leul0o dleul2? i
104 <+ -+ _ -+ .
= o1+ttt —+— i+t
> 154 lle 153 L Tyrl75 4 Leul77 J Argl79 J
&)
S 10+ T T T .
o
=S 5-- - A - - -
S A
(&) 0 1 LAl 1 1 L 1 [P | 1 1 1 1 1 L 1 1 1 1 1 1 1
O L] L] L] L] L] L] L] L L] L) L] L L) L] L L] L] L] L] L] L L] L] L
154 Thriss A Phe 212 1 Phe 212 ] -360-180 0 180 360 540
- Dihedral 1 Dihedral 2
104 <+ -+ -+
5= -+ - ﬁ -
0_ L L L L L L 1 Il L 1 L L 1

L ]
=360 -180 0 180 360 540 -360-180 0 180 360 540 -360-180 0O 180 360 540
Degree

Figure 4.2 Side chain dihedral distributions of key residues in the binding site of TRPS.
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Following the docking, for each virtual screening run, the docking pose with lowest
interaction energy of each compound was selected. The interaction energy was then
compared at the two separate runs. The run with the lower interaction energy (Ein)
was then output for further weighted average energy calculations. As a result,
docking interaction energy of each compound was weighted given the conformation

occupancy in MD simulations using the equation,

Weighted Average Eint = [Eint_3pr2 + Eint_3cep + Eint_2cto + 4 X (OCCmp_1 % Eint_mp_1 + OCC

mp_2 X Eint_ mp_2 + OCCwmp_3 X Eint_mp_3 + OCCwp_a X Eint_mp_4a)] /7

where E;; is the docking interaction energy. OCC stands for the cluster occupancy for
each representative TRPS conformation in MD trajectories. OCCyp_1 = 36%, OCC mp 2

=11.33%, OCCnvp 3 =44.67%, OCCmp_ 4 = 8%

4.3.3. In-silico ADME prediction

The ranked NCI diversity set | was then followed by rapid absorption, distribution,
metabolism, and excretion (ADME) predictions using QikProp (version 3.5,
Schrédinger, LLC, New York, NY, 2012). Three descriptors were used for screening the
drug-like compounds: Lipinski’s rule of five, agueous solubility and other properties

that within 95% range of similar values for known drugs.
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4.3.4. In vitro test

Given the ranked docking interaction energy and drug-likeness prediction, top 28
compounds were selected and tested by Escherichia coli (E. coli) whole-cell minimum
inhibitory concentration (MIC). E. coli strain DH5a were grown in 5 ml of rich medium
broth in 37°C shaker overnight. Bacteria cells were collected by centrifuging,
followed by washing once in 5 ml of M9 minimal medium (Chart 4.1), and then grow
in 5 ml of M9 minimal medium supplemented with 50 pg/ml chemical compounds.
The activity of the 28 hits against whole E. coli growing in M9 liquid culture was
determined by bacteria cell density, light absorption at ODggg. To determine specific
binding and test inhibition recovery rate, tryptophan was added to the E. coli media
at two concentrations, 0.45 mg/ml and 0.82 mg/ml, respectively. The concentrations
for the chemical compounds in the minimal media with low and high concentrations
of Trp are 0.18 mg/ml and 0.17 mg/ml, respectively. 0.10 mg/ml Ampicillin was used

as positive control for the growth comparison of E. coli.

4.4. Results

The weighted average interaction energy compounds from docking results and the in
silico ADME prediction results of the 28 top ranked chemical compounds were
showed in Table 4.1. The weighted average interaction energy of one TRPS binder, F6,

is -50.91 kcal/mol. Comparing to F6, the weighted average interaction energies of the
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28 picked compounds are lower than -37 kcal/mol. High aqueous solubility of the

compounds was preferred in this study. All 28 compounds satisfy the Lipinski’s rule of

Chart 4.1 Protocols for making M9 minimal media recipe (1000ml)

1. Make M9 salts
add 800ml H,0

64g NazHPO4-7H20
15g KH,PO,4
2.5g NaCl
5.0g NH4Cl
Stir until dissolved
Adjust to 1000ml with distilled H,O
Sterilize by autoclaving

Measure ~700ml of distilled H,0O (sterile)

Add 200ml of M9 salts

Add 2ml of 1m MgSQy (sterile)

Add 20ml of 20% glucose

Add 100ul of 1M CaClj; (sterile)

N AW

Adjust to 1000ml with distilled H,0

Figure 4.3. Docking pose of compound 1 in the binding site of TRPS.
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Table 4.1. Weighted Average Interaction Energy and In-Silico ADME Prediction of Top
Ranked Chemical Compounds.

Compounds  W. Avg. Ej; In-silico ADME Prediction**
(kcal/mol) *

QPlogS** #stars** RuleOfFive**

1 -41.00 -0.82 0 0
2 -41.20 -1.84 0 0
3 -42.70 -1.13 0 0
4 -41.40 -1.62 0 0
5 -41.39 -1.42 0 0
6 -39.30 -0.55 0 0
7 -40.21 -1.86 0 0
8 -37.72 -0.72 0 0
9 -37.48 -0.20 0 0
10 -37.67 -0.57 0 0
11 -40.50 -0.23 0 0
12 -40.58 -1.49 0 0
13 -42.06 -0.49 0 0
14 -44.61 -1.67 0 0
15 -42.87 -1.58 0 0
16 -40.34 -1.50 0 0
17 -41.13 -1.69 0 0
18 -44.65 -0.42 0 0
19 -48.31 -1.73 0 0
20 -37.19 -0.27 0 0
21 -40.71 -0.73 0 0
22 -43.70 -1.84 0 0
23 -38.44 -0.70 0 0
24 -40.92 -0.59 0 0
25 -39.61 -0.90 0 0
26 -42.10 -1.59 0 0
27 -38.68 -0.07 0 0
28 -42.20 -0.01 1 0

* W. Avg. Ei: Weighted average interaction energy. The weighted average interaction
energy of one TRPS binder, F6, is -50.91 kcal/mol.
** Refer to QikProp, version 3.5, Schrodinger, LLC, New York, NY, 2012
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Table 4.2. E.coli Cell Densities with 28 Compounds Measured by ODggo.

0D600 after 8 hrs 0OD600 after 27 hrs 0OD600 after 21.5 hrs

C d
ompounds incubation incubation incubation
Control* 1.609 1.945 1.323
(initial density, 0.172) (initial density, 0.013) (initial density, 0.054)
+ Control

(Ampicillin)** 0.068 0.162 0.022

1 - 0.158 -

2 2.330 - -

3 1.579 - -

4 - 1.698 -

5 1.700 - -

6 1.422 - -

7 1.848 - -

8 - 1.441 -

9 - 1.945 -

10 - 2.522 -

11 - - -

12 - - -

13 1.455 - -
14 0.357 - 0.202

15 - 1.849 -

16 - 1.862 -

17 1.554 - -
18 0.567 - 0.034

19 - 1.840 -

20 - 1.651 -

21 - 1.620 -

22 1.814 - -

23 - 1.738 -

24 - 2.039 -

25 1.613 - -

26 1.598 - -

27 - 1.793 -
28 - - 0.038

* Minimal media contains only E.coli. No chemical compound was added
** Minimal media contains E.coli and 0.10 mg/ml Ampicillin as positive control
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five which are considered drug-like. Table 4.2 shows the cell density measured by

ODgqo of the 28 compounds. Figure 4.3 displays the docking pose of compound 1 in

the binding site of a-subunit of TRPS.

Four of the 28 compounds showed distinct inhibition activities in E. coli MIC test.

After adding Trp back to the media, three compounds showed inhibition recovery

(Fig 4.4). After 24 hours incubation, compared to E coli negative control media (ODgqo

1.6
1.4
1.2

ODgyp

0.8
0.6
0.4
0.2

1.514
0.802
0.549
0.514
0.291
0.136
0.028 011 0.068
- Control + Control Compound 1 Compound 14  Compound 18
{Ampicillin)

Figure 4.4. Cell Density of E. coli after 24 hrs incubation at 37°C

:1.514), compound 18 showed highest inhibition activity (ODggo: 0.068), followed by

compound 1 (ODggo: 0.111). Although compared to the other two compounds,

compound 14 had the lowest inhibition rate (ODggo: 0.604), it inhibited 60 percent

the growth of E coli. After adding Trp solution with two concentrations back to the
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media, bacteria inhibited by compound 1 resumed highest growth rate and resulted
in more than 5-fold bacteria cell density growth (ODggo: 0.549/0.514) compared to
inhibition activity (ODgp:0.111). Compound 14 and 18 also showed bacteria growth

recovery at different rates.

4.5. Conclusions

Three novel inhibitors that target the Trp biosynthesis pathway were discovered and
identified by virtual screening and in vitro experiment assays. During virtual
screening, protein flexibility was considered for flexible docking. Seven protein
conformations were selected based on the conformations of key residues in the
binding site of TRPS. During whole-cell E. coli MIC test, four compounds show
apparent inhibition activities. To test specific binding, Trp solution was added back to
the E.coli media to check the growth recovery rate. Three compounds were finally
identified specifically targeting TRP biosynthesis pathway. NMR Spectroscopy study
and fluorescence assay will be performed by our collaborators for further

determination.
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Chapter 5

Molecular Dynamics Studies of Interactions between Poly(Acrylic

Acid)-Coated Fe;0, Nanoparticles and Human Serum Albumin

5.1. Abstract

Nanoparticles (NPs) have been developed as important technologies to deliver
conventional drugs, recombinant proteins and vaccines. One major advantage is that
NPs target drug delivery to specific site of disease which could avoid undesirable side
effects compared to current medical treatment. Superparamagnetic iron oxide NPs
are demonstrated highly useful for cancer therapy and other biomedical applications,
but their drug delivery mechanisms and health impacts are not very clear. Potential
toxicity associated with NPs brought the attention recently due to their quantum size
effect and the large surface area to volume ratio. Exploring the possible binding sites
of NPs on the surface of protein can predict biological consequences of absorption
and therefore benefit the study of nanotoxicity. In this study, we are using molecular
dynamics simulations to study the possible binding sites and interactions of Fez04
NPs to human serum albumin. Two types of PAA-coatings, with similar molecular

structures but resulting in different association rates, were studied to examine their
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binding mechanism. The initial results preliminarily explained the mechanisms for
different kinetics. Our study could help promote safer implementation of
nanotechnology and reduce nanotoxicity for drug delivery and other therapeutics in

the future.

5.2. Introduction

Nanoparticles (NPs) have been developed as new technologies to deliver
conventional drugs, recombinant proteins, vaccines and more recently, nucleotides
and become one of the most important areas of drug research.! This new technology
emerged as an important strategy that could selectively deliver drugs to specific
pathological sites in the last decade. NPs are microscopic particles, varies from 10 —
1000 nm in diameter.? Various types of NPs formulated from different materials serve
as drug delivery vehicles to treat different diseases, such as polymeric NPs, solid-lipid
NPs, ceramic NPs, magnetic NPs and metal based NPs. Different ways can be used to
load drugs on to NPs, for example, encapsulation, entrapment and surface
attachment." The widespread use of NPs makes them useful therapeutical and
diagnostic tools for drug delivery, ranging from cancer therapeutics, efficient imaging
diagnostics, antimicrobial actions, vaccine delivery. Due to their small size, NPs can
efficiently penetrate through small capillaries into individual cell and allow efficient
drug accumulation at the target site. The site-specific delivery of drugs by NPs could

avoid undesirable side effects and toxicity compared to current medical treatment.?
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Chemotherapeutic drugs such as carboplatin, paclitaxel, doxorubicin and etoposide,
have been successfully loaded onto NPs and these NPs systems are very potent

against various cancers. !

Although nanotechnology is among the fastest growing areas of improving drug
design and targeting, imaging and diagnosis, potential nanotoxicity related problems
brought the attention recently.*> Because of the quantum size effect and the large
surface area to volume ration, NPs have unique properties which may lead to
unwanted effects. For example, the increase of lung inflammation was reported due
to the pro-inflammatory effects.® Diesel NPs have been found to damage the
cardiovascular system in a mouse model.” The entrapment of NPs in liver and spleen
could affect the function of the organs. A proper mechanism is needed for NP
excretions from the body.® A significant problem is posed when considering the dose
response relationships in the toxicology of NPs. For NPs, the concentration number
and the resulting large total surface area determine the interactions with biological
systems; therefore to be more reasonable parameters for dosesin terms
of exposure.®® Unclear mechanisms of endocytosis and degradation pathways still
need further understood, although they are critical for clinical transition.® Besides,
nanotoxicity associated with NPs can result in increased reactive oxygen species (ROS)
generation, protein, DNA and membrane injury, oxidative stress, loss of enzyme

activity, auto-antigenicity, brain and peripheral nervous system injury. **
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Iron oxide NP is one of the most promising nanotechnological platforms. It is
specifically relevant to cancer therapy and provides an important alternative to
conventional chemotherapy, radiation and surgery. ** Iron oxide NP is usually
composed of three main components: an iron core, a polymer coating and functional
moieties. The iron core is superparamagnetic which is highly useful for magnetic
resonance imaging (MRI) for medical diagnosis and therapeutics. Polymer coatings
are usually used to cover and protect the surface of iron core from agglomeration
and oxidation. They also help transform NPs into biomedical nanotools for in vivo
applications. Different moieties attached to the coatings are used to target

macromolecules, therapeutics and for imaging tags.™

HSA is the most abundant protein in human plasma and representing the main
determinant of plasma oncotic pressure.’* HSA displays an extraordinary
ligand-binding capacity and is able to bind up to nine fatty acids (FAs) (Fig. 5.1)."° It
provides a depot for many endogenous compounds including nonesterified FAs,
bilirubin, hemin, thyroxine, and exogenous drugs, such as warfarin, diazepam,

ibuprofen, and various types of nano-particles.'®’

HSA affects pharmacokinetics of
many drugs, provides the metabolic modification of some ligands, renders potential
toxins harmless, accounts for most of the anti-oxidant capacity of human plasma,

and displays (pseudo-)enzymatic properties.'®*?
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Figure 5.1. Summary of ligand binding capacity and subdomains of HSA using PDB
structure 1E7E. Long-chain fatty acids are depicted in VDW representation using
VMD 1.8.7. The subdomains are depicted in blue (IA), yellow (IB), red (lIA), green (lIB),
purple (IlIA) and cyan (I1IB).

The binding site of PAA-coated FesO4 NPs was identified to be part of subdomain IlIA
of HSA, the so-called drug binding site 2. Competitive binding between the
corresponding drug, ibuprofen, and the NPs was observed by our collaborator.?’ The
drug binding site 2 is a pre-formed hydrophobic cavity with distinct polar features
and has a single main polar patch at the pocket entrance. Drugs with acidic or
electronegative features are selective for this binding site.?! The binding can improve
the solubility of the drug in serum and help its transportation in the circulation

system. %
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Two types of PAA coatings (Fig. 5.2) for Fes04 NPs were synthesized by our
collaborator. Both types of PAA coatings contain long carboxyl chains with negative
charges at pH 7.0. The only difference between two types of PAA coatings lies at the
end of the long chains where one has a ring scaffold and the other is with a hydroxyl
group. The dissociation constant (Kp) of A and B series PAA coatings to HSA are 5.12
uM and 1.44 uM, respectively. Interestingly, the association rates are more than
250-fold difference between two PAA-coated NPs. The B-Series PAA NPs bind with

fast kinetics, while A-series PAA NPs bind with slow kinetics.

Fe,0,
core

Fe,0, ™
core

Figure 5.2 Illustration of structures of NPs and two types of coatings. A. A series
PAA-NPs. B: B series PAA-NPs.

5.3. Methods

5.3.1. Preparing PAA coatings

Molecular docking was used to obtain initial PAA-HSA complex conformations for
MD simulations by Vdock.”? 2D structures of PAA coatings with 3 different chain

lengths were sketched with MDL ISIS/Draw 2.5. VEGA ZZ 2.3.1 was used to generate
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3D structures and Vconf 2.0 was applied for conformational searches to identify the

most stable conformations of PAA coatings.??*

Based on the binding modes and
interaction energy, complexes containing A and B series PAA coatings with 2 carboxyl

groups in the long chains (Fig. 5.3 A1, B1) were initially selected for MD simulations.

A3 ) o
/L.“\
w 2
o 0% o /
0% o
B3 o}
J OH
o o
OM o o
0% o

Figure 5.3 Structures of (A1-3) A and (B1-3) B series PAA coatings for docking; with
(A1, B1) two, (A2, B2) three or (A3, B3) four hydroxyl groups in the long PAA chains.

5.3.2. MD simulations

10ns Molecular dynamics (MD) simulations were carried out with Amberll and

2526 The initial structural coordinate for HSA was

NAMD?2.6 simulation packages.
obtained from crystal structure (PDB code: 1A06). The Amber ff99SB force field and

general Amber force field (GAFF) were applied to parameterize the HSA protein and
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2728 The initial PAA-HSA conformation for MD simulations

PAA coatings, respectively.
was obtained by docking PAA ligand to the HSA binding site 2 using Vdock. **
Vcharge 1.0 was used to assign formal charges to PAA coatings.?’ The Antechamber
package in AmberTools was used to assign parameters to the ligand—protein
complex and create topology and coordinate files.® 17 disulfide bridges were
assigned using Tleap. Energy minimization was carried out for the system by the
sander program.’® HSA has a negative net charge per molecule of about 15, at pH 7.0.
To electronically neutralize the system, 80 Na"and 65 Cl” ions were added based on
the ionic concentration in human serum. All complexes were solvated in a
rectangular box of 12 A TIP3P water with the tleap program, and the system has
about 88000 atoms.*! The initial energy minimization for water molecules was
carried out by the sander program. NAMD 2.6 was then used for sequential steps of
further energy minimization, equilibration, and production runs. During equilibration,
the system was gradually heated from 50 K to 300 K, in a 50 K interval, for a total of
525 ps. The resulting trajectories were saved every 1 ps. The NPT ensemble was
applied, and periodic boundary conditions were used throughout the MD
simulations. A temperature of 300 K was maintained with use of a Langevin
thermostat, with a damping constant of 2 ps™, and the hybrid Nose-Hoover Langevin
piston method was used to control the pressure at 1 atm. The SHAKE algorithm was

used to constrain the length of all bonds involving hydrogen atoms during MD

simulations with a time step of 2 fs.>? Particle Mesh Ewald was used to consider the
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long-range electrostatic interactions beyond cutoff limit.>* The nonbonded
interactions were truncated at a distance of 14 A with a switching beginning at 12 A.
T-Analyst was employed to analyze MD simulations results and compare

conformational changes of HSA in free and bound states. **

5.4. Preliminary Results

5.4.1. The binding poses of PAA coatings

The initial HSA-PAA complex for MD simulations was obtained by molecular docking.
The center of the binding site is shown in Figure 5.4. Table 5.1 displays the detailed
docking results of PAA with 3 different chain lengths to HSA. Based on the docking
poses and the PAA orientations in the protein binding site, PAA coatings with two

hydroxyl groups were initially selected for MD simulations.

5.4.2. A and B-series PAA coatings in HSA binding site

PAA coatings in drug binding site 2 of HSA are surrounded by all six helices of
subdomain IlIA (Fig. 5.5). The binding site is composed of a large pre-formed
hydrophobic cavity with distinct polar features. (Fig. 5.6) The entrance to the pocket

is more exposed to the solvent which may facilitate the binding of large NPs.

99



Figure 5.4. The center of drug binding site 2 of HSA for molecular docking

The binding pocket has a single main polar patch, including Arg 410, Tyr 411, Lys 414
and Ser 489, which locates closely at one side of the entrance. In HSA free state, Arg
410 points out of the binding site and partially blocks the entrance. Tyr 411 also
presents at the entrance to the binding site. While in HSA bound state, these two
residues rotated and, with all polar patch residues, formed hydrogen bonds with the
PAA coating and stabilized its binding. The basic and polar residues on the
hydrophobic interior walls make the drug binding site 2 selective for electronegative
compounds. PAA contains large numbers of carboxyl groups with negative charges

and help itself adapt to the binding site.
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Table 5.1. Binding Modes and Docked Interaction Energy of A and B-series PAA NPs

with Three Chain Lengths.

A-series PAA
Two hydroxyl groups in PAA chain

Correct orientation
Eint *= -36.32 kcal/mol

B-series PAA
Two hydroxyl groups in PAA chain

Correct orientation
Eint = -30.18 kcal/mol

A-series PAA
Three hydroxyl groups in PAA chain

Correct orientation
Eint = -40.89 kcal/mol
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B-series PAA
Three hydroxyl groups in PAA chain

Incorrect orientation
Eint = -47.00 kcal/mol

A-series PAA
Four hydroxyl groups in PAA chain

Correct orientation
Eint = -43.71 kcal/mol

B-series PAA
Four hydroxyl groups in PAA chain

Incorrect orientation
Eint=-32.05 kcal/mol

*Eint, Interaction energy output from docking results
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Figure 5.5. Interactions of (A) A-series and (B) B-series PAA coatings with drug
binding site 2 of HSA during 10 ns MD simulations.

\J

i

Arg 410

Figure 5.6. Interactions and hydrogen bond networks in the binding site of HSA upon
(A) A-series PAA and (B) B-series PAA binding.
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5.4.3. Protein flexibility analysis

T-Analyst was used to analyze the protein flexibility. The magnitude of configuration
entropy computed from protein backbone and sidechain dihedral degrees of
freedom provides a direct way to examine protein dynamics. Figure 5.7 illustrated
the flexible and rigid regions corresponding to the entropy of each backbone ® and
{ angle that is larger than 0 kcal/mol or less than -0.3 kcal/mol, respectively, in both
HSA free and bound states. The protein flexibility study results can be provided for

future Brownian dynamics studies.

Figure 5.7. lllustration of flexible and rigid regions of HSA. Flexible region: entropy of
each backbone ® and  angle that is larger than 0 kcal/mol, in red; rigid region:
entropy of each backbone ® and { angles that is less than -0.3 kcal/mol in both HSA
free and bound states, in blue.
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By analyzing entropy changes between A or B-series PAA bound state and free
protein state, protein dynamics changes upon ligand binding are revealed. Side chain
conformations in the protein binding site were studied and compared between
different states. Figure 5.8 showed the side chain entropy changes of residues that
within 6 A of PAA. In-depth study of entropy changes of each dihedral may initially

explain the underlying mechanisms of association rates differences between two

types of PAA coatings.

AEntropy

8 3 10 11 12 13 14 1% 1 17 18 1% 20 21 22 23 24 2% 2% 27 22 29 30 31 312 M

489(1) &

Side chain dihedrals

Figure 5.8 Entropy changes of side chain torsions within 6 A of the PAA binding site.
Blue dotted line indicates the entropy changes between A-series PAA bound state
and free protein state. Red dotted line indicates the entropy changes between
B-series PAA bound state and free protein state.

For example, figure 5.9 plotted the side chain distributions of Tyr 411 (Fig. 5.9 A1-3)

and Arg 410 (Fig. 5.9 B1-3) in free state (Fig. 5.9 Al, B1), A-series PAA bound state
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(Fig. 5.9 A2, B2) and B-series PAA bound state (Fig. 5.9 A3, B3) in the 10 ns MD
simulations. In free state, the side chain of Tyr 411 (Fig.5.9 A1) populated around -70°;
while in A-series PAA bound state (Fig. 5.9 A2), the distribution split into two
populations; one shifted to around -160° and the other was around -110°. This

mechanism can be described as induced-fit. Therefore during A-series PAA binding,
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Figure 5.9. Side chain torsion distributions of (A) Arg 410 and (B) Tyr 411 in (A1, B1)
free state, (A2, B2) A-series PAA-NP bound state and (A3, B3) B-series PAA-NP bound
state
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the side chain dihedral of Tyr 411 needs to adjust and rotate from around -70° to
around -160° or -110° to form interactions with ligand. This underlying mechanism
may contribute to one of the possible factors for the slow association rate. In B-series
PAA bound state (Fig.5.9 A3), the population only shifted slightly and the side chain
distribution almost remains the same. The pre-organized binding site for B-series PAA
binding may contribute to the faster association rate. Several more residues were

found with the same pattern of side chain organizations upon PAA binding.

5.5. Conclusions

The interactions between HSA and PAA-coated NPs were studied using MD
simulations. Two types of PAA-coatings with similar binding affinity but large
differences in association rates were simulated. T-Analyst was used to analyze and
compare the MD dynamics results between A oand B-series PAA bound and free
protein state. Our preliminary result suggested that the pre-organized binding site for
B-series PAA may contribute to the fast kinetics; while to accommodate A-series PAA
binding, residues in the protein binding site requires time to rotate and adjust
conformations which may partially explain the reasons for the slower association

rate.
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Chapter 6

Future Work of Molecular Dynamics Studies of Interactions between
Poly(Acrylic Acid)-Coated Fe;0, Nanoparticles and Human Serum

Albumin

6.1 Further MD simulations

Further MD simulations will be performed to study the interactions between Human
serum albumin (HSA) and Poly(Acrylic Acid) (PAA)-coated Nanoparticles (NPs). The
chirality of PAA coating (Fig. 6.1) and more varieties of chain lengths of PAA coatings
will be included to further explore the interactions. In addition to 10 ns, longer MD
simulations are needed to collect enough samples to analyze the dynamics and

interactions between PAA NPs and HSA.

B 2
e
g e [

Figure 6.1. Chirality of A-series PAA coating.
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6.2. Brownian dynamics simulations

To study the long-range diffusion mechanism of NPs to HSA, Brownian dynamics (BD)
simulations will be employed using SDA and in-house BD program.’ The NP diffusion
mechanisms and driving forces will be studied. Since different sizes of PAA NPs may
affect their diffusions, we are going to build several coarse grain models representing
various NP sizes and study their diffusion mechanisms. For the coarse grain model,
one bead will be assigned to represent the iron core; and for the PAA coatings,
different ways to assign beads will be tested and analyzed. The rigid part of HSA,
suggested in Chapter 5, will be fixed for long-range diffusion studies to avoid

computational time.

Following long-range diffusions, short-range associations and interactions between
HSA and PAA-coated NPs will be studied. NPs will be placed on the surface of the
protein. Since the long-range diffusion results will indicate the most populated spots
that NPs would like to stay on the surface of the protein, these spots will provide the
initial positions of PAA-coated NPs related to HSA. During short-range BD simulations,
rigid part of protein, which is based on the protein dynamics analysis by T-Analyst,

will also be fixed.

114



6.3. Molecular docking

Since HSA has up to nine binding sites, molecular docking will be used to explore
other possible bindings of NPs to HSA in addition to drug binding site 2. Exploring the
possible binding sites of NPs to protein can predict biological consequences of

absorption and therefore benefit the study of nanotoxicity research.
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