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Abstract 

Foraging is an embodied cognitive process which balances the 
search constraints of exploration versus exploitation. As such, 
foraging strategies and mechanisms offer useful insight into 
abstract forms of search such as visual search, problem solving, 
and semantic recall. We performed a series of simulations 
using artificial neural networks to relate metastable neuronal 
dynamics to observed foraging behaviors. We show that the 
velocity and tortuosity of the foraging paths are influenced by 
metastable neuronal activity, while resource collection is 
unaffected. These initial results indicate that neuronal 
metastability may contribute to foraging behaviors but 
additional mechanisms are needed to optimally exploit 
environmental resources. 
Keywords: foraging; neural networks; critical branching 

Introduction 

Foraging is an embodied cognitive process. Animals move 

continuously through physical space searching for food, 

mates, or other resources. Increasingly, evidence indicates 

that common neurophysiological mechanisms support a 

broad range of search behaviors. Thus, cognitive search tasks 

such as visual search, problem solving, and semantic recall 

share many of the mechanisms and constraints of foraging 

(Hills, Todd, Lazer, Redish, & Couzin, 2014). 

Much of the prior work on foraging has analyzed it as a 

statistical process rather than the product of embedded, 

interactive systems. This approach has produced effective 

descriptive accounts of movement patterns but neglects the 

roles of perceptual, motor, and neural mechanisms. Statistical 

models have successfully characterized aspects of foraging 

such as population dispersal and perseveration. Some of these 

models can produce qualitatively similar patterns of 

movement to those found in animal foraging data: clustered, 

local movements separated by longer, straighter segments 

(Codling, Plank, & Benhamou, 2008). In contrast, area-

restricted search (ARS) describes the emergence of 

heterogeneity in movements as arising from direct interaction 

with the resources in the environment. See Figure 1 for an 

example of ARS in human behavioral data. ARS is adaptive 

in the sense offered by the marginal-value theorem, which 

holds that foraging is optimal when the forager transitions 

between resource patches as a function of the rate of success 

in the current patch (Charnov, 1976). ARS can explain how 

foraging animals with minimal cognitive capabilities can 

approximate the marginal-value theorem by modulating the 

rate of reorienting (Hills, 2006). 

There is much debate and disagreement over which 

foraging data and which aspects of search agents and 

environments are more or less important for theories and 

models (e.g. Viswanathan, 1999; Edwards, 2011; Planck, 

Auger-Méthé, & Codling, 2013). Additionally, prior models 

leave the cognitive and neural bases underlying the search 

process unspecified. These shortcomings make it currently 

unclear which results from the foraging literature are most 

relevant to cognitive search processes. 

 

 
 

Figure 1: An example area-restricted search produced by a 

human participant foraging (blue) in a virtual environment 

containing a patchy distribution of resources (black). 

Reproduced from Hills, Kalff, & Wiener (2013) Figure 1C. 

 

In the current study, we focus on the relationship between 

neural dynamics and the exploratory paths agents take as they 

forage. Exploration refers to patterns of movement in search 

of patches of high resource density in the environment. We 

hypothesize that the exploratory paths taken will be more 

realistic when the neural model exhibits metastable 

dynamics. Metastability is a property of dynamical systems 

which attract toward synchronous or stable states but 

regularly produce phase transitions between these states 

(Kello, Anderson, Holden, & Van Orden, 2008; Tognoli & 

Kelso, 2014). These dynamics facilitate propagation of 

information through the system and support fluctuations in 

activity across a wide range of scales, i.e. many small-scale 

fluctuations interspersed with less common but much larger-

2140



scale fluctuations (Kozma, Puljic, Balister, Bollobás, & 

Freeman, 2005). Metastable neural activity has been 

proposed as a substrate around which adaptive behaviors can 

be organized. To successfully account for the spatial 

movement patterns of foragers, metastable neural activity 

must be capable of producing complex behavioral dynamics. 

 

Objective 
Our objective was to develop a framework with which to 

explore neural network models of foraging. While prior work 

has explored various foraging models in detail, we know of 

no attempt to relate metastable neural activity to observed 

foraging behaviors. We focused on the hypothesis that 

metastable patterns of activity produced by critical branching 

networks would support movement patterns like those found 

in nature. More generally, we initiate work on relating neural 

processes to foraging behaviors, and provide code for doing 

so. 

Methods 

We developed simulation software in which an artificial 

agent forages for resources. The agent is composed of an 

input model, a neural network, and an output model. The 

agent is situated in a bounded two-dimensional environment 

containing clusters of resources. Two groups of simulations 

were conducted, one in which a critical branching process 

tuned network connectivity to produce metastable neural 

activity (CB) and one in which connectivity was static 

(NonCB) for comparison. Neural spike times and rates, 

movement paths, and resource collections were recorded and 

compared between groups. 

The simulation software was developed using Java SE 

SDK (8u31) and the Apache Commons for statistical 

functions and file processing. The software and instructions 

for replicating our results can be accessed at 

cogmech.ucmerced.edu/downloads.html. 

Critical Branching Neural Network 
Artificial neural networks can achieve metastability through 

critical branching (Beggs & Plenz, 2003), which is an 

objective for regulating spike propagation and maximizing 

information transmission through networks. Kello (2013) 

formulated a mechanism, local to spiking neurons and their 

synapses, which produces critical branching at the network 

level. The mechanism probabilistically assigns credit to 

individual neurons for causing action potentials. The credit is 

used to enable or disable synapses and achieve an average 

ratio of one spike propagated for each spike produced. The 

resulting homeostasis is metastable rather than stable because 

ongoing synaptic switching drives the network from one 

transient state to the next. 

The neural network contains three layers of leaky 

integrate-and-fire neurons, referred to as the source, the 

reservoir, and the sink (Kello, 2013). The neuron model is 

updated at fixed intervals (1 ms). The source layer contains 

100 excitatory neurons. Each source neuron receives input 

directly from the input model and projects synapses to the 

reservoir. The reservoir contains 1,000 neurons (80% 

excitatory) which project recurrent synapses within the 

reservoir and feedforward synapses to the sink. The sink 

contains 100 excitatory neurons and its activity drives the 

update of the output model—sink neurons are required to 

absorb propagated spikes during critical branching to avoid 

saturation. The probability of a synapse between any pair of 

projecting and receiving neurons for all pathways is 0.1. 

The critical branching mechanism described by Kello 

(2013) was modified for clock-based updating, but the 

essence of the algorithm remained unchanged. Spikes 

probabilistically (ρ = 0.05) enable axonal synapses and 

disable dendritic synapses causing the local branching 

ratio—the ratio of upstream to downstream spikes—to 

approach 1.0. This process self-organizes across the network 

to reach approximately equal mean spiking rates at the source 

 

Figure 2: Continuous visualization of neural activity in the simulation software. (Left) Spike counts per ms for each layer of 

the network (Center) Mean local branching ratio for the reservoir (Right) Spike raster plot depicting spike times in the 

reservoir for the previous 500 ms 
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and sink. See Kello (2013) for a complete description of the 

critical branching algorithm and the resulting network 

dynamics. 

 

Foraging Environment 
The input model generated incoming stimulation for the 

neural network. The model described here was a random 

spike generator which caused an action potential with a fixed 

probability at each source neuron for each update cycle. The 

mean firing rate in the network was equal to the product of 

this probability and the number of neurons. We also tested a 

sequential spike train input model, which did not 

substantially affect network activity (not reported). 

The output model transduced the spiking activity of the 

sink to move the foraging agent. During each update, the 

model counted the number of spikes in four equally-sized 

subgroups of the sink. These values were then treated as the 

two-dimensional velocity (positive x, positive y, negative x, 

and negative y) of the agent in the subsequent interval. A 

concern in many types of foraging analyses is temporal 

binning which in some cases can skew movement 

distributions to support models that would not be supported 

by the unbinned data (Newman, 2005). Nevertheless, 

movements generated on the scale of milliseconds would not 

be relevant to foraging behaviors. Unless otherwise specified, 

binning was performed by averaging values over 100 ms 

windows to preserve the time course of the data while 

removing excessive high-frequency noise. 

 

 
 

Figure 3: Continuous visualization of a foraging path with 

clustered resources and path statistics. 

 

The foraging environment was a square with sides of 

length 20,000 units. Movements which would end outside of 

these boundaries were clipped. Within the environment, 500 

resource patches were uniformly distributed. The number of 

resources in each patch was sampled from a geometric 

distribution with mean 10, to yield approximately 5,000 

resources total. Resources within 10 units of the forager were 

automatically collected. 

Thus, the forager was unidirectionally coupled with its 

environment. The lack of sensory information related to 

position or resources is a limitation, but it was necessary to 

directly explore the movement distributions produced by the 

intrinsic metastable dynamics of the network. Figure 3 

depicts a sample path produced with these models. 

 

Foraging Metrics Many models of foraging are derived from 

physical equations governing particle diffusion, so-called 

random walks. Codling, Plank, and Benhamou (2008) 

consolidates these models, providing derivations and a 

variety of useful metrics. Relevant aspects of the work are 

summarized below. 

The probability density function for the position of a 

random walk is used to derive the mean displacement and 

mean squared displacement (MSD). MSD is particularly 

useful as a measure of dispersal, since it assesses the degree 

to which a forager has explored its environment. To calculate 

the MSD for an empirical distribution, we use the following: 

 

(1) 𝑚𝑠𝑑(𝑇) =  
∑ [𝑥(𝑡)−𝑥(0)]2𝑇

𝑡=1

𝑇
 

 

Where x(t) is the position of the forager at time t and T is 

the total number of time steps observed. 

Importantly, in simple random walks, steps are 

independent and identically distributed, such that the 

subsequent position of a forager depends only on the prior 

position, not on the path of arrival. The addition of memory 

to the diffusion model introduces directional correlation 

between subsequent steps. Thus, correlated random walks 

(CRW) tend to exhibit directional persistence, better fitting 

movement data from animals, which generally prefer forward 

movement to perfectly random reorientation. The directional 

bias can be quantified for a foraging path consisting of a 

series of discrete steps using the mean sine and mean cosine 

of the turning angle. More valuable for the present work, 

metrics for the rate of turning within a given path length—

the tortuosity of the path—can be derived from the series of 

turning angles. Straightness-Index is one measure of 

tortuosity, the ratio of gross displacement to path length. 

Another metric, sinuosity, has also been applied. The 

sinuosity, S, of a sequence of movements is given by: 

 

(2) 𝑆 = 2 [𝐸(𝐿) (
1+𝑐

1−𝑐
+ 𝑏2)]

−1/2
 

 

Where E(L) is the mean step length, c is the mean cosine 

of the turning angle, and b is the coefficient of variation of 

step lengths (Codling et al., 2008). In the present study, we 

calculated MSD, straightness-index, and sinuosity of 

foraging paths. 

A Lèvy flight is a random walk in which step lengths 

exhibit power-law scaling. This kind of foraging model was 

first described empirically by Viswanathan, Afanasyev, 

Buldyrev, Murphy, Prince, and Stanley using data from 

albatrosses (1996). In practice, it has proven difficult to 
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distinguish between power-law scaling and other 

distributions. Clauset, Shalizi, and Newman (2009) describes 

a framework for estimating power-law model parameters and 

assessing the goodness-of-fit relative to alternative 

hypotheses. They apply the framework to evaluate biases in 

commonly used alternatives, such as simple linear regression, 

and demonstrate its benefits. As a preliminary analysis, we 

applied the graphical method for evaluating power-law 

scaling, in which the cumulative probability distribution of a 

dataset is plotted in log-log coordinates. A linear tail across 

at least two orders of magnitude would be considered to 

support power-law scaling (Newman, 2005). 

Viswanathan (1999) presents a formal analysis and 

evidence from numerical simulations that Lèvy flights are 

optimal foraging strategies when resources are sparse and 

randomly distributed. Alternatively, when resources are 

patchy and therefore the mean resource density within and 

between patches can be learned, the marginal-value theorem 

predicts transitions between behavioral regimes (Charnov, 

1976). To test whether different neural models lead to 

different rates of resource collection, we record a resource 

collection event whenever a foraging agent gets within a 

fixed spatial distance from a point resource. That resource is 

subsequently removed from the environment. 

Results 

Network Activity 
Spiking activity at the sink (M = 1.69, SD = 0.78) was 73% 

of the source (M = 2.32, SD = 0.0048) across all simulations 

(N = 16). The branching ratio of the reservoir approached 1.0 

in both groups during the connectivity stabilization period. 

After this period, the CB mechanism was disengaged for the 

NonCB group (M = 0.927, SD = 0.063) which subsequently 

exhibited greater variance (M = 0.946,    SD = 0.0059) as 

shown in Figure 4. 

 

 
 

Figure 4: Local Branching Ratio for the CB group (red) and 

the NonCB group (green). 

 

Interspike intervals (ISIs) for representative neurons in the 

reservoir are shown in Figure 5. Note that Kello (2013) 

predicts that ISIs should follow a heavy-tailed distribution. 

This was graphically assessed by plotting the cumulative 

probability distribution in log-log coordinates (Newman, 

2005). Of note is the greatly increased variability in the 

distribution of ISIs for the NonCB group. 

 

 
 

Figure 5: Interspike interval distributions of neurons (# 0, 

100, 200, 300) from the CB (red) and NonCB (green) 

groups. 

 

Foraging Path 
Qualitatively, the critical branching foragers produced paths 

that were more tortuous, included path crossings, and seemed 

to exhibit no directional bias (Fig. 7). The non-critical 

branching foragers tended to perseverate along a narrow 

range of headings eliminating path crossings, minimizing 

tortuosity, and introducing an apparent directional bias. 

 

Velocity We did not find a significant difference in mean 

velocity between groups (MCB = 46.89, MNonCB = 50.05) but 

did find unequal variance of velocity (SDCB = 1.63, SDNonCB 

= 20.3, F(7) = 0.0065, p < 0.001). Velocity distributions were 

qualitatively similar, and we found no evidence of power law 

scaling in step size in either group by visual inspection (see 

Figure 6). This indicates that for our output model, metastable 

neural activity alone is not sufficient to produce the power 

law scaling of step sizes found in some empirical data. 

 

Dispersal Group dispersal of the foraging paths are shown in 

Figure 7. Mean-squared displacement (MSD) was 

significantly greater for the NonCB group (M = 2.54x107,   

SD = 2.54x107) than for the CB group (M = 8.32x105,            

SD = 5.40x105), t(7.0) = -2.74, p = 0.029. Because the mean 

velocity is not significantly different between groups, this can 

only be caused by the increased turning rate in the critical 

branching group. 
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Figure 6: Velocity Histogram for CB Simulation #1 (Green) 

and Non-CB Simulation #1 (Red). 

 

 Tortuosity The non-critical branching group produced 

significantly straighter paths (t(7.28) = -5.17, p = 0.001) as 

indexed by the ratio of displacement to path length 

(Benhamou, 2004) but we did not find a significant difference 

in sinuosity between groups (t(7.26) = -0.093, p = 0.93). 

Because this measure may be more sensitive to high 

frequency noise, this could be a result of insufficient binning. 

 

Resource Collection We performed a paired, 2-tailed t-test 

on number of resources collected and did not find a 

significant difference between groups (MCB = 2.0,           

MNonCB = 2.5, p = 0.66). While our hypothesis did not 

specifically make a prediction regarding resource collection, 

prior models have found relationships between straightness 

of a random walk and foraging success. 

Discussion 

The goal of this study was to make initial progress into 

relating neural activity to patterns of movement observed in 

animal foraging. We compared two groups of spiking neural 

networks, one in which a homeostatic critical branching 

mechanism was present and a control group in which critical 

branching was disabled but other aspects of the model were 

the same. 

The recorded network activity agreed with results 

presented by Kello (2013), in that the critical branching group 

exhibited metastability at the level of neural activity. This did 

indeed translate to differences in foraging paths, though not 

in exactly the ways we hypothesized. The resulting effect on 

foraging paths was significantly greater variation in the 

direction of movement in the CB simulations. We believe the 

reason for the observed increase in tortuosity is that there is a 

constant shift in which neurons in the sink receive the greatest 

degree of activation from the reservoir. As synapses in the 

pathway from reservoir to sink are switched on or off, a new 

set of neurons becomes dominant, changing the foraging 

direction. 

We did not identify an effect of critical branching on the 

distribution of step sizes. Thus our results failed to support a 

 

Figure 7: Group dispersal for 100 s. The non-critical branching networks exhibit little directional variability (left) resulting in 

much wider dispersal but little coverage. The critical branching networks (right) demonstrate more tortuous paths which 

include backtracking and clustered movements. The path of each forager is translated to the origin for easier interpretation. 

 

2144



connection between power law scaling in neural activity and 

Lèvy flights. Given that aggregated neural activity can lead 

to power laws (Kello, 2013), the present results indicate that 

not all aggregations will preserve this structure. This suggests 

that consideration of other factors affecting spatial search or 

other models of neural control will be important for 

understanding the relationship between neural activity and 

Lèvy foraging. 

Although the foraging literature makes a variety of 

predictions about the relationship between tortuosity and 

optimality, we did not find any significant difference in 

resource collection rate in our simulations. We attribute this 

to the fact that the agents were unable to learn anything about 

the resource distribution in the present study. Despite prior 

literature associating random processes with optimality, we 

contend that optimal foraging will require adaptive 

mechanisms. 

There are several promising future directions for this 

research. First, qualitative pilot comparisons with several 

output models demonstrated that binning the path, i.e. 

summing activity over an interval to produce motion on an 

ecologically plausible timescale, and applying physical 

constraints (momentum, friction) significantly alter the shape 

of the path. A comprehensive investigation of these factors in 

the computational framework we developed could provide 

insight into ongoing methodological debates. 

Second, in foraging animals, tight coupling of perception 

and action require immediate, implicit, and continuous 

decision-making. The present study did not explore this 

coupling between perception and action, and in particular did 

not address how discovering a resource could be expected, 

through evolved mechanisms or learning, to bias subsequent 

movements. Making the foraging model sensitive to the 

history of resources collected is essential to adaptive foraging 

and may be responsible for some of the patterns that are 

observed in animal search paths. Encoding this information 

as input to the neural network would be a first step to 

addressing this limitation. 

Finally, foraging processes offer a valuable perspective 

with which to conceptualize diverse cognitive phenomena. 

For this perspective to be profitable, more work should be 

done on the common neural mechanisms of search-like 

processes and how to map these to complex neural dynamics. 
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