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Triple correlation uniqueness refers to the fact that every monochromatic image of finite size is uniquely deter-
mined up to translation by its triple correlation function. Here that fact is used to prove that every finite im-
age composed of discrete colors is determined up to translation by its third-order statistics. Consequently, if
two texture samples have identical third-order statistics, they must be physically identical images and thus vi-
sually nondiscriminable by definition. It follows that a third-order version of Julesz’s long-abandoned conjec-
ture about spontaneous texture discrimination is necessarily true (notwithstanding such well-known
counterexamples as the odd and even textures). The second-order (i.e., original) version of that conjecture is
not necessarily true: physically distinct finite images with identical second-order statistics can be con-
structed, so counterexamples are possible. However, the counterexamples that one finds in the literature are
either nonexact or difficult to reconstruct. A new principle is described that permits the easy construction of
discriminable black and white texture samples that have strictly identical second-order statistics and thus pro-

vide exact counterexamples to the Julesz conjecture.

1. INTRODUCTION

A. The Julesz Conjecture

In a seminal paper in 1962, Julesz® introduced a program
of research on visual texture perception motivated by the
observation that some pairs of distinct textures are in-
stantly seen as different (spontaneously discriminated)
while others can be distinguished only after careful scru-
tiny. He asked whether that perceptual dichotomy can be
predicted on the basis of global image statistics corre-
sponding to the joint probability distributions that charac-
terize stationary stochastic processes. A decade later® he
and co-workers proposed a specific hypothesis along those
lines that came to be known as the Julesz conjecture: the
hypothesis that textures cannot be spontaneously dis-
criminated if they have the same first-order and second-
order statistics and differ only in their third-order or
higher-order statistics. (Those statistics are defined here
in Section 2.) For a period in the 1970’s that conjecture
survived many experimental tests and seemed to have
captured a fundamental property of vision.® By 1981,
however, the Julesz conjecture appeared to be disproved
by results from his own laboratory*® and elsewhere,” and
Julesz himself abandoned it in favor of a theoretical ap-
proach based on local image features called textons.®
Today both the conjecture itself and the global statistical
approach that it represented are generally regarded as a
closed chapter in the history of texture discrimination
research.’

In the present paper that chapter is reexamined in light
of recent mathematical discoveries about higher-order
autocorrelation functions,'®! which prove to impose strict
constraints on image statistics. The strongest evidence
against the Julesz conjecture took the form of a pair of
easily discriminable black and white textures devised by
Julesz et al.® the odd and even textures, which were said
to have identical third-order statistics. (Figure 1 shows
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samples of odd and even texture. Section 4 explains their
construction,) Identical third-order statistics imply iden-
tical second-order statistics, so the odd and even textures
apparently provided a strong counterexample to Julesz’s
second-order conjecture. But they also had broader impli-
cations. Underlying that specific hypothesis were ideas
about computational complexity and limited processing
capacity. Higher-order statistics entail more calcula-
tions, and the visual mechanism responsible for sponta-
neous texture discrimination was thought to be limited to
the computation of at most the second-order statistics of
images. So the easy discriminability of the odd and even
textures, which ostensibly differed only at the level of
fourth-order statistics, seemed to discredit not only the
second-order conjecture itself but also the general idea
that spontaneous texture discrimination is based on a
global statistical computation performed by a mechanism
with limited capacity. That conclusion was reinforced by
the fact that both the odd and the even textures can be
easily discriminated from a purely random texture cre-
ated by coloring all the squares of a checkerboard by inde-
pendent fair-coin tosses—a texture that was said to have
the same third-order statistics as those of the two other
textures.® (Figure 1 shows samples of coin-toss texture
compared with samples of odd and even texture.)

B. Triple Correlation and Third-Order Statistics

What prompts a reexamination of that episode now is the
realization that third-order image statistics have unex-
pectedly strong characterization properties. Using a
fairly recent uniqueness theorem for triple correlations,**
one can show that the third-order statistics of any image
of finite size uniquely determine that image up to a trans-
lation. (The proof is given in Section 3.) In other words,
two pictures with identical third-order statistics must be
physically identical. Consequently, odd and even texture
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Fig. 1. (a) 50 X 50 pixel samples of odd (right side) and even
(left side) texture. Tick marks indicate the boundary between
the two. (These are matched samples, as explained in Section 4.)
(b) 50 X 50 samples of odd (right side) versus coin-toss (left side)
texture. (c) 50 X 50 samples of even (left side) versus coin-toss
(right side) texture.

samples (such as the images on the right-hand and left-
hand sides, respectively, in Fig. 1) can never have identical
third-order statistics, and the same is true of odd or even
texture samples compared with physically distinct samples
of the coin-toss texture. And, in general, visual discrimi-
nation of images with identical third-order statistics is
impossible in principle because it would mean discrimina-
tion between physically identical objects. Thus a third-
order version of the Julesz conjecture is necessarily true
because it is impossible to construct a counterexample to
the claim that texture samples cannot be discriminated if
their third-order statistics are identical. (Subsection 1.D
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discusses possible ways in which one can reinterpret the
Julesz conjecture to make its third-order version nontau-
tological. The conclusion is that no logical way to do this
exists.)

C. Image Statistics Versus Ensemble Statistics

If odd and even texture samples cannot have identical
third-order statistics, how could Julesz et al. say that they
had demonstrated “visual discrimination of textures with
identical third-order statistics”?® The answer is a matter
of definitions, which revolves around the distinction be-
tween the ensemble statistics and the sample statistics of
a stochastic process. The names “odd and even textures”
refer not to specific images but rather to probabilistic al-
gorithms for the construction of images—in other words,
to stochastic processes whose samples are specific images.
(The odd and even processes are described and analyzed
in Section 4.) What Julesz et al.® actually proved is that
the odd and even stochastic processes have identical third-
order ensemble statistics: the expected values of the
third-order statistics of sample images are the same for
both processes. In other words, if one causes both pro-
cesses to generate sequences of images, the averages of
the third-order statistics of those images across the odd
sequence and the averages of the same statistics across
the even sequence should converge to common values as
the sequences become infinitely long. That result does
not imply that the third-order statistics of any specific pair
of odd and even sample images will be identical (which the
uniqueness theorem proved in Section 3 shows to be im-
possible), so there is no conflict between the mathematical
results of Julesz et al.® and those reported here.

D. What Was the Julesz Conjecture?

What the odd and even textures actually demonstrate,
then, is visual discrimination of texture samples drawn
from stochastic processes with identical third-order en-
semble statistics. (The same is true of the odd and even
textures versus the coin-toss texture.) Consequently, the
hypothesis that is actually refuted by the odd and even
textures is not

H1: Texture images cannot be spontaneously discrimi-
nated if they have the same third-order statistics,

i.e., a hypothesis that predicts whether two specific tex-
ture images will be discriminable on the basis of statistics
computed from the images themselves. Instead, what is
refuted is the hypothesis

H2: Texture images cannot be spontaneously discrimi-
nated if they are samples from stochastic processes whose
third-order ensemble statistics are identical,

ie., a hypothesis that makes the discriminability of tex-
ture images depend on the statistical properties of the
ensembles to which they belong. Since those properties
are not directly visible to a naive observer confronted with
a specific pair of texture images, that idea clearly poses
some conceptual difficulties. Nevertheless, in the paper
of Julesz ef al. on the odd and even textures,® hypothesis
H2 was evidently the interpretation implicitly given to the
Julesz conjecture (with “third-order” replaced by “second-
order” in statement H2 to form the original conjecture).
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Under the ensemble-statistics interpretation H2, a
third-order version of the Julesz conjecture is not ren-
dered tautological by the fact that every image is uniquely
determined by its third-order statistics. But, without fur-
ther amendment, hypothesis H2 is logically defective be-
cause its predictions about the discriminability of specific
texture samples are intrinsically ambiguous: any pair of
images A and B can always be construed as samples from
two stochastic processes that have identical third-order
(or nth-order, for any n) ensemble statistics, which implies
nondiscriminability, and also as samples from two pro-
cesses whose third-order ensemble statistics are different,
which implies the opposite. (To satisfy the identical sta-
tistics condition, one construes A and B as samples from a
stochastic process whose sample images are only A and B,
with arbitrary probabilities assigned to each. Then A
and B are samples from the same process, so they share
the same nth-order ensemble statistics for all n. To sat-
isfy the different-statistics condition when the images A
and B themselves have nonidentical nth-order statistics,
one construes A as a sample from a process that generates
only A, and B as a sample from a process that generates
only B. If A and B have identical nth-order statistics, one
construes A as before and B as a sample from a process
whose sample images are B and any other image C whose
nth-order statistics are different from those of B, where B
and C each are assigned probability 0.5.)

To remove the ambiguity in hypothesis H2, a reviewer
proposed that it should be regarded as applying to pre-
defined stochastic processes in a form such as

H3: If two stochastic image-generating processes S
and S’ have identical nth-order ensemble statistics, sample
images from S will not be spontaneously discriminable
from sample images from S'.

But hypothesis H3 is trivially refutable by the construc-
tion of a 2-image stochastic process S whose samples are
any two easily discriminable images A and B. Then S
and §’ = S form a counterexample. To overcome that dif-
ficulty, the reviewer suggested the addition of the proviso
that S and S’ must be ergodic processes (the intuition be-
ing that all the sample images of a process should be sta-
tistically similar). In that case the nth-order version of
the conjecture would become

H4: If S and S’ are nth-order ergodic stochastic pro-
cesses whose nth-order ensemble statistics are identical,
sample images from S will not be spontaneously discrimi-
nable from sample images from S'.

But nth-order ergodic literally means that, with probabil-
ity 1, the nth-order statistics of every sample image gener-
ated by a stochastic process equal their expectations (i.e.,
the ensemble values). So, under this interpretation of an
ensemble statistics version of the Julesz conjecture, the
ensemble statistics themselves become irrelevant: the
hypothesis

H5: If S and S are stochastic processes whose sample
images all have identical nth-order statistics, images from
S will not be spontaneously discriminable from images
from S'

is equivalent to the hypothesis
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H6: If two images A and B have the same nth-order
statistics, they will not be spontaneously discriminable,

which is the nth-order version of hypothesis HI.

(Note too that for stochastic processes whose samples
are images of finite size, the uniqueness theorem for third-
order statistics implies that, if a process is nth-order
ergodic for n = 8, all its sample images must be physically
identical. Since only finite images are possible in
practice, it follows that two stochastic processes S and
S’ can satisfy the conditions of hypothesis H4 for n = 3
if and only if both always generate exactly one and the
same image. So a third-order version of the Julesz con-
jecture is still tautological under this ensemble-statistics
interpretation.)

The conclusion of the preceding analysis is that it does
not make sense conceptually to interpret the Julesz con-
jecture as a hypothesis linking the discriminability of
texture samples directly to the ensemble statistics of sto-
chastic algorithms that generate those samples. Instead,
the conjecture’s only logical interpretation would seem to
be as a hypothesis that predicts the discriminability of
specific texture images on the basis of the nth-order sta-
tistics of the images themselves, i.e., as hypothesis H6,
with n = 2 for the original conjecture. In the remainder
of this paper that interpretation is assumed. In that case
the uniqueness theorem proved in Section 3 implies that
for n = 3 the Julesz conjecture is irrefutable because an
exact counterexample cannot be constructed. But the
original n = 2 conjecture is potentially refutable, since it
is possible to construct pairs of physically distinct texture
images whose second-order statistics are exactly identical.
(That point is pursued in Subsection 1.F)

E. Third-Order Statistics of Odd, Even, and Coin-Toss
Images

The uniqueness theorem for third-order statistics proved
in Section 3 prohibits only an exact identity between the
third-order statistics of physically distinct images. It
leaves open the possibility that the third-order statistics
of 0dd, even, and coin-toss texture samples might be close
enough to be regarded as equal for all practical purposes.
However, a direct examination shows differently.
Figure 2 shows scatterplots that compare the third-order
statistics of the odd, even, and coin-toss texture samples
from Fig. 1. In these graphs the x coordinate of each data
point is the value of a given third-order statistic for one
member of an image pair, and the y coordinate is the value
of the same third-order statistic for the other member of
the pair. [For example, in Fig. 2(a) the x coordinate is the
value of a third-order statistic for the even member of the
pair of images shown in Fig. 1(a) and the y coordinate is
the value of the same statistic for the odd member. Third-
order statistics were computed with Eq. (9’) below.] Ifthe
texture pairs in Fig. 1 had identical third-order statistics,
all data points in the graphs in Fig. 2 would lie on a 45°
diagonal line through the origin; and if all the third-order
statistics of the images equaled their corresponding en-
semble values (i.e., their expectations), all the data points
would lie at (1/2,1/2), (1/4,1/4), or (1/8,1/8). It can be
seen that neither condition is close to being satisfied.
These results are typical of what one always finds for odd,
even, and coin-toss images of this size (50 X 50 pixels):
overall, their third-order statistics are far from identical.
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Fig. 2. (a) Scatterplot that compares all the third-order statistics
[Eq. (9] of the odd and even texture samples shown in Fig. 1.
The x axis corresponds to even texture statistic values, and the y
axis corresponds to odd texture values. Both axes run from 0 to
0.6, with tick marks at 0.25 intervals. If the odd and even
samples had identical third-order statistics, all the points would
lie on the diagonal line. If all the statistics equaled their ex-
pected values (i.e., if the sample statistics equaled the ensemble
statistics), all the points would fall at either (1/2,1/2), (1/4,1/4), or
(1/8,1/8). The two other scatterplots compare the third-order
statistics of the odd versus coin-toss texture samples (b) and the
even versus coin-toss samples (c) from Fig. 1. In (b) and (c) the y
axis corresponds to coin-toss statistic values.

But the matter does not quite end there. The graphs in
Fig. 2 compare all the third-order statistics of the texture
samples of Fig. 1. It can be argued on both statistical and
perceptual grounds that a more meaningful comparison

John 1. Yellott, Jr.

would focus on the small-triangle statistics: third-order
statistics that correspond to small distances across an im-
age. The odd, even, and coin-toss algorithms all have the
property of third-order ergodicity for infinitely large im-
ages: with probability 1 the third-order statistics of infi-
nitely large sample images generated by all three
processes must equal their expected values. (The unique-
ness theorem for third-order statistics does not hold
for infinitely large images, for reasons explained in
Section 3.) So, as image size increases, one can expect odd,
even, and coin-toss sample images to become statistically
more alike, and the convergence should be more evident
for the smaller-triangle statistics. The practical question
is, How rapidly does that convergence occur? Section 4
examines that issue. Its conclusion is that the conver-
gence is too slow to be perceptually meaningful; for the
images in Fig. 1, even the small-triangle statistics show
large differences by comparison with pairs of independent
coin-toss images. Statistically, that result is not surpris-
ing, because the variance of the statistics of odd and even
images decreases not in proportion to the number of pixels
but more nearly in proportion to the square root of that
number.

(The analysis in Section 4 also considers various quirks
of the odd and even textures, such as the fact that odd and
even sample images can be either matched or unmatched
pairs, which have quite different statistical properties.
An interesting conclusion from that analysis is that
the eye appears to be insensitive to those large statistical
differences.)

F.  Second-Order Statistics and the Julesz Conjecture
The fact that odd and even texture samples cannot have
identical third-order statistics does not automatically rule
out the possibility that they might have identical second-
order statistics and thus still provide a counterexample to
Julesz’s second-order conjecture. However, direct exami-
nation removes this possibility: the second-order statis-
tics of odd and even texture samples are positively
correlated (and contain a strong hidden correlation, de-
scribed in Section 4) but clearly are not identical, as is
demonstrated by the scatterplots in Fig. 3, which compare
the second-order statistics of the texture samples of Fig. 1.
Consequently, the odd and even textures do not provide
counterexamples to the Julesz conjecture. An earlier
analysis by Gagalowicz'? arrived at the same conclusion.
That realization prompts a second look at all the original
evidence against the Julesz conjecture. A decisive coun-
terexample to the conjecture would take the form of a pair
of texture samples that have identical second-order statis-
tics and that are instantly discriminable. Most of the
counterexamples found in the literature do not come close
to meeting that description, because the texture samples
involved are created by probabilistic algorithms that are
guaranteed only to produce identical second-order statis-
tics in the limit, as the images become infinitely large.
That objection applies not only to the odd and even
textures but also to other textures created by the floater
technique of Gilbert™®* and by the ¢-matrix technique
of Diaconis and Freedman,” and also to the counter-
examples created by Caelli and Julesz*® with the four-disk
method. The only exceptions appear to be the images of
Gagalowicz,'® who recognized the defects of previous
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Fig. 3. (a) Scatterplots that compare all the second-order statis-
tics [Eq. (8")] of the texture samples from Fig. 1. The axes are
the same as those in Fig. 2. (a) Odd versus even, (b) odd versus
coin-toss, (¢) even versus coin-toss.

counterexamples and used linear programming methods
in an attempt to create better ones. He succeeded in con-
structing quite easily discriminable texture samples
whose second-order statistics differ by only approximately
29%—identical for all practical purposes and certainly close
enough for one to justify the conclusion that the second-
order Julesz conjecture is false. However, Gagalowicz’s
texture construction algorithm is quite complicated and
does not guarantee strict identity between second-order
image statistics. It seems worthwhile to seek a simpler

Vol. 10, No. 5/May 1993/J. Opt. Soc. Am. A 781

method that achieves exact results. Section 5 describes
an easily implemented principle for the construction of
pairs of black and white texture images that appear to be
spontaneously discriminable and whose second-order
statistics are guaranteed to be exactly identical. Pairs
of one-dimensional textures (bar codes) and of two-
dimensional textures created by that technique are shown
in Figs. 4 and 5, respectively.

This construction principle may prove useful in other
contexts because it provides an easy way by which one can
create pairs of black and white images whose Fourier
power spectra are exactly identical (and of course remain
identical if both images are blurred by a common point-
spread function, like that of the eye).

G. Texture Discrimination and Third-Order Statistical
Similarity

Julesz’s second-order conjecture appears to be false em-
pirically, and one can now see that a third-order version of
the conjecture is irrefutable in principle and thus true but
vacuous. However, there is a variant of the third-order
conjecture that is not tautological and can be tested: the
hypothesis that discrimination between textures becomes
increasingly difficult as their third-order statistics be-
come more similar. Offhand, that idea does not seem
promising. One type of negative evidence is provided by
the odd and coin-toss textures. If the odd and coin-toss
algorithms are used in the generation of texture samples,
the third-order statistics of those samples are not at all
similar when the samples are small, but the same statis-
tics become more nearly alike as the size of the images
(the number of pixels) increases. Perceptually, however,
things go the other way: small samples of odd and coin-
toss textures are weakly discriminable, and discrimina-
tion becomes easier as the samples become larger.

Figure 6, in conjuction with Fig. 1, illustrates that point.
Figure 6(a) shows small odd-versus-coin-toss images (10 X
10 pixels) and a scatterplot that compares their third-
order statistics. For images as small as those, the odd
and coin-toss textures are not spontaneously discrimin-
able, but the third-order statistics of the images differ
greatly. Figure 6(b) compares the same third-order statis-
tics for the 50 X 50-pixel samples of odd and coin-toss tex-
ture shown in Fig. 1. For images of that size the odd and
coin-toss textures are easily discriminable, but their third-
order statistics are now much more similar. In other
words, as their global third-order statistics become more
nearly alike, odd and coin-toss texture samples look less
alike. That result is the opposite of what one would ex-
pect if spontaneous discriminability depended on a com-
parison of global third-order image statistics. (Section 4
describes another counterargument based on matched-
versus-nonmatched samples of odd and even texture.)

H. Contents

Section 2 defines the image statistics that figured in the
Julesz conjecture. Section 3 describes triple correlation
functions and their uniqueness properties and uses them
to prove that every finite-sized image composed of discrete
colors is uniquely determined by its third-order statistics,
which is the main new result of this paper. Section 4
examines the statistical properties of odd, even, and coin-
toss texture samples. Section 5 deals with the problem of
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Fig. 4. Exact one-dimensional counterexample to the Julesz conjecture, based on the construction principle explained in Section 5. The
texture samples in (a) and (b) have identical second-order statistics. Sample (a) is composed of four replicas of the micropattern shown
below in Fig. 12(a); sample (b) is composed of four replicas of the micropattern shown in Fig. 12(b). In (¢) the two texture samples are

displayed side by side.

devising counterexamples to the Julesz conjecture and ex-
plains the construction of the counterexample images
shown in Figs. 4 and 5. The paper is mostly self-
contained, but a detailed proof of the key uniqueness theo-
rem for triple correlations seems too long for reproduction
here; the basic ideas are sketched in Section 3, and the
full argument can be found in Ref. 11, along with an
analysis of the general uniqueness properties of triple cor-
relation functions and other higher-order relatives of the
ordinary autocorrelation function. Reference 15 is an ex-
cellent introduction to physical applications of triple cor-

B T T B
o
B b o e
o g
i

Fig. 5. Two-dimensional counterexample to the Julesz conjec-
ture, based on the construction principle described in Section 5.
The texture samples on the left and the right have identical
second-order statistics.

relation, and Ref. 16 includes a broad spectrum of recent
papers on higher-order autocorrelation functions. The
first application of those functions to vision research is
due to Klein and Tyler,"” who referred to them as general-
ized autocorrelation functions.

2. IMAGE STATISTICS

A. Black and White Images

The statistics of various orders that figured in the Julesz
conjecture were defined in terms of a hypothetical experi-
ment performed on an image composed of discrete col-
ors: “The n-gon statistic [or nth-order joint probability
distribution] of an image can be obtained by randomly
throwing n-gons of all possible shapes on the image and
observing the probabilities that their n vertices fall on
certain color combinations.”® The n-gons here are geo-
metrical objects: points (1-gons), line segments (2-gons,
or dipoles), triangles (3-gons), etc. Random throwings of
these objects lead to the first-, second-, and third-order
statistics of an image. Most research has focused on two-
color images, e.g., black and white. I begin there, taking
black to be the foreground color and white to be the back-
ground color. Suppose that the function f: %% — {0,1}
represents such an image, with f(x,y) = 1 if image point
(x, y) is black and f(x, y) = 0 otherwise (fis assumed to be
locally integrable). One can think of the image as occupy-
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ing some finite rectangular region of the plane that has
area A and imagine that outside that region the rest of the
plane is white [i.e., f(x, ) is defined to be zero outside the
image region]. “Randomly throwing” a single point onto
the image means picking a point (x,y) at random in the
image region, so the point is a random vector (x,y) with
probability-density function 1/A throughout that region
and with zero value outside it. The first-order statistic of
image f, sy, is the probability that the randomly thrown
point lands on black, P[f(x,y) = 1], which is simply the
proportion of the image region that is black, i.e.,

1
=— , y)dxdy. 1
S1,f AHmzf(x y)dxdy 6))

[The integration here could be carried out over just the im-
age region instead of the entire plane, but because f =
0 outside the image region, Eq. (1) gives the same result.]

The second-order statistics of the image are values of a
function sz, ;s ®2 — [0,1] whose arguments represent hori-
zontal and vertical separations between pairs of image
points. The second-order statistic for a given separation
vector (h,v) is the probability that when a point (x,y) is
chosen at random within the image, both (x,y) and the

coin-toss us. odd texture samples
sample size 10 x 10 .

@

coin-toss us. odd texture samples
sample size 58 x S0

e
-

] 1)
(b)

Fig. 6. (a) Scatterplot that compares all third-order statistics of
small (10 X 10) samples of odd-versus-coin-toss texture (shown in
the inset). (b) Scatterplot'that compares the same third-order
statistics for 50 X 50 samples of odd-versus-coin-toss texture.
The axes are the same as those in Fig. 2, with coin-toss statistic
values on the y axis.
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point (x + &,y + v) are black. Thus
1
so,r(h,V) = T fzf(x, Nflx + h,y + vidxdy. 2)
?

[Note that even in an all-black image these probabilities
will always be less than 1 (except when A = v = 0) be-
cause the point (x + h,y + v) sometimes falls outside the
image region.]

Third-order statistics are values of a function
s, r:®* — [0,1] whose arguments represent pairs of sepa-
ration vectors, (h1,v;) and (hs,vs). For a given pair the
third-order statistic is the probability that when a point
(x,y) is chosen at random in the image, the three points
x,¥), X + hy,y + v1), and (X + ho,y + vp) are all black.
Thus

s3.f(h1)vly h2,v2)

1
iy f e, »fx + hy,y + v))f(x + ho,y + vo)dxdy.
912
3)

The third-order statistics can be thought of as the proba-
bilities, for all triangles, that when a given triangle is
dropped at random onto the image (preserving its orienta-
tion), all three vertices land on black. Higher-order sta-
tistics are defined analogously: fourth-order statistics
have arguments that are triples of separation vectors, and
so on. In general, statistics of order n include all statis-
tics of lower orders; e.g., the third-order statistics include
the second-order statistics as the special case in which one
of the two separation vectors is (0, 0).

In addition to nth-order statistics defined in terms of
all-black coincidences, one could also define statistics
based on white-white and black-white combinations.
However, those statistics would be redundant because
their values are already determined by the all-black statis-
tics. For example, the black-white second-order statistic
for argument (h,v) would be

1
2 f fe, M — fx + b,y + v)]dxdy = s1,7 — Sa,r(h,V).
%2

B. Multicolored Images

For images composed of more than two colors, nth-order
statistics are defined by a natural extension of the two-
color definitions. Suppose that a finite-sized rectangular
image f(x, y) with area A is composed of L discrete colors
or gray levels, labeled 0,1,...,L — 1, where 0 is the back-
ground color. (Outside the image region the assumption
is made that the plane has the background color.) The
image can be thought of as the sum of L indicator func-
tions f;:®2 — {0,1}, i = 0,...,L = 1, where fi(x,y) = 1 if
point (x,y) has color i and fi(x,y) = 0 otherwise. Then
fx,y) = Sk} w;fi(x, y), where w; is the numerical value of
color i (wy = 0). There are L first-order statistics s,
i=0,1,...,L — 1, which correspond to the probabilities
that a point chosen at random within the image has each
of the L possible colors. For the L — 1 foreground colors
these probabilities are

1
= [ G sy, @



784 J. Opt. Soc. Am. A/Vol. 10, No. 5/May 1993

and sy, is equal to 1 minus the sum of the rest. Second-
order statistics must now be defined for all possible color-
ings of a pair of points, (x,y) and (x + A,y + v). For
example, the second-order statistic sy ; ; r(%,v) is the proba-
bility that when a point (x,y) is chosen at random in the
image, (x,y) has color { and (x + k,y + v) has color j.
Except for the case in which both i and j are the back-
ground color 0, that statistic is

1
S2,i,5, (R, 0) = Xff filx, Mfi(x + h,y + v)dxdy, (5)
%2

and s3,0,0,7(A,v) is defined to be 1 minus the sum of all the
other sz, ;s(h,v). Third-order statistics ss; ;; , are de-
fined for all possible colorings of triples of points; they are
the probabilities that when a point (x,y) is chosen at ran-
dom within the image, (x,y), (x + h;,y + v;), and
(x + hs,y + vg) have the colors i, j, and %, respectively.
Except for the special case i = j = & = 0, those probabili-
ties are given by

Ss,i,j,h,f(huvl, hs,v2)

.;J‘f ﬁ( ’ )J( 15 !1))}:(:5 N2,y t Uz)dxdy,
Rz

and s3,0,0,0,7 (71,01, h2,U2) is equal to 1 minus the sum of all
the other third-order statistics for the same set of ar-
guments.

C. Discrete Image Statistics

Statistics of order n are defined above in terms of inte-
grals of functions with continuous arguments—functions
that describe colorings of a continuous surface. Such
definitions are appropriate for physical images viewed by
the eye. Computationally, images are represented by dis-
crete arrays of pixel values: arrays of the form (p(c, r);
c=01,...,.C -1, r=0,1,...,R — 1). The nth-order
statistics of such arrays are defined by sums; e.g., for a
Clolumn) X R(ow) array of binary pixels, with p(c,r) = 1
for the foreground color, the discrete first-, second-, and
third-order statistics are defined as

Cc-1 R-1

S1p = EIE 2 Zp(c, r), (7

c=0 r=0
C-1 R-1

Sz,p(n, m) = Ci Z ZP(C, ")P(C + n,r + m)’
R c=0 r=0
(8)

Cc-1 R-1
83, p(n1, my, g, my) = —6}—?. 2 Zp(c, rpl + ny,r + my)

c=0 r=0

X p(C + ng,r + m2)s (9)

respectively, where the arguments are all integers. [These
definitions assume that p(c,r) =0 unless 0 =¢c¢=C -1
and 0 =r =< R — 1. The upper limits of the sum in
Eq. (8) could equivalently be set to C — 1~ n and R —
1 - m, and in Eq. (9) they could be set to C — 1 —
max(ny, ne) and B — 1 — max(m,, ms).]

Sometimes it is useful to renormalize the second- and
third-order statistics so that their expected values for
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sample images of stochastic textures become independent
of their arguments. For that purpose the statistics

S; p(n,m) = [CR/(C — n)(R — m)]ssp(n,m), (8)
Ss3,,(n1, my, na, my) = {CR/[(C — max(n,, n,)]
X [R — max(my, my)]}

X 83p(n1, My, na,ms), 9"

are defined. The statistical comparisons in Figs. 2 and 3
are based on the renormalized statistics defined by
Eqgs. (8') and (9'), as are the comparisons made in
Section 4. For odd, even, and coin-toss texture samples,
the expected values of those statistics are always 1/2
(when all the arguments equal zero), 1/4 (for statistics
based on pairs of distinct pixels), or 1/8 (for statistics
based on triples of distinct pixels).

The relationship between the discrete-domain statistics
of a binary pixel array (p(c, r)) and the continuous-domain
statistics of a black and white physical image f(x, y) can be
expressed by means of delta functions. Mathematically, a
display device converts an array of binary pixel values
{p(c,r)) into a black and white image f(x, y) by an opera-
tion of the form

{(ple,r)) = flx, )
C-1 R-1

=d(x,y) * 2 2 ple,rdx — 08y — r),

c=0 r=0

where * denotes a convolution, § is the Dirac delta, and
d(x, y) is a 0-1 function representing a single screen pixel;
e.g., d = 1 inside an open unit square centered at the ori-
gin (screen distances are measured in units of pixel width
and height), and d = 0 otherwise. The discrete second-
and third-order statistics can be translated into functions
in continuous space by the operations

(s2,p(n, m)) = s3,7(h,0) = 2, D85 ,(n, m)8h — n)dw — m),

(33,p(n1) my, ng, my)) —> Sa,f(hl,vl, ha,v2)

= Z Z 2 Esa,p(nl:mlanZ’ m2)

ny my ng mg
X 8(hy — nddéw; ~ my)
X 8(hs — ny)8(vy — my),

respectively.

The relationship between the discrete statistics of the
pixel array and the continuous statistics of the image can
now be stated concisely: sy ;= aq * s, where a4(h,v) is
the autocorrelation function of the pixel shape function
d(x,y), and s3 ; = ¢, * 53, where ¢, is the triple correlation
function of d(x,y). (Section 3 defines the autocorrelation
and triple correlation functions.) Thus, when two binary
pixel-value arrays with the same second or third-order
discrete statistics are displayed as viewable images, those
statistical identities are preserved. And the second- and
third-order statistics of an image contain the discrete sta-
tistics of its pixel array (as their values for integer ar-
guments), so identical continuous statistics for two images
in the physical domain imply identical discrete statistics
inside the computer.
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Multicolored pixel arrays can be decomposed into bi-
nary arrays, one for each color value, and the relationship
between their nth-order statistics and those of the corre-
sponding multicolored physical image can be expressed as
So,ijkf = @d * Szij,p aNd 83, 8,r = La * Sijk,p.

3. AUTOCORRELATION, TRIPLE
CORRELATION, AND IMAGE STATISTICS

A. Autocorrelation and Second-Order Statistics

It has always been recognized' that there is a close
connection between second-order image statistics and the
ordinary autocorrelation function—the function ar R —
@ defined for any (integrable) function f:R* — R by

ag(h,v) = JIW fl,»f(x + h,y + v)dxdy. 10)

If one compares a; in Eq. (10) with the function s, de-
fined in Subsection 2.A by Eq. (2), it is apparent that the
second-order statistic function of a black and white image
is its autocorrelation function divided by its area. The
area A can be recovered from the second-order statistics
[A = S, ;(0,0)/s,7% where Sq,fis the Fourier transform of
2,7, so the second-order statistics of a black and white
image completely determine its autocorrelation function
and thus its power spectrum [since the Fourier transform
of a; is |F(a, B)|%, where F is the transform of f]. Con-
versely, if the autocorrelation function of a black and
white image is known, its second-order statistics are com-
pletely determined up to the (somewhat arbitrary) area
parameter A. In this sense the second-order statistics of
a black and white image are equivalent to its autocorrela-
tion function. For images containing more than two col-
ors, that equivalence breaks down: in that case two
images can have the same autocorrelation function but
different second-order statistics. A simple example is that
in which one image consists of three adjacent pixels with
luminance levels 4, 4, and 1 and another consists of three
pixels with luminances 2, 5, and 2. Calculation shows
that the autocorrelation functions of these images are the
same, but, since the images have no luminances in com-
mon, their second-order statistics are obviously different.

{The Fourier transform F(a,B) of an integrable func-
tion f(x,y) is defined here as F(a,B) = [ Jn2 flx,y)
exp[—i2m(ax + By)ldydx.}

B. Triple Correlation and Third-Order Statistics

In exactly the same sense, the third-order statistics of a
black and white image are equivalent to a natural general-
jzation of the ordinary autocorrelation function, called the
triple correlation, which is not yet widely known in visual
science but over the past decade and a half has attracted
considerable attention in other fields.*® The triple cor-
relation function of an integrable function f:®* — @ is
the function #;:R* — R, defined by

tr(hy1,v1, B2,U2)

= jff(x,y)f(x + hi,y + v)f(x + hg,y + va)dxdy. (11)
R2

A straightforward calculation shows that the Fourier

transform T} of the triple correlation #; (commonly known
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as the bispectrum) is related to the image transform F
through the equation

Ty(oe1, By, @2, Ba)
= F(ai, B1)F(as, B2)F(—ar — as,—B1 — B2), (12)

which proves endlessly useful. For example, setting all
arguments to zero in Eq. (12) gives [F(0,0)]°, and setting
@z = B = 0 yields F(0,0)|F(ct1, 81| So for nonnegative
functions, such as images [where F(0,0) cannot vanish
unless f = 0], the bispectrum determines the power
spectrum, and thus the triple correlation determines the
autocorrelation. As another example, Eq. (12) shows im-
mediately that ¢, = & * t,; i.e., the triple correlation of
the convolution of two functions is the convolution of their
triple correlations. Thus, if two images have the same
triple correlation, that identity is preserved when both are
blurred by the same point-spread function.

Comparing Egs. (3) and (11), one can see that for a
black and white image [f(x,y) = 0 or 1], the third-order
statistic function sg ; is the triple correlation function Z
divided by the image area A. The area can be recovered
from the third-order statistics by means of the facts
that ss,£(0,0,0,0) = (1/A)F(0,0) (since f3=f) and
S3,7(0,0,0,0) = (1/A[F(O, 0)]® [from Eq. (12)]. Conse-
quently, the third-order statistics of such an image com-
pletely determine its triple correlation function, and its
triple correlation determines its third-order statistics up
to the factor 1/A. Thus two black and white images that
have identical third-order statistics have identical triple
correlation functions.

C. Uniqueness Properties of Triple Correlation Functions
The triple correlation function has aroused interest in
large part because of its potential for the recovery of the
phase spectrum of images. Ordinary autocorrelation is,
of course, phase blind: the autocorrelation function of an
image determines the amplitudes of all its Fourier compo-
nents but none of their phases. A consequence is that the
autocorrelation function of an image is unaffected by
translations [i.e., f(x,y) — f(x + a,y + b)]. Triple cor-
relations have the attractive property of also being invari-
ant under image translations but otherwise not phase
blind: the triple correlation function of any finite-size
image completely determines both its amplitude spectrum
and (except for an absolute location term) its phase spec-
trum. Consequently, the triple correlation function of a
finite image uniquely determines that image up to a
translation; that is, two finite-sized images have identical
triple correlations if and only if they are identical images,
which differ at most in their absolute location in the plane.

The uniqueness theorem for triple correlations is valid
for all functions that one can reasonably regard as repre-
senting finite-sized monochromatic images. In Ref. 11
the theorem is proved (in two different ways) for the class
of all image functions with bounded support, where an im-
age function is any nonnegative locally integrable function
f:®2 — R. [Such a function is thought of as representing
an image in the sense that its integral over any region of
the plane specifies the total amount of light in that region
(hence the requirement of local integrability). Two im-
age functions are equal if their integrals agree for all re-
gions, so that a photometer cannot distinguish them.]
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An image function has bounded support (represents an
image of finite size) if it is identically zero outside some
finite rectangle. Every image function f with bounded
support has a well-defined triple correlation function
given by Eq. (11), and using Eq. (12) one can prove the
following theorem (Ref. 11, Theorem 1'):

Triple Correlation Uniqueness [TCU] Theorem If fis
an image function with bounded support, and another im-
age g has the same triple correlation function as that of £,
then g(x, ) = f(x + a,y + b) for some pair of constants a
and b.

The proof of this theorem seems too long to be given
here in complete detail, but the basic ideas can be quickly
sketched as an indication of what is involved. To simplify
matters, one can consider one-dimensional image func-
tions (the extension to two dimensions is straightforward).
The proof makes use of well-known facts from probability
theory. Suppose that two image functions f(x) and g(x)
have the same triple correlation. Then they have the
same bispectrum, and Eq. (12) implies that their Fourier
transforms F and G satisfy the relationship

F@FPB)F(-a — B) = G)GPB)G(—-a — B). (13)

I show that Eq. (13) implies that G(e) = exp(i2mca)F(a)
for some real constant ¢, and thus g(x) = f(x + ¢). Note
first that Eq. (13) implies that F(0) = G(0). If F(0) = 0,
both f and g are the zero image (f = g = 0 a.e.); if not,
there is no loss of generality in the assumption that both
F(0) and G(0) equal 1.0. {One can always divide both
sides of Eq. (13) by [F(0)]® and show that G(a)/F(0) =
exp(i2wca)F(a)/F(0), which proves the claim.} Then the
image functions f and g are probability-density functions,
and F and G are their characteristic functions. All char-
acteristic functions are continuous®® and equal 1.0 at the
origin, so there is a neighborhood of the origin in which
both F and G are nonvanishing. Within that neighbor-
hood the functions in Eq. (13) can be divided freely, and
after appropriate divisions [and with the use of the fact
that Eq. (7) implies that |F(a)|? = |G(a)|? for all a],
Eq. (13) becomes

G)GP)/F(@F(B) = Gla + B)/Fla + ), (14)

which is valid for all « and 8 in some neighborhood of the
origin. With the substitution H = G/F, Eq. (14) is a com-
plex functional equation:

H@HB) = H@ + p), (15)

where the function H is continuous and equals 1.0 at the
origin (so it is nonvanishing in a neighborhood of the ori-
gin). Using ideas from functional equation theory,?® one
can easily show that all solutions to Eq. (15) take the form
H(e) = exp(i2mca), where ¢ is a real constant. So, in a
neighborhood of the origin, G(a) = exp(i27ca)F(a); i.e.,
the characteristic function of g(x) agrees with that of
f(x + ¢) for some ¢. But for every ¢, f(x + ¢) is a
probability-density function with bounded support, and
consequently its characteristic function is uniquely deter-
mined for all a by its values in a neighborhood of the ori-
gin (specifically, by its derivatives at the origin, which
determine the function everywhere through a power se-
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ries’). It follows that G(e) = exp(i2wca)F(a) for all q,
which proves the theorem for one-dimensional image
functions. The proof for two-dimensional images is ex-
actly analogous. Two more proofs based on different ar-
guments can be found in Refs. 10 and 11. One proof in
Ref. 11 is constructive, in the sense that it shows how, in
principle, any finite image can be reconstructed from its
triple correlation function.

The TCU theorem does not hold for images of infinite
size, and counterexamples can be quite simple; e.g.,
the band-limited one-dimensional integrable functions
sinc®(x)(1 = cos 6mx) have identical triple correlations!
[sinc(x) = (sinwx)/mx]. (The critical difference between
the finite and infinite cases is that the transforms of fi-
nite images have only isolated zeros, while the transforms
of infinite images can vanish over intervals. Reference 11
discusses that difference in detail) But for images of fi-
nite size the scope of the TCU theorem can be readily ex-
tended from the specific class of image functions defined
above (functions proportional to probability-density func-
tions on R?%) to the more general class of all measures on
R? that are proportional to probability distributions with
bounded support in the plane. (The characteristic func-
tion argument given above goes through in that case in
exactly the same way.) That class would appear to be suf-
ficiently general that it could describe all images of finite
size, so it seems fair to say that all such images are
uniquely determined up to translation by their triple cor-
relation functions. (In particular, images defined on dis-
crete domains, such as the lattice of two-dimensional
integers, can be identified with probability distributions
concentrated on discrete points in the plane, and the TCU
theorem holds for all finite images of that sort.)

D. Uniqueness Theorem for Third-Order Statistics

The TCU theorem implies that two physically distinct
black and white texture samples (for example, a pair of
images generated by the odd and even texture algorithms,
such as the left and right sides of Fig. 1) can never have
identical third-order statistics: if two finite-size black
and white images have identical third-order statistics,
they must have identical triple correlation functions and
thus be physically identical. Consequently, the odd and
even textures cannot provide a demonstration of visual
discrimination of textures with identical third-order sta-
tistics. And, in general, no such demonstration is pos-
sible in principle.

The truth of the last assertion for black and white im-
ages is apparent from what has been said so far, but to
prove it for images composed of more than two colors re-
quires a bit more argument. Suppose that fand g are two
finite images composed of L discrete colors labeled
0,1,...,L — 1, where 0 is the background color. Each im-
age is described by L indicator functions f; and g;, i =
0,1,...,L — 1, where f(x, y) = 1 if the point (x, y) has color
i in image f and f(x, y) = 0 otherwise, and g; is defined
analogously for image g. It is assumed that all these indi-
cator functions are locally integrable. The third-order
statistics of f and g are defined by Eq. (6). Suppose that
all the third-order statistics of g are the same as those of £
Comparing Egs. (6) and (11) (and recalling that image areas
are uniquely determined by third-order statistics), one can
see that the identities 83,i,i,i,g = $3,i,i,i,fs i= 1, 2, ciey L - 1,
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imply that each pair of foreground color indicator func-
tions, g; and f;, has identical triple correlation functions,
and the TCU theorem thus implies that for each i,
gi(x,y) = filx + a;,y + b;) for some pair of constants
a;,b;. In other words, each of the indicator functions g;
for image g is identical to the corresponding indicator
function f; for image f, except for a possible translation
(a;,b;). It remains to show that the vectors (a;, b;) are all
the same, so that the entire image g is a bodily translation
of image £ The identity s3,i,i,1,5 = S3,i,i,1,7 implies that

f f zgi(x,y)gi(x + hy,y + v))gi(x + he,y + va)dxdy
R

= ” fil, Pfix + hy,y + vdfilx + hs,y + vo)dxdy
%2
(16)

for each i = 2,...,L — 1. Taking Fourier transforms of
both sides of Eq. (16) yields

Gi(a, ﬁl)Gi(az,ﬁz)G1(“a1 —a,—B1— B2)
= Fy(a1, B Fi(as, B2)Fi(—a1 — az,—B1 — B2), (A7)

where G; and G, are the transforms of g; and g1, respec-
tively, and F; and F; are the transforms of f; and fi, respec-
tively. Because the indicator functions f; are nonnegative,
F;(0,0) # 0 unless f; = 0 (in which case g; does also,
and both can be ignored); and, because they are locally
integrable functions with bounded support, their trans-
forms are continuous and hence nonzero in some neigh-
borhood of the origin. Since gj(x,y) = fj(x + a;,y + b;)
for each j, G, (e, B) = exp[i2w(a;a + b;B)]F;(a, B), and
substituting those expressions for G; and G; on the left-
hand side of Eq. (17) and dividing out the common F; and
F, factors, one finds that, within a neighborhood of the
origin,

expli2mf(a; — @)@ + @) + (b — b)(B1 + B} =1
(18)

for all values of @i, as, Bi, and Bo. That relation is pos-
sible only if a; = a; and b; = b;. Consequently, all the
translation vectors (a;,b;) are the same, and g(x,y) =
f(x + a,y + b). Hence the following is proved:

Uniqueness Theorem for Third-Order Statistics Two
finite-sized images f(x,y) and g(x,y) composed of the
same set of discrete colors have identical third-order
statistics if and only if f and g are identical up to a trans-
lation [ie., g(x,y) = f(x + a,y + b) for some pair of con-
stants a, b].

4, STATISTICAL COMPARISONS OF
STOCHASTIC TEXTURES

The uniqueness theorem of Section 3 guarantees that
physically different texture samples cannot have identical
third-order statistics, but it says nothing about how close
those statistics can be. The relationship between physi-
cal similarity and third-order statistical similarity (that
is, triple correlation similarity) is not at all straightfor-
ward. For example, rather small finite segments of the
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one-dimensional image functions sinc?(x)(1 + cos 67x)
and sincX(x)(1 — cos 6mx) have triple correlation functions
that differ by only a tiny amount, though the functions
themselves are obviously quite different. So while we
know that odd and even texture samples cannot have iden-
tical third-order statistics, it is still possible that their
third-order statistics might be similar —close enough that
one may justifiably call them identical on some scale.
The same possibility exists for odd and even samples com-
pared with samples of the coin-toss texture. Of course,
the scatterplots in Fig. 2 show that when the complete set
of third-order statistics of sample odd, even, and coin-toss
images are compared, there is vast disagreement overall.
But that comparison is imprecise because it lumps to-
gether large-triangle statistics, which depend on only a
few pixels and consequently can be expected to have a
large variance, and small-triangle statistics, which depend
on many pixels and should provide a fairer picture of the
actual structural similarity of sample images. This sec-
tion takes a closer look at the statistics of sample images
generated by the odd, even, and coin-toss processes. All
these processes are probabilistic algorithms that color a
rectangular array of square cells (pixels) with R rows
r=20,1,...,BR—1 and C columns ¢ = 0,1,...,C — 1.
Each pixel is black or white; the pixel value p(c,7) =1 if
(¢, r) is black, and p(c,r) = 0 if (c,r) is white. A coloring
algorithm, such as the odd texture, defines a stochastic
process {plc,r); ¢c=0,1,...,C -1, r= 0,1,...,R - 1)
whose random variables p(c,r) are 0-1. The natural
sample space of such a process is the set of all 2°% possible
colorings of a C X R array; a given process is an assign-
ment of probabilities to each of those colorings. A spe-
cific coloring will be called an image. As usual, an event
such as {p(0,0) = 1} is the subset of all images in the
sample space that have the property in question; the en-
semble probability of that event, P{p(0,0) = 1}, is the sum
of the probabilities of the images in that subset.

Our concern is the relationship between ensemble prob-
abilities and the statistics of specific sample images
generated by a process. First-, second-, and third-
order statistics for discrete images were defined in
Subsection 2.C. For a stochastic process (p(c,7)) those
statistics are random variables whose values vary from
image to image. Interest centers on their means (the en-
semble statistics) and variances. Here it is natural to fo-
cus on the renormalized statistics defined by Egs. (8') and
(9'), whose means have a simple relationship to ensemble
probabilities. The third-order statistic function s, in-
cludes the first-order statistic s, , (when all its arguments
are zero) and the second-order statistic function ss,,
[when one of the n;,m;) is (0,0)], so comparisons of the
third-order statistics of sample images include the first-
and second-order statistics as well. All the textures con-
sidered here have identical third-order ensemble probabil-
ities, and all three are third-order ergodic in the limit, as
image size becomes infinite. The question is, How close
are their third-order sample statistics for images of visu-
ally meaningful sizes? For the coin-toss texture it is
clear in advance what will happen, since the mathematics
is straightforward. But it is still useful to take an empiri-
cal look at the statistics of coin-toss samples, as a baseline
for the comparison of samples of the odd and even tex-
tures, where it is not so obvious what to expect.
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A. Coin-Toss Textures

Here one creates an image by coloring each pixel indepen-
dently black or white, each with probability 0.5. All 2¢%
possible colorings can occur and all are equally likely, so
each image in the sample space has probability 1/2¢F.
The first-, second-, and third-order ensemble probabilities
are, respectively, P[p(c,r) = 1] = 1/2 if (c, r) is inside the
array and P[p(c, )] = 0 otherwise; P[p(c,r) = i, p(c + n,
r + m) = j] = 1/4 for all possible combinations i,j = 0,1,
as long as the pixels are distinct and inside the array, and
that probability equals zero otherwise [or 1/2 if (n, m) =
(0,0) and (c, r) is in the array]; and P[p(c, ) = i, pc + ny,
r+ my) = j, plec + nq,r + my) = k] = 1/8 for all values
of i,j,k = 0,1 when all three pixels are in the array and
that probability equals zero otherwise (or 1/4 or 1/2 in the
obvious special cases). Consequently, the expected value
of the renormalized third-order statistic, E[S;, p(n1,my,
ng, mp)], is 1/2 (when all the arguments are zero), 1/4
[when one of the (n;, m;) is (0,0), or (ny, m;) = (na, my) #
(0,0], or 1/8 (for all other arguments). The third-order
statistics of specific images will vary around those ex-
pected values, but as array size increases, that variance
should decrease for fixed values of the arguments n;, m;
because the coin-toss process is third-order ergodic in the
limit: with probability 1,

lim S3,p(n1) my, ng, my) = E[sa,p(nh my, g, msy)].
R~xC—x (19)

In other words, for every fixed set of arguments n;, m., the
variance of the sample statistic S; ,(n1, my, ns, ms,) shrinks
to zero as sample images become infinitely large.
(Diaconis and Freedman’ show that all their ¢-matrix
textures are third-order ergodic; the coin-toss texture is
one special case, and the even texture is another.)
However, an image size increases, so does the number of
possible third-order statistics, since S3, can be nonzero
for larger arguments. The variance of the newly arriving
statistics is always large, since they depend on only a few
pixels. Consequently, comparisons of the complete statis-
tics of two sample images always show considerable dis-
agreement. Figure 7 illustrates those points. It shows
scatterplots that compare the third-order statistics of two
sample coin-toss images. [If a given statistic has the
same value for both images, its data point falls on the di-
agonal line. If all the statistics equaled their expected
values, all the data points would fall at (1/2,1/2), (1/4,1/4),
or (1/8,1/8).] In Fig. 7(a) the array sizes are 10 X 10, and
the graph compares all the third-order statistics of the
two images. Figure 7(b) compares the same set of statis-
tics (0 < n;,m; < 9) for 50 X 50 arrays. The law of large
numbers is clearly doing its job. Figure 7(c) compares
the complete set of third-order statistics for the 50 X 50
images.

B. 0Odd and Even Textures

The odd and even algorithms®" both begin by coloring all
the pixels of row 0 and column 0 by independent tosses of
a fair coin. For the creation of an odd image the remain-
ing pixels are then colored recursively, under the rule that
every 2 X 2 block of four adjacent pixels must contain an
odd number of blacks. For the creation of an even image,
the remaining pixels are colored so that every 2 X 2 block
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contains an even number of blacks. Equivalently, for the
even texture, one could color each pixel (¢, ) outside the
zero row and column so that it satisfies the constraint

ple,r) = p(c,0) + p(0,7) + p(0,0) (mod2), (20)
and for the odd texture, one could use the constraint
ple,r) = p(c,0) + p(0,r) + p(0,0) + cr (mod 2). (21)

Every initial coloring of row 0 and column 0 creates a

2 independent coin-toss texture zamples
sample size 16 x 10 . .
all third-order statistics

@

Z independent coin—toss texture samples
sample size 50 x S0
third-order statistics for n.m < 10

(b)

Z independent coin-toss texture samples
sample =zize S50 x 508
all third-order statistics

Fig. 7. (a) Scatterplot that compares all third-order statistics for
two independent 10 X 10 samples of coin-toss texture. The axes
are the same as those in Fig. 2. (b) Comparison of the same
statistics for independent 50 X 50 coin-toss samples. (¢c) Com-
parison of all third-order statistics for the same 50 X 50 samples.
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'a

b ™.

(b)
Fig. 8. (a) Solid black even image and its odd match. (b) Non-
matched 50 X 50 samples of odd (right side) and even (left side)
texture. The two images are created with different initial color-
ings for the zeroth row and column. (The odd and even images
in Fig. 1 are a matched pair; the same initial coloring generated
both images.)

unique odd and even texture sample. All 2°*#* such col-
orings are equally probable, so every odd image and every
even image has probability %°*#*. (When the initial col-
oring of row zero and column zero is all black or all white,
the resulting even image is solid black or solid white. In-
tuitively, those two images are obviously nongeneric even
images, but their ensemble probabilities are the same as
all the others.)

The definitions in Egs. (20) and (21) can be restated
verbally in a helpful way: to create an even texture, one
should color row 0 and column 0 by coin tosses and then,
for each row r > 0, color the entire row the same as row 0
or the opposite, according to whether the column 0 pixel in
row r has the same color as the column 0 pixel in row 0 or
the opposite. To create the odd texture for the same ini-
tial coloring, one should reverse the even image coloring in
every pixel whose coordinates are both odd numbers.
That description makes apparent the one-to-one corre-
spondence between odd and even texture samples: each
even image is matched to a unique odd image, which is
created by a reversal of the coloring of all its odd-odd pix-
els?' [As a curiosity, the top of Fig. 8(a) shows the solid
black even image and its odd match.] Statistical and vi-
sual comparisons between odd and even texture samples
need to take that point into account; they can involve ei-
ther matched or unmatched pairs.

Visually, matched odd and even samples seem just
as highly discriminable as unmatched samples. [The
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0dd and even samples in Fig. 1 are a matched pair.
Figure 8(b) shows an unmatched pair.] That observation
is interesting, because, in a matched pair, three fourths of
the pixels are colored identically. Statistically, matched
pairs have a strong odd-even correlation between statis-
tics whose arguments are all even numbers [shown below
in Fig. 9(c)]—a correlation that is absent for unmatched
pairs (cf. Fig. 10 below). The presence versus absence of
this correlation apparently goes unnoticed by the eye, thus
providing another bit of evidence (in addition to the point
about the odd and coin-toss textures mentioned in
Section 1) that texture discriminability is not governed by
global third-order statistical similarity.

The strong correlation between even-argument statis-
tics of matched odd and even texture samples can be un-
derstood from the fact that if {p,(c, 7)) and (p.(c,r)) are a
matched pair of odd and even images, then 2p,(c,r) —
1= (-1)"(@2p. — 1) for all pixels. If one sets olc,7) =
2p.(c,r) — 1 and e(c,r) = 2p.(c,r) — 1, that relationship
implies that for even-numbered arguments the second-
order statistics of the arrays (o) and (¢) are perfectly corre-
lated, since

c-1 R-1
S > ole,rolc + 2n,r + 2m)
e=0 r=0
C-1 R-1
= > 3 (=1)Frtzem2me(e, rle(c + 2n,r + 2m)
=0 r=0

and (—1)2r+2em+2rn = 1 Consequently, for even ar-
guments the difference between the second-order statis-
tics of matched odd and even images depends only on the
difference between the total number of black pixels in the
two images, which tends to be small, since three fourths of
the pixels are always initially identical, and the law of
large numbers averages out the rest. Similar consider-
ations explain why the other (i.e., the truly third-order)
statistics will be highly correlated for all-even arguments.

Using a recursive argument based on Egs. (20) and (21),
Julesz et al.® proved that both the odd and even textures
have the same third-order ensemble probabilities as those
of coin-tossing. One could also reach that conclusion by
using the verbal restatement of the even algorithm to
show that its third-order probabilities are the same as
those of coin tossing (by considering the possibilities for
representative triples of pixels) and then appealing to the
matched-pair property to show the same for the odd pro-
cess. One could also use that same property to show that
since the even texture process is third-order ergodic in the
limit, as image size becomes infinite the odd process is
also. (The argument is straightforward but long winded;
it is omitted here.)

Figure 9(a) compares the complete set of third-order
statistics of a matched pair of small (10 X 10) odd and
even texture samples (shown in the inset). Figure 9(b)
compares the same statistics (0 = n;,m; = 9) for matched
50 X 50 odd and even images (the images in Fig. 1), and
Fig. 9(c) compares their statistics for arguments in the
same range but now for even-numbered arguments only
(showing the strong hidden correlation mentioned above).
Figure 10 shows the same comparisons for the pair of un-
matched odd and even samples from Fig. 8. Apart from
the absence of the strong correlation for statistics with
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matched odd vs. cven texture samples
sample size 18 x 18
all third-ordér statistics

(@

matched odd us. even texture samples
sample size 58 x 50
third-order statistics for n.» < 16

(b)

matched odd vs. even texture samples
sample size S8 x S8
third-order statistics for even arguments < 168

()

Fig. 9. (a) Scatterplot that compares all third-order statistics of
10 X 10 matched samples of odd and even texture (shown in the
inset). The axes are the same as those in Fig. 2. (b) Compari-
son of the same third-order statistics (0 < n;,m; < 9) for a
matched pair of 50 X 50 odd and even samples (the samples in
Fig. 1). (c) Comparison of third-order statistics in the same
range as that in (b) but only for statistics whose arguments are all
even numbers. For this subset of statistics, matched odd and
even samples are strongly correlated.

all-even arguments [compare Fig. 10(c) with Fig. 9(c)], the
overall statistical similarity of unmatched odd-even pairs
is nearly the same as that for matched pairs. In both
cases, odd and even sample images are statistically quite a
bit less similar than are independent coin-toss samples,
though not in any qualitatively revealing way. The

John I. Yellott, Jr.

main overall difference is that the variance of odd and
even sample statistics is greater than that of coin-toss
statistics.

Direct comparisons of odd and even images with coin-
toss images show this point clearly. Figure 6 compared
the small-triangle (0 < n;, m; = 9) statistics of 50 X 50
odd and coin-toss sample images, and Fig. 11 does the
same for 50 X 50 even-versus-coin-toss samples (the im-
ages are those in Fig. 2). The horizontal elongation of the
data point clouds in Figs. 6 and 11 indicates the greater
variance of the odd and even image statistics. That fact
is not surprising when one considers that the statistics of

unmatched odd vs. even texture samples
sample size 10 x 10
all third-order statistics

@)

unmatched odd vs. even texture samples
sample zize 58 x 58
third-order statistics for n,m < 10

(b)

unmatched odd vs. cven texture samples
sanple size 50 x S50
third-order statistics for even arguments < 10

(©

Fig. 10. Same comparisons as those in Fig. 9 but for the non-
matched odd and even samples shown in Fig. 8.
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coin-toss vs. even texture samples
sample size 50 x 50O
third-order statistics for n.,n < 10

Fig. 11. Comparison of small-argument (0 = ni,m; = 9) third-
order statistics of the 50 X 50 even and coin-toss texture samples
fom Fig. 1. Coin-toss values are on the y axis.

a coin-toss sample depend on CR independent random
variables, so one can expect that their variance will de-
crease as 1/CR, while in odd and even samples there are
only C + R — 1 independent random variables (the pixels
in row 0 and column 0), so the variance of their statistics
will decrease at the much slower rate 1/(C + R — 1).
That point suggests that in scatterplots comparing the
small-triangle statistics of coin-toss versus odd or even
texture samples containing CR pixels, the data-point
clouds should be roughly elliptical, with aspect ratios of
the order of [CR/(C + R — 1)]'2. As a rule of thumb,
that is a fairly accurate description of what one finds (e.g.,
for 50 X 50 images that ratio would be 5:1).

The overall conclusion of the preceding analysis is that,
apart from the strong correlation between statistics with
all-even arguments (shown in Fig. 9), the third-order sta-
tistics of sample odd, even, and coin-toss images as large
as 50 X 50 pixels cannot be described as identical. (Ex-
tending the comparisons to 100 X 100 arrays still leads to
the same conclusion.) If all the third-order statistics of
matched odd and even texture samples showed the same
strong agreement as those with all-even arguments, it
might reasonably be argued that the odd and even
algorithms create viewable images whose third-order sta-
tistics are essentially identical. But evidently that is not
the case.

5. COUNTEREXAMPLES TO THE JULESZ
CONJECTURE

A. Previous Examples

Attempts to create counterexamples to Julesz’s second-
order conjecture have involved two types of texture. One
is exemplified by the odd and even textures: probabilistic
algorithms that color the squares of a checkerboard black
or white. (No counterexamples that involve multicolored
images seem to have been proposed.) This class includes
other textures based on Gilbert’s' floater (or glider') al-
gorithms, Diaconis and Freedman’s’ ¢-matrix textures,
and the textures devised by Gagalowicz.® The floater
and ¢-matrix techniques create pairs of stochastic pro-
cesses that have identical second-order ensemble probabili-
ties, but the second-order statistics of sample images pro-
duced by different processes are not constrained to be
identical, and, as previous sections have demonstrated,
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they will generally be quite different. (The odd and even
textures are both floater textures; the even and coin-
toss textures are ¢-matrix textures.) Consequently,
Gagalowicz'? sought to create discriminable stochastic
texture samples with second-order statistics constrained
to be as close as possible, using linear programming. He
succeeded in creating texture samples that are quite eas-
ily discriminable despite having second-order statistics
that differ by only approximately 2%. That is not quite
an identity, but it is surely close enough to dispose of the
Julesz conjecture for all practical purposes. The only real
drawback of Gagalowicz’s counterexamples is the complex-
ity of their construction: one would prefer images that
are easy to create, and, of course, exact second-order statis-
tical identity is better than near identity.

The other class of counterexamples in the literature in-
volves textures composed of micropatterns: a small pat-
tern (e.g., a letter or an abstract shape) is replicated at
numerous sites in the plane to create a texture sample.
(Here again, all the examples involved black and white im-
ages) The mathematics underlying this approach can be
understood in terms of autocorrelation. Recall that if
two black and white images have the same area and the
same autocorrelation function (the same power spectrum),
their second-order statistics are the same. Suppose that
&(x, y) is a 0-1 function that describes a black (¢ = 1) mi-
cropattern on a white (¢ = 0) background. Replicating
that pattern at N sites in the plane corresponds to convolv-
ing ¢ with a function of the form p(x,y) = 3, 8(x —
x;,)8(y — ), where the locations (x;, y:) are chosen so that
none of the replicas overlap. The result is a black and
white image function f:® — [0,1] given by

N
Flx,y) = plx,y) = dlx,y) = 2 dlx — 2,5 — ).

i=1

The autocorrelation function of f(x,y), as(h,v), is the
convolution of the autocorrelation functions of the mi-
cropattern ¢ and the replication function p: as(h,v) =
a,(h,v) *a4(h,v). If another micropattern v(x, y) can be
found whose area and autocorrelation function are the
same as those of pattern ¢(x, y), and if one replicates that
pattern at the same set of locations (x;, y:), creating the
texture sample g(x, y) = p(x,y) * y(x,y), then, since
a,(h,v) = ay(h,v), it follows that ay(h,v) = as(h,v);ie., the
two samples have the same autocorrelation function.
Since their areas are also the same, the two texture
samples have identical second-order statistics.

The problem is to find micropatterns with identical
areas and autocorrelation functions that yield sponta-
neously discriminable textures. The simplest way
in which one can create such micropatterns is to take
any pattern ¢(x,y) and rotate it 180°, turning it into
¢(—x,—y). Since ¢(—x,—y) and ¢(x,y) have the same
power spectrum [i.e., ®(a, B)P(—a, =), where @ is the
transform of ¢], they have the same autocorrelation func-
tion. So a texture sample composed of, say, inverted let-
ters A has the same second-order statistics as those of a
sample composed of upright letters A located at the same
positions. One might expect that such textures would be
easily discriminable for micropatterns that look quite dif-
ferent after a 180° rotation. But typically that is not the
case: one of the surprising facts about texture percep-
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tion that emerged from Julesz’s research?® is that pairs of
texture samples created in that way are usually not spon-
taneously discriminable. That fact. provided strong evi-
dence in favor of the Julesz conjecture.

In their search during the 1970’s for counterexamples to
this conjecture, Julesz and his co-workers did not succeed
in finding pairs of micropatterns with identical autocorre-
lation functions that produced discriminable textures.
However, they did present examples of discriminable tex-
tures based on micropatterns that do not themselves have
identical autocorrelations but that would yield distinct
textures with identical autocorrelation functions if they
were replicated infinitely often throughout the plane,
with each replica independently rotated by a random
amount.*>® (Random rotation forces the power spectra
of the textures to be circularly symmetric, erasing the an-
gular differences that distinguish the spectra of the indi-
vidual micropatterns.) That technique was referred to as
the four-disk method (named after the prototypical
micropatterns). Its drawback was pointed out by
Gagalowicz'®: one cannot expect finite samples of tex-
ture that correspond to distinct micropatterns to have
identical power spectra, because they do not contain
enough randomly rotated micropatterns —the actual power
spectra of samples do not achieve perfect circular symme-
try, so, in practice, the spectral differences between
samples composed of distinct micropatterns will not be
erased.

B. New Counterexamples to the Julesz Conjecture

This subsection describes a simple technique for the cre-
ation of discriminable texture samples (e.g., Figs. 4 and 5)
whose second-order statistics are exactly identical. The
textures are created by the replication of black and white
micropatterns that themselves have identical second-order
statistics, so they can be said to have identical second-
order statistics locally as well as globally. The construc-
tion principle is the same in one and two dimensions. In
the one-dimensional case (for the creation of bar-code tex-
tures like those in Fig. 4) the idea is as follows. Suppose
that p(x) and q(x) are arbitrary real functions on the line,
with Fourier transforms P(a) and Q(«), respectively. The
transforms of the convolutions p(x) * g(x) and p(x) * g(—x)
are P(a)Q(a) and P(a)Q(—a), respectively, so the power
spectra of p(x) # g(x) and p(x) * g(—x) both equal
|P()|?|Q(a)|®. Thus p(x) *g(x) and p(x) * g(—x) have
the same autocorrelation function. Then, if h(y) is
any third function, and p, ¢, and 4 are all nonnegative, the
functions h(y)[p(x) * g(x)] and h(y)[p(x) * g(—x)]
represent two-dimensional images with identical autocor-
relation functions, since both have the power spectrum
|[H(B)|* P(2)|*|Q(a)|® To use this principle to create black
and white micropatterns, one supposes that p and g are
both composed entirely of unit-amplitude delta functions
located at selected integers, e.g.,

4
px) = > 8(x — 4n?),

n=0

(22)

4
qx) = 2 6[x — @n® + n + 1)].

n=0

(23)

In that case the convolutions p(x) * g(x) and p(x) = q(—x)
both consist entirely of unit-amplitude deltas located
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at integers. (The choices 4n® and 4n®+ n + 1, n =
0,1,...,4, are motivated by the need to prevent the deltas
from piling up in the convolutions. They are not unique
in that respect.) If the function A(y) =1 for |y| < some
constant L, then ¢(x, y) = h(y)[p(x) * g(x)] and y(x,y) =
h(y)[p(x) * q(—x)] both describe bar-code micropatterns
composed of 25 vertical black lines of length L, distributed
over 133 spaces (so that their areas are equal), and those
micropatterns have identical autocorrelation functions.
Figure 12 shows those micropatterns and also the pat-
terns created by Egs. (22) and (23) when the sums run
from n = 0 to 3 instead of 4. Texture samples that one
constructs by locating replicas of micropatterns ¢ and y at
the same sites inherit that identity and consequently have
identical second-order statistics.

To extend the principle to two-dimensional micropat-
terns, one supposes p(x, y) and g(x, y) are arbitrary func-
tions on the plane. Then p(x,y) *q(x,y) and q(x,y) *
q(—x,—y) have the same autocorrelation function, since
each has the power spectrum [P(u,v)|)@(u,v)|2.. Now let
p(x,y) be a sum of two-dimensional delta functions
that represent a set of locations in the plane, say
(x1, ¥1)y ... (%4, 1), and let g(x,y) be a 0-1 function that
represents a black and white pattern. The convolution
p(x,y) *q(x,y) creates replicas of q(x,y) centered at the
(x:, ;) locations, and p(x, ) * (g — x — y) creates replicas
of 180° rotations of g(x, y) centered at the same locations.
If none of the replicas overlap, the convolution patterns
are black and white and have identical autocorrelations
and hence identical second-order statistics. That identity
will then be inherited by textures formed by the replica-
tion of those patterns at the same sites in the plane.
Victor®® suggested the application of that principle illus-
trated in Fig. 5: take p(x,y) to be a set of two-
dimensional delta functions arranged in a triangle (the
micropatterns in Fig. 5 use six deltas), and let g(x, y) be

8, 4.5, 9, 16, 18, 21, 22, 34, 36, 39, 41, 43, 54, 55, 64, 68, 69, 72,5, 82, 84, 183, 184, 132

|

8, 4, 16, 29, 33, 36, 45, 58, 54, 63, 64, 65, 66, 67, 68, 72, 79, 84, 86, 93, 99, 184, 114, 127, 132

TN

8, 4,5, 9,16, 18, 21, 22, 34, 36, 39, 41, 43, 54, 55, 75

8, 4,16, 21, 25, 34, 36, 37, 38, 39, 43, 58, 55, 57, 78, 75

(b)

Fig. 12. Pairs of bar-code micropatterns with identical second-
order statistics. The numbers are the positions of the bars.
Pair (a) and (b) are p(x) #g(x) and p(x) » q(-x), respectively,
where p and ¢ are defined by Egs. (22) and (23), respectively.
Pair (c) and (d) result from a change in the upper limits of the
sums from 4 to 3. (The functions have been translated here so
that the first bars of all the patterns fall at position 0.)
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some other shape that is altered by a 180° rotation, such as
the letter T. Textures created in that way appear to be
quite easily discriminable.
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