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Abstract

Pendrin is a Cl2/HCO3
2 exchanger expressed in the apical regions of renal intercalated cells. Following pendrin gene

ablation, blood pressure falls, in part, from reduced renal NaCl absorption. We asked if pendrin is expressed in vascular
tissue and if the lower blood pressure observed in pendrin null mice is accompanied by reduced vascular reactivity. Thus,
the contractile responses to KCl and phenylephrine (PE) were examined in isometrically mounted thoracic aortas from wild-
type and pendrin null mice. Although pendrin expression was not detected in the aorta, pendrin gene ablation changed
contractile protein abundance and increased the maximal contractile response to PE when normalized to cross sectional
area (CSA). However, the contractile sensitivity to this agent was unchanged. The increase in contractile force/cross sectional
area observed in pendrin null mice was due to reduced cross sectional area of the aorta and not from increased contractile
force per vessel. The pendrin-dependent increase in maximal contractile response was endothelium- and nitric oxide-
independent and did not occur from changes in Ca2+ sensitivity or chronic changes in catecholamine production. However,
application of 100 nM angiotensin II increased force/CSA more in aortas from pendrin null than from wild type mice.
Moreover, angiotensin type 1 receptor inhibitor (candesartan) treatment in vivo eliminated the pendrin-dependent changes
contractile protein abundance and changes in the contractile force/cross sectional area in response to PE. In conclusion,
pendrin gene ablation increases aorta contractile force per cross sectional area in response to angiotensin II and PE due to
stimulation of angiotensin type 1 receptor-dependent signaling. The angiotensin type 1 receptor-dependent increase in
vascular reactivity may mitigate the fall in blood pressure observed with pendrin gene ablation.
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Introduction

Pendrin is an electroneutral Cl2/HCO3
2 exchanger expressed

in the apical regions of a minority cell type that localizes to the

cortical collecting duct and connecting tubule in the kidney, where

it mediates absorption of Cl2 and secretion of HCO3
2 [1–4].

Aldosterone and angiotensin II greatly stimulate pendrin abun-

dance and function, thereby increasing renal Cl2 absorption,

which contributes to the hypertension observed following the

administration of these hormones [5–7]. Disruption of the gene

encoding pendrin (Slc26a4) augments renal NaCl excretion [8,9],

which blunts the increase in blood pressure observed with

aldosterone administration [5,9]. Therefore, pendrin modulates

blood pressure, at least in part, by mediating renal Cl2 absorption,

which expands vascular volume.

Hypertension is accompanied by changes in vascular reactivity,

which occurs through both structural changes in the walls of blood

vessels [10,11] and through changes in the sensitivity of blood

vessels to vasoconstrictors [12,13]. In many models of hyperten-

sion, such as in senescent, spontaneously hypertensive rats [14] or

in angiotensin II-treated mice [15], increased vascular reactivity

and hypertrophy are observed. Since blood pressure is lower in

pendrin null than in wild type mice [9,16], reduced vascular tone

is expected. However, pendrin null mice have elevated plasma

renin concentration [8,9], which should increase plasma angio-

tensin II concentration, thereby stimulating vascular contractility

[15]. To resolve these issues, the effect of pendrin ablation on

vascular reactivity was examined in aortic rings. The purpose of

this study was threefold: 1) to determine if pendrin is expressed in

mouse aorta, 2) to determine if the lower blood pressure observed
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in pendrin null mice occurs in tandem with reduced vascular

contractile function and 3) to ascertain the mechanism by which

this occurs.

Methods

Animals
Pendrin null (Slc26a4 (2/2)) mice developed by Everett et al

[17] were bred in parallel with wild type mice from the same strain

(129 S6/SvEv Tac, Taconic Farms, Germantown, NY). Every 3 to

4 generations Slc26a4 (2/2) and Slc26a4 (+/+) were crossed to

generate heterozygotes, which were then bred to produce wild

type and pendrin null litermates, which were then bred separately.

Age- and sex-matched, pair-fed pendrin null and wild type mice

were compared.

Animal Conditioning
Treatment 1. For 7–10 days prior to sacrifice, mice were

ration-fed a NaCl-replete gelled diet (24.8% Zeigler Brothers

#53881300 rodent chow, 74.6% water, 0.6% agar) and supple-

mented with NaCl to give 0.8 meq/day NaCl or 1% NaCl [5].

Treatment 2: Mice were ration-fed the diet given in Treatment 1
with candesartan cilexetil added to the diet, giving each mouse

6 mg/kg bw/day for 14 days. All studies were completed in

compliance with protocols reviewed and approved by the

Institutional Animal Care and Use Committee of the Atlanta

Veterans Administration and the Emory University School of

Medicine.

Vessel Preparation
Male pendrin null or age-matched, male congenic wild type

mice (SvEvTac, Taconic Farms) were given the NaCl-replete diet

prepared as a gel or diet and candesartan and euthanized by CO2

asphyxiation. Thoracic aortas were dissected and prepared for

contractility measurements as described previously [18,19].

Briefly, vessels were rinsed in cold bicarbonate-buffered physio-

logical saline solution (PSS) that contained (in mM): 118 NaCl,

4.73 KCl, 1.2 MgSO4, 0.026 EDTA (ethylene diamine tetraacetic

acid), 1.2 NaH2PO4, 2.5 CaCl2, 25 NaHCO3, and 5.5 glucose

bubbled with 95% O2/5%CO2 at 37uC. In studies using denuded

vessels, the endothelium was removed by rubbing the ring between

thumb and forefinger and confirmed by the loss of an endothe-

lium-dependent relaxation to acetylcholine.

Measurement of Aorta Thickness
Excised aortas were fixed in 10% buffered formalin and

embedded in paraffin. Serial sections 6 mm thick were cut and

stained with hematoxylin and eosin. Images were obtained on a

Zeiss Axiovert 200 microscope equipped with an18.2 Color

Mosaic camera (Diagnostic Instruments Inc.). In each mouse,

intima and media thickness was measured at ten regions around

the circumference of the vessel using a calibrated micrometer tool

in ImageJ software (NIH) and the values averaged.

Contractility measurements in the aorta
5 mm aortic rings were mounted isometrically on a hook that

was attached to a Harvard Apparatus Differential Capacitor

Force Transducer. Resting tension on each aorta was set at 20

mN to approximate an in vivo aortic pressure of ,100 mm Hg.

Vascular contractility was assessed by generating concentration-

response curves to KCl (0–80 mM) and phenylephrine (PE, 0.1

nM to 10 mM). In other experiments vascular contractility was

measured as force in response to 100 nM angiotensin II. Data

were obtained using Powerlab hardware (AD Instruments,

Colorado Springs, CO) and analyzed with LabChart software

(AD Instruments).

At the end of the experiment, rings were cut open longitudinally

and the muscle dimensions (segment length and circumference)

were measured with a calibrated optical micrometer [20]. The

tissue was then gently blotted and weighed (wet weight). Vessel

cross-sectional area (CSA) was calculated using the relationship:

CSA~
2 x wet weight in gð Þ½ �

1:06 g

cm3 x circumference in gð Þ
h i

Figure 1. Pendrin gene ablation does not affect aortic contractile sensitivity to KCl (A) and phenylephrine (PE;B). Aortic rings from
wild type and pendrin null mice were isometrically mounted and concentration response curves were generated to KCl and phenylephrine. Panels A
and B show the dose-response to KCl and phenylephrine normalized to maximum force (n = 8–9).
doi:10.1371/journal.pone.0105101.g001
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where 1.06 g/cm3 was used as an estimate of tissue density [20].

This approach yields values for vessel thickness that are similar to

thickness measurements determined by morphometry [21].

In a separate series of studies, calcium sensitivity was examined

using established techniques [22]. To Ca2+-deplete vessels, aortas

were washed twice in the physiological saline solution (PSS) given

above but CaCl2 was excluded from and 0.5 mM EGTA ((b-

amino-ethyl ether)- N,N9 tetraacetic acid) was added to the PSS

solution. Vessels were then depolarized with the addition of

50 mM KCl. Calcium (CaCl2) was added to the bath in 0.2 mM

increments and isometric tension was monitored and analyzed

using LabChart Software.

Measurement of mRNA and protein abundance
Sex- and age- (6–8 weeks of age) matched wild type and pendrin

null mice were sacrificed under anesthesia with 1–2% isofluorane

in 100% O2 and kidneys and/or aortas were removed. Total RNA

was isolated from isolated aortas and kidneys using a kit (TRizol

Plus RNA Purification Kit, Invitrogen) and then DNase treated

[2]. Pendrin mRNA and b-actin were quantified in the same

samples using quantitative real-time polymerase chain reaction

(PCR) with specific quantitative assays reported previously for

mouse Slc26a4 and b-actin mRNA [2,5]. Quantitative real-time

PCR was performed in the Quantitative Genomics Core

Laboratory in the Department of Integrative Biology and

Pharmacology, University of Texas, Health Science Center

Houston (UTHSC).

Immunoblots of mouse kidney and aorta lysates were performed

as reported previously [23]. Tissue was homogenized, dissolved in

laemmli buffer and resolved by SDS polyacrylamide gel electro-

phoresis. Protein was electrophoretically transferred onto nitro-

cellulose membranes and probed with one of the antibodies

described below [24]. Equal protein loading was confirmed by

running a gel in parallel that was stained with Coomassie blue dye

[25]. For aorta lysates, each ‘‘n’’ reported corresponds to tissue

pooled from 2 mice. For kidney lysates, each ‘‘n’’ represents tissue

taken from a single mouse. The primary rabbit anti-pendrin

(Slc26a4) antibody employed in immunoblots recognizes the

terminal 29 amino acids of the rat pendrin protein sequence

[24,26] and was a generous gift of Dr. Peter Aronson. The rabbit,

anti-human N-terminal myosin light chain 20 antibody was

obtained from Cell Signaling Technology (#3672). The rabbit,

anti-human N-terminal smooth muscle a actin antibody was

purchased from Thermo Scientific (RB-9010) while the rabbit,

anti-mouse C-terminal Cdk4 antibody was purchased from Santa

Figure 2. Pendrin gene ablation increases force/cross-sectional area and decreases thickness of the aorta. Aortic rings from wild type
and pendrin null mice were isometrically mounted. Maximum force generated/cross sectional area was measured in response to KCl (Panel A) and
phenylephrine (PE, Panel B) (n = 5–9). Cross sectional area (CSA, Panel C) was measured in the same vessels using the relationship 2 x wet weight/
circumference. Aorta thickness (Panel D) was measured in transverse sections using a calilbrated micrometer in pendrin null (n = 4) and wild type
mice (n = 5). The body weights for aorta thickness measurements were 30.060.8 g in wild type versus 26.861.1 g in pendrin null mice. *p,0.05.
doi:10.1371/journal.pone.0105101.g002

Pendrin Alters Vascular Contractility

PLOS ONE | www.plosone.org 3 August 2014 | Volume 9 | Issue 8 | e105101



Cruz (sc 260). Myosin heavy chain (MHC SM1 and SM2)

antibodies, characterized previously [27,28], were a generous gift

of Dr. Anne F. Martin. Immunolabeling was detected with

horseradish peroxidase-conjugated goat anti-rabbit secondary

antibody (Upstate Biotechnology Inc., Lake Placid, NY) using an

enhanced chemiluminescence system (Amersham Biosciences,

Little Chalfont, UK). Band density was quantified using Quantity

One Image software (Biorad, Hercules, CA) and compared

between groups.

MLC 20 phosphorylation
MLC20 phosphorylation was examined by 2-dimensional

electrophoresis as previously described [29]. Control and phenyl-

ephrine treated aortae were rapidly frozen at predetermined times

and then transferred to 10% trichloroacetic acid in acetone

(270uC). After being stored for at least 12 h at 270uC, samples

were slowly brought to room temperature and then washed

extensively with acetone and dried. Tissue was homogenized in a

buffer containing 1% SDS, 10% glycerol, 20 mM dithiothreitol,

and 5 mg/ml bovine serum albumin. Tissue homogenates were

separated by two-dimensional electrophoresis at pH 4.5–5.4 with

15% SDS-polyacrylamide gels and then silver stained and

quantified by densitometry. Percent phosphorylated MLC20 was

determined by the relationship: (P1+P2)/(U+P1+P2), where U is

the unphosphorylated light chain spot and P1 & P2 are,

respectively, the singly and doubly phosphorylated light chains.

Catecholamine levels
Mice were placed in metabolic cages 48 hours prior to sacrifice.

Urine was collected continuously during the 24 hrs prior to

sacrifice under oil in 0.1 N HCl. After collection, urine was

centrifuged and the supernatant collected. Urinary catecholamine

concentration was measured in duplicate, 50-ml aliquots of mouse

urine using alumina extraction followed by HPLC with electro-

chemical detection. The method employs automated in-line

cationic trace enrichment [30–32] and was adapted to a 96-well

microplate format using Multiscreen Solvinert Deep Well filter

plates (Millipore Corporation, Billerica, MA, Cat No. MDRL

NO4 10). An internal standard (dihydroxybenzylamine) was used

to control for losses during extraction and the system was

calibrated using norepinephrine and epinephrine standards from

Sigma (St. Louis, Mo) (N3146-1VL and E1016-1VL respectively).

Results are expressed as mass of free base excreted in the urine/24

hr. The overall coefficient of variation between duplicates was

5.7% for norepinephrine and 8.4% for epinephrine.

Statistics
When two groups were compared, an unpaired Student’s t test

was employed. Multiple groups were compared with ANOVA

with a Bonferoni post test. Data are expressed as the mean 6 SE.

A P,0.05 indicates statistical significance.

Results

Pendrin gene ablation increases aorta contractile force
per cross sectional area without affecting contractile
sensitivity

Following 7 days of the NaCl-replete diet employed in this

study, we observed previously that mean arterial pressure

measured by telemetry is lower in pendrin null than in wild type

mice [9,16]. Further experiments asked if the fall in blood pressure

observed with pendrin gene ablation occurs in tandem with

reduced vascular reactivity. To examine the effect of pendrin gene

ablation on vascular contractility, isometric force was measured in

thoracic aortic rings from pendrin null and wild type mice in

response to the cumulative addition of the a adrenoceptor agonist,

phenylephrine, (10210 to 1025 M) or the depolarizing agent, KCl

(0–80 mM). Contractile sensitivity was not affected by pendrin

gene ablation since the EC50 values for phenylephrine (wild type,

280612 nM; pendrin null, 261611 nM, P = NS) and KCl (wild

type, 23.261.2 mM; pendrin null 21.361.2 mM, P = NS) were

not different in the mutant and the wild type aorta (Figures 1A

and 1B).

Further experiments examined force development normalized

to cross sectional area in thoracic aortas from pendrin null and

wild type mice. In response to KCl, force generation/cross

sectional area trended higher in the pendrin null relative to the

wild type aorta, although differences did not reach statistical

significance (Figure 2A). However, in response to phenylephrine

(PE), force/cross-sectional area was increased in the pendrin null

relative to the wild type aorta (Figure 2B).

Because pendrin gene ablation increased force when normalized

to cross sectional area, we compared cross sectional area in the

thoracic aorta from mice in each group. As shown, cross sectional

area was lower in aortas from pendrin null relative to wild type

mice (Figure 2C). Similarly, aorta intima and media thickness

quantified by planar morphometry was lower in pendrin null than

in wild type mice (Figure 2D), which is consistent with the 11%

Table 1. Slc26a4 mRNA levels in wild-type aorta and kidneys.

Sample
Slc26a4 template
molecules/100 ng total RNA

b-actin template
molecules/100 ng total RNA Slc26a4/b-actin mRNA %

Aorta

Wild type 3276101 (n = 7) 2,96264286103 (n = 7) 0.013460.003 (n = 7)

Kidney cortex

Wild type 73,135 (n = 2) 2,0836103 (n = 2) 3.243 (n = 2)

doi:10.1371/journal.pone.0105101.t001

Figure 3. Pendrin protein expression is not detectable in
mouse aorta. Pendrin immunoreactivity was explored by immunoblot
of lysates from kidney and aorta of wild type (WT) and pendrin null (KO)
mice. Each lane was loaded with 20 mg protein.
doi:10.1371/journal.pone.0105101.g003
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lower body weight observed in the pendrin null relative to wild

type mice. We conclude that the enhanced force/per cross

sectional area observed in the pendrin null aorta was primarily due

to reduced cross-sectional area rather than increased force/vessel.

Pendrin expression is very low in mouse aorta
Intracellular Cl2 is maintained above equilibrium in smooth

muscle partly through robust Cl2/HCO3
2 exchange, which may

alter smooth muscle tone [33]. We therefore reasoned that

pendrin-mediated Cl2/HCO3
2 exchange within aorta smooth

muscle may alter contractile force. As such, we asked if the

increased contractile force observed in the pendrin null aorta is the

due to the absence of pendrin-mediated Cl2/HCO3
2 exchange in

aorta smooth muscle or if it occurs through an indirect and

possible systemic effect of pendrin gene ablation. Thus Slc26a4
mRNA and pendrin protein were quantified in mouse aorta.

Pendrin mRNA and protein were also quantified in kidney as a

positive control. The percent Slc26a4 relative to b actin mRNA in

kidney tissue reported in Table 1 is very similar to values reported

previously in the renal cortex of mice studied under the same

treatment conditions [2]. However, both the ratio of Slc26a4 to b
actin mRNA and the ratio of Slc26a4 mRNA to total RNA were

more than 2 orders of magnitude lower in aorta than in whole

kidney (Table 1). Thus the level of Slc26a4 mRNA expression is

very low in mouse aorta.

Further studies explored whether pendrin protein is expressed in

mouse aorta. Pendrin protein was not detected in aorta lysates

from either wild type or pendrin null mice, despite robust pendrin

abundance detected in kidney lysates from wild type mice run in

parallel (Figure 3). We conclude that pendrin protein and mRNA

are either extremely low or undetectable in mouse aorta.

Therefore, the change in contractile force observed in the pendrin

Figure 4. Pendrin gene ablation does not affect nitric oxide-dependent smooth muscle relaxation. Aortic rings from wild type and
pendrin null mice were preconstricted with 30 nM phenylephrine. Relaxation in response to sodium nitroprusside (SNP, 0.1 to 300 nM)) was then
determined. Data are expressed as the percent relaxation in response to the incremental addition of SNP (n = 5).
doi:10.1371/journal.pone.0105101.g004

Figure 5. Pendrin gene ablation does not increase aortic contractile force through changes in Ca2+ sensitivity. Rings from wild type
and pendrin null mice were Ca2+ depleted by incubating in the presence of the Ca2+ chelator, EGTA, and then depolarized with 50 mM KCl. Vascular
contractility was measured following the addition of calcium to the bath in increments of 0.2 mM [22], n = 5–6.
doi:10.1371/journal.pone.0105101.g005
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Figure 6. Pendrin gene ablation does not affect steady state catecholamine production. 24 hour urinary epinephrine and norepinephrine
excretion of pendrin null and wild type mice are shown.
doi:10.1371/journal.pone.0105101.g006

Figure 7. Inhibition of the angiotensin type 1 receptor equalizes aortic contractile force and cross sectional area in pendrin null and
wild type mice. Aortic rings from candesartan-treated wild type and pendrin null mice were isometrically mounted and maximum force generated/
cross sectional area was measured in response to the cumulative addition of KCl (Panel A) and PE (Panel B) (n = 5–6). Cross sectional area of the aorta
wall was measured in each of the vessels studied (Panel C). Aorta thickness (intima and media, Panel D) was measured by morphometry in separate
candesartan-treated wild type (n = 6) and pendrin null (n = 6) mice. Body weights for the aorta thickness measurements were the following: wild type
24.460.9 g versus 21.461.0 g for pendrin null mice.
doi:10.1371/journal.pone.0105101.g007
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Figure 8. Pendrin gene ablation changes the pattern of contractile protein expression. Contractile protein abundance was quantified by
immunoblot of aorta lysates from pendrin null and wild type mice. Representative western blots (Top Panel) and band densities normalized to wild
type mice (Bottom Panel) are shown. *p,0.05; {p = 0.063
doi:10.1371/journal.pone.0105101.g008
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Figure 9. Pendrin gene ablation does not change the percentage of myosin light chain phosphorylation in the mouse aorta. Aortas
were isometrically mounted and phosphorylation was determined under either baseline conditions or following stimulation with phenylephrine at
the ED50 concentration (0.3 mM) or at a concentration giving maximal stimulation (10 mM). The percentage of MLC20 phosphorylation was
determined using 2-D electrophoresis. U represents the unphosphorylated light chain spot, whereas P1 & P2 are, respectively, the singly and doubly
phosphorylated light chains. N = 4 in each group.
doi:10.1371/journal.pone.0105101.g009
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null aorta occurs through an indirect effect of pendrin gene

ablation, such as through changes in the production of or the

sensitivity to a vasoactive hormone.

Changes in contractile force observed in pendrin null
mice are not from changes in sensitivity to nitric oxide or
Ca2+ or from changes in catecholamine production

Further experiments explored how pendrin gene ablation alters

force generation in the thoracic aorta. Since nitric oxide produced

by the endothelium modulates vascular contractility by relaxing

vascular smooth muscle [34], we examined relaxation responses to

an NO donor (sodium nitroprusside, SNP) in aortas from wild-

type and pendrin null mice. In preconstricted vessels, the percent

relaxation in response to SNP was similar in wild type and in

pendrin null mice (Figure 4). Since vascular relaxation in response

to NO was similar in aortas from pendrin null and wild type mice

and since pendrin gene ablation increased contractile force/cross

sectional area in both intact and denuded aortas (not shown),

changes in force/cross sectional area that follow pendrin gene

ablation do not occur from changes in NO sensitivity. Therefore,

genetic disruption of the gene encoding pendrin does not affect

nitric oxide-mediated relaxation.

Further experiments explored whether pendrin gene ablation

decreases aorta smooth muscle contractility through changes in

Ca2+ sensitivity [35]. Therefore, we examined the calcium

sensitivity of contractile force (Figure 5) in aortas from pendrin

null and wild type mice. To do so, aortic rings were Ca2+-depleted

and then depolarized. Following the step-wise addition of Ca2+

[22], vascular contractility was similar in aortic rings from pendrin

null and wild type mice. We conclude that the increased

Figure 10. Angiotensin receptor type 1 inhibition eliminates the increase in MLC20 protein abundance observed in aortas from
pendrin null mice. Pendrin null and wild type mice were given candesartan for 14 days and then sacrificed. Contractile protein abundance (a actin
and MLC 20) and a ‘‘housekeeping gene’’ (cdk4) were quantified by immunoblot in lysates of aortas taken from mice in each group. Representative
immunoblots (Left Panel) and band density normalized to wild type mice (Right Panel) are shown.
doi:10.1371/journal.pone.0105101.g010

Figure 11. Force/CSA in response to Angiotensin II in isolated mouse thoracic aorta from wild type and pendrin null mice. Force/CSA
was measured in response to angiotensin II (100 nM) in thoracic aortas from pendrin null (KO) and wild type (WT) mice (Panel A). Panel B shows
Force/CSA in response to 100 nM angiotensin II when expressed as the percentage of force/CSA observed in response to phenylephrine (10 mM).
n = 7 in each group. *p,0.05.
doi:10.1371/journal.pone.0105101.g011
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contractile force observed with pendrin gene ablation does not

occur from changes in smooth muscle Ca2+ sensitivity.

Since chronic norepinephrine administration reduces the

maximal force of contraction [36], we asked if catecholamine

release differs in pendrin null mice and wild type mice. Thus,

urinary epinephrine and norepinephrine were measured in wild-

type and pendrin null mice. As shown (Figure 6), 24 hr urinary

excretion of epinephrine and norepinephrine was similar in wild-

type and pendrin knockout mice. Thus, the increase in aortic

contractility/cross sectional area observed with pendrin gene

ablation cannot be explained by changes in basal levels of

catecholamine production.

Pendrin null mice have increased angiotensin II receptor
signaling, which augments smooth muscle contractile
force/cross sectional area

We reasoned that angiotensin II-depending signaling might

mediate the observed change in cross sectional area observed with

pendrin gene ablation since this peptide hormone induces vascular

remodeling [37]. Therefore, we asked if the increased force/area

observed in pendrin null mice is angiotensin II-dependent. To

answer this question, we explored the effect of 2 weeks of

angiotensin type 1 receptor blocker treatment (candesartan) on

maximal contractile force. As shown (Figure 7 A & B), the

maximal force of contraction/cross sectional area in response to

PE and KCl were similar in thoracic aortas from candesartan-

treated pendrin null and wild type mice. Moreover, aorta cross

sectional area and thickness of the aorta wall were similar in the

mutant and wild type mice following candesartan treatment

(Figure 7 C & D), despite the 12% lower body weight observed in

the pendrin null relative to the wild type mice. Thus angiotensin

type 1 receptor blockade eliminated differences between pendrin

null and wild type mice in aorta contractile force normalized to

cross sectional area. Candesartan normalized force/CSA in the

mutant and wild type mice by increasing the relative cross

sectional area of the pendrin null relative to the wild type aorta

rather than by changing force per vessel.

Aortas from pendrin null mice have increased contractile
protein abundance

Because pendrin gene ablation changed aortic wall thickness

through an angiotensin type 1 receptor-dependent mechanism,

further experiments characterized the angiotensin-dependent

vascular remodeling that follows pendrin gene ablation. We asked

if the increased contractile force observed in the pendrin null aorta

is accompanied by a change in the pattern of contractile protein

abundance and if differences in contractile protein abundance are

eliminated with candesartan treatment. Thus, we explored the

effect of pendrin gene ablation on the abundance of actin and

myosin and the abundance of a ubiquitously expressed ‘‘house-

keeping’’ protein (cdk4).

Since the relative abundance of a actin and smooth muscle

myosin heavy chain isoforms can significantly impact force

development [21,38,39], we quantified the abundance of each

myosin heavy chain isoform (MHC SM1 and MHC SM2) as well

as a actin. As shown (Figure 8), the abundance of a actin, SM1

and SM2 and the ratio of SM1/SM2 (0.97360.04, n = 6, versus

1.0160.07, n = 6, respectively, P = NS) were similar in aortas from

wild type and pendrin null mice. However, since the primary

signaling event that initiates cross-bridge cycling of smooth muscle

is the phosphorylation of the 20 kDa myosin regulatory chain

(MLC20) [40,41], we measured total and phosphorylated MLC20

abundance in aortas from wild type and pendrin null mice

(Figure 8). Total MLC20 abundance was 60% higher in pendrin

null than in wild type mice (Figure 9), although the percent

phosphorylated MLC20 was similar in aortas from both wild type

and mutant mice under basal conditions and following the

application of phenylephrine either at its EC50 or at its maximal

stimulatory concentration (Figure 9). However, since total MLC

abundance was 60% higher in aortas from pendrin null mice,

phosphorylated MLC abundance is also higher in aortas from

pendrin null relative to wild type mice. We conclude that total and

phosphorylated myosin light chain abundance is upregulated in

pendrin null mice.

Because angiotensin type 1 receptor blocker (candesartan)

application in vivo eliminated the increased contractile force

observed in pendrin null mice, we asked if candesartan changed

the relative abundance of contractile proteins in the pendrin null

aorta. As shown (Figure 10), following candesartan treatment, a
actin and MLC20 abundance were similar in aortas from pendrin

null and wild type mice. We conclude that 1) pendrin gene

ablation increases the abundance of thoracic aorta contractile

proteins, such as MLC20, and 2) blockade of angiotensin receptor

type 1-mediated signaling modulates changes in contractile protein

abundance observed with pendrin gene ablation.

Pendrin gene ablation increases maximal aorta
contractile force in response to angiotensin II

Further experiments examined the effect of pendrin gene

ablation on aorta contractile force in response to 100 nM

angiotensin II, a concentration shown to generate maximal force

in mouse thoracic aorta [42,43]. As shown (Figure 11A), in

response to angiotensin II, force/CSA was greater in the pendrin

null than in the wild type thoracic aorta. To determine if the

angiotensin II response was exaggerated in the pendrin null aorta,

the force response to angiotensin II was expressed relative to the

force response to PE (% Force). As shown (Figure 11B), % Force

was similar in aortas from these two groups. We conclude that

pendrin gene ablation increases force/CSA generated in response

to both PE and to angiotensin II.

Discussion

Following 7 days of the NaCl-replete, gelled diet employed in

this study, the present and previous studies have shown that mean

arterial blood pressure is 5 to 9 mm Hg lower in pendrin null

relative to wild type mice when measured by telemetry [9,16].

Whereas we observed mean arterial blood pressures of 116 to

122 mm Hg in wild type mice, MAP was in the range of 113 to

116 mm Hg in pendrin null mice [9] [16].

Whether the fall in blood pressure observed with pendrin gene

ablation is accompanied by changes in vascular tone has been

unexplored. We hypothesized that since blood pressure is reduced

in pendrin null mice, vascular reactivity and the contractile

response should be attenuated in the mutant mice [44,45]. Our

results indicate that pendrin gene ablation increases contractile

force normalized to cross sectional area in response to phenyl-

ephrine and angiotensin II. However, the sensitivity to contractile

agents such as phenylephrine or KCl is unaffected. Since pendrin

mRNA and protein are not detectable in conduit vessels (aorta),

pendrin gene ablation alters aorta contractility through an indirect

and possibly systemic effect of pendrin gene ablation.

Since thyroid hormone, aldosterone and cortisol levels are the

same in pendrin null and wild type mice under the conditions of

the present study [17,24], the differences in contractility observed

in the present study cannot be explained by changes in the

production of these hormones. However, under the treatment
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conditions employed in the present study (i.e. a NaCl-replete diet

given as a gel), circulating renin concentration is two-fold higher in

pendrin null relative than in wild type mice (wild type,

0.260.01versus 0.460.07 mg ANG I. ml21 h21, in pendrin null

mice) [8,9]. Renin production is stimulated in the pendrin null

mice, at least in part, from the reduced circulating volume [46]

and from the lower blood pressure [9,16] observed in these mutant

mice. This increase in renin production should stimulate

angiotensin II release. Increased circulating angiotensin II levels

and/or changes in angiotensin type 1 receptor expression likely

contribute to the increased vascular force observed in this study.

Angiotensin II application in vitro acts through the angiotensin

type 1a receptor to increase contractile force in the rodent aorta

[15]. The present study shows that pendrin gene ablation

enhances the force/CSA generated in response to angiotensin II

when applied to aortas ex vivo. The increased contractile force

observed in the pendrin null aorta in response to angiotensin II

might occur through changes in angiotensin type 1 receptor

expression [15]. Alternatively, it may occur through changes in

contractile protein expression, independent of angiotensin type 1

receptor changes, thereby making the tissue more angiotensin II

sensitive.

Angiotensin II increases vascular contractility by raising

vascular smooth muscle contractile protein abundance [47]. These

changes in contractile protein abundance occur in tandem with an

increased capacity of the remodeled pendrin null aorta to generate

force. In particular, we observed an increase in MLC20 in the

pendrin null aorta, which may augment the agonist-induced

contractility observed in this vessel. Whether chronic elevations in

vascular smooth muscle MLC abundance in vivo result in

sustained increases in contractile force remains to be determined

[35]. Moreover, we cannot exclude the possibility that pendrin

gene ablation alters the expression of additional proteins that were

not examined in this study.

Pendrin abundance in the apical plasma membrane of renal

intercalated cells falls when mice are given a NaCl-replete diet, a

condition during which renin, angiotensin II and aldosterone

production decline. Conversely, renal apical plasma membrane

pendrin abundance increases during treatment models that

stimulate renin, angiotensin and aldosterone release, such as a

NaCl-deficient diet [4]. In kidney, angiotensin II acts through the

angiotensin type 1 receptor to upregulate pendrin, thereby

increasing blood pressure [7]. Pendrin gene ablation therefore

reduces blood pressure much more during treatment conditions in

which renin, angiotensin or aldosterone release is stimulated than

following a NaCl-replete diet, where renin, angiotensin II and

aldosterone production are suppressed [4–7,9]. Angiotensin II-

dependent vascular remodeling may provide a mechanism to blunt

the fall in blood pressure produced with pendrin gene ablation.

In summary, our results indicate that in mouse aorta pendrin

gene ablation increases the force of contraction per cross sectional

area. The increased force observed in the pendrin null aorta that is

generated in response to PE and angiotensin II is not a direct result

of changes in pendrin expression in this vascular tissue, but results

instead from an indirect and possibly systemic effect of pendrin

gene ablation that occurs through angiotensin II-depending

signaling. Ablation of the gene encoding pendrin increases

contractile force/CSA in mouse aorta in response to angiotensin

II and PE through a mechanism dependent on the angiotensin

type 1 receptor. This angiotensin II-dependent signaling pathway

observed in vascular smooth muscle may help maintain blood

pressure following pendrin gene ablation.
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