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Abstract

On Quantum Search, Experts and Geometry

by

Milosh Drezgich
Doctor of Philosophy in Engineering - Electrical Engineering and Computer

Science

University of California, Berkeley

Professor Shankar Sastry, Chair

The problem of unstructured search plays the central role in our current un-
derstanding of the computational power of quantum computers. Improvement
in the efficiency of solving unstructured search problem has an immediate
consequence in the improvement in solving NP -complete problems. We in-
troduce the new framework of natural continuous time quantum search algo-
rithms, that in contrast to the adiabatic quantum algorithms, require neither
the ground state initialization nor the adiabatic change of the Hamiltonian
parameters. We moreover provide the concrete examples of transliteration
from the unique marked element unstructured search problem into the par-
ticular class of quantum Hamiltonians, that facilitate the search in quantum
continuous constant time. Since it is not clear how to implement that class of
Hamiltonians one can either consider this result as a step toward proving that
NP is a subset of BQP or as an indication that, that class of Hamiltonians is
NP-hard to implement.
Multiplicative weights update rule has been used in a few different fields

as the underlying algorithmic structure. In its two different forms, vector
and matrix, multiplicative update method provided a surprising simplicity and
promised a small performance regret. We derive a slightly more general bound
for the cumulative matrix multiplicative weights algorithm and introduce the
iterative (streaming) matrix multiplicative weights algorithm with the same
computational complexity and regret bound. In particular we also define the
iterative Hadamard updates, matrix multiplicative updates algorithm, with
the improved computational complexity for nonnegative games, from O (n3)

to O (n2) , and the same regret bound.
Furthermore, we address the following question:"What is the minimal size
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quantum circuit required to exactly implement a specified nqubit unitary oper-
ation U , without the use of ancilla qubits?" Nielsen proved that a lower bound
on the minimal size circuit is provided by the length of the geodesic between
the identity I and U , where the length is defined by a suitable Finsler metric
on SU(2n). We prove that the minimum circuit size that simulates U is in lin-
ear relation with the geodesic length and simulation parameters, for the given
Finsler structure F . As a corollary we prove the highest lower bound and the
lowest upper bound for the standard simulation technique, that show that by
standard simulation one can not expect a better then n2 times improvement
in the upper bound over the result from Nielsen, Dowling, Gu and Doherty
[4]. Moreover, our equivalence result can be applied to the arbitrary path on
the manifold including the one that is generated adiabatically.
Finally we investigate the n-dimensional hypercube quantum random walk

(QRW) as a particularly appealing example of a quantum walk because it
has a natural implementation on a register on n qubits. However, any real
implementation will encounter decoherence effects due to interactions with
uncontrollable degrees of freedom. We present a complete characterization
of the mixing properties of the hypercube QRW under a physically relevant
Markovian decoherence model. In the local decoherence model considered the
non-unitary dynamics are modeled as a sum of projections on individual qubits
to an arbitrary direction on the Bloch sphere. We prove that there is always
a classical asymptotic mixing in this model and specify the conditions under
which instantaneous mixing always exists. We show that the latter mixing
property, as well as the classical mixing time, depend heavily on the exact en-
vironmental interaction and its strength. Therefore, algorithmic applications
of the QRW on the hypercube, if they intend to employ mixing properties,
need to consider both the walk dynamics and the precise decoherence model.
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Chapter 1

On NP vs. BQP

1.1 Introduction

It would be hard to find contemporary scientific discipline that would not
take advantage if the current programmable machines were able to solve the
generalized search problem more efficiently. Perhaps due to the fact that
finding a single marked element in an array of N elements, was, and still is,
one of the central problems of the modern theoretical and practical computer
science, albeit for different reason.
The model of computation that is governed by the quantum mechanical

process has been heavily studied in the last decade. Most computer scientists
today do believe that if the information is represented by the vector in two
dimensional complex plane C2 instead of the classical binary value, compu-
tational power of such computer would be substantially different. Moreover,
most of the evidence that we have today, tell us that the quantum computers
typically offer a quadratic speed up over the classical counterparts. However,
there are also examples of computational problems that can be solved exponen-
tially faster on the quantum computer and unfortunately there are problems
for which the quantum computers do not offer any speed up at all, leaving the
question on the power of quantum computation with the inconclusive answer.
The generalized search problem that we study has a simple structure and

a fundamental importance in any study that aims to determine the relation
between the most fundamental complexity classes NP and BQP. This prob-
lem is NP -hard and it is a generalization of a 3SAT that is a NP -complete
problem, for which the existence of a subexponential algorithm is currently
not known. The problem is as follows.
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The generalized search problem is the following. In the list of N one bit
Boolean elements only one element, called the marked element, has the value
zero while all other elements have the value one. The problem is to find the
index of the marked element in the list.
For an array of N identical items out of which only one is marked, best

classical algorithms would spend O(N) time to find the marked item. Con-
siderations of the computational model that is very different than classical,
namely quantum computation model, changed this picture considerably pro-
viding the quadratic speed up. In 1994 Bennett, Bernstein, Brassard and
Vazirani, proved that, relative to a random oracle, generalized search problem
can not be solved faster then Ω

³√
N
´
, and with respect to that it is unlikely

that NP is in BQP, however this question as of 2010 is yet unresolved. Nu-
merous discrete time quantum algorithm have all proven to obey this bound.
The similar situation is with the continuous quantum algorithms, that have
not been able to facilitate a miraculous solution of this problem that seem
to be extremely hard for the classical computers. In recent years the main
effort have been dedicated to the study of the adiabatic algorithms and the
difference in its efficiency with the respect to its initial condition.
Interestingly, introducing small amount of nonlinearity in quantum me-

chanics, possibility of closed timelike curves, or superluminal signaling all open
the possibility of solving NP complete problems in polynomial time, and thus
generalized search problem as well, however such considerations are not gen-
erally considered as viable.

In this chapter we aim to provide the additional framework for the study
of the relation between NP and BQP . We introduce the notion of the natural
continuous quantum algorithms that does not follow into the framework of the
adiabatic algorithms.
Natural continuous quantum algorithms that we introduce rely on the fol-

lowing assumptions:

• that there is no changes to the any of the quantummechanical postulates;

• there is the usual transliteration from the classical problem to the quan-
tum Hamiltonian problem, i.e. the transliteration from classical gener-
alized search to quantum Hamiltonian does not introduce the additional
structure to the problem;

The two main properties of natural continuous quantum algorithms, that
distinguish them from the adiabatic algorithm are that they either:
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• do not require the study of the algorithm with respect to the finite set of
initial conditions, as the success probability of the algorithm is remains
high invariably with respect to the initial condition;

• do not require adiabatic, i.e. adaptive change, of the parameters, that
regulate the norm of the system initial and final Hamiltonian, with re-
spect to the smallest eigenvalue gap of the instantaneous system Hamil-
tonian.

Unfortunately, the only speed up result that follows, in the framework of
natural algorithms must assume the quantum computer model with the ability
to implement a simply describable Hamiltonian, in the form |wihw|+ |sihs|,
where |si is an implicitely defined state and |wi is the all uniform state in
the computational basis. We do not know how to implement this Hamiltonian
and therefore either one can consider this as a step toward proving that NP

is a subset of BQP or that the class of Hamiltonians in that is NP-hard to
implement. Accordingly, we claim no asymptotic speed up for our algorithms
and leave the definite answer about the relation between NP and BQP open
for the future study. Nevertheless, we believe that the above mentioned prop-
erties of our algorithms might prove themselves as valuable theoretical grains,
the future researchers of this topic might want to know about.

1.2 The Quantum Information Preliminaries

A state of quantum bit, i.e. qubit, is essentially a vector in the two dimen-
sional complex space C2, rather then the element from the set Z2 = {0, 1}.
Most commonly chosen orthonormal basis for C2 is, so called computational

basis, or z-basis, is denoted as |0iz =
µ
1

0

¶
and |1iz =

µ
0

1

¶
. In general,

the state of the qubit can be a unitary vector that points in any direction in
C2 space, and in that case its state is denoted as:

|Ψi = α|0i+ β|1i (1.1)

where normalization condition is α2 + β2 = 1, and α, β ∈ C.
The postulates of quantum mechanics determine, that the state of the

quantum system with n qubits, that is in general a vector |Ψ(t)i ∈ C2n . Time
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changes of |Ψ(t)i are determined by a unitary transformation, i.e. a unitary
matrix, that is the solution of the Schroedinger equation:

i
d

dt
|Ψ(t)i = H(t)|Ψ(t)i (1.2)

with the initial state |Ψ(0)i.
It is important to note that the composite state of the system, i.e. the state

of the n—qubit register is a tensor product of individual qubits and therefore
it belongs to space C⊗C⊗...⊗ C ≡ C2n. The usual notation is as follows; the
state of n—qubit register can be initialized to one of the 2n basis states, i.e. zero
state denoted as |0i⊗n ≡ |00...0i ≡ |0i⊗|0i⊗...⊗|0i, simply as |0i ∈ C2n, or in
some of the other 2n−1 basis states of the register, for example, |3i ≡ |0...011i,
and so on. Therefore, following description (1.1) a state at arbitrary time t is
|Ψ(t)i ∈ C2n, is determined with 2n time varying complex coefficients, i.e. one
for each vector in the orthonormal basis |0i, |1i, |2i..|2ni ≡ |N − 1i.
In the equation (1.2) H(t) is 2n×2n Hermitian matrix, is called the system

Hamiltonian since it determines the energy of state basis vectors. This is an
important observable as the spectrum of the Hamiltonian is the set of possible
outcomes when one measures the total energy of the system. For example, as
we will see below, we will be particularly interested in measuring the lowest
eigenvalue eigenvector, called the ground state, of the system Hamiltonian.
That measurement will reveal the Hamiltonian eigenvector that encodes with
high probability the solution of the hard computational problem.
In the case when the system Hamiltonian is time invariant H(t) ≡ H,

the solution of the Schroedinger equation is |Ψ(t)i = exp(−iHt)|Ψ(0)i =
U(t)|Ψ(0)i. Here U(t) is a unitary matrix, or a unitary rotation that rotates
initial state |Ψ(0)i ∈ C2n to the final state at time t, |Ψ(t)i ∈ C2n.
The "gap". By the gap we will always refer to the gap between the lowest

and the second lowest eigenvalue of the matrix. The notation for the matrix
A that A ≥ a should be understood as A − aI ≥ 0. Clearly if A ≥ 0 all
eigenvalues of A are greater or equal then 0.

1.3 The QuantumAdiabatic Theorem Prelim-
inaries

The Hamiltonian H(t) of a physical system gives a complete specification
of the time evolution of the system state |ψ(t)i. The differential equation that
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describes the time evolution of the isolated quantum system is the well-known
Schroedinger equation:

i
d

dt
|ψ(t)i = H(t)|ψ(t)i.

Again, a Hamiltonian is described by a Hermitian matrix, whose eigenvectors
represent the eigenstates of the system. The corresponding eigenvalues refer to
the different energies of the eigenstates. The state (eigenvector) with the lowest
energy (eigenvalue) is called the "ground state" of the system. Moreover, the
Schroedinger equation can also be described with reference to the unitary
transformation U that is defined by the Hamiltonian H(t). Substituting the
solution of (1.2) back to the equation (1.2) we get:

d

dt
U(t) = −iH(t)U(t),

with the initial condition U(0) = I.
We usually say that the Hamiltonian evolution from H(0) to H(T ) induces

the unitary transformation U(T ). Clearly, only the evolution of a system
with a time-independent Hamiltonian H is easy to express by the exponential
U(T ) = e−iTH .
Finding the approximate solutions for Hamiltonians that vary in time is

one of the core tasks in quantum physics. One of the most important cases
of such approximation of a time-dependent case is described by the adiabatic
evolution of an isolated quantum mechanical system.
The quantum adiabatic theorem states that a physical system that is ini-

tially in its ground state, tends to stay in this lowest energy state, provided
that the Hamiltonian of the system is changed at the rate that sufficiently slow
so that it satisfies the condition stated below [27].
The quantitative version of the adiabatic theorem gives the following spe-

cific upper bound on the running time that is required so that the ground
state eigenvector is in fact very closely approximating the true ground state
that would exist without the adiabatic approximation. It is convenient to
parameterize the time-dependent Hamiltonian by H(s) for 0 ≤ s ≤ 1 and
its ground state by φ(s). Our goal here is to gradually transform the ap-
plied Hamiltonian from H(0) to H(1) such that the initial state ψ(0) = φ(0)

evolves to a close approximation ψ(1) ≈ φ(1) of the ground state of H(1). For
that purpose the evolution time τ(s) is usually introduced, which determines
the rate at which the Hamiltonian is modified as a function of s. Now the
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Schroedinger equation in s equals:

d

ds
|ψ(s)i = −iτ(s)H(s)|ψ(s)i.

The crucial quantity for this transformation is the gap between the two lowest
eigenvalues of H(s), which is denoted by g(s). It can be shown that the
evolution time τ such that:

τ(s)À
max0≤s≤1

¯̄­
ξ1| ddsH (s) |ξ0

®¯̄
g(s)2

(1.3)

is "sufficiently slow" for the quantum system to adiabatically evolve from φ(0)

to φ(1). In equation (1.3) |ξ0i , |ξ1i are the ground state and the first excited
state of H (s) .
As a result, the total evolution time (delay) of this process will be of the

order
R 1
s=0

τ(s)ds. For most Hamiltonians it is too difficult to determine the gap
g(s) for every s. Therefore the common procedure is to look at the minimum
gap gmin := mins g(s) and the maximum ∆max := maxs

¯̄­
ξ1| ddsH (s) |ξ0

®¯̄
, to

obtain the adiabatic evolution with the constant delay factor that is: τ(s) =
τ c ∈ O(∆max/g

−2
min).

1.4 Exact Solution of the Schroedinger Equa-
tion

The general proof of the adiabatic theorem relies on the bounds on the
transition amplitudes away from the ground state. In this section we look
at the transition amplitudes that determine the instantaneous ground state
of the system that evolves under the time varying Hamiltonian under the
Schroedinger equation.
We can write the state of the instantaneous state of the quantum computer

as:

|ψ(t)i =
X
n

cn (t) e
−i
U t
0 dτEn(τ)|ξn(t)i. (1.4)

Since the system is evolving under the time dependent Hamiltonian H (t)

amplitudes cn (t) are clearly time dependent, and their value can be calculated
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by substituting the above expression to the original Schroedinger equation:

ċn(t) = −
X

m,n6=m
cm (t)

D
ξn (t) |Ḣ (t) |ξm (t)

E
e−i

U t
0 dτ Emn(τ). (1.5)

what after the integration brings:

cn(T ) = cn (0)−
X

m,n6=m

Z T

0

dt cm (t)
D
ξn (t) |Ḣ (t) |ξm (t)

E
e−i

U t
0 dτ Emn(τ). (1.6)

In the adiabatic evolution the sum on the right hand side of the above equation
should be small compared to cn (0) . Since the term e−i

U t
0 dτ Emn(τ) is a fast oscil-

lating its integral will be small or zero if the term cm (t)
D
ξn (t) |Ḣ (t) |ξm (t)

E
is slowly oscillating or zero.

1.5 Adiabatic Quantum Computation Prelim-
inaries

Adiabatic theorem in the form explained above is used in the great number
of applications, but one of the most interesting applications of this theorem for
us are quantum state preparation and quantum adiabatic computation. The
latter, as proposed by Farhi, Goldstone, Gutmann, and Sipser [18], works as
follows. Described below are the steps of the quantum adiabatic algorithm for
any optimization problem.

• At time t = 0, the quantum mechanical system is described by an initial
Hamiltonian W , whose ground state is easy to prepare.

• Next, this system is slowly transformed to its final Hamiltonian F , for
which the ground state is the solution to a specific minimization problem
f(z). We do this is by letting the eigenvalues λz of the eigenvectors |zi
of F correspond to the function that we try to minimize. Hence, if this
function f(z) has domain {0, 1}n, then the final Hamiltonian would be
defined by:

F ≡
X

z∈{0,1}n
f(z) · |zihz|z.
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Here the outer product |zihz|z denotes a 2n × 2n matrix that is zero
everywhere except at z-th diagonal position where it has value 1. Sub-
script z, again, denotes that the final Hamiltonian is diagonal in the
computational basis.

• Finally the measurement of the quantum system in the computational
basis reveals the solution of the problem with the high probability.

The choice of the initial Hamiltonian W is independent of the solution of
the problem, and will be such that W is not diagonal in the computational
z-basis. This is because initial and the final Hamiltonian diagonal in the
same basis would, unless a special case, have eigenvalue crossings, so that the
quantum system at the end of evolution would end up in an excited state
rather than the ground state. In particular, we consider the "Hadamard H-
basis" that is 45 degree rotation of computational z basis, with the bit values:

|0̂i ≡ 1√
2
(|0i+ |1i) and |1̂i ≡ 1√

2
(|0i− |1i).

For a binary string z ∈ {0, 1}n, with |ẑi is usually denoted the state which
would be written as in |0̂i and |1̂i basis. This basis looks random in the com-
putational basis as the measurement reveals the state |0i and the state |1i with
the equal probability. The unitary mapping between these two representations
is provided by the n-fold Hadamard matrix: H⊗n|zi = |ẑi and H⊗n|ẑi = |zi,

where H = 1√
2

µ
1 1

1 −1

¶
.

A simple starting Hamiltonian that fulfills the above requirements is

W ≡
X

ẑ∈{0,1}n
h(ẑ) · |ẑihẑ|,

with h(0̂n) = 0 and h(ẑ) ≥ 1 for all other ẑ 6= 0n. In this case the ground state
with zero energy of W is the uniform superposition |0̂ · · · 0̂i = 1√

2n

P
z |zi.

This is the most common set up for the initial and the final Hamiltonian of
the system. The time-evolution of the Hamiltonian is as follows.
Following the proposal by Farhi et al. in [18, 17], the time dependent Hamil-

tonian H(t) is the convex combination of the starting and the final Hamil-
tonian:

H(t) :=

µ
1− t

T

¶
W +

t

T
F, (1.7)
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with 0 ≤ t ≤ T , and T is the crucial evolution time(delay factor) of the
Hi → Hf transition. For the purpose of easing the notation the ratio t

T
is

denoted as s in most cases so that s ∈ [0, 1].
The adiabatic theorem assures that the system with this Hamiltonian will

map the initial ground state |ψ(0)i = |0̂ni to the global minimum of the
function f(z), provided that we pick T to be large enough. In the previous
section we mentioned that T ∈ O(∆maxg

−2
min) is a sufficient upper bound on this

delay. Without any further knowledge about the specific Hamiltonian H(t)–
which involves detailed knowledge about the function f(z), this is also a lower
bound for a reliable adiabatic evolution fromW to F . Since

¯̄­
ξ1| ddsH (s) |ξ0

®¯̄
,

s = t
T
is polynomial in n, as long as f ∈ poly(n), the dominant factor is only

g−2min and this is why one needs to choose T À g−2min as a requirement for the
necessary running time of the adiabatic quantum algorithm.

Hamiltonian locality. One of the important properties of W is its lo-
cality. The locality of the initial Hamiltonian W , refers to the number of non
identity 2×2 matrices in its representation as a tensor product of Pauli matri-
ces. For example: W = I ⊗X ⊗ I...I ⊗ Y is the two local Hamiltonian. This
property is important to observe due to the fact that in general only all k-local
Hamiltonians are physically realizable, where k is a small fixed number, say 5.
The locality of the Hamiltonians employed by the quantum adiabatic al-

gorithm is also important from computational complexity side. Unless the
Hamiltonians are local, even if there exists a polynomial time quantum adi-
abatic algorithm, the adiabatic algorithm would not render the problem of
interest in the bounded error quantum polynomial time complexity class -
BQP that is defined in terms of quantum circuits. The model of quantum
computation with the circuits is on the other side equivalent to the model
of continuous quantum computation with the local Hamiltonians. We will
elaborate on this issue latter on.

The aim in adiabatic algorithm design. The aim in the design of an
adiabatic algorithm is the following. One would like to design the algorithm,
for a problem that is believed to be NP -hard classically by the prescription of
the initial and final Hamiltonian with the promise that the lowest eigenvalue
gap in the instantaneous Hamiltonian is large enough. Large enough so that
the rate at which we make transition from the initial to the final Hamiltonian
is not exponentially proportional to the size of the instance and at the same
time that the rate of Hamiltonian change is low enough to ensure that system
stays in the ground state.
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The black box flavour. Adiabatic algorithms are most often regarded as
inherently the black box algorithms in some sense. This is due to the fact that
eigenstates of the final Hamiltonian in the adiabatic algorithms are prescribed
implicitely by the direct transliteration from an implicitely defined problem,
say 3SAT, i.e. in the black box manner.

1.6 The Lower Bound Methodology for the
UniqueMarked Element Unstructured Search

The purpose of this section is to set the approach and clarify the methodol-
ogy that has to be used to determine the true power of the continuous quantum
computation regardless of whether it is adiabatic or not. To ease the descrip-
tion of the protocol between classical and quantum world, we will refer to the
common two party set up, represented by Alice and Bob. A classical adversary
Alice will define the problem, and the quantum computation master Bob, will
have the task to solve the problem that Alice defined.
Transliteration process. Any protocol that classical Alice and quan-

tum Bob follow, that aims to establish the relation between complexity class
NP and BQP , must include the process of transliteration. The process of
transliteration is the rewriting of the description of the classical problem using
classical literals, i.e. bits, graphs, logical formulas etc., into the same problem,
i.e. without adding the extra structure or symmetry, described by quantum
mechanical alphabet that in our case is going to be the problem description
using tensor products of Hermitian matrices. Those Hermitian matrices are
in fact going to define the system Hamiltonian that will govern the process of
quantum mechanical continuous time computation.
There exist a stark difference in the transliteration process if the classical

problem, that we are going to solve with the quantum computer, is described
implicitely or explicitely. Clearly, if the classical problem is described im-
plicitely by a 3SAT logical formula Bob can take a look at the formula, since
the process of looking, by itself, does not reveal the satisfying assignment of
the formula.
The process of transliteration is more subtle and less natural if the classical

problem is defined explicitely. Hence, if the classical problem that we are
trying to solve is described explicitely, like for instance unique marked element
unstructured search problem defined below, than the mere fact that Bob looks
at the problem instance reveals the problem solution, i.e. the marked element.
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Therefore, if the classical problem is defined explicitely we must rely on the
fact that somehow the process of transliteration from, say bit string to system
Hamiltonian, is done so that Bob does not get to see what was the hidden
index of the element Alice marked. One may impose various assumptions
to assure that hiding property. However, as we will see in one of the next
sections, hiding the index of the marked element from Bob by itself seem not
to be enough.
The structure invariance. Alice must also request that the translitera-

tion of her classical problem into the quantum problem, must be done with a
transliteration that does not change the structure of the problem. In partic-
ular unstructured search transliteration must be done with the Hamiltonian
whose all, but one, eigenvalues are the same. That being provided, as we will
see further on, Bob has a freedom to choose in which basis, i.e. alphabet, he
wants to encode the problem.
Provided the structure invariance, without the loss of generality, we will

can assume that Alice writes her hidden index into "the register", that Bob
can not read, but the mere process of Alice’s writing of hidden index into the
register initializes the system Hamiltonian to be just the particular one in the
set of exponentially many Hamiltonians, that Bob decided he would like to
use to solve the Alice’s problem.
Informally the unique marked element unstructured search (UMEUS) is

the following. In the N = 2n dimensional space classical adversary Alice
chooses a single element in the set {0, 1}n and marks it as the solution. For-
mally, Alice defines the function f(i), for i ∈ {0, 1}n so that:

f(i) =

½
1, i = x

0, ∀i 6= x
.

Clearly, the aim of the Bob’s algorithm is to determine x, the unknown
index of the marked element. To complete the task Bob comes up with his
favorite Hamiltonian Hf(b) not initialized, i.e. it becomes initialized only after
Alice initializes Hf(b) by inputing her x into it, making it to become uniquely
definedHf(x). This is what we refer to as the process of transliteration or hard-
wireing x into Hf(b).Therefore we should keep in mind what is the protocol
between Alice and Bob for the search problem. The protocol described bellow
is simply the direct analogy of a clearly and naturally defined transliteration of
the classical problem, say Unique-3SAT logical formula, into the Hamiltonian
Unique-3SAT with the additional assumption with respect to the basis. The
search protocol is as follows.
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The Unique Marked Element Unstructured Search Prob-
lem Protocol

1. Bob decides which un-initialized problem Hamiltonian Hf(b) he wants
to use (b stands for blank) in the computational basis.

2. Alice defines the marked element x, and initializes the Hamiltonian to
be the Hf(x);

3. Bob having no idea about x, prescribes the instantaneous system Hamil-
tonian H(s) to be:

H(s) = −(1− s)Hi − sHf (x)

4. Bob lets the system evolve by changing parameter s in H(s), i.e. turning
the "knob" of parameter s that defines the norm of both Hi and Hf (x) ,

to increase from 0 to 1;

5. Bob measures the state of the system when the parameter s = 1 and as
the result of his measurement he gets as the result the classical string r.

6. Bob asks Alice is it correct that the marked element is r?

7. Alice sees that r 6= x, and tells Bob that his solution is wrong.

8. Bob repeats the steps 2.-6. until he gets the positive reply.

The protocol consistency. In this protocol, we have formally allowed
Bob the freedom to choose the basis of the un-initialized problem Hamiltonian
Hf(a), to ensure the consistency with the protocol that Alice and Bob would
follow for the NP-complete 3SAT problem. We use the 3SAT as a reference
problem for our protocol since it is implicitely defined and thus more natural
for the transliteration. Just by looking at the logical Unique-3SAT formula
Bob can simply transliterate between 3 literal clauses and local Hamiltonians.
For instance, a clause (x1∨x2∨x̄5) Bob may transliterate into the Hamiltonian
term

(I + (−1)x1 Z1)⊗ (I + (−1)x2 Z2)⊗ (I + (−1)x5 Z5),

or into some other Hamiltonian that he chooses, and believes that might help
him in the computation. He has the complete freedom over the Hamiltonian
alphabet in which he transliterates, i.e. the basis in which the terms are
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diagonal, the magnitude of each term — that is physically permissible for his
apparatus and-or the total number of terms in the problem Hamiltonian — as
long as there are polynomially many terms.
Clearly Bob will choose the Hamiltonian alphabet for the time varying local

Hamiltonian, that maximizes his chances to find the unique ground state of
the problem Hamiltonian, i.e. the unique satisfying assignment of the Unique-
3SAT. This is what we refer to as the implicit problem definition, and that is in
sharp contrast to the explicit problem definition that we have in the case of the
UMEUS problem. Needless to say a priori we have no idea which assignment
is to the logical variables (x1, x2, .., xn) ∈ {0, 1}n is a unique solution, i.e. will
be the ground state of the system Hamiltonian.
Clearly the two edges of this approach is in the implicit definition of the

marked element through the system Hamiltonian. We may end up with the
system Hamiltonian that yields the algorithm with the standard quantum
speed up, i.e. quadratically faster than the classical algorithm, of if NP is in
BQP with even faster algorithm.
The common transliteration. The usual model that have been used in

last ten years in the literature is the following. Suppose Alice chooses as the
marked element a string x ∈ {0, 1}n . Since the Schroedinger equation will not
change amplitudes of the initial system state vector unless the off diagonal en-
tries in the system Hamiltonian are non zero, the initial Hamiltonian is usually
diagonal in X basis while the final Hamiltonian is diagonal in the computa-
tional Z basis. Therefore the time dependent Hamiltonian most frequently
advised is the following:

H(s) = −(1− s)
nO
i=1

XPi − s
nO
i=1

(I + (−1)xi Z)

= − (1− s) |wihw|x − s|xihx|z ,

where I denotes the identity matrix and

XP =
1

2
(I +X) ,

and |wi ≡ 1√
N

PN
i=1 |ii. Matrices −|wihw|x,−|xihx|z both have minimum

eigenvalue is −1 and are diagonal in in the X and Z basis respectively.
Precisely this model and the Hamiltonian alphabet, i.e. encoding of the

UMEUS problem, has served to show that the running time of the adiabatic
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search algorithm with this is O(
√
2n).The usual rationale behind this encoding

of the problem into the system Hamiltonian has been the following. Since we
have no idea which string σthe adversary chooses as the solution, giving equal
opportunity to each possibility in the set {0, 1}n seams a natural choice.

On the Absence of Structure

The core argument in the oracular black box proof that unique market
element unstructured search problem have no algorithms more efficient then
Ω
¡√
2n
¢
is due to the fact that the problem have absolutely no structure.

Any attempt to transliterate the UMEUS problem from classical into the
quantum alphabet must employ n-local Hamiltonians, since only the n-local
Hamiltonians have all but one eigenvalue that is the same. For example, the
n-local Hamiltonian in computational Z basis:

n−1O
i=1

(I + (−1)0 Z)⊗ (I + (−1)1 Z)

has all eigenvalues zero, apart from one eigenvalue −1 for the basis vector
|0n−11i. Hence this Hamiltonian is the transliteration of a UMEUS problem
into the Hamiltonian alphabet in the computational Z basis. The attentive
reader may notice that without adding the identity I to each term the the
above tensor product on n terms we would have half of the eigenvalues equal 1
and the other half of the eigenvalues equal −1. Therefore such n-local Hamil-
tonian can not be used to transliterate no structure of UMEUS problem. As
we will explain further on, n-local Hamiltonians are not considered as viable.
The situation is similar for the NP-complete problems that have a lot of

structure that we have no clue how to use. As we saw earlier 3SAT problem
can be transliterated into the sum of 3-local Hamiltonians. Hence we would
regard a quantum algorithm that employs such Hamiltonians as realizable. In
general any k-local Hamiltonian for a fixed k is regarded as realizable.

Infeasibility of n-local Hamiltonians

A few remarks are due here regarding the nature of the n-local Hamiltoni-
ans that we consider in this chapter. One can easily think of at least the two
classes of Hamiltonians.
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The first class. The Hamiltonians that we consider further on is the one
that is a tensor product of one qubit terms, so that the Hamiltonian at the
same time produces the interaction between all qubits in the register. Since,
each term in the tensor product of the Hamiltonian can be diagonalized one
can easily find its eigenvalues and in that basis, in which the Hamiltonian is
diagonal, it only applies a product to each basis state. For instance, consider
the Hamiltonian:

H1,n =
n−1O
i=1

Zi ⊗X

it has a norm one, but the coupling between the registers qubits raises as
we increase n. Generally the current technology can only provide the coupling
between the fixed number of qubits. Similarly, one has to take into the account
the norm of the Hamiltonian. One Hamiltonian that we already saw in the
algorithm presented thus far was:

H2,n =
nO
i=1

(I +X)i = N |wihw|

that on top of the fact that it produces the global coupling has norm N, that is
exponentially large, and therefore unphysical and unscalable. We certainly are
not hoping to build a quantum computer that doubles the amount of energy
required for operation each time we add one qubit. Therefore this Hamiltonian
appears in the literature always scaled by N, that has the unitary unitary
norm and is diagonal in the Fourier basis. These Hamiltonians are widely
used in the literature to determine the lower bounds for the running time
of the continuous time quantum algorithms. The justification for this lies in
the fact that quantum computers are able to efficiently perform the Fourier
transformation.
One more remark should be made in the defence of the consideration of

the n-local Hamiltonians in the algorithmic setup. The absence of structure in
the n-local Hamiltonians allows us to solve the Schroedinger equation exactly
analytically without the need to rely on the adiabatic approximation. The
analytical solution of the Schroedinger equation that we obtained for the n-
local Hamiltonians may be the same one that arises in the subspace of the 2
or 3 qubits, once we redesign the algorithm to use 2 or 3-local Hamiltonians.
Future studies will show whether this approach that we propose is useful or
not. To the best of our knowledge it is new and unexplored for the time being.
The second class. Consider the Hamiltonian in the following form:

H3,n = |wihw|+ |sihs|
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where s is a string implicitely defined through, say, a global minimum of
function that encodes number of clauses violated in Unigue-3SAT. It is impor-
tant to notice that even though we can implement the Hamiltonian |sihs|, as
we know the eigenvalues of that Hamiltonian, the Hamiltonian |wihw|+ |sihs|
should be as hard for the implementation as it is to find its eigenvalues, namely
NP -hard.

1.7 Natural Continuous Algorithm with the
Time Independent Hamiltonians

1.7.1 Θ
³√

N
´
Time Algorithm for the Unique Marked

Element Detection with the Hamiltonian Oracle
in Fourier basis

Bennett, Bernstein, Brassard and Vazirani in [26] showed that any algo-
rithm that can distinguish between the following two cases in the time that is
subexponential in the number of qubits can not be a query based black box
algorithm. The case (a) when in the array of N elements there is no marked
element and the case (b) where among N unmarked elements of the array
there is only one marked, that we sometimes refer to as a solution. This prob-
lem is believed to be notoriously hard for the classical computer. Quantum
computers thus far have not been known to be able to solve it either.
However, the article by van Dam and Vazirani showed that since the adi-

abatic algorithm recovers the minimum number of unsatisfied clauses one can
recover the actual satisfying assignment that is being solved and therefore that
particular instance of adiabatic algorithm can not be regarded as a black box
algorithm. It seems also that many researchers today believe that even though
the adiabatic algorithm is not a black box algorithm, it would have close to
zero chances of recovering solution clusters that arise in the hard instances of
SAT formulas in subexponential time.
In this section we step away from the adiabatic formalism and present the

natural algorithm with the time independent Hamiltonian for the unique so-
lution detection. Natural continuous time quantum algorithm that we present
has the usual O

³√
N
´
scaling, it is arguably simpler and offers the following

three advantages:
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• there is no need to initialize the quantum computer in the ground state
of the system Hamiltonian;

• determine the running time it suffices to find the lowest eigenvalue gap
for the time independent Hamiltonian;

• unlike the adiabatic algorithm the provides the lower bound for the run-
ning time of the algorithm our algorithm determines exactly the scaling
constant that is of potential importance in the experimental setup.

Moreover, let

|wi ≡ 1√
N

N−1X
i=0

|ii .

without loss of generality we could have chosen any other state in the Hadamard
basis, the results that follow would stay the same.

Algorithm 1 Unique Solution Detection:

1. Prepare the quantum computer in the state |wi;
2. Apply one the following time independent Hamiltonians:
if there in no marked element the Hamiltonian is:

H0 = −|wihw|

if there exists one marked element the Hamiltonian is:

H1 = −|0ih0|− |wihw| ≡ −|0ih0|− SF |0ih0|S−1F .

3. Measure in the Fourier basis at Tmeas ∈ Unif (0, 1)

4. Repeat the evolution with the chosen H0/1 (step 1-2) and measurement
(step 3) k times
5. Unless outcome of all k measurements is |wi there is a marked element

in the array

In this setup the adversary is supposed to choose in advance, before we
run the algorithm, whether the H0/1 is −|0ih0| or −|0ih0|− |wihw| and is not
allowed to change her choice afterwards. Matrix SF denotes transformation to
Fourier basis.
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We will further make an important assumption that the ~ is Plank’s con-
stant normalized with both 2π and energy units of the Hamiltonian applied
to the system, and thus have in our setup dimension of time [s]

Theorem 2 Natural continuous time quantum algorithm which employs time
independent Hamiltonian H1 detects on the existence of the marked with aver-
age probability 1

2
in time Tmeas =

π~
√
N

2
.

Proof. If there is no marked element system will stay in the initial state
since the Hamiltonian H0 is diagonal in computational basis and contributes
only to the accumulation of the phase. As a result the outcome of the mea-
surement will be with the certainty the state |wi.
If there exist marked element the average probability of measuring the ini-

tial state |wi will be 1
2
. This comes from the exact solution of the Schroedinger

equation that reveals the time dependent probability of measuring |wi.When
the system Hamiltonian is H1 the Schroedinger equation becomes:

|Ψ̇(t)i = i

~
(|0ih0|+ |wihw|) |Ψ(t)i.

Since the Hilbert space can be divided in the marked and unmarked subspace
this equation can be reduced down to a two dimensional system:

|Ψ̇(t)i =
∙
ċ0 (t)

ċ1 (t)

¸
=

i

~N

∙
1 +N N − 1
1 N − 1

¸ ∙
c0 (t)

c1 (t)

¸
(1.8)

what is equivalent to solving:∙
ċ0 (t)

ċ1 (t)

¸
=

i

~N

∙
2 N − 1
1 0

¸ ∙
c0 (t)

c1 (t)

¸
(1.9)

since the part of the Hamiltonian proportional to the identity matrix con-
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tributes only to the global phase. The solution of this equation is:

∙
c0 (t)

c1 (t)

¸
= A (t)

∙
c0 (0)

c1 (0)

¸
= e

i
~N

⎡⎣ 2t (N − 1) t
t 0

⎤⎦ ∙
c0 (0)

c1 (0)

¸

=

∙
1−
√
N 1 +

√
N

1 1

¸"
e
i(1−

√
N)

~N 0

0 e
i(1+

√
N)

~N

#
∙
1−
√
N 1 +

√
N

1 1

¸−1 ∙
c0 (0)

c1 (0)

¸

=

∙
1−
√
N 1 +

√
N

1 1

¸"
e
i(1−

√
N)

~N 0

0 e
i(1+

√
N)

~N

#
"
− 1
2
√
N
−−1−

√
N

2
√
N

1
2
√
N

−1−
√
N

2
√
N

# ∙
c0 (0)

c1 (0)

¸
where

A11 (t) =
e−

i(−1+
√
N)t

~N

2
√
N

³³
e
2i
√
Nt

~N

³
1 +
√
N
´
− 1 +

√
N
´´

A12 (t) =
e−

i(−1+
√
N)t

~N

2
√
N

³
−1 + e

2i
√
Nt

~N

´³
−1 +

√
N
´

A21 (t) =
e−

i(−1+
√
N)t

~N

2
√
N

³
−1 + e

2i
√
Nt

~N

´
A22 (t) =

1

2
√
N

µ
e−

i(−1+
√
N)t

~N

³
e
2i
√
Nt

~N

³
−1 +

√
N
´
+ 1 +

√
N
´¶

and R =
√
iN.

The probability of measuring |0i is P0 (t) = |c0 (t)|2 = c0 (t) c
∗
0 (t) and since

c0 (0) =
1√
N
and c1 (0) =

1√
N
we have:

P0 (t) =
1

N
(A11 (t) +A12 (t)) (A11 (t) +A12 (t))

∗
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where

A11 (t) +A12 (t)

=
e−

i(−1+
√
N)t

~N

2
√
N

³³
e
2i
√
Nt

~N

³
1 +
√
N
´
− 1 +

√
N
´
+
³
−1 + e

2i
√
Nt

~N

´
(−1 +N)

´
=

e−
i(−1+

√
N)t

~N

2
√
N

³
e
2i
√
Nt

~N

³
1 +
√
N
´
− 1 +

√
N + 1−N + e

2i
√
Nt

~N (−1 +N)
´

=
e−

i(−1+
√
N)t

~N

2
√
N

³
e
2i
√
Nt

~N
√
N +

√
N −N + e

2i
√
Nt

~N (N)
´

=
e−

i(−1+
√
N)t

~N

2

³
e
2i
√
Nt

~N + 1−
√
N + e

2i
√
Nt

~N
√
N
´

=
e−

i(−1+
√
N)t

~N

2

³
e
2i
√
Nt

~N

³
1 +
√
N
´
+ 1−

√
N
´

Finally, success probability is:

P0 (t) =
1

4N

³
e
2i
√
Nt

~N

³
1 +
√
N
´
+ 1−

√
N
´³

e−
2i
√
Nt

~N

³
1 +
√
N
´
+ 1−

√
N
´

=
1

4N

⎛⎝ ³
1 +
√
N
´2
+ e

2i
√
Nt

~N (1−N)

+e−
2i
√
Nt

~N (1−N) +
³
1−
√
N
´2
⎞⎠

=
1

4N

³
2 + 2N + (1−N)

³
e
2i
√
Nt

~N + e−
2i
√
Nt

~N

´´
=

1

4N

Ã
2 + 2N + 2 (1−N) cos

Ã
2i
√
Nt

~N

!!

=
1

2
+

1

2N
+

µ
−1
2
+

1

2N

¶
cos

Ã
2
√
Nt

~N

!

≈ 1

2

µ
1− cos

µ
2t

~
√
N

¶¶
= sin2

µ
t

~
√
N

¶
To get the average probability of detection |0i of equal 1

2
we must wait

until Tmeas =
π~
√
N

2
, as stated.
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In contrast to the adiabatic algorithm here we are able to determine the
scaling constant that is irrelevant with respect to the asymptotic behavior,
but in an (un)realistic setup in which a system Hamiltonian eigenvalues are
in Joules a measurement in order of seconds would reveal the existence of the
marked element up to about 226 qubits.

1.7.2 Constant Time Search Algorithm with the Hamil-
tonian Oracle in π

8 Basis

In this subsection we consider the following simple Hamiltonian |0i h0|z +
|ψi hψ| , where |0i h0|z is a projection onto zero vector in computational basis
and |ψi hψ| is projection onto the |0i+ |wi. We show that if one can efficiently
implement this Hamiltonian on the quantum computer then one can solve
unique marked element unstructured search in quantum continuous constant
time. Unfortunately, we do not know how to implement this Hamiltonian. De-
pending of the viewpoint, one can view this as either providing a step towards
a solving of unstructured search or showing that this Hamiltonian is NP -hard
to implement.
Formally, let us assume the following notation:

|wi ≡ 1√
N

N−1X
i=0

|ii

|ψi =
1√
2
(|0i+ |wi) .

and that |wi is the unique marked element in the Fourier basis.

Algorithm 3 Unique Marked Element Unstructured Search with the
Hamiltonian oracle in π

8
Basis:

1. Prepare the quantum computer in the state |0iz;
2. Let Apply the following time independent Hamiltonian:

Hs (t) = − |0i h0|z − |ψi hψ|
= − |0i h0|z − Sπ

8
|0i h0|z S−1π

8

3. Measure in the Fourier basis.
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Claim 4 Natural algorithm with time independent Hamiltonian Hs reveals
with the unique marked element |wi after continuous constant time with the
average probability 1

4
.

We first prove the following general lemma.

Lemma 5 The gap between the lowest and second lowest eigenvalue of the
following Hamiltonian

H(t) = g(t) |ii hi|+ f (t) |ψi hψ| , (1.10)

is

Gap =

q
(g(t)− f (t))2 + 4g(t)f (t)α2, (1.11)

where α = hψ|ii = hi|ψi

Proof. Let |ξi be one of N instantaneous eigenstates of the Hamiltonian,
i.e. H(t) |ξi = h |ξi Projection of the above equation on hi| · |ξi and on the
hψ| · |ξi, gives:

−Hs(t) + g |ii hi|+ f(|ψi hψ|) = 0 . (1.12)

−h hi|ξi+ g hi|ξi+ f [hi|ψi hψ|ξi] = 0 (1.13)

−h hi|ξi+ g hψ|ii hi|ξi+ f hψ|ξi = 0, (1.14)

This homogeneous system has nontrivial solution only if the following deter-
minant is zero,

Det

¯̄̄̄
−h+ g fα

gα −h+ f

¯̄̄̄
= 0, (1.15)

h2 − (g + f)h+ gf − gfα2 = 0 (1.16)

h1/2 =
(g + f)

2
± 1
2

q
(g + f)2 − 4gf + 4gfα2 (1.17)

=
(g + f)

2
± 1
2

q
(g − f)2 + 4gfα2. (1.18)

The difference between this lowest and second lowest eigenvalue gives the
desired result.
Since in our case g = f = 1 the actual gap is of the above algorithm is

Gap =

s
(−1 + 1)2 + 4

µ
1√
2
+

1√
2N

¶2
(1.19)

=
√
2 +

r
2

N
. (1.20)
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Therefore, on average, in constant time we will measure with the probability
half state |0i and as well with the probability half the state |ψi , within which
|wi will appear only with probability half, bringing the overall probability of
measuring the solution |wi to be one 1

4
.

However as already stated Hamiltonian Hs = − |0i h0|z − Sπ
8
|0i h0|z S−1π

8

should be NP-hard to implement, unless quantum computers could search in
subexponential time.

1.8 Natural Algorithms with Time Dependent
Hamiltonian for NP Problems

This section is dedicated to the second version of the natural algorithms,
that unlike the previous version employ the time dependent Hamiltonian, but
that do not depend on the second fundamental property of the adiabatic al-
gorithms: the adiabatic change in the Hamiltonian parameters by the speed
proportional to the inverse square of the gap of the instantaneous system
Hamiltonian. The algorithm that we present here do employ the time varying
Hamiltonians, do initialize the quantum computer in the ground state of the
initial Hamiltonian but have the following advantage over the adiabatic for-
malism: (a) they provide as well exact scaling of the running time Θ

³√
N
´
;

(b) they do not require the evolution in the ground state of the initial Hamil-
tonian yet they allow for constant speed of change of the Hamiltonian parame-
ters and provide the constant probability of measuring the lowest eigenvalue
of the system Hamiltonian (c) probability of measuring the solution is a fixed
probability constant close to one, rather than the average probability constant
that we had with the time independent natural continuous algorithms in the
previous section.
We will first introduce these algorithms for the in the Unique-3SAT prob-

lem and then provide the exact proof for the generalized unstructured search
problem.

1.8.1 Unique-3SAT Problem and its Relaxation

Following our trend to transliterate classical problems into the Hamil-
tonians diagonal in computational basis, here we make the difference be-
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tween the problem Hamiltonian F that arise in unique generalized search and
Unique 3− SAT problem. These two problems as we will see will have very
similar transliteration into the problem Hamiltonian. Nevertheless one addi-
tional remark is due here.
Valiant and Vazirani have proved that UNIQUE−SAT is anNP -complete

promise problem that decides whether a given Boolean formula is unsatisfiable
or has exactly one satisfying assignment. The same polynomial reduction of
Valiant and Vazirani implies that Unique−3SAT is anNP -complete problem.
We, however, restrict our analysis to the search version of the Unique−3SAT
in which instead of just detecting whether there exists a unique satisfying
assignment we in fact output such assignment. We will assume that the given
formula F is satisfiable and that it has exactly one satisfying assignment. It
will be trivial to generalize our search problem to a optimization problem
in which our algorithm outputs the assignment that violates the minimum
number of clauses in the given logical formula F.
For the unique generalized search we can make transliteration

F = diag {f0, f1, .., fN−1}

basically identical to zero matrix, fi,i6=m = 0 apart from exactly one diagonal
entry in the matrix, that we will call marked element fm = −1.
For Unique− 3SAT problem F = diag {f0, f1, .., fN−1} will be a diagonal

matrix were each entry of the matrix fi ∈ Z, fi ≤ M,M ∈ Z apart from
exactly one diagonal entry fx = −1. Clearly this is easy to achieve as we
can assign the penalty for every unsatisfied clause in the logical formula F

to be arbitrary constant strictly greater then 1, say 3, and then subtract the
identity Hamiltonian. That transliteration of the Unique − 3SAT formula,
has the −1 diagonal entry instead of 0 on the diagonal index that corresponds
to the satisfying assignment.

Algorithm 6 Time dependent natural algorithm for U3SAT with n-
local Hamiltonian:
1. Prepare the quantum computer in the all uniform state |wiz in compu-

tational basis z;
2. Apply the following Hamiltonian decreasing in constant time S (t) ∈ R

from 1→ 0 while T (t) ∈ R increases from 0→ 1:

HI(t) = −S (t)XP⊗n − T (t)F

3. Measure in the computational basis to reveal the marked element.
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For now we will assume that S(t) = 1 and T (t) = t.

The following will be difference between the transliteration of the UMEUS
and Unique-3SAT.
Let us call the solution subspace the subspace of the Hilbert space that

corresponds to the eigenvalue and the eigenvector of the marked element and
non-solution subspace its complement.
The Schroedinger equation that determines the time evolution of the sys-

tem will be:

|Ψ̇(t)i = i

~N

⎡⎢⎢⎢⎣
1 +Nf0t 1 1 1 .. 1

1 1− t+Nf1t 1 1 .. 1

... ... ... ... ... ..

1 1 1 1 ... 1 +NfN−1t

⎤⎥⎥⎥⎦ |Ψ(t)i
since the final Hamiltonian for Unique-3SAT problem is

F = diag {f0, f1, .., fN−1} .

Under the assumption that

|Ψ(t)i =
NX
i=1

ci (t) |ξi (t)i

we will be interested in finding ρ (t) = |Ψ∗(t)ihΨ(t)|, since the modulo square
of the system state whose amplitudes ρii = |ci|2 = c∗i ci will reveal probability
of measurement for each of the basis vectors |ξi (t)i. Clearly this Schroedinger
equation falls under the general dynamic system formalism where:

|Ψ̇(t)i = iA (t) |Ψ(t)i
where

A (t) =
1

~N

⎡⎢⎢⎢⎣
1 +Nf0t 1 1 1 .. 1

1 1− t+Nf1t 1 1 .. 1

... ... ... ... ... ..

1 1 1 1 ... 1 +NfN−1t

⎤⎥⎥⎥⎦ .
Since matrix A(t) is time continuos solution of this differential equation

exist and the that solution is unique. Further on we will solve this equation
exactly.
The clear distinction between this problem and the generalized problem of

the unique marked unstructured search is only in the diagonal elements that
are greater then zero.



26

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 1.1: Monotonic amplitude build up, in the red color, of the marked
element |1i for the two qubit, i.e. 4-dimensional, system.

Claim 7 Modulo amplitudes squared for Unique-3SAT of the vectors in the
non-solution subspace of the system state |Ψ(t)i can be upperbounded by the
modulo amplitudes squared of the vectors in the non-solution subspace of UMEUS
problem, i.e., for i 6= m: ¯̄

cU3SATi (t)
¯̄2 ≤ ¯̄cUMEUS

i (t)
¯̄2

We will leave this claim without the proof, but to illustrate the phenomena
of the diagonal entries that are in Unique 3SAT problem fi ∈ {−1} ∪ Z+0 ,
rather then fi ∈ {−1, 0} like in the UMEUS problem we solve the toy two
qubit example.
The two qubit example that reveals the nature of the solution can be easily

simulated numerically:

|Ψ̇(t)i = − i

4~

⎡⎢⎢⎢⎣
1 + 20t 1 1 1

1 1− t 1 1

1 1 1 + 10t 1

1 1 1 1

⎤⎥⎥⎥⎦ |Ψ(t)i
for the artificially chosen optimization set F = (f0, f1, f2, f3) = (20,−1, 10, 0) .
As the figure shows the amplitude modulo squared for |1i is increased to one as
the amplitude modulo squared for |0i, |2i, |3i monotonically decrease to zero.
The rate of the decrease d||ξi(t)i|2

dt
for i ∈ {0, 2, 3} satisfy d||ξ0(t)i|2

dt
> d||ξ2(t)i|2

dt
>

d||ξ3(t)i|2
dt

since f0 > f2 > f3, i.e. 20 > 10 > 0.



27

Since the value or the diagonal entries fiof A(t) only determine the different
decrease rates for the respective modulo amplitudes we now turn to the general
case, that we have in the UMEUS problem, in which all the diagonal entries of
F are the same apart from one element, that is marked and whose fm = −1.

1.8.2 UniqueMarked Element Generalized Search Prob-
lem

As we already sad the logical formula that we consider in this section is
F = (f0, f1, f2, .fN−1) where

fi =

½
1, i = m

0, i 6= m
.

Without loss of the generality we can assume for the easiness in notation that
m = 0, for which we make the following claim. Similarly as in the previous
section we will assume constant ~ is normalized with the characteristic units
of the system Hamiltonian and the units of time characteristic to the time
change of the system state probability amplitudes, hence being dimensionless.
First, let us first concentrate to the case when. (~N)−1 ≥ 1

Claim 8 Let the quantum system evolve the generalized n-local Hamiltonian

HST (t) = −S (t) |wihw|− T (t) |0ih0| = −S (t)Hi − T (t)Hf ,

such that the time derivative of the Hamiltonian norm parameters S (t) and
T (t) is constant, i.e. Ṡ (t) = kS, Ṫ (t) = kT ∈ R. There exist S (t) and T (t)

such that S (0) = 1 and T (0) = 0 so that the outcome of the measurement
at time tm = 2 in the computational basis of the system’s state is the marked
state |0i width the probability at least 1

8
, provided that (~N)−1 ≥ 1.

We will now prove this claim first exactly solving the Schroedinger equation
to find the system’s state at tm = 2 to determine that the measurement will
reveal the marked state |0i with the high probability. We will prove this claim
for the arguably simplest norm parameter schedule S (t) = 1 and T (t) = t,
even though one can come up the other set of Hamiltonian norm parameters
that would also satisfy the given constraints.
As earlier we call the solution subspace L = {|ξ0(t)i} the component of the

instantaneous system state |ξ(t)i that corresponds to the marked element |0i.
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The solution complement subspace is L̄ = Cn\{|ξ0(t)i}. Due to the symmetry
in the solution complement subspace and the uniqueness of solution we have
that ||ξ1(t)i|2 = ||ξ2(t)i|2 = ||ξ3(t)i|2 = .. =

¯̄
|ξN−1(t)i

¯̄2
and hence the N ×N

system reduces to the following two dimensional first order differential system∙
ċ0 (t)

ċ1 (t)

¸
=

i

~N

∙
S(t) +NT (t) (N − 1)S(t)

S(t) (N − 1)S(t)

¸ ∙
c0 (t)

c1 (t)

¸
(1.21)

Since we can neglect the part of the Hamiltonian proportional the the identity
matrix that only contributes to the systems phase without the influence to the
amplitudes of the vector components |ξi(t)i of the system’s state, the above
equation reduces to:∙

ċ0 (t)

ċ1 (t)

¸
=

i

~
1

N

∙
2−N +NT (t) N − 1

1 0

¸ ∙
c0 (t)

c1 (t)

¸
(1.22)

Differentiation of the second equation and the substitution of the first equa-
tion reduces this system to:

c̈1 (t) =
i

~N
ċ0 (t) (1.23)

=
i

~N

µ
i

~N
(2−N +NT (t)) c0 (t) +

i

~N
(N − 1) c1 (t)

¶
(1.24)

=
i

~N

µ
i

~N
(2−N +NT (t))

~N
i
ċ1 (t) +

i

~N
(N − 1) c1 (t)

¶
(1.25)

c̈1 (t) =
i

~N
(2−N +NT (t)) ċ1 (t)−

1

~2N2
(N − 1) c1 (t) (1.26)

This differential equation can be rewritten in the form:

c̈1 (t) +
i

~N
(−2 +N −NT (t)) ċ1 (t) +

1

~2N2
(N − 1) c1 (t) = 0 (1.27)

c̈1 (t) + iω (t) ċ1 (t) + Ωc1 (t) = 0 (1.28)

denoting with

ω (t) =
(−2 +N −NT (t))

~N
≡ kN (−2 +N −Nt) ≡ αt+ β (1.29)

Ω =
N − 1
~2N2

≡ k2N (N − 1) (1.30)

α = −kNN = −~−1 (1.31)

β = kN (N − 2) ≈ ~−1 (1.32)
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and kN = (~N)−1 .
This equation can be simplified with the following substitution into the

Weber differential equation:

c1 = e−
i
4(αt2+2βt)u (1.33)

ü (τ) +

µ
m+

1

2
− τ 2

4

¶
u (τ) = 0 (1.34)

where

τ =
√
α

µ
t+

β

α

¶
e−

iπ
4 = i

√
~−1

µ
t− N − 2

N

¶
e−

iπ
4 (1.35)

m = i
Ω

α
= −ikN

N − 1
N

≈ −i (~N)−1 (1.36)

Since in our case α < 0 that we consider when the Weber differential equation
has the following solution in terms of the parabolic cylinder functions Dm (τ):

u (τ) =
D−m−1 (−iτ)
D−m−1 (−iτ 0)

(1.37)

where

τ 0 =
√
α

µ
β

α

¶
e−

iπ
4 = i

√
~−1

µ
N − 2
N

¶
e−

iπ
4 ≈
√
~−1e−

iπ
4 (1.38)

Finally, our aim is to approximate probability of measuring anything in
the solution complement subspace:

P1 (t) = c∗1 (t) c1 (t) = |c1 (t)|
2 = 1− |c0 (t)|2 (1.39)

= |u (t)|2 = |u (τ)|2 = 1− P1 (t)
2 (1.40)

in the neighborhood of t = 2, to show that the measurement in the computa-
tional basis has the outcome |0i with the probability P0 (2) = 1−P1 (2) > 1

3
.To

do that we substitute all variables into the equation (1.37)and proximate the
parabolic cylinder function for the appropriate asymptotic values:

u (t) =
Di(~N)−1−1

³
−i2
√
~−1

¡
t− N−2

N

¢
e−

iπ
4

´
Di(~N)−1−1

³
−i2
√
~−1

¡
N−2
N

¢
e−

iπ
4

´ (1.41)

≈
Di(~N)−1−1

³√
~−1 (t− 1) e− iπ

4

´
Di(~N)−1−1

³
−
√
~−1e− iπ

4

´ . (1.42)
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When tm = 2 we have:

u (2) ≈
Di(~N)−1−1

³√
~−1e− iπ

4

´
Di(~N)−1−1

³
−
√
~−1e− iπ

4

´ (1.43)

=
Di(~N)−1−1

³
i
³
−i
√
~−1e− iπ

4

´´
Di(~N)−1−1

³
i
³
i
√
~−1e− iπ

4

´´ (1.44)

= .
Di(~N)−1−1

³
i
√
~−1e−i 3π4

´
Di(~N)−1−1

³
i
³√
~−1eiπ4

´´ (1.45)

≈
ei

π
4 (1−i(~N)

−1)ei
~−1
4

³√
~−1
´(−1+i(~N)−1)

e−i
3
4
π(1−i(~N)−1)ei

~−1
4

³√
~−1
´(−1+i(~N)−1)

+
√
2π

Γ(1−i(~N)−1)
e−i

π
4
(~N)−1e−i

~−1
4

³√
~−1
´−i(~N)−1

(1.46)

Hence the probability of measurement for each of the eigenvectors in the so-
lution complement subspace is:

P1 (2) = u (2)u∗ (2) = |u (2)|2

=
e
π
4
(~N)−1

√
~−1

2πe
π
2 (~N)

−1

Γ(1−i(~N)−1)Γ(1+i(~N)−1)

=
Γ
¡
1− i (~N)−1

¢
Γ
¡
1 + i (~N)−1

¢
2π

e
π
2
(~N)−1

√
~−1

it is easy to check that this expression is much less then 1
8
.

Finally, as we increase the size of the problem N we will eventually run
into the regime in which (~N)−1 < 1. Since the (~N)−1 defines the order of
the parabolic cylinder function probability amplitude of measuring any state
in the solution complement subspace will no longer be negligible. Therefore at
t = 1 one must stop increasing t, that changes the norm of the Hamiltonian
|0ih0|, and insert the "idle interval" for time τ = π~

√
N

2
, in which the system

goes true at least a half period of the probability amplitude oscillation that we
have seen in the previous section with the time independent natural continuous
algorithm. After that, one may continue with the increase of from t = 1 to
2, with constant speed, regardless of the size of the instance. This process of
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Figure 1.2: Modulo probability amplitude time dependence |c1 (t)|2 for n = 7
qubits. The probability amplitudes rendered without the normalization of 1√

N
.

insertion of the "idle interval" is the root of the Θ
³√

N
´
asymptotic scaling

of the time dependent natural continuous algorithm.

1.9 Relevance to The Previously Known Re-
sults

Oracular bounds have been used in complexity theory for decades to facil-
itate our understanding of complexity classes. Even though very powerful in
their nature oracular proofs and separations can be misleading, as it was in
the case of the oracular approach was the proof that: IP=PSPACE.
Still the oracular proofs are somewhat information theoretic in their nature

and model, roughly saying, to power of the brute force search. Therefore their
acceptance in the literature vary from over emphasizing to underestimating
their true power, as Aaronson rightfully notices in his thesis [5]
Some of the results in both discrete and continuous oracular model that

address the issue of solving 3SAT on quantum computer are as follows.
Van Dam, Mosca and Vazirani ([25]) provided the proof that adiabatic

search algorithm takes exponential time and it is moreover not a falling into
the oracular black box formalism.
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Aaronson [5] shows that relative to an oracle, quantum computers could
not solve NP-complete problems in polynomial time, even with the help of
nonuniform “quantum advice states”; and moreover, that any quantum algo-
rithm needs Ω

¡
2n/4

¢
discrete quantum queries to find a local minimum of a

black-box function on the n-dimensional hypercube.
Hamiltonian oracles are the continuous counter part of the discrete oracular

approach in determining the algorithm’s optimal running time.
Mochon [13] managed to prove O

³√
N
´
lower bound for 3SAT by using

the geodesic equation to find the shortest path on the manifold for the gen-
eralized search problem in the quantum computation model that he defined
- that is somewhat different from quantum adiabatic computation. In the
same paper Mochon raised the question of the existence of the equivalence re-
sult that would establish the discrete query lower bound once the continuous
query lower bound has been determined, and vice versa. Nielsen [11] initiated
the question by using algebraic geometry and geodesic approach in finding the
shortest path on the manifold. This approach was in the flavor of Mulmuley’s
[12] approach to avoid the Razborov and Rudic framework of natural proofs.
In the last decade years any time a continuous quantum algorithm was

discovered, shortly after the discrete version followed. Even the opposite was
partially true. Discovery of the continuous time Grover search and Deutch-
Josza algorithm was followed by the discrete version of the algorithm. Most
notably the most efficient algorithm for the evaluation of the NAND trees was
first discovered in its continuous version.
Farhi, Childs and Goldstone [6] have also used similar continuous approach

to the shortest path on the manifold to prove O
³√

N
´
lower bound for the

generalized search problem.
Moreover, Reichardt [9] used exactly the same formulation of adiabatic

quantum computation to show that for SAT instance with two qubit agree/disagree
clauses adiabatic algorithm has the Ω(2n) running time as the minimal instan-
taneous gap of the system Hamiltonian becomes at some point in the evolution
exponentially small.
Good review of the complexity of the local Hamiltonian in 1D and 2D setup

is given the chapter of Brandao [6] thesis that gives a good overview of the
recent results in the field.
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1.10 Strong Hamiltonian Oracles

The purpose of this section is to show that for the adiabatic model of
computation, if we assume certain Hamiltonian oracles, that we call strong
Hamiltonian oracles we can get the misleading speedup results, unless NP is
in BQP, what currently seems to be unlikely. One can also view this result as
a framework which shows linear hitting and mixing times for the continuous
quantum random walk on the hypercube, but we will not elaborate here on
that aspect.

1.10.1 Linear Time Search Algorithm with the Skewed
Basis Final Hamiltonian

As explained in the methodology section, unique marked element unstruc-
tured search (UMEUS) problem is an explicitely defined classical problem.
The explicitness of the problem definition simply means that by marking the
unique element Alice chooses one final system Hamiltonian out of the set
exponentially many Hamiltonians that Bob decided to be his favorite set of
Hamiltonians for quantum search algorithm. Before Alice’s choice Bob has no
idea which Hamiltonian Alice is going to pick out of his set. Remember this
protocol between Alice and Bob came as an exact analogy to the protocol that
is followed by Alice and Bob in the case of implicitly defined hard problem like
3SAT .
In this section we prove that without the additional assumption that Bob

encodes into the basis that is orthogonal to his initial basis vector, Bob can
always cheat by transliterating into the skewed basis that allows him to learn
one bit of the solution at the time, leading to the linear time quantum algo-
rithm for the unstructured search. This result is certainly misleading as Bob
is by transliterating into the skewed basis having access to the oracle that is
too powerful.
Therefore the following transliteration, or hard-wiring, between classical

and quantum definition of the search problem seems to be the legitimate one..
Alice’s marks the element whose index is classical string σ ≡ σ1σ2...σn , and,
as we explained, writes it into the hidden register that Bob can not read. As
soon as she writes σ into the hidden register she effectively choose one out of
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2n Hamiltonians with the following form
nO
i=1

(I ±Z) that becomes the system

final Hamiltonian in the computational Z basis:

Hf (t) =
nO
i=1

(I + (−1)σi Z) = |σihσ|z .

If we however let the freedom of choice for the final Hamiltonian as a Bob’s
call, he can choose to cheat by doing the following. The Alice’s problem of
unique marked element unstructured search has no structure so Bob must use
the transliteration into the set of Hamiltonians with no structure as well, but
nevertheless over the Hamiltonian alphabet of his choice, preconditioned with
his knowledge that he is solving a UMEUS problem. As the following algo-
rithm shows Bob can also choose to transliterate (hard-wire) Alice’s problem
not in one but rather into the set of n Hamiltonians. This can allow him to
run n iterations of the adiabatic algorithm that each resolve one bit of the
marked element, and therefore to perform the search in the linear time.

Algorithm 9 Adiabatic Unique Marked Element Unstructured Search

1. Prepare the quantum computer in the state |wix;
2. Apply the following Hamiltonian increasing t ∈ (0, n) from 0 to n:

Hs(t) = g(t)XP⊗n +Hf (t)

where:

Hf (t) = f1(t)(I + (−1)σ1 Z)⊗XP⊗n−1

+f2 (t) (I + (−1)σ1 Z)⊗ (I + (−1)σ2 Z)⊗XP⊗n−2...

+fn−1 (t)
n−1O
i=1

(I + (−1)σi Z)⊗XP

+ fn (t)
nO
i=1

(I + (−1)σi Z) ,
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Figure 1.3: Instantaneous Hamiltonian eigenvalues are this image tailed to
itself n times.

with the following schedule in n phases:

g(t) =

½
−1 + t, for t ∈ [0, 1]

0, otherwise

fi (t) =

⎧⎨⎩
−t, for t ∈ [i− 1, i]
−1 + t, for t ∈ [i, i+ 1]

0, otherwise
∀i ∈ {1, n− 1}

fn (t) =

½
−t, for t ∈ [n− 1, n]

0, otherwise
.

3. Measure in the computational basis to reveal the marked element.

For each of n phases in the parameter space we will have the following
eigenvalues of the instantaneous Hamiltonian.
To prove that this Hamiltonian norm change schedule assures that at no

time instant the gap gets smaller then
√
2
2
, and the overall running time is n

we need to find the instantaneous ground state of the system Hamiltonian.
Without loss of generality we can assume that the marked state is ZP⊗n

otherwise the calculation that follows will only defer in the appropriate shift
in the coefficients.
The lowest two unnormalized eigenvector eigenvalue pair of the instanta-

neous Hamiltonian in the i − th phase, i ∈ {1, n− 1} , of the algorithm are,
assuming that in each phase t ∈ (0, 1) :

|ξ0,i (t)i = −
1− t+ 2t2 + (1 + t)

√
1− 2t+ 2t2

(−1 + t)
¡
1 +
√
1− 2t+ 2t2

¢ 2n−i−1X
k=1

|ki+
2n−i+1X
l=2n−i

|li, (1.47)
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|ξ1,i (t)i = −
−1 + t− 2t2 + (1 + t)

√
1− 2t+ 2t2

(−1 + t)
¡
−1 +

√
1− 2t+ 2t2

¢ 2n−i−1X
k=1

|ki+
2n−i+1X
l=2n−i

|li. (1.48)

While for i = n,

|ξ0,n (t)i =
t+
√
1− 2t+ 2t2
(−1 + t)

|1i+ |2i, (1.49)

|ξ1,n (t)i =
−t+

√
1− 2t+ 2t2

(−1 + t)
|1i+ |2i. (1.50)

with the corresponding eigenvalues for all i ’s are:

h↓0 (t) = −
1

2

³
1 +
√
1− 2t+ 2t2

´
, (1.51)

h↓1 (t) = −
1

2

³
1−
√
1− 2t+ 2t2

´
. (1.52)

It follows that the instantaneous gap in the i− th phase of the algorithm is

Gapi =
√
1− 2t+ 2t2, (1.53)

with the minimum at t = 1
2
, regardless of the size of the input,

Gapmin (t) =

√
2

2
. (1.54)

The overall running time of this algorithm is O (n) , since there are in total n
phases of the algorithm each demanding a constant time.
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Chapter 2

Experts Algorithm and Non
Zero Sum Games

This chapter concentrates on the experts or the matrix multiplicative weights
algorithm, presents its improvements and reveals the origin of the close rela-
tionship to vector version of the multiplicative updates algorithm. We also
present some evidence that the Nash equilibrium for the augmented Shapely’s
game, i.e. a non-zero sum game, can be found using matrix version of mul-
tiplicative weights updates algorithms. A more detailed abstraction of the
results presented here follows in the introductory chapter.

2.1 Introduction

Matrix multiplicative weight algorithm or the experts algorithm has pro-
vided a very useful framework for many applications: approximate solutions
to LPs and SDPs, flow problems, online learning, boosting, derandomization
and Chernoff bounds, online convex optimization, computational geometry,
metric embeddings, portfolio management, learning the Nash equilibrium of
the Zero-sum games. There has been an extensive body of work for algorithms
of this type corresponding to this plethora of applications.

2.1.1 Previous Results

There have been a large corpus of results in the literature with respect
to gradient based algorithms. The same is true for the multiplicative weight
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algorithm that is a direct descendent of a gradient based algorithms. However,
our work is mostly inspired by results presented by Arora and Kale [1] in their
study of a combinatorial primal-dual approach to SDPs. They consider a
matrix version of the game that we will explain further on.
The ancestor of the multiplicative weight algorithm was the vector multi-

plicative weight algorithm that was extensively used in the area of prediction,
learning and games. In particular, it is most commonly used for finding the
Nash equilibrium for zero sum games. However, for non-zero sum games not
much is known. Daskalakis, Frongillo, Papadimitriou, Pierrakos and Valiant
[10] have shown that vector multiplicative weight algorithm is not converging
in strategy to a Nash equilibrium for a non zero-sum game. Similar result
is shown by Zinkevich [5], although in a different set up. We extend this
study and show that a matrix multiplicative weights algorithm converges to
the Nash equilibrium for non-zero sum games. In particular it shows a conver-
gence in strategy to a Nash equilibrium of the augmented Shapley game, that
we will define later on in the text. A definite, general answer to the question
of convergence demands a further study and it is beyond of the scope of this
presentation.

2.1.2 Motivation

Game theoretic model that we consider is the following. Two players play
a zero-sum game. The row player, Alice, has no previous knowledge over what
matrix she is going to see as a first event, namely a matrixM that the column
player, Bob, is going to choose and reveal. As a result Alice following the
matrix multiplicative weight algorithm is going to update her own state of
knowledge, namely a matrix ρ. Alice and Bob continue to play this game for
T rounds.
The problem that we consider is to find the algorithm such that after T

rounds of game, the loss of the row player is not much larger than the loss of
the hypothetical player who would play a single best strategy in all T rounds
and by playing it encounter the smallest possible pure strategy loss.
The matrix multiplicative weights algorithm is a surprisingly simple algo-

rithm with respect to quality of the promise that it achieves. Results presented
in this here provide only a partial answer to the questions that naturally arise
along the attempt to acquire a deeper understanding of this algorithm. Our
aim was to establish a clear, and to the best of our knowledge, yet unknown
relation, to the vector multiplicative weights algorithm. The motivation for us
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was to reveal the true nature of the algorithm in both cumulative and itera-
tive set up. This was somewhat important to the effort to clarify the apparent
similarity between matrix multiplicative weight algorithm with gradient de-
scent/ascent approach and possibly to the natural evolution in the quantum
systems.

2.2 Matrix Multiplicative Weights Algorithm
with Cumulative Updates

In the text that follows we will assume that the matrixM , that defines the
loss for the row player A is a symmetric matrix, positive definite matrix, and
that its eigenvalues satisfy λ1(M) ≥ λ2(M) ≥· · ·≥ λn(M). It is also useful to
denote the inner product of the matrices, say,M and ρ withM ·ρ ≡

P
ij Mijρji,

and with "◦” the Hadamard product [M ◦ ρ]ij ≡ Mijρij of the matrices that
we will be using in the next chapter.

2.2.1 Game Theoretic Setup

In the matrix generalization of the usual 2-player zero-sum game the row
player (Alice) chooses a unit vector v ∈ Sn−1, and the column player (Bob, the
external adversary) chooses a matrixM such that 0 ≤M ≤ I, and dim(M) =
n. Then the row player has to pay to the column player vTMv = M · vvT .
Since the row player chooses his strategy v vector from a distribution D over
Sn−1 in each round we are interested in the expected loss of the row player:

ED
£
vTMv

¤
=M · ED

£
vvT

¤
≡M · ρ

and ρ ≡ ED
£
vvT

¤
is a, so called, density matrix that is clearly symmetric,

positive definite and has Tr [ρ] = 1.
We are interested here to consider repeated version of this game in which

row player has to react to an observed event Mi, i ∈ {1, .., T}, as external
adversary picks in each round a different payoff matrix Mi, such that 0 ¹
Mi ¹ 1. The algorithms that we are going to consider will provide the row
player with the sequence of density matrices, ρ1, ρ2,...ρT , that are responses to
the T observed events M1,M2,...MT , each for the T rounds of the game. This
setup is sometimes called a prediction game. For now we will not assume that
matrices Mi are non-negative, even though implicitly by definition matrices
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Mi are loss matrices that have all entries non-negative, otherwise matrices Mi

would define both losses and gains what is not usually not the case in game
theoretic setup. This detail will eventually became important later on in the
text, as we will see.

The arbitrary correlation. As it will be clear from the algorithm ex-
plained below, the repeated version of this game is deterministic and does
not include any notion of distribution over vectors by which the row player
responses to the observed event. With respect to that this approach is very
powerful as it allows arbitrary correlation between adversaries moves.

The aim of the matrix multiplicative weights algorithm is to minimize the
total loss of the row player (or the algorithm) A, after the T rounds of the
game, and that is defined as:

Loss(A) =
TX
t=1

Mt · ρt ≡
TX
t=1

Tr (Mtρt) =
TX
t=1

Tr (ρtMt)

As we will see, this total loss of the algorithm can be tightly related to the loss
of an ideal clairvoyant row player, who would see all the adversary moves in
advance, decide which strategy to play and play that fixed strategy, say vopt,

through all T rounds of the game. As a result ideal player would suffer the
loss of over T rounds that is equal to

λmin

Ã
TX
t=1

Mi

!
= min

v
vT

Ã
TX
t=1

Mi

!
v = vTopt

Ã
TX
t=1

Mi

!
vopt.

In what follows we will see that if the row player follows the prescribed strategy
its loss will be very close to λmin

³PT
t=1Mi

´
in the case of loss matrices or

λmax
³PT

t=1Mi

´
in the dual picture of gain matrices.

2.2.2 The Cumulative Updates

The following algorithm will be our starting point in the study that follows
[1].

Matrix Multiplicative Weights Algorithm with Cumulative Updates

Fix an � < 1
2
and denote with �0 = − ln (1− �) , and let W1 =

ρ1 =
1
n
I. For t = 1, 2, ..T do the following:
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1. Compute Wt+1 =W1 (1− �)
St

τ=1Mτ ,W1 exp
¡
−�0

¡Pt
τ=1Mτ

¢¢
2. Play ρt+1 =

Wt+1

Tr(Wt+1)
and observe the column player next move

Mt.

Theorem 10 The Matrix Multiplicative Weights algorithm with cumulative
updates generates density matrices ρ1, ρ2, ..., ρT such that:

TX
t=1

Mt · ρt ≤ min
(
(1 + �)λmin

Ã
TX
t=1

Mt

!
+
lnn

�
, (1 + �)λavg

Ã
TX
t=1

Mt

!)
(2.1)

where λavg
³PT

t=1Mt

´
denotes the loss of hypothetical player, i.e. the player

that would in the hindsight achieve the average loss among players.

Proof. We can partially follow the same methodology of the proof of the
similar theorem that is given by Arora and Kale [1], to emphasize the difference
that yields the final result 2.1. We can find the upper and lower bound for the
loss in the T + 1 round Tr(WT+1), as sum of this quantity is convenient since
it effectively encodes the payoffs that the row player will "suffer". To bound
Tr(WT+1) from above we have:

Tr (WT+1) = Tr

Ã
W1 exp

Ã
−�0

TX
τ=1

Mτ

!!

≤ Tr

Ã
W1 exp

Ã
−�0

T−1X
τ=1

Mτ

!
exp (−�0MT )

!

= Tr

Ã
W1 exp

Ã
−�0

T−1X
τ=1

Mτ

!
(1− �)MT

!
≤ Tr (WT (1− �MT )) (2.2)

= Tr (WT )

µ
1− �

Tr (WTMT )

Tr (WT )

¶
= Tr (WT ) (1− �Tr (ρTMT ))

= Tr (WT ) (1− �ρT ·MT )

≤ Tr (WT ) exp (−�MT · ρT )

The first inequality follows by Golden-Thompson inequality and by (1− �)A =

exp (−�0A) ¹ (I − �A) for 0 ¹ A ¹ 1 being a matrix in second inequality or a
number in the third inequality.
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Since we can start from W1 =
1
n
I it follows Tr (W1) = 1. Again Mt · ρt

are just real numbers that commute therefore, iterative application of the
inequality we have derived above yields:

Tr (WT+1) ≤ Tr (W1) exp

Ã
−�

TX
t=1

Mt · ρt

!
.

Moreover it is even easier to bound from below:

Tr (WT+1) = Tr

Ã
W1 exp

Ã
−�0

TX
t=1

Mt

!!

=
1

n
Tr

Ã
exp

Ã
−�0

TX
t=1

Mt

!!

=
1

n

nX
i=1

exp

Ã
−�0λi

Ã
TX
t=1

Mt

!!

≥

⎧⎨⎩
1
n
exp

³
−�0λmin

³PT
t=1Mt

´´
exp

³
−�0 1

n

Pn
i=1 λi

³PT
t=1Mt

´´ .

The last inequality follows since the arithmetic mean of positive real numbers
is not smaller than the geometric mean of those numbers. Composing lower
and upper bound and taking the logarithm of both sides we have:

1
n
exp

³
−�0λmin

³PT
t=1Mt

´´
exp

³
−�0λavg

³PT
t=1Mt

´´ ⎫⎬⎭ ≤ exp

Ã
−�

TX
t=1

Mt · ρt

!

− ln (n)− �0λmin
³PT

t=1Mt

´
−�0λavg

³PT
t=1Mt

´ ⎫⎬⎭ ≤ −�
TX
t=1

Mt · ρt

ln(n)
�
− ln(1−�)

�
λmin

³PT
t=1Mt

´
− ln(1−�)

�
λavg

³PT
t=1Mt

´ ⎫⎬⎭ ≥
TX
t=1

Mt · ρt

ln(n)
�
− −�−�2

�
λmin

³PT
t=1Mt

´
−−�−�2

�
λavg

³PT
t=1Mt

´ ⎫⎬⎭ ≥
TX
t=1

Mt · ρt

ln(n)
�
+ (1 + �)λmin

³PT
t=1Mt

´
(1 + �)λavg

³PT
t=1Mt

´ ⎫⎬⎭ ≥
TX
t=1

Mt · ρt
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as claimed. By Taylor expansion we can notice that log(1−�) = −�− �2

2
− �3

3
−

O(�4) ≤ −�− �2

3
since for 0 < � < 1/2, �2

2
+ �3

3
+O(�4) = �2

2

¡
1 + 2

3
�+ 2

4
�2 + ..

¢
≤

�2

2
1
1−� ≤ �2 ¤

Remark 11 We can start from any of the following W1 =
©
1
n
J, 1

n
I
ª
, i.e.

from maximally mixed or maximally pure state, or any other positive definite
matrix W1 that has Tr (W1) = 1. The only difference between the two cases
will be on which side of inequality log n term will show up; eventually giving
the same end result. The symbol J here denotes a matrix n × n that has all
entries equal to one. Starting from maximally mixed state, that corresponds to
the uniform distribution over all experts, was the choice in [1].

Remark 12 It is worthwhile noticing here that the updates are not iterative
but rather cumulative, as the row player’s next move is determined with the
cumulative sum of the history of observed events Mi thus far, that are expo-
nentiated. As we will see later the relaxation of this requirement, to the case
where all Mi commute will immediately reduce to the vector version of the
matrix multiplicative weight algorithm.

Remark 13 The above result includes minor generalization of the result de-
rived in [1], by encompassing more adversary strategies and giving a better
bound for some of them. For example, if adversary plays as a part of his strat-
egy sequence of identity matrices then λavg

³PT
t=1Mt

´
= λmin

³PT
t=1Mt

´
,

therefore (1 + �)λavg
³PT

t=1Mt

´
gives logn

�
better bound. Moreover, the same

is true when T ≤ logn
�(1+�)

as there have been not enough rounds in the game to
achieve:

λavg

Ã
TX
t=1

Mt

!
≥ λmin

Ã
TX
t=1

Mt

!
+

lnN

� (1 + �)

Finally, it is good to keep the dual picture when losses are replaced with
the gains, the analogous inequality can be written down

TX
t=1

Mt · ρt ≥ max
(
(1− �)λmax

Ã
TX
t=1

Mt

!
− lnn

�
, (1− �)λavg

Ã
TX
t=1

Mt

!)
(2.3)

where the updates are obtained with the following algorithm:
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Matrix Multiplicative Weights Algorithm with Cumulative Updates
(Gains Instead of Losses)

Fix an � < 1
2
and denote with �0 = ln (1 + �) , and let W1 = ρ1 =

1
n
I.For t = 1, 2, ..T do the following:

1. Compute Wt+1 =W1 (1 + �)
St

τ=1Mτ ,W1 exp
¡
�0
¡Pt

τ=1Mτ

¢¢
2. Play ρt+1 =

Wt+1

Tr(Wt+1)
and observe the column player next move

Mt.

Interestingly the upper bound that we presented above can not be improved
even by O (�2) , what would yield the following result.

TX
t=1

Mt · ρt ≤ λmin

Ã
TX
t=1

Mt

!
+
lnn

�
(2.4)

The reason is the following. Since at each step of the matrix multiplicative
weight algorithm we do the normalization we have the freedom over choos-
ing whether Wt+1 = W1 (1 + �)

St
τ=1Mτ , W1 exp

¡
�0
¡Pt

τ=1Mτ

¢¢
or Wt+1 =

W1 (1− �)
St

τ=1Mτ , W1 exp
¡
−�0

¡Pt
τ=1Mτ

¢¢
depending on whether the ma-

tricesMi are defined as losses or gains. Once we define the updates we defined
whether we need to bound Tr (WT+1) from above or below in order to get
the interesting bound. For example in the case when matrices Mi are defined
as losses, when Wt+1 = W1 exp

¡
−�0

¡Pt
τ=1Mτ

¢¢
, to get the nontrivial bound

we need to bound Tr (WT+1) from above and this is done by introducing the
constant − ln (1− �) that is basically O (�2) greater then �0. Therefore, the
bounds that we have seen above can not be improved for O (�2) within this
proof structure.

Theorem 14 The following matrix update algorithm guaranties that the total
gain will be:

TX
t=1

Mt · ρt ≥ max
(
(1− �)λmax

Ã
TX
t=1

Mt

!
− lnn

�
, (1− �)λavg

Ã
TX
t=1

Mt

!)

Matrix Multiplicative Weights Algorithm with Iterative Updates (Ma-
trices Mi are Gains)

Fix an � < 1
2
and denote with �0 = ln (1 + �) , and letW1 = ρ1 =

1
n
I

For t = 1, 2, ..T do the following:
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1. Compute Wt+1 =Wt + �
√
MtWt

√
Mt

2. Play ρt+1 =
Wt+1

Tr(Wt+1)
and observe the column player next move

Mt.

We will leave the proof of this theorem until the end of the next chapter,
until after we build the necessary formalism for the proof.

2.3 Matrix Multiplicative Update Algorithm
with Hadamard Updates

2.3.1 Preliminaries: Hadamard Product

In this chapter we will define and prove some properties of the Hadamard
product.

Definition 15 Let A and B be m × n matrices with entries in C. The
Hadamard product of A and B is defined by [AB]ij = [A]ij[B]ij for all 1 ≤
i ≤ m, 1 ≤ j ≤ n.

Since the Hadamard product is simply entrywise multiplication, it inherits
the same benefits and restrictions as the multiplication in C. Clearly matrices
need to be of the same size, but not necessarily square. To distinguish it from
the regular matrix multiplication we will use symbol ◦ to denote the Hadamard
product.

Lemma 16 Let A and B be m×n matrices with entries in C. The Hadamard
product is commutative: A ◦B = B ◦A.

Proof. The proof follows straight forwardly from definition [A ◦ B]ij =
[A]ij[B]ij = [B]ij[A]ij = [B ◦A]ij

Lemma 17 The identity matrix under the Hadamard product is m × n with
all entries equal to one, that we will call J. Hence, Jij = 1 for all 1 ≤ i ≤
m, 1 ≤ j ≤ n.
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Proof. Follows from definition analogously to the previous lemma.

Lemma 18 Let A be an m × n matrix. Then A has a Hadamard inverse,
denoted Â, if and only if [A]ij 6= 0 for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. Furthermore,
[Â]ij = ([A]ij)

−1

Proof. Let A be an m × n matrix with Hadamard inverse Â. Then
we know A ◦ Â = J . That is, [A ◦ A]ij = [A]ij[Â]ij = 1. Multiplying by
inverses in C we know that [Â]ij = (1)

¡
([A]ij)

−1¢ = ([A]ij)
−1 which is only

possible when all entries of A are invertible (in C), i.e. when, [A]ij 6= 0 for all
1 ≤ i ≤ m, 1 ≤ j ≤ n.
Inversely, for any m × n matrix A with entries in C such that [A]ij 6= 0

there exists ([A]ij)−1 for all i, j. This implies [A]ij([A]ij)−1 = ([A]−1ij )[A]ij = 1,
and so A has an inverse Â defined by [Â]ij = ([A]ij)−1 for all i, j.

Lemma 19 (Linearity of Hadamard Product) Suppose α ∈ C, and that A, B
and C are m×n matrices. Then C◦(A+B) = C◦A+C◦B, and furthermore,
α(A ◦B) = (αA) ◦B = A ◦ (αB).

Proof. Both equalities can be straightforwardly proved:

[C ◦ (A+B)]ij = [C]ij (A+B)ij = [C]ij[A+B]ij

= [C]ij [A]ij + [C]ij [B]ij = [C ◦A+ C ◦B]ij

α[A ◦B]ij = α[A]ij[B]ij = [αA]ij[B]ij

= [αA ◦B]ij = [A]ijα[B]ij
= [A ◦ αB]ij

Now we provide the following useful result.
.

Theorem 20 (Shur’s Product Theorem) Suppose A and B are positive
semidefinite matrices of size n. Then A ◦B is also positive semidefinite.

Proof of this theorem demands two other smaller results and we will not
include it here. One version of the proof can be found for example in [19].
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Theorem 21 (Oppenheim’s Inequality). Let A and B be positive semi-
definite matrices of size n. Then |A ◦B| ≥ [A]11...[A]nn|B|.

The proof of Oppenheim’s Inequality it is somewhat long and requires a
further setup, and can be found on page 144 of Bapat [18].

Theorem 22 (Hadamard’s Inequality) Suppose A is positive semidefinite
of size n. Then the determinant |A| ≤ [A]11...[A]nn.

Proof. Let A be any positive semidefinite matrix of size n. Note that In
is a positive semidefinite matrix of size n. Now we have the following, due to
Oppenheim’s Inequality: |A| = [In]11...[In]nn|A| ≤ |In ◦A| = [A]11...[A]nn

Corollary 23 Let A and B be positive semidefinite matrices of size n. Then
|A ◦B| > |AB|.

Proof.
|A ◦B| ≥ [A]11...[A]nn|B| ≥ |A||B| = |AB|

Finally the following lemma will be also useful for us:

Lemma 24 Let A and B be nonnegative matrices, the following holds:

Tr (A ◦B) ≤ Tr(AB).

Proof. Inequality is immediate by definition. Since aij, bij ≥ 0 and left
hand side is

Pn
i=1 aiibii while the right hand side is

Pn
i=1

Pn
j=1 aijbji.

2.3.2 Pretty Good Bound for Tr
³
e�
PT

i=1Hi

´
The purpose of this section is to prove the following theorem that naturally

leads toward the algorithm in the section that follows. Ando [6] proved similar
theorem for the unitarily invariant norm. The theorem that follows is in some
sense weaker and a bit less involved.

Theorem 25 For Hermitian Matrices Hi, i ∈ {1, ..m} and α > 0 holds that:

Tr
³¡
eαH1 ◦ eαH2... ◦ eαHm

¢ 1
α

´
≥ Tr

³
e
Sm

j=1Hj

´
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Proof. LetMn denote the space of n×n matrices. If tensor product of m,

n× n matrices Mn, is identified with Mnm in a natural way, there is uniquely
an unital positive linear map from Mnm to Mn that satisfies:

Φ (H1 ⊗ ...⊗Hm) = H1 ◦ ... ◦Hm, s.t. Hi ∈Mn

where H1 ◦ ... ◦Hm is the Hadamard i.e. entrywise product. of H1, ...,Hm. By
unital we mean that Φ (Inm) = In, and the positive means that Φ (H) ≥ 0,
whenever H ≥ 0.
This is important since unital positive linear maps between C∗-algebras

satisfy a nice property:

Φ (H)p ≥ Φ (Hp) , for H > 0, 0 < p ≤ 1,

and
logΦ (H) ≥ Φ (logH) , for H > 0.

For Hermitian matrices H1, ...,Hm ∈ Mn we can consider the tensor product
of eH1 ⊗ eH2..⊗ eHm for which we know the following:

eH1 ⊗ eH2 ..⊗ eHm =
mQ
j=1

I ⊗ ...⊗ I ⊗ eHj

(j)
⊗ I ⊗ ...⊗ I.

Since products I ⊗ ...⊗ I ⊗ eHj

(j)
⊗ I ⊗ ...⊗ I are mutually commuting we can

take the logarithm of the both sides to get:

log
¡
eH1 ⊗ eH2..⊗ eHm

¢
=

mX
j=1

log

µ
I ⊗ ...⊗ I ⊗ eHj

(j)
⊗ I ⊗ ...⊗ I

¶
,

log
¡
eH1 ⊗ eH2..⊗ eHm

¢
=

mX
j=1

I ⊗ ...⊗ I ⊗Hj
(j)

⊗ I ⊗ ...⊗ I .

Using the property of the positive unital map of Φ, we know that:

Φ

Ã
I ⊗ ...⊗ I ⊗Hj

(j)

⊗ I ⊗ ...⊗ I

!
= Hj ◦ I, for j = 1, 2, ...m.

from which it follows by convexity of the unital map that:

log
¡
eαH1 ◦ eαH2 .. ◦ eαHm

¢ 1
α ≥

Ã
mX
j=1

Hj

!
◦ I , α > 0.
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If we choose V ∈ U which diagonalizes
Pm

j=1Hj, than sinceÃ
mX
j=1

Hj

!
(V ) =

Ã
mX
j=1

Hj

!
(V ) ◦ I =

Ã
mX
j=1

Hj (V )

!
◦ I

log
¡
eαH1 ◦ eαH2.. ◦ eαHm

¢ 1
α ≥

Ã
mX
j=1

Hj (V )

!
◦ I

and moreover for Hermitian matrices X and Y order relation

X ≥ Y

implies:
λi (X) ≥ λi (Y ) , i = 1, 2, .., n.

where λ1 (X) ≥ λ2 (X) ≥ ... ≥ λn (X) , are the eigenvalues of X, counted with
multiplicities and arranged in non-increasing order, we have also that for any
nonnegative non-decreasing function g (t)

λi (g (X)) = g (λi (X)) ≥ g (λi (Y )) ≥ λi (g (Y )) ≥ 0.

Applying this to function g (t) = et we derive:¡
eαH1 ◦ eαH2 ... ◦ eαHm

¢ 1
α ≥ e(

Sm
j=1Hj)(V )

that gives the relaxation:

Tr
³¡
eαH1 ◦ eαH2 ... ◦ eαHm

¢ 1
α

´
≥ Tr

³
e(
Sm

j=1Hj)(V )
´
= Tr

³
e
Sm

j=1Hj

´

To prove that the presented bound is a pretty good bound for the Tr
³
e
Sm

j=1Hj

´
we would need to show the convergence

lim
α→0

Tr
³¡
eαH1 ◦ eαH2 ... ◦ eαHm

¢ 1
α

´
= Tr

³
e
Sm

j=1Hj

´
.

Proof of the similar fact can be found in [6], and we will leave out the rest of
details here.
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2.4 The Hadamard Updates

Unlike previous section where we have seen updates that depend on the
cumulative history of the adversary’s responses Hi, in this section we prove
that there exists an algorithm such that: (i) expected overall loss is as small as
with the cumulative updates, (ii) it is less computationally demanding, (iii) its
iterative formula depends only on most recent response from the other party.
Iterative updates come as a clear advantage as we do not need to follow the
history of matrices Hi and to sum them before the exponentiation to get the
state Vi+1. Let us denote with J a matrix whose all entries are equal to one,
and in contrast to the cumulative updates we define matrices 0 ≤ Hi ≤ 1 to
be gains, rather then losses.

Matrix Multiplicative Weights Algorithm with Iterative Hadamard
Updates

Fix an � < 1
2
and denote with �0 = ln (1 + �) , and define ρ1 = V1 =

1
n
J. For t = 1, 2, ..T do the following:

1. Compute Vt+1 = Vt ◦ e�
0Ht = Vt ◦ (1 + �)Ht

2. Play ξt+1 =
Vt+1

Tr(Vt+1)
and observe the column player next move

Ht+1.

Theorem 26 The Matrix Multiplicative Weights algorithm with iterative up-
dates generates density matrices ρ1, ρ2, ..., ρT such that:

TX
t=1

Ht · ξt ≥ max
(
(1− �)λmax

Ã
TX
t=1

Ht

!
− lnn

�
, (1− �)λavg

Ã
TX
t=1

Ht

!)
(2.5)

where λavg
³PT

t=1Ht

´
denotes the strategy of the row player that would achieve

the average gain.

Proof. The proof that we present here is based on the theorem presented
in the introductory section. At the round T + 1 the expected loss Tr(VT+1)
can be bounded from above as follows:
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Tr (VT+1) = Tr
³
VT ◦ exp�

0HT

´
= Tr

³
VT ◦ (1 + �)HT

´
= Tr

µ
VT ◦

µ
1 + log (1 + �)HT +

log2 (1 + �)

2
H2

T + ..

¶¶
≤ Tr (VT ◦ (1 + �HT ))

= Tr (VT )

µ
1 + �

Tr (VT ◦HT )

Tr (VT )

¶
≤ Tr (VT )

µ
1 + �

Tr (VTHT )

Tr (VT )

¶
= Tr (VT ) (1 + �Tr (ξTHT ))

= Tr (VT ) (1 + �ξT ·HT )

≤ Tr (VT ) exp (�HT · ξT )
≤ Tr (VT−1) exp

¡
�HT · ξT + �HT−1 · ξT−1

¢
..

≤ exp

Ã
�

TX
i=1

Hi · ξi

!

The first inequality follows from the fact that (1 + �)A = exp (�0A) ¹
(I + �A) for 0 ¹ A ¹ 1, and the second inequality follows from Lemma 24
Since we can start from V1 =

1
n
J it follows Tr (V1) = 1. Again, Ht · ξt

are just real numbers that commute therefore, iterative application of the
inequality we have derived above yields:

Tr (VT+1) ≤ Tr (V1) exp

Ã
�

TX
t=1

Ht · ξt

!
.

Moreover according to the theorem 25:

Tr (VT+1) = Tr
¡
VT ◦ e�HT

¢
=

1

n
Tr
³
e�
0H1 ◦ e�0H2 ... ◦ e�0HT

´
≥ 1

n
Tr
³
e�
0ST

i=1Hi

´
≥

⎧⎨⎩
1
n
exp

³
�0λmax

³PT
t=1Ht

´´
exp

³
�0 1
n

Pn
i=1 λi

³PT
t=1Ht

´´ .
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Finally, the last inequality follows since the arithmetic mean of positive real
numbers is not smaller than the geometric mean of those numbers. Composing
lower and upper bound and taking the logarithm of both sides we have:

1
n
exp

³
�0λmax

³PT
t=1Ht

´´
exp

³
�0λavg

³PT
t=1Ht

´´ ⎫⎬⎭ ≤ exp

Ã
�

TX
t=1

Ht · ξt

!

− ln (n) + �0λmax
³PT

t=1Ht

´
�0λavg

³PT
t=1Ht

´ ⎫⎬⎭ ≤ �
TX
t=1

Ht · ξt

− ln(n)
�
+ ln(1+�)

�
λmax

³PT
t=1Ht

´
ln(1+�)

�
λavg

³PT
t=1Ht

´ ⎫⎬⎭ ≤
TX
t=1

Ht · ξt

− ln(n)
�
+ (1− �)λmax

³PT
t=1Ht

´
(1− �)λavg

³PT
t=1Ht

´ ⎫⎬⎭ ≤
TX
t=1

Ht · ξt

as claimed.

Interestingly, the above proof can not be reproduced when the observed
events are losses, in which case we would have:

Vt+1 = Vt ◦ e−�
0Ht = Vt ◦ (1− �)Ht .

This comes from the fact that even though matrices Hi are non-negative by
definition, the matrix (1− �)Hi ≈ (I − �Hi) certainly is not, and therefore the
following step in the above proof would fail:

Tr (VT )

µ
1 + �

Tr (VT ◦HT )

Tr (VT )

¶
≤ Tr (VT )

µ
1 + �

Tr (VTHT )

Tr (VT )

¶
Finally we revert to the theorem 14 that we have not proved in the previous

chapter that the following update rule

Wt+1 =Wt + �
p
MtWt

p
Mt

provides the performance with the worst case gain:

TX
t=1

Mt · ρt ≥ max
(
(1− �)λmax

Ã
TX
t=1

Mt

!
− lnn

�
, (1− �)λavg

Ã
TX
t=1

Mt

!)
(2.6)
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Proof. (Of the Theorem 14) Now we prove the corollary for the matrix
multiplicative weights algorithm with iterative updates. It is straightforward
to see that the same bound that we had above would apply to this algorithm
as well. This comes from the fact that

Tr
³
Wt + �

p
MtWt

p
Mt

´
= Tr (Wt + �MtWt) = Tr (Wt + �WtMt)

and the same line of reasoning before and beyond line 2.2 in the proof that we
have presented above. For the sake of the completeness we present the whole
argument.

Tr (WT (1 + �MT ))

≥ Tr ((WT−1 (1 + �MT−1)) ◦ (1 + �MT )) (2.7)

≥ Tr (WT−1 ◦ (1 + �MT−1) ◦ (1 + �MT )) .. (2.8)

≥ 1

n
Tr ((1 + �M1) ◦ .. ◦ (1 + �MT−1) ◦ (1 + �MT )) (2.9)

≥ 1

n
Tr
³
(1 + �)M1 ◦ .. ◦ (1 + �)MT−1 ◦ (1 + �)MT

´
(2.10)

=
1

n
Tr (exp (�0M1) ◦ .. ◦ exp (�0MT−1) ◦ exp (�0MT )) (2.11)

≥ 1

n
Tr

Ã
exp

Ã
�0

TX
τ=1

Mτ

!!
(2.12)

≥ 1

n
exp

Ã
�0λmax

Ã
TX

τ=1

Mτ

!!
(2.13)



57

Moreover, we can find the upper bound for Tr (WT (1 + �MT )) as follows:

Tr (WT (1 + �MT ))

= Tr (WT )

µ
1 + �

Tr (WTMT )

Tr (WT )

¶
(2.14)

= Tr (WT ) (1 + �Tr (ρTMT ))

= Tr (WT ) (1 + �ρT ·MT )

= Tr (WT−1 (1 + �MT−1)) exp (�MT · ρT ) (2.15)

= Tr (WT−1)

µ
1 + �

Tr (WT−1MT−1)

Tr (WT−1)

¶
exp (�MT · ρT ) (2.16)

= Tr (WT−1)
¡
1 + �ρT−1 ·MT−1

¢
exp (�MT · ρT ) (2.17)

≤ Tr (WT−1) exp
¡
�MT−1 · ρT−1 + �MT · ρT

¢
(2.18)

≤ .. ≤ Tr (W1) exp

Ã
�

TX
t=1

Mt · ρt

!
(2.19)

= exp

Ã
�

TX
t=1

Mt · ρt

!
(2.20)

Composing the upper and lower bound in the same way we have seen in
the previous chapter yields the following result:

TX
t=1

Mt · ρt ≥ max
(
(1− �)λmax

Ã
TX
t=1

Mt

!
− lnn

�
, (1− �)λavg

Ã
TX
t=1

Mt

!)
.

Computational complexity for this updates Õ (n2) rather that O (n3) but
this is of secondary importance as it is sufficient to generate approximate
updates and that can be done in time that is linear in the sparsity of matrices
in the updates, what is usually very efficient.

Remark 27 It is important to note that it is necessary to provide the updates
through unitarily invariant form

√
MtWt

√
Mt rather than MtW , as the later

one has no warranties of being positive definite, what is the necessary condition
with respect to ρt.

Corollary 28 The following matrix multiplicative weight algorithm with iter-
ative Hadamard updates achieves worst case gain lower bound

TX
t=1

Ht · ξt ≥ max
(
(1− �)λmax

Ã
TX
t=1

Ht

!
− lnn

�
, (1− �)λavg

Ã
TX
t=1

Ht

!)
.



58

Matrix Multiplicative Weights Algorithm with Iterative Hadamard
Updates

Fix an � < 1
2
and denote with �0 = ln (1 + �) , and define ρ1 = V1 =

1
n
J

For t = 1, 2, ..T do the following:

1. Compute Vt+1 = Vt ◦ (I + �Ht)

2. Play ξt+1 =
Vt+1

Tr(Vt+1)
and observe the column player next move

Ht+1.

Proof. Follows straightforwardly from the proof of the Theorem 14. Clearly
every step in the update take O(n2) time.

2.5 QuantumDiscrepancy Against Multiplica-
tive Weights Algorithm

In this section we elaborate the lack of compatibility between multiplica-
tive weights algorithm and unitary quantum evolution. Motivation behind this
discrepancy remark came from perhaps counter intuitive resemblance between
multiplicative weights updates algorithm and the first order dynamical sys-
tems. The two formulas differ only by a imaginary constant, i, that multiplies
the gradient term in the update term.
In the classical case vector weighted majority algorithm is the following.
At every step t, we have a weight wi (t) assigned to expert i.. Initially for

all i, wi (0) = 1. At a step t + 1, for each i such that expert i was found to
have predicted the stock value correctly, we set the update rule to be:

wi (t+ 1) = wi (t) (1 + �c) (2.21)

and then renormalize all the weights with
PN

i=1wi (t+ 1) . Once we update
the weights on all experts our own prediction for the stock value for step t+1

is the opinion of a weighted majority of the experts. In other words, if the
total weight of all experts predicting “up” is at least 1

2
then we predict “up”

as well and otherwise we predict “down.” Here we denoted with �c << 1 the
epsilon for the classical algorithm.
We can rewrite the classical weighted majority algorithm update rule as

the following vector equation, that represents current state of our knowledge:
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w (t+ 1) = w (t) +Mcw (t) ≈ eMcw (t) (2.22)

where we denoted with w the N dimensional vector that describes our current
state of the knowledge, and the diagonal matrix Mc is:

Mc =

½
mi,i = �c, if expert i predicts correctly

1, otherwise
(2.23)

Now we can define the same state of knowledge but rather through the
quantum vector |ξ (t+ 1)iwhose density matrix ρξ (t+ 1) = |ξ (t+ 1)ihξ (t+ 1) |
corresponds to the first order approximation of classical state of knowledge
vector w (t+ 1):

w (t+ 1) ≈ I ◦ ρξ (t+ 1) = I ◦ |ξ (t+ 1)ihξ (t+ 1) | (2.24)

As we saw earlier state of the system is changed according to the Schroedinger
equation, for (backward) time corespondent to the small change �:

|ξ (t+ 1)i = |ξ (t)i+ i

~
∆�H|ξ (t)i =

µ
1 +

i

~
∆�H

¶
|ξ (t)i (2.25)

that yields a unitary update:

|ξ (t+ 1)i = e+
i
~∆�H |ξ (t)i (2.26)

or equivalently
ρξ (t+ 1) = e

i
~∆�Hρξ (t) e

− i
~∆�H†

. (2.27)

Increase in the absolute value of one diagonal coordinate of ρξ (t)i,i would imply
a decrease in the some other coordinate j 6= i, as this is by definition a change
of basis, no matter which nondiagonal Hamiltonian HN×N we employ to do
that. Therefore in this setup, without the ancillae qubits and apart from the
first iteration in experts algorithm, it seems nontrivial to implement the basic
mechanism of classical multiplicative weights algorithm. This is due to the fact
that the basic mechanism of the experts algorithm is the following: increase
the weight of the good experts while keeping the weight of every other expert
the same. That is precisely the story, that the difference in the imaginary
constant in the exponent, in the following two expressions, is trying to tell:

w (t+ 1) = eMcw (t) (2.28)

|ξ (t+ 1)i = eiMq |ξ (t)i (2.29)

where we denoted with Mq =
∆�H
~ .
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2.6 Convergence to Nash Equilibrium in the
Non-Zero Sum Games

Convergence to Nash equilibrium is one of the central issues in the evalua-
tion of the prediction and learning algorithms. In the early days of the game
theory and Robinson [21] showed that in two player zero-sum game with finite
number of strategies, where two players play the best response in every round
of a zero sum game, players will eventually converge to a distribution over
the strategies. That distribution will probabilities that correspond to a Nash
equilibrium of the underlying game. Since then there have been a great deal of
progress in terms of improving the rate at which certain algorithms converge.
A good overview of the historical bibliographic remarks can be found [13] and
[14].
The situation with the convergence to a Nash distribution in non-zero sum

games is different and much less studied. Singh, Kearns and Mansour [4]
showed, for the most common type of algorithms that use gradient ascent
or descent on the objective function, although the strategies of the players
may not always converge, their average payoffs always do converge to the
expected payoffs of some Nash equilibrium. Their study is however limited to
two person, two action non-zero sum game. This result therefore implies that
dynamics of gradient ascent ensure that the average payoffs to two players
adopting this simple strategy is the same as the payoff they would achieve by
adopting arbitrary complex strategies. Interestingly, this result is achieved by
showing that gradient ascent algorithm of the players can be modeled as an
affine dynamical system.
Even though the method of Singh, Kearns and Mansour seems generaliz-

able, until recently nothing was known even for two player three strategies non-
zero sum game. Daskalakis, Frongillo, Papadimitriou, Pierrakos and Valiant
have proved that the learning algorithm, i.e. vector multiplicative weights al-
gorithms do not converge to Nash equilibria in non-zero sum games. They
have considered two player three strategy game non-zero sum game, i.e. a
Shapley game that we will see in the next section.
The algorithms that we have explained here are external regret algorithms

that compare the performance of an online algorithm, selecting among N ac-
tions, to the performance of the best of those actions in hindsight. There also
exist the algorithms, that we have not studied here, that are called the inter-
nal regret algorithms since they compare the loss of an online algorithm to the
loss of a modified online algorithm, which consistently replaces one action by
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P R S
p 0,0 0,1 1,0
r 1,0 0,0 0,1
s 0,1 1,0 0,0

.

Table 2.1: Payoffs for the Paper-Rock-Scissor zero-sum game.

another.
Consideration of non-zero sum games is interesting in various aspects.

Namely, since in contrast to the zero-sum games where the min-max value
is the only interesting value, in a non zero-sum game, there are at least three
interesting values for the first agent.
1. The safe value, or min-max value, that a no-external regret (external

regret vanishes over the time) algorithm is guaranteed regardless of whether
it plays against another learning agent or arbitrary strategy.
2. The minimum correlated equilibrium value, or the lowest expected value

for the first agent in any correlated equilibrium of the single-shot game, which
a no-internal regret algorithm is guaranteed when it plays another no-internal
regret algorithm.
3. The minimum Nash equilibrium value, or the lowest expected value for

the first agent in any Nash equilibrium of the single-shot game.
Apart form this consideration in the section that follows we present the

evidence that matrix multiplicative weights algorithm might have better con-
vergence properties than the analogous vector multiplicative weights.

2.6.1 The Shapely’s Game

The good example of the non-zero sum game, for which many learning and
prediction algorithms show divergence away from Nash equilibrium in strategy,
is a Shapley game. It is basically a non-zero sum analog of the paper-rock-
scissors game. The actual payoff for Shapley’s game are in the table 2.1.
This game has only one Nash equilibrium that is all uniform strategy.
One of early discovered algorithms for zero-sum version of this game (paper-

rock-scissors game) is a fictitious play. That algorithm for Shapley game pro-
duces a play of strategies in the asymptotic cycles. It does not converge and
number of iterations to get to the next cycle in strategies is increasing expo-
nentially.
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Figure 2.1: Vector multiplicative update algorithm diverges from the Nash
strategy.

Similar, divergence effect is present with the vector multiplicative weight
algorithm that gradually diverges from the strategy that is a Nash equilibrium,
as shown on the figure 2.1.

The same does not hold in the case of the matrix multiplicative weight
algorithm applied on the Shapley’s game.
Weights in this case the same uniformly distributed between the strategies,

rasing the question whether the eventual distribution over the strategies is
dependent only on the eigenvalues of the game matrix. In Shapley game
eigenvalues of the payoff matrix are all the same and equal one.

2.6.2 The Augmented Shapley Game

The example of the Shapley’s game that we have seen in the previous
section has a simple Nash equilibrium, for which the players need to figure out
that there is a mixed strategy that provides the optimal payoff. The game
that we consider in this section [[5]] has a bit different setup. The following
loss matrix defines an augmented Shapley game.
Clearly in this case the players have a choice of playing the Shapley game

or strategy g(orG). The difficulty in this non-zero sum game is in the fact that
players have to learn that they are better off by playing g (or G) strategy since
they will be paying more but also receiving as much. Therefore the only Nash
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Figure 2.2: Matrix multiplicative algorithm does not diverge from the Nash
strategy in the Shapley’s game. Small distance in the probabilities is inten-
tionally introduced to avoid overlapping.

P R S G
p 0, 0 0, 1 1, 0 2,0.4
r 1, 0 0,0 0, 1 2,0.4
s 0, 1 1, 0 0, 0 2,0.4
g 0.4, 2 0.4, 2 0.4, 2 3,3

Table 2.2: Payoffs for the Augmented Shapley’s Game
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equilibrium is in this case g-G strategy. Zinkevich [5] showed that any no-
internal regret algorithm will necessarily fail to converge to Nash equilibrium.
Moreover the vector multiplicative weights algorithms does not converge and
their performance is nicely illustrated for the concrete examples, as well, in.[5].

Convergence of MMWA the Nash equilibrium of the augmented Shapley game.

In general, the min-max value is always less than or equal to the minimum
correlated equilibrium value, which is always less than or equal to the mini-
mum Nash equilibrium value. In the Augmented Shapley Game, the min-max
value and the minimum correlated equilibrium value are both 0.4. The mini-
mum Nash equilibrium value is 3. Thus, in a nonzero-sum game, getting the
minimax value or minimum correlated equilibrium value is not always a very
helpful guarantee. Nevertheless, we are here only interested in convergence to
a Nash equilibrium value.
Perhaps surprisingly, matrix multiplicative weight algorithm exhibits a dif-

ferent behavior, as it in fact converges to a strategy that defines Nash equilib-
rium.
A definite answer to a natural question that arises after this results, whether

a off-diagonal elements in the matrix multiplicative weight algorithm play a
crucial roll in the convergence property, is yet to be determined. The result
that we have seen here is the ramification of the fact that the matrix multi-
plicative weights, unlike vector updates, update the weights of the strategies
with respect to the all possible opponent strategies at once. In contrast to
the vector multiplicative updates, the exact move that the other party takes
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is not considered with the matrix updates since eventually the eigenvalues, or
diagonal entries, of the game matrix are going to determine the convergence
to a distribution, that at least in our case turns to be the Nash equilibrium.

2.7 Concluding Remarks

In this chapter we have elaborated several results regarding the matrix mul-
tiplicative weights algorithm. In particular we have improved a generalization
and minor improvement of the algorithms upper bound, showed that there
exist iterative version of the matrix multiplicative weights update algorithm
with the same performance promise and established the exact connection with
the vector matrix multiplicative algorithm. This connection clarifies the ori-
gin of the same type of bound that is achieved by both matrix and vector
multiplicative updates algorithm.
Even though it is computationally more demanding for the same perfor-

mance bound, matrix multiplicative weight algorithm, unlike its vector ver-
sion, showed a distinctive convergence properties to Nash equilibrium of the
two player, three strategy, non-zero sum game. Further study of the conver-
gence of this algorithms is necessary in order to provide a definitive answer to
the convergence question in non-zero sum games. Currently it is not known
whether matrix multiplicative updates algorithms converge in the multi-agent,
multi-strategy non-zero sum games. Results by Sigh, Kearns and Monsour [4]
seem to provide some hope for the positive results in further research and be
directly applicable to the setup with more then two available strategies.
Another very interesting relation, that is in our opinion worth further study,

with the respect to the above result, is to establish connection between SDPs
and graph covering. This work might provide a meeting point for these to
seemingly unrelated concepts. Namely, natural existence of the random pro-
jections are present in both multiplicative updates and the proof for the graph
covering time [20].
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Chapter 3

On the Quantum Circuit
Complexity Equivalence by the
Geometric Arguments

Nielsen [3] recently asked the following question: "What is the minimal size
quantum circuit required to exactly implement a specified n-qubit unitary
operation U , without the use of ancilla qubits?" Nielsen was able to prove
that a lower bound on the minimal size circuit is provided by the length of
the geodesic between the identity I and U , where the length is defined by a
suitable Finsler metric on SU(2n). We prove that the minimum circuit size
that simulates U is in linear relation with the geodesic length and simulation
parameters, for the given Finsler structure F . As a corollary we prove the
highest lower bound of O(n

4

p
d2Fp(I, U)LFp(I, Ũ)) and the lowest upper bound of

Ω(n4d3Fp(I, U)), for the standard simulation technique. Therefore, our results
show that by standard simulation one can not expect a better then n2 times
improvement in the upper bound over the result fromNielsen, Dowling, Gu and
Doherty [4]. Moreover, our equivalence result can be applied to the arbitrary
path on the manifold including the one that is generated adiabatically.

3.1 Introduction

Quantum computation is inherently a process of continuous evolution of
quantum states that has the potential to fundamentally change the notion of
feasibly tractable computation. Only recently did researchers start to think
how notions from the differential geometry [13] can be used to represent this
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process. Instead, quantum circuits, as an inherently discrete notion of compu-
tation, have been most commonly used to represent this continuous process.
Any quantum operation, a unitary matrix U ∈ SU(2n), is an element of a
Lie group, and a point on the U ≡ SU(2n) manifold, whose tangent bundle
can be endowed with the Finsler structure F , that effectively provides a mea-
sure of length for any path on the Finsler manifold (U , F ). In particular, the
paths that we are interested in are geodesics. These are locally and, under
certain conditions, globally minimal length paths between any two points on
the manifold. They are of particular interest, because if closely simulated they
can give the smallest circuit complexity for the given unitary U.
The aim in the approach that we take here is to tackle the question about

the complexity of the circuit necessary for the simulation of an arbitrary uni-
tary gate. As the length of the geodesic for the particular unitary is its intrinsic
property, ideally one would succeed in finding the minimum number of circuits
necessary to implement the unitary by simulating exactly its geodesic. There-
fore, the hope here is to learn about the circuit lower bounds by basically
transforming the hard combinatorial optimization problems over large sets to
the problems in continuous domain that can be solved with tools of differential
geometry and the calculus of variations.
One of the first results that had the flavor of this transform was introduced

by Mochon [5], who proved that in the discrete model and the analogous con-
tinuous model, i.e. the Hamiltonian oracle model, Oracle interrogation, the
problem of computing XOR and Grover search have the same complexity.
Moreover, Nielsen [3] and subsequently Nielsen, Dowling, Gu and Doherty [4]
proved that for particularly chosen metric there is a polynomial equivalence
between the geodesic length and number of gates necessary for the simulation.
The lower bound for the minimum number of gates necessary for the simula-
tion has been determined for exact simulation and the upper bound has been
determined for the arbitrary precision. The metric chosen in [4] penalizes all
those directions on the manifold that are not easily simulated by local gates,
so that coefficients for stabilizer elements of Hamming weight greater than two
bear high cost, i.e. have longer paths.
In this paper we prove the stronger result and show the exact upper and

lower bound that determine the equivalence between the minimal number of
gates in the standard circuit simulation and the length of the geodesic. Both
upper and lower bound are determined by the simulation parameters and, of
course, the length of the geodesic.
We consider the two cases. First: the simulation of the geodesic with set
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of gates G that is exactly universal, and the case with approximately universal
set of gates. With the exactly universal set of gates for any point x0 ∈ U there
is a gate in a set G by which we can simulate exactly any point x1 ∈ U in the
ball of radius r centered around x0; we denote this ball as B+

x0(r). Under that
assumption, we prove that the number of gates in the simulation of a geodesic
may be upper and lower bounded by a linear factor in the length of geodesic
and simulation parameters.
When the set of gates, G�, is approximately universal, a single gate from

this set can simulate the points in B+
x0
(r) only with some finite precision �,

and that will necessarily mean that the circuit that simulates the geodesic is
doing so along the path that is not shorter than the actual geodesic, for that
very point.
Our aim here is not to elaborate on the algorithm for the geodesic simula-

tion but rather to prove the bounds that optimal simulation can achieve. We
say optimal, because the set of gates G that we first consider is much more
powerful than any local and universal set of gates. Therefore the result that
we present is the optimal result about complexity equivalence between dis-
crete and continuous notions of computation. In particular, for the standard
simulation model described in [4], we derive the highest lower bound and the
lowest upper bound in the minimal circuit complexity that one can hope to
achieve with the simulation of a geodesic.

3.2 Preliminaries

A quantum operation U ∈ U is a point on the manifold U ≡ SU(2n) at some
distance from identity I ∈ U . The distance considered is the integral distance
that is determined by the structure used on the manifold. In general that
structure may be more general than Riemannian, i.e. it is called the Finsler
structure F (x, y). The restriction of a Finsler structure F to any specific
tangent space TxU with the origin at the point x ∈ U is called Minkowski
norm on TxU . The second argument of the structure F (x, y) is the velocity
and its definition follows. Therefore a Finsler structure is basically a family of
the smoothly varying Minkowski norms, one for each tangent space.
The defining properties of a non-negative real-valued structure F (x, y) on

R4n−1 are as follows:

(1) it is C∞ anywhere on R4n−1 except at y = 0;

(2) it is positive homogeneous, i.e. F (x, λy) = λF (x, y) for λ > 0;
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(3) the (4n−1)×(4n−1) matrix ∂
∂yi

∂
∂yj
[1
2
F 2] is positive definite unless y = 0.

As a consequence, one can derive positivity and triangular equality of
Minkowski norms [6]. The structure F (x, y) is usually denoted simply
as F (y).

For any a, b ∈ R+ we say that a map σ : [a, b]→ U is a piecewise C∞ curve
with velocity y ≡ dσ

dt
=
P

i
dσi
dt

∂
∂xi
∈ Tσ(t)U . The integral length of the curve σ,

L(σ), is defined as:

LF (σ) =

Z b

a

F (σ,
dσ

dt
)dt . (3.1)

Since we are usually interested in minimum length curves for x0, x1 ∈ U , we
denote by Γ(x0, x1) the collection of all piecewise C∞ curves σ : [a, b] → U
such that σ(a) = x0 and σ(b) = x1. Similarly, the integral distance is defined
as a map dF : U × U → [0,∞):

dF (x0, x1) = inf
Γ(x0,x1)

LF (σ) (3.2)

Using these definitions, one can show that the Finsler manifold (U , dF ) satisfies
the two axioms of a metric space: (1) positivity: dF (x0, x1) ≥ 0, where equality
holds if and only if x0 = x1 and (2) the triangular inequality: dF (x0, x2) ≤
dF (x0, x1) + dF (x1, x2). In general, the symmetric property of a distance does
not need to hold, and therefore dF (x0, x1) 6= dF (x1, x0).

3.3 Distortion Lemma

To establish the equivalence result, we introduce in this section the main
tool of our analysis. The intuitive idea on which we build our results relies on
the relation between the distances on the manifold and the distances on the
tangent space of the manifold. While the former are introduced by the unitary
gates and their complexity, the latter are defined by the appropriately defined
distances between the Hamiltonians of gates used in the simulation. This will
be proven useful in the sections below.
The lemma that follows is a slightly stronger result of a well-known and very

useful fact from the differential geometry. Again, it relates distances on the
manifold with the minimum and maximum distortion of the Euclidian norm
on the tangent space over the compact set. Interested reader are encouraged
to consult [6], an excellent and very elaborate reference on this subject.
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Lemma 29 (Distortion Lemma) Let (U , F ) be a Finsler manifold, and
for any point x ∈ U let ϕ : Px → R4n−1 be the local coordinate system diffeo-
morphism of a compact set Px onto an open ball of R4

n−1, such that ϕ(x) = 0.
Then for a given x0, x1 ∈ Px, and any Finsler metric F (x, y), there exist
a constant minimum m > 0 and a constant maximum M > 1 such that the
following relation is true:

m|ϕ(x1)− ϕ(x0)| ≤ LF (x0, x1) ≤M |ϕ(x1)− ϕ(x0)| . (3.3)

Here |ϕ(x1)− ϕ(x0)| denotes the Euclidean length of the 4n − 1 dimensional
vector in the tangent space.
Proof: We first note that a compact set Px for which ϕ(x) = 0 always

exists. This is true because, given a local coordinate system ϕ : Q→ R4n−1 and
x ∈ Q for which ϕ(x) = 0, we can choose Px to be a closure of the preimage of
ϕ−1(B4n−1(r)) for some r > 0. By B4n−1(r) = {v ∈ R4n−1 : |v| =

pP
i v
2
i < r}

we denote the ball of radius r in the tangent space whose closure is a subset
of ϕ(Q).
Next we note that, for tangent vector y =

P
i yi

∂
∂xi
≡ dx

dt
∈ TxU , the ra-

tio between Minkowski norm F (x, y) and x-dependent Euclidean norm |y| :=pP
i y
2
i for the basis { ∂

∂xi
} is well defined for y 6= 0. Since both norms are

positive continuous functions over the compact sets their quotient is also a
positive continuous function. Therefore the quotient’s minimum m and maxi-
mum M exist and are both positive: 0 < m ≤ F (y)

|y| ≤M. In other words, for
all y ∈ TxU and all x ∈ Px:

m|y| ≤ F (x, y) ≤M|y|. (3.4)

Now we can prove the right hand side (RHS) of inequality (3.4) by choosing
the path σ ∈ P that maps under ϕ to a line segment. In that case we can
write:

LF (x0, x1) =

Z t1

t0

F (σ0)dt ≤M
Z t1

t0

|σ0|dt =M |ϕ(x1)− ϕ(x0)| , (3.5)

where σ0 = dσ
dt
denotes the velocity field of a path σ.

To prove the left hand side of inequality (3.4) we first show that σ must
be contained in Px. The proof is by contradiction as follows.
Choose r0 < m

m+3M
r and �0 = Mr0 and P0 = ϕ−1[Bn(r0)] ⊂ Px. Let

σ : [t0, t1] → U be a piecewise C∞ curve such that σ(t0) = x0 and σ(t1) = x1
for x0, x1 ∈ P0. If LF (σ) ≤ dF (x0, x1) + �0 then the curve σ is certainly
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contained in Px, and since by equation (3.5) dF (x0, x1) ≤ 2Mr0 we have by
assumption that LF (σ) ≤ 3Mr0. Now if we suppose that σ is not contained
in Px, and let t0 ≤ t∗ ≤ t1 be the first instance where σ reaches the boundary
∂Px, at the point q ≡ σ(t∗), so that |ϕ(q)| = r, then:

LF (σ) ≥ LF (σ[t0,t∗]) =

Z t∗

t0

F (σ0)dt ≥ m
Z t∗

t0

|σ0|dt ≥ m|ϕ(q)−ϕ(x0)| ≥ m(r−r0) .

(3.6)
But the length of this curve would in fact be longer then the maximum

possible length of 3Mr0 < m(r− r0), since by assumption we are assured that
for m > 0 and M > 1 it is true that r0 < m

m+3M
r. Therefore σ must be con-

tained in Px.

The proof of the left hand side of inequality (3.3) follows by the same
arguments as were used to prove (3.6)¤
Given the distortion lemma for the length of the path for any two points

that belong to the compact set, we can easily derive a similar result that is
valid for the shortest distances.

Corollary 30 For a Finsler manifold (U , F ), and any point x ∈ U , let ϕ :
Px → R4n−1 be the local coordinate system diffeomorphism of a compact set Px

onto an open ball of R4n−1, such that ϕ(x) = 0. Then, for a given x0, x1 ∈ Px

and any Finsler metric F (x, y) there exist a constant minimum m > 0 and a
constant maximum M > 1 such that the following relation is true:

m|ϕ(x1)− ϕ(x0)| ≤ dF (x0, x1) ≤M |ϕ(x1)− ϕ(x0)| . (3.7)

Proof: We only need to verify the left hand side of inequality (3.3) is still
true for minimal length curves. By definition of metric distance, for 0 ≤ � ≤ �0,
two points x0, x1 ∈ P0 can be joined by a piecewise C∞ curve σ : [t0, t1] → U
with integral length:

LF (σ) ≤ dF (x0, x1) + � . (3.8)

By previous arguments, σ must lie in Px, end by similar calculations we find
that:

m|ϕ(x1)− ϕ(x0)| ≤ LF (σ) ≤ dF (x0, x1) + � , (3.9)

Letting �→ 0 proves the desired result. ¤
Lemma (29) and Corollary (30) allow us to bound the lengths on the man-

ifold to the Euclidian lengths on the tangent space. For Euclidean coordinates
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in our tangent space we will have the coefficients in the decomposition of the
gate Hamiltonian matrix in terms of the generalized Pauli matrices, n times
tensored two dimensional matrices from the set {I,X, Y, Z}.
For example, in the context of simulation, points x0, x1 ∈ Px and an open

set Px are chosen such that they correspond to the end points in the simulation
by a single gate. Moreover, we can construct a local coordinate system on the
Lie group SU(2n) which is a Lie algebra su(2n). For the origin xs ∈ U ,
define a pull back map ϕ−1 : R4n−1 → U , so that xs+1 ≡ exp−iys+1·σ xs =

exp−iϕ(xs+1)·σ xs, where σ denotes the coordinate basis, i.e. (4n−1)-component
vector whose entries are the generalized Pauli matrices.
For the particularly chosen metric, as in [4],

Fp(x0, y) ≡ Fp(y) =

vuut kX
i=1

y2i + p2
X
j 6=i

y2i ,

where k = 9(n2−n)
2

+ 3n, which introduces a penalty p for the subset of Hamil-
tonian coordinates in the tangent space, so we have:

|y| ≤ Fp(y) ≤ p|y|.

Since this relation is true on any compact set, by Corollary (30) we have:

|ϕ(xs+1)− ϕ(xs)| ≤ dFp(xs, xs+1) ≤ p|ϕ(xs+1)− ϕ(xs)| . (3.10)

It is important to note that in our analysis constants m and M do not depend
on the compact set within which each gate is applied, and they are basically
the property of the metric. This property might not be true in general for
some other Finsler structures, but for our purposes here this assumption is
very plausible.

3.4 Equivalence Result

For the sake of consistency and easier understanding, we follow the notation
from [3] and denote with mG the minimum number of gates, for a given set G,
needed to implement an arbitrary unitary U ∈ U . Moreover, in this section we
assume that the geodesic is simulated by sequential application of the gates
from the set G, and that by using a single gate from the set G we can simulate
exactly any other point in the ball B+

x0(�), i.e. which is the �−neighborhood
around the initial condition at the point x0. This is an unrealistic scenario,
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since the set of gates would need to be infinite and non-local. Hence, we
relax it in the next section. However, for the purpose of exact simulation of
the geodesic it is an important tool. Clearly consideration of the set of gates
defined in this way, as we shall see, is the best we can possibly hope for, and
thus the bounds achieved by the set G are optimal, i.e. they determine the
bounds achievable by any other set of gates that is less powerful.
For any gate used in a simulation we assign a gate index, so that eventually

the index set is s = {0, 1, 2, ...,mG − 1} for every gate in the simulation.
Moreover, by σ(t) : [0,mG]→ U we denote a minimal geodesic between σ(0) =
I, σ(mG) = U .
Note that, since U is a compact manifold with Finsler structure, all forward

and backward Cauchy sequences with respect to d must converge on U. More
precisely, compact Finsler spaces are automatically both forward complete and
backward complete. This fact holds regardless of whether the Finsler structure
is absolutely homogeneous or only positively homogeneous. Therefore, any
two points on the manifold can be connected by a minimizing geodesic, as
that property itself is a sufficient condition for the Hopf-Rinow theorem [6].

Theorem 31 Let dF (I, U) denote a length of a geodesic between I and U ∈
SU(2n). For any simulation index set s = {0, 1, 2, ...,mG − 1} let Pxs ∈ U be
an open set on the manifold that contains a segment of minimizing geodesic
σs(t) : [s, s+ 1]→ U , that is simulated exactly by a single gate. Moreover, let
Pxs be mapped by ϕ diffeomorphically onto an open ball in R4

n−1, so that ρs =
|ϕ(xs+1)− ϕ(xs)| is the Euclidean length of the image of the geodesic segment
σs. If we denote ρsup = sups ρs and ρinf = infs ρs, then the following relation
holds:

dF (I, U)

ρsupM
≤ mG ≤

dF (I, U)

ρinfm
. (3.11)

Proof: For any segment gate index from set s, by the Corollary (30) we
see that:

mρs ≤ dF (xs, xs+1) ≤Mρs ,

Summing over all segments of minimizing geodesic
Pmg−1

s=0 dF (xs, xs+1) =

dF (I, U), and taking into account that
Pmg−1

s=0 βs ≤ mGβ andmG
ρ2

β
≤
Pmg−1

s=0
ρ2s
βs
,

it is easy to see that:

mGmρinf ≤ dF (I, U) =

mg−1X
s=0

dF (xs, xs+1) ≤ mGMρsup , (3.12)
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which gives the desired result by rearranging the variables.¤
Note that the above theorem is derived in terms of bounds of the Euclidean

distances in the tangent space. One may take a different path though, as for
example Nielsen in [3], by deriving the result for the lower bound in terms of the
lengths of the geodesic segments simulated by the single gate: dF (xs, xs+1) ≤
βsup. From the following theorem, one can reproduce the result derived by
Nielsen as a special case when βsup = 1.

Theorem 32 Let dF (I, U) denote a length of a geodesic between I and U ∈
SU(2n). For any simulation index set s = {0, 1, 2, ...,mG − 1} let Pxs ∈ U be
an open set on the manifold that contains a segment of minimizing geodesic
σs(t) : [s, s + 1] → U , that is simulated exactly by a single gate. Moreover,
let Pxs be mapped by ϕ diffeomorphically onto an open ball in R4n−1, so that
ρs = |ϕ(xs+1) − ϕ(xs)| is an image of the bounded length geodesic segment
dF (xs, xs+1) ≤ βs. If we denote βsup = sups βs and βinf = infs βs, then the
following relation holds:

dF (I, U)

βsup
≤ mG ≤

M

m

dF (I, U)

βinf
. (3.13)

Proof: Following along the lines of Theorem (31):

m
βs
M
= mρs ≤ dF (xs, xs+1) ≤ βs ≡Mρs ,

Summing over all segments of minimizing geodesic
Pmg−1

s=0 dF (xs, xs+1) =

dF (I, U), and taking into account that mGβinf ≤
Pmg−1

s=0 βs ≤ mGβsup:

m

M
mGβinf ≤ dF (I, U) ≤ mGβsup , (3.14)

which gives the stated result. ¤
Equations (3.11) and (3.14) establish the tightest possible equivalence be-

tween the minimal number of gates in the circuit and geodesic length as a
function of the simulation parameters. Again, the simulation parameters may
be defined in terms of distances traversed with the single gate on the manifold
or in terms of the Euclidean distances between the initial and final coefficients
in the generalized Pauli expansion of the gate Hamiltonian. Even though the
above results give no indication as to how to implement the simulation, they
do provide us the best bounds we currently have and give us an estimate to
the quality of the simulation provided that one knows the simulation para-
meters. However, the above results can be applied to the arbitrary paths on
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the manifold including those that are generated adiabatically. In particular,
it would be very interesting to compare the results for bounds of circuit size
obtained by geometric techniques with the equivalence results obtained in [1].

3.5 Approximate simulation

In this section we reformulate the bounds for the standard circuit simu-
lation procedure where the set of gates used consists solely of the single and
two qubit gates, which are applied sequentially. Since the exact simulation of
arbitrary unitary gate by single and two qubit gates demands an exponential
number of gates, almost all unitaries simulated by the polynomial number of
gates will be simulated approximately.
In particular, we consider two paths. Let the first be dFp(I, Ũ), denoting

the length of the geodesic simulated exactly with the set of gates from G with
respect to the Finsler metric Fp , and let the second one LFp(I, Ũ) be the
minimum length path for the exact simulation of Ũ by the set of gates from
G2. Here we denote by G2 the set of unitary gates whose time independent
Hamiltonians have Hamming weight not greater than two.
Note that the lengthLFp(I, Ũ) has nothing to do with dFp(I, Ũ) , as LFp(I, Ũ)

is completely determined by the simulation, and almost everywhere does not
simulate the geodesic dFp(I, Ũ) .

Corollary 33 Let Ũ be the approximation of the unitary operation U that
is simulated by the one and two qubit gates. Then the lower bound on the
minimum circuit size m̃G2 is at most O(

n4

p
d2Fp(I, U)LFp(I, Ũ)), and the upper

bound on mG2 is at least Ω(n
4d3Fp(I, U)) .

Proof: The three step standard simulation of arbitrary U = e−iH(t)t is
elaborated in detail by Nielsen, Dowling, Gu and Doherty in [4]. The procedure
can be sketched as follows:

(1) the time variable HamiltonianH(t) is substituted by projected the Hamil-
tonianHP (t) that is formed by deleting all σi for i > k, i.e. all three- and
more-body terms in the Pauli expansion ofH(t) =

Pk
i=1 yiσi+

P
j 6=i yiσi,

where k = 9(n2−n)
2

+ 3n;

(2) the evolution due toHp(t) is broken up into many small intervals, each of
length∆, over which the time-dependent HamiltonianHp(t) is accurately
simulated by a constant mean Hamiltonian H̄∆

p ;
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(3) the mean Hamiltonian H̄∆
p that has k terms in the Pauli expansion with

coefficients |yi| ≤ 1 is simulated with a standard simulation technique
[14] using one and two qubit gates.

The reader is encouraged to see [4] for full detail of the approximation
result.
For the above procedure, since SU(2n) is compact and simply connected,

there exists a path LFp(I, Ũ) that is exactly synthesized with the gates in the
simulation. By exactly simulated we mean that the end points of each gate in
the simulation lie precisely on the path of length LFp(I, Ũ). Clearly, the length
of LFp(I, Ũ) ≥ dFp(I, U).

Now we bound length of the path segments, LFp(x̃s, x̃s+1), for each of
m̃G2 gates in the simulation. Since there exists a compact set Pxs , such that
end points x̃s, x̃s+1 ∈ Pxs , that maps diffeomorphically to the local coordi-
nate system, we can use Lemma (29) and its corollaries. Corroborating the
arguments used to derive equation (3.10), over the compact set Pxs, the
Finsler structure, i.e. the Minkowski norm for the Pauli expansion of H(t), is

Fp(xs, ys) =
qPk

i=1 y
2
i + p2

P
j 6=i y

2
i . Its minimum and maximum distortion

over the compact set Pxs are: |ys| ≤ Fp(ys) ≤ p|ys|. Therefore, by the Lemma
(29)
|ϕ(x̃s+1)− ϕ(x̃s)| ≤ LFp(x̃s, x̃s+1) ≤ p|ϕ(x̃s+1)− ϕ(x̃s)|.
The same is true for any other segment in the simulation, and hence:

mG2ρ
∆
inf ≤ LFp(I, Ũ) =

mg−1X
s=0

LFp(x̃s, x̃s+1) ≤ mG2pρ
∆
sup (3.15)

where ρ∆inf = infs |ϕ(x̃s+1)−ϕ(x̃s)|, and ρ∆sup = sups |ϕ(x̃s+1)−ϕ(x̃s)|. Note that
we can always choose the s-th gate local coordinate system so that ϕ(x̃s) = 0.
Finally, in the three-step simulation summarized above, gates at the third

stage simulate the time invariant Hamiltonian H̄∆
p for the segment ∆, with

coordinates |yi| ≤ 1. More precisely, the s-th gate simulates the neighborhood
around xs: xs+1 ≡ e−iϕ(xs+1)·σxs = e−iysσs∆

2
xs. Here σ ∈ G denotes stabilizer

basis on n qubits, σs ∈ G2, and ∆2 is the simulation time for every gate. If we
choose ∆ = Θ((n2dFp(I, U))

−1), as in [4], then for |ys| ≤ 1 we see that ρs =
|ys∆2| = Θ((n4d2Fp(I, U))

−1). Finally, using equation (3.15) we establish that
the simulation with m̃G2 gates has the upper bound

Θ(n4d2Fp(I, U)LFp(I, Ũ)) ≥ Ω(n4d3Fp(I, U)). (3.16)
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By similar arguments, for the lower bound, we get

O(
n4

p
d2Fp(I, U)LFp(I, Ũ)). (3.17)

¤

3.6 Conclusion

The Distortion Lemma and its corollary provide a general tool for relating
distances on the manifold with distances on the tangent space. In this paper
we have derived a generalized linear bounds for the exact simulation of any
path on the manifold, in terms of the minimum circuit size and the simulation
parameters.
The equivalence between the path on the manifold and circuit size still

persists in the case of approximate simulation, provided that the simulation
parameters have the appropriate scaling. However, one can not expect better
than n2 times improvement in the minimum circuit size upper bound over the
result for standard circuit simulation derived by Nielsen, Dowling, Gu and
Doherty [4].
Moreover, if one defines a metric on the manifold that penalizes the hard-

to-simulate directions on the tangent space with high cost, that cost is, in
effect, translated to the increased ratio between upper and lower bound in
minimum circuit size.
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Chapter 4

Complete Characterization of
Mixing Time for the Continuous
Quantum Walk on the
Hypercube with Markovian
Decoherence Model

The n-dimensional hypercube quantum random walk (QRW) is a partic-
ularly appealing example of a quantum walk because it has a natural imple-
mentation on a register on n qubits. However, any real implementation will
encounter decoherence effects due to interactions with uncontrollable degrees
of freedom. We present a complete characterization of the mixing properties
of the hypercube QRW under a physically relevant Markovian decoherence
model. In the local decoherence model considered the non-unitary dynamics
are modeled as a sum of projections on individual qubits to an arbitrary direc-
tion on the Bloch sphere. We prove that there is always classical (asymptotic)
mixing in this model and specify the conditions under which instantaneous
mixing always exists. And we show that the latter mixing property, as well as
the classical mixing time, depend heavily on the exact environmental interac-
tion and its strength. Therefore, algorithmic applications of the QRW on the
hypercube, if they intend to employ mixing properties, need to consider both
the walk dynamics and the precise decoherence model.
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4.1 Introduction, PreviousWork, and OurWork

Quantum walks [1] play a prominent role in the design of quantum algo-
rithms. Their distinction from classical random walks lies in their potentially
faster mixing and hitting times. The underlying dynamics of quantum walks
can be either continuous or discrete, and even though these two represen-
tations have some properties in common, analysis usually demands different
techniques and tools. Despite their different origins, discrete and continuous
time quantum walks can be precisely related to each another [41].
The theoretical properties of quantum walks on general graphs have been

outlined in Ref. [10], and the remarkable result by Szegedy [9] explains a
general framework for the proper quantization of any Markov chain algorithm.
. The dynamics of quantum walks have been analyzed, for example, on the
line [11], circle [12], hyperlattice [13] and hypercube [14]. Shenvi et. al. [7]
proved that the discrete quantum walk can be used in a search algorithm
and Ambainis used it for the best known algorithm for element distinctness
[8]. The continuous-time quantum walk was originally proposed by Childs,
Farhi and Guttman [4, 5] as an algorithmic primitive. Childs et. al. used
a quantum walk to prove the best known results for the separation between
quantum and classical query complexity [6], and a highly efficient algorithm
for NAND formula evaluation [42].
Central to the algorithmic application of both classical and quantum ran-

dom walks are their mixing characteristics. For a classical random walk that
has a unique steady state, the mixing time characterizes the convergence of
the walk to this steady state. In the quantum case, unitarity prevents the walk
from reaching a steady state. This has led to alternative notions of mixing for
quantum walks. One is to define an instantaneous mixing time, as the first
instant the probability distribution of the walker’s location on the graph is
�-close to the uniform distribution. Another sensible definition for the mixing
time of a continuous quantum walk, although one that is depend on the initial
state, is based on a limiting value of a time-averaged probability distribution
[10].
Quantum systems are very susceptible to imperfections and interactions

with their environment, both of which cause decoherence. Sufficient decoher-
ence can remove any potential benefits from the quantum dynamics. Investiga-
tions to date have either used Markovian models for the environment, with the
environment monitoring the walker position or state of the ‘coin’ driving the
walk [16, 17, 18, 19, 20, 21, 20]; or imperfect evolution [22, 23, 24, 25, 26, 30],
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such as broken edges.
While decoherence is nominally the nemesis of quantum information process-

ing, it has been argued that decoherence can in fact be ‘useful’ in the context
of quantum walks [16]. Decoherence can be used to force a quantum walk to
mix to a uniform distribution, and in this paper we will illustrate this for the
quantum walk on the hypercube. Similar results have been shown for quan-
tum walks on the line [16] and N-cycle [28] using weak measurements of the
walker’s position.
In ref. [30], Marquezino et al. examined the discrete-time quantum walk

on the hypercube, and derived the limiting time-averaged distribution in the
coherent case (no decoherence). The mixing behavior, both to this distribution
and the uniform distribution, were considered for a coherent walk as well as
under the decohering effects of randomly breaking links in the network. In the
decoherent case, the walk was shown to approach the uniform distribution.
Interestingly there is an optimal decoherence rate which provides the fastest
convergence. A similar effect was found for the N-cycle in [16]. Below we
show that this can also be true for the continuous-time quantum walk on the
hypercube, but not always.
Hitting times 1 and instantaneous mixing times for the continuous-time

version of the hypercube quantum walk with decoherence were calculated re-
cently by Alagic and Russell [21]. Analytical results were derived by exploiting
the representation of the quantum walk on the hypercube as a set of non-
interacting qubits; a simple example of how spin networks may be mapped to
quantum walks [31]. The decoherence model was claimed to be the continuous-
time analogue of weak position measurements in the discrete-time case, but
was in fact an analogue of single-qubit, computational-basis measurements (for
a discussion of this see [32]). We extend these results and provide a complete
characterization of the mixing time in terms of the decoherence intensity and
projection direction. In our case the projection direction of the decoherence
operator can be in any arbitrary direction in contrast to the previous analy-
sis which was restricted to decoherence in the computational basis {|0i, |1i}.
Moreover, we show that randomizing the direction of decoherence leads to
the depolarization channel that, regardless of the decoherence intensity, shows
universal mixing behavior.
The paper is organized as follows: we first describe the quantum walk on

the hypercube and its mapping to a register of qubits in section 4.2. Then in
section 4.3 we introduce our decoherence model and explicitly show that it is

1The hitting time is defined as the first time a given vertex, or set of such, is reached.
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the continuous-time analogue of the standard discrete-time projection model.
The definitions of various mixing times are introduced formally in section 4.4.
With our quantum walk and decoherence model the hypercube quantum walk
is separable as a product over single qubits, and we need only consider single
qubit dynamics, which we discuss in section 4.5. Analysis of simple channels,
randomized projections and numerical results are presented as subsections of
section 4.5.

4.2 Quantum Walk on the Hypercube

Continuous-time quantum walks [4] are defined over an undirected graph
with N ≡ 2n nodes, each labelled by an integer i ∈ [0, N − 1]. These walks
can in general be described by the Hamiltonian

Ĥs =
X
[ij]

∆ij(t)
³
ĉ†i ĉj + ĉiĉ

†
j

´
+
X
j

�j(t)ĉ
†
j ĉj,

≡
X
[ij]

∆ij(t) (|iihj|+ |jihi|) +
X
j

�j(t)|jihj|, (4.1)

where each node i corresponds to the quantum state, |ii = ĉ†i |0i, and [ij]
denotes connected nodes i and j. The state |ii thus corresponds to a ‘particle’
located at node i. The first term in (4.1) is a ‘hopping’ term with amplitude
∆ij(t) between nodes i and j; the second describes ‘on-site’ node energies �j(t).
Both these terms can depend on time. One can simplify (4.1) by dropping all
the on-site energies, and by making all the internode hopping matrix elements
the same, i.e., ∆ij → ∆,∀{i, j}.
The structure of a hypercube is particularly appealing; it is an n−regular

graph that is the underlying model for many computational problems. The
nodes of this graph can be represented as basis vectors |vi ∈ {|1i, |0i}⊗n in
C2n dimensional Hilbert space — the same Hilbert space describing n qubits.
Each node is labelled by a binary string representing a multi-qubit state, i.e.
|�zi ≡ |z1z2 . . . zni = |z1i ⊗ |z2i ⊗ . . . ⊗ |zni, where the z0is are 0 or 1; pairs
of nodes with a Hamming distance of 1 (the number of bits that must be
flipped to obtain one from the other) are connected to give the hypercube. In
this way n qubits describe a quantum walk over a N-dimensional hypercube,
which takes place in information space. This is described by the simple qubit
Hamiltonian

H = ∆
nX
i=1

σ̂ix, (4.2)
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representing a set of non-interacting qubits, each evolving under σ̂x.
In this case the unitary dynamics is trivially solvable; for the walker ini-

tialized at the �z = �0 corner, the probability of being at some site �z is

P�z(t) ≡ h�z|((t)|�zi = cos2n0(∆t) sin2n1(∆t), (4.3)

where n0 is the number of 0’s, and n1 the number of 1’s appearing in �z, and
((t) = e−iHt|�z = 0ih�z = 0|eiHt is the density matrix of the qubit register at
time t.
This mapping to a qubit model is not only useful conceptually, but it

is highly suggestive of a potential physical implementation of the hypercube
quantum walk. If the system is not closed and it is exposed to measurement
or an environment that it interacts with, the quantum dynamics is in general
far more complicated and we will examine this now.

4.3 Decoherence Model

Previous studies of decoherence in quantum walks have mainly focused
upon discrete-time quantum walks where decoherence has been modelled as a
sequence of weak measurements on the walker [16, 15, 17, 18]. When the result
of the measurement is ignored (i.e. lost to the environment), the nonunitary
process is described by:

(n+1 = (1− p)Û(nÛ
† + p

X
α

Mα(Û(nÛ
†)M †

α, (4.4)

where the measurement is given by the POVM {Mα}, such that
P

αMα = 1

and Mα ≥ 0, occurring with probability p at each time step; Û describes
the unitary evolution of the quantum walk. This model is equivalent to a
memoryless environment, unperturbed by the system. We will consider the
continuous-time analogue of this process, which we derive below.
Claim: The discrete-time weak measurement model of the system dynam-

ics,
(t+τ = (1− γτ)Uτ(tU

†
τ + γτ

X
α

Mα[Uτ(tU
†
τ ]M

†
α , (4.5)

is equivalent, in the limit τ → 0 to the master equation

(̇(t) = −i[H, ((t)] + γ
X
α

D[Mα]((t) , (4.6)



87

if the measurement rate γ is such that for a time-step of duration τ , p =
γτ , unitary evolution Ûτ = exp (−iHτ). Here the superoperator D[X]( ≡
X((t)X† − 1

2

¡
X†X((t) + ((t)X†X

¢
for any operator X.

Proof: For small τ we expand the exponential to first-order such that
Eq. (4.5) becomes

(t+τ = (1− γτ)(1− iτH)(t(1+ iτH) (4.7)

+γτ
X
α

Mα(1− iτH)(t(1+ iτH)M †
α (4.8)

= (t + iτ(tH − iτH(t − γτ(t + γτ
X
α

Mα(tM
†
α (4.9)

= (t + iτ(tH − iτH(t (4.10)

+γτ
X
α

µ
Mα(tM

†
α −

1

2
M†

αMα(t −
1

2
(tM

†
αMα

¶
. (4.11)

Dividing by τ we obtain,

(t+τ − (t
τ

= −i[H, (t] + γ
X
α

µ
Mα(tM

†
α −

1

2
[M †

αMα(t − (tM
†
αMα]

¶
, (4.12)

then taking the limit τ → 0,

(̇(t) = −i[H, ((t)] (4.13)

+γ
X
α

µ
Mα((t)M

†
α −

1

2
[M †

αMα((t)− ((t)M†
αMα]

¶
(4.14)

= −i[H, ((t)] + γ
X
α

D[Mα]((t) , (4.15)

as claimed.¥
The interaction between the system and the environment can be repre-

sented in various ways, through the choice of the set of {Mα}. In the quantum
walk literature, the standard choice is the walker location, i.e. Mα = |iihi| =
Pi, the projectors onto the graph node states. In their analysis of the quantum
walk on the hypercube, this is what [21] claim to consider. However, when
the quantum walk on the hypercube is implemented via a set of qubits, as we
describe here, position measurements corresponds to a computational basis
measurement of the state of every qubit simultaneously. This implies a physi-
cally unrealistic, multi-qubit measurement/interaction with the environment.
If the quantum walk were to be implemented using a qubit register, a more

physically realistic decoherence process is described by single-qubit projective
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measurements. The obvious choice, as an analogue to the location measure-
ments, are measurements that are projections onto single qubit computational
basis states; this is the choice considered in [21]. We can generalize this to
single-qubit projective measurements onto arbitrary antipodal points on the
Bloch sphere. We express this as:

P0(−→r ) =
I+−→r · �σ

2

≡ I+ (sin θ cosϕ)σx + (sin θ sinϕ)σy + (cos θ)σz
2

∈ C2×2 ,(4.16)

P1(−→r ) =
I−−→r · �σ

2
(4.17)

≡ I− (sin θ cosϕ)σx − (sin θ sinϕ)σy − (cos θ)σz
2

∈ C2×2 ,(4.18)

where I is the two-dimensional identity matrix,
−→r = (rx, ry, rz) = (sin θ cosϕ, sin θ sinϕ, cos θ),

for θ ∈ [0, π], ϕ ∈ [0, 2π], defines what we refer to as the “decoherence axis”
or measurement projection direction. By �σ = (σx, σy, σz) we denote the three
dimensional matrix vector composed of the three nontrivial Pauli matrices.
This decoherence model is a generalization of what has been referred to as the
subspace projection decoherence model [3].
The continuous quantum walk described by the master equation (4.6), with

Hamiltonian (4.2) and

Mk
α = I⊗ . . .⊗ Pα(−→r )⊗ . . .⊗ I, (4.19)

where α = {0, 1} and the projector is on the kth qubit. Note that
P

αM
k
α =

I⊗n. The qubit register evolution equation can then be written as:

(̇(t) =
nX

k=1

−i∆
£
σkx, ((t)

¤
+ γ

nX
k=1

1X
α=0

D
£
Mk

α

¤
((t). (4.20)

This can alternatively be written as:

(̇(t) =
nX

k=1

−i∆
£
σkx, ((t)

¤
+

γ

2

nX
k=1

D
£−→r · �σk

¤
((t), (4.21)

where the sum is over qubits. None of the qubits are interacting and therefore
this master equation has a separability property that allows us to treat the
dynamics as n single qubit density matrices undergoing the evolution:

ρ̇k(t) = −i∆ [σx, ρk(t)] +
γ

2
D
£−→r · �σ¤ ρk(t), (4.22)
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and ( =
Nn

k=1 ρk. See the addendum for an explicit derivation of this. This
property allows one to analyze the full system dynamics by looking at single
qubit dynamics, since the dynamics of the system is just the direct sum of the
dynamics of individual, non-interacting qubits. Furthermore, the evolution
equation for ρk is the same for all k, and so we will drop the subscript when
referring to single qubit dynamics.
We will investigate how the changes in the single qubit dynamics affect

properties of the quantum walk on the hypercube. After formally defining
the mixing time of a quantum walk in the next section, we provide a com-
plete characterization of the mixing time in terms of the quantum channel in
Eq. (4.22), i.e. dependence on the physical rates and the direction of the
decoherence axis, −→r 2.

4.4 Mixing Time

To identify the physical quantities of interest, we return to a principal mo-
tivation for considering random walks (quantum or classical). In computer
science, the most efficient solution to many problems is given by a proba-
bilistic algorithm, where the correct answer is attained with high-probability
if the space of solutions is sampled with a well-chosen sampling distribution.
Generating the correct sampling distribution is often a matter of mapping the
uniform distribution into the desired one, and therefore generating a truly
uniform distribution is an important problem.
There are several different definitions in the literature that have been used

as a measure of mixing time. For completeness will briefly list them all here.
For our purposes the notions of instantaneous mixing and classical mixing will
be the most important ones.
Instantaneous mixing is defined as the first time instant at which the prob-

ability distribution of the walker’s position is sufficiently close to uniform dis-
tribution:

Minst,ε = min{t | ||P (x, t)− Pu||tv < ε} (4.23)

where P (x, t) is the probability of obtaining element x ∈ X (X is the space of
events we are sampling from, which in the case of random walks is the space
of the walker location parameter) at time t, and Pu is the uniform distribution
over X . || · ||tv is the total variation distance over probability distributions (we

2Note that varying −→r is equivalent to changing the basis in which node states are encoded
while the decoherence axis is kept fixed.



90

will restrict our attention to finite sample spaces). This definition is mostly
used in idealized continuous quantum random walks where no decoherence
effects are present. Although formally present by this definition, mixing in
continuous quantum random walks without decoherence is only an instanta-
neous phenomenon. The ability to harness this instantaneous mixing is still
questionable.
Average mixing is based on the time-averaged probability distribution, that

even for unitary quantum walks is shown to converge [10]. In the continuous-
time case the time-averaged probability distribution for the state x is defined
as:

P̄ (x, τ) =
1

τ

Z τ

0

P (x, t)dt , (4.24)

We can define the corresponding time-averaged mixing as:

Mavg,ε = min{T | ∀τ > T : ||P̄ (x, τ)− Pu||tv < ε}. (4.25)

This time-averaged distribution can be sampled from by selecting t uniformly
in [0, T ], running the quantum walk for time t, and measuring the walker
position.
Classical (asymptotic) mixing is the quantity originally used in classical

random walks and it defines mixing as the time after which the register’s
distribution is desirably close to uniform:

Mclass,ε = min{T | ∀t > T : ||P (x, t)− Pu||tv < ε} (4.26)

This definition characterizes the time it takes for the probability of finding the
walker at a particular location to be distributed uniformly across the entire
sample space, X .
The mixing time is a well defined quantity for classical random walks be-

cause there exists a stationary distribution for classical random walks over any
connected, non-bipartite graph [37], however for continuous quantum walks
this is not necessarily the case; unitary dynamics means the probability dis-
tribution over the graph nodes oscillates, and therefore never converges to the
uniform distribution. We shall return to this issue below. But first, let us
examine the total variational distance in the context of a quantum walk on a
hypercube.
For a hypercube quantum walk implemented using qubits, the walker loca-

tion is encoded into the value of the qubit register in the computational basis.
Therefore, the sample space in this case is the space of binary strings of length
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n, and the probability of measuring any register value (walker “location"), �z
is:

P (x, t) = (1− p0(t))
kp0(t)

n−k (4.27)

where k is the Hamming weight of the binary string �z (i.e. number of ones in
�z), and p0(t) is the probability of a qubit value being 0 at time t. Note that:

p0(t) =
1 + hσz(t)i

2

where hA (t)i ≡ tr(Aρ(t)) for any operator A. The total variational distance
in this case is:

||P (�z, t)− Pu||tv =
X
�z

|P (�z, t)− 1

2n
|

=
X
k

µ
n

k

¶
|(1− p0(t))

kp0(t)
n−k − 1

2n
| (4.28)

We can bound this variational distance using the Hellinger distance on dis-
tributions [21]. The Hellinger distance, for two distributions P(x) and Q(x)
(both defined over the same sample space X ), is defined as:

H(P,Q)2 =
X
x

[
p
P(x)−

p
Q(x)]2 = 1−

X
x

p
P(x)Q(x) (4.29)

Its usefulness for us comes from its relation to the total variational distance:

||P −Q||tv ≤ 2H(P,Q) ≤ 2||P −Q||1/2tv (4.30)

Therefore in our case,

||P (�z, t)− Pu||2tv ≤ 4H(P (�z, t), Pu)
2

= 4− 4
X
�z

r
P (�z, t)

1

2n

= 4− 4
X
k

µ
n

k

¶r
(1− p0(t))kp0(t)n−k

2n
(4.31)

= 4− 4
Ãr

1− p0(t)

2
+

r
p0(t)

2

!n

= 4

∙
1− 1

2n

³p
1− hσz(t)i+

p
1 + hσz(t)i

´n¸
(4.32)

Note that this is a positive quantity because we only take the positive branch
of the square roots, and it attains its minimum value of zero when hσz(t)i = 0.
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Furthermore, from this bound we see that the variational distance for the
distribution of the register of n qubits (from the uniform distribution) is small
exactly when the variational distance for the distribution of a single qubit is
small. In fact, when hσzi is small, we can expand the square roots to second
order in this quantity to get:

||P (�z, t)− Pu||2tv ≤ 4− 4
µ
1− hσz(t)i

2

8

¶n

(4.33)

Given this fact, we will concentrate on the distribution for a single qubit in the
following, and appeal to the fact that the variational distance for the entire
register from the uniform distribution is small precisely when hσz(t)i2 is small
for a single qubit.

4.5 Single-qubit dynamics

In order to solve for the single qubit dynamics we use the following para-
metrization of the single qubit density operator,

ρ(t) =
1

2

µ
1 + hσz(t)i hσx(t)i− ihσy(t)i

hσx(t)i+ ihσy(t)i 1− hσz(t)i

¶
, (4.34)

This operator is completely described by the Bloch vector

h�σi = (hσxi, hσyi, hσzi) ≡ (x, y, z).

We can then derive the matrix equation for the Bloch vector of a single qubit
when the evolution is given by Eq. (4.22), repeated here for clarity:

ρ̇(t) = −i∆ [σx, ρ(t)]−
γ

2
ρ(t) +

γ

2
(r · σ) ρ(t) (r · σ)† . (4.35)

Multiplying this equation by each of the Pauli matrices and taking the trace
we obtain the 3× 3 parametrized linear system equation:

h−→̇σ (t)i ≡ d

dt
tr(−→σ ρ(t)) = tr(−→σ ρ̇(t)) = Ah−→σ (t)i , (4.36)

where,

A =

⎛⎝ γ(r2x − 1) γrxry γrxrz
γrxry γ(r2y − 1) γryrz − 2∆
γrxrz γryrz + 2∆ γ(r2z − 1)

⎞⎠ . (4.37)



93

The solution of this system is h−→σ (t)i = exp(At)h−→σ (0)i, where h−→σ (0)i is the
Bloch vector of the initial state |0i. The dynamics of the qubit, and in turn
the entire register implementing the quantum walk, is completely determined
by the properties the matrix A. We now examine the key properties of this
matrix.
Firstly, by the Routh-Hurwitz criterion [27], the matrix A has eigenvalues

that lie in the left half of the complex plane for positive γ,∆ and all deco-
herence axes except for when rx = 1. This singular case represents a channel
where the Hamiltonian dynamics and the decoherence dynamics commute.
This case is easy to solve for explicitly (we present the solution in 4.5.1) and
the dynamics for it are fairly uninteresting. For all other parameter regimes,
the Routh-Hurwitz criterion tells us that Eq. (4.36) is a strictly stable system.
The eigenvalues of A can be determined from its characteristic equation:

λ3 + 2γλ2 + (γ2 + 4∆2)λ+ 4γ∆2(1− r2x) = 0 (4.38)

Interestingly the eigenvalues depend only on rx, γ,∆. The most convenient
form for the solutions to this cubic equation can be found by mapping the
equation into a third order Chebyshev polynomial and using the Chebyshev
cube root. Then the solution can be written in closed form as:

λ1 = 2

r
γ2 − 12∆2

9
cos(

1

3
arccos(m))− 2γ

3
(4.39)

λ2 = −2
r

γ2 − 12∆2

9
cos(

1

3
arccos(−m))− 2γ

3
λ3 = −λ1 − λ2 − 2γ, (4.40)

where
m =

γ

(γ2 − 12∆2)3/2
(γ2 + 18∆2(3r2x − 1))). (4.41)

These eigenvalues fall into one of two classes, depending on the values of
γ,∆,and −→r : one real and two imaginary eigenvalues, or three (with possible
repetitions) real eigenvalues.
A is not a symmetric matrix and is therefore not generally diagonalizable.

A could be not diagonalizable if it has repeated eigenvalues (i.e. a degenerate
eigenspace). We will see below when we perform a more detailed analysis of
the eigenvalues of A that this only occurs in a vanishingly small parameter
range which will not be of interest to us. Therefore we will effectively treat A
as diagonalizable.
Given these properties of the matrixA, let us return to the mixing behavior

of a single qubit under the dynamics given by Eq. (4.36). Assuming that the
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initial state of the whole register of the system is in the state |0i⊗n at t = 0
the hσz(t)i component of each individual qubit is:

hσz(t)i = (0 0 1)eAth−→σ (0)i = (0 0 1)eAt(0 0 1)T =
¡
eAt
¢
33

(4.42)

For diagonalizable A, with eigenvalues λj, eAt can be written as:

eAt =
3X

j=1

eλjt
Y
k 6=j

A− λkI
λj − λk

, (4.43)

Using this expansion,

hσz(t)i =
X

π(λ1,λ2,λ3)

eλπ1 t

(λπ1 − λπ2 )(λπ1 − λπ3 )

∙
−4∆2 + γ2(1− r2z)

+(λπ2 + λπ3 )γ(1− r2z) + λπ2λπ3

¸
(4.44)

where π(λ1,λ2, λ3) denotes the three cyclic permutations of (λ1, λ2, λ3). From
this expression, we can see that hσz(t)i depends on all the free parameters in
the system: rx, rz, γ,∆ (even though the eigenvalues only depend on rx, γ and
∆).
This expression for hσzi(t) tells us something crucial about the QRW. The

exponential envelopes eλπ1 t, and the fact that A is a strictly stable matrix
(has eigenvalues in the left half of the complex plane), imply that hσzi t→∞−−−→ 0.
Hence, by Eq. (4.33), the limiting distribution for the quantum walk for all
−→r and γ > 0 is the uniform distribution. Thus, the decoherence ensures that
the random walk mixes to uniform given sufficient time. This is the reason the
notion of average mixing time is not interesting or necessary in the presence
of decoherence.
Finally, we note that although the above convergence argument was for

the particular initial state, |0i⊗n, the strict stability of the dynamical matrix
A (for all parameters except rx = 1) allows us to state more generally that
there is an initial state independent steady state h−→σ i t→∞−−−→ 0, which of course
implies hσzi t→∞−−−→ 0.

4.5.1 Special Cases: Simple Channels

In this section, to illustrate the utility of our approach we exactly solve the
dynamics for several simple single-qubit channels.
For rx = 0, the dynamics is described by the matrix

A =

⎛⎝ −γ 0 0

0 γ(r2y − 1) γryrz − 2∆
0 γryrz + 2∆ γ(r2z − 1)

⎞⎠ . (4.45)



95

So hσx(t)i = e−γthσx(0)i, and we have a pair of coupled linear differential
equations describing the motion in the y-z plane. The motion in this plane
is analogous to a damped simple harmonic oscillator with natural frequency
2∆ and damping rate γ; for γ < 4∆ the system is underdamped, resulting
in decaying oscillations around the origin, while in the overdamped regime,
γ > 4∆, we see exponential decay. In analyzing the mixing properties of
the hypercube quantum walk, we need only consider the behavior of the z-
component of the Bloch vector. When the initial state is h−→σ (0)i = (0, 0, 1)T ,
in the underdamped case, γ < 4∆, we have,

hσz(t)i = e−γt/2
µ
cosωt+

γ(2r2z − 1)
2ω

sinωt

¶
. (4.46)

where ω ≡
p
|γ2 − 16∆2|/2. In the overdamped regime, γ > 4∆,

hσz(t)i =
1p

γ2 − 16∆2

¡
(λ+ + γr2z)e

λ+t − (λ− + γr2z)e
λ−t
¢
, (4.47)

where λ± = (−γ ±
p
γ2 − 16∆2)/2. Finally, in the critically damped case

γ = 4∆, hσz(t)i = (2∆(2r2z − 1)t+ 1) e−2∆t.
This result applies to two standard, single-qubit decoherence channels [33];

the phase-flip, or dephasing, channel where −→r = (0, 0, 1) and the bit-phase-flip
channel −→r = (0, 1, 0).
In the opposite case, where −→r = (1, 0, 0) (the bit-flip channel),

A =

⎛⎝ 0 0 0

0 −γ −2∆
0 2∆ −γ

⎞⎠ , (4.48)

and the solution for z(t) ,with initial condition h−→σ (0)i = (0, 0, 1)T , is simply
hσz(t)i = e−γt cos 2∆t. (4.49)

Finally we examine the depolarizing channel [33], which although is not
an instance of the class of channels described by (4.22), can be obtained by a
randomization of such channels (see the Addendum for the detailed derivation
of this). The depolarization channel corresponds to a randomization of the
decoherence axis, −→r , and is described by a dynamical matrix:

A =

⎛⎝ −2γ3 0 0

0 −2γ
3
−2∆

0 2∆ −2γ
3

⎞⎠ . (4.50)

The solution for the z-component is:

hσz(t)i = e−
2γ
3
t cos 2∆t. (4.51)
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4.5.2 The Complete Classification of Mixing Behavior

For dynamics under a general single qubit channel, the convergence of the
hσz (t)i to the limiting value 0 can be essentially of two different types, depend-
ing on the eigenvalues of A: exponential decay or dampened oscillator decay.
We now characterize the type of decay in terms of the physical parameters of
the qubit model, and then use the decay types to make conclusions about the
mixing properties of the quantum walk.
As we have already seen the characteristic equation for the matrix A is:

λ3 + 2γλ2 + (γ2 + 4∆2)λ+ 4γ∆2η = 0, (4.52)

denoting η ≡ 1− r2x. For a cubic equation with real coefficients the solutions
are either: (1) three real, possibly repeated, roots, or (2) one real root and
two complex conjugate roots. According to Eq. (4.44) these two classes of
roots give rise to two fundamentally different types of convergence of hσzi(t)
to zero: exponential decay or dampened oscillator decay. To determine the
parameter dependence of these two types of convergence behavior, we can use
the discriminant of (4.52):

Λ(η) = 432γ2∆4η2− (16γ4∆2+576γ2∆4)η+(4(γ2+4∆2)3− 4γ2(γ2+4∆2)2).

(4.53)
There are two fundamentally distinct parameter regions:

(i) (Zeno region) Λ(η) ≤ 0⇒ 3 real roots, that are distinct unless,

Λ(η) = 0, in which case either two or all three are repeated,

(ii) (no-Zeno region) Λ(η) > 0⇒ 1 real root and 2 complex conjugate roots
.

The reason for the names for the two regions, Zeno and no-Zeno, will
become clear when we examine the mixing behavior of random walks with
dynamics prescribed by a dynamical matrix A that lies in one of the above
regions. First, let us define the border between the Zeno and no-Zeno regions
in terms of the parameters rx, γ and ∆. This border is defined by the values
where the discriminant equals zero:

Λ(η) = 0⇔ η =
2

3
+

γ2

54∆2
±

q
(γ2 − 12∆2)3

54γ∆2
; (4.54)
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Figure 4.1: Eigenvalue regions of the matrix A in parameter space. (Right
Fig.) Phase diagram for eigenvalues of the dynamical matrix A. The red
(shaded) region indicates where eigenvalues are purely real, or what is referred
to as the Zeno-region in the main text. (Left and Center Fig.) r-space diagram
of eigenvalue types for matrix A when γ

∆
=
√
15 and γ

∆
=
√
20 respectively.

When γ <
√
12∆ the equation Λ(η) = 0 has no real solutions, and therefore

we cannot have repeated roots in this parameter range. On the other hand,
when γ ≥

√
12∆ we have two real values for η that define the upper and

lower boundary of the no-Zeno parameter region. Since η ≡ 1− r2x we get the
following expressions:

− for
√
12∆ ≤ γ ≤ 4∆, repeated eigenvalues when (4.55)

rx = ±

vuut1

3
− γ2

54∆2
±

q
(γ2 − 12∆2)3

54γ∆2
; (4.56)

− for γ > 4∆, repeated eigenvalues when (4.57)

rx = ±

vuut1

3
− γ2

54∆2
+

q
(γ2 − 12∆2)3

54γ∆2
. (4.58)

Mathematically, the change in behavior at 4∆ exists because the minus
branch of the expression under the square root in equation (4.55) becomes
imaginary. The phase diagram in Fig. 4.1 shows the eigenvalue regimes as a
function of the parameter ratio γ/∆. Also, in this figure we explicitly show
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the regions in −→r -space corresponding to the two eigenvalue regimes for two
specific values of γ/∆ :

√
15 and

√
20.

From this information about the eigenvalue phase diagram, we can make
the following conclusions about the mixing behavior for various parameter
regimes:

(i) for γ <
√
12∆ we have weak decoherence, so that for all decoherence axes

(all −→r ) we have a pair of complex conjugate eigenvalues and therefore
both instantaneous and classical mixing.

(ii) for γ ≥
√
12∆ and the decoherence projection direction rx is such that

|rx| ≤
r

1
3
− γ2

54∆2 +

√
(γ2−12∆2)3

54γ∆2 we have two subcases:

(a) if
√
12∆ ≤ γ ≤ 4∆ and decoherence projection direction rx also

such that |rx| ≥
r

1
3
− γ2

54∆2 −
√
(γ2−12∆2)3

54γ∆2 then all eigenvalues are

real, possibly repeated. There is no oscillatory behavior in hσzi(t),
and therefore no instantaneous mixing time exists. However, the
walk of course has a classical mixing time as hσzi t→∞−−−→ 0.

(b) if γ > 4∆ all eigenvalues are real, possibly repeated. There is
no oscillatory behavior in hσzi(t), and therefore no instantaneous
mixing time exists. However, the walk of course has a classical
mixing time as hσzi t→∞−−−→ 0.

(iii) for γ ≥
√
12∆ and decoherence projection direction rx is such that it

does not satisfy the conditions from (ii) and (ii-a) then we have a pair
of complex conjugate eigenvalues and therefore both instantaneous and
classical mixing.

The fact that no finite instantaneous mixing time exists when all eigenval-
ues are real (for their restricted decoherence model) was interpreted by Alagic
and Russell [21] as an analogue of the Zeno effect where the quantum evolution
of a system is hindered by its strong interaction with an environment [38]. Fol-
lowing this, we refer to the region where no instantaneous mixing time exists —
i.e. regime (ii) above where all eigenvalues of A are real — as the Zeno-region,
and the remainder of (γ,∆,−→r ) parameter space as the no-Zeno region.
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4.5.3 Numerical simulations

In this section we numerically evaluate hσzi(t) and calculate the classical
mixing time for several parameter values and ε = 0.001. These simulations are
summarized in Fig. 4.2 which show mixing time for all values of −→r and three
values of the physical parameter ratio γ/∆. We make several observations
from these plots:

• The mixing time can vary considerably as −→r is varied. Although the
change in mixing time is generally smooth with changes in −→r , there
are regions where the change is abrupt (e.g. around rx = ±1 when
γ/∆ = 1). This implies that the mixing time can potentially change
drastically with the exact value of −→r . Hence it is very important to
characterize the decoherence process accurately for determining mixing
properties. A similar conclusion was arrived at by Strauch in Ref. [3]
where he demonstrates that mixing behavior differs greatly depending
on the decoherence model chosen.

• The range of mixing times on the −→r -sphere is smallest when γ/∆ ≈ 1.
The range of mixing time diverges when this parameter ratio is very large
or very small. This suggests an optimal γ/∆ parameter ratio where
the interplay between Hamiltonian dynamics and decoherence is such
that decoherence in any direction yields small mixing times. We will
investigate this more thoroughly in the next section.

• In the Hamiltonian dominated regime, where γ/∆ < 1, we have fast
mixing near the rx axis but long mixing times in the ry − rz plane.

• In the decoherence dominated regime, where γ/∆ > 1, we have fairly
similar mixing times across nearly all values of −→r except for a small
region around −→r = (±1, 0, 0). The size of this region shrinks as γ/∆
increases, but the value of the mixing time in this region grows with the
same parameter. However, note that when the decoherence is exactly
along the rx axis we have very short mixing times as evident from the
exact solution given by Eq. (refeq::Xbit-dep) for this case.

4.5.4 Optimal decoherence rate

The numerical simulations presented in the last section suggested that the
smallest mixing time is achieved for a non-zero value of γ/∆. The simulations
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Figure 4.2: Variation of single qubit mixing times with decoherence axis for
several values of γ

∆
. The color at each point on the Bloch sphere corresponds

to the mixing time for single qubit dynamics when the decoherence vector is
(rx, ry, rz). The mixing times are in units of ∆ and are calculated for � =
0.001. Note that hσzi(t) is invariant under negation of any coordinate of the
decoherence axis (rx → −rx, ry → −ry, rz → −rz), and so the portions of the
sphere that cannot be seen can be inferred. Figures are for γ

∆
= {0.01, 1, 5}

respectively from left to right.

also suggested that the optimal γ/∆ is around the critical ratio γ/∆ = 1.
These observations match with Kendon and Tregenna’s conclusions in Ref.
[16] where they showed that some amount of decoherence can lead to faster
mixing of quantum walks on a line and cycle, and faster hitting times of the
quantum walk on a hypercube. Here we fully characterize the scaling of mixing
time with decoherence rate (for the hypercube quantum walk) by numerically
evaluating the mixing time for several fixed decoherence axes. Figure 4.3 shows
how the mixing time varies with γ/∆ for several choices of −→r . In general, the
curves are similar for any latitude in −→r -space, that is, for any fixed θ. For
a given θ the mixing time versus γ/∆ curves (for various φ) show maximum
variation when θ = π/2 (i.e. when −→r is in the x − y plane). Therefore we
have shown these curves on a separate plot in Fig. 4.3.
The notion of an optimal ratio γ/∆ is accurate for nearly all decoherence

axes. And for nearly all decoherence axes, this optimal value is in the range
1 < γ/∆ < 5. However, when −→r is in the x−y plane, there is no finite optimal
value for γ/∆; the mixing time decreases continuously as γ/∆ is increased for
−→r in the x − y plane. We can gain intuition about this result by viewing
the decoherence as a localizing phenomenon — it tends to localize the qubit
state along the axis (on its Bloch sphere) defined by −→r vector. And the
larger γ/∆ is, the faster this localization happens. For a qubit localized in the
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Figure 4.3: Log scaling of single qubit mixing time with the physical parameter
ratio γ

∆
. The mixing time curves are shown for several values of θ and ϕ, the

two angular parameters of the decoherence axis. This figure shows mixing
time curves vs. γ

∆
for 0 ≤ θ < π/2. We primarily only show curves for ϕ = 0

in this parameter range for θ, because the behavior of mixing time as γ
∆
→ 0

and γ
∆
→∞. As θ → π/2 these curves show more variation with ϕ, but they

maintain this general shape.

x − y plane, hσzi = 0 and hence a fast localization to this plane yields fast
mixing. The variation of the mixing time when −→r is within the x − y plane
is an interesting feature of Fig. 4.4. As −→r approaches the x-axis (ϕ = 0) the
mixing time evolution becomes closer and closer to exponential decay (with
γ/∆). However, away from the x-axis, the curves still show a local minimum
around γ/∆ ≈ 1, but the global minima are still for γ/∆→∞.

4.6 Conclusion

We complete the picture that exists in the literature for quantum random
walks on the hypercube with decoherence under the subspace projection deco-
herence model. This model of decoherence is the most physically realistic form
when the quantum random walk is implemented using a register of qubits.
The following are the important points of our work:
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Figure 4.4: Characteristic behavior of mixing time versus γ
∆
for θ = π/2.

• The instantaneous mixing time property of the quantum random walk
does not necessarily disappear as the decoherence strength is increased.
More precisely, Zeno dynamics prevails only in the precisely specified
regions of the −→r , γ,∆ parameter space defined in 4.5.2. Consequently,
the hypercube quantum walk with decoherence does not always limit
to its classical version as the decoherence is increased. Depending on
the direction of the decoherence vector it is possible to have oscillatory
dynamics and instantaneous mixing persist as decoherence is increased.

• We showed numerically that, for almost all decoherence directions, a
finite decoherence rate exists for optimally fast mixing. This optimal
rate is approximately the same as the rate of Hamiltonian evolution.
However, we also showed that for certain decoherence directions (−→r in
the x− y plane) no finite optimal decoherence rate exists and the mix-
ing rate increases without bound as the decoherence rate is increased.
This result is particularly relevant given recent results on quantum walk
based modeling of excitation transport in biomolecules [39, 40]. In these
works it is argued that decoherence can lead to faster hitting times and
walker diffusion, and this is explicitly confirmed for a simplified model
of dephasing of the quantum walk. Our results suggest that the exact
model of the decoherence matters greatly, and therefore, that an accu-
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rate model of the environmental interactions is essential to assess the
merits or demerits of decoherence to excitation transport.

• Furthermore, we showed in section 4.5.1 that randomizing the decoher-
ence axis yields the depolarizing channel which exhibits both instanta-
neous and classical mixing regardless of the relative decoherence rate γ

∆
.

Yet another example of a quantum walk that does not decohere to a
classical walk as the decoherence rate is increased. Therefore, introduc-
ing randomized decoherence may be an avenue for controlling the mixing
behavior of the hypercube random walk.

4.7 Addendum: Single Qubit Master Equation

The master equation, (4.21), is hard to solve in general but in our case
the system Hamiltonian and decoherence operators are a sum of the tensor
products that have a special structure. Each summand is a tensor product of
elements only one of which is not the identity. We now show formally that
this allows one to consider a combination of single qubit evolution equations.
Vectorization is a technique that transforms any n × n matrix into a n2

dimensional vector by stacking the transposed rows of the matrix on the top of
each other. We will denote a vectorized matrix X as Xv. A useful identity we
will utilize involves the vectorization of the matrix product AXB: (AXB)v =

(BT ⊗A)Xv. The action of unitary evolution on a density operator is UtρU
†
t ,

and that is vectorized as (UtρU
†
t )

v = (U∗t ⊗ Ut)ρ
v = Stρv, where St is the

matrix form of the unitary evolution superoperator. Using this formalism it
is straight forward to derive the vectorized picture of the master equation.
Consider the discretized evolution given by Eq. (4.5) with τ → dt, and the
qubit projection POVMs given by Eq. (4.19):

(t+dt = (1− γdt)Udt(tU
†
dt + γdt

X
k

X
α

Mk
α[Udt(tU

†
dt]M

k
α (4.59)

This can vectorized as:

(vt+dt = (1− γdt){Udt(tU
†
dt}v + γdtPv(Udt(tU

†
dt)

v (4.60)

= (1− γdt)(U∗dt ⊗ Udt)(
v
t + γdtPv(U∗dt ⊗ Udt)(

v
t (4.61)

= [(1− γdt) + γdtPv][U∗dt ⊗ Udt](
v
t (4.62)
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where Pv is the operator:

Pv =
nX

k=1

1X
α=0

[Mk∗
α ⊗Mk

α]

=
nX

k=1

I⊗2(k−1) ⊗ [P∗0(−→r )⊗ P0(−→r ) + P∗1(−→r )⊗ P1(−→r )] ⊗ I⊗2(n−1−k)

This transition equation for ( defines the system dynamics at all times.
Now, let (vt = St(v0 where St is the propagator matrix for the dynamics. From
Eq. (4.62) we know that (vt+dt = [(1− γdt) + γdtPv][U∗dt ⊗ Udt]St(v0, and since
this is true for any initial state (v0, we get:

St+dt = [(1− γdt) + γdtPv][U∗dt ⊗ Udt]St
= [(1− γdt)1+ γdtPv][(1+iHdt)⊗ (1−iHdt)]St (4.63)

= [1⊗ 1+idt(H⊗1− 1⊗H)− γdt1⊗ 1+γdtPv]St, (4.64)

where we have expanded Udt = e−iHdt to first order, and 1 = I⊗n. Taking into
account that Ṡt = dSt

dt
= limdt→0

St+dt−St
dt

we get the differential form:

Ṡt = [i[H ⊗ 1− 1⊗H]− γ1⊗ 1+ γPv] St (4.65)

Using H = ∆
Pn

k=1 I⊗(k−1) ⊗ σx ⊗ I⊗(n−1−k) we expand this as:

Ṡt =

⎡⎣ Pn
k=1 I⊗2(k−1)

⊗
½

i∆[σx ⊗ I− I⊗ σx]− γI⊗ I+
γ[P∗0(

−→r )⊗ P0(−→r ) + P∗1(−→r )⊗ P1(−→r )]

¾
⊗ I⊗2(n−1−k)

⎤⎦St(4.66)

≡ ASt. (4.67)

Since the initial condition is S0 = I⊗n., the solution to this differential
equation is St = eAt:

St = exp

⎡⎣ Pn
k=1 I⊗2(k−1)

⊗t
½

i∆[σx ⊗ I− I⊗ σx]− γI⊗ I+
γ[P∗0(

−→r )⊗ P0(−→r ) + P∗1(−→r )⊗ P1(−→r )]

¾
⊗ I⊗2(n−1−k)

⎤⎦(4.68)

=
nX

k=1

I⊗2(k−1) ⊗ exp t
½

i∆[σx ⊗ I− I⊗ σx]− γI⊗ I+
γ[P∗0(

−→r )⊗ P0(−→r ) + P∗1(−→r )⊗ P1(−→r )]

¾
⊗I⊗2(n−1−k) (4.69)

= [exp t

½
i∆[σx ⊗ I− I⊗ σx]− γI⊗ I

+γ[P∗0(
−→r )⊗ P0(−→r ) + P∗1(−→r )⊗ P1(−→r )]

¾
]⊗n

≡ [S̄t]⊗n



105

Therefore dynamics of the system is tensor product of individual qubit
dynamics S̄t = eĀt. The single qubit generator can be simplified as follows:

Ā = i∆[σx ⊗ I− I⊗ σx]− γI⊗ I (4.70)

+γ[P∗0(
−→r )⊗ P0(−→r ) + P∗1(−→r )⊗ P1(−→r )] (4.71)

= i∆[σx ⊗ I− I⊗ σx]− γI⊗ I (4.72)

+
γ

4
[
¡
I+−→r ·−→σ

¢∗ ⊗ ¡I+−→r ·−→σ ¢ (4.73)

+
¡
I−−→r ·−→σ

¢∗ ⊗ ¡I−−→r ·−→σ ¢] (4.74)

= i∆[σx ⊗ I− I⊗ σx]−
γ

2
I⊗ I+ γ

2
−→r ·−→σ ∗ ⊗−→r ·−→σ . (4.75)

It can be easily confirmed that this is the generator for the single qubit dy-
namics described by Eq. (4.22) once it has been vectorized.

4.7.1 Depolarizing Channel through the Randomized
Decoherence Axis

The generator for the single qubit dinamics when the decoherence axis is
randomized is:

Ād = i∆(σx ⊗ I− I⊗ σx)− γI⊗ I (4.76)

+
γ

4π

I
S2
[P∗0(
−→r )⊗ P0(−→r ) + P∗1(−→r )⊗ P1(−→r )]ds . (4.77)

We can carry out this integral to get the following:

Ād =
i∆(σx ⊗ I− I⊗ σx)− γI⊗ I
+ γ
4π

R
θ,ϕ

h³
I+−→r ·σ
2

´∗
⊗
³
I+−→r ·σ
2

´
+
³
I−−→r ·σ
2

´∗
⊗
³
I−−→r ·σ
2

´i
d−→r

=
i∆(σx ⊗ I− I⊗ σx)− γI⊗ I
+ γ
8π

R
θ,ϕ
(I⊗ I+−→r ·−→σ ∗ ⊗−→r ·−→σ )d−→r

= i∆(σx ⊗ I− I⊗ σx)−
γ

2
I⊗ I+ γ

6
(σx ⊗ σx + σ∗y ⊗ σy + σz ⊗ σz).

where we have used rx = sin θ cosϕ, ry = sin θ sinϕ, rz = cos θ. This leads to
the solution for the single qubit dynamics:

ρv (t) = eĀdtρv (0) . (4.78)
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Changing the basis for Ād to the eigenbasis basis, exponentiating, and
returning to the original basis we get:

ρ (t) =
1

2

Ã
1 + e−

2γt
3 cos(2∆t) −ie− 2γt

3 sin(2∆t)

ie−
2γt
3 sin(2∆t) 1− e−

2γt
3 cos(2∆t)

!
. (4.79)

with ρ(0) = |0ih0|. The value of ρ (t)00 and ρ (t)11 determines the prob-
ability of measurement in basis {|0i, |1i}. The eigenvalues of our operator
σ(Ād) = {0,−2∆γt

3
,−2∆t

3
(γ − 3i), 2∆t

3
(γ + 3i)} determine the probability dis-

tribution. The expressions for ρ (t)00 and ρ (t)11 show that regardless of the
rate of decoherence instantaneous mixing exists.
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Chapter 5

Synopsis and Concluding
Discussion

The results that we have presented in this dissertation, in general terms,
deal with the mechanisms for the efficient quantum and classical algorithms.
Here we summarize the essence of the each result that we have presented.

5.1 On NP vs. BQP

The best known quantum algorithms for finding the unique marked element
in the list of N elements run in time O

³√
N
´
, what is in accord with the

oracular bounds that we currently know. Continuous time quantum algorithms
have proved not to fall within the oracular black box formalism and rely on
the following three assumptions.
First, unique unstructured search examples always constructed using the

idealized model, in which the adversary specifies classical n-bit string that is
transliterated into the system Hamiltonian.
Second, all currently known continuous time quantum algorithms rely on

the fact that an adversary effectively prepared a problem Hamiltonian whose
ground state we would like to find since that would, width the high probability,
by measurement reveal the problem solution.
Third, virtually all continuous time quantum algorithms rely on the adia-

batic theorem that assures that if the initial state of the quantum evolution
is the ground state, provided that we change the system Hamiltonian slowly,
system final state will also be the ground state.
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Current ongoing efforts in adiabatic algorithm for NP -complete problems
have almost exclusively focused on showing that choosing the particular ini-
tial Hamiltonian, one avoids the exponentially small gap in the instantaneous
Hamiltonian, that occur for the hardest problem instances and prevents the
subexponential running time.
In this section we have explored continuous time quantum algorithms in

two aspects. First, we have introduced in this section a new framework of
natural continuous quantum algorithms for optimization problems and second,
we have explored the freedom of transliteration that arises in the context of
continuous time quantum algorithms.
The first aspect. Natural quantum algorithm, unlike the adiabatic quan-

tum algorithms, require neither the ground state initialization nor the adia-
batic change of the parameters to ensure the measurement of the ground state
with the high probability. For the unique marked element unstructured search
natural algorithms that employ either time independent or time dependent
Hamiltonian can drive the system outside of ground state but ensure that,
at the end of computation, with a high probability measurement will reveal
the ground state of the system Hamiltonian part that encodes the problem.
Since natural algorithms do not rely on the adiabatic approximation of the
ground state our analysis is performed by exact solution of the Schroedinger
dynamics.
Overall natural quantum algorithms have the following properties: (a) offer

arguably simpler formalism in which the running time can be determined from
the gap of the time independent Hamiltonian; (b) running time is determined
exactly including the scaling constant what is of potential value for experi-
ments; (c) there is not need to initialize the quantum computer in the ground
state of the initial Hamiltonian, i.e. initial state can always be a uniform
superposition over the computational basis states; (d) Hamiltonian nature of
the quantum system ensures that, at the time of the measurement, with the
high probability we will measure the ground state of the part of the system
Hamiltonian that encodes the problem that we desire to solve.
The second aspect. The freedom of transliteration that arises in any

continuous time quantum algorithm is the following: the unique marked ele-
ment unstructured search problem is classically completely described with the
unknown index Boolean string and the absence of structure. Any attempt to
transliterate this problem into the Hamiltonian oracle, that is necessarily used
in any continuous time quantum algorithm, must in addition to the unknown
index of the marked element and the absence of structure, specify in which
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basis the part of the Hamiltonian that encodes the problem has no structure.
We have showed that it is fairly easy to transliterate the unique marked

element unstructured search into the basis in which, computation takes lin-
ear or constant time and the Hamiltonian is very simply described but yet
most likely very hard to implement. Concretely, we consider the Hamiltonian
|0i h0|z + |ψi hψ|. We show that if one can efficiently implement this Hamil-
tonian on the quantum computer then one can solve unique marked element
unstructured search in quantum continuous constant time. Unfortunately, we
do not know how to implement this Hamiltonian. Depending of the viewpoint,
one can view this as either providing a step towards an unlikely result of in-
clusion of NP in BQP or as showing that this Hamiltonian is NP -hard to
implement.

5.2 Multiplicative Weights Algorithms

We present several results related to matrix and vector version of the multi-
plicative weights algorithm and the exact qualification of the relation between
the two. The results are the following.
We present a bit more general version of the known lower bound for the

matrix multiplicative weight algorithm, that is good for larger set of adversary
strategies.
Moreover, in the restricted setup of nonnegative zero-sum games, we show

that unless objective function is redefined, in some rather non-obvious way, the
computationally simpler vector multiplicative weight algorithm has at least as
good performance as matrix multiplicative weight algorithm. This implies
that, the adversary that is providing the response to our queries basically
gains nothing in terms of overall loss from changing the basis in which his
events are diagonal matrices.
Furthermore, one might be interested in asking the following question, that

is very relevant in any streaming application. Is it possible to redefine the
original cumulative matrix multiplicative weight algorithm to the truly iter-
ative multiplicative weight algorithm that achieves the identical performance
bound? As we show the answer to this question is: yes, and we construct one
such algorithm, again within the framework of nonnegative zero-sum games.
Consequently, the updates are much less computationally demanding O (n2)
rather than O (n3).
Finally, we show that our multiplicative update algorithm is converging
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in strategy to the Nash equilibrium for a non-zero sum game, namely the
augmented Shapley game.

5.3 Circuit Complexity Equivalence

The Distortion Lemma on Finsler manifolds and its corollary provide a gen-
eral tool for relating distances on the manifold with distances on the tangent
space. We have derived a generalized linear bounds for the exact simulation
of any path on the manifold, in terms of the minimum circuit size and the
simulation parameters.
The equivalence between the path on the manifold and circuit size still

persists in the case of approximate simulation, provided that the simulation
parameters have the appropriate scaling. However, one can not expect better
than n2 times improvement in the minimum circuit size upper bound over the
result for standard circuit simulation derived by Nielsen, Dowling, Gu and
Doherty [4].
Moreover, if one defines a metric on the manifold that penalizes the hard-

to-simulate directions on the tangent space with high cost, that cost is, in
effect, translated to the increased ratio between upper and lower bound in
minimum circuit size.

5.4 Complete Characterization of Mixing Time
on Hypercube

We complete the picture that exists in the literature for quantum random
walks on the hypercube with decoherence under the subspace projection deco-
herence model. This model of decoherence is the most physically realistic form
when the quantum random walk is implemented using a register of qubits.
The following are the important points of our work:

• The instantaneous mixing time property of the quantum random walk
does not necessarily disappear as the decoherence strength is increased.
More precisely, Zeno dynamics prevails only in the precisely specified
regions of the −→r , γ,∆ parameter space defined in 4.5.2. Consequently,
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the hypercube quantum walk with decoherence does not always limit
to its classical version as the decoherence is increased. Depending on
the direction of the decoherence vector it is possible to have oscillatory
dynamics and instantaneous mixing persist as decoherence is increased.

• We showed numerically that, for almost all decoherence directions, a
finite decoherence rate exists for optimally fast mixing. This optimal
rate is approximately the same as the rate of Hamiltonian evolution.
However, we also showed that for certain decoherence directions (−→r in
the x− y plane) no finite optimal decoherence rate exists and the mix-
ing rate increases without bound as the decoherence rate is increased.
This result is particularly relevant given recent results on quantum walk
based modeling of excitation transport in biomolecules [39, 40]. In these
works it is argued that decoherence can lead to faster hitting times and
walker diffusion, and this is explicitly confirmed for a simplified model
of dephasing of the quantum walk. Our results suggest that the exact
model of the decoherence matters greatly, and therefore, that an accu-
rate model of the environmental interactions is essential to assess the
merits or demerits of decoherence to excitation transport.

• Furthermore, we showed in section 4.5.1 that randomizing the decoher-
ence axis yields the depolarizing channel which exhibits both instanta-
neous and classical mixing regardless of the relative decoherence rate γ

∆
.

Yet another example of a quantum walk that does not decohere to a
classical walk as the decoherence rate is increased. Therefore, introduc-
ing randomized decoherence may be an avenue for controlling the mixing
behavior of the hypercube random walk.
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Appendix A

Generalized Subspace Overlap
Theorem

In this appendix we prove the theorem that relates the lowest eigenvalue
of the parametric sum of two matrices to the angle of their lowest subspace.
Non parametric version of this theorem appears in [8]

Lemma 34 Let W and F be a non-negative operators, and L1,L2 their null
subspaces, where L1 ∩ L2 = {0} .Then:

H (s) =W + sF ≥ s− cos θ (A.1)

where:
cos θ = max

|η1i∈L1, |η2i∈L2
|hη1|η2i| (A.2)

for s ∈ [0, 1]

Proof. The system Hamiltonian can be written as:

H (s) =W + sF = I + sI −Π1 −Π2 (A.3)

We are interested in the bound that relates to the smallest eigenvalue gap for
the sum of two matrices. In our case:

W = I − |zi hz| ≡ I −Π1 , where |zi =
1

2n

nX
i=1

|ii (A.4)

F = I − |mi hm| ≡ I −Π2 , where |mi is the marked element in the list;
(A.5)
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Let λ ≥ 0 be the eigenvalue of the eigenvector |ξi , then:

λ = hξ|Π1 + sΠ2|ξi = u21 + su22 , where Πi |ξi = ui |ηii , i = {1, 2} (A.6)

The equation A.1 is equivalent to:

Π ≡ Π1 + sΠ2 = |zi hz|+ s |mi hm| ≤ 1 + cos θ (A.7)

Now we can see that:

λ = hξ|Π|ξi = |hξ|zi|2 + s |hξ|mi|2 = u21 + su22 (A.8)

Moreover, on the other side:

λ2 = hξ|λ · λ|ξi = (hη1|u1 + hη2| su2) (u1 |η1i+ su2 |η2i) (A.9)

= u21 + (su2)
2 + u1u2s (hη1|η2i+ hη2|η1i) (A.10)

= u21 + (su2)
2 + 2u1u2sRe (hη1|η2i) (A.11)

≤ u21 + (su2)
2 + 2u1u2s |Re (hη1|η2i)| (A.12)

≤ u21 + su22 + 2u1u2s |Re (hη1|η2i)| (A.13)

= λ+ 2u1u2s |Re (hη1|η2i)| (A.14)

Follows that:

λ− λ2 ≥ −2u1u2 |Re (hη1|η2i)| ≡ −2u1u2sχ , where χ ≡ |Re (hη1|η2i)| ;
(A.15)

λ− λ2 + λχ ≥ −2u1u2sχ+ λχ (A.16)

(1 + χ)λ− λ2 ≥
¡
−2u1u2s+ u21 + su22

¢
χ (A.17)

≥
¡
−2u1u2s+ u21 + s2u22

¢
χ (A.18)

≥ (u1 + su2)
2 χ ≥ 0 (A.19)

Therefore, since λ ≥ 0:
λ2 ≤ (1 + χ)λ (A.20)

λ ≤ 1 + χ ≤ 1 + max
|η1i∈L1, |η2i∈L2

|hη1|η2i| (A.21)

since |Re (hη1|η2i)| ≤ max|η1i∈L1, |η2i∈L2 |hη1|η2i| .
Substituting back to the original equation we get the desired result:

I + sI − (|zi hz|+ s |mi hm|) ≥ s− max
|η1i∈L1, |η2i∈L2

|hη1|η2i| (A.22)




