
UCLA
UCLA Electronic Theses and Dissertations

Title
Computing Optimal Solutions to the Orienteering Problem

Permalink
https://escholarship.org/uc/item/29b1k0ss

Author
Stephenson, Miles W

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/29b1k0ss
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Computing Optimal Solutions to the Orienteering Problem

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Computer Science

by

Miles Stephenson

2019

c© Copyright by

Miles Stephenson

2019

ABSTRACT OF THE THESIS

Computing Optimal Solutions to the Orienteering Problem

by

Miles Stephenson

Master of Science in Computer Science

University of California, Los Angeles, 2019

Professor Richard E. Korf, Chair

We have found two admissible heuristics that we use within a branch and bound framework

to compute optimal solutions to the Orienteering Problem on both complete and incomplete

graphs. Our approach exponentially outperforms naive methods in terms of both node

expansions and runtime. A detailed description of our heuristics and overall algorithm are

provided. Finally, we analyze the performance of our approach on a variety problem of

instances.

ii

The thesis of Miles Stephenson is approved.

Rafail Ostrovsky

Guy Van den Broeck

Richard E. Korf, Committee Chair

University of California, Los Angeles

2019

iii

TABLE OF CONTENTS

1 Introduction . 1

1.1 Motivation . 1

1.2 Problem Description . 1

1.3 Complexity of the OP . 2

2 Problem Space . 3

2.1 State Representation . 3

2.2 Operators . 3

2.3 Initial State . 4

2.4 Goal State . 4

3 Comparison to Existing Methods . 5

3.1 Problem Variations . 5

3.2 Orienteering with Category Constraints . 6

3.3 Approximation Methods . 6

4 Our Approach . 8

4.1 Depth First Branch and Bound . 8

4.2 Preprocessing the Graph . 9

5 Heuristic Evaluation Functions . 10

5.1 Definitions of Accessibility . 10

5.2 Affordable Untraversed Edges Heuristic . 11

5.3 AUE Heuristic Implementation Optimization 11

5.4 Admissibility of the Affordable Untraversed Edges Heuristic 12

iv

5.5 Knapsack Problem Analogy . 15

5.6 Fractional Knapsack Heuristic . 15

5.7 Admissibility of the Fractional Knapsack Heuristic 18

6 Overall Algorithm . 21

6.1 Computing Optimal Solutions . 21

6.2 Node Ordering . 21

7 Experimental Results . 24

7.1 Comparison to Brute Force . 24

7.2 Application of AUE Heuristic to Orienteering with Category Constraints . . 28

7.2.1 Bolzoni and Helmer’s heuristic . 28

7.2.2 AUE Heuristic Adaptation . 29

7.2.3 AUE Heuristic Superiority . 29

7.2.4 Experimental Results . 30

8 Comparison of Our Heuristics . 32

8.1 Test Simplifications . 32

8.2 Testing Methodology . 33

8.3 Branching Factor . 33

8.4 Node Reward Distribution . 35

8.5 Edge Weight Distribution . 36

8.6 Edge Budget . 37

9 Special Cases . 40

9.1 AUE Heuristic Best Case Scenario . 40

9.2 AUE Heuristic Worst Case Scenario . 40

v

10 Summary of Results . 42

11 Future Work . 43

11.1 Heuristic Improvement . 43

11.2 Parallelization . 43

11.3 Approximation . 44

11.3.1 Weighted Search . 44

11.3.2 Anytime Property of Branch and Bound 44

12 Conclusion . 45

References . 46

vi

LIST OF FIGURES

7.1 Brute force versus AUE runtime . 26

7.2 Brute force versus AUE node expansions . 27

8.1 Ratio of runtimes of heuristics varying edge budget 39

vii

LIST OF TABLES

7.1 Comparison to brute-force . 25

7.2 B.H. comparison test graph characteristics . 31

7.3 Comparison to B.H. approach . 31

8.1 Relative heuristic performance varying branching factor 34

8.2 Relative heuristic performance varying reward distribution 35

8.3 Relative heuristic performance varying edge weight distribution 37

8.4 Relative heuristic performance varying edge budget 38

viii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to Professor Richard Korf. He is responsible for

introducing me to many of the topics discussed in this thesis. Additionally, the many hours

of conversation we spent discussing this problem were invaluable in helping me refine my

approach.

ix

CHAPTER 1

Introduction

1.1 Motivation

Consider the following problem: A salesperson leaves on a business trip of some predeter-

mined length to sell products to residents of a region. The amount of sales revenue in a city

is known to be proportional to its population, but travelling between cities in the region via

car takes time. The salesperson’s trip starts and ends at specific locations, but there are no

restrictions on cities visited intermediately. After selling products to residents in the first

city, the salesperson would like to know how best to plan the remainder of his or her trip.

How should the salesperson plan his or her path through the region to maximize the amount

of sales revenue, given the amount of time available?

The above is a real world example of the type of problem that can be optimally solved

by the methods described in this thesis. Furthermore, the orienteering problem has recently

been used as a model in several practical applications, such as the tourist trip design problem

as well as the mobile-crowdsourcing problem. [GLV16]

1.2 Problem Description

The orienteering problem (OP) is an NP-hard routing problem on a connected (not necessar-

ily complete), undirected edge-weighted graph G = (V, E). The weight of an edge represents

the cost of traversing that edge, that is moving from one node to another via that edge.

Additionally, each vertex has associated with it a positive integer reward which is collected

upon the initial visit to the node. Nodes can be revisited, but no additional reward is gained

1

from subsequent visits. Starting and ending at specific initial and terminal nodes, and given

an edge budget, the objective is to determine a subset of nodes to visit, and in which order

(i.e., a path), such that the sum of the rewards collected from nodes is maximized and the

edge budget is not exceeded. Unlike the TSP, a solution to the OP need not be a cycle,

unless the source and destination nodes are the same.

An optimal solution to the OP is implicitly defined as a path through the graph such

that the sum of the rewards collected is greater than or equal to the sum of rewards possible

via any other valid path through the graph.

1.3 Complexity of the OP

The OP can be shown to be NP-hard through a reduction from Hamiltonian cycle. To see

this, consider the following example. Suppose we have a connected graph with unit edge

weights and unit node rewards. Let the source and destination node be the same and let the

initial edge budget be equal to the number of nodes in the graph. Let the number of nodes

in this graph be V , where V > 2.

Suppose we have an algorithm A that computes optimal solutions to the orienteering

problem. There are two cases. If the value of the solution returned by A is equal to V , then

the resulting path must be a Hamiltonian cycle in the graph. If the solution value is less

than V , then we know that a Hamiltonian path does not exist in this graph. This completes

the reduction, and shows the OP is NP-hard.

2

CHAPTER 2

Problem Space

We considered the problem space described below during the development of our solution

method. Other problem space representations are possible, such as the set of edges included

in the current partial path through the graph, but we found this representation to be the

most intuitive.

2.1 State Representation

A state of the OP is uniquely defined by the following:

• The current location on the graph (a node)

• The set of nodes visited thus far

• The cumulative sum of rewards collected so far via this partial path

• The amount of edge budget remaining

2.2 Operators

There is only a single operator, which is moving from the current node to any of the adjacent

nodes, at the cost of the edge connecting it to the current node. This action is only possible

when the cost of the edge is less than or equal to the remaining edge budget. After each

such move, the edge budget is decremented by the cost of the edge traversed.

3

2.3 Initial State

The initial state is defined as a state in which no edge budget has been spent, that is, the

entire initial edge budget remains and the sum of rewards collected equals only the reward

associated with the initial node. Furthermore, in the initial state the current node is the

initial node and the path contains only the initial node.

2.4 Goal State

A terminal state is implicitly defined as a state such that insufficient edge budget remains

to visit any other unvisited node from the current state. The current location on the graph

(the final node on the path) in the goal state must be the specified destination node. A

terminal state is considered optimal if the sum of rewards collected is greater than or equal

to the sum possible via any other valid path.

4

CHAPTER 3

Comparison to Existing Methods

3.1 Problem Variations

There are many variants of the orienteering problem. The version of the OP we considered

is as follows:

• The path must begin and end at specific nodes (possibly the same)

• The path need not be a cycle

• Nodes can be visited multiple times, but no additional reward is earned from subsequent

visits

• The graph is not necessarily complete

• The graph is not necessarily embedded in a plane

Our variant of the OP is the most general when compared to what appears in the litera-

ture. Namely, we do not require the solution’s path to be a cycle, nor do we prohibit nodes

from being revisited. Because of these generalizations, optimal zero-one integer program-

ming methods published in [FGT98] are not applicable to our variant of the OP, as far as

we can tell. Of the optimal methods we found after an extensive survey of the literature, the

OP variant and methods published in [BH17] are the most similar and directly applicable

to our problem.

5

3.2 Orienteering with Category Constraints

Of the many orienteering problem variants published in the literature, our problem setup

and solution methods are most similar to Orienteering with Category Constraints, described

in [BH17]. The focus of that work is similar to ours, namely using heuristic search methods

to optimally solve the OP. The main difference in their problem variant is the addition of

category constraints, where each node in the graph belongs to a category and there is a limit

imposed on the number of nodes in each category that a solution’s path can visit. Their

approach is currently considered to be the state-of-the-art for this variant of the OP.

Our variant of the OP can be solved via their methods if we consider only a single

category and set the constraint for that category equal to the number of nodes in the graph.

Admittedly, this represents one of the worst case scenarios for their method, however the

purpose of this comparison is to determine the effectiveness of both their heuristic and a

best-first-search. We found our approach significantly outperformed their algorithm in every

test on instances of our OP variant. This is due partially to the overhead of maintaining

the double-ended priority queue used in their best-first-search, however the vast majority

of the relative efficiency of our approach is due to the superiority of our heuristics. To be

specific, when we compared our approach to theirs, we used our AUE heuristic. While both

heuristics are admissible, the AUE heuristic will always produce an upper bound that is less

than or equal to the value produced by the heuristic described in their paper. A detailed

explanation of the AUE heuristic, as well as a definition of admissibility in this context

are provided subsequently. After describing our approach, we will show how, with slight

modification, our heuristics could be employed to solve the OP with category constraints

with considerably greater efficiency than what is currently considered the state-of-the-art.

3.3 Approximation Methods

After a survey of the literature, it seems that the vast majority of researchers concentrate on

approximation methods. This differs from the objective of this thesis, which was to compute

6

optimal solutions to the OP. As such, these methods offered little valuable insight.

7

CHAPTER 4

Our Approach

To find optimal solutions, we need an admissible search algorithm. Exponential-space algo-

rithms like A* are impractical on large instances of the OP. This is because in practice we

will quickly exhaust the available memory. Since it is trivial to find a solution, this suggests

depth-first branch and bound. Next, we need an admissible heuristic function. Since the OP

is a maximization problem, admissibility means that the heuristic will never underestimate

the additional rewards that could be collected from a given state. This property allows our

branch and bound algorithm to safely prune branches of the search tree that could not pos-

sibly result in optimal solutions. A brief description of depth-first branch and bound applied

to the OP is provided in the section below.

4.1 Depth First Branch and Bound

Depth-first branch and bound performs a single depth-first search of the problem-space tree.

Assume the search is done left-to-right without loss of generality. As soon as the left-most

branch terminates, we have a candidate solution. Let the value of this solution be α, which

is the value of the best complete solution found so far. Initially, α is set to 0. As the

search continues, the sum of rewards collected along the path plus the (admissible) heuristic

evaluation of the current state is computed and compared to α. This sum represents an

upper bound on the solution we could achieve by continuing down the search tree from the

current state. If this upper bound is less than α, the branch below that node (in the search

tree) is pruned, because it can only lead to solutions whose value is less than or equal to

the best solution found so far. If a complete solution is found whose sum of rewards value

8

is greater than α, α is updated to this greater value, and the corresponding best path is

replaced by the path leading to this state. When the search terminates by exhausting the

entire search tree, the best solution found is returned as the optimal solution.

With an admissible heuristic, depth-first branch and bound is guaranteed to return an

optimal solution. Since this is a depth-first search, the space complexity is linear in the

maximum search depth. [Kor13]

4.2 Preprocessing the Graph

Both of our heuristics require the length of the shortest path from the current node to every

other node in the graph. Since the heuristic function is called at every node generation,

it should run as efficiently as possible. Calculating the lengths of the shortest paths from

the current node to all other nodes is O(n2) in terms of time complexity. As such, doing

so at every node generation would be extremely inefficient. This cost can be amortized by

computing the length of the shortest path from every node to every other node once, as

a preprocessing step before the search begins, and caching the values. This is relatively

cheap, requiring only O(n3) time just once. This results in an NxN matrix (where N is the

number of nodes), in which shortest path lengths between any two nodes can be looked up

in constant time. In practice, the time required to generate this matrix is trivial relative to

time spent searching for the optimal solution.

With this information, nodes whose shortest path distance from the current state is

greater than the remaining edge budget can be removed from consideration, since they are

inaccessible from the current node via any legal path. Our heuristic functions will use this

information to reduce the number of nodes they consider every time they are called.

9

CHAPTER 5

Heuristic Evaluation Functions

To prune suboptimal branches of the search tree within a branch-and-bound framework, we

need an admissible heuristic function. Since we are interested in maximal solutions, our

heuristic must never underestimate the additional rewards that could be achieved from a

given state. In this section, we discuss two such heuristics, one of which generally expands

fewer nodes, but is more computationally expensive. Later, we analyze both heuristics on a

variety of graphs.

5.1 Definitions of Accessibility

In our descriptions of the heuristic evaluation functions, we refer to the accessibility of nodes

and edges. Below we formally define what we mean in both contexts.

• We say that a node x is accessible if in the current state there is sufficient edge budget

to travel to x from the current node, as well as from x to the destination node via

shortest paths. For efficiency, we determine this using the pairwise shortest path

matrix we described previously. Formally, x is accessible if it satisfies the following:

s.p. dist(curr, x) + s.p. dist(x, dest) ≤ budget

• We say that an edge is accessible if the nodes at both of its endpoints are accessible,

as defined above.

10

5.2 Affordable Untraversed Edges Heuristic

The first heuristic we discuss works by establishing an upper bound on the number of pre-

viously unvisited nodes that could be visited from the current state. Then, to establish an

upper bound on the additional rewards that could be achieved, it is assumed that all of

these nodes have the greatest possible rewards. This heuristic requires nodes to be sorted

in descending order by reward and for edges to be sorted in ascending order by weight. We

refer to this heuristic as the Affordable Untraversed Edges heuristic, or AUE for short.

The key observation made in the construction of this heuristic is that to collect an

additional reward, we must visit a previously unvisited node. A lower bound on the cost we

would incur to visit a new node is the weight of the minimum weight accessible untraversed

edge. We use the matrix of pairwise shortest path values we precomputed to consider only

nodes and edges in the accessible region of the graph. The heuristic establishes an upper

bound first by determining the greatest number of untraversed edges (edges with at least

one endpoint at an unvisited node) in the accessible region of the graph that could possibly

be traversed given the amount of edge budget remaining. We establish this number by

”buying” the cheapest edge in the accessible region of the graph until insufficient budget

remains to buy the next edge. Let this number of edges be m. Then, the greatest m rewards

in accessible unvisited nodes are summed. This sum is returned as the heuristic evaluation

of the current state.

With this implementation of our heuristic, its time complexity is dominated by the sorting

of the edges and nodes. In the next section, we show an optimization which allows us to

improve this to linear time complexity.

5.3 AUE Heuristic Implementation Optimization

Instead of sorting both the nodes and edges every time the AUE heuristic is called, we sort

only twice as a preprocessing step. We sort the edges by weight in ascending order, and the

nodes by reward in descending order.

11

With the nodes and edges stored this way, there is no need to sort each time the heuristic

is called. We simply scan across the pre-sorted array of edges, check accessibility (i.e., both

endpoint nodes are accessible), incrementing the total number of edges we can afford and

decrementing the budget until we can’t afford the next edge. Then, we do another linear scan

across the pre-sorted array of nodes, check if the node is accessible and previously unvisited,

and if so, increment the additional rewards possible by the value of the reward associated

with the node. Determining the accessibility of a node can be done in constant time using the

pairwise shortest path matrix we precomputed. This results in an improvement in the time

complexity of the heuristic. After factoring out the sorting calls, it now runs in O(V + E),

where V and E are the number of nodes and edges in the graph, respectively.

5.4 Admissibility of the Affordable Untraversed Edges Heuristic

Theorem 1. The affordable untraversed edges heuristic never underestimates the sum of

additional rewards that could be achieved from the current state via any valid path to the

terminal node.

Proof. The first step in the proof is to determine the greatest number of previously untra-

versed edges in the reachable graph (the graph comprised entirely of accessible nodes and

edges) that could be traversed given the remaining edge budget. By sorting the untraversed

edges from least to greatest cost, and “buying” edges until insufficient edge budget remains

to “buy” another edge, the greatest total number of edges is “bought”. [See proof in Lemma

below]

Next, observe that from any node, in order to visit another node an edge must be tra-

versed. Specifically, from the current node, to visit an unvisited node, at the very least,

a single untraversed edge must be traversed. We have established an upper bound on the

number of untraversed edges that could be traversed given the remaining edge budget. Let

this number of edges be m. Having established this upper bound on the number of untra-

versed edges, an upper bound on the additional rewards achievable given the current state

12

Data: current state

Result: upper bound on additional rewards

affordable edges ← 0;

budget ← current state’s budget ;

for each edge in pre-sorted edge list do

if edge has not been traversed and

edge cost ≤ budget then

affordable edges ++;

budget − = edge cost ;

end

end

additional rewards← 0;

for each node in pre-sorted node list do

if affordable edges == 0 then

break;

end

if node is accessible and unvisited then

additional rewards + = reward from node;

affordable edges − = 1;

end

end

return additional rewards ;

Algorithm 1: Affordable Untraversed Edges Heuristic

13

is simply the sum of the greatest m rewards. This value is clearly an upper bound, since

the assumption is that the greatest possible number of unvisited nodes is visited, and that

associated with this subset of nodes is the subset of rewards with the greatest sum.

Lemma 2. “Buying” edges from least to greatest cost results in the maximum number of

edges “bought”

Proof. Let B be the edge budget and E be a list of accessible, untraversed edges, sorted from

least to greatest cost. Let m be the number of edges that can be bought before B is less

than the cost of the next edge (B is decremented by the cost of the edge each time an edge

is bought). To show that m is the maximum number of edges that can be bought, we must

show that buying any other edge at any point, instead of the next one in sorted order, cannot

possibly result in a greater number of total edges bought. Observe that since edges were

bought in increasing order of cost, every remaining edge that was not purchased will have

cost greater than or equal to every edge we bought. Since we stopped buying edges when

the cheapest edge could not be afforded, this means buying any other edge would require us

to “return” at least one of the edges we bought.

There are two possible cases. In the first case, suppose we return one edge, and are then

able to afford another one we had not originally bought. In this case, we end up with the

same number of total edges, m. In the second case, suppose we return an edge, and still do

not have enough budget to afford another one. So, we return edges until we have enough to

buy another one. However, in this case since we returned at least two edges to add only a

single new edge, we will end up with at most m− 1 edges. Notice that it is not possible for

us to return a single edge and then be able to buy more than one new one with the resulting

additional budget. This is the case because we bought edges in ascending order by cost, as

such, the cost of every edge we bought is less than or equal to the cost of every edge we did

not buy. Therefore, greedily buying the cheapest edge until B < min[edge ∈ E] results in

the greatest total number of edges bought.

14

5.5 Knapsack Problem Analogy

After studying the AUE heuristic, we realized that in some scenarios, we were able to derive

a tighter upper bound on the additional rewards that could be achieved by drawing an

analogy to the knapsack problem.

The knapsack problem is a combinatorial optimization problem. Given a set of items,

each with a weight and a value, determine the number of each item to include in a collection

so that the total weight is less than or equal to a given limit and the total value is maximized.

It derives its name from the problem faced by someone who is constrained by a fixed-size

knapsack and must fill it with the most valuable items. [KT05]

There two most popular variants of the knapsack problem are the 0/1 Knapsack Problem

and the Fractional Knapsack Problem. The distinction is that in the 0/1 knapsack problem

the knapsack may only include complete items. In the fractional knapsack problem, fractions

of items can be included. The 0/1 knapsack problem is NP-Complete. The fractional

knapsack can be solved in O(nlogn) time. [KT05]

The second heuristic we discuss works primarily by modeling the computation of the

heuristic for the current state of the OP as a fractional knapsack problem. We consider

the set of the items available for placement into our knapsack to be the set of accessible

unvisited nodes. For each of these items, their associated value is the reward associated

with that node. Finally, the cost, or weight, associated with each item is the minimum

weight accessible incident edge. In this regard, this is similar to how the AUE heuristic

establishes an upper bound. The cost of the minimum weight accessible edge incident to a

node represents a lower bound the cost to visit that node from any other accessible node in

the graph.

5.6 Fractional Knapsack Heuristic

The fractional knapsack heuristic works in two steps. We need to know the set of unvisited

nodes which are accessible from the current node. This depends on the set of nodes previously

15

visited and on the edge budget. Since we know that the solution to the OP must visit the

destination node, we know we will incur a cost of at least the minimum weight accessible

edge into that node. Let this edge be m. Because of this, we can immediately decrement

the remaining edge budget by the weight of m before proceeding to the next step of the

algorithm. An important detail in this step is to check that after decrementing the edge

budget, the node at the other end of m, the penultimate node in this potential solution’s

path, is still accessible. If this condition is not satisfied, we repeat this step, letting m be

the next lowest weight edge with an endpoint in the destination node. If the destination

node has not yet been visited, we add its reward to the additional rewards value, the value

returned by the heuristic.

With this decremented edge budget, we can now begin the second step of the heuristic.

This step is similar to the fractional knapsack problem, We sort the accessible unvisited

nodes (computed in step 1) by the ratio of their rewards divided by the weight of each node’s

minimum weight accessible incident edge. These ratios represent that cheapest reward to cost

ratios for all remaining rewards. To establish an upper bound on the additional rewards we

could achieve, we ”buy” the nodes’ rewards at these rates until insufficient budget remains,

or no nodes remain for us to buy. At each iteration, we increment the additional rewards

value by the node’s reward and decrement our edge budget by the associated cost (the min.

weight accessible incident edge) It is important to note that we may not be able to afford

the entire last node. In this case, we only increment our additional rewards value by the

fraction that we can afford. This final step guarantees admissibility of the heuristic.

Determining the minimum weight accessible edge incident to each node depends on the

current state of the OP, specifically the amount of edge budget remaining. Because of this,

each time the heuristic is evaluated, it must first determine the minimum weight edge incident

to each unvisited node and then sort the nodes according to the resulting ratios. In the worst

case, each node will have an edge to every other node. Finding the minimum edge would

require a linear scan of all n − 1 edges, as such the Fractional Knapsack heuristic runs in

O(n2), where n is the number of nodes in the graph.

Pseudocode for the heuristic is shown below:

16

Data: current state

Result: upper bound on additional rewards

additional rewards ← 0;

node set ← All unvisited nodes accessible given the current state’s budget ;

B ← current state’s budget ;

if current node 6= destination node then

if destination node has not been visited then

additional rewards + = reward from destination node ;

remove destination node from node set ;

end

m ← minimum weight accessible edge incident to destination node;

B′ = B− weight of m;

penultimate node ← node at m’s other endpoint ;

while penultimate node is inaccessible given B′ do

m ← next lowest weight accessible edge incident to destination node;

penultimate node ← node at m’s other endpoint ;

B′ = B− weight of m;

end

end

sort node set by ratio of reward to each nodes minimum weight accessible incident

edge;

while B′ > 0 and node set is not empty do

min edge ← current node’s minimum weight accessible incident edge;

reward ratio ← min(1, B′

min edge
);

additional rewards + = current node’s reward * reward ratio;

B′− = min edge;

remove current node from node set ;

end

return additional rewards ;

Algorithm 2: Fractional Knapsack Heuristic
17

5.7 Admissibility of the Fractional Knapsack Heuristic

Theorem 3. The fractional knapsack heuristic never underestimates the sum of additional

rewards that could be achieved from the current state via any valid path to the terminal node.

Proof. We will prove admissibility of the Fractional Knapsack heuristic in two steps. First,

we formulate the computation of the heuristic for a given state of the OP as a fractional

knapsack problem and note that the greedy solution to that problem is optimal. Then, we

show that the optimal solution to the fractional knapsack problem we are solving must be

greater than or equal to the sum of additional rewards that could be achieved from the

current state of the OP.

As we described in 5.5, the Fractional Knapsack heuristic works by modeling the heuristic

computation of the current state of the OP as a fractional knapsack problem. The objective

of the fractional knapsack problem is to select items, each of which has a weight and a value,

for inclusion in a collection (the knapsack) so that the total weight of the knapsack is less

than or equal to a given limit and the total value is maximized. To make this precise the

fractional knapsack problem we are solving is formulated as follows:

• The set of items available for inclusion in the knapsack is the set of accessible unvisited

nodes.

• The weight of each item is the weight of that node’s minimum weight accessible incident

edge.

• The value of each item is that node’s reward.

• The knapsack weight limit is the remaining budget in the current state of the OP,

minus the weight of the minimum weight accessible edge incident to the destination

node (described in 5.6).

The fractional knapsack problem is solved optimally by sorting the items in descending

order by the ratio of their value to their weight. Items are then added to the knapsack until

its weight limit is met, or until all of the items are included. If the entire last item cannot be

18

included in the knapsack, only the fraction that will ”fit” is added and the objective function

value is incremented only by the same fraction of the item’s value. Only the last node is

ever fractionally included in the optimal knapsack solution. [Gol14].

The intuition for this is as follows. Imagine there is some commodity we are interested in

buying. The commodity is available in fixed size lots at varying rates. We want to acquire

as much of this commodity (reward) as possible given the amount of money (edge budget)

we have. To accomplish this, we buy all of the commodity we can at the cheapest rates

available until we run out of money, or all of the commodity has been purchased.

Let the optimal solution to fractional knapsack problem we are solving be optKS.

To show admissibility of the heuristic, we must show that the value it returns never

underestimates the sum of the additional rewards that could be achieved from the current

state. Let optOP be the optimal solution to the OP we are solving. Recall that the knapsack

heuristic optimistically assumes that every accessible unvisited node can be visited at cost

wi, where wi is the weight of the minimum weight accessible edge incident to node ni.

Furthermore, observe that wi represents a lower bound on the cost of including node ni in

an OP solution. Because of this fact, the cost of optOP must be greater than or equal to

the sum of the associated wi’s for each node ni in optOP . In other words, the cost of the

optimal OP solution must be greater than or equal to the cost of including the same set of

nodes in the fractional knapsack problem we were solving previously. Consequently, there

will be as much, or more, edge budget remaining after including the same set of nodes (the

nodes in optOP) in the fractional knapsack. With this extra budget, potentially more nodes

could be purchased and added to the fractional knapsack, which would result in an increase

in its value. Even if insufficient budget remains to buy any entire new accessible unvisited

node, the heuristic would add the fraction it could, which would still increase the value of

the knapsack. Succinctly, any extra budget could only increase the value of the knapsack.

If there is no extra budget, the value will not increase. Either way, it is never less than the

value of optOP .

It is important to note that the set of nodes in optKS and optOP will not be the same, in

19

general.

Since optKS is optimal, by definition it includes the subset of nodes which results in the

maximum total rewards. To make this point stronger, optKS may include a fraction of a

node’s reward, which further increases its value. This is not legal in the OP. As such, the

value of optKS will always be greater than or equal to the value of optOP .

Because the fractional knapsack heuristic optimistically assumes nodes can be purchased

at minimal cost it will never underestimate the additional sum of rewards that could be

achieved from the current state.

20

CHAPTER 6

Overall Algorithm

6.1 Computing Optimal Solutions

With an admissible heuristic in hand, we can now combine it with depth-first branch-and-

bound to compute solutions which are guaranteed to be optimal. Since our algorithm is

depth-first, it is implemented recursively. The pseudocode for the algorithm is provided in

3 and 4.

6.2 Node Ordering

By ordering the nodes based on a desirability metric, it may be possible to proceed down

higher reward yielding branches of the search tree earlier. This would allow more pruning to

happen earlier in the search by increasing the value of α (described in 4.1) sooner . In our

approach, we expand nodes greedily by reward. To be precise, from the current node in our

search tree we always expand the child nodes in descending order of reward. We can expand

nodes in this order without any sorting overhead per recursive call because the nodes are

pre-sorted as described in 4.2.

Of course, other node ordering schemes are possible, such as the other obvious greedy

approach where we instead expand nodes in ascending order of edge weight. Most other

ordering schemes would require sorting the child nodes at every recursive call, however, we

found the overhead of doing so outweighed the benefit in nearly every case. In practice, we

found node ordering does not have much of an effect on the total number of node expansions,

and thus runtime, required to optimally solve problems.

21

Data: current state, source, destination, opt path, best yet

if budget remaining < min distance to dest node then
return

end

additional rewards ← 0;

if current node is unvisited then

additional rewards + = current node’s reward;

end

mark current node as visited;

if accumulated rewards + additional rewards > best yet then

opt path ← current path;

best yet ← accumulated rewards + additional rewards ;

end

H value ← Heuristic(current state);

solution upper bound ← total rewards + H value;

if solution upper bound <= best yet then
return

end

for each adjacent node do

Solve DFBNB(updated state);

end

Algorithm 3: Solve DFBNB

Data: source, destination, edge budget

opt path ← [];

best yet ← sum of rewards along min cost path from initial to terminal node;

Solve DFBNB(source, destination, opt path, opt reward);

return opt path, best yet
Algorithm 4: Solve

22

We tested this by solving identical problem instances twice. The first time we would

solve using our standard approach (with α = 0 initially) to find the optimal solution value.

The second time, we would set the initial value of α to be the optimal solution value for the

problem. Starting the search with the optimal solution value did not result in a significant

reduction in number of node expansions. This indicates that the majority of the time is

spent verifying the optimal solution, rather than finding it.

23

CHAPTER 7

Experimental Results

The characteristics of the graphs greatly affect the time required to optimally solve instances

of the orienteering problem and there are many parameters to vary when generating graphs.

The parameters we considered are listed below.

• Number of Nodes

• Branching Factor

• Mean Reward

• Reward Distribution

• Mean Edge Weight

• Edge Weight Distribution

Every graph we tested our methods on was randomly generated and is not embedded in a

plane. As such, distances between nodes in our graphs do not satisfy the triangle inequality.

7.1 Comparison to Brute Force

The first set of experiments we ran was to test the performance of our heuristic search

approach against a simple brute-force search. This comparison provides a baseline in terms

of runtime and number of node expansions required to solve problem instances. Additionally,

the brute-force search serves as a sanity check; if the solution returned by the brute-force

24

Edge Budget BForce runtime (s) AUE runtime (s) BForce Node Expansions AUE Node Expansions

325 0.11 0.06 7,548,921 69,586

350 0.48 0.14 31,291,460 148,171

375 1.83 0.35 127,720,954 336,983

400 7.33 0.94 524,290,665 829,418

425 29.80 2.35 2,128,027,157 2,129,324

450 121.50 5.16 8,683,104,698 4,464,869

475 492.47 12.51 35,136,414,735 10,574,550

Table 7.1: Comparison to brute-force

search matches the solution returned by our heuristic algorithms, it provides evidence that

there are no bugs in our implementation.

To avoid instance specific artifacts, we generated ten random graphs using the parameters

listed below. We then report the average number of node expansions and runtime required

to optimally solve the instances. The tables below report this information for a range of

edge budget values.

• Number of Nodes: 50

• Branching Factor: 5

• Reward Distribution

Uniform, Min 800, Max 1200

• Edge Weight Distribution

Uniform, Min 20, Max 40

25

Figure 7.1: Brute force versus AUE runtime

26

Figure 7.2: Brute force versus AUE node expansions

The plots above show the runtime and number of node expansions for both algorithms.

Notice the vertical axis in plot showing node expansions is logarithmically scaled. The

amount of pruning our heuristic accomplishes is evident in the exponentially smaller number

of node expansions.

We limited the edge budget in our tests using the brute force algorithm because even a

small increase in budget results in a huge increase in runtime required to solve the problem.

To increase confidence in the correctness of our solutions, we ran the brute-force algorithm

on smaller instances of every graph we test in subsequent sections. We did not publish these

results, but the results are quite similar; the heuristic algorithms always run exponentially

faster.

27

7.2 Application of AUE Heuristic to Orienteering with Category

Constraints

7.2.1 Bolzoni and Helmer’s heuristic

The heuristic published in [BH17] works by considering the set of accessible (via shortest

path) unvisited nodes. After reducing the set of nodes in consideration, the next step in

their algorithm is to sort the nodes in descending order, by reward, in each category and

to sum up the greatest (maxk − inclk) rewards, where maxk and inclk represent the node

limit imposed on the kth category, and the number of nodes from the kth category already

included in the solution’s path, respectively. Finally, the sum of the sums of rewards from

each category is returned as the heuristic evaluation of the current state. Their heuristic can

be used to solve our OP variant if we consider only a single category, and place no constraint

on that category. In this scenario, it will simply return the sum of all rewards in unvisited

accessible nodes.

While this heuristic is clearly admissible, the upper bound it produces is not very tight.

This is because it does not take into account the maximum number of new nodes that could

be visited from the current state. Instead, it naively assumes that all accessible nodes could

be visited, and uses only the category constraints to bound this number.

To make this point clear, consider the following example. Imagine a region of the graph

shaped like a wheel, where the current node is at the center of the wheel, and the spokes of

the wheel are edges of weight r to nodes along the circumference. Let there be arbitrarily

many nodes along the circumference. Suppose also that each of these nodes along the

circumference has an edge of weight r leading to the destination node. Now, suppose the

remaining budget in the current state is 2r. By the heuristic described in [BH17], every node

along the circumference of this wheel would be considered accessible, when in reality only a

single node could be visited.

This would not be the case if instead we used our AUE heuristic. In that case, we’d see

the cheapest accessible untraversed edge has weight r (in this scenario, all edges have weight

28

r) and would determine the greatest number of previously untraversed edges, and hence new

nodes, we could include in our solution’s path must be 2. The final step would then be to

sum the greatest two rewards and return that as the heuristic evaluation.

7.2.2 AUE Heuristic Adaptation

With this motivating, albeit contrived, example in mind, we will now explain our proposed

improvements to the heuristic used for the OP with category constraints. Begin by running

the first step of the AUE heuristic on the current state to determine an upper bound on

the number of new nodes that could be included in our solution’s path. Let this number be

mAUE. Next, sort the entire set of nodes by reward in descending order. This step could be

factored out of the heuristic, and only done once as an initialization step as we explained

in 4.2. Finally, conduct a linear scan across this sorted list of nodes; if the current node is

accessible, unvisited and the category limit for that node’s category has not been reached,

add its reward to a running total. Continue this process until mAUE node’s rewards have

been added, or all the category limits have been reached. This total is then returned as the

heuristic evaluation of the current state. The addition of the category constraints does not

change the admissibility of the AUE heuristic.

7.2.3 AUE Heuristic Superiority

The superiority of our proposed heuristic for orienteering with category constraints comes

from the lower upper bound we establish on the number of new nodes that could be included

in a solution’s path. With the heuristic proposed in [BH17], the upper bound on the number

of new nodes is established primarily using the category constraints.

Notice that the AUE heuristic begins with the set of accessible nodes and looks for

untraversed edges that could potentially lead to new nodes. Clearly an upper bound on

the number of new nodes that could be included in a solution’s path from any state is the

number of accessible unvisited nodes. This gives us the following:

29

mAUE ≤ |{accessible unvisited nodes}|

Finally, both heuristics work by summing the greatest rewards from each category until

some stopping condition is met. The approach in [BH17] stops after all categories are at

capacity, or when there are no accessible unvisited node’s rewards left to add. Our proposed

approach using the AUE heuristic stops after either mAUE rewards have been added, all

categories are at capacity, or when there are no accessible unvisited node’s rewards left

to add. Since we know mAUE is less than or equal to the number of remaining accessible

unvisited nodes our approach could never sum more node rewards than theirs. In other words,

our approach will always stop summing rewards before, or at the same time as theirs. Since

the rewards are summed in descending order, the upper bound produced by our approach

will never exceed theirs, and in practice will often be less. Furthermore, since the AUE

heuristic’s value is always less than or equal to theirs and because the heuristic value is used

to determine when pruning can occur, the number of nodes expanded by a search using the

AUE heuristic will always be less than or equal to the number using their heuristic.

7.2.4 Experimental Results

We ran a handful of tests on instances of our problem using our implementation of the

approach described in [BH17], as well as using our approach with the AUE heuristic. The

results of our tests are summarized in 7.3. The results show a search AUE using the heuristic

significantly outperforms a search paired with the heuristic from [BH17]. Solving larger

problem instances using their heuristic quickly becomes infeasible.

Table 7.2 describes the parameters of the graphs we used in our testing. Table 7.3 shows

the average (across ten randomly generated instances) amount of time and number of node

expansions required to optimally solve problems with the amount of edge budget indicated

in the budget column. The graph ID column relates the two tables, indicating the set of

parameters used to generate each graph.

30

Graph ID Nodes Branching Factor Reward Distribution Edge Weight Distribution

1 50 3 Uniform [800,1200] Uniform [20, 40]

2 50 20 Uniform [800,1200] Uniform [20, 40]

Table 7.2: B.H. comparison test graph characteristics

Graph ID Budget TimeAUE (s) NodesAUE TimeB.H. (s) NodesB.H. TimeB.H/T imeAUE NodesB.H/NodesAUE

1 500 0.07 112,960 11.2 56,906,712 160.0 503.8

1 600 0.36 568,603 675.8 33,655,030,045 1,877.2 59,188.9

2 220 0.90 599,763 7.17 29,645,864 7.9 49.4

2 240 3.03 1,836,829 50.5 207,315,452 16.6 112.9

Table 7.3: Comparison to B.H. approach

31

CHAPTER 8

Comparison of Our Heuristics

In the following section, we will analyze the relative performance of the AUE and Fractional

Knapsack heuristics when used within our depth-first branch and bound method. We con-

duct our tests by varying one parameter at a time in an attempt to ascertain the sensitivity

of the heuristics to each parameter. Finally, we study specific instances which represent near

best and worst case scenarios for both algorithms.

8.1 Test Simplifications

We held several values constant in our testing to reduce the dimension of the test space.

Specifically, we fix the number of nodes, mean edge weight, and mean node reward value in

all of our graphs. Below we explain and justify each of these simplifications. Additionally,

branching factor is one of the parameters we vary in our testing, however, in any given

graph every node will have the same number (the branching factor) of incident edges. Our

algorithm does not rely on any of these simplifications.

All graphs on which we tested our methods have 50 nodes. The number of nodes in

the graph becomes somewhat arbitrary after a point, as the majority in the nodes become

inaccessible via shortest path at deeper search depths (where the vast majority of the time is

spent) and are not considered by our heuristics. More concisely, our approach focuses only

on the region of the graph that is accessible given the current edge budget. Furthermore, the

greatest number of nodes included in any optimal path produced during our testing was less

than 40. Computing optimal paths with more nodes requires more runtime than we allowed

for in any of our tests.

32

The distribution of edge weights is a parameter we vary in our testing, however, we

hold the mean edge weight constant at a value of 30. We make this simplification so that

similar edge budget values yield similar length optimal paths. Varying this value alone affects

primarily the number of nodes included in the optimal path.

By similar reasoning, we vary the distribution of node rewards, but hold the mean node

reward constant at a value of 1,000. Varying this value would change only the magnitude of

the optimal solution values, but has no effect on the difficulty of solving the problem.

8.2 Testing Methodology

For each set of parameters, we generated 10 random graphs. Since we are interested in the

relative performance of our heuristic algorithms in large problems, we do not hold the initial

edge budget constant, but instead select a value for the budget such that the longer running

of the two searches takes approximately one hour to solve a single problem instance. We do

this because, for example, with the same edge budget the optimal solution can be computed

in a fraction of a second on a graph with branching factor 3, but can take nearly a day on a

graph with branching factor 30. We select this edge budget value by solving a single instance

with increasing edge budget values until the runtime required is approximately one hour. To

be clear, we do not report the results of these initial program executions; they are done only

to select an edge budget value. With this edge budget value selected, we then compute the

optimal solution on each graph using depth-first branch and bound with both heuristics and

log the the runtimes and number of node expansions.

The results we show for a given set of parameters represent the average of these values

across all 10 of the random graphs.

8.3 Branching Factor

The first parameter we vary in our testing is the branching factor of our graph.

The following tests were conducted on graphs with branching factors as shown in 8.1.

33

B Factor TimeAUE (s) NodesAUE TimeKS (s) NodesKS TimeKS/T imeAUE NodesKS/NodesAUE

3 552.5 1,252,009,059.0 6,636.2 962,933,306.8 12.012 0.769

4 1,473.0 2,468,619,796.0 6,616.7 860,279,091.5 4.492 0.348

5 1,144.6 1,437,370,964.0 2,658.9 348,294,965.0 2.323 0.242

10 1,223.2 932,374,228.9 2,045.9 251,532,126.6 1.672 0.270

20 3,464.0 1,543,101,256.0 5,249.1 587,404,057.9 1.515 0.381

30 4,255.4 1,461,410,488.0 9,419.3 929,423,325.0 2.214 0.636

40 764.2 215,384,375.7 1,158.6 128,551,368.0 1.516 0.597

49 510.7 144,685,110.4 1,640.2 169,999,737.1 3.212 1.175

Table 8.1: Relative heuristic performance varying branching factor

The other parameters were held constant. They are listed below.

• Edge Distribution:

Uniform, Min 20, Max 40

• Node Reward Distribution:

Uniform, Min 800, Max 1200

The dip in the ratios shows that the Knapsack heuristic’s relative performance improves

as the branching factor of the graphs increases, but only up to a point. When the branching

factor is high, there will be more low weight accessible edges in the accessible region of the

graph. Since the AUE heuristic buys edges in increasing order of weight, it will buy the

cheaper edges first and end with a higher total number of edges bought. This higher total

number will result in more node rewards being included in the sum eventually returned as

the heuristic evaluation.

Since the Knapsack heuristic associates edges with nodes, it cannot simply look for the

cheapest subset of nodes, but instead the cheapest untraversed edge incident to each node.

This stipulation generally forces the heuristic to use higher weight edges to add new node

rewards, which results in a lower total value returned by the heuristic.

The reason the Knapsack heuristic does not maintain its relative advantage in complete

and nearly complete graphs is likely because when there are many edges incident to each

34

Reward Range TimeAUE (s) NodesAUE TimeKS (s) NodesKS TimeKS/T imeAUE NodesKS/NodesAUE

[1, 10000] 606.0 596,087,633.7 2,271.4 232,285,033.5 3.748 0.390

[1, 2000] 751.5 673,891,570.5 1,306.8 142,376,307.2 1.739 0.211

[200, 1800] 327.9 276,099,775.2 820.7 61,231,630.2 2.503 0.222

[400, 1600] 312.7 276,846,625.3 740.2 54,732,415.9 2.367 0.198

[600, 1400] 360.6 300,429,008.9 1,080.4 80,618,878.4 2.996 0.268

[800, 1200] 1,144.6 1,437,370,964.0 2,658.9 348,294,965.0 2.323 0.242

[1000, 1000] 5.9 6,193,726.5 857.7 91,971,554.4 145.510 14.849

Table 8.2: Relative heuristic performance varying reward distribution

node, the set of minimum weight incident edges may not differ much from the set of a lowest

weight edges in the graph (how the AUE heuristic works). Furthermore, the overhead of

finding the minimum weight accessible incident edge for each node becomes more expensive

when there are mode edges. With V nodes in the graph, finding the set of minimum edges

will require O(V ∗ b) time where b is the branching factor of the graph, whereas the AUE

heuristic runs in linear time. Even in cases where the search using the Knapsack heuristic

expands half as many nodes as the AUE heuristic, the superior time complexity of the AUE

heuristic still results in a faster computation of the optimal solution.

8.4 Node Reward Distribution

The next parameter we varied was the distribution of node rewards. Again, the other

parameters were held constant. They are listed below.

• Edge Distribution:

Uniform, Min 20, Max 40

• Branching Factor: 5

The node rewards were randomly selected from a uniform distribution. 8.2 lists the

minimum and maximum values for each distribution.

The results show that relative performance of our heuristics is not very sensitive to

changes to the reward distribution, with one obvious exception. When we fixed the node

35

rewards to all be the same value, the AUE heuristic vastly outperformed the Knapsack

heuristic, running on average 156 times faster. This result is not surprising; the Knapsack

heuristic works by associating node rewards with minimum incident edge weights, whereas

the AUE heuristic does not associate node rewards with edge weights. In this case, since all

of the node rewards are identical, there is no information to be gained by associating edges

with nodes. Furthermore, this situation is very favorable for the AUE heuristic. Recall that

it returns the sum of the m greatest rewards, where m is the most nodes that could be

added to the solution’s path. The AUE heuristic will overestimate badly when few of these

high reward nodes can be added to the solution’s path, however, since the rewards in this

situation are identical, this source of potential overestimation is eliminated.

8.5 Edge Weight Distribution

The next parameter we varied in our testing was the distribution of edge weights. As with

the previous tests, we held the other parameters constant. They are listed below.

• Node Reward Distribution:

Uniform, Min 800, Max 1200

• Branching Factor: 5

The edge weights were randomly selected from a uniform distribution. 8.3 lists the

minimum and maximum values for each distribution.

We’ve found that the relative performance of our two heuristics is sensitive to the dis-

tribution of edge weights. The search paired with the AUE heuristic was faster in all of

our tests, but as the edge weight distribution became very narrow its advantage increased

dramatically. Drawing weights from the distribution from 28 to 32 the search with the AUE

heuristic was over one hundred times faster. In the extreme, when all edges were assigned

the same weight, it ran well over one thousand times faster.

The reason for this behavior is likely the same as why the AUE heuristic was vastly

36

Edge Range TimeAUE (s) NodesAUE TimeKS (s) NodesKS TimeKS/T imeAUE NodesKS/NodesAUE

[1, 1,000] 153.7 822,129,853.0 730.4 137,148,747.5 4.752 0.167

[1, 60] 9.8 29,040,007.0 139.4 20,496,780.3 14.276 0.706

[5, 55] 499.5 674,559,401.8 2,243.3 289,462,479.0 4.491 0.429

[10, 50] 205.7 237,503,824.7 1,222.6 142,671,263.5 5.944 0.601

[15, 45] 18.3 19,599,805.7 68.4 8,740,700.5 3.733 0.446

[20, 40] 1,144.6 1,437,370,964.0 2,658.9 348,294,965.0 2.323 0.242

[25, 35] 50.5 41,803,333.7 361.3 27,593,810.8 7.156 0.660

[28, 32] 6.2 5,865,794.1 430.2 32,739,926.9 69.125 5.581

[30, 30] 3.9 5,685,917.3 3,014.3 444,018,632.7 763.927 78.091

Table 8.3: Relative heuristic performance varying edge weight distribution

superior when all nodes were assigned the same reward. When all edges have the same

weight, no information is gained by associating node rewards with edge weights. This is

situation is also quite favorable for the AUE heuristic. Recall that it determines an upper

bound on the number of additional nodes that could potentially be added to the solution’s

path by buying the cheapest (accessible) edges until insufficient budget remains to buy the

next edge. It will overestimate especially badly when many of these cheap accessible edges do

not actually result in the addition of new rewards to the solution’s path. In this case, since

all of the edge weights are identical, this potential source of overestimation is eliminated.

8.6 Edge Budget

The final parameters we varied in our testing was the edge budget. The goal of our test

was to ascertain the sensitivity of the relative performance of our heuristics to the edge

budget value. In general, a greater edge budget value will result in a deeper, and longer

running search. We conducted this test by optimally solving problem instances (using both

heuristics) with increasing budget values on ten randomly generated graphs using the same

set of parameters. As before, the values reported for each budget value represent the mean

runtime ratio across all ten graphs.

The set of parameters we used are listed below.

37

Budget TimeAUE (s) NodesAUE TimeKS (s) NodesKS TimeKS/T imeAUE NodesKS/NodesAUE

325 4.7 2,372,594.1 18.1 1,394,437.1 3.817 0.588

350 12.5 6,853,050.3 43.7 3,675,615.4 3.508 0.536

375 30.6 18,605,381.6 86.6 8,941,427.1 2.825 0.481

400 78.1 51,004,397.3 184.5 20,944,496.7 2.361 0.411

425 202.1 136,151,389.1 426.4 49,628,013.2 2.110 0.365

450 529.6 392,782,275.1 982.5 121,648,520.0 1.855 0.310

475 1,223.2 932,374,228.9 2,045.9 251,532,126.6 1.672 0.270

Table 8.4: Relative heuristic performance varying edge budget

• Edge Weight Distribution:

Uniform, Min 20, Max 40

• Node Reward Distribution:

Uniform, Min 800, Max 1200

• Branching Factor: 10

We see in table 8.4 that the relative performance of the search paired with the Knapsack

heuristic improves with increased edge budget, however it begins to level off at approximately

a factor of 1.6 in relative runtime. We’ve observed cases where the search with the Knapsack

heuristic is up to 25% faster than the AUE heuristic, however, all of these searches were run

for at least an entire day. It is possible the Knapsack heuristic may outperform the AUE in

very long running problems, but we did not run enough sufficiently large problem instances

to know whether this behavior was instance specific, or in fact a general trend.

38

Figure 8.1: Ratio of runtimes of heuristics varying edge budget

39

CHAPTER 9

Special Cases

9.1 AUE Heuristic Best Case Scenario

In the analysis of the results from the tests on varying the distribution of node rewards and

edge weights, we saw the AUE had its best relative performance when we had constant node

rewards and edge weights. Combining these two cases on a complete graph represents the

best case scenario for the AUE heuristic. Notice that since every node has the same reward,

and can be accessed from every other node at the same cost, the AUE heuristic is actually a

perfect heuristic on this graph. That is, the value it returns is always exactly the additional

rewards that can, and will be, achieved from the current state. In this case, the search with

the AUE heuristic is many orders of magnitude faster than with the Knapsack heuristic.

9.2 AUE Heuristic Worst Case Scenario

One of the theoretical worst case scenarios for the AUE heuristic is nearly the opposite of its

best case scenario. Specifically, a graph with a wide distribution of both node rewards and

edge weights and a relatively small branching factor could often cause the AUE heuristic to

overestimate severely. This will occur when the heuristic sees many very low weight edges

and assumes it can add several highest reward nodes to the path, when in reality traversing

high weight edges is necessary to add reach new nodes. By associating edge weights with

node rewards, the Knapsack heuristic should not overestimate as severely.

We generated ten random instances with the parameters described above, however in

our tests we still saw the search with the AUE heuristic solve problems several times faster.

40

The heuristic behavior described above is likely very instance specific, thus it is not likely

for such a graph to be generated specifically. Furthermore, we saw previously that the

relative performance of the Knapsack is often best in very long (multiple day) searches. To

summarize, we believe this represents one of the theoretical worst cases, but we do not have

sufficient data to support this claim due to the amount of time required to generate the data.

41

CHAPTER 10

Summary of Results

In the set of experiments we ran, we did not find a set of parameters where the Knapsack

heuristic outperformed the AUE heuristic on average in terms of runtime. However, in nearly

every situation the search using the Knapsack heuristic expanded fewer nodes.

We believe the reason the Knapsack heuristic expands more nodes than the AUE heuristic

in certain cases is due to the fact that the final value it adds to the upper bound it returns

can represent only part of a node’s reward. Consider the case where insufficient edge budget

remains to afford a single untraversed accessible edge in the graph. Let this edge be e. In

this case, the AUE will return 0. However, the Knapsack heuristic will return B
e

times the

reward in one of the nodes this edge e is incident to, where B is the remaining edge budget.

Detecting this case involves running the majority of the logic of the AUE heuristic before

running the Knapsack heuristic. In practice, we found it was still faster just to run the search

using the AUE heuristic instead of running both and taking the minimum value returned,

even though more nodes are expanded.

We saw that the Knapsack heuristic’s relative performance improved in larger searches,

and even observed a handful of cases where it outperformed the AUE heuristic in terms of

runtime. Unfortunately, all of the cases where it outperformed the AUE heuristic required

more than a day of runtime. Because of this, we do not have enough data to report average

case performance on such large searches.

42

CHAPTER 11

Future Work

11.1 Heuristic Improvement

The greatest source potential improvement in our approach would be through improving our

heuristics. A search with the Knapsack heuristic generally expands fewer nodes than one

with the AUE heuristic. Optimizing it is an obvious avenue for improvement, however its

current implementation is the most efficient one we have discovered thus far.

The two heuristics described in this thesis represent the best approaches we have realized

to date. Of course, it is possible there are other admissible heuristics that would produce

lower upper bounds. In practice, the effectiveness of a heuristic depends on how expensive it

is to compute versus the tightness of the upper bound it produces. An admissible heuristic

with a favorable tradeoff between the two could offer a potentially huge speedup.

11.2 Parallelization

As with many problems that can be solved using branch and bound, computing optimal

solutions to the OP is highly parallelizable. By using an efficient parallel search algorithm,

such as distributed tree search, which is designed for effective load balancing on irregular

trees, there should be a nearly linear speedup by using multiple processors. [FK88] We did

not implement parallelization, but the effectiveness of our heuristics should not be affected

by it. While parallelization will only offer a linear speedup, as opposed to an exponential

improvement possible via a superior heuristic, it is still a good option to consider for especially

large problems.

43

11.3 Approximation

11.3.1 Weighted Search

Our approach could easily be modified to be an approximation algorithm by allowing pruning

to happen sooner. The idea is similar to a weighted A* search. This would sacrifice the

optimality guarantee, but the solution quality could be bounded depending on the weighting

factor. [Kor13]

11.3.2 Anytime Property of Branch and Bound

Our approach could easily be adapted to an approximation algorithm by taking advantage

of the anytime property of the branch and bound algorithm. The anytime property means

that we can stop our branch and bound search at any time and we will have a solution,

albeit not necessarily an optimal one. This would require virtually no modification of our

code. We would simply run the algorithm for as much time as is available and then report

best solution found so far when the program is stopped. [Kor13]

44

CHAPTER 12

Conclusion

The focus of this thesis was to discover a more efficient way to optimally solve this generalized

variant of the orienteering problem. With the methods described, using depth-first branch

and bound along with either of our admissible heuristics it is now possible optimally solve

instances of the OP in exponentially less time than possible with a simple brute-force search,

or methods using a less sophisticated heuristic evaluation function. With this approach it

is possible to compute optimal solutions to instances of the OP on graphs with up to fifty

nodes in hours or days, as opposed to months or years.

45

REFERENCES

[BH17] Paolo Bolzoni and Sven Helmer. “Hybrid Best-First Greedy Search for Orien-
teering with Category Constraints.” In International Symposium on Spatial and
Temporal Databases, pp. 24–42. Springer, 2017.

[CMS14] Vicente Campos, Rafael Mart́ı, Jesús Sánchez-Oro, and Abraham Duarte.
“GRASP with path relinking for the orienteering problem.” Journal of the Oper-
ational Research Society, 65(12):1800–1813, 2014.

[EGV14] Lanah Evers, Kristiaan Glorie, Suzanne Van Der Ster, Ana Isabel Barros, and Her-
man Monsuur. “A two-stage approach to the orienteering problem with stochastic
weights.” Computers & Operations Research, 43:248–260, 2014.

[FGT98] Matteo Fischetti, Juan Jose Salazar Gonzalez, and Paolo Toth. “Solving the ori-
enteering problem through branch-and-cut.” INFORMS Journal on Computing,
10(2):133–148, 1998.

[FK88] Chris Ferguson and Richard E Korf. “Distributed Tree Search and Its Application
to Alpha-Beta Pruning.” In AAAI, volume 88, p. 128, 1988.

[GAL84] Bruce Golden, Arjang Assad, Larry Levy, and Filip Gheysens. “The fleet size and
mix vehicle routing problem.” Computers & Operations Research, 11(1):49–66,
1984.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1979.

[GLV87] Bruce L Golden, Larry Levy, and Rakesh Vohra. “The orienteering problem.”
Naval Research Logistics (NRL), 34(3):307–318, 1987.

[GLV16] Aldy Gunawan, Hoong Chuin Lau, and Pieter Vansteenwegen. “Orienteering prob-
lem: A survey of recent variants, solution approaches and applications.” European
Journal of Operational Research, 255(2):315–332, 2016.

[Gol14] Mordecai Golin. “Greedy Algorithms: The Fractional Knapsack, Lecture Notes
Design and Analysis of Algorithms.”, November 2014.

[IID08] Taylan Ilhan, Seyed MR Iravani, and Mark S Daskin. “The orienteering problem
with stochastic profits.” Iie Transactions, 40(4):406–421, 2008.

[KML18] Gorka Kobeaga, Maŕıa Merino, and Jose A Lozano. “An efficient evolutionary al-
gorithm for the orienteering problem.” Computers & Operations Research, 90:42–
59, 2018.

[Kor13] Richard Korf. “Heuristic Search.” Course notes for CS261A (Problem Solving and
Search), UCLA Computer Science Department, 3 2013.

46

[KT05] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2005.

[MSL16] Yi Mei, Flora D Salim, and Xiaodong Li. “Efficient meta-heuristics for the multi-
objective time-dependent orienteering problem.” European Journal of Operational
Research, 254(2):443–457, 2016.

[PSL17] Pamela J Palomo-Mart́ınez, M Angélica Salazar-Aguilar, Gilbert Laporte, and
André Langevin. “A hybrid variable neighborhood search for the orienteering
problem with mandatory visits and exclusionary constraints.” Computers & Op-
erations Research, 78:408–419, 2017.

[RB91] Ram Ramesh and Kathleen M Brown. “An efficient four-phase heuristic for the
generalized orienteering problem.” Computers & Operations Research, 18(2):151–
165, 1991.

[SG10] John Silberholz and Bruce Golden. “The effective application of a new approach
to the generalized orienteering problem.” Journal of Heuristics, 16(3):393–415,
2010.

[Tsi84] Theodore Tsiligirides. “Heuristic methods applied to orienteering.” Journal of the
Operational Research Society, 35(9):797–809, 1984.

47

