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ABSTRACT  

As California continues to decarbonize the electrical grid and more customers electrify, 
load flexibility among heat pumps is becoming critical for maximizing the use of carbon-free 
electricity sources, stabilizing the electricity grid, and minimizing operating costs to end-users. 
The transition to all-electric housing has many concerned about potential increases in utility 
costs. Load flexibility controls offer a way to mitigate the impact of electrification on customers 
by shifting consumption to times of day with lower rates without compromising their comfort. 
Heat pump water heaters (HPWHs) are currently controlled using rule-based logic to maintain a 
programmed water temperature setpoint. This type of control usually does not provide any 
flexibility to when the heat pump operates. Economic model predictive control (MPC) is an 
advanced control technique that can provide automated load flexibility due to its ability to 
account for time-varying electric tariffs and available energy storage. A new configurable control 
framework is motivated and described to address the challenges of configuring economic MPC 
for deployment. This framework utilizes a graph-based system representation of the physical 
system that automatically instantiates the underlying economic MPC problem from the system 
representation and requires minimum MPC expertise. In this work, the MPC framework is 
described and applied to a simulated HPWH. The closed-loop simulation results are compared to 
the results obtained from simulations of an HPWH under a rule-based control approach. 

Introduction 

With California’s ambitious goal of achieving 100% carbon-free electricity by 2045 
(CEC 2022), the benefits of electrification are likely to grow in the future as the electric grid 
continues to be decarbonized. With water heating accounting for the second-largest energy end 
use in U.S. homes (EIA 2018), several state-programs are incentivizing homeowners with 
natural-gas water heaters to switch to more energy efficient heat pump water heaters (HPWHs) 
that can be powered by renewable energy sources (CPUC 2020). Most HPWHs are controlled 
using rule-based logic to maintain a programmed water temperature setpoint. While this 
approach is proven and robust for maintaining a user-defined setpoint, this type of control 
usually does not provide any flexibility as to when the HPWH operates — the HPWH is turned 
on until it reaches the setpoint, regardless of the electricity cost or grid GHG emissions rate.  

HPWHs can achieve load flexibility by using available thermal storage (through the built-
in storage tank) to shift electricity use away from peak hours by storing hot water generated with 
low-cost, emissions-free renewable electricity for use later in the day (Delforge 2020). For 
example, it can result in heating water to higher temperatures, part of the time, to prevent heating 
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during peak hours. However, pre-heating water is not perfect and some of that heat can be lost to 
the ambient environment. Thus, sophisticated control strategies are needed to balance thermal 
storage and efficiency losses of HPWHs (Delforge and Vukovich 2018). 

Model predictive control (MPC) is an optimization-based predictive control technique 
that determines control actions by predicting system behavior over a horizon and choosing the 
control actions that optimizes a cost function (Rawlings, Mayne, and Diehl 2019). The main 
advantage of MPC over other control approaches is that performance considerations and 
constraints are explicitly addressed in its formulation. Economic MPC is a specific type of MPC 
that uses an economic cost function, making it ideal for controlling and optimizing energy 
systems (Ellis, Durand, and Christofides 2014). For example, with a time-varying electric tariff, 
economic MPC may be used to determine the optimal operation of energy systems, accounting 
for forecasts of the ambient temperature, electric tariff, system heat gains/losses, and occupant 
demand or comfort. MPC can also account for available thermal energy storage to shape heat 
pump load. 

Several works have used MPC for HPWH load flexibility. Wanjiru, Sichilalu and Xia 
(2017) developed an MPC strategy to operate both a HPWH and less energy-efficient electric 
powered instant shower for domestic hot water demand. The MPC was able to operate both 
heating devices during the cheaper time-of-use periods and prioritized the use of the HPWH over 
the instant shower. Jin and Christensen (2014) proposed an MPC framework to find optimal 
setpoints for a HPWH to maximize energy savings and thermal comfort. Considerable cost and 
energy savings were achieved with only a slight decrease in thermal comfort.  

In general, setting up, configuring, and deploying MPC for energy systems is a practical 
challenge because it has many components (e.g., a data collector, data storage, external data 
sources, a programmatic view of the system, and an optimization solver). Although software 
packages exist to express and solve MPC problems, these packages tend to programmatically 
represent physical systems (i.e., HP systems) as a single monolithic entity even though systems 
are usually compromised of several subsystems. This monolithic representation limits the re-use 
of subcomponents from one deployment to another. As a result, an MPC expert is required to 
create a new or reconfigure an existing representation for each new system.  

To this end, the objective of the present work is to create a configurable framework for 
representing HPWHs. The physical system is programmatically represented as a directed graph, 
which may be created by a non-MPC expert. After the system representation is created, external 
data sources can be configured, and the resulting MPC problem can be automatically created and 
solved for closed-loop control of the system. The benefit of the proposed system representation 
is that systems may be expressed as a few object types, which aids modularity and reduces the 
level of MPC expertise needed to deploy an MPC system. This framework is applied to a 
simulated HPWH and is compared against rule-based control to demonstrate the approach.  

Review of Economic Model Predictive Control 

Economic MPC, referred to as MPC for simplicity in the remainder of the paper, is an 
implicit control law constructed by repeatedly solving an optimal control problem. A general 
MPC optimal control problem is given in Equation 1 and has two parts: the cost function and the 
constraints. One main difference between MPC and other feedback control approaches (e.g., 
proportion-integral control) is that MPC accounts for future system behavior and expected costs. 
This ensures that the MPC does not make myopic control decisions. In Equation 1, the stage cost 
function is denoted by 𝑙𝑙𝑒𝑒(⋅) where the subscript 𝑒𝑒 is used to emphasize that the stage cost is 
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economic. The accumulated stage costs over the prediction horizon are minimized in the optimal 
control problem and subject two five constraints. The first constraint in Equation 1 is the system 
model that describes the relationship between the system states, manipulated inputs, and 
exogenous inputs. Here, the dynamic model is assumed to be a linear time-varying model – the 
form needed for the HPWH application – but other types of dynamic models may be used. The 
second constraint represents any inequality or equality constraint that depends on the states 
and/or inputs. Since exogenous inputs may vary with time, these inputs are generated by external 
forecasting models and used to predict the system behavior over the prediction horizon. The 
remaining three constraints apply to the initial state as well as the upper and lower bounds for 
both the manipulated input and the states. 

In Equation 1, the notation u denotes the sequence of input values that are the decision 
variables of the optimization problem (i.e., u ≔  {𝑢𝑢0, … ,𝑢𝑢𝑁𝑁−1}). The optimal sequence of inputs 
that minimizes the cost function in Equation 1 is denoted by u∗ ≔  {𝑢𝑢0∗ , … ,𝑢𝑢𝑁𝑁−1∗ }. 

Equation 1: MPC optimal control problem 

min
𝐮𝐮

� 𝑙𝑙𝑒𝑒(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘 ,𝑑𝑑𝑘𝑘)
𝑁𝑁−1

𝑘𝑘=0

 

subject to
        𝑥𝑥𝑘𝑘+1 = 𝐴𝐴𝑘𝑘𝑥𝑥𝑘𝑘 + 𝐵𝐵𝑘𝑘𝑢𝑢𝑘𝑘 + 𝐵𝐵𝑑𝑑,𝑘𝑘𝑑𝑑𝑘𝑘
        𝑙𝑙𝑙𝑙 ≤ 𝐺𝐺𝑥𝑥𝑘𝑘 + 𝐻𝐻 �

𝑢𝑢𝑘𝑘
𝑑𝑑𝑘𝑘� ≤ 𝑢𝑢𝑢𝑢

        𝑥𝑥0 = 𝑥𝑥�
        𝑢𝑢𝑙𝑙𝑙𝑙,𝑘𝑘 ≤ 𝑢𝑢𝑘𝑘 ≤ 𝑢𝑢𝑢𝑢𝑢𝑢,𝑘𝑘
        𝑥𝑥𝑙𝑙𝑙𝑙,𝑘𝑘+1 ≤ 𝑥𝑥𝑘𝑘+1 ≤ 𝑥𝑥𝑢𝑢𝑏𝑏,𝑘𝑘+1, 𝑘𝑘 = 0, … ,𝑁𝑁 − 1 

 

where,  
 𝑁𝑁 is the number of time steps in the prediction horizon,  
 𝑥𝑥𝑘𝑘 is the system state at the 𝑘𝑘th time step in the prediction horizon,  
 𝑢𝑢𝑘𝑘 is the manipulated input at the 𝑘𝑘th time step in the prediction horizon,  

𝑑𝑑𝑘𝑘 is the time-varying exogenous input at the 𝑘𝑘th time step in the prediction horizon,  
 𝐴𝐴𝑘𝑘, 𝐵𝐵𝑘𝑘, 𝐵𝐵𝑑𝑑,𝑘𝑘, 𝐺𝐺, and 𝐻𝐻 are matrices of appropriate dimensions,  
 𝑙𝑙𝑙𝑙 and 𝑢𝑢𝑢𝑢 are vectors of appropriate dimensions, 
 𝑥𝑥� is the measured or estimated state at the current time, and  

𝑢𝑢𝑙𝑙𝑙𝑙,𝑘𝑘, 𝑥𝑥𝑙𝑙𝑙𝑙,𝑘𝑘, 𝑢𝑢𝑢𝑢𝑢𝑢,𝑘𝑘, and  𝑥𝑥𝑢𝑢𝑢𝑢,𝑘𝑘 are the lower and upper bounds on the inputs and states at 
the 𝑘𝑘th time step, respectively.  
 
MPC is implemented according to a receding horizon implementation where real-time is 

partitioned into discrete sample times. At each sample time, the MPC receives the current state 
measurement or estimate and forecasts of all exogenous inputs. Next, an instance of the optimal 
control problem (Equation 1) is created and solved to compute the optimal input sequence (u∗). 
The first element in the sequence (𝑢𝑢0∗) is sent to the system to be implemented until the next 
sample time. At the next sample time, the MPC receives an updated state measurement or 
estimate and an updated forecast of all exogenous inputs and solves for the next optimal input 
sequence. 
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MPC Framework with a Graph-based System Representation 

The formulation of MPC in Equation 1 is usually created by an MPC expert, who 
formulates the stage cost for a specific application and specifies the system model in a 
monolithic manner. For many energy system applications such as HPWHs, requiring an MPC 
expert to configure MPC for each application is not scalable. Instead, a framework that enables 
easy configuration of the MPC and does not require an MPC expert is needed. One objective of 
the present work is to create a configurable framework for representing energy system problems. 
In the proposed framework, the physical system is programmatically represented as a directed 
graph, which may be created by a non-MPC expert. After the system representation is created, 
external data sources can be configured, and the resulting MPC problem (Equation 1) can be 
automatically created and solved for closed-loop control of the system.  

Directed Graph System Representation 

A directed graph consists of a set of nodes or vertices connected by directed arcs or 
edges. Directed graphs serve as a natural structure for the digital representation of a system 
compromised of many components and subsystems since the directed edges can symbolize the 
flow of resource, such as energy, material, or information, in a single direction and system 
components, costs, and exogenous inputs can be represented by the vertices. The proposed 
system representation describes the system (model and constraints) along with the cost and is 
modular. This enables the re-use of objects that map the physical world to a digital representation 
of the system. The directed graph system represents includes three vertex types: source, sink, and 
system. Each vertex contains the information necessary to create the MPC problem. 

A source vertex represents an available supply of resources with a cost associated with 
consumption. The decision variable associated with a source is the amount of the resource to 
purchase. It only has one outgoing edge, representing the total outflow of the resource. A source 
vertex can represent, for example, an electric or water utility or a penalty associated with not 
meeting hot water demand.  

A sink vertex represents an exogenous input that does not change based on the 
optimization problem. It only has ingoing edges and can be used to represent, for example, the 
hot water demand or outdoor air temperature. The associated data is the predicted exogenous 
input values over the prediction horizon, which could be provided from an external application 
programming interface (API) or a forecasting model. While the sinks provide input data to create 
the MPC problem, it can be loosely interpreted as representing an outflow of a resource from the 
system, therefore, no decision variables or constraints are associated with a sink. 

The system vertex represents a component of the system that can be manipulated or 
influenced by MPC. It has ingoing and outgoing edges that specify an equality relationship 
between variables of different vertices. The system vertex has a static or dynamic mathematical 
model which defines any relationship between the variables (internal or from edges) and the 
constraints that the variables must satisfy.  

The goal is to keep the vertices general so the representation can be extended beyond 
HPWHs to other energy systems. For example, the system vertex type includes the following 
data: variable identifiers, model, requirements, and the ingoing and outgoing edges. Through this 
programmatic representation, the variable identifiers are used to create optimization variables 
associated with the vertex and facilitate the transmission of the optimal decision variable 
solutions computed by the external solver back to the system representation.   
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To describe how the system representation is automatically transcribed to the MPC 
problem in Equation 1, let 𝒮𝒮 be the set of source vertices, 𝒟𝒟 be the set of sink vertices, 𝒱𝒱 be the 
set of system vertices, 𝑝𝑝𝑠𝑠(𝑘𝑘) be the prices of source 𝑠𝑠 ∈ 𝒮𝒮 at the 𝑘𝑘th time step, 𝑢𝑢𝑠𝑠(𝑘𝑘) be the 
amount of resource 𝑠𝑠 ∈ 𝑆𝑆 purchased, 𝑑̃𝑑𝑗𝑗(𝑘𝑘) be the predicted value of the 𝑗𝑗th sink at the 𝑘𝑘th time 
step (𝑗𝑗 ∈ 𝒟𝒟), 𝑥𝑥𝑣𝑣(𝑘𝑘), 𝑢𝑢𝑣𝑣(𝑘𝑘), and 𝑑̃𝑑𝑣𝑣(𝑘𝑘) be the state, manipulated input, and exogenous input, 
respectively, for the  𝑣𝑣th vertex at the 𝑘𝑘th time step (𝑣𝑣 ∈ 𝒱𝒱). For a given system representation, 
the associated MPC optimal control problem is given by Equation 2. 

Equation 2: MPC optimal control problem generated from the system representation  

min
𝐮𝐮

��𝑝𝑝𝑠𝑠(𝑘𝑘)𝑢𝑢𝑠𝑠(𝑘𝑘)
𝑠𝑠∈𝒮𝒮

𝑁𝑁−1

𝑘𝑘=0

 

subject to
        𝑥𝑥𝑣𝑣,𝑘𝑘+1 = 𝐴𝐴𝑣𝑣,𝑘𝑘𝑥𝑥𝑣𝑣,𝑘𝑘 + 𝐵𝐵𝑣𝑣,𝑘𝑘𝑢𝑢𝑣𝑣,𝑘𝑘 + 𝐵𝐵𝑣𝑣,𝑑𝑑,𝑘𝑘𝑑̃𝑑𝑣𝑣,𝑘𝑘),

        𝑙𝑙𝑏𝑏𝑣𝑣 ≤ 𝐺𝐺𝑣𝑣𝑥𝑥𝑣𝑣,𝑘𝑘 + 𝐻𝐻𝑣𝑣 �
𝑢𝑢𝑣𝑣,𝑘𝑘

𝑑̃𝑑𝑣𝑣,𝑘𝑘
� ≤ 𝑢𝑢𝑏𝑏𝑣𝑣

        𝑥𝑥𝑣𝑣,0 = 𝑥𝑥�𝑣𝑣,∀ 𝑣𝑣 ∈ 𝒱𝒱
        𝑢𝑢𝑙𝑙𝑙𝑙,𝑘𝑘 ≤ 𝑢𝑢𝑘𝑘 ≤ 𝑢𝑢𝑢𝑢𝑢𝑢,𝑘𝑘
        𝑥𝑥𝑙𝑙𝑙𝑙,𝑘𝑘+1 ≤ 𝑥𝑥𝑘𝑘+1 ≤ 𝑥𝑥𝑢𝑢𝑢𝑢,𝑘𝑘+1, 𝑘𝑘 = 0, … ,𝑁𝑁 − 1 

 

where the parts of problem are analogous to that in Equation 1 and 𝑥𝑥𝑘𝑘 and 𝑢𝑢𝑘𝑘 are vectors 
representing a concatenation of all states and inputs, respectively. 

Overall MPC Framework 

The directed graph is one subcomponent of the overall MPC framework as seen in Figure 
1. First, the system graph is configured for a particular application [label (1)]. After the system 
graph is configured, the overall MPC can be used for real-time control and optimization. In this 
framework, data access objects are used to load timeseries data from a timeseries database, 
which can be populated from external data sources [label (2)]. Once the system graph is 
populated with necessary timeseries data, the system graph is fed to an optimization problem 
factory [label (3)] in which an instance of the MPC problem is created that takes the form of 
Equation 2 and is solved using an optimization solver [label (4)].  The optimal decision is 
mapped to the system graph [label (5)] and sent to the data access objects to write the solution to 
the database [label (6)]. 

 

 
Figure 1: MPC Framework Design Incorporating the System Graph 

The present work is focused on implementing the MPC framework on devices that are 
Wi-Fi-enabled and have an application programming interface that allows runtime or setpoints to 
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be controlled. However, the research team believes that manufacturers or third-party companies 
could use the framework as the original equipment manufacturer control or a retrofittable 
control.  

Application of the MPC Framework to Heat Pump Water Heaters  

In this section, the MPC framework is applied to a HPWH system. A single-tank 240 
Volt HPWH system providing hot water to a single-family home is considered. The HPWH has a 
nominal capacity of 65 gallons and rated capacity of 59 gallons. The heat pump (HP) compressor 
consumes electrical energy to move heat from the surrounding garage or utility closet air into the 
storage tank through the vapor compression cycle. If the HP is unable to meet the current load, 
an upper and lower electric resistance heating element may be turned on to quickly heat the tank 
water. The hot water in the storage tank is consumed by the occupant. The tank outlet has a 
mixing valve that mixes the tank hot water with cold tap water to meet a desired temperature 
setpoint. The mixing valve enables heating the tank above the desired hot water temperature, 
however, maintaining the tank temperature within a pre-specified minimum and maximum 
temperature is desired. 

Directed Graph System Representation for Heat Pump Water Heaters 

Figure 2 shows the directed graph representation for the HPWH system. Four system 
vertices are needed to describe the problem:  

(1) describing the storage tank thermal dynamics and its associated constraints,  
(2) -(3) describing the efficiency relationship of the heat pump and resistive heater,  
(4) describing the relationship between total power consumption of the HPWH and the 
power consumption of the HP and electric resistive heaters. 
 
The sources include marginal grid GHG emissions, electric utility, and temperature 

violation. The forecasted marginal grid GHG emissions is provided through an external data 
source. The electric utility considered uses a time-of-use (TOU) electric rate profile. The 
temperature violation is a penalty for violating the minimum and maximum water temperature 
within the storage tank. Although this penalty does not have a physical interpretation, it results in 
a soft constraint of the minimum and maximum temperature bounds to prevent the optimization 
problem becoming infeasible when it is not possible to keep the water temperature within the 
bounds. 

The sinks represent the exogenous inputs that do not depend on the decisions of the 
optimization problem. In the HWPH system, the ambient temperature is predicted from the 
outdoor air temperature forecast obtained through an external weather source. The ambient 
temperature is the primary driver for heat loss from the tank and after future refinements will 
affect the heat pump efficiency. The cold-water inlet temperature of make-up tap water is 
another sink in the HPWH system. While this temperature varies throughout the day and over the 
year, it is taken to be a constant value, since a model that forecasts its value over the year is 
currently unavailable. Because of the framework design, other prediction models for this 
temperature could be further explored if needed for future refinement. The hot water demand or 
hot water flow rate is the last sink. The predictor will account for potential time-of-day and day-
type variability of hot water consumption. 
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Figure 2: Directed Graph System Representation of the HPWH 

Simulation Setup 

The performance of the MPC is evaluated against the performance achieved under a rule-
based control (RBC) for a simulated HPWH.  A rigorous first principles model shown in 
Equation 3 describes the temperature stratification in a thermal energy storage tank that was 
spatially discretized into 𝑛𝑛 nodes (Nash, Badithela, and Jain 2017). This model is used in this 
study to predict the thermal dynamics of a HPWH. To model heat transfer from natural 
convention within the tank when a temperature inversion occurs between nodes, the conduction 
term is modified based on Equation 4 when a temperature inversion occurs (Nash, Badithela, and 
Jain 2017). 
Equation 3: Temperature dynamics of each node in the HPWH tank model (Nash, Badithela, and Jain 2017) 

𝐶𝐶𝑝𝑝𝑚𝑚𝑖𝑖
𝑑𝑑𝑇𝑇𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝑄̇𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑖𝑖−1 + 𝑄̇𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑖𝑖+1 + 𝑄̇𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 𝑖𝑖 + 𝑄̇𝑄𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖  + 𝑄̇𝑄𝐻𝐻𝐻𝐻,𝑖𝑖 + 𝑄̇𝑄𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖 
where, 
 𝐶𝐶𝑝𝑝 is the heat capacity of water 
 𝑚𝑚𝑖𝑖 is the mass of water in the i-th node 
 𝑇𝑇𝑖𝑖 is the water temperature in the i-th node 
 𝑄̇𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the conductive heat transfer rate from the above or below node 

𝑄̇𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the convective heat transfer rate within the node 
𝑄̇𝑄𝑎𝑎𝑎𝑎𝑎𝑎 is the heat transfer rate to the ambient environment 

  𝑄̇𝑄𝐻𝐻𝐻𝐻  ,   is the heat pump heat transfer rate into the water 
𝑄̇𝑄𝑎𝑎𝑎𝑎𝑎𝑎 is the electric resistance heater heat transfer rate into the water 

Equation 4: Improved conduction term (Nash, Badithela, and Jain 2017) 

𝑄̇𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖+1 =
𝑘𝑘�𝐴𝐴
∆𝑧𝑧

(𝑇𝑇𝑖𝑖+1 − 𝑇𝑇𝑖𝑖) 
 

𝑘𝑘� =  �𝑘𝑘∆(𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑖𝑖+1), 𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖+1 < 𝑇𝑇𝑖𝑖
𝑘𝑘, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  
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The stage cost function of the MPC, which is minimized, is formulated as shown in 
Equation 5. 
Equation 5:  The stage cost function of the MPC 

�𝜔𝜔1

𝑁𝑁−1

𝑘𝑘=0

𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑘𝑘�𝑃𝑃𝐻𝐻𝐻𝐻,𝑘𝑘 + 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎,𝑘𝑘� + 𝜔𝜔2𝑝𝑝𝑔𝑔ℎ𝑔𝑔,𝑘𝑘�𝑃𝑃𝐻𝐻𝐻𝐻,𝑘𝑘 + 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎,𝑘𝑘� + 𝜔𝜔3𝑇𝑇𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝑘𝑘 

where, 
𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑘𝑘is the electric tariff at the kth time step in the prediction horizon,  
𝑝𝑝𝑔𝑔ℎ𝑔𝑔,𝑘𝑘 is the forecasted marginal GHG at the th time step in the prediction horizon,  
𝑃𝑃𝐻𝐻𝐻𝐻,𝑘𝑘 and 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎,𝑘𝑘 are the predicted power consumption of the HP and electric resistance

 heating element at the kth time step in the prediction horizon, respectively,  
𝑇𝑇𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝑘𝑘 is the violation of the tank water temperature beyond the minimum or maximum 

 bound at the kth time step, and  
𝜔𝜔1, 𝜔𝜔2, and 𝜔𝜔3 are the weighing coefficients used to manage the tradeoff between 

 minimizing electricity cost, grid GHG emissions and temperature violations, 
 respectively  

 
To prevent the MPC from trading off temperature violations with reduction in the two 

other stage cost function terms, a large penalty is placed on the temperature violation. 
Specifically, the weight value of 𝜔𝜔3 = 2 is applied.  Although outdoor air temperature impacts 
HP efficiency a constant-efficiency type model is used to calculate the HP power consumption 
for simplicity.   

The MPC uses a prediction horizon of 24 hours to account for a full diurnal cycle. A 
controller time step of 5 minutes is used to manage tradeoff between control performance and 
computational complexity of the MPC. In all simulations, a constraint is imposed such that only 
one heating device may be on at each time step. Both the MPC and RBC prioritize the use of HP 
over the resistive heating elements. The MPC may choose to turn on the electric resistive heating 
elements when the HP cannot meet high hot water demand. The RBC turns on the electric 
resistance heaters when a large enough setpoint difference occurs.  

Perfect forecasting of the exogenous inputs of water mass flow rate (based on field data 
measurements), inlet water temperature (constant over time), ambient temperature surrounding 
the HPWH, marginal GHG emissions is assumed. The water mass flow rate data was collected 
from a 2-bedroom unit in a multi-family complex located in California Climate Zone 12. In 
general, water draw profiles can vary significantly from one household to the next and these 
simulations are investigating the upper limit for load flexibility in HPWHs based on real-world 
installations.  

 A residential TOU electric tariff with a single peak window is used. The peak period 
occurs from 4pm – 9pm. The peak price is $0.50/kWh. For off peak, the price is $0.35/kWh. The 
effect of varying peak rate is also investigated to study the effect of this parameter on savings 
potential of the MPC. The minimum and maximum temperature of the MPC is specified to be 42 
°C to 50 °C, respectively. This choice is based on the approximate temperature range of the 
HPWH when it is operated by the RBC with a setpoint of 50 °C and a deadband of 8.33 °C 
(41.67 °C to 50 °C). The lower temperature range is rounded to 42 °C since the MPC tends to 
maintain the tank water temperature near the minimum bound for periods to save energy. 
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Restricting the temperature bounds to a smaller range ensures that the water temperature for both 
cases is maintained within the range 41.67 °C to 50 °C. 

The MPC problem is solved using CPLEX (IBM 2022) with the absolute gap tolerance 
set at $0.001 and a maximum solve time of 20 seconds. In all closed-loop simulations, the tank 
water temperature is initialized at 44 °C (near the lower end of the temperature range) to prompt 
the heating device to turn on at least once during the simulation. All simulations start at 
midnight. 

Simulation Results 

One-day simulation results 
Several one-day simulation results are presented to analyze the behavior of the HPWH 

model under MPC and the RBC. All cases considered in this section did not turn on the resistive 
heating element so only decisions to turn the HP on/off are shown. With exception to one of 
cases considered in this section, the HPWH tank water temperature is simulated with a one-node 
model (i.e., a lumped model) meaning that the simulated tank temperature represented an 
average temperature. 

The results for the baseline RBC are shown in Figure 3. The vertical temperature profiles 
in Figure 3b (as well as for all other temperature profiles presented here) correspond to the upper 
and lower end of the deadband, respectively.  In this case, the RBC turns the HP on twice in the 
24-hour period to return the water temperature to setpoint after the water draw events causes the 
water temperature to decrease below the minimum bound.  However, when the HP is turned on 
the second time, it overlaps with the peak period. The total cost for this 24-hour period is $0.88. 
Note that RBC is a reactive controller, such that it responds to water draw events as they occur, 
unlike MPC that predicts and proactively responds to hot water draws. 

  

 

Figure 3: The (a) HP on/off, water draw profile, and electricity rate and (b) average water temperature profile under 
RBC 

Figure 4 shows the results of the MPC in minimizing electricity cost (𝜔𝜔1 = 1 and 𝜔𝜔2 =
0). As seen in Figure 4b, the temperature profile in the tank under MPC is noticeably different 
compared to that under RBC. The MPC benefits from the perfect forecast of the water draw 
events over the 24-hour period. This preview capability enables the MPC to preheat the water in 
the tank prior to the large draw event in the morning. The large water draw event causes the 
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water temperature to drop below the minimum. However, the magnitude of this temperature 
violation is small compared to that under the RBC. After this period, the tank water temperature 
is kept near the minimum to save energy and is then heated a little higher before the peak period 
begins. In this scenario, the total cost was reduced to $0.51, which is a 42% improvement 
compared to the operating strategy of the RBC. Looking at the HP on/off chart, it is clear the 
MPC results in more HP cycling compared to the RBC. This can have negative impacts on 
equipment lifetime. Constraints are needed, and are later presented, to avoid excessive cycling of 
HP.  

 
Figure 4: The (a) HP on/off, water draw profile, and electricity rate and (b) average water temperature profile under 
MPC for cost-optimization only 

Due to higher electricty cost in the peak period, one might expect that the MPC would 
not run the equipment during that time. Figure 5 illustrates the case when the tank water is heated 
near the upper end of the deadband before the peak period. The resulting cost was $0.65, which 
is a 26% improvement compared to the RBC, but is worse than the cost of the previous MPC 
case. This implies that the MPC in the previous case is balancing minimizing HP use during the 
peak period and managing energy consumed from pre-heating that could be lost to the ambient. 
The results suggest that the amount to pre-heat the tank water can be nontrivial and cannot be 
easily written as a set of rules to generate a schedule for RBC to operate during cheaper TOU 
periods.  
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Figure 5: The (a) HP on/off, water profile, and electricity rate and (b) MPC results for control trajectory with no 
runtime in the peak period 

The case shown in Figure 6 considers the situation of model mismatch between the model 
simulating HPWH behavior and the prediction model of the MPC. In this case, the MPC model 
is a 1-node tank thermal dynamic model and the HPWH tank is a 12-node model. Overall, the 
operating behavior is very close to no model mismatch (Figure 4). The cost is $0.56 with 
minimal performance degradation observed due to model mismatch. 

 
Figure 6: The (a) HP on/off, water profile, and electricity rate and (b) water temperature profiles under MPC for 
cost-optimization under model mismatch 

Figure 7 shows the result for when the MPC controls the HPWH to minimize GHG 
emissions (𝜔𝜔1 = 0 and 𝜔𝜔2 = 1). For the simulated 24-hour period, the margin GHG emissions 
rate partially mirrors the electricity tariff, but it has a second peak just before midnight. The 
temperature profile in the tank follows a similar pattern to Figure 4 with a little more usage in the 
early morning hours when a dip occurs in the GHG data. Overall, while optimizing for GHG, the 
MPC reduced the HPWH’s emissions by 30% compared to the RBC (1.20 × 10−3 lb versus 
1.72 × 10−3 lb). Additionally, the estimated total cost was $0.54 under MPC for optimizing 
GHG emissions. 
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Figure 7: The (a) HP on/off, water profile, and electricity rate and (b) water temperature profiles under MPC for 
GHG emission optimization only 

Seven-day simulation results 
The one-day simulation results show how the operating behavior of the MPC is different 

from that of the RBC, resulting in lower cost under MPC but with rapid HP cycling. Constraints 
are needed to enforce a minimum on and minimum off time for the HP. These constraints are 
called Dwell-time constraints and were added to the MPC. From laboratory experiments with a 
real HPWH, the minimum on and off time is determined to be 10 min and 5 minutes, 
respectively. 

Two cases are presented in this section: First, the peak rate was varied to analyze benefit 
of MPC over RBC; Second, the weighing coefficients in the objective function were varied to 
assess the performance of MPC. Both cases were simulated for the week from Monday, January 
3, 2022 at midnight to Monday, January 10, 2022 at midnight. The exogenous inputs is shown in 
Figure 8.  

 

Figure 8: The exogenous input profiles for simulated week 
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In the case of varying peak rate, the estimated cost and marginal GHG emissions under 
the MPC (𝜔𝜔1 = 1 and 𝜔𝜔2 = 0) and RBC are summarized in Table 1. The key finding is that as 
the peak rate increases, the benefit of MPC for optimizing cost increases.  
Table 1:  The estimated cost and marginal GHG emissions of MPC and RBC under varying peak rate for the 
simulated week 

Peak Rate 
($/kWh) 

MPC Cost 
($) 

RBC Cost 
($) 

Improvement 
(%) 

MPC GHG 
(x10-3 lb) 

RBC GHG 
(x10-3 lb) 

Improvement 
(%) 

0.45 3.84 4.15 7.5 9.02 9.29 2.9 
0.50 3.92 4.30 8.8 9.00 9.29 3.1 
0.60 3.97 4.61 13.9 8.81 9.29 5.2 
0.70 4.09 4.91 16.6 9.09 9.29 2.1 
0.80 4.18 5.21 19.8 9.21 9.29 0.8 
0.90 4.21 5.51 23.7 9.16 9.29 1.4 
1.00 4.22 5.82 27.4 9.08 9.29 2.3 

The second case varies the weighing coefficients in the stage cost function of the MPC. 
The peak rate is fixed at $0.50/kWh. Table 2 summarizes the estimated cost and marginal GHG 
emissions under MPC and the RBC. The results indicate a level of trade-off between cost and 
GHG emissions reduction, but do not generate a clear Pareto front. Depending on the choice of 
weighing coefficients, the MPC can reduce the cost and GHG emissions compared to the cost 
and GHG emissions under the RBC.  
Table 2: The estimated cost and marginal GHG emissions of MPC with varying weighing coefficient values 
compared to RBC for one week.  

𝜔𝜔1 𝜔𝜔2 MPC Cost 
($) 

Improvement  
(%) 

MPC GHG  
(x10-3 lb) 

Improvement  
(%) 

0.0 1.0 3.57 17.2 6.95 25.2 
0.2 0.8 3.90 9.4 7.57 18.6 
0.4 0.6 3.87 10.0 7.58 18.4 
0.5 0.5 3.94 8.5 7.75 16.6 
0.6 0.4 3.90 9.5 7.64 17.7 
0.8 0.2 3.90 9.5 7.75 16.6 
1.0 0.0 3.83 11.0 8.74 5.9 

Conclusion 

Heat pumps for water heating are currently controlled using rule-based logic to maintain 
a programmed water temperature setpoint. While this approach is proven and robust for 
maintaining a user-defined setpoint, this type of control does not provide any flexibility as to 
when the heat pump operates. MPC is an optimization-based predictive control technique that 
determines control actions through predicting system behavior over a given time horizon and 
choosing the control actions that optimizes a cost function, which can help reduce the utility 
costs associated with the electrification of water heating and provides an automated way to meet 
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customer demand and provide load flexibility. In this simulation study, an economic MPC was 
formulated using a graph-based control framework that modularized the problem formulation so 
adaption to different equipment only requires updates to subcomponents and not the whole 
control architecture. The results for the 24-hour simulations show that with perfect forecasting,  
MPC can reduce daily equipment operation costs for a simulated HPWH by up to 42%. 
Additionally, GHG emissions can be reduced by up to 30% while still achieving 35% electricity 
savings. Moreover, the results for the seven-day simulations show that as peak rate increases, the 
benefit of using MPC to operate a simulated HPWH increases and that depending on the weights 
of the multiple objectives in the stage cost function, the MPC can reduce the electricity cost and 
marginal GHG emissions of the HPWH compared to the RBC. 
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