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Abstract

in situ Deformation Studies with Scanning Nanobeam Electron Diffraction
by

Thomas Christopher Pekin
Doctor of Philosophy in Engineering — Materials Science and Engineering
University of California, Berkeley

Professor Andrew M. Minor, Chair

In this dissertation, experimental methods and data processing techniques are developed
for nanobeam electron diffraction and applied to both crystalline and amorphous materials.
Nanobeam electron diffraction is a technique in which a small electron probe is used to
acquire diffraction patterns as the beam is rastered across the sample. We develop methods
to use nanobeam electron diffraction during in situ deformation in the scanning transmission
electron microscope. First, we describe the sample preparation methods used to create
samples with the correct geometry for in situ experimentation. We compare and contrast
in situ deformation techniques, including holders and experimental data obtained. We then
develop and benchmark variations on cross-correlation algorithms for nanobeam electron
diffraction strain mapping on simulated and real data. We find that Sobel filtered cross-
correlation and “hybrid” correlation minimize the amount of error when diffraction patterns
have uneven illumination. We also show that binning can reduce error when signal to noise
is low in the diffraction patterns. We use this result to analyze in situ nanobeam electron
diffraction strain mapping on a sample of 321 stainless steel being deformed in tension. We
observe the motion of the first dislocation in a planar slip band, and measure the resulting
lattice expansion in situ. This result is the first direct confirmation of such phenomena,
and is theorized to be the reason why planar as opposed to wavy slip occurs. We then
develop methodology to measure both strain and local order in amorphous materials, and
demonstrate the technique on CuygZrygAls bulk metallic glass. We observe strains in excess
of 2% before the sample fractures along a shear band, small amounts of plasticity, as well as a
decrease in local order at high strains in areas where the sample fractured. This is supported
by molecular dynamics simulations, and experimentally supports the shear transformation
zone model of metallic glass deformation. As a whole, this dissertation presents method
developments in in situ nanobeam electron diffraction for both crystalline and amorphous
samples, as well as practical results of interest to the materials science community:.
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Chapter 1:

Introduction

Materials science was practiced as an art and a science, with great success, for thousands
of years without characterization methods beyond visual observation and bulk mechanical
testing. These practitioners brought us materials like bronze, iron, steel, engineering feats
like the FEiffel tower and the Titanic. They did much with the tools they had, but often
had to rely on inference and rote empirical knowledge as to why their materials behaved
the way they did. The advent of advanced characterization techniques (x-ray diffraction,
electron microscopy, Raman spectroscopy, synchrotron facilities) revolutionized our under-
standing of materials by providing concrete experimental evidence of previously invisible
mechanisms. These ranged from the atomistic (point and line defects), to the micron scale
(protein crystallography, grain texture). This increased understanding has rapidly changed
how we approach materials science over the past 100 years, moving from trial and error, to
experimentally aided computational design of materials and prediction of properties. This
has enabled vast advancements in all fields of materials science, including semiconductors
and structural materials, that would have previously been impossible.

1.1 Electron microscopy

Electron microscopy began in 1931 with the development of the first electron microscope by
Ernst Ruska and Max Knoll [1]. This was the result of advancements in both the theoretical
understanding and practical knowledge needed to use electric fields to steer a beam of free
electrons in a vacuum, hitting the area of interest, and then recording the various inter-
actions that these electrons have with the sample and vice versa. Since that day, method
and instrumentation development have been active areas of graduate student (and academic
as a whole) research. These advancements have yielded atomic resolution microscopy [2],
differential phase contrast imaging [3], low dose imaging [4], high resolution and fast spec-
troscopy [5], as well as in situ techniques [6-9], in which a full experiment is performed
within the microscope. Each of these advancements has pushed different parts of materials
science and biology forward, armed with new data and increased understanding.

The electron microscope is an important tool, as few other methods have the versatility
offered by this platform to examine materials from the angstrom to the millimeter and obtain
the wealth of information produced when electrons scatter off of atoms and other electrons. It
is complemented by many techniques, and is itself complementary to many others. However,
it provides a crucial link between the atomistic and the bulk material, one that is hard to
replace by other experiments. This explains the constant development on the platform for
the past 87 years.
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1.2 in situ electron microscopy and the mechanical behavior of
materials

When it comes to the mechanical behavior of materials, electron microscopy has been in-
fluential in confirming the existence and role of dislocations [10], precipitates [11], grain
boundaries [12], and chemistry [13] to the resulting mechanical properties of the material.
However, traditional ex situ microscopy is limited in that the morphology of the sample
observed is always only a before or after snapshot of whatever transition might have oc-
curred. in situ microscopy changes this by allowing the microscopist to observe changes
to the sample in real time as the sample deforms. This can include watching dislocations
move [14], precipitates dissolve [15], and other phenomena [16] only observable under dy-
namic conditions. The knowledge of the dynamic deformation of the material can then be
used to develop better alloys with more desirable properties.

in situ electron microscopy is not without its drawbacks however. Often, samples are
much more difficult to prepare, requiring difficult geometries or specific orientations that
require much more preparation than a standard metallic specimen. Additionally, size effects
change how the material deforms as the sample size is reduced to electron transparency [17].
More worryingly is the need for electron transparency. The need to be less than 200 nm
thick can generate complex strain states not normally experienced in the bulk sample. Ad-
ditionally, the effect of the electron beam cannot be overlooked. In some samples, the high
energy electron beam can have enough energy to generate knock-on radiation damage that
will amorphize and destroy the sample during the in situ test. This is known as beam
damage [18], and is usually regarded as a negative effect of the electron microscope. Regard-
less, many microscopists and materials scientists believe the insights gained by observing
deformation mechanisms far outweigh the downsides of in situ microscopy.

1.3 Nanobeam electron diffraction (NBED)

Often in electron microscopy, the traditional microscopist must decide between obtaining
structural (diffraction), or morphological (imaging) based data. This is a hindrance, as
physically switching the modes on a traditional TEM takes both time and expertise, both
of which might be limited during an in situ experiment where processes can happen very
rapidly. It therefore has been of interest to see if there was a way to capture both at the
same time. Nanobeam electron diffraction is one way in which this can be obtained. In
this technique a semi-parallel, but small in diameter, electron beam is rastered across the
sample, similar to a scanning transmission electron microscope (STEM). However, instead of
integrating diffracted electron intensity on an annular detector and obtaining a single gray
scale value for each probe position, an entire diffraction pattern is acquired. This allows for
the reconstruction of traditional STEM imaging data as well as the structural/orientation
information also desired [19].

Often, these datasets are gigantic in file size, exceeding 256 GB for a single “capture”
and often over 1 TB for an in situ experiment with many time-resolved frames. This type
of microscopy requires a new approach to analysis, as visual inspection of individual images
is both useless as well as impossible. Instead, we must rely on computational methods to
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integrate the large amount of data collected into a coherent result. These methods are
typically not well developed, or non-existent. Therefore it is important to develop efficient,
accurate methods for NBED data analysis. These methods can be used to extract a variety
of information from the diffraction patterns, including orientation [20], virtual bright and
dark field images [19], strain in both crystalline and amorphous materials [21-24], amount of
short range order [25], as well as grain classification. While current methods are functional
and allow for effective experimentation and analysis, single step processes in a larger data
processing workflow can take upwards of ten hours per capture, and weeks to fully iterate
through the tunable parameters. There is still much room for future method improvement,
both in accuracy and speed.

1.4 Dissertation overview

This dissertation will focus on advancements in the sample preparation, NBED algorithm
development, and applications to in situ electron microscopy. Its focus will be method
development, and how new methods can be utilized to acquire previously unobtainable data
relevant to the study of materials science.

This dissertation is organized as follows: Chapter 2 covers some of the inherent difficulties
to sample preparation and complex geometries required for in situ deformation. We will start
with traditional sample preparation techniques, and then show how they can be modified
for in situ experiments. We will compare and contrast the various sample preparation
mechanisms, provide schematics of the processes, and give a list of some of the best practices
for successful sample preparation.

In Chapter 3, we first go over the variety of methods previously developed to identify and
track the location of diffraction disks in crystalline samples. This is very useful for NBED
strain mapping. We then develop and benchmark a more efficient method with both real
and simulated data, specifically for the large amounts of data NBED produces. We show
that the robustness of the algorithm to variable disk illumination is very important. Finally,
we show how to turn these diffraction disk spot locations into strain maps.

In Chapter 4, we use the methods developed in Chapters 2 and 3 to perform NBED strain
mapping on a crystalline sample in situ. We show that we are able to measure experimentally
a positive strain following the first dislocation in a planar slip band as it moved. This had
previously only been possible during ez situ analysis after specimen deformation. However,
this experiment shows that in situ strain mapping is possible, opening the door for more
quantitative studies on dislocation interactions with precipitates, grain boundaries, dissolved
solutes, other dislocations, and other types of mechanical strengthening mechanisms.

Chapter 5 will discuss both the algorithmic and practical developments to measure strain
in amorphous materials, such as a bulk metallic glass (BMG). Additionally it will cover
how to measure the degree of local order, as well as the experimental parameters that can
maximize both measurements. Then, it will discuss performing these measurements in situ,
and observing the dynamic change in both strain and local order, and how this increases our
understanding of BMG deformation.

Finally, in Chapter 6, we will discuss the overall contributions to the field this researcher
has provided, and holistically summarize the impact of the method development presented
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here. Additionally, we will discuss future research directions opened by this work both in
the in situ microscopy as well as algorithm development.

In the appendicies, we will provide a more detailed examination of the parts of this work
which confused the researcher the most, in hope that it helps future graduate students like
himself. Appendix A will focus on crystalline diffraction patterns, while Appendix B will
focus on amorphous diffraction patterns. Appendix C will collect useful tips and techniques
on processing images in MATLAB.



Chapter 2:

Sample preparation methods for in
situ microscopy

2.1 Introduction

One of the earliest lessons an aspiring microscopist learns during the development of their ex-
perimental skills is that the process of sample preparation is often orders of magnitude more
important than the actual microscopy itself. Often, graduate students will spend months
learning microscopy, but years learning sample preparation, and the beginning of real re-
search starts with the development of a reliable method of sample preparation. This will
be an overview of the methods used in this dissertation such that future work developed off
of it will not require so much sample preparation development. It will focus on traditional
conductive, metallic specimens. Of course, the classic textbook Transmission Electron Mi-
croscopy: A Textbook for Materials Science by Williams and Carter has a decent overview
on the wider variety of sample preparation techniques [26].

2.2 Traditional methods of sample preparation

The goal of sample preparation for transmission electron microscopy is to produce a sample
that is thin enough for electron transmission (electron transparent), yet still representative
of the larger sample, without artifacts from the preparation itself. Electron transparency
depends on the material; materials with higher atomic weight must be thinner than materials
with lower atomic weight for equivalent transparency. Additionally, electron transparency
is dependent on the accelerating voltage of the microscope, as higher energy electrons can
penetrate further through a sample than lower energy electrons. What is electron transparent
at 300 kV could very well be opaque at 80 kV. Finally, the thickness of the sample controls how
much dynamic scattering and attenuation occurs as the electron wave propagates through
the sample. If atomic resolution/kinematical diffraction is desired, often samples should
be less than ~10 nm, and require much more delicate preparation. However, since this
dissertation is focused on in situ deformation, sample thickness requirements are relaxed
as we do not want to observe phenomena strictly due to size effects [27-29] and there are
practical considerations on the minimum size of the sample when using in situ holders.
Therefore, as a guide, electron transparency for light metals (Al, Mg, etc.) is somewhere
around 200-250 nm at 300 kV, and 100-150 nm for heavier engineering metals (Fe, Cu, Zr,
etc.).

The traditional geometry for a standard TEM sample is a 3 mm disk, which allows
for the transfer of a standardized sample between various sample holders and microscopes.
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Therefore, usually the first steps of sample preparation involve taking the bulk material and
shaping it into a rod with a 3 mm diameter, which can then be sliced via an accurate saw
or wire electrical discharge machining (wire EDM). If the bulk material is already a foil or
thin sheet, disks can be cut either using a punch if thin enough, or wire EDM if it thicker.
In order to minimize surface damage from this machining process, these slices are usually
around 600 microns thick. These disks are then typically glued to a puck using crystal bond
(if temperature insensitive) or super glue (if temperature sensitive), and then ground to less
than 200 microns using wet 800 grit sand paper, flipping once halfway through to remove
cutting damage on both sides of the disk.

Crystal bond is applied and removed under the effect of heat, and both crystal bond and
superglue can be dissolved under acetone in an ultrasonic bath.

2.2.1 Electropolishing

a b C
3mm
- T 200 um
d ‘ e f : I
E g E Polishing Eg
) I 1
Voltage

Figure 2.1. a) Sample sheet with disks punched out. b) Punched out disks. Often it is beneficial
to have more disks than necessary, as many will be destroyed during the sample preparation process,
or turn out to be less than ideal samples. By preparing many, a few will be good. Keep this in
mind. c¢) Standard dimensions of disk before jet polishing. d) Schematic of jet electropolishing
setup. e) Jet polished disk with electron transparent region. f) V-I curve of electropolishing. This
can be estimated by controlling the voltage to the jet polisher and recording the current. Optimum
electropolishing occurs in the green region.

Once the samples have been thinned to ~200 nm thick, the careful work to thinning to
electron transparency begins. Twin jet electropolishing has been one technique to do this



Table 2.1. Jet polishing parameters for materials used in this dissertation

Sample Type Electrolyte Solution Temp. Voltage
(°C) (V)
Al-Mg [30] 25% nitric, 75% methanol -20 8-12
Al-Mg [30] 35% nitric, 65% methanol -20 - -10 10
Al-Mg 10% perchloric, 90% methanol 0 10
321 Stainless 6% perchloric, 39% butanol, 55% -15 30

Steel methanol!
CuZrAl BMG? 33% nitric (70%), 67% methanol -25 18
CuZr BMG [32)? 9% nitric, 30% methanol, 61% -50 —
butoxyethanol

since the beginnings of electron microscopy [30, 31]. This process can be seen in Figure 2.1.
In this process, the thinned disk is put into an acid-alcohol electrolyte solution, usually at
reduced temperatures (-50 — 0°C), a bias is applied between the sample and the solution,
and two jets of solution are pumped at the center of the disk (Fig. 2.1c). This causes a
localized electropolishing effect where the jets are aimed, and causes a preferential thinning.
This thinning proceeds until a photodetector detects light from the other side of the disk,
provided by a bright source, indicating the presence of a hole.

While this process sounds simple in practice, there are several parameters which need to
be optimized for successful jet polishing. The main parameters include choice of electrolyte,
temperature of electrolyte, jet pump speed, and electropolishing voltage. Furthermore, these
parameters are interdependent, and it often takes several samples to optimize. However, it
is often helpful to turn to the literature to see what parameters previous researchers have
used as a starting point, especially with regard to electrolyte.

Determining the voltage for electropolishing can be done by acquiring the curve shown
in Figure 2.1f. By sweeping the voltage while electropolishing a sample a plateau can be
observed. This is the voltage to use during polishing.

Temperature and pump speed can be used to control the speed of the polishing, with
colder temperatures and slower pump speeds slowing the reaction, and warmer temperatures
and faster pump speeds speeding it up. However, faster pump speeds could cause the thinnest
areas of the sample to be destroyed before the pump can be cut off by the photodetector
due to larger currents in the electrolyte bath.

Table 2.1 lists the parameters generally used for the samples in this dissertation. However,
these should be taken as a starting point, as several more electrolyte solutions were tested,
but did not differ markedly from the ones listed.

!This was not a reliable polishing solution.
2This was a very effective polishing solution and sample preparation parameters.
3This was not used, but could be a viable alternative for CuZr BMG. The voltage was not provided.
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After the jet polishing is completed, samples should be dipped vertically into pure ethanol
and let to dry to remove all polishing solution and water. Samples can then be stored until
they oxidize, which is material dependent.

Sample quality can be initially determined optically. A good sample has a smooth bowl-
like reflective surface, and a single very small symmetric hole in the center of the disk. Poor
samples will have a combination of pitting, an oxide layer, multiple holes, off center holes,
and a non-reflective surface.

2.2.2 Focused ion beam milling

Focused ion beam (FIB) milling is a second method traditionally used to make cross-sectional
samples of specimens, especially when the amount of source material is limited. In this
method, a dual-beam scanning electron microscope (SEM) and FIB are used in tandem,
with a micromanipulator, to extract very small, thin sections of material, which are then
placed on a special TEM grid containing stubs designed for mounting [33-35]. A schematic
for this process is shown in Fig. 2.2.

There are several pros and cons with regards to FIB produced samples. The benefits
include the ability to remove site-specific samples from regions of interest visible in the SEM
(crack tips, precipitate-matrix boundaries, specific areas from semiconductor devices), small
amounts of bulk sample consumption (for when source material is limited), and ease of re-
moving cross sectional specimens which are difficult to do accurately with electropolishing.
However, the use of FIB introduces additional constraints with respect to sample prepara-
tion. The FIB sample preparation process is often much slower on a per sample basis when
compared to electropolishing, on the order of two to three hours per cross section, which can
be very tedious. Additionally, care must be taken during the preparation that the sample
is simply not destroyed during imaging if using the ion beam. Sample drift during prepa-
ration can render the process unusable. Finally, perhaps most importantly, the FIB causes
sample damage. Traditional FIBs utilize gallium atoms as the main milling species. This
Ga is implanted into the sample, and during the milling process, produces an amorphous
layer proportional to the accelerating voltage of the Ga atoms. This can destroy features,
embrittle aluminum samples, and cause severe contamination. To minimize this, low voltage
milling is performed, but this limits the resolution, and can lead to overmilling if not careful.
Additionally, to minimize the effects of Ga in susceptible materials, alternative ion beam
technologies exist [36].

2.3 Sample preparation for alternative geometries and methods for
in situ deformation in the TEM

So far, we have covered the primary methods of sample preparation for TEM studies of
metallic specimens. However, these are not well suited for in situ deformation in the micro-
scope, as a 3 mm disk is hard to accurately deform, and liftouts on a traditional liftout stub
as shown in Fig. 2.2f would be difficult to deform in a controlled manner. Specialized TEM
sample holders have been developed to solve these problems though. A few examples can be
seen in Fig. 2.3.
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Figure 2.2. a) Source material polished relatively flat. b) Sample before liftout occurs. Before
this step, trenches were milled on both sides of the liftout specimen multiple microns deep, and
with enough clearance such that the bottom of the liftout can be cut free from the bulk. During
this trenching and thinning, the sample is tilted +1 — 2° from normal to keep the flat faces roughly
parallel during milling. Notice the one edge already cut free with room for the micromanipulator
to come in and attach and the Pt layer deposited on top of the sample to protect the underlying
sample from unnecessary beam damage. At this step the bottom of the sample is already cut off as
well. ¢) The sample lifted out from the bulk. It is welded to the micromanipulator using deposited
Pt. d) The sample before placement on liftout grid. The liftout grids have several posts which the
liftouts can be attached to using platinum. Prior to the sample being brought near the post, the
top view shows a notch milled out using the FIB. The sample will be placed in this notch. The
dashed line shows where the sample will be cut from the micromanipulator after it is welded in the
notch. e) The sample in the notch ready for additional thinning or TEM observation. Notice the
Pt patch applied in the top view. This is to prevent the sample from falling out of the milled notch
in the post. f) In the box on the top is a schematic of a standard liftout grid with four posts. One
of these posts can be seen in d) and e). Below the box are standard dimensions of a liftout prior
to additional thinning.
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2.5 microns
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Figure 2.3. Some of the available geometries for the Gatan 654 straining holder, and the
Hysitron/Bruker PI 95 nanoindenter. a) Dimensions for the Gatan 546 holder. This geometry
uses a full bar of the sample material that has been thinned in the middle, either by electropolish-
ing or ion milling. The black arrows show the direction of deformation. b) Sample geometry for
gluing a 3 mm disk on the tensile bar (dotted circle). ¢) Sample geometry for laying a thin film over
a slot in the tensile bar (dotted rectangle). d) Sample geometry for nanowires or FIB liftouts. The
small gap is bridged by a small silicon bar (black), which is then milled in the center to a desired
gap. This gap of only a few microns can be spanned by the nanowire or liftout. e) Sample geometry
for PI 95 pillar compression deformation. There are a variety of pillar thicknesses and indenter tip
geometries for various tests. The inset image in the box shows the overall geometry, with a half
disk thinned in the center where the pillars are, and the black indenter tip approaching the pillars.
f) The PI 95 push to pull (PTP) device. This is a silicon device that turns the nanoindentation
compression into a tensile force. The red dotted box is shown magnified on the right, with two
types of samples. Both the nanowire and the FIB milled dogbone specimen will undergo tensile
deformation. They are affixed to the Si PTP with deposited Pt.



11

The two main in situ deformation holders used in this dissertation were the Gatan 654
straining holder, and the Hysitron/Bruker PI 95 Picoindenter. These holders have very
different capabilities, and sample geometry requirements.

The Gatan 654 holder is a screw driven tensile holder that accepts a large bar with
dimensions 11.5 mm by 2.5 mm by 100 microns or less. This bar is screwed into the tensile
holder by two screws, which then are driven apart, putting the bar under a tensile load.
This holder is very easy to use, with the only controls being to move the screws apart or
together, and has a display that roughly measures displacement in microns. Additionally,
the sample preparation is very simple. The large bars can be cut using wire EDM from
the source material and electropolished in the center, or 3 mm disks can be glued over
a hole, or smaller specimens can be placed directly over an appropriately sized gap on a
tensile bar mount. These are all shown in Fig. 2.3a-d. While the holder simplicity causes
sample preparation to be relatively easy, it does have some drawbacks. The lack of control
with regards to the amount of tensile deformation means that the amount of deformation is
not really known. Additionally, the geometry makes it impossible to know what the strain
fields are. Finally, with the easier to prepare sample geometries, while they do provide large
electron transparent regions to examine, one does not know where the sample will first locally
deform. This researcher’s experience predicts that the sample will usually deform first out
of the field of view, sometimes catastrophically, before anything changes in the region being
viewed. Therefore there is a trade off between having large areas of specimen to observe
interesting static microstructural features and knowing exactly where the dynamic processes
are going to concentrate.

The PI 95 can be viewed as the opposite with respect to capabilities and features of the
Gatan 654 deformation holder. First, the PI 95 sample geometry is very different. There are
two main types of sample geometries, compression, usually in the form of nanopillars, and
tension, usually using push to pull (PTP) devices. These geometries are shown in Fig. 2.3e
and f. As the size of the samples are much smaller, fabrication is much more difficult, and
almost always requires the FIB. Sample fabrication methods for compression tests can be
seen in Fig. 2.4, while sample preparation for PTPs involve either floating thin films on top
of the device, and then milling away the excess, or using the FIB to produce planar liftouts
or manipulate nanowires as shown in Fig. 2.3f. Additionally, the holder is much more fragile
and experimentation is much more difficult, with several alignment and calibration steps not
present with the Gatan 654. While the JEOL and the FEI holder have different internal
mechanics, both can easily be broken if handled roughly. The benefits of the PI 95 though, are
the high control of both load and displacement during mechanical deformation. The PI 95
can acquire load-displacement curves during deformation with extremely high resolution
(<0.2 uN in force, <1 nm in displacement), which allows for both quantitative analysis,
as well as knowledge of the strain state of the sample under deformation. Additionally,
since the sample geometry is highly confined, the location of localized deformation is known.
Therefore, there is no chance for the deformation to occur outside of the field of view, and
geometries can be utilized to probe certain material characteristics (single crystal orientation
effects, grain boundaries, etc.).
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Figure 2.4. a) Top down method of making pillars. In this method, annular patterns are milled
normal to the surface of a polished flat surface or edge of a thin specimen (shown). Subsequent
annular patterns shrink in both inner and outer diameter until the desired inner diameter is reached,
after which the surrounding area can be cleaned off for better visibility in the TEM. Often, the
pillars made using this method have a larger diameter at the bottom when compared to the top, as
the FIB process does not mill straight down. b) The author’s preferred method of pillar preparation.
A thinned half disk is mounted 45° to the FIB. Straight rectangles are milled vertically, creating
slots in the edge of the sample. Then, the sample stage is rotated 180°, such that the 45 degree
angle with respect to the FIB causes a 90° angle with the previous cuts. The straight rectangles are
milled again, leaving square pillars with constant dimensions down the whole pillar. This process
can be repeated to create smaller and smaller pillars. As a side effect of the milling, often the pillars
will not need secondary cleaning around them. This process is often faster and less susceptible to
drift than a), as well as produces straighter pillars.
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Best practices in sample preparation

To conclude, here is a short list of best practices in sample preparation.

2.4.1 Electropolishing

If starting from the bulk, and using wire EDM to cut disks from a bar, disks should
be cut to roughly 600 microns thick.

Consider annealing the samples before electropolishing to remove excess dislocation
density, especially if using an unannealed foil.

Use 400-800 grit sandpaper to thin disks to less than 200, and preferably 150 microns.
The thinner the better as it minimizes the time, and therefore the amount of things
that can go wrong during electropolishing.

Conventional wisdom says the damage layer for sanding is three times the grit size.
400-800 grit sandpaper has grit sizes between 10 and 20 microns [26].

Take care to keep the sanded disks flat, wedge shaped disks will not electropolish
correctly.

Electropolishing has a bit of an “art” to it. Certain polishing solutions get better
with age, others worsen. This takes experimentation to determine. However, if a good
recipe is found, it can be very repeatable.

When trying a new solution, try a range of temperatures. Start cold and let the
solution warm up while you make many samples. Check the voltage occasionally to
make sure it does not need adjustment.

Sample yield is typically around 10 to 50%. Prepare enough blank samples accordingly.

Half grids are often useful for in situ deformation. If care is taken, these samples can
be cut using sharp scissors or a razor blade after electropolishing without destruction
of the thin area.

Well prepared electropolished specimens offer the largest possible electron transparent
region, when compared to other methods.

2.4.2 Focused ion beam milling

When producing a sample of complex geometry, plan all stage movements prior to
sample insertion, to make sure the geometry is possible.

Image the sample as little as possible using the FIB, it will continually damage your
sample.

When making liftouts or utilizing Pt deposition, make the sample larger, so that Pt
contamination can be as far from the thin center of the sample as possible.
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After depositing Pt, do not turn on the electron beam for a few minutes until the
pressure has noticeably dropped. This pressure drop is related to the Pt gas precursor,
and deposition can occur via the electron beam if the chamber is not fully evacuated.

Keep the FIB damage mechanisms, damage layer depth, and preparation artifacts in
mind during sample fabrication [36].

Starting with an electropolished disk for liftouts or pillar fabrication is much faster
than trying to remove all the surrounding material using the FIB.

The pillar fabrication method in Fig. 2.4b produces much higher quality square pillars,
and is simpler than the method in Fig. 2.4a.
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Chapter 3:

Nanobeam electron diffraction algo-
rithm development

3.1 Introduction

Strain and its spatial distribution is important for a greater understanding of many of the
relevant engineering materials currently in use. In most modern silicon devices, strain is
an important parameter used to modify the properties of the device itself [37]. Likewise
in metallic specimens, understanding strain and its evolution under deformation will help
further the understanding and predictive capabilities of the field. While many techniques
of measuring strain exist [23, 38-44], scanning convergent nanobeam electron diffraction
(NBED) is attractive for a number of reasons. First, NBED strain mapping offers the
potential of very high accuracy in strain measurement. Independent diffraction patterns
are recorded with high reciprocal space resolution for each probe position, which limits the
spatial resolution to the probe size. On a modern scanning transmission electron microscope
(STEM), this probe size can easily be below one nanometer while still maintaining a small
enough convergence angle to display full diffraction patterns. This can be compared with
geometric phase analysis (GPA) strain mapping, in which real space images are acquired
with very high spatial resolution, but do not directly sample reciprocal space. Additionally,
GPA strain maps are necessarily limited to a small field of view (FOV) as atomic columns
must be resolved to make accurate measurements. With NBED this is not a problem and
FOV is usually limited by the storage space of the data acquisition system or the sample
stability. With the introduction of high speed direct electron detectors, a large number of
diffraction patterns can be obtained from a single sample, covering a very large field of view
without concerns for sample drift or other instabilities [21, 38, 45-47].

Cooper et al., have noted that NBED strain measurements can lose accuracy due to
non-uniform disk intensity [46]. This non-uniformity is due to experimental limitations such
as sample bending, dynamical effects, or imperfect alignment, resulting in more complicated
data sets. The effects of dynamical contrast can be dealt with both during and after the
experiment. During the experiment, the electron beam can be precessed around the central

The results presented in this chapter and have been published as a regular article with title “ Optimizing
disk registration algorithms for nanobeam electron diffraction strain mapping” in Ultramicroscopy 176, 170-
176 (2017) by Thomas C. Pekin, Christoph Gammer, Jim Ciston, Andrew M. Minor and Colin Ophus [22].
The material is presented here with the permission of co-authors and publishers.
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axis to obtain a radially averaged diffraction pattern. This has been shown to reduce dynam-
ical contrast and return diffraction patterns that can be analyzed as if they were kinematical
48, 49]. However, in return for more easily processed diffraction patterns, acquisition speed
is slowed to the speed at which the beam can be precessed (~0.1 s per pattern versus 0.0025 s
per pattern with a Gatan K2-IS camera), and the spot size increases as microscope aberra-
tions have a larger effect on off axis beams. Alternatively, after the data has been acquired,
choices in disk position measurement, lattice fit to disk positions, and image downsampling
provide a range of options to optimize the data obtained from malformed disks and recover
strain information. Here we present an overview of the strain mapping technique itself and
experimental options, tested on both simulated data as well as relevant experimental results.

3.2 Theory

3.2.1 Measuring Lattice Vectors from Nanobeam Electron Diffraction Patterns

Strain measurement via diffracted peak location is a well understood result of Bragg’s law,
and has been successfully performed using several different experimental techniques [21, 45,
50]. For NBED, the first and most important step is proper data acquisition. While the
sample does not need to be on a perfect zone axis, it must be close enough to have ideally
several orders of diffraction disks illuminated. For every pixel in the reconstructed strain
image, an entire diffraction pattern must be recorded, shown schematically in Figure 3.1a.
From each of these patterns, the disk positions are extracted and stored as an (x,y) location
in reciprocal space, usually to subpixel precision. After all the disk positions are recorded,
they are used to find the local lattice vectors at every probe position. This is done by solving
the system of linear equations

BL =P, (3.1)

for L, where L is the matrix made up of two lattice vectors defined by pixel lengths from
the (000) spot, P is a matrix of every disk position in pixels, and B is a matrix of every
disk position in normalized lattice vectors. Equivalent rows of P and B should correspond
to the same diffraction disk for each diffraction disk registered. Often, this calculation is
overdetermined, as there ideally will be many more disk positions than lattice vectors. If the
solution is overdetermined, the fit accuracy can be improved by using weighted least squares,
where the weights are equal to the correlation peak value. This calculation is carried out for
every diffraction pattern in the dataset. In addition, a reference lattice L is computed using
the disk positions from either a single real space pixel, or the mean of the disk positions for
a subset of pixels (the reference region of the dataset).

Once the lattice vectors have been calculated for every diffraction pattern, it is simple to
calculate matrix strain using LyT = L, where Lg is the reference lattice, T is the transfor-
mation matrix, and L is the current lattice for the pixel in question. If infinitesimal strain
theory is assumed, the resulting strain matrix (and infintesimal rotation) is simply

Epy — 0 10
(Eay =6)| _ T - : (3.2)
T(eye +0) Egy 0 1

[N
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Figure 3.1. Strain measurements from nanobeam elecron diffraction (NBED). a) Experimental
geometry showing a single NBED measurement. The correlation of the measured diffraction pattern
with a center disk template produces an image with sharp peaks at each disk position. Different
correlation methods are applied to synthetic disks with b) no internal structure, c) disks with
signal on opposite edges and d) disks with signal along a single disk edge. Each method shows
an example correlation image, as well as the horizontal and vertical error (divided by disk radius)
as a function of counts in the ideal disk without internal structure. Red ellipses show the best fit
standard deviations for an elliptic Gaussian function on all peaks.
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where e, is the strain in the x direction, ¢, is the strain in the y direct, ¢,, and ¢, are
the shear, and @ is the lattice rotation. Finally, we note that the above expression describes
lattice strain in reciprocal space. Because NBED is a reciprocal lattice measurement, the
signs of €,,, €y, and e,, (but not the sign of #) must be flipped in order to produce the
correct strain measurement of the real space sample deformation.

3.2.2 Methods for Determining Diffraction Disk Positions

It is clear from the above discussion that the resolution of any resulting strain measurement
depends on the accuracy and precision of the diffracted disk position measurement. If only
whole pixel disk shifts were to be used, an artificial lower bound would be placed on the
accuracy of the local strain measurements, effectively binning the measured strain values
from a continuous distribution to a discrete one. Therefore, in order to obtain the most
accurate strain measurements, subpixel shifts in disk position must be measured. While
many subpixel registration algorithms exist [51-54], several considerations must be taken into
account when choosing which to use. Due to the incredibly large size of the datasets obtained,
both in file size and number of disk positions to be measured, only the fastest algorithms
are considered. For example, while other authors have used edge detection via Canny or
Prewitt filters followed by circle fitting to find the center of the disk [23], that approach is
very computationally intensive, requiring several iterative steps per disk in order to resolve
a measurement with subpixel accuracy. Additionally, that method relies on accurate filter
thresholds which can vary with the type of diffracted disk structure observed, decreasing
general robustness and ease of use.

Radial gradient maximization is another method used [23, 55, 56|, in which concentric
circles or ellipses are placed around an estimated disk center and their rotational averages are
calculated. Since most disks have sharp edges, when the difference between the rotational
average of concentric shapes are a maximum, the concentric shapes are properly placed
around the center of the disk. Through an iterative process, the estimated center is shifted
until this maximum is found. However, this method performs best when there are whole
disks without missing portions or strong contrast changes along the disks’ edges, which is
not always experimentally possible. Finally, this is an iterative method, and while it is faster
than edge detection [56], it still requires several computational steps per disk.

Cross correlation with respect to image registration is a fast technique in which a template
and base image are aligned via a convolution-like operation. While intuitively this might
seem computationally intensive, the Cross Correlation Theorem reduces the problem to a
matrix element multiplication the size of the image, two discrete Fourier Transforms (DFTs)
and a single inverse (fast) Fourier Transform (IFFT). For images ¢; and g, with DFTs of G4
and GQ,

G10G;
F{n ® g2} = | Lo (3.3)

Gy o G|
where ® represents the cross correlation operation, F denotes the discrete Fourier transform,
* indicates the complex conjugate, o is the element-wise product of the two matrices, and
1 — n is the power to which the Fourier coefficients are weighted.

Standard cross correlation is performed when n is set equal to zero. In this case, the
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intensity distribution in the real space image is fully taken into account. In the Fourier
transforms, this manifests itself as a large weight put into low spatial frequency signals,
resulting in a center-of-mass like registration between the image and the template.

Phase correlation is the natural extension of Eq. 3.3, where GG;0G3 is normalized element-
wise to unit magnitude, thereby only retaining the phase information. This occurs when n
is set equal to 1. Phase correlation results are insensitive to image intensity, but also more
sensitive to noise, sharp edges, and other high frequency components that previously had
low image intensity. Finally, both cross and phase correlation can be seen as the limits of a
more general correlation, in which image intensity is weighted by some arbitrary fraction n
from 0 to 1. In this study, we have tested correlation measurements using n = 0.5, which we
hereafter refer to as the "hybrid" correlation method.

After taking the IFFT of F{g; ® go}, the resulting matrix is the computed correlation,
where the pixel of highest intensity corresponds to the shift required to align one image to
the other. Two primary methods exist to increase the accuracy of the alignment to subpixel
values. The first is curve-fitting the correlation surface to find the function’s maximum
[57, 58]. This method can require iteratively curve-fitting a function (usually parabolic or
Gaussian) to the correlation in the spatial domain and can be made arbitrarily accurate, but
is computationally intensive.

The second, faster, algorithm involves Fourier upsampling in the frequency domain and
is well described in [52, 59]. Using the original correlation peak as its center, the method
directly computes subpixel IFFT values a fixed range around the brightest pixel with an
arbitrary upsampling factor k. This computation is performed as the matrix multiplication
of three matrices and is very computationally efficient. The drawback of this method when
compared to curve fitting is the lack of peak shape information and granularity of peak
location measurement dependent on x. However, to improve the final peak location, a last
step is performed in which a simple parabola is fit to the nearest neighbors of the upsampled
peak location, giving the measurement a final slight improvement. Due to the lack of a two
step iterative curve-fitting step, we observed Fourier upsampling to be approximately three
times faster when compared to fitting a Gaussian curve to the peak location for subpixel
registration.

A variety of image filters can also be applied prior to correlation in order to emphasize
features of interest that will aid in accurate registration. Often, this is the disk edge. A
number of iterative edge detection filters exist, including the previously mentioned Prewitt
and Canny filters, but they require user defined thresholds and several attempts to correctly
find an edge. A simpler approach is the Sobel filter, which is a simple 3 x 3 kernel convolved
with the image which approximates the gradient of intensity in a certain direction. Since
the Sobel filter is a simple matrix, it can be applied across datasets without concern for
effects caused by changing user defined thresholds, and is much faster and impartial than
an iterative method. Sobel filtering has been shown to improve cross correlation accuracy
of the forward scattered disk, useful in differential phase contrast imaging, but has not been
robustly tested with diffracted disks containing dynamical contrast [60].

Simulated examples of correlation measurements using a circular template with perfect
noisy circular disk signals (with and without regions of zero intensity) are given in Fig. 3.1b-
d. In all cases, as the image intensity weighting factor n in Eq. 3.3 is increased from 0 to 1,
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the correlation peak sharpens. In a noisy measurement, this represents a trade-off between
measurement precision and robustness of the disk position measurement. Additionally, we
have simulated the relative disk position error (measured displacement from true position di-
vided by disk radius R) as a function of number of counts (electrons) calculated using Poisson
statistics in the total circular disk area. For perfect disks, or disks with intensity modulations
that have inversion symmetry, cross correlation performs the best, and approaches the ideal

measurement root-mean-square (RMS) error along one direction /(Ax2) of

(Az?) 1.2 (3.4)

R " VAR '
where A is the total number of counts. For the case in Fig. 3.1d without inversion symmetry,
cross correlation fails badly. In Figs. 3.1c and d, the horizontal error is approximately
double the vertical error for most cases. This is because the disk edges are well-defined at
the top or top and bottom of the circular boundary. Small horizontal shifts in the position
measurements are not well-constrained due to the lack of horizontal edges.

Another trend apparent in Figs. 3.1b-d is that all of the correlation methods follow a
power law that scales with the usual value of 1/ VA, provided the number of counts are
high enough relative to the disk size. Below this threshold, large position errors are always
present. To prevent these errors, the diffraction space measurements should be sufficiently
binned to smaller disk radii, as shown in Fig. 3.2.

Figs. 3.2a-d show that for low signal-to-noise ratios, the power law error dependence can
be recovered in call cases by down-sampling the measurements, i.e. binning the resulting
images. However binning also increases measurement error, and so one must be careful to
limit the amount of down-sampling. Phase correlation and the Sobel-filtered cross correlation
measurements are particularly sensitive to over-sampling-induced position errors. The reason
why is demonstrated in Fig. 3.2e for the Sobel case. When the number of counts is low
enough to produce separated point measurements, the edge filtering no longer produces an
accurate measurement. A similar effect happens in phase correlation where erroneous high
spatial frequencies increase the measurement error when separated points are apparent. We
therefore recommend that all measurements are down-sampled until all disks resemble the
center column of Fig. 3.2e or better.

3.3 Results and discussion

3.3.1 Position Measurements of Simulated Disks With Fine Structure

Often, the diffraction patterns recorded do not exhibit perfect kinematical scattering from
an ideal sample, which would result in round, evenly illuminated diffraction disks. This is
due to sample thickness, bending and other kinematical and dynamical diffraction effects,
all of which increase the inner disk structure. This poses a challenge for the correlation
methods previously discussed due to their reliance on specific similar features between the
template and target disk. To test the effects of fine structure in the disks, one ideal disk
and four imperfect disks were simulated. These are shown inset in Figure 3.3. For each
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Figure 3.2. Effect of binning on disk position measurement error, using a) phase correlation, b)
hybrid correlation, ¢) cross correlation and d) Sobel-filtered cross correlation, for different numbers
of counts. e) One example simulation with Sobel filtering for various numbers of counts.
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Figure 3.3. a) Accuracy of each correlation method as a function of electron counts per disk.
The inset disk is an inverted image of the simulated diffraction disk at infinite signal to noise ratio.
Accuracy was measured as the root mean square (RMS) error between the known shift and the
measured shift in disk position, normalized by the disk radius.

measurement, the disk was shifted a random amount (Az, Ay) and the effect of number of
electron counts per disk being tested was applied using Poisson statistics. This simulated
diffraction disk was then correlated with an ideal disk using one of the four methods of
correlation discussed here, and difference between actual and measured shift was recorded.
This process was simulated 1000 times for each signal to noise ratio level.

The results of these simulations are shown in Figure 3.3. For a perfect disk, is is clear
that cross correlation is the best and most accurate method across all SNR levels. However,
when the disks are unevenly illuminated, cross correlation has a strong systematic error in
position due to its inherent center-of-mass weighting. While cross correlation gets worse
when inner structure is present, the other methods do retain their accuracy for disks with
a high number of counts. This is a result of the correlation methods themselves and the
type of image feature each method emphasizes. Since cross correlation does not normalize
the Fourier transform, it is overly reliant on intensity variations in the image, leading to the
systematic errors seen. The other methods rely much more on high frequency components
of the image, namely edges, and the sharp edges present around the outer edge of the disk
provide an accurate feature for registration. The results of this simulation make it clear that
when inner structure appears in the diffracted disks, hybrid or Sobel filtered cross correlation
should be used over pure phase or cross correlation.

3.3.2 Experimental Strain Measurements on an Unstrained Silicon Lattice

Pure Si TEM support grids were purchased with 35 nm thin windows. A 50 by 50 pixel
scanning nanodiffraction dataset was obtained using a convergence angle of 1.01 milliradians
with a diffraction pattern image size of 512 by 512 pixels. The images were acquired with a
binning of 4, and not further binned. We expect this sample to have a uniform zero strain
across the field of view, which spans 250 x 250 nm. In this dataset, the central beam was
obscured by a physical beam stop, preventing its use as a template. This often occurs in
overly thick samples as the beam current must be raised to a level beyond the camera’s
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Figure 3.4. A comparison between disk registration methods on unstrained Si. a) A virtual
dark field image showing thickness or bending contrast, but otherwise contrast-free. Streaks are
indicative of poor camera readout during the scanning process. b) The mean diffraction pattern
showing the x and y lattice vectors chosen. c-f) Line profiles of the regions marked with black
rectangles. g-j) Strain maps of the area in a), highlighting differences in measured strain as a result
of the correlation method used. The strain scale is from -0.6 to 0.6% strain. Inset is the root mean
square value of the frame from zero strain.
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damage threshold to fully illuminate the diffracted disks. To form a template for the various
correlation methods, a best-fit ellipse to the disks was used (defined as the disk with the
highest normalized correlation peak). Once the peak template was created, we computed
strain maps using each of the four correlation methods, compiled in Figure 3.4, using the
mean diffraction pattern as the reference.

The results confirm the prediction from the simulations. For the standard cross correla-
tion, large changes in strain state exist in the maps from left to right and top to bottom in
the reconstructed images, and the maps are fairly free of noise. The line profile in Fig. 3.4c
shows both low noise and an unrealistic strain gradient. Cross correlation therefore has a
high precision (small changes in adjacent diffraction patterns), but has large systematic er-
rors in accuracy due to uneven illumination in the diffracted disks. This signal could be due
to changes in sample thickness, small local sample tilts due to bending, or beam tilt.

In comparison, the phase correlation strain maps are very noisy, with large discontinuous
jumps in strain state from pixel to pixel. The inset numbers in Fig. 3.4j correspond to
the root-mean-square of the image strain, and a comparison between the other methods
show that phase correlation is significantly noisier. This corresponds to the relative low
accuracy of phase correlation and its susceptibility to background noise, which agrees with
the simulations.

Finally, both hybrid and Sobel filtered cross correlation offer a decent compromise be-
tween the two extremes, with the Sobel filtered results having a minimum of noise and a
very uniform measure of the strain in all directions. This mirrors the simulated results, in
which these were the two best methods when the diffracted disks began to show signs of
inner structure.

3.3.3 Experimental Measurements of an Austenitic Stainless Steel Sample

An austentic 304 stainless steel sample was prepared via jet electropolishing using a perchloric
acid solution. A 250 by 250 pixel scanning nanodiffraction dataset was obtained using a
convergence angle of 2 milliradians, with a diffraction pattern image size of 1920 by 1792
pixels and a pixel step size of 2.5 nm. The final dataset size was approximately 450 gigabytes.
The data was binned by a factor of 8 to reduce dataset size to a more manageable 7 GB.
The four disk registration methods were then applied to the dataset and the resulting strain
maps computed via the process described previously. The results are shown in Fig. 3.5 with
a scale showing strain from -2 to 2%. A low angle annular dark field (LAADF) image was
taken at 720 mm with a collection semiangle of 4.5-22 mrad. This emphasized the presence
of a number of isolated dislocations and a (111) twin boundary, which was also seen in the
diffraction pattern.

Again, there are a number of features that experimentally match the simulated data.
First, in the pure phase correlation, the effects of noise and other outliers in the diffraction
pattern images cause significant noise in the disk registration. This suggests that phase
correlation lacks the robustness needed to ignore subtle variations in background noise.

It is harder to recognize the failure of pure cross correlation at a glance, but upon closer
examination, large changes in strain are measured across flat regions of the sample (where
the LAADF and ADF images have little to no change in intensity). The LAADF image does
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Figure 3.5. A comparison of the four different disk registration methods and the resulting strain
measurements around a twin boundary in an austenitic stainless steel. a) A LAADF image empha-
sizing dislocation contrast, taken prior to the NBED scan. b) A map of the summed correlation
values for all diffracted peaks. The green box is the chosen zero strain reference region used in
computing the strain maps. c-d) Average diffraction patterns for the right and left side of the twin
boundary, showing the symmetry of the system. Additionally, x and y directions are shown in
red and blue, correctly oriented with the strain maps. e-h) Strain maps computed using different
correlation methods of the region of interest.
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not support the dislocation density to realistically achieve a 4-6% change in strain across the
FOV. Instead, this erroneous measurement can be attributed to the effect of changing inner
disk illumination conditions as shown in the simulated data.

Finally, the two intermediate disk registration methods both fared much better on this
dataset. While the hybrid method was noisier than the Sobel-filtered cross correlation image,
the strain measurements across the image lack the large changes in strain typical to cross
correlation, and measurement noise is minimized. This is apparent from the relatively smooth
changes in strain and realistic values seen in their strain maps. For both the hybrid and Sobel-
filtered maps, the strain fields around the individual dislocations can clearly be seen, without
abnormal variations in uniformly-illuminated regions. Therefore, we found both the hybrid
and Sobel-filtered cross correlation methods to provide the best strain field reconstruction
of the nanobeam diffraction dataset shown here.

3.4 Conclusion

Four separate correlation methods were tested against simulated disks, an unstrained Si sam-
ple, and an engineering alloy. We show that when the diffracted disks have inner structure,
methods such as pure phase or cross correlation often include artifacts that can be elim-
inated by Sobel filtered cross correlation or hybrid correlation disk registration methods.
Additionally, we show that for low signal to noise disks, binning can help the accuracy of the
disk position measurement when using Sobel filtered, phase or hybrid correlation. This is
increasingly relevant due to advancements in detector acquisition speed, which can lower the
dose per diffraction pattern for a given total beam current. Finally, we compared the four
selected methods on two different experimental datasets, with similar results. Both cross
and phase correlation had irrecoverable flaws (large systematic errors and a high degree of
noise respectively), while hybrid and Sobel filtered cross correlation yielded optimal disk
registration results, and therefore had the most accurate strain measurements.
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Chapter 4:

in situ strain mapping of 321 stainless
steel

4.1 Introduction

The deformation of crystalline materials is highly dependent on defects and their response
to applied stress [62, 63]. Understanding the motion and dynamic response of these defects,
as well as their interactions with each other, is key to future alloy development. A new tool
for quantifiably probing these interactions over a large area is scanning nanobeam electron
diffraction (NBED). NBED [19, 21, 45, 55, 64] is a scanning transmission electron microscopy
(STEM) technique that allows for the quantification of strain fields around features of interest
at the level of single nanometers. This method, which utilizes a semi-converged electron
beam, is faster than methods utilizing electron beam precession [23, 46, 55|, and can acquire
a larger field of view when compared to methods requiring atomic resolution [45, 46, 65].
Additionally, while NBED requires a sample close to a zone axis, it is relatively robust to
imperfect sample tilt, which is all but guaranteed during an in situ deformation experiment
[45]. This combination of speed, robustness to sample orientation [22], and increased field
of view has allowed for the development of in situ strain mapping, in which the sample
is mechanically deformed while successive strain maps are acquired [66]. While traditional
TEM based in situ mechanical testing has been a useful technique in understanding the
mechanisms of deformation [67, 68], by combining nanoscale deformation with simultaneous
strain mapping, we now acquire quantitative data on the local strain field evolution and its
relationship with dislocation motion.

It is generally known that the dislocation slip character can be classified in one of two
ways [69]. Typically, dislocations either move in three dimensions via wavy slip, or in two-
dimensional oriented ensembles known as planar slip [70]. There is a wide body of both
experimental and theoretical literature that has shown that the dislocation slip character
has a large effect on the resulting mechanical properties of the material, including fracture
behavior, fatigue resistance, and stress corrosion cracking [71-78]. In close packed materials
(both face-centered cubic (FCC), and hexagonal (HCP)), the presence of short range order
(SRO) has been found to be the main factor leading to planar slip [70, 79, 80].

The results presented in this chapter and have been published as a regular article with title “In situ
nanobeam electron diffraction strain mapping of planar slip in stainless steel” in Scripta Materialia 146,
87-90 (2018) by Thomas C. Pekin, Christoph Gammer, Jim Ciston, Colin Ophus and Andrew M. Minor [61].
The material is presented here with the permission of co-authors and publishers.
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Planar slip features can be readily observed in lightly deformed stainless steels, as shown
in Figure 4.1. Figure 4.1a is a TEM bright field micrograph of a single instance of planar
slip showing multiple dislocations. Figure 4.1b is an ADF STEM image showing the long
range and regular orientation of these defects.

In alloys containing SRO, planar slip begins when the leading dislocation moves through
the matrix, and as it moves, shifts the lattice by a Burgers vector, b. This is thought to
lead to the local destruction of the SRO, as the locally ordered atoms are shifted out of
their energetically favorable positions into a more disordered state. The result of this shift is
glide plane softening, which allows further dislocations to move more easily if they follow the
first, thereby forming characteristic planar slip bands [70, 80]. These highly local, heavily
disordered regions then have a deleterious effect on macroscopic mechanical properties due
to the resulting stress concentrations as opposed to alloys with more homogeneous wavy slip.

4.2 Experimental methods

Figure 4.1. a) A bright field TEM image of a single instance of planar slip in 321 stainless steel.
Note the orderly array of dislocations. b) An ADF STEM image of the same alloy at a lower
magnification. Multiple large arrays of planar slip can be seen oriented along specific crystalline
directions. Arrows highlight the location of a few of the more prominent examples.

In this experiment, a AISI 321 FCC austenitic stainless steel was pulled in tension in
situ in a TEM using a Gatan 654 straining holder. To accurately determine composition,
samples were sent to Luvak Inc. for analysis. To determine the majority of the elements
in the foil, direct current plasma emission spectroscopy was used [81]. Inert gas fusion was
used determine nitrogen composition [82], and combustion infrared detection was used to
determine carbon composition [83]. The composition is shown in Table 4.1. The as rolled foil
was electrical discharge machined (EDM) into 11 mm by 2.5 mm blanks, annealed at 1060 C
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Table 4.1. The alloy composition as tested.

Element‘ Fe Cr Ni  Mn Si Ti C N
Wt. % ‘bal. 17.74 925 1.71 0.53 0.33 0.031 0.018

for 30 minutes to anneal out many of the dislocations, and then jet polished to electron
transparency using a solution of 6% perchloric acid, 39% butanol and 55% methanol at
—15 C and approximately 30 volts. The scanning NBED was performed on the TEAM 1
microscope which is double aberration corrected, and the diffraction patterns were acquired
using the Gatan K2 IS electron detector at 400 frames per second. The microscope was
operated at 300 kV, with a convergence angle of 2.62 mrad and a camera length of 230 mm,
resulting in a collection angle of 32-160 mrad. Eight loading steps were applied. As the Gatan
654 holder does not measure load or accurate displacement, the tensile bar was elongated
until dislocation motion commenced. Loading was then paused and a 100 by 100 pixel
NBED map with a 2.2 nm step size was acquired. At 400 frames per second, each map
took 25 seconds. Post-deformation ex situ dislocation characterization was performed on
the same sample, but in a different region as the in situ region was destroyed during the
in situ test. The dislocation characterization was performed on a JEOL 3010 TEM at
300 kV, and the dislocations were found to be [011] type perfect dislocations, as were all
dislocations analyzed in similarly prepared samples. The images for g - b analysis can be
seen in Fig. 4.2. The strain mapping analysis was processed using MATLAB, using the hybrid
method detailed in [22]. The reference lattice chosen was the mean diffraction pattern for
each frame, resulting in a map showing the deviation from the mean strain at each discretely
applied load. Post-processing included cropping to remove exceptionally noisy areas and
smoothing. The smoothing was applied using the VBM4D MATLAB package [84], which is
optimized for video data.

4.3 Results and discussion

The results can be seen in Figure 4.3. Three discrete time-steps are shown, with a, e and i
showing the annular dark field (ADF) images acquired simultaneously at each step. Several
features can be seen in the ADF images, including a strong bend contour, several dislocations,
and a circular precipitate used as a reference for aligning the video frames. However, only
one dislocation is caught moving in the field of view from left to right. This is the top
dislocation in the image, and it moves a small amount from a to e, while in i it has fully
propagated across the field of view. The white arrows denote the location of the leading
dislocation. As the dislocation moves, it leaves behind a region of increased contrast in the
ADF images. This region of higher contrast matches the band directly beneath it, which was
observed previously in the same experiment to be another instance of planar slip in parallel
with the moving dislocation shown here.

Strain maps are also shown in Figure 4.3. The maps are rather complex as we are mea-
suring the transient strains around multiple dislocations and precipitates in situ. Examining
the evolution of strain with respect to deformation, there are some very interesting obser-



Figure 4.2. a) An instance of planar slip. the black arrow shows the direction of slip. b) Visible
dislocations. The g direction is given in the top right. c-d) Dislocations satisfying the invisibility
criterion. These dislocations are all part of the same planar slip feature in a). e) Same area as
d) showing the dislocations. The white arrows show landmark dislocations, while the black arrow
shows the same instance of planar slip as in a) that is invisible in d). Through g - b analysis, the
dislocations were found to have a Burgers vector direction of [011].

vations. As the leading dislocation of planar slip moves from left to right, the strain in
the 200 direction increases behind it. However, in the perpendicular 022 direction, strain
remains constant, showing clear directionality when it comes to the lattice expansion. The
evolution during loading of the lattice expansion ((€g0 + €4y35)/2) is shown in Figure 4.3d, h,
and 1. Color coded line profiles (10 pixel integration width) from between the arrows in the
expansion maps are shown in subpanel n. While the consistent large dips in the line profiles
are due to deleterious effects of sample bending during strain mapping analysis, the profiles
reveal that in the second loading step, there is a small lattice expansion as the dislocation
moves from left to right, and then at the final loading step, the entire profile is shifted up
roughly 0.15%. This corresponds to lattice expansion of 0.3%. This small, directional lat-
tice expansion is not unexpected. In fact, when observing planar slip with standard TEM
techniques, it is somewhat characteristic of planar slip to leave behind weak fringing. While
we do not see the fringing in our ADF images during strain mapping due to the zone axis
imaging condition, we can see them in Figure 4.4, which is a representative ex situ 2-beam
TEM image of a similar planar slip band from an intact region after releasing the tensile



31

Figure 4.3. a,e,i) ADF images obtained at increasing levels of deformation. The white arrows
denote the leading dislocation location. b.f,j) Strain mapped in the 200 and c,g,k) 022 directions.
The black arrows correspond to the leading dislocation location. d,h,l) Lattice expansion behind
the leading dislocation of planar slip. m) Correctly oriented mean diffraction pattern showing the
crystallographic directions chosen for strain axes. n) 10 pixel integrated line profiles of the area
between the color coded arrows in d, h, and 1. The horizontal axis corresponds to position from
left to right between the arrows, and the vertical axis corresponds to lattice expansion. A lattice
expansion can be seen behind the planar slip front.



32

Figure 4.4. Representative TEM image of planar slip in 321 stainless steel. The arrows denote
the locations of perfect (011) dislocations, and the fringe pattern perpendicular to the arrows/dis-
locations is indicative of a residual displacement, or strain, in the planar slip plane.

load for deformation.

The weak fringing observed in Figure 4.4 is another manifestation of the residual displace-
ment or strain that was observed behind the first dislocation measured in Figure 4.3. This
fringing can be correlated to the destruction of SRO [85] by a dislocation passing through the
matrix, and leaving behind some residual lattice displacement. In previous studies, by using
quantitative image matching with simulations, the estimated displacement that results in
residual fringing was found to be between 1/150 and 1/200 (111) in a FCC Cu-Al alloy [86],
—1/50(110) in a FCC Pd-Ce alloy, and between 1/104 [1120] and 1/145[1120] in an HCP
Ti-Al alloy [85]. Particularly for the FCC Cu-Al alloy, the displacement when converted to
strain (displacement/+/3) is in the range of 0.28-0.38%, which is very similar to the values
measured using our NBED technique. While the fringing in the two previously studied FCC
alloys is attributed to atomic size differences and unfavorable atomic positions after the de-
struction of SRO, in the Ti-Al system this cannot be the case due to relatively similar atomic
radii, and instead is hypothesized to be caused by unfavorable nearest neighbor interactions
[85, 87]. It is important to note that the sample studied here has a much more complex
chemistry than the previously studied materials, and thus we must be cautious about a di-
rect comparison between lattice expansion of the Cu-Al system and ours. The stainless steel
contains multiple substitutional elements with roughly similar atomic size and weights, as
well as several light interstitial elements, and thus making strong conclusions about the exact
mechanisms behind this observed strain difficult. However, we believe the general mecha-
nism should be the same as the previous studies, in which the destruction of SRO and a new,
unfavorable atomic configuration causes a local lattice expansion. Hindering our ability to
confirm this hypothesis is the difficulty of observing or measuring SRO in the alloy studied,
in which all the substitutional species scatter equivalently in an electron microscope, and in
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which the primary interstitial elements (C and N) cannot be directly imaged.

More importantly, we showcase in this paper a technique in which a lattice expansion is
directly measured during in situ deformation via a nanobeam electron diffraction experiment.
This is important for two reasons. First, it shows that it is possible to record the dynamic
processes that occur during the deformation of a material and extract quantitative data from
a previously qualitative technique. This has relevancy for in situ deformation as shown here,
but it should be able to be extended to many other in situ techniques, including temperature
control and electrical biasing. Second, particular to this experiment, a direct measurement
of the expansion due to planar slip can be made without resorting to quantitative image
matching at multiple zone axes. Using the in situ scanning NBED technique, we have for
the first time directly measured this expansion in a commercially relevant stainless steel,
and shown that it is due to dislocation motion in situ, rather than inferring it from ex situ
measurements.
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Chapter 5:

in sttu nanobeam electron diffraction
of bulk metallic glass

5.1 Introduction

Bulk metallic glasses (BMGs) are an interesting class of materials noted for their wide
variety of mechanical properties, associated most notably with their lack of long-range crys-
tallographic order. BMGs include alloys that exhibit extremely high strength in excess
of most engineering materials [88, 89|, as well as low stiffness and high elastic strain lim-
its [90, 91]. Because of these wide-ranging properties, BMGs are attractive alloys for future
applications as they offer a potential for the development of stronger and tougher structural
materials [92-95].

One of the main impedances to the adoption of high-strength BMGs is their limited
ductility, which is restricted by single shear band formation and rapid propagation at low
strains, which often results in catastrophic failure [96-98]. Accordingly, of key importance to
further alloy development is understanding how such shear bands originate at the nanoscale
because, although single shear-band formation can cause BMGs to fail at near-zero tensile
ductilities, multiple shear-band formation represents the fundamental essence of plasticity
in these alloys. As BMGs invariably display high strength, the creation of tensile ductility
— via multiple shear banding — is thus essential to their fracture toughness, and hence
damage-tolerance, in terms of their potential role as future structural materials.

Several mechanisms have been proposed for the initiation and propagation for shear
bands, the predominant hypotheses being free volume softening [99-104], adiabatic heating
softening [105-107], and shear transformation zones (STZs) [104, 108, 109], with the latter
currently being the most widely accepted. Recently, a mechanism based on geometrically
unstable motifs (GUMs) of atoms has provided a link between local atomic arrangements of
bulk metallic glasses, and STZs [104, 110, 111]. In this theory, GUMs are disordered clusters
of atoms that, due to their configuration and poor packing, can serve as nucleation sites for

Some of the results presented in this chapter and have been published as a regular article with title
“Local nanoscale strain mapping of a metallic glass during in situ testing” in Applied Physics Letters 112,
171905 (2018) by Christoph Gammer, Colin Ophus, Thomas C. Pekin, Jiirgen Eckert, and Andrew M. Minor
[24]. The material is presented here with the permission of co-authors and AIP Publishing.

Other portions of this chapter have been submitted as an article titled “ Direct measurement of nanostruc-
tural change during in situ deformation of a bulk metallic glass”, by Thomas C. Pekin, Christoph Gammer,
Burak Ozdol, Jun Ding, Colin Ophus, Mark Asta, Robert O. Ritchie and Andrew M. Minor.



36

shear transformation zones, which propagate into shear bands. This theory has important
implications as it provides a directly tunable parameter that could be used to change the
mechanical behavior of BMGs, akin to reducing the grain size in polycrystalline materials.

To date, observing the mechanisms of BMG shear band formation, while possible in
molecular dynamics (MD) simulations, has been experimentally challenging due to the high
rate of the catastrophic shear band propagation and the current experimental limits of elec-
tron microscopy. However, observing shear band nucleation and dynamics at the scales
possible in transmission electron microscopy (TEM) is crucial to linking our understand-
ing of deformation mechanisms provided by MD simulations to the macroscale mechanical
behavior. Previous TEM experiments in bulk metallic glasses have largely been limited to
ex situ qualitative imaging studies [112-115], or more quantitative fluctuation electron mi-
croscopy (FEM) studies on the structure of BMGs [32, 116-118] that fall below the spatial
resolution needed for shear band characterization. in situ experiments to date have been
qualitative and at too low of a spatial resolution to be comparable to MD models [6]. Re-
cent advancements in techniques and hardware have, however, allowed for the observation
of strain [24] and as we will show here, the evolution of local atomic order, with nanometer
resolution during in situ deformation, providing much more comparable information to the
significant modeling efforts which have been performed.

5.2 Experimental methods

In this study, we designed an in situ sample to study the effect of local order and strain
during tensile deformation. The BMG used in this study was a member of the model glass
family[119, 120] Cu,ZryAligo—(s+y), Which has been extensively studied for its high glass-
forming ability[121], and relative ease of computational modeling. These glasses have clusters
of atoms that pack into stable icosohedral structures[122, 123], which due to their two-,
three- and five-fold symmetry axes in projection, have characteristic symmetric diffraction
patterns[25].

Specifically, the sample used was CuysZrsgAlg!, which was thinned to electron trans-
parency and then milled using a focused ion beam (FIB) into an in situ tensile bar specimen.
The angular dark field images (ADF) of the resulting sample and subsequent deformation
can be seen in Fig. 5.1a. Unique to this in situ experiment, at each step of deformation
a nanobeam electron diffraction (NBED) dataset was acquired, in which a full diffraction
pattern was acquired for each annular dark field image pixel, for a total of 167,440 diffrac-
tion patterns. The diffraction patterns were then used to measure the evolution of both
local strain[24] and order[25, 124] as the sample was mechanically deformed, with a spatial
resolution of 2 nm.

5.2.1 Detailed experimental methods

The initial sample was received as a cylindrical bar with an outer diameter of ~4 mm. The
bar was mechanically machined down to an outer diameter of 3 mm, and electrical discharge

"'We would like to acknowledge Linzhi Zhao, Yanhui Liu and Weihua Wang for providing the as-processed
BMG samples.
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Figure 5.1. a. Annular dark field (ADF) scans taken before, during and after in situ deformation.
The change in the size and shape of the hole is indicative of plastic deformation. The lack of
contrast change across the specimen suggests constant sample thickness. The green dashed box
shows where NBED was performed. b. Schematic showing the NBED process in the metallic glass.
As the beam rasters over the area, a full map consisting of over 33,000 nanobeam elctron diffraction
patterns is recorded. The three patterns shown are examples containing two-fold, four-fold and zero
symmetries, respectively.

machined into 600 pm thick slices. The samples were further mechanically thinned to ~150-
200 pm, and then jet polished to electron transparency. The jet polishing solution used was
33% nitric acid in methanol, cooled to -25 C, and a polishing voltage of 18 V.

in situ samples were then cut and lifted out using a FEI Strata 235 dual beam focused
ion beam (FIB) equipped with an Omniprobe. The samples were welded on to a Hysitron
push-to-pull chip using deposited platinum. A hole was cut in the center of the tensile bar
to concentrate stress and strain, allowing for higher resolution scans in the critical area. The
sample after liftout can be seen in Fig. 5.2.

The in situ nanobeam electron diffraction (NBED), pre- and post-experiment imaging
was performed on the TEAM 1 transmission electron microscope [125], a Cs and C,, corrected
FEI microscope. The microscope was operated in scanning transmission electron microscopy
(STEM) mode with an accelerating voltage of 300 kV. The microscope was operated in three
condenser lens nanoprobe mode, with a spot size of 10, 10 pm aperture, and a convergence
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Figure 5.2. The sample after focused ion beam milling on the Hysitron push to pull chip. a) Top
down view. b) View at 52 degrees of stage tilt. The nominal thickness is approximately 100 nm.
Holes were milled in the center of the tensile specimen in order to concentrate stress and strain.

angle of 0.91 mrad. The probe was measured in real space to have a full width half maximum
diameter of 1.47 nm.

in situ deformation was performed in the TEM using a Hysitron PI-95 in situ deformation
holder, with the sample mounted to a push to pull device. The sample was deformed under
displacement control, in steps of 10 nm, up to a total displacement of 40 nm when the sample
broke. NBED datasets with a size of 182 by 184 probe positions were acquired with a Gatan
K2-IS camera at 400 frames per second, with a probe step size of 2.5 nm. Each scan took 70
seconds while deformation was paused. The camera acquired a 1792 by 1920 pixel full-frame
diffraction pattern at each real space pixel location. Five complete datasets were acquired,
corresponding to tensile deformations of 0, 10, 20, 30, and 40 nm. The sample broke at some
point between 30 and 40 nm of deformation. The load-displacement curve acquired during
deformation can be seen in Fig. 5.4f. The vertical jumps in load correspond to periods in
which scans were acquired. The load-displacement does not show pure elasticity, instead at
high deformations, plasticity is observed.

The NBED datasets were acquired in a sparse electron scattering regime, which was
controlled by reducing the beam current to the sample. This allowed for the counting of
individual electron locations, resulting in a massive reduction in the amount of data, and
a large increase of signal to noise. Once the patterns were reduced to electron locations,
patterns with reduced noise were reconstructed. These patterns were shifted to remove the
effect of beam sway during scanning. For the strain mapping analysis, every pattern was
locally summed with its nearest neighbors, using a Gaussian weighting centered on the center
pixel with a standard deviation width of two pixels. These diffraction patterns were then
used for strain mapping following the methods outlined in ref. [24], in which an ellipse is
fitted to every diffraction pattern, and deviations from a reference radius are converted to
strains. The reference radius was chosen to minimize strain at zero loading.
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The mapping of local symmetry followed the methods proposed in refs. [25, 124, 126],
after correction for elliptical astigmatism produced by both microscope aberrations as well
as strain. To determine the ellipticity, we have fitted the ring intensity (g,.,q,) over the
reciprocal space coordinates (g, g,) using the following form

(0 — \/Aq? + Baaqy + qu2)2
a 252

+]0+]1\/Q$2+Qy27 (51)

where [, Iy and I, are the intensities of the ring, constant background, and linear background
respectively. A, B, and C are the ellipse coefficients, and s is the standard deviation of the
ring, equivalent to its width. (g, g,) is centered on the center of the diffraction pattern. The
resulting fitted ellipse can then be represented in matrix form as

I(q) = I, exp

A B2
Mellipse = (52)
B2 C

Then, to remove elliptical distortions, each electron location (g, q,) can be transformed
by
(@, d) = (qur ) * v 5 Vd 5 V7T (5.3)

where v is the eigenvectors of Mcypse, d is the eigenvalues corresponding to v, and vT is
the transpose of v.

The symmetry of each pattern then is measured from the binned polar transforms of
the electron coordinates for each pattern to (r,6) space, as explained in [25, 124, 126].
This method normalizes the amount of symmetry order measured by the intensity Oth order
amount, which removes the effects of changing diffraction pattern intensity (sample thickness,
bending, etc.).

5.2.2 Measuring strain from fitted ellipses

The diffraction pattern of an amorphous material is characterized by a diffuse ring pattern.
The first ring can be used to determine the strain, as deformation induces a small deviation
from an ideal circle [127, 128]. The position of the first ring as a function of scattering angle,
q(0), is compared to the radius of the ideal ring of the unstrained case, go. The resulting
strain, €, a function of #, can be separated into the axial, tangential and shear strains €,,,
€yy and e, [24].

qo — Q(e)
q(0)

This equation can be rewritten to

€(f) = = €45 08> () + €4, cos(0) sin(0) + ¢, sin?(0). (5.4)

LR €z €08 (0) + €4y cos(0) sin(6) + €, sin’(6). (5.5)

q(0)
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Figure 5.3. Experimental geometry used in this study. A dog-bone shaped metallic glass sample is
deformed in situ in the scanning electron microscope. The sample is placed at the cross-over position
of the convergent electron beam. The convergent electron beam diffracts from the sample, leading
to the characteristic amorphous ring pattern. A best fit ellipse is computed for each diffraction
image recorded at each probe position. The elastic strain induced during loading leads to an elliptic
distortion of the amorphous ring pattern.

Once Eq. 5.1 has been fitted to all probe positions, the strain can be computed from
the results for A, B and C. A and C' will be very close to a value of 1 and B close to 0.
Therefore, we define A =1+ a and C' = 1+ ¢. Converting the ellipse to polar coordinates

(g = q(0) cos(0),q, = q(0) sin(0)) yields

q(0)*((1 + a) cos®(6) + Bcos(6) sin(f) + (1 + ¢)sin?(0)) = ¢}

do__ a cos? cos(f) sin csin? -
qw)_¢1+/ (6) + B cos(6) sin(6) + csin?(6) (5.6)

This expression can be approximated, by taking into account that a, B and c are small

1 2 : 22 =
0 = 1+ i(a cos”(0) + B cos(0) sin(f) 4 csin*(0)). (5.7)
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A comparison of this equation with Eq. 5.5 allows deducing the strain

Q

N =N —

ECC$

7(A - 1)7

€xy ~ 7Ba

Q)
Q

Yy ;(O —1). (5.8)

By determining the ellipticity for each diffraction pattern in the NBED map, a full two-
dimensional strain map is obtained. When the MG specimen is deformed in situ in the TEM,
the local elastic strain changes resulting in a change in the elliptic distortion (see Fig. 5.3).
By obtaining a time series of NBED maps, time resolved strain maps can be calculated and
the change in the local strain during deformation can be mapped in situ. Note that all
real experiments will contain some elliptic distortion even for non-strained samples, due to
aberrations in the projector lenses of the microscope. Therefore, a reference has to be defined
and the distortions measured in this region are used as reference values. We have used the
measured ellipticity of the MG specimen prior to deformation as the reference strain state.

5.2.3 Computational molecular dynamics methods

Large-scale molecular dynamics (MD) simulations were performed by Jun Ding to study
the CuygZrssAls model metallic glasses (MGs), using the optimized embedded atom method
(EAM) potential, adopted from ref. [129]. The sample contained about 5 million atoms,
and the liquids of the sample were equilibrated for 1 ns at high temperature (2500K) to
assure equilibrium and then quenched to room temperature at the cooling rates of 10'? K/s
employing a Nose-Hoover thermostat (the external pressure was barostated at zero) [130].
Periodic boundary conditions were applied in all three directions during the quenching [130].
The prepared CuygZrysAlg metallic glass sample had dimensions of 78.3 nm by 91.5 nm by
13.1 nm at 300 K. A hole with the radius of 16 nm was created in the middle of z-y plane.
Then the boundary condition in z-direction was set as a free surface. The as-processed
sample was then gradually heated to 680 K (below its glass transition temperature T}) and
annealed for 0.5 ns to reach a steady potential energy. The final step of sample preparation
was to quench it from 680 K to 300 K with a cooling rate of 10'? K/s. For the simulation of
the deformation process, the CuygZrygAlg model metallic glass was under uniaxial tension in
the y-direction with a strain rate of 107 /ps at 300 K under NVT ensemble. The local von
Mises shear strain was analyzed using the algorithm in ref. [131], by comparing the deformed
configuration with the original one. We monitor the local structural order in CuygZrssAlg
metallic glasses by conducting Voronoi tessellation [132]. Faces of Voronoi cell with area
smaller than 0.25% of the total area are discounted. Specifically, Fig. 5.6f-j are the coarse-
graining plots of the fraction of full icosahedral order (with the Voronoi index (0,0, 12,0))
in the z-y plane, which is divided into pixels with dimensions of 2 nm by 2 nm and averaged
over the whole z-direction of the sample.
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Figure 5.4. a-e. Strain maps at increasing deformation steps. The top row is strain in the
tensile direction, the middle row is strain perpendicular to the tensile direction, and the bottom
row of strain maps is shear. By step d, plastic strain has developed in the tensile direction. f.
Load-displacement plot acquired from the in situ TEM mechanical testing holder. The blue solid
line is the data acquired, with the displacements corresponding to the different map acquisitions
a-e marked with red squares. The orange dashed line is the least squares fit to the elastic regime,
while the yellow dashed line corresponds to the plastic region. The change in slope between c
and d is indicative of plastic deformation. The sample fractured before e. The drift in the plot
corresponding to the hold times during the NBED acquisitions at the 10, 20 and 30 nm steps has
been removed. g-k. Maps showing local order at increasing deformation steps as measured from
the diffraction patterns. The top row corresponds to two-fold symmetry, while the bottom row
corresponds to four-fold symmetry. 1. A plot showing the relative mean amount of two-fold (blue
+) and four-fold (green square) order in the corresponding areas in g at successive deformations.
The plot shows roughly a 6-7% reduction order relative to the maximum.
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5.3 Results and discussion

Fig. 5.4 shows the results obtained after processing the NBED data acquired during the
in situ experiment. The top three rows of images (Fig. 5.4a-¢) show relative strain as the
experiment progresses in the orthogonal, and shear directions, while the bottom two rows of
images (Fig. 5.4g-k) show the degree of two and four fold order. A clear evolution of strain
is observed during deformation. The strain concentrates itself as expected around the hole
in the center of the sample, as well as along the shear directions 45° to loading directions.
Examining the maps more closely, during the first three steps of deformation corresponding
to 0, 10, and 20 nm of displacement, very little changes with regards to strain. These steps
correspond to elastic loading of the sample, which can be observed in the load-displacement
curve shown in Fig. 5.4f. As the sample is deformed to 30 nm, nonlinearity of the load-
displacement curve begins to occur, indicative of plastic strain. In the strain maps at this
deformation (Fig. 5.4a-e), clear strain concentrations occur on both sides of the FIB milled
hole. These thin areas experience strain up to 2% above the median strain of the sample,
leading to local regions of plastic deformation and failure. After fracture, the strain returns
to a uniform value across the field of view.

In conjunction with the evolution of local strain, we also measured the change in local
order, or the atomic clustering of the metallic glass with deformation. The results can be
seen in Fig. 5.4g-k. As previously shown in the literature [25], by measuring the symmetry
elements found in each diffraction pattern, we can map local order. As expected, initially the
sample had a uniform distribution of order across the region of interest. This is expected for
a rapidly quenched bulk metallic glass. This does not change during the elastic deformation
of the sample (10 and 20 nm of deformation). However, once plasticity begins, we observe
the destruction of local atomic order spatially confined to the regions of high plastic strain.
In the two-fold order map Fig. 5.4j, this destruction is confined to the highest strain region
on the sample, on the right side of the hole. In the four-fold order map (Fig. 5.4j, bottom),
this destruction is more prevalent and can be seen on both sides of the hole, but again,
is confined to the high strain regions of the sample. Fig. 5.4]1 shows the mean amount of
order in the color-coded dashed polygons shown in Fig. 5.4g for the first four steps before
fracture. Within these plastically deforming regions, there is a ~7% reduction in order from
the maximum for both two- and four-fold symmetries. The difference in size between the
two- and four-fold symmetry areas of reduced order is most likely due to the mechanics of
order destruction and diffraction, namely that the clusters of projected four-fold symmetry
have more avenues to move out of Friedel diffraction than those in two-fold symmetry.

In order to statistically measure the reduction in order in the two- and four-fold order
maps in Fig 5.41, basic statistical methods were performed.

A standard two-sample t-test was performed in MATLAB, which tests the null hypothesis
that the data in vectors x and y come from independent random samples from normal
distributions with equal means and unequal variances, using the first and fourth step of
deformation (just prior to fracture) as z and y. In both two-fold and four-fold symmetry
orders, the null hypothesis was rejected in the masked areas with a p-value of 0.

Finally, we have plotted histograms of the four-fold order coefficients from the masked
areas at the first and fourth step of deformation in Fig. 5.5. This graphically shows the
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1.6 Normalized four-fold 2.2
order coefficient x10-3

Figure 5.5. Histogram showing the reduction in order in the four-fold order maps in Fig. 5.4,
corresponding to deformations a and d. The order coefficient values follow the normal distribution,
and the two-sample t-test rejected the null hypothesis that the data came from distributions with
equal means and unequal variances, with a p-value of 0.

same result as the t-test, which is that the means are clearly different, the distributions are
normal, and the variances are unequal.

To help interpret these results, large-scale molecular dynamics (MD) simulations [130]
were performed by Jun Ding on a 5-million-atom sample with a similar geometry, although
with reduced dimensions for practical considerations. The alloy composition was the same
as tested experimentally. The parity between experimental and simulated sample geometry
and composition allows for their direct correlation. The MD results can be seen in Fig. 5.6
that shows five frames of increasing deformation. The process of strain localization around
the region of plastic deformation is shown in Fig. 5.6a-e; the images are colored according
to the local von Mises shear strain. Under the uniaxial tension in the y-direction, the strain
localization begins to aggregate near both sides of the hole (Fig. 5.6a); with increase in ap-
plied strain, progressively more strain localization evolves out along the two 45° directions
of maximum shear stress. Finally, the continuously induced strain localizations percolate
across the sample from the hole to the free surfaces, thus forming the shear bands seen in
Fig. 5.6e. This deformation process revealed by the MD simulation is generally consistent
with our experimental TEM characterization shown in Fig. 5.4. Similarly, Fig. 5.6f-j show
the spatial distribution of local icosahedral order for the studied five frames, where a corre-
sponding reduction in local symmetry is seen as deformation progresses. Interestingly, the
regions with reduced local icosahedral order (blue regions in Fig. 5.6f-j) are almost over-
lapped with the strain localization in Fig. 5.6a-e. It is therefore apparent that the results of
our large-scale MD simulation are fully consistent with the direct observation by nanobeam
electron diffraction microscopy that correlates the strain localization and local structural
transition in BMGs under deformation.

Despite experimental differences in sample size and deformation rate, previous MD exper-
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local von Mises shear strain

10% local icosahedral order 20%|

Figure 5.6. Five frames of MD-simulated CuygZrsgAls MG at the strain of 4%, 5%, 6%, 7% and
8% respectively, under uniaxial tensile deformation. a-e a color map of local von Mises shear strain
and f-j describe the spatial distribution of local icosahedral order in coarse-graining scale, for such
five frames.

iments as well as the current simulation observe a mechanism of metallic glass deformation
which relies on slightly disordered atomic clusters (GUMs) shearing and deforming under
lower strains than their more ordered icosohedral cousins. In simulations, the result of the
deformation was a more disordered region, and shear band initiation. Similarly, this is what
we see for the first time in the NBED in situ deformation experiment. At high strains,
local atomic clusters containing symmetry are destroyed before shear band propagation, and
their destruction generates increasing local plasticity and shear band formation under further
strain.

Our results confirm the important hypothesis of GUM formation leading to shear banding
and fracture as described by prior computational models but never experimentally observed
before. In order to improve the limited tensile ductility currently preventing BMGs from
widespread use, resulting primarily from deformation localization in single shear bands, our
experiments suggest that future alloy design should follow a pathway in which the amount of
disordered atomic clusters is precisely tuned to accommodate more homogeneous ductility.
We also believe that the combination of in situ microscopy and NBED as a characterization
technique is well suited to image structural deformation characteristics on the nanometer
scale in nominally disordered materials. The direct correlation between quantitative in situ
deformation experiments and large scale MD simulations on the same length scale can serve
as a crucial link between simulations and bulk mechanical properties.
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Chapter 6:

Summary and future work

6.1 Conclusions

We began this dissertation with a short history of electron microscopy and its advancements,
and provided the motivation behind using it as a tool for materials science. The development
of characterization methods is an integral part of materials science, and the insight it provides
allows for advancements in the field.

In Chapter 2, we gave a broad overview of the many sample preparation methods and
in situ geometries used in this dissertation. We compared and contrasted FIB based sam-
ple preparation to electropolishing, with the conclusion that electropolishing was generally
easier, but FIB fabrication allows for the use of advanced holders like the PI 95. We hope
that others will find this chapter useful in their own sample preparation methods, as it is
the most important part of electron microscopy.

Chapter 3 begins the original research presented in this dissertation. This chapter dis-
cusses the work published in [22], which covers algorithm development for NBED strain
mapping applications. The advent of fast cameras for NBED strain mapping has led to
higher data processing requirements, and faster algorithms. We showed that an algorithm
with reduced complexity (correlation with a template, using either the hybrid approach, or
Sobel filtering before correlation) can be robust to noise and dynamical diffraction effects.
For completeness, we tested this with both simulated data representative of what is seen
in experiments, as well as two different real materials, a known zero strain silicon sample
and a stainless steel sample with both a grain boundary and dislocations. Additionally, we
evaluated the effect of binning and signal-to-noise ratio, and found that when signal-to-noise
is low, binning can improve the accuracy of the strain mapping.

The positive result in Chapter 3 enabled the results presented in Chapter 4, in which
we used the strain mapping algorithm in conjunction with the Gatan 654 holder to observe
planar slip in a 321 stainless steel sample. We were able to observe in situ an expansion of
the lattice following the leading dislocation of planar slip. This agrees with both theory and
previously observed effects ex situ, but provides valuable information on the dynamic strain
effects of planar slip. Additionally, this proves it is possible to perform in situ strain mapping
on complex engineering materials, opening the door for future studies of deformation and
the resulting strain fields in advanced engineering materials.

In Chapter 5, we transition from analyzing NBED datasets from crystalline materials to
ones from amorphous materials, characterized by a diffuse nearest neighbor diffraction ring.
In this chapter we develop the methods to map both strain and local order across amorphous
BMGs. We find that we are able to observe strain during in situ deformation by looking at
the change in ellipticity of the first diffraction ring. Furthermore, we find that we are able to
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map local order by measuring the symmetries present in the first diffraction ring, where areas
that have more order have symmetries present. We then take these method advancements
and apply them to a CuygZrsgAlg bulk metallic glass sample mounted on a PI 95 PTP.
The results show significant strain concentration around the FIB milled hole, as well as a
marked reduction in local order in the high strain regions prior to shear band formation.
This is indicative of STZ activation, and is an important confirmation of amorphous glass
deformation theory.

6.2 Future work

Chapters 2, 3, 4, and 5 each have room for future development. With regards to Chapter 2
and sample preparation, there is significant room to develop more interesting and reliable
geometries using FIB milling, as well as novel in situ tests. These might include the combina-
tion of environmental TEM with in situ deformation, in situ tests that are more comparable
to traditional mechanical tests, or liquid cell deformation. Additionally, electropolishing is
not, and might never be, a solved problem. While perhaps not novel enough for a PhD
dissertation, there is ample room for undergraduate and masters-level research on this topic.

Algorithm development, covered in Chapter 3 has ample room for future development,
and the current research has barely scratched the surface of what is possible. Automated
image analysis has just begun to have an impact in materials science, but is an established
field in the computer vision and machine learning communities. Materials science should
take the best of these fields and apply it to the engineering challenges we find. There is no
reason why the same technology Google used to find a cat in an arbitrary video in 2012 [133]
cannot be used to find simple diffraction disks in 2018. Machine learning and advanced
analysis techniques are the natural progression for the large NBED datasets, especially since
the algorithms can be trained with highly accurate simulated data. This has started [134],
but the use of advanced algorithms is in its infancy. For the impact it could have, few people
are working on it. Additionally, there is room for advanced statistical techniques, such as
non-negative matrix factorization (NNMF), when it comes to classification and segmentation
of the NBED datasets into different experimentally important basis sets (grain classification,
orientation, multiphase materials).

With regards to in situ NBED of crystalline samples, as covered in Chapter 4, this
dissertation merely shows a proof of concept that it is possible to measure strain during
deformation. There are many unanswered questions in materials science that this technique
could help answer. For example, it would be of interest to perform a similar experiment which
observes the interaction between dislocations and precipitates or grain boundaries. While
this has been performed [15, 135, 136], the strain state that governs these interactions is
unknown and would help greatly in the accurate modeling of these phenomena. Additionally,
observing the strain fields during crystalline growth or nucleation would be a very interesting
utilization of NBED strain mapping during in situ heating. Watching the evolution of strain
with regards to precipitate nucleation and growth kinetics would be scientifically interesting.

One of the greatest hindrances with regards to NBED strain mapping during in situ
deformation is the requirement for a zone axis diffraction pattern. This is currently exper-
imentally difficult, as both deformation holders used in this dissertation only have one tilt
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axis. While the « tilt range is £35°, the lack of even £10° [ tilt means that most insitu
deformation samples will have one good zone axis for diffraction pattern imaging at most.
As the sample undergoes deformation, a uniformly illuminated zone axis diffraction pattern
has a propensity to tilt to poor illumination conditions in the § direction, as this also is
the direction of deformation, and is currently unrecoverable. Therefore, the development of
a double-tilt in situ deformation holder would greatly enhance the chances of experimen-
tal success. While these exist [16, 137], they have not reached widespread adoption or the
sophistication of the PI 95 system. Their use in NBED strain mapping would be highly
beneficial.

While the results presented in Chapter 5 were more than just a proof of concept, both
the data processing techniques as well as experimental methods have wide applications for
future development and discovery. With regards to the experimental methods, the optimum
experimental parameters have not been discovered for both strain mapping and local order
mapping. Part of this is due to the dichotomy between NBED for strain versus NBED for
local order. Ideally, to measure strain the electron probe is as parallel as possible (con-
vergence angle approximately 0.5 mrad) to concentrate the most diffracted intensity into
the thinnest first diffraction ring, to most accurately measure its ellipticity. However, this
leads to a larger probe not suitable for measuring local order, which is improved by probe
sizes roughly equivalent to the size of local order (approximately 0.5 nm, obtainable with a
3 mrad convergence angle on TEAM 1). So far, a happy medium to obtain both has not been
optimized. Additionally, no tests have been performed to determine if electron counting in
a lower dose regime is more effective or prevents more sample damage than increasing the
electron beam current and capturing traditional diffraction patterns.

Additionally, the use of advanced statistical techniques has not yet been used on these
datasets. For example, the measurement of local order is performed using Fourier transforms
of diffraction patterns in polar coordinates. This assumes and uses a basis set of sines
and cosines to construct the diffraction pattern. However, other transforms utilizing more
representative basis sets could give more accurate results. Additionally, only the magnitude
of the Fourier components are used, which is only half of the analysis. Perhaps, by utilizing
the phase of the components, rotation of the local order under perturbation (deformation or
heating) could be observed!

Some further exploratory experiments have been performed on amorphous materials. Us-
ing the same material, samples were heated in situ while NBED data was acquired. The
initial results look very promising. The transition between amorphous and crystalline struc-
ture was observed, including subsequent crystalline growth. This transition occurred simul-
taneously with chemical segregation as well. This data still needs to be analyzed further,
but points to the future of amorphous material NBED. There exists ample possibilities for
crystallization nucleation and kinetics studies, in which structural information prior to and
during crystal growth is also acquired. Additionally, observing the distribution of strain in
a complex crystalline-amorphous alloy with NBED under deformation would be extremely
interesting. As this dissertation is a proof of concept for a variety of in situ techniques in
combination with NBED, there necessarily are many avenues for future development.

Finally, overall there are several avenues for global future improvement on the techniques
and experiments presented here. The first is increased multimodal imaging and optics. The
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simultaneous acquisition of EDS or EELS spectra during in situ NBED would allow for the
measurement of chemical composition and diffusion, thickness, or electronic state in addition
to the data acquired in this dissertation. This could be uniquely powerful for understanding
the transitions that occur in materials. Additionally, the quickest improvement to all of these
techniques would be the addition of both in-column energy filtering as well as controllable
beam precession. Both of these hardware additions would increase the diffraction pattern
quality in both amorphous and crystalline specimens, and would lead to much more experi-
mental success during in situ tests. Finally, current research projects at the National Center
for Electron Microscopy include faster direct electron detectors. While the current camera
can operate at up to 1600 frames per second (fps), this still requires acquisition times on
the order of minutes for sufficiently large NBED scans. This becomes apparent during the
experiment, as current experimental techniques require a pause in deformation while scans
are being acquired. The new cameras, which have promised fps speeds two orders of magni-
tude higher than the current camera, would allow for acquisition times on the order of single
seconds. This will allow acquisition of higher quality, experimentally relevant scans during
continuous deformation without the need for pausing, allowing for the capture of events at
timescales not currently possible (dislocation jumps, more granular crystal growth).

To conclude, this dissertation covers method development for NBED in situ experimen-
tation, and some interesting materials science results that the advancements in the technique
have resulted in. This researcher has thoroughly enjoyed this work and believes that there
are many future developments for NBED that will only increase its usefulness and impact.
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Appendix A:

Methods useful for crystalline diffrac-
tion patterns

These appendices are used to highlight some specific points during the author’s research that
caused particular trouble, or could use additional clarification in terms of examples, code,
etc. All code given here is written in MATLAB R2016 and is not guaranteed to be free of
bugs or errors.

A.1 Correlation methods

While Chapter 3 does a decent job of discussing the 2D correlation methods, simpler 1D
versions are shown here. Figure A.1 was produced using Eq. 3.3, with weights for n of 0
for cross correlation, 1 for phase correlation, or 0.5 for hybrid, or “square root” weighted
correlation. A code snippet that created the figure can be seen in Code Block A.1.

Template Object Cross Correlation Phase Correlation Hybrid Correlation

Figure A.1. Graphical representation of a square wave correlated with itself (autocorrelation).
All three correlations in the noise free case accurately recover the center of the square wave, but
the shape of each correlation is different. The cross correlation is wide, and gradually converges to
the maximum correlation. The phase correlation is a delta spike, while the hybrid “square root”
correlation is between the two.

x = zeros(1,100);

x(25:75) = 1;

correl = conj(fft(x)).*xfft(x);

cc = fftshift(ifft(correl)); % cross correlation

5 pc = fftshift(ifft(correl./(abs(correl)))); ’% phase correlation

hc = fftshift(ifft(correl./(abs(correl).~0.5))); % hybrid correlation
Code Block A.1. Naive implementation of 1D correlation, used to create Fig. A.1.
The transition to 2D correlation is straightforward, and is done by changing the 1D

discrete Fourier transforms (DFTs), to 2D DFTs. In MATLAB this is as simple as changing
fft and ifft to ££t2 and ifft2, respectively.
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Since this correlation is performed in Fourier space, it is a circularly symmetric operation.
Therefore, the hard edges on an image as it circularly wraps from right to left and top to
bottom are unwanted artifacts that can cause errors in the correlation. To prevent this, a
window function should be applied to both the template and object image, which smoothly
takes the image to zero outside of some defined interval [138].

A.2 Finding disk positions using correlation

A.2.1 Creating a template

Creating an accurate template is crucial to the effective determination of disk position. As
the diffracted disks originate from the unblocked beam, the best template is a vacuum image
of the central beam in focus. This is simple to do monochromated microscopes, as the beam
intensity can be lowered using the monochromator focus until it will not damage the camera.

If this is not possible, the next best technique involves aligning and summing the center
spot from all of the diffraction patterns on a blank background. By also specifying minimum
and maximum values for intensity the effects of dynamical diffraction can be minimized.
Fig. A.2 shows the profile of both good and bad templates.

Intensity

Pixels Pixels

Figure A.2. Illustrated profiles of two templates. On the left is the good template, with a clear
maximum intensity and sharp edges. On the right, the template profile is both uneven as well as
it contains soft edges, which will reduce correlation accuracy.

A.2.2 Finding disk positions — to subpixel accuracy

Once the template is created, it can be correlated using the methods described in 3. However,
a naive correlation in which the maximum of the correlogram is taken as the shift will only
yield single pixel accuracy. Here we will present some methods used to improve the accuracy
of the measurement.

Sub-pixel correlations: upsampling

The simplest way of improving the correlation is to upsample the correlogram. One simple
way to do this is to pad the correlogram in Fourier space with zeros before taking the inverse
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Fourier Transform. To do an upsampling by two, an image that is [n, m] in size will need
to be inserted into an array of zeros of size [2n, 2m], which is four times larger than the
original image. While this may work for upsampling values of two to four, this n? dependence
on upsampling factor quickly will outpace the memory constraints of the system.

To get around these constraints, much more efficient algorithms have been developed [52,
59]. These algorithms work by first making a correlogram at an upsampling factor of two, and
then further upsampling is done by directly computing the DFT using matrix multiplication
only in a small area around the peak, to an arbitrary upsampling factor. The code used
by the author was a modified version of dftregistration which can be found at [139].
The modifications, which resulted in a function called multiCorr offered the ability to use
different correlation methods at the initial step before upsampling.

Fitting a parabola to correlogram

One can also fit a parabola to the resulting correlogram to maximize the accuracy when
finding the peak location. If the three by three region roughly centered on the peak is
known, the analytic solution is given by Code Block A.2.

% icc is a matrix of size [3 3], centered as well as possible on the peak
of a curve. dx and dy are the shifts for x and y, respectively, from
the center.

dx = (icc(3,2)-icc(1,2))/(4*xicc(2,2)-2*%icc(3,2)-2xicc(1,2));

dy = (icc(2,3)-icc(2,1))/(4*icc(2,2)-2%icc(2,3)-2*icc(2,1));

Code Block A.2. Analytical fit of a parabola to a 3 x 3 curve peak. Original derivation courtesy
of Colin Ophus.

With these tools, then all that is left is to combine them in a for loop and find the
location of each diffraction spot in every pattern. It is helpful to crop out each diffraction
spot individually and correlate them one at a time. Additionally, safeguards such as pixels
cannot move more than 1-5 pixels between frame are usually helpful in minimizing error in
strain measurement. During this process, it is also helpful to save the correlation score as
well as peak location, for later weighting.

A.3 Fitting a lattice to disk positions

Now that there is a list of peak locations in pixels and correlation score for every peak in
all the images, the next step is to fit a reciprocal space lattice to these peaks. It is assumed
that the peak locations are stored as a list per image, in a matrix organized by [xLocation,
yLocation, peakIntensity]. Once a set of basis vectors that represents each diffraction
pattern is known, a lattice can be computed that maps the basis vectors to the disk positions
in pixels. Here, we utilize standard least squares fitting methods to the system of equations
represented by the equation Ax = B, where A is our matrix of basis vectors, x is our lattice
to be fit to our disk positions, and B is our matrix of disk positions. As will be shown below,
r is a 3 X 2 matrix, where the first row is the center location of the matrix, and the next
two rows are the two lattice vectors, all in (z,y) pixel locations. Since we typically have
many more disk positions than unknowns in our lattice matrix, the system of equations is
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very overdetermined. To obtain a more accurate fit, we can use the correlation values of
each peak with our template as weights. This causes measurements of clear, bright disks to
be weighted more heavily than disks that do not match the template as well, and is a good
technique for minimizing the error of the lattice fit.

A.3.1 Using peak shape as additional weighting for lattice determination

During the research behind Chapter 3, it was theorized that perhaps lattice fit accuracy
could be improved by utilizing the shape of the correlation peak. Specifically, it was thought
that a 2D Gaussian curve could be fit to the correlation peak, and each basis vector could be
broken into orthogonal components aligned with the major and minor axes of this Gaussian
curve. The components, during the fit of the basis vector to the disk locations, could be
weighted by the lengths of their respective Gaussian axes. For example, in Fig. 3.1c, the
Gaussian fit (indicated by the red oval) is very large in the direction of the fit with high
uncertainty, where the disk does not have a clear edge. In this weighting scheme, the long axis
direction would be weighted with less importance than the short axis direction. However, in
practice the accuracy gains were minimal, as the system was often so overconstrained that
these enhancements yielded very little return.

A.4 Calculating strain from a reference lattice

Once there is a lattice containing the center spot, and two vectors in pixel locations, strain
can be calculated. This is simple to do under the infinitesimal strain assumptions. To
calculate this, again linear algebra is used to solve the equation xA = B, where A is the
reference lattice, B is the lattice at each diffraction pattern, and the relationship between z
and strain can be seen by Eq. 3.2.

Put together, these steps described in sections A.3 and A.4 can be seen in Code Block A.3.

function [sNBED] = fit_lat(sNBED, 1lat)

% inputs

% sNBED - struct from that contains xyI

% lat - user defined lattice, used to compute reference lattice
% outputs

% sNBED - struct containing both best fit lattices and strains

CBEDmean = sNBED.CBEDmean; % mean image from stack

diskShiftMax = 4-1+5; ¥ maximum shift allowed for a peak

subLatticeFrac = [1 1]*2; % used if peaks are at fractional lattice
indicies, [0.5 1], for example

or = lat(l,:); % first row is center of pattern
u = lat(2,:); % second row is u vector
5

v = lat(3,:); % third row is v vector

s sNBED.or = or;

sNBED.u = u;
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sNBED.v = v;

% Get mean peak position values
Np = size (sNBED.peaksRefine); % peaksRefine is the list of fitted peaks

% flat_region = ...; % this should be a mask of zeros and ones of where O
% strain should be computed from

s % set a reference region for 0O strain

if exist(’flat_region’,’var’)
subReference = false(Np(3),1);

subReference (flat_region(:)) = 1;
sNBED.ref = flat_region;
else
subReference = true(Np(3),1); % otherwise set mean diffraction pattern

as 0 strain
end

xyI = zeros(Np(1),3);
r2 = diskShiftMax~2;
% delete peaks that have shifted too much - usually due to fitting error
% sNBED.peaks is position of peaks on mean image
for a0 = 1:Np(1)
sub = (sNBED.peaksRefine(a0,1,:) - sNBED.peaks(a0,1)).72
+ (sNBED.peaksRefine(a0,2,:) - sNBED.peaks(a0,2)).72
< r2;
xyI(a0,1:3) = max(mean (sNBED.peaksRefine(a0,1:3,sub(:)),3),0);
end

% Solve for the lattice vectors of each peak
for a0 = 1:5
a = round(subLatticeFrac (1) *((xyI(:,2)-or(2))*v (1)
- (xyIC:,1)-or(1))*v(2))/(v(1)*u(2)-v(2)*u(1)))
/subLatticeFrac (1) ;
b = round(subLatticeFrac (2)*((xyI(:,2)-or(2))*u(l)
- (xyI(:,1D)-or(1))*u(2))/(v(2)*u(1)-v(1)*u(2)))
/sublLatticeFrac (2);
weights = xyI(:,3); % the weights are the correlation intensities

basis = [ones(Np(1),1) a bl; % this is now a matrix of lattice vectors
in 1./sublatticeFrac increments
lat = lscov(basis(:,:),xyI(:,1:2),weights(:,:)); % lat is still in

pixels

or = lat(1,:);
u = lat(2,:);
v = lat(3,:);

end
% Best fit positions, for plotting and reference
xyFit = basisx*lat;

% solve reference lattice in the region chosen to be O strain
x0bs = sNBED.peaksRefine(:,1,subReference);
x0bs median (x0bs ,3) ;
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yObs = sNBED.peaksRefine(:,2,subReference);
yObs = median (y0Obs,b3);
I0bs = sNBED.peaksRefine(:,3,subReference);
I0bs = median(IObs,3);

r2 = diskShiftMax~2;

; sub = (x0bs - sNBED.peaks(:,1)).72

+ (yObs - sNBED.peaks(:,2)).72
< r2;

% lat = basis \ [x0bs y0Obs IO0bs]
lat = lscov(basis(sub,:), [x0Obs(sub) yObs(sub)], IObs(sub));

sNBED.latRef = 1lat;

% Calculate lattice and strain for all images

; sNBED. latRefine = zeros(3,2,Np(3));

sNBED.strains = zeros(Np(3),4 + 2);

s % strains = [exx eyy exy theta dark_signal bright_signall

warning off

for a0 1:Np(3) % loop through all the images
Xp sNBED . peaksRefine (:,1,a0);
yp = sNBED.peaksRefine(:,2,a0);
Ip sNBED . peaksRefine (:,3,a0);

sub = (xp - sNBED.peaks(:,1)).72
+ (yp - sNBED.peaks(:,2)).72 < r2; % exclude peaks that have
shifted too far

% virtual bright and dark field
Ibf = Ip(1); % value of center spot (first in list)
Idf = sum(Ip([false; sub(2:end)])); % value of rest of spots

latFit = lscov(basis(sub,:),[xp(sub) yp(sub)]l,Ip(sub)); % fit lattice
to one diffraction pattern
sNBED.latRefine(:,:,a0) = latFit;

m = (lat(2:3,:)’ \ latFit(2:3,:)°’)’;% compute transformation matrix

sNBED.strains (a0 ,1:4) =
[1-m(1,1) 1-m(2,2)
-(m(2,1)+m(1,2))/2
(m(2,1)-m(1,2))/2]; % compute strains per pattern

% save virtual df and bf pixel values
sNBED.strains (a0 ,5:6) = [Idf Ibf];
end

warning on

end

Code Block A.3. The code for the final step of strain mapping, from fitting a lattice to each set
of diffraction spot locations, to computing strain from a reference lattice
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A.4.1 Rotating strains

There is one part that is easy to overlook, but of crucial importance. Up until this point, all
lattice vectors have been described by their position in the image in pixels. This means that
when the strain is computed, as it is describing a transformation in the x,y pixel coordinate
system, the strains are in the same coordinate system. There are a couple of methods
to align the infinitesimal strain tensor to a different direction, usually one that is more
crystallographically relevant. The first is to rotate the lattice fits to the correct direction
using the standard rotation matrix before computing strain. This is straightforward. The
second is to convert the strains after the fact. Since the strain tensor given by

(A1)

this can easily be converted by applying a tensor rotation, which is just M = RMR/, where
R is the standard rotation matrix, and ' indicates the transpose. The resulting strains are
then given by €,, = MS, €,, = M5!, and €,, = (M7 + M53H) /2.
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Appendix B:

Methods useful for amorphous diffrac-
tion patterns

B.1 Counting electrons in sparse data

When using the Gatan K2-IS camera, which is a direct electron detector, in certain low
intensity regimes the location of individual electrons on the sensor can be determined. This
is very helpful as it removes all the effects of electrical noise and bloom from the diffraction
patterns. This is often the case in weakly scattering amorphous materials. In practice, this
is as simple as thresholding a background-subtracted image above a certain value, and then
removing nearest neighbors after thresholding.

The appropriate threshold for clustering is usually determined by fitting a Gaussian
function to a histogram of intensity values for a subset of the images in the stack. It is
typical that the threshold is then 9¢ to 110 from the mean in the positive direction.

Once the images have had their background subtracted and have been thresholded, there
could be a situation in which two pixels next to eachother have both been above the threshold.
This can occur if an electron scatters sideways in to a neighboring pixel. To remove this
effect, around every thresholded electron, the nearest neighbors are checked and if they are
lower in intensity, are deleted. This process is shown in Fig. B.1, and the implementation is
shown in Code Block B.1.

imThresh

_IeleqtronSZ

Figure B.1. Clustering process example, going from Poissonian noise to a thresholded image, to
an image of only electron locations. Notice how each bright pixel in Ielectrons2 is not touching
any other bright pixel. These are the electron locations.
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function [] = clusterExample ()
% this function will make an image with random Poissonian noise, threshold
% it above a certain value, and then perform nearest neighbor removal.

threshValue = 12;

im = poissrnd(threshValue.*rand(100)); ’ create random array
N = size(im);
imThresh = im >= threshValue; % perform thresholding - just as an example

% perform NN thresholding in two different ways
% first way - utilize circshift - this returns an image. To make a list of
% electron positions use the find command
imElectronsl = o
im > circshift(im,[-1 -11)
& im > circshift(im,[ 0 -11)

& im > circshift(im,[ 1 -11)

& im > circshift(im,[-1 01)

& im > circshift(im,[ 1 0])

& im > circshift(im,[-1 1]1)

& im > circshift(im,[ O 1])

& im > circshift(im,[ 1 1])

& (im > threshValue) ;
% second way - utilize 1D indexing
[ya,xa] = meshgrid(1:N(2) ,1:N(1));
xa = xa(:);
ya = ya(:);

indsNN(:,1) = sub2ind(N, mod(xa-2,N(1))+1, mod(ya-2,N(2))+1);
indsNN(:,2) = sub2ind(N, mod(xa-1,N(1))+1, mod(ya-2,N(2))+1);
indsNN(:,3) = sub2ind (N, mod(xa-0,N(1))+1, mod(ya-2,N(2))+1);
indsNN(:,4) = sub2ind(N, mod(xa-2,N(1))+1, mod(ya-1,N(2))+1);
indsNN(:,5) = sub2ind(N, mod(xa-0,N(1))+1, mod(ya-1,N(2))+1);
indsNN(:,6) = sub2ind(N, mod(xa-2,N(1))+1, mod(ya-0,N(2))+1);
indsNN(:,7) = sub2ind(N, mod(xa-1,N(1))+1, mod(ya-0,N(2))+1);

; indsNN(:,8) = sub2ind (N, mod(xa-0,N(1))+1, mod(ya-0,N(2))+1);

% this builds an array of NN indices

indsCand = find(im > threshValue);

indsElectrons = indsCand(im(indsCand) > max(im(indsNN(indsCand,:)) ,[]1,2));
% this is now a list of electrons - more compact representation of the

data

% build back the image to compare to imElectronsl
imElectrons2 = zeros (N);

; imElectrons2 (indsElectrons) = 1;

isequal (imElectronsl, imElectrons2) 7% this will return true

% plotting - these commands left here for clarity
f = figure(1l);
f.Position = [112 1234 1405 420];
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clf

4 axl = axes(’Position’, [0 O .3 1]1);

imagesc (im) ;

axis off image

caxis ([0 15])

ax2 = axes(’Position’, [0.33 0 .3 1]);

imagesc (imThresh) ;

axis off image;

ax3 = axes(’Position’, [0.66 0 .3 1]);

imagesc(imElectrons2) ;

axis off image;

end

Code Block B.1. Code used to create Fig. B.1. Note that the clustering is done two different
ways that yield the same result (line 48). The first way, resulting in Ielectronsl is conceptually

simpler.

B.2 Polar transforms of diffraction patterns

To proceed further with amorphous materials characterization, specifically measuring the
amount of local order, we must correct for two-fold astigmatism in the diffraction patterns,
caused by both incorrect alignment of the microscope, as well as naturally due to strain,
and then convert the images to polar (r,0) representations. This will then allow for the
calculation of local order amount.

The process to remove astigmatism is described in Chap. 5, Eqns. 5.1-5.3 for electron
positions stored as (z,y) positions from the center of the pattern. Then the conversion to
polar coordinates is straightforward, with (r,0) = (x/xQ +y2,atan2(y/$)), and then the
transformed coordinates can be appropriately binned into images using accumarray. The
stigmation correction can be seen in Fig. B.2.

Figure B.2. a) Stigmated frame made using electron positions. b) Ring fit (brighter) and data
(dimmer) used to fix astigmatism. c) Corrected image.

The process is more involved for whole images, as aliasing effects appear when the naive
polar transformation is performed on an entire image. To avoid these effects, bilinear re-
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sampling is used during the transformation. The process of polar transformation with and
without stigmation correction can be seen in Fig. B.3, where it is clear that without stig-
mation correction, severe artifacts would appear when looking for any type of rotational
symmetry in the diffraction pattern. The code for this is shown in Code Block B.2.

r»y r»e
| | =
Figure B.3. a) Stigmated ring. b) Polar transform of stigmated ring. ¢) Downsampled polar

transform of stigmated ring. Both b) and ¢) have clear two-fold symmetry strictly due to stigmation.
d) Corrected polar transform of stigmated ring, ) downsampled.

function [ ] = imEllipseTransform?2 ()

% April 2018 - Colin Ophus & Tom Pekin

% This function works for polar coordinate transforming whole images. Uses
% bilinear interpolation to remove aliasing.

% Testing function for elliptic polar coords resampling

% Polar coordinates variables

rMax = 200; % max radius
dr = 1; % radial step size - probably best at 1
dt = .5*%pi/180; % theta step size - probably best such that ~360 fit at

% the radius of interest. so 360/ (2*xpi*rFit)

drBin
dtBin

30;
5 x pi/180;

; %» Test image variables:

imageSize = [1 1]1%400;

xyCenter = imageSize/2 + 1;

a = 1; % do not change - makeTest does not include it!
b = 0.8;

c = .9;

r0 = 100;

sigma = 20;

5 % Generate test image with elliptic distortion

[ITtest] = makeTest(imageSize ,xyCenter, b, c, r0, sigma);

% Polar coordinates
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r = 0:dr:(rMax-dr);

t = 0:dt:(2%pi-dt);

[ta,ra] = meshgrid(t,r);
raBins = floor(ra./drBin)+1;
taBins floor(ta./dtBin) +1;

% Resample into polar coordinates WITHOUT correcting elliptic distortion
xal = ra .* cos(ta) + xyCenter (1);

75

yal = ra .*x sin(ta) + xyCenter (2);

imageResample = bilinearResample(Itest,xal,yal);

imageResampleDown = accumarray ([raBins(:) taBins(:)], imageResample(:),[],
@mean) ;

% resample into polar coordinates WITH correcting elliptic distortion
ellipseMatrix = [a b/2; b/2 c];

[v,d] = eigs(inv(ellipseMatrix)); % notice the inverse ellipseMatrix is
used here

x0 = ra .*x cos(ta);

yO = ra .* sin(ta);

newxy = [x0(:) yO(:)] * v;

newxy = newxy * sqrt(d);

newxy = newxy * v’;

xa = reshape(newxy(:,1), size(x0)) + xyCenter (1);

ya = reshape(newxy(:,2), size(y0)) + xyCenter (2);

imageResampleCorrect = bilinearResample(Itest,xa,ya);

imageResampleCorrectDown =
accumarray ([raBins (:) taBins(:)], imageResampleCorrect(:),[],@mean);

figure (11)

clf

imagesc(Itest);

hold on

axis equal off

set (gca,’position’,[0 O 1 1])

figure (12)

clf

imagesc ([imageResample
zeros (size (imageResample ,1) ,round (size (imageResample ,2) *0.1))
imageResampleCorrect]) ;

axis off

set (gca,’position’,[0 O 1 1])

figure (13)

75 clf

imagesc ([imageResampleDown
zeros (size (imageResampleCorrectDown ,1) ,...
round (size (imageResampleCorrectDown ,2) *0.1))
imageResampleCorrectDown]) ;
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g0 axis off
s1 set(gca,’position’,[0 O 1 1])

g2 end

83

s function [imageResample] = bilinearResample (im,xa,ya)
s5 % Coordinates

g6 N = size(im) ;

g7 xa = min(max(xa,1),N(1)-1);

ss ya = min(max(ya,1),N(2)-1);

g0 xf = floor(xa);

90 yf = floor(ya);

91 dx = xa - xf;

92 dy = ya - yf;
93 % bilinear resampling
94 imageResample = reshape(

95 im(sub2ind (N, xf (:) ,yE () )) o*x (1-dx(:)).*x(1-dy(:))

96 + im(sub2ind (N,xf (:)+1,yf (:) )) .x ( dx(:)).x(1-dy(:))

97 + im(sub2ind (N,xf(:), yf(:)+1)) .* (1-dx(:)).*x( dy(:))

98 + im(sub2ind (N,xf (:)+1,yf(:)+1)) .* ( dx(:)).*x(C dy(:)),...
99 size(xa));

100 end

101

102 function [Itest] = makeTest (imageSize, xyCenter, b, c, r0O, sigma)
103 x = l:imageSize (1) ;

104y = l:imageSize (2);

105 x = x - xyCenter (1);

106 y =y - xyCenter (2);

107 [ya,xal = meshgrid(y,x);

s Itest = exp( -(r0 - sqrt(xa.”2 + b*xa.*ya + c*xya."2)).72 / (2%sigma”2));
109 end

Code Block B.2. Code used to create Fig. B.3. This code corrects for stigmation before
downsampling, and uses bilinear resampling to remove aliasing artifacts.

B.3 Calculating local order

Once the diffraction patterns have been transformed to polar coordinates and sufficiently
downsampled, the amount of order is calculated using the methods described in ref. [25].
Example code is given in Code Block B.3, and the steps are plotted in Fig. B.4.

function [] = localOrdering()

% this function will demonstrate local order measurement

% create diffraction pattern

dp = zeros (6,21);

5 N = size(dp);

6 dp(3:4,:) = [linspace(0,2*pi,N(2)); linspace(0,2*pi,N(2))];

dp(3,:) = 3.xsin(4.*xdp(3,:)) + 3; % large 4 fold symmetry in 3rd row

s dp(4,:) = 2.xsin(2.*dp(4,:)+pi/4) + 2; % smaller 2 fold symmetry in 4th
row

9 dp = dp + rand(size(dp)); % adding some small noise

10

11 dpCorr = ifft(abs(fft(dp, [J, 2)).72, [1, 2); % create correlogram

S

~
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dpCorrFFT = abs(fft(dpCorr, [], 2)); % take FFT to get symmetry elements
dpCorrFFTNorm = dpCorrFFT./repmat (dpCorrFFT(:,1), [1 N(2)]); % normalize
by Oth order intemnsity

% get measure of symmetries
order4 = dpCorrFFTNorm (3, 5);
order2 = dpCorrFFTNorm(4, 3); % use symmetry order + 1 for element

order4 > order2 J will usually evaluate to true - noise might cause it
occasionally to evaluate to false
end

Code Block B.3. Code used to create Fig. B.4, and used to measure order in one polar-
transformed diffraction pattern.

Fe

dp

dpCorr

dpCorrFFT

2-fold 4-fold

Figure B.4. Steps taken to measure amount of local order. Note that dpCorrFFT has been
fftshift-ed so that the 0" order channel has been centered for easier inspection. The red arrows
are the frequencies corresponding to two and four-fold symmetries.
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Appendix C:

Useful image processing tips and tech-
niques

C.1 Standard image coordinate systems and indexing

In MATLAB and most other programming languagues, images are represented as a matrix.
Therefore, accessing subregions of an image should not be thought of Image(z,y), but rather
Image [row, column]. This is illustrated in Fig. C.1.

Image Stack3D Stack4D
— \\_\\\\_ \\U' \\ﬂ
1 5 9 13 ﬁ | S N N WA
t1,11) 11,21 11,31 11,4] s AU\ N N A |
X Row I, 6 10 14 ?]
12,11] 12,21 12,31 12,4] .
3 B 11 15 .Q 14,2,1,11 f14,2,1,21 f14,2,1,31 ] 14,2,1,41
13,11) 13,2]] [3,3)f [3,4] O e | Y a
7 1 —— 31 B3 14,2,2,11 |14,2,2,2114,2,2,31 | 14,2,2,41
4 8 12 16 [31\” . 15 o, ~]
14.21] 14,21 14,31 14,41 P s LR P —~| 4
8 ~| 32 [y 1,230 fu2,3,2 |23, | 12,30
s, QL“ o
2,1)
T “'3'1] “4,1] T Ima e= 14.2,4,11] 14,2,4,21] 14,2,4,31) 14,2,4,41
Ly ge=... |eeenfuaafuaiafu
Image=Stack3D(:,:,1) squeeze(Stack4D(4,2,:,:))

Figure C.1. Illustrations of the indexing schemes used by MATLAB in this thesis. The Image
on the left shows both 1D and 2D indexing schemes. Functionally, Image(5)==Image(1,2).
Stack3D and Stack4D show how 3D and 4D stacks are indexed. Note that in Stack4D, to re-
cover the same Image as in Image and Stack3D, the appropriate command should actually be
Image=squeeze(Stack4D(1,1,:,:)), but (4,2,:,:,) was used to show “deeper” indices. In
Stack4D, each of the first two indices represents an entire image, usually a diffraction pattern.
squeeze is used to remove singleton dimensions.

C.2 Helpful packages

o The BM3D family of algorithms are very useful for denoising with many variations for
different use cases [84, 140]. For videos, V-BM4D is very powerful — http://www.cs.
tut.fi/~foi/GCF-BM3D/.

e export_fig is a very useful toolbox “for exporting figures from MATLAB to standard
image and document formats nicely” [141]. The author has found it to be more flexible
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and easier to use than the standard print or or other built-in dialogues — https:
//github.com/altmany/export fig.

e convolve2 is a faster implementation of conv2 in MATLAB, and therefore
is useful for speeding up computation in which this operation is repeatedly
performed [142] — https://www.mathworks.com/matlabcentral/fileexchange/
22619-fast-2-d-convolution.

C.3 Helpful scripts

Many of these scripts can be found at the author’s Bitbucket repository, found at https:
//bitbucket.org/tcpekin/scripts/src (the most helpful script/tool is Git — use it!).
Please request access, read-only, and clone it if these scripts seem handy. Pull requests are
welcomed.

C.3.1 Importing microscope image formats

Often, TEM manufacturers export the images acquired to proprietary formats that con-
tain important metadata. While the microscope and camera manufacturers can export the
images to TIFF files, often it is more convenient to use the native format for import into
MATLAB or Python. Most of the MATLAB import scripts are hosted on the openNCEM
Bitbucket repository (https://bitbucket.org/ercius/openncem/src/master/), which is
maintained by Peter Ercius. There also exists a GitHub openNCEM repository, which is
more Python focused (https://github.com/ercius/openNCEM).

Gatan file formats

To read .dm3 files, use dm3Reader.m (https://bitbucket.org/ercius/openncem/src/
master/dm3Reader.m).

To read .dm4 files, use dm4Reader.m. This should be able to read 4D NBED datasets
acquired on the Gatan K2-IS camera (https://bitbucket.org/ercius/openncem/src/
master/dm4Reader.m).

FEI TIA file formats

TTA outputs both .emi and .ser files, but only .ser files can be successfully read by MATLAB
and Python currently. The importer for this filetype can be found at https://bitbucket.
org/ercius/openncem/src/master/serReader.m.

Converting to 4D .dm4 files

Gatan’s Digital Micrograph GMS 3 (the latest version) does have some convenient tools
for 4D stack manipulation, such as relatively simple strain mapping, virtual darkfield and
bright field image creation, as well as the standard image analysis tools contained. Digital
Micrograph also has a C++-based scripting language [143]. The first script provided here in


https://github.com/altmany/export_fig
https://github.com/altmany/export_fig
https://www.mathworks.com/matlabcentral/fileexchange/22619-fast-2-d-convolution
https://www.mathworks.com/matlabcentral/fileexchange/22619-fast-2-d-convolution
https://bitbucket.org/tcpekin/scripts/src
https://bitbucket.org/tcpekin/scripts/src
https://bitbucket.org/ercius/openncem/src/master/
https://github.com/ercius/openNCEM
https://bitbucket.org/ercius/openncem/src/master/dm3Reader.m
https://bitbucket.org/ercius/openncem/src/master/dm3Reader.m
https://bitbucket.org/ercius/openncem/src/master/dm4Reader.m
https://bitbucket.org/ercius/openncem/src/master/dm4Reader.m
https://bitbucket.org/ercius/openncem/src/master/serReader.m
https://bitbucket.org/ercius/openncem/src/master/serReader.m

~

9
10
11
12
13

38

39

4(

81

Code Block C.1 can convert 3D stacks acquired by the FEI TitanX and the Libra at NCEM
to 4D stacks to use the latest tools provided by Gatan. Additionally, the second script
(Code Block C.2 can do this with a nested folder structure, which is included for archival
reasons. This stack format is not longer in vogue. These scripts should be opened in Digital
Micrograph and executed in the program itself. For more reading on scripting in Digital
Micrograph, please refer to [144, 145].

// begin user defined numbers

//offset - i added this. Image number at which real DPs start

number offset = 0 // O for 3D stacks from TitanX

// binning factor

number binningfactor = 1// binning factor to bin diffraction patterns by,
should be multiple of two and DPs should be sized such that both
dimensions are evenly divisible by binningfactor

if ( binningfactor < 1 )

{

Throw ("binning factor is less than 1, change please")
}

// end of user defined numbers

// debugging section

/*string filename = "Z:\\bustillo\\20170206 For Tom 4DSTEM dataset from
TitanX small\\Winey 05 12 best_01 10x10 30nm steps spot 11 Opblmrad -4
p7um defocus 33ms CL=380.dm3"

image front = OpenImage(filename)

; ShowImage ( front )

*/

//get basic image on already opened 3D stack
image front := getfrontimage ()

taggroup imgtags = front.imagegettaggroup ()

number width, height
string imWidthTag = "Series:nimagesx"

; string imHeightTag = "Series:nimagesy"

number dimx, dimy, dimz
get3Dsize (front, dimx, dimy, dimz)

imgtags.taggroupgettagasnumber (imWidthTag, width)
imgtags.taggroupgettagasnumber (imHeightTag, height)

3 number cameraWidth = dimx

number cameraHeight = dimy

// Change these numbers to the numbers you acquired and uncomment if error

// shows up with dimension = 0. This usually happens on the Libra. width
and height

// are scan dimension, cameraWidth and cameraHeight are diffraction
pattern dimensions.

//width = 30

//height = 30
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//cameraWidth = 256
//cameraHeight = 256
//Result (width + height + cameraWidth + cameraHeight)

if ( binningfactor != 1 )

5 {

cameraWidth = cameraWidth / binningfactor
cameraHeight = cameraHeight / binningfactor

3

image img4D := NewImage( "4D_image", 10, width, height
cameraHeight )

ShowImage ( img4D )
IMDSetImageFormatDiffractionImage ( img4D )

number rowlIndex = 0

 number columnIndex = 0

number needMoreData = 1

// Function that performs batch action
void PerformBatchAction( image imgO )

{

if ( rowIndex == height )

{

Result ( "\t\t\tNOT NEEDED\n" )
needMoreData = 0
return;
}
img4D.sliceN( 4, 2, columnIndex,rowlIndex,0,0, 2,cameraWidth ,1,
cameraHeight ,1 ) = imgO0

columnIndex += 1

if ( columnIndex >= width )

{

columnIndex = 0
rowIndex += 1

}

+

void StackProcess( )
{
number dimx, dimy, dimz
get3Dsize (front, dimx, dimy, dimz)

for ( number i = offset ; i < dimz && needMoreData;
{
image imgO := slice2( fromt, 0, O, i, O, dimx, 1,
if ( binningfactor != 1 )
{

// Script taken from DM documentation

>

i

1,

cameraWidth,

+= 1)

dimy,

1

)

3,
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// Create exact copy (including tags, calibration...)
image out
out = ImageClone( imgO )

// Resize image to binned size.

// - sets pixel values to zero

// - adjusts calibrations to keep FOV
number sx, sy

GetSize( img0, sx, sy )

ImageResize ( out, 2, sx/binningfactor, sy/binningfactor )
// Sum over all possible sub-sections
for ( number j = 0; j < binningfactor; j++ )
{
for ( number i = 0; i < binningfactor; i++ )
{
image temp = Slice2( img0, i, j, O, O, sx/binningfactor,
binningfactor, 1, sy/binningfactor, binningfactor )
number x, y, x1, yil
GetSize (temp, x, y)
GetSize (out, x1, yi1)
out += temp
DeleteImage ( temp )
3
}
img0 := out
DeleteImage (out)
}
PerformBatchAction( imgO )
DeleteImage ( imgO )
Result (i+1 + " of " + dimz + " completed \n")
¥
}

StackProcess ( )

Code Block C.1. Create4DStack 3DStack.s This function will open a 3D stack and then convert
it to a 4D stack. It provides options for binning as well as applying an offset.

// binning factor
number binningfactor = 2

// size of scan in real space
number width = 101// add 1 for K2 datasets
number height = 100

//offset - i added this. Image number at which real DPs start
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number offset = 6584

// size of acquired diffraction image

number cameraWidthTotal = 1920 // I think this line just was left in here
by accident

number cameraWidth = 1792 // current unbinned values

number cameraHeight = 1920 // current unbinned values

s //John Balk Data
//cameraWidth = 1920
//cameraHeight = 1792

if ( binningfactor != 1 )

{
cameraWidth = cameraWidth / binningfactor
cameraHeight = cameraHeight / binningfactor

}

5 image img4D := NewImage( "4D_stack", 10, width, height, cameraWidth,
cameraHeight )

ShowImage ( img4D )

IMDSetImageFormatDiffractionImage ( img4D )

number rowIndex = 0
number columnIndex = 0
number needMoreData = 1

void PerformBatchAction( image imgO )

Aj{

if ( rowIndex == height )

{
Result ( "\t\t\tNOT NEEDED\n" )
needMoreData = 0
return;

}

number sx1, syl, sx2, sy2

GetSize (img0, sx1, syl)

GetSize (img4D.sliceN( 4, 2, columnIndex,rowIndex,0,0, 2,cameraWidth ,1,
3,cameraHeight ,1 ), sx2, sy2)

result (""+sxl1+" "+syl+" "+sx2+" "+sy2+" ")

img4D.sliceN( 4, 2, columnIndex,rowIndex,0,0, 2,cameraWidth,1, 3,
cameraHeight ,1 ) = img0

columnIndex += 1

if ( columnIndex >= width )

{
columnIndex = 0
rowIndex += 1

¥

}

; // Function to create a list of file entries with full path
void CreateFilelList( TagGroup filelList, string folder )
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58 {

59 // for each directory, make a new folder name and call recursively

60 TagGroup directoryTG = GetFilesInDirectory( folder , 2 ) // 1 =
Get files, 2 = Get folders, 3 = Get both

61

62 for (number i = 0; i < directoryTG.TagGroupCountTags (); i++ )

63 {

64 TagGroup entryTG

65 if ( directoryTG.TagGroupGetIndexedTagAsTagGroup( i , entryTG ) )

66 {

67 string directoryName

68 if ( entryTG.TagGroupGetTagAsString( "Name" , directoryName ) )

69 {

70 CreateFileList ( fileList, folder + "\\" + directoryName )

71 ¥

72 }

73 }

75 // for each file, add to list
76 TagGroup filesTG = GetFilesInDirectory( folder, 1 ) // 1 = Get
files, 2 = Get folders, 3 = Get both

78 for (number j = 0; j < filesTG.TagGroupCountTags(); j++ )
79 {

80 TagGroup entryTG2

81 if ( filesTG.TagGroupGetIndexedTagAsTagGroup( j , entryTG2 ) )

82 {

83 string fileName

84 if ( entryTG2.TagGroupGetTagAsString( "Name" , fileName ) )

85 {

86 filelist.TagGroupInsertTagAsString( filelList.TagGroupCountTags () ,
folder + "\\" + fileName )

87 }

88 }

89 }

90 }

92 // Open and process all files in a given filelist
93 void BatchProcessList( TagGroup fileList , string name )

01 {

95 number nEntries = filelList.TagGroupCountTags ()

96 if ( nEntries > 0 )

97 {

98 result( "Processing file list <" + name + "> with " + nEntries + "
files.\n" )

99 }

100 else

101 {

102 result( "File list <" + name + "> does not contain any files.\n" )

103 }

104

105 for ( number i = offset ; i1 < nEntries && needMoreData; i += 1 )

106 // CHANGE I = OFFSET??
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string strO0, strl, str2, str3
fileList.TagGroupGetIndexedTagAsString(

result( "\t open: " + str0 + "\n" )
image imgO := OpenImage( str0 )
//Debugging

number sx, sy
GetSize( img0, sx, sy )

// Actual batch-action

result ( "process... \n" )

number j

j =1 - offset

result( j + "\n" )

if ( binningfactor != 1 )

{
// Script taken from DM documentation
// Create exact copy (including tags,
image out

out := ImageClone( imgO )
// Resize image to binned size.
// - sets pixel values to zero

// - adjusts calibrations to keep FOV
number sx, sy

GetSize( img0, sx, sy )
result ("Test" +sx +sy +"\n")

ImageResize ( out, 2, sx/binningfactor
// Sum over all possible sub-sections

i, stro )

calibration...)
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, sy/binningfactor )

for ( number j = 0; j < binningfactor; j++ )

{
for ( number i = 0; i < binningfactor; i++ )
{

out += Slice2( img0, i, j, 0, O,
1, sy/binningfactor, binningfactor )
3
}
DeleteImage (img0)
img0 = out
DeleteImage (out)
}

PerformBatchAction( imgO )

DeleteImage (imgO0)

sx/binningfactor,

binningfactor
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// Main routine. Processes all dm3/dm4 files in a directory
void BatchProcessFilesInFolder ()

{
string folder , outputFolder
if ( !GetDirectoryDialog( "Select folder" , "" , folder ) )
return

TagGroup filelList = NewTagList ()
CreateFileList ( fileList, folder )

BatchProcessList( fileList, "DM4 1list" )
}

BatchProcessFilesInFolder ()

Code Block C.2. CreatedDStack NestedFolder.s This function will open a nested folder structure
of .dm3 files and then convert it to a 4D stack. It provides options for binning as well as applying
an offset. This file structure with the nested folders was common with the early K2-IS NBED
acquisitions.

C.3.2 Image manipulation

When Gatan K2-IS data is acquired, it is often convenient to remove the background from
each diffraction pattern. The background consists of lines due to electrical noise. Luckily,
the HAADF detector in the NBED patterns provides a convenient reference. This process
is shown in Fig. C.2, and the code for this operation is shown in Code Block C.3.

Figure C.2. Process of background subtraction. a) The mean diffraction, with red box showing
where the reference background is measured. b) The reference background, which is subtracted
from a). c¢) The resulting pattern. This is often done for every pattern in the stack of images.

im = im_orig - repmat(mean(im_orig(:,206:end) ,2), [1, size(im_orig,2)]1));
% im is the background subtracted image, im_orig is the original image,
and the reference background is created by using repmat to expand the
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mean in the HAADF aperture to the size of the original image. the 206
index is where column where the aperture starts.

Code Block C.3. Standard background subtraction code using the aperture edge as background
reference.

function [qx,qy] = makeFourierCoords (N,pixelSize)
% This function generates Fourier coordinates.
% Updated 2017 to fix odd sizes, and allow 2D output.
if mod(N(1) ,2) == 0
gx = circshift (((-N(1)/2):(N(1)/2-1))/(N(1)*pixelSize) ,[0 -N(1)/2]1);
else
gx = circshift ((((1-N(1))/2):((N(1)-1)/2))/(N(1)*pixelSize),[0 (1-N(1)

)/21) ;
end
if nargout == 2
% Check to see if second dimension length is same as first
if length(N) == 1
[qy,q9x] = meshgrid(gx);
else

% Add second dimension
if mod(N(2),2) == 0
qy = circshift (((-N(2)/2):(N(2)/2-1))/(N(2)*pixelSize),[0 -N
(2)/21);
else
qy = circshift ((((1-N(2))/2):((N(2)-1)/2))/(N(2)*pixelSize) , [0
(1-N(2))/21);
end
[qy,qx] = meshgrid(qy,qx);
end
end
end

Code Block C.4. makeFourierCoords is one of the most widely used functions in the image
processing done here. It is useful for when you want to operate in Fourier space.

The Fourier Shift Theorem is very helpful when shifting around images a non-integer
amount. The theorem simply states that circularly shifting a signal by an amount m can be
performed by multiplying its Fourier transform by exp (—2img,m), where g, is k/N, where k
is the frequency spectrum, and N is the size of the image. This can be recognized as a linear
phase plane wave. The inverse DFT will recover the shifted image. This is implemented in
Code Block C.5.

function [imageOut] = imageFourierShift (imageIn, xShift, yShift)
% this function takes in an image, and uses a fourier shift to move it
% xShift and yShift pixels. xShift moves down, yShift moves right.
imageSize = size(imageln);
gx = makeFourierCoords (imageSize (1), 1)7;
if imageSize (2) == imageSize (1)
qQy = qx’;
else
qy = makeFourierCoords (imageSize(2), 1);
end
imageOut = real (ifft2(fft2(imagelIn) .*x(exp (-2i*pi*xqx*xShift)
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*exp (-2i*pi*qy*yShift))));

% figure (15)
% imagesc([imageIn, imageOut]);

; end

Code Block C.5. This function utilizes makeFourierCoords and the Fourier Shift Theorem to
smoothly shift an image by an arbitrary amount. This shift does not have to be done in integer
pixel amounts.

Image binning is often very helpful to reduce file size, increase signal to noise, and speed
up processing. A simple function to do this is shown in Code Block C.6.
function [imOut] = bin(imIn, binFactor)

% this bins images that have even dimensions by an even integer.

% check inputs

imSize = size(imIn);
if mod(imSize (1), binFactor) ~= 0 || mod(imSize (2), binFactor) ~= 0 || mod
(binFactor ,2) ~= 0

error (’Image dimensions and binFactor all must be even numbers and
divisible by binFactor.?’)

end
imOut = zeros(imSize./binFactor) ;
for i = 1:binFactor
imOut = imOut + imIn(i:binFactor:end, i:binFactor:end);
end
imOut = imOut ./ binFactor;
end

Code Block C.6. A simple binning function.

C.4 Image viewing

The next function in Code Block C.7 allows you to quickly use the arrow keys view a 3D or
4D stack of images in MATLAB without unnecessary plotting.

function arrowkey_viewer (im_stack, range)

% The inputs are im_stack which is either 3D or 4D, and range,

% which is caxis range.

f = figure(’WindowKeyPressFcn’, @figScroll, ’Name’, ’Arrow Key Viewer’);

if length(size(im_stack)) == 3
% the data should be in [qgx, qy, im#]
num = 1;
im = im_stack(:,:,num);
a = gca;
title(a, num)
elseif length(size(im_stack)) == 4
% the data should be in [x, y, gqx, qyl] in image coordinates (I think)
numx = 1;
numy = 1;
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= squeeze (im_stack (numx, numy, :, :));
gca;

title(a, [numx, numyl);

imagesc(im) ;axis image;colorbar
if nargin == 2
caxis(range)

function figScroll(src, callbackdata)

if length(size(im_stack)) == 3
if strcmp(callbackdata.Key, ’rightarrow’) == 1
num = num + 1;
if num == size(im_stack, 3) + 1
num = 1;
end
im = im_stack(:,:,num);

re_eval (im, num)
elseif strcmp(callbackdata.Key, ’leftarrow’)

num = num - 1;
if num == 0
num = size(im_stack, 3);
end
im = im_stack(:,:,num);
re_eval (im, num)
end
elseif length(size(im_stack)) == 4
if strcmp(callbackdata.Key, ’rightarrow’) == 1
numy = numy + 1;
if numy == size(im_stack, 2) + 1
numy = 1;
end
im = squeeze(im_stack(numx, numy, :, :));

re_eval (im, [numx, numy])
elseif strcmp(callbackdata.Key, ’leftarrow’) ==

numy = numy - 1;
if numy == 0
numy = size(im_stack, 2);
end
im = squeeze(im_stack (numx, numy, :, :));
re_eval (im, [numx, numy])
elseif strcmp(callbackdata.Key, ’uparrow’) == 1
numx = numx - 1;
if numx == 0
numx = size(im_stack, 1);
end
im = squeeze(im_stack (numx, numy, :, :));

re_eval (im, [numx, numy])

90
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elseif strcmp(callbackdata.Key, ’downarrow’) == 1
numx = numx + 1;
if numx == size(im_stack, 1) + 1
numx = 1;
end
im = squeeze(im_stack (numx, numy, :, :));

re_eval (im, [numx, numy])
end
end
end

function re_eval (im, num)
h.CData = (im); % this will not work in versions prior to r2014b.
If you use that version, comment out this line, and uncomment the next

line.
% set(h, ’CData’, im);
title(a, num)
drawnow
end
end

Code Block C.7. A function to view 3D and 4D stacks easily, in the figure window with the
arrow keys.

The function virtualDF.m takes in a 4D image stack and outputs a struct that contains
a virtual darkfield image.

function [out] = virtualDF (cube4D, center, radius)

% virtualDF takes in a 4D_cube and creates a (for now) circular aperture
% around a center point with a user defined radius

% cubed4D is a dataset in dimensions [x y gx qyl], where real-space

% coordinates occur first

% center is a [x y] location in image coordinates, and can be a row

% delimited 1list [x1 y1; x2 y2; ...]

% radius is a number

N = size(cube4D) ;
Nc = size(center);

[xgrid, ygrid] = meshgrid(1:N(4), 1:N(3));
mask = zeros(N(3:4));

for k = 1:Nc(1)
r_mask = sqrt((xgrid-center(k,2)).72 + (ygrid-center(k,1)).72);

r _mask = r_mask <= radius;
mask = mask | r_mask;

end

img = zeros(N(1:2));

; CBEDmean = squeeze (mean(mean(cubed4D, 1), 2));
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% figure (9)

% imagesc ([CBEDmean./(max (CBEDmean(:))) r_mask]); axis image; colormap
gray

figure (10)

ap_image = log(CBEDmean .* (mask+0.1));

imagesc (ap_image); axis image; colormap gray

proceed_flag = input(’Proceed with calculation? [y/n] \n’, ’s’);
while strcmpi(proceed_flag, ’n’) || ~strcmpi(proceed_flag, ’y’)
if strcmpi(proceed_flag, ’n’)
return
else
proceed_flag = input(’Incorrect input, proceed with calculation? [
y/n]l \n’, ’s’);
end
end

disp(’Proceeding with calculation’);

tic

s for i = 1:N(1)

for j = 1:N(2)
img (i, j) = sum(cubed4D(i,j,mask));

end
end
out.img = img;
out.center = center;
out.radius = radius;
; out.ap_image = mask;
s % figname = ’[’;
% for i = 1:Nc(1)
% figname = [figname ’ ’ num2str(center(i,:)) > ’1;
% end
% figname = [figname ’]°];
f = figure;%(’Name’, figname) ;
imagesc(img); axis image off; colormap(gray)
h = gca;
h.Position = [.25 0 .75 1];
j = axes(’units’, ’normalized’, ’position’, [-.02 .7 .3 .3]);
imagesc (ap_image); axis image off; colormap(gray)
hold on

for i = 1:Nc(1)

scatter (center (i,2), center(i,1), ’r+’, ’LineWidth’, 2)
end
hold off

s toc
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end

Code Block C.8. A function to create virtual darkfield images.

The function plotMaskedlmage.m in Code Block C.9 allows you to plot matrices with
areas specified by mask as black. This is not easily possible using built in functions such as
imagesc. This is useful for when there is vacuum in the image, which should be represented
as black. This function uses the HSV (hue, saturation, value) representation of the image,
and sets the V to 0 or black where the mask specifies.

function [imRGB] = plotMaskedImage (im, mask, caxis_scale, flag_plot)
% this function will take in an image, and a mask, and output a plot in
% which the masked off areas are black.

if size(im) ~= size(mask)
error (’Image size ([%d %d]) does not match mask size ([%d %dl).’,
size(im, 1), size(im, 2), size(mask, 1), size(mask, 2));
end

if nargin <= 3
flag_plot = 1;
end
if nargin == 2 | isempty(caxis_scale)
caxis_scale = [min(im(mask(:))) max(im(mask(:)))]1;
end

; cmap = parula(256) ;

% cmap = hot (256) ;
sigma = 0; % for smoothing with gaussian kernel - maybe this shouldn’t
% exist in this function and smoothed image should just be passed in

% smooth mask
mask = sin(mask*pi/2).72;

if sigma > O

k = fspecial(’gaussian’, 2*ceil (2*sigma)+1, sigma);
A mask = conv2(mask, k, ’same’) ./ conv2(ones(size(mask)), k, ’same’);
kNorm = 1./ conv2(mask, k, ’same’);
im = conv2(mask.*im, k, ’same’) .* kNorm;
end
im = (im - caxis_scale(1)) ./ (caxis_scale(2) - caxis_scale(1));
im = min(max(im, 0), 1);

imRGB = ind2rgb(round (255.*im)+1, cmap);
temp = imRGB;

% apply mask

imRGB = rgb2hsv (imRGB) ;

imRGB(:,:,3) = imRGB(:,:,3) .*mask;

imRGB = hsv2rgb (imRGB) ;

%» intermediate plots

if flag_plot == 1
% figure (999) ;
% @Il §

yA imagesc (mask) ;



45

% axis image off;

% final plot
figure (10000) ;
clf;
imagesc (imRGB) ;
axis image off;
% colorbar;

end

end

Code Block C.9. A function to create a masked image.
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This last function plotClusterlmage.m takes in a list of (z,y) coordinates that are the
locations of electrons in a clustered diffraction pattern, and outputs an image for inspection,

or further processing.

function [Ik] = plotClusterImage (sCluster, Ind)
N = circshift(sCluster.stackSize ,0);

% Quick script to make cluster image from s4DSTEM array
x = sCluster.electrons{Ind}(:,1);

y = sCluster.electrons{Ind}(:,2);

I = zeros(N(1:2));

I(sub2ind (N(1:2) ,x,y)) = 1;

I = imresize(I,1/imageScale,’bilinear’);

k = fspecial(’gaussian’ ,2*xceil (4*sigma)+1,sigma);

Ik = conv2(I,k,’same’);

end

Code Block C.10. This function takes a list of electrons in a struct and outputs an image.
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