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CHANG’S CONJECTURE, GENERIC ELEMENTARY EMBEDDINGS
AND INNERMODELS FOR HUGE CARDINALS

MATTHEW FOREMAN

Abstract. We introduce a natural principle Strong Chang Reflection strengthening the
classical Chang Conjectures. This principle is between a huge and a two huge cardinal in
consistency strength. In this note we prove that it implies the existence of an inner model
with a huge cardinal. The technique we explore for building inner models with huge cardinals
adapts to show that decisive ideals imply the existence of inner models with supercompact
cardinals. Proofs for all of these claims can be found in [10].1,2

Much of 20th century logic in general and model theory in particular was
tied up with understanding the expressive power of first and second order
logic (and their variants). Of particular interest is the role of the downwards
Lowenheim–Skolem theorem; indeed in some ways it is the distinguishing
feature of first order logic ([19]).
The Downward Lowenheim–Skolem theorem states that ifA is a structure
in a countable language then for all infinite cardinals κ less than the cardi-
nality ofA there is aB ≺ A of cardinality κ. Tremendous effort was put into
generalizing the downwards Lowenheim–Skolem theorem in an attempt to
show that elementary substructure B can be taken to have some second
order properties.
The coarsest second order properties have to do with cardinality. In this
paper we consider various more subtle second order properties. Among
them is being correct for the nonstationary ideal. By demanding that B
have these properties we are able to formulate a version of the downwards
Lowenheim–Skolem theorem with very strong large cardinal strength.3

§1. Two cardinal transfer theorems. Let L be a countable language with
a distinguished unary predicate R. Then

A = 〈A,RA, fi , Rj, ck . . .〉i,j,k∈�
is said to have type (κ, �) if and only if |A| = κ and |RA| = �.
Received January 10, 2011.
Key words and phrases. Chang’s Conjecture, inner models, huge cardinals.
1This research was partially supported by NSF grant DMS 0701030.
2Fordefinitionsof“Huge,”“Supercompact,”and“Measurable”cardinals, seeAppendix A.
3Basic definitions of large cardinals are provided in the Appendix.
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In this definition, we are considering two structures simultaneously—the
whole structure A and a related structure whose universe is RA. We often
write A = 〈κ; �, fi . . .〉 to mean a structure of type (κ, �).
The earliest investigations didnot ask for elementary substructures,merely
for elementarily equivalent structures. This weakening had the virtue of
allowing simultaneous generalization of both the downwards and upwards
Lowenheim–Skolem theorems. (The reader is referred to Section 7.2 of [1]
for background information.)
We write

(κ, �)→ (κ′, �′)
to mean that if A is an L-structure of type (κ, �) then there is a B ≡ A of
type (κ′, �′).
We state here two classical results that exemplify the type of theorems that
were proven. The first is Vaught’s “gap-one” two cardinal theorem ([4]).
Theorem 1.1 (Vaught’s Two Cardinal Theorem). (κ, �)→ (�1, �) for all
κ > � ≥ �.
The gist of this theorem is that there is no first order definable way to
describe exactly how large κ is, even by mentioning a smaller cardinal �.
For example, it is impossible to say that κ is a singular cardinal, even if one
explicitly has a parameter for the cofinality of κ.
In a positive direction, it is not difficult to see how to express the property
that κ ≤ �+n. The next theorem ([26]) says that “infinite gaps” are not
expressible.4

Theorem 1.2 (The infinite gap two cardinal theorem:). (κ+� , κ) →
(�+� , �) for all infinite cardinals κ, � and infinite ordinals �, �.
Further progress was both hindered and abetted by the intrusion of
Set Theory. Indeed Jensen ([4]) developed his remarkable combinatorial
principles, calledMorasses to prove:
Theorem 1.3 (Jensen’s Gap-n two cardinal theorem).

L |= (∀n ∈ �)(∀ infinite κ, �)((κ+n, κ)→ (�+n, �)).
In counterpoint, there is a first order sentence � such that for any regular
cardinal κ there is a model of � of type (κ+2, κ) just in case there is a κ-
Kurepa tree. Thus, for example, the principal (�3, �1) → (�2, �) fails in a
model of Silver where there is a Kurepa tree on �2, but no �1-Kurepa tree.
(See e.g. [23])
In the spirit of the Lowenheim–Skolem theorem, one can ask for
elementary substructures:

Definition 1.4. For κ ≥ κ′ and � ≥ �′, we say (κ, �)→→(κ′, �′) if and
only if for all A of type (κ, �) in a countable language there is an elementary
substructure B ≺ A of type (κ′, �′).

The first nontrivial instance of this became known as Chang’s Conjecture:

(�2, �1)→→(�1, �).
4Here and elsewhere, we write κ+α for the αth successor of κ.
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To modern eyes, Chang’s Conjecture is obviously set theoretical: If you
apply it to the structure 〈L(�2)V , (�1)V ,∈〉 the result is an elementary sub-
structure N ≺ L�2 . If N̄ is the transitive collapse of N and j is the inverse
of the transitive collapse map, then the embedding j yields an L-ultrafilter
on crit(j) and hence the existence of O#. As a consequence, it is clear that
Chang’s Conjecture cannot be a theorem of ZFC.
On the other hand, variations on the classical Chang’s Conjecture have
become a proving ground for new set theoretic techniques, such as those
related to semiproper forcing. An early example of this is Silver’s theorem,
which contained the first instance of the use ofmaster conditions in a forcing
argument.
Theorem 1.5 (Silver ([16])). Con(ZFC + there is an �1-Erdös cardinal )
implies Con(ZFC + GCH + (�2, �1)→→(�1, �)).
In fact the exact consistency strength of Chang’s Conjecture has been
shown to be an �1-Erdös cardinal ([16]).
Quite surprisingly, Silver’s technique is inherently related to the cardinal
�1, and does not generalize to �n for n > 1. Kunen developed a technique
for proving the consistency of saturated ideals on �1 and showed that his
technique gave another model of (�2, �1)→→(�1, �). Laver remarked that
Kunen’s construction worked at larger cardinals as well, and hence the
following holds:
Theorem 1.6 (Kunen/Laver). Con(ZFC + there is a huge cardinal )
implies that for all n ≥ 1, Con(ZFC + GCH + (�n+1, �n)→→(�n,�n−1)).
Getting an analogous gap-one result for finitely many cardinals was not
difficult using the Kunen technique, but more global results needed new
ideas ([7]):
Theorem 1.7. Con(ZFC+ there is a 2-huge cardinal ) implies Con(ZFC+
GCH +(∀m < n)(�n+1, �n)→→(�m+1, �m).)
There rest yet many open problems in the area. For example, while
Levinsky,Magidor, andShelah ([18]) showed that the following is consistent:

(ℵ�+1,ℵ�)→→(�1, �),
it is still not known if the property:

(ℵ�+1,ℵ�)→→(�2, �1)
is consistent. Cummings ([2]) has results indicating that this is a difficult
problem.
One reason for the attention that Chang’s Conjecture properties receive is
that they tend to showup in awide variety of contexts. They are incompatible
with �-type principles and are therefore useful in showing the negation of
square.
Another reason is the connection with Hungarian partition theory. It is
well-known that

κ → [
]<��+
is equivalent to

(κ, �+)→→(
, �).
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A lesser-known, but deeper family of results are partition relations with
infinite exponents. For example:
Theorem 1.8 ([11]). Assume the CH. Then:

(�3, �2)→→(�2, �1)
is equivalent to

�3 → [�2]��2 .
We refer the reader to [5] for details.

§2. More refined second order reflection properties. To investigate other
possible second order reflection properties, we begin by reformulating
Chang’s Conjecture in modern language. We write � � κ to mean
that � is a regular cardinal bigger than 22

κ

and 
 is a well-ordering of
H (�) in order-type |H (�)|. Since 
 is in the language, 〈H (�),∈,Δ〉 has
canonically definable Skolem functions for every structure that belongs
to H (�).
Proposition 2.1. (�n+2, �n+1)→→(�n+1, �n) if and only if there is a
� � �n+2 and an N ≺ 〈H (�),∈ Δ〉 such that
if � : N → N̄ is the transitive collapse then
• � � �n = id and
• �(�n+2) = �n+1.
The relationship between N, N̄, and �N is illustrated in figure 1.

� (Proposition 2.1) (⇐) Suppose that the Chang’s Conjecture fails. Let
A = 〈�n+2, �n+1, fi , Rj, ck〉i,j,k∈� be the Δ-least counterexample. Suppose

Figure 1. Proposition 2.1.
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thatN ≺ A is as in the hypothesis. Then A ∈ N soN ∩�n+2 is closed under
Skolem functions for A. In particularN ∩�n+2 ≺ A. But |N ∩�n+2| = �n+1
and |N ∩ �n+1| = �n. This is a contradiction.
(⇒) Let A = 〈�n+2,∈, fi〉 be a fully Skolemized structure such that for
all z ≺ A we know that skH (�)(z) ∩ �n+2 = z. By the Chang’s Conjecture
we know there is a z ≺ A such that the type of z is (�n+1, �n). Let N0 =
skH (�)(z). Then N0 ≺ H (�).
Let N = skH (�)(N0 ∪ �n). We claim that:
• sup(N ∩ �n+1) = sup(N0 ∩ �n+1),
• sup(N ∩ �n+2) = sup(N0 ∩ �n+2).
To see this, let 
 : N0×�n → �n+1 be a Skolem function. Since Δ is in the
language, for �x ∈ N , the function 
(�x, ·) : �n → �n+1 is definable in N0. In
particular, sup(
(�x, ·)“�n) ∈ N0. Since

N ∩ �n+1 =
⋃

{
(�x, ·)“�n : 
 is a Skolem function and �x ∈ N0},
we see that sup(N0 ∩ �n+1) = sup(N ∩ �n+1). The result for �n+2 is seen
similarly.
Let � : N → N̄ be the transitive collapse. Since �n ⊆ N , � � �n is the
identity map. To see that �(�n+2) = �n+1 we need to see that N ∩�n+2 has
order type �n+1. Note that the order type is at least �n+1 by the choice of z.
Let α ∈ N ∩ �n+2. Then there is a bijection f : �n+1 → α that lies in N .
Hence f : N ∩ �n+1 → N ∩ α is a bijection. In particular, |N ∩ α| =
|N ∩ �n+1|; thus |N ∩ α| < �n+1. �
Standard Skolem function arguments combined with Proposition 2.1
show that the existence of a single � � �n+2 with an N ≺ 〈H (�),∈,
〉
satisfying the conditions about where � moves ordinals implies that for all
� � �n+2 there is anN satisfying the conditions. Moreover, the existence of
a singleN satisfying the hypothesis implies the existence of stationarilymany
such N . We will say more about stationary sets later.
For the rest of the paper we will write N̄ for the transitive collapse of N
and �N for the transitive collapse map.
In [10], the following more involved extension of Proposition 2.1 is
proved:

Proposition 2.2. Let � ≤ κ � � be cardinals with � and � regular and with
cf(κ) ≥ �. Let A be a structure expanding 〈H (�),∈,Δ, {κ, �}〉 andN0 ≺ A.
Let N1 = skA(N0 ∪ sup(N0 ∩ �)) and let � = | sup(N0 ∩ �)|. Suppose that
either:

1. The GCH holds or
2. there is a � ⊆ N0 and κ ≤ �+�.
Then N1 ∩ � = sup(N0 ∩ �), sup(N1 ∩ κ) = sup(N0 ∩ κ) and |N1 ∩ κ| =

|N0 ∩ κ| · �.
The GCH is only used for computing the cardinality of N1 ∩ κ. It seems
to be open whether the GCH is necessary or even relevant.
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2.1. Adding reflection properties: The first new property. Restating
Chang’s Conjectures in terms of the transitive collapse of an N ≺ H (�)
opens the door to asking additional properties ofN than that the collapsing
map send ordinals to the right places. Our first new property is quite easy, we
ask for an N ≺ H (�) as in Proposition 2.1 with the additional requirement
that:

N ∩ �n+2 ∈ N̄ . (1)

This requirement is clearly in the spirit of the usual Chang’s Conjecture.
It asks that you can find an element a of N (necessarily lying above �n+2 in
some sense) such that �N (a) = N ∩�n+2. One might hope to construct such
anN by adding an a with these properties to anN0 so that the collapse of a
becomes N0 ∩�n+2. But this must be done in such a manner that N0 ∩�n+2
is not changed. This type of self-referential obstacle, reminiscent of the
arguments involved in analyzing semiproper forcing, is typical of Chang’s
Conjecture.

2.2. A digression on nonstationary ideals. We remind the reader of the
modern notion of stationarity.

Definition 2.3. Let S ⊆ P(X ). Then S is stationary if and only if for all
A = 〈X,fi〉i∈�, there is a z ≺ A such that z ∈ S. We write NSX for the
nonstationary ideal on X .

This notion was called “weakly stationary” in [13]. It gives a uniformly-
defined normal and fine ideal on P(X ) for arbitrary sets X that generalizes
older notions of stationary set. Examples include:

• If κ is a regular cardinal then NSκ restricted to κ (as a set of ordinals)
coincides with the classical notion of nonstationary.

• If � is cardinal and κ < � is regular, then NS� � {z ∈ [�]<κ : z ∩ κ ∈ κ}
is the nonstationary ideal on Pκ(�) in the sense of Jech [15].

With this language we see that all “Chang Conjectures” are simply
statements that certain sets are stationary. For example

(�n+2, �n+1)→→(�n+1, �n)
is equivalent to

{z ∈ [�n+2]�n+1 : |z ∩ �n+1| = �n} is stationary.

2.3. A second new reflection property. Let us see what happens to the
image of the nonstationary ideal under the transitive collapse map of an
elementary substructure. Suppose thatN ≺ H (�) and |N ∩�n+i | = �n+i−1
for i = 1, 2, 3, and assume that �n ⊆ N . Let A′ ⊆ [�n+3]�n+2 be an element
of N . Let � : N → N̄ be the transitive collapse.
Then �(A′) = A for some A ⊆ [�n+2]�n+1 . Moreover, since being nonsta-
tionary is witnessed in an absolute way by a structure A on�Vn+2, we see that

�(NS � A′) ⊆ (NS � A) ∩ N̄ . (2)
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It is clearly a closure or “thickness property” of N to ask for equality in
equation 2. We do not need a property as strong as equality for our results
(though it is consistent), so we give the following weaker definition:

Definition 2.4. N is correct for NS � A if and only if A ∈ N and there
are A′, I ′ ∈ N such that

�N (I ′ � A′) = (NS � A) ∩ N̄ .
(The setA′ is mentioned only to make sure that there is a setA′ belonging
to N such that �N (A′) = A.)

2.4. Strong Chang Reflection.

Definition 2.5. We will say that Strong Chang reflection holds for
(�n+3, �n) if and only if for all large enough � there is an A ⊆ {N ∈
[�n+2]�n+1 : N ∩ �n+1 ∈ �n+1} such that for some

N ≺ 〈H (�),∈,Δ, A〉
we have:
1. N ∩ �n+2 ∈ A and |N ∩ �n+3| = �n+2,
2. N ∩ �n+2 ∈ N̄ ,
3. N is correct for NS � A.
The relationship between N, N̄,NS � A and NS � A′ is illustrated in
figure 2.

Figure 2. Strong Chang Reflection.

As we remarked earlier, saying that Strong Chang’s Conjecture holds
for a single � � �n+3 implies that it holds for all large �, and the exis-
tence of a single N ≺ H (�) where � is large implies the existence of
a stationary set of such N . Thus, using regressive function arguments,
it follows that we can find fixed A′, I ′, and O′ such that for stationar-
ily many N ≺ H (�), 1–3 hold, with I ′, A′ witnessing correctness, and
N ∩ �n+2 = �N (O′).
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Informally Strong Chang Reflection says that the collection of N that are
correct about NS � A and whose transitive collapse contains N ∩ �n+2 is
stationary and canonically well-ordered.

2.5. Analogous Large Cardinal statements. We now note that large car-
dinal statements imply stationarity properties analogous to Strong Chang
Reflection. Example 2.6 illustrates the first new reflection property. Exam-
ple 2.7 is analogous to the second new reflection property.

Example 2.6. The requirement in Section 2.1 is in direct analogy to a
2-huge cardinal. Suppose that j is a 2-huge embedding with critical point κ,
j(κ) = � and j(�) = 
. Let � � κ. Then the collection of N ≺ H (�) such
that if � : N → N̄ is the transitive collapse:
1. � � N ∩ κ = id and �(�) = κ.
2. �(
) = �.
3. N ∩ � ∈ N̄ .
4. N is correct for the nonstationary ideal on P([�]κ)

is stationary. (See fig 3.)

Figure 3. Example 2.6.

Example 2.7 (Magidor). Suppose that j : V → M is an elementary
embeddingwithM a transitive class. Letκ be the critical point of j and� > κ
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be regular. Suppose that j(κ) > � andM is correct for NS � (� ∩ cof(�)).
Then there is a �-supercompact embedding.
To see this it suffices to show that j“� ∈M . Let 〈Aα : α < �〉 be a partition
of � ∩ cof(�) into stationary sets, and 〈Ajα : α < j(�)〉 = j(〈Aα : α < �〉).
If � = sup(j“�), then:

α ∈ j“�
iff

Ajα ∩ � is stationary in �.
2.6. The main theorems.

Theorem 2.8. SupposeStrongChangReflection holds for (�n+3, �n). Then
there is a transitive inner model for “ZFC + there is a huge cardinal.”

This theorem would not be interesting except for the accompanying
theorem:

Theorem 2.9. Suppose there is a 2-huge cardinal. Then for each n there is
a forcing extension in which Strong Chang Reflection holds for (�n+3, �n).

A proof of Theorem 2.9 appears in [10]. It is much harder than Theo-
rem 2.8, but less novel. The rest of this note outlines a proof of Theorem 2.8.

§3. Constructingmodels with very large cardinals in them. One of themost
central and important themes in set theory has been the exploration of large
cardinal axioms by building canonical fine-structural models. This remark-
able programhas succeeded in establishing an exact correspondence between
descriptive set theoretic properties and various large cardinal axioms. The
success of the program has reinforced the widespread belief that large cardi-
nal axioms provide a unifying, linearly ordered framework for establishing
the consistency strength of virtually every set theoretic statement.
However, despite intense sustained effort of the best minds in the subject,
to date there has not been a satisfactory inner model theory of large large
cardinals. Attempts to prove the existence of fine structural inner models of
supercompact cardinals have all foundered on the rocks of the “iterability
problem.” (We refer readers to [20–22] for information on the current state
of the art.)
The author does not claim to have solved this problem. Rather the
results in this paper represent an ad hoc way of constructing models of
ZFC that contain very large cardinals. As an example of the author’s igno-
rance, it is not known if the GCH holds in the models constructed in this
paper.
In this sectionwe give a short description of away of building innermodels
for supercompact and larger cardinals. We begin by giving a superficial
review of the obstacles for building inner models for large large cardinals.
The basic method lying behind the constructions of inner models for large
cardinals was first studied at length by Silver ([24]).5 This method begins

5While extendermodels are ofmore complicated form, at root they start with constructions
from ultrafilters on a set of ordinals.
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with a κ-complete ultrafilter and builds a model of the form L[U ]. Silver
showed the GCH holds in these models; later Solovay developed a fine
structure theory for L[U ].
The initial problem for building an inner model for a supercompact or
huge cardinal is that if U is a normal, fine ultrafilter on [�]<κ or [�]κ, then
L[U ] = L. This is because L contains no set that lies in U , hence one sees
inductively that for all α ∈ OR,Lα[U ] = Lα[∅] = Lα .
An immediate response to this problem is take a setS ⊆ [�]≤κ that belongs
toU and constructL[S,U ]. However, typically, [�]≤κ∩L[S] /∈ U , and hence
we do not get a model of a very large cardinal in this manner.
We could also put S into a model of set theory by force majeure (e.g.
building L(S)[U ]), but this risks constructing a model without choice. We
take a variation of this route, making sure that the set S has a canonical and
absolute well-ordering.
Let A ⊆ P(�) andW = 〈aα : α < �〉 be an enumeration of A.

A∗ = {(�, α) : � ∈ aα}.
Then A,A∗,W are all elements of L[A∗] and L[A∗] |= ZFC . In partic-
ular if U is a normal ultrafilter on [�]≤κ and A ∈ U , then L[A∗, U ] |=
U is a normal ultrafilter.
Solovay ([25]) in a precursor to Proposition 3.2, showed that if U is a
supercompact ultrafilter then there is a set S in U such that the function
x �→ sup(x) is one to one on S. Hence this set S has a natural candidate for
a well-ordering: the ordering induced by the supremum. We use a variation
on this idea, the notion of an ordinary set. If A is ordinary then there is
a canonical candidate for W –the lexicographical ordering on the pairs of
critical ordinals.
Thus, if we are presented with a normal, fine ultrafilter U on [�]≤κ we can
build a model of the form L[A∗, U ]. However this presupposes that we
have a normal, fine ultrafilter in hand to begin with and hence is useless for
relative consistency results. To buildmodels of the appropriate large cardinal
we need to figure out what filter to use in the role of U . For this we use a
generalization of some classical ideas. Our models will be of the form:

L[A∗, Ĭ ],

where Ĭ is the dual of the nonstationary ideal on [�]≤κ.
Since the dual to the nonstationary ideal on [�]≤κ is already normal, fine
and κ-complete and these properties are downwards absolute, to get amodel
with a supercompact or huge cardinal we need only show that L[A∗, Ĭ ] |=
“Ĭ is an ultrafilter.” We record this as a proposition:

Proposition 3.1. Suppose that I is a normal, fine ideal on [�]≤κ and that
L[A∗, I ] |= “Ĭ is an ultrafilter.”ThenL[A∗, I ] |= “Ĭ is a normal, fine ultrafilter
on [�]≤κ.
In particular,

1. If [�]<κ ∈ Ĭ , then L[A∗, I ] |= κ is �-supercompact.
2. If [�]κ ∈ Ĭ , then L[A∗, I ] |= κ is huge.
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In [10], it is shown that if κ is a supercompact cardinal implies that for
each � there is a stationary subset A ⊆ [(2�)+] such that

L[A,NS � A] |= ZFC + κ is �-supercompact.
Similar results for small cardinals seem out of reach at the moment, however
it is not inconceivable that, assuming Martin’s Maximum, one might find a
similar set A ⊆ [�4]<�2 .

3.1. Canonicallywell-ordered stationary sets. Wenow show that the setsA
that we will use to construct large cardinals are naturally well-ordered. For
such A, the set A∗ described above is absolutely definable.

Proposition 3.2 (Baumgartner). LetM,N ≺ H (�). Suppose that
• sup(M ∩ �n+2) = sup(N ∩ �n+2) ∈ cof(> �),
• N ∩ �n+1 =M ∩ �n+1 and sup(N ∩ �n+1) ∈ cof(> �).
ThenM ∩ �n+2 = N ∩ �n+2.
To use the Baumgartner proposition, we need the following result ([12]):

Proposition 3.3 (Foreman–Magidor). For n ∈ � and N ≺ H (�):
if N ∈ [�n+2]�n+1 , N ∩ �n+1 ∈ �n+1, then cof(N ∩ �n+1) = �n.
Putting these two propositions together we get the following:

Corollary 3.4. Let � > �n+2 be a regular cardinal and n > 0.

p : [�n+2]�n+1 → �n+1 × �n+2
be defined by

z �→ (sup(z ∩ �n+1), sup(z ∩ �n+2)).
Then p is 1-1 on the collection of z such that:

1. skH (�)(z) ∩ �n+2 = z,
2. z ∩ �n+1 ∈ �n+1.
Upshot:Relative to a closed unbounded set, p restricted to {z ∈ [�n+2]�n+1 :
z ∩ �n+1 ∈ �n+1} is 1-1.
Definition 3.5. A setA ⊆ {z ∈ [�n+2]�n+1 : z ∩�n+1 ∈ �n+1} is ordinary
if p is 1-1 on A.

Corollary 3.6. If Strong Chang Reflection holds then we can assume that
the witnessing set A is ordinary.

We note that ordinary sets have a canonical and absolute well-ordering,
the pullback of the lexicographical ordering on �n+1 × �n+2.
The assertion that for n > 0 there is an ordinary stationary set is equivalent
to the assertion of the Chang’s conjecture (�n+2, �n+1)→→(�n+1, �n). The
best known upper bound on the consistency strength of this property is a
huge cardinal.
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3.2. Decisive ideals. In this section we will be using the technique of
generic ultrapowers. We begin by describing how to project ideals from a
large set to a smaller subset.
Suppose that X ′ ⊆ X . We get a map Π : P(X ) → P(X ′) by setting
Π(z) = z ∩ X ′. Then Π induces a Boolean algebra homomorphism � :
PP(X ′)→ PP(X ) by setting �(A) = {z : Π(z) ∈ A}.
If J ⊆ PP(X ) is an ideal on P(X ) we get an ideal I = �X ′(J ) ⊆ PP(X ′)
on P(X ′) by setting A ∈ I if and only if �(A) ∈ J (or equivalently
Π−1(A) ∈ J ).6

Definition 3.7. Let Z ⊆ P(X ) and J be an ideal on Z. Let X ′ ⊆ X
and I = �X ′(J ). Then J decides I if and only if there is a set A ∈ Ĭ
and a well-ordering W of A, and A′,W ′, O′, I ′ such that for all generic
G ⊆ P(X )/J :
1. an initial segment of the ordinals of VZ/G is well-founded and iso-
morphic to (|A′|+)V
and

2. if j : V → M ∼= VZ/G is the canonical embedding, where M is
transitive up to (|A′|+)V , then
(a) j(A) = A′.
(b) j(W ) =W ′.
(c) j“|A| = O′.
(d) I ′ = j(I ) ∩ V .

We will say that J is decisive if and only if J decides J .

Remark 3.8. Since the definition is complicated we make some remarks
explaining it.

• Usually A will be ordinary, in which case the canonical well-ordering is
absolute and so clause (b) is vacuous.

• Surprisingly, precipitousness is not part of the definition. In fact, it will
follow from the next lemma, that well-foundedness is not a major issue
for the applications.

• There seem to be two kinds of ideals yielding good generic elemen-
tary embeddings–those ideals that are the remnants of collapsed large
cardinals and those ideals that have “antichain catching” properties.7

This definition is an attempt to characterize the former.

• The notational convention is that the “primed” objects (A′,W ′, O′, I ′)
are on the “j-side” of the definition.

6Alternatively: Let B be the set P(X ) and C be the set P(X ′). Then Π : B → C is a
many-to-one map between two sets. It induces the map � : P(C ) → P(B) as described.
An ideal J ⊆ PP(X ) is an ideal on the Boolean algebra P(B). We can compose the map
� : P(C ) → P(B) with the canonical projection map p : P(B) → P(B)/J. Then p ◦ � :
P(C )→ P(B)/J . The kernal of p ◦ � is the ideal I .
7We are referring to arguments about the nonstationary ideal on �1 and the various

nonstationary towers.
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The following lemma is easy (see [9] for a proof).

Lemma 3.9. Suppose that J is a normal and fine ideal on Z ⊆ P(X ).
Let G ⊆ P(Z)/J be generic and j : V → VZ/G = M be the canonical
elementary embedding,

1. If id : Z → Z is defined by id (z) = z, then [id ]G = j“X .8
2. VZ/G is well-founded up to (|X |+)V .
Lemma 3.9 implies that if we have a “local” property of the ℵn’s, then by
taking generic ultrapowers using the index set H (�) for large enough � we
can get all the well-foundedness we want.
The next result is our main tool for building inner models with very large
cardinals:9

Theorem 3.10. Let 
 ≤ � be cardinals. Suppose that J ⊆ P(Z) is a
normal, fine ideal on a set Z ⊆ P(�) that decides a countably complete ideal
I ⊆ P(Z ′) for some Z ′ ⊆ P(
). Suppose that A,A′,W,W ′, I ′, O′ witness
that J decides I . Then either:

a. L[A∗, I ] |= Ĭ is an ultrafilter on A
or for some generic G ⊆ P(Z)/J , if j : V → VZ/G is the ultrapower
embedding, then

b. L[j(A∗), I ′] |= Ĭ ′ is an ultrafilter on j(A).
Note:
1. The model L[j(A∗), j(I )] is not the same as (L[j(A∗), j(I )])V

Z/G if
the ultrapower is ill-founded.

2. In light of the fact that the nonstationary ideal onPκ(�) is normal, fine,
and κ-complete, if Z ′ is Pκ(�) this says that there is an inner model
with a cardinal κ that is �-supercompact. Similarly if Z ′ = [�]κ, then
this gives an inner model with a huge cardinal.

� We begin the proof of Theorem 3.10 with an easy claim:
Claim: For S ⊆ P(Z ′):

S ∈ I iff for all generic G ⊆ P(Z)/J, j“
 /∈ j(S)
S ∈ I iff �−1
 (S) ∈ J , so it suffices to show that for all T ⊆ P(Z), we have
that T ∈ J iff for all generic G , j“� /∈ j(T ). We compute:

(Z \ T ) ∈ J̆ iff {z : z ∈ Z \ T} ∈ G for all generic G
iff {z : id (z) ∈ Z \ T} ∈ G for all generic G
iff [id ]M ∈ j(Z \ T ) for all generic G
iff j“� ∈ j(Z) \ j(T ) for all generic G
iff j“� /∈ j(T ) for all generic G.

This finishes the proof of the claim.

8More precisely, for all f : Z → V with f ∈ V if {z : f(z) ∈ id(z)} ∈ G , then there is
an x ∈ X such that {z : f(z) = x} ∈ G . Equivalently, if E is the relation coming from ∈ in
the ultrapower, then for all [f], [f]E[id ] iff [f] = j(x) some x ∈ X .
9Schindler remarked that inmany situations items a. and b. are equivalent. SeeAppendix B.
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We now prove the theorem. Suppose that a. fails. Let � be the least ordinal
such that L�+1[A∗, I ] |= “Ĭ is not an ultrafilter.” Then � is definable in
L[A∗, I ] and � is less than |A|+ as computed in L[A∗, I ]. Moreover, there is
a formula φ(w, u, v) such that

B = {z ′ ∈ A : L�+�[A∗, I ] |= φ(z ′, A∗, I )} /∈ I ∪ Ĭ .
LetG ⊆ P(Z)/J be generic and j : V →M be the canonical elementary
embedding whereM ∼= VZ/G andM is well-founded up to (|A′|+)V . Then

j � L[A∗, I ] : L[A∗, I ]→ LM [j(A∗), j(I )].

Since j(A) = A′, I ′ = j(I ) ∩ V, j(W ) = W ′ we know that j(A∗) ∈ V .
An inductive argument shows that if � ∈ ORM is well-founded then:

LM� [j(A
∗), j(I )] = L�[j(A)∗, j(I )]

= L�[(A′)∗, I ′]

Case 1: For some G ⊆ P(Z)/I, j(�) is not in the well-founded part ofM .
In this case

L|A′|+[j(A)∗, I ′] |= Ĭ ′ is an ultrafilter.
Since |A′|+ = |j(A∗)|+ ≥ (|j(A∗)|+)L[j(A)∗,I ′],

L[j(A)∗, I ′] |= Ĭ ′ is an ultrafilter.
Case 2: For all generic G ⊆ P(Z)/I , j(�) belongs to the well-founded part
ofM .
In this case we let �′ be the least ordinal inM such that

L�′+1[j(A∗), j(I )] |= j(Ĭ ) is not an ultrafilter.
Then j(�) = �′ and �′ is in the well-founded part ofM . It follows that

L�′+1[j(A∗), j(I )]M = L�′+1[j(A∗), j(I )]V .

Since �′ is definable in L[j(A∗), j(I )] and L[j(A∗), j(I )] is independent of
G , it follows that for all generic G, j(�) = �′. Moreover,

j(B) = {z ′ ∈ j(A) : L�′+�[j(A)∗, I ′] |= φ(z ′, j(A)∗, I ′)}
is independent of G .
By hypothesis j“
 is independent of G (as it is determined by O′) and
thus we see that either:

• for all G , j“
 ∈ j(B) or
• for all G , j“
 /∈ j(B).
By the claim this says that eitherB ∈ Ĭ orB ∈ I , contradicting the definition
of B . �
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The proof of Theorem 2.8.

We will prove a more general theorem:
Theorem 3.11. Suppose that κ2 > κ1 > κ0 are cardinals and that there is a
regular � � κ2 and a stationary set S ⊆ P(H (�)) and an ordinaryA ⊆ [κ1]κ0
such that for all N ∈ S:
1. N ∩ κ1 ∈ A, |N ∩ κ2| = κ1.
2. N ∩ κ1 ∈ N̄ .
3. N is correct for NS � A.
Then there is an inner model with a huge cardinal.
Remarks
• The usual “proper forcing tricks” show that having a single large �
where the hypothesis holds is equivalent to the hypothesis holding for
all large �.Moreover the existence of a singleN satisfying the hypothesis
1.-3. implies the existence of a stationary set of such N .

• If we take κ0 = �n+1, κ1 = �n+2, and κ2 = �n+3 then, using Corollary
3.6 this is a restatement of Strong Chang Reflection.

• If κ0, κ1, κ2 is the cardinal sequence of a 2-huge cardinal then it is not
difficult to verify that the hypothesis of this theorem hold.

� SinceA contains the projection ofS,A is stationary. A regressive function
argument shows that we can find a stationary set S ′ ⊂ S, an ideal I ′ and
sets A′, O′ such that for all N ∈ S ′:
1. both A′ and I ′ ∈ N and �N (I ′ � A′) = (NS � A) ∩ N̄ , and
2. �N (O′) = N ∩ κ1.
Without loss of generality we assume S has this property. We also assume
that � is bigger than (22

|A′|
)+.

By Theorem 3.10 will be done if we can show the following:

Claim: NS � S decides NS � A.
Let G ⊆ P(S)/NS be generic and j : V → M be the canonical
embedding. Then:
• Since � � κ2, VS/G is well-founded up to �, which we have assumed
is at least (22

|A′|
)+.

• crit(j) = κ0, j(κ0) = κ1 and j(κ1) = κ2.
We need to verify items a–d of clause 2 of the definition of decisiveness. We
use the easy fact that if N = j“HV ((22

|A′|
)+) then �N = j−1.

(a) In M:
�
j“H ((22|A

′| )+)
(j(A′)) = A′.

because �
j“H ((22|A

′| )+)
= j−1. Moreover, for all N ∈ S, �N (A′) = A. Thus

�
j“H ((22|A

′| )+)
(j(A′)) = j(A),

in particular, j(A) = A′.
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(b) Since A is ordinary, there is a canonical absolute well-orderingW of
A that gets sent by j to a canonical absolute well-orderingW ′.

(c) We do a calculation similar to that of (a). For all N ∈ S
�N (O′) = N ∩ κ1.

Hence:

O′ = �
j“H ((22|A

′| )+)
(j(O′))

= j“H ((22
|A′|
)+) ∩ j(κ1)

= j“κ1.

(d) Similarly, since the transitive collapse of j“H ((22
|A′|
)+) is

H ((22
|A′|
)+):

I ′ = �
j“H ((22|A

′| )+)
(j(I ′))

= (NS � j(A))M ∩ (H ((22|A
′|
)+))V

= j(NS � A) ∩ V.
This finishes the proof of Theorem 3.11. �
We have shown that a certain natural second order reflection property
of �4 lies between a huge cardinal and a 2-huge cardinal in consistency
strength. While ad hoc, the technique does provide a way of distinguishing
between ideals yielding generic embeddings that are the remnants of large
cardinal embeddings and those that are not. One could perhaps hope that
similar ad hoc techniques might show that the consistency strength of Proper
Force Axiom or Martin’s Maximum is that of a supercompact cardinal.

§4. Acknowledgments. This note is a summary of lectures given at the
workshop “The interplay between large cardinals and small cardinals”which
took place at the Research Institute for Mathematics, in Kyoto, Japan. The
author would like to thank the organizers for their hospitality.

§A. Appendix. Large cardinals are usually formulated in termsof the exis-
tence of nontrivial elementary embeddings of V into transitive subclasses.
The embedding is required to be definable overV using a set parameter. If j
is a nontrivial elementary embedding it must move an ordinal and the criti-
cal point of j is the least such ordinal moved. Here are the four definitions
most relevant to this paper:

Measurable Cardinal There is measurable cardinal if and only there is a
nontrivial elementary embedding j : V → M , for some transitive M .
The measurable cardinal is the critical point of j.
Supercompact Cardinal There is a �-supercompact cardinal if and only if
there is a j : V →M such that
1. The first ordinal moved by j is below �,
2. M is closed under �-sequences.
The supercompact cardinal is the critical point of j.



CHANG’S CONJECTURE AND INNERMODELS FOR HUGE CARDINALS 267

Huge Cardinal There is a huge cardinal if and only if there is a nontrivial
elementary embedding j : V →M such that if κ is the critical point of j,
thenM is closed under j(κ) sequences.
The critical point of j is called a Huge Cardinal
2-Huge Cardinal There is a nontrivial elementary embedding j : V →M
such that if κ is the critical point of j, then M is closed under j2(κ)-
sequences.
The critical point of j is called a 2-Huge Cardinal.
These definitions are formulated inside ZFC by stating an appropriate type
of ultrafilter exists. Here are the equivalences:

• κ ismeasurable iff there is a normal, fine, κ-complete ultrafilter onP(κ).
• κ is �-supercompact iff there is a normal, fine, κ-complete ultrafilter on
P([�]<κ).

• κ is huge iff there is a normal, fine, κ-complete ultrafilter on P([�]κ) for
some � > κ.

• κ is 2-huge iff there are � < 
 and a normal, fine, κ-complete ultrafilter
on P([
]�) containing {x : x ∩ � ∈ [�]κ}.

The ultrafilter definitions are downwards absolute in the sense that ifM ⊆ V
is a subclass containing a set A belonging to the relevant ultrafilter U and
U ∩M ∈M , then U ∩M retains the relevant property inM .

§B. Appendix. In Theorem 3.11 we showed that if Strong Chang Reflec-
tion holds, then for arbitrarily large � we can find a stationary set S ⊆ H (�)
such that NS � S decides NS � A. It then follows from Theorem 3.10 that
either:

a. L[A∗, I ] |= Ĭ is an ultrafilter on A
or for some genericG ⊆ P(S)/NS, if j : V → VS/G is the ultrapower
embedding, then

b. L[j(A∗), I ′] |= Ĭ ′ is an ultrafilter on j(A).
Ralf Schindler remarked that under mild large cardinal hypothesis, the
two conclusions are equivalent provided that � is large enough. (In fact, a.
is equivalent to the statement that for all generic G , b. holds.) To see this,
let A′ be as in the definition of “decides” (Definition 3.7) and � � |A′|.
Assuming mild large cardinal assumptions, the “sharp” forL[A∗, I ] exists
and is coded by a set Σ of size |A∗|. We can view Σ as a collection of formulas
in the language built by expanding usual language of set theory by adding
constants for A∗, all elements of A∗ and for I . The model L[A∗, I ] can be
constructed by using the skeleton coded by this sharp. By standard theory,
the sharp Σ can be recognized in an absolute way in models of set theory
that are well-founded up to any � � |A∗| and contain A∗ ∪ {A∗} and
{I ∩ L[A∗, I ]} as well as Σ.
Let G ⊂ P(S)/NS be generic. Then j(A∗) = (A′)∗. Replacing VZ/G by
an isomorphic classM that is transitive through its well-founded part (and
viewing j : V →M ),M |= “j(Σ) is the sharp of the model LM [j(A∗), I ′]”.
Because M is well-founded to at least �+ and � � |A′|, j(Σ) is the actual
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sharp of a well-founded model. Thus the skeleton determined by j(Σ) can
be expanded to a well-founded class model of “V = L[A′, I ′]” by using a
well-founded class of indiscernibles.
Because Σ and j(Σ) have the same formulas in the language L = {�} and
j(Σ) gives the theory of L[(A′)∗, I ′] we see that

L[A∗, I ] ≡ L[(A′)∗, I ′].

This establishes Schindler’s claim.
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