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Constrained Optimization for Decision

Making in Health Care Using Python:
A Tutorial

K. H. Benjamin Leung , Nasrin Yousefi, Timothy C. Y. Chan,

and Ahmed M. Bayoumi

Constrained optimization can be used to make decisions aimed at maximizing some quantity in the face of fixed lim-
its, such as resource allocation problems in health where tradeoffs between alternatives are inherent, and has been
applied in a variety of health-related applications. This tutorial guides the reader through the process of mathemati-
cally formulating a constrained optimization problem, providing intuitive explanations for each component within
the problem. We discuss how constrained optimization problems can be implemented using software and provide
instructions on how to set up a solution environment using Python and the Gurobi solver engine. We present 2 exam-
ples from the existing literature that illustrate different constrained optimization problems in health and provide the
reader with Python code used to solve these problems as well as a discussion of results and sensitivity analyses. This
tutorial can be used to help readers formulate constrained optimization problems in their own application domains.

Highlights

� This tutorial provides a user-friendly guide to mathematically formulating constrained optimization
problems and implementing them using Python.

� Two examples are presented to illustrate how constrained optimization is used in health applications, with
accompanying Python code provided.
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Many decision-making problems in health involve
attempts to maximize some quantity in the setting of
fixed constraints. For example, a physician may want to
select an antibiotic that maximizes the probability a
patient will be cured of an infection while adhering to
antibiotic stewardship guidelines that limit the use of
broad-spectrum antibiotics to minimize the risk of
antibiotic resistance. The manager of a diagnostic

imaging department may wish to minimize wait times for
a magnetic resonance imaging scan for patients with the
highest likelihood of having severe illness constrained by
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the number of schedule times available. A minister of
health may have to decide on the optimal mix of
inpatient and outpatient services in a health system
within a fixed budget.

Each of these examples represents a tradeoff. Con-
strained optimization is a mathematical method for
determining the optimal solution to such decisions when
the factors in the tradeoff can be quantified. More specif-
ically, it is a systematic approach to finding the optimum
(minimum or maximum) of all possible solutions for a
set of decision choices that are subject to well-defined
preconditions. Constrained optimization is a key compo-
nent within prescriptive analytics, which aims to use data
to improve decision making, and has been used in a vari-
ety of health-related applications.

While previous articles have reviewed the principles
and potential use cases of constrained optimization
within health,1–4 we believe that there is need for a user-
friendly, introductory tutorial to optimization. In this
tutorial, we present an overview of optimization with 2
worked examples: one of investment in HIV programs
and another of placement of public defibrillators. We
selected these examples as they are representative of 2 dif-
ferent and realistic decision-making problems encoun-
tered in many health care contexts. In addition to
formulating and solving optimization models for each
example, we present extensions by adding uncertainty
and equity considerations. Each example includes a
detailed explanation and annotated code that can be run
by the user. All of the code and ancillary files are pro-
vided at (https://www.github.com/nyousefi2020/MDM-
Tutorial).

Methods

In this section, we first provide an overview of the compo-
nents of a general mathematical optimization model.
Next, we review some software for coding and solving
such models. Finally, we explore, in detail, 2 worked

examples of optimization modeling in medical decision-
making applications. For these 2 applications, we provide
code in the Python programming language as well as
annotated model outputs.

Overall Structure of an Optimization Model

An optimization model is characterized by 4 main fea-
tures: 1) decision variables, 2) parameters, 3) an objective
function, and 4) constraints.

Decision variables. Decision variables are the unknown
quantities of an optimization model that are changed to
achieve the desired outcome. For example, a decision
variable could be the amount invested in a health care
intervention. Values of the decision variables are varied
systematically until an optimal solution is reached.

Parameters. Parameters are the input data for the prob-
lem. They are fixed numerical values that describe a par-
ticular instance of the problem that the model is aiming
to solve. For example, the costs of specific interventions
may be fixed parameters for a decision problem.

Constraints. Constraints dictate the allowable choices
for the decision variables. A monetary budget is an exam-
ple of a constraint, since it represents a limit on the total
amount of funding that can be allocated across all strate-
gies. In an optimization problem, decision variables can-
not take on values that result in any constraint being
violated. Constraints are written as equalities or inequal-
ities using decision variables and parameters.

Objective function. The objective function is what the
optimization model aims to minimize or maximize. It is
a function of the decision variables and parameters. For
example, the objective could be to maximize the aggre-
gate health of a population. The objective function and
constraints typically reflect a synergistic ‘‘tension.’’ For
example, in a resource allocation problem, the objective
function may aim to increase the population’s health
while the constraint on the budget ensures that the costs
are within a specified limit. Without this constraint, the
model would suggest funding all the potential interven-
tions. Similarly, without the objective function, it would
not be possible to differentiate between decisions that
have higher or lower health benefits.
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Visual summary. Putting the 4 components together, a
general optimization model can be formulated as follows:

maximize f x1, . . . , xn; a1, . . . ,akð Þ
subject to gi x1, . . . , xn; a1, . . . ,akð Þ � 0, i= 1, . . . ,m

This optimization model aims to maximize an objective
function f with n decision variables x1, . . . , xn and k para-
meters a1, . . . ,ak . The set of constraints gi limits the
choices of the decision variables and is also a function of
the decision variables and the parameters. Note that this
model is general, meaning any optimization problem can
be represented in this way. For example, a minimization
problem can be transformed to this form by negating the
objective function, or an equality constraint can be writ-
ten as 2 inequality constraints.

The above model can be further specified along sev-
eral dimensions. One important dimension pertains to
whether the decision variables can take values in a con-
tinuous range or only discrete values in a set. A common
example of a continuous optimization model is a linear
program, in which the variables are continuous and the
objective and constraints are linear functions of the deci-
sion variables:

maximize c1x1 + . . . + cnxn

subject to ai1x1 + . . . + ainxn � bi, i= 1, . . . ,m

The parameters c1, . . . , cn are objective function coeffi-
cients, bi is the right-hand-side parameter that governs
constraint i, and ai1, . . . , ain are constraint coefficients
that affect constraint i.

In discrete optimization, all or some of the variables
take values in a discrete set (e.g., binary or integer val-
ues). These optimization problems are referred to as inte-
ger programs or mixed-integer programs, respectively.
Analogous to the continuous case, if the objective and
constraints are linear, then the models are integer linear
programs or mixed-integer linear programs.

Software

Real-life optimization models require the use of com-
puter software to solve and identify optimal solutions.
Software used in optimization models can be classified
into 2 groups: solver software (which we will call a ‘‘sol-
ver’’) and modeling software. A solver takes an instance
of an optimization model as an input and applies an
algorithm to find an optimal solution. It is the ‘‘engine’’
that solves the problem. Modeling software connects a
human modeler and solver by providing an environment

to import data, generate model instances, call solvers,
and analyze data. It is the ‘‘language’’ that allows an
optimization problem to be represented and understood
by the computer.

In general, a solver can be used in many different
modeling languages. Similarly, modeling languages can
connect to many different solvers. Some solvers have
their own integrated modeling system. The ability of a
solver to be embedded into a modeling system (e.g., an
object-oriented programming language) is an important
factor in selecting the solver. Commercial solvers such as
CPLEX and Gurobi are most commonly used in indus-
try and academia. Using these solvers requires purchas-
ing a subscription, but free licenses are available for
academics. Open-source solvers are also available. In this
tutorial, we use Python as the modeling language and
Gurobi as the solver.

Python is a powerful open-source programming lan-
guage that is easy to learn for both beginner programmers
and those who have experience with other languages.
Moreover, its ready-made libraries and modules provide a
lot of flexibility for programmers. For these reasons, it has
become one of the most popular programming languages
in the world. Python is a great choice for constrained
optimization because of its advanced mathematical and
scientific computing tools.

Gurobi is a fast and efficient optimization solver that
can solve all major optimization problem types. It
supports interfaces for a variety of programming and
modeling languages including Python, C, C++, Java,
MATLAB, and R. In this tutorial, we use Gurobi’s
Python extension, ‘‘gurobipy,’’ to formulate and solve
the optimization models.

Setting up Anaconda and Gurobi

In this tutorial, we use Jupyter Notebook, a Web applica-
tion that allows us to write and share Python code. The
simplest way to install Python and Jupyter Notebook is
through Anaconda, a popular distribution platform for
data science and scientific computing. Anaconda Individ-
ual Edition is free and can be downloaded from the Ana-
conda Web site; we refer the reader to Anaconda’s
installation guide for setup instructions.5

Next, users need to download and install the Gurobi
optimization solver; installation instructions can be
found on Gurobi’s Web site.6 The use of Gurobi requires
an active license, which is free for academic users and
has a limited-time trial for all other users.7

Finally, users need to install the ‘‘gurobipy’’ extension
within Anaconda so that the code written in Jupyter
Notebook can successfully interface with the Gurobi
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solver. We refer the reader to Gurobi’s documentation
for step-by-step installation instructions.8

Once Anaconda, Gurobi, and ‘‘gurobipy’’ have been
successfully installed, users can open Jupyter Notebook
by first opening the Anaconda Navigator application
and then opening the Jupyter Notebook application
from the Anaconda Navigator dashboard. This will
launch a Web browser tab from which the user can cre-
ate and access Jupyter Notebook files, which are in
.ipynb format and contain a combination of code, text,
and visualizations.

Two Examples of Optimization Models

In this section, we present 2 case studies from the litera-
ture in which optimization was applied to a resource allo-
cation decision in health care.

Example 1: HIV Program Selection

An estimated 2.3 million people annually are infected
with the human immunodeficiency virus (HIV).9 Publicly
funded HIV programs may include antiretroviral therapy
for people who are HIV positive,10–13 preexposure pro-
phylaxis to prevent new HIV infections among people at
risk, and community education.14–16 Decision makers
may want to determine how to allocate resources
between these strategies, which have very different costs
and effects. Accordingly, the optimal combination of
strategies for a given population may be unclear.

The goal of the optimization model is to determine
how to allocate a global budget across HIV programs
such that the overall benefit to the population across all
programs is maximized while respecting minimum and
maximum investment limits in each program. Below, we
present an example based on the simplest linear program-
ming formulation presented by Juusola and Brandeau,17

in which they aimed to maximize the number of quality-
adjusted life-years (QALYs) gained through the invest-
ment in 3 HIV programs for men who have sex with men
(for this example, we ignore time horizons and discount
rates). This problem is conceptualized as the number of
people that can be reached within each of 3 programs:
antiretroviral therapy scale-up (ART), preexposure pro-
phylaxis (PrEP), and community-based education (CBE).

This model assumes that programs are independent
(that is, investment in one program does not change the
potential gains from investment in an alternative pro-
gram), each program can be scaled up or down linearly
in terms of costs accrued or QALYs gained, and each
program has both a lower bound (investment cannot be

lower than a certain level) and upper bound (investment
cannot exceed a certain level). In the mathematical for-
mulation below, the index i takes values of 0, 1, or 2
depending on which program is being considered. This is
done to match the index notation in Python, in which
the first element of a list has an index of 0.

Decision variables:
xi: the number of people reached with program i

parameters
xmin

i : the number of people reached with the minimum
investment in program i

xmax
i : the number of people reached with the maximum
investment in program i

ai: the number of QALYs gained for each person reached
with program i

ci: the cost per person reached with program i

B: the global budget for HIV programs
Objective: to maximize the total number of QALYs
gained by investing in the 3 available programs.

max
X2

i= 0

aixi

The total QALYs gained are the sum of the number of
QALYs gained for each person multiplied by the number
of people reached with each program.

Constraints:

xmin
i � xi� xmax

i , i= 0, 1, 2

X2

i= 0

cixi =B

The first constraint sets a minimum and maximum level
for the number of people who can be reached with each
program. The second constraint ensures that the total
monetary cost of all 3 investments is equal to the global
budget.

We use the same set of programs as Juusola and
Brandeau17: ART, PrEP, and CBE, and the same global
budget of $10 billion. Table 1 summarizes the other
parameter values.

Below, we provide a step-by-step guide for imple-
menting the above problem using Python and Gurobi;
note that we present costs in thousands. The code for
this example is also available as a standalone file as
‘‘Example1.ipynb.’’ Comments in Python are denoted by
the pound symbol (#). Note also that Python uses inden-
tation to denote a block of code (such as a for loop).
Improper use of indentation will return an error.
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Code for example 1.

# Import Gurobi packages
import gurobipy as gp
from gurobipy import GRB

# Create a Gurobi model object
m = gp.Model(’HIV’)

# DECISION VARIABLES
# Create continuous variables
# indicating the number of people reached by
each of 3 programs
x = m.addVars(3,vtype=GRB.CONTINUOUS,name=
"Program")

# PARAMETERS
# costs, per person reached, by each of 3 types
of programs
# Cost values are divided by 1000 for computa-
tional reasons
c = [118.100,140.393,0.272]
#total cost
cost = x[0]*c[0]+x[1]*c[1]+x[2]*c[2]

# QALYs gained, per person reached, by each of 3
programs
a = [15.53,1.24,0.222]
# total qalys
qalys = x[0]*a[0]+x[1]*a[1]+x[2]*a[2]

# Budget
# The budget is divided by 1000 for computa-
tional reasons
B = 10000000.000

# CONSTRAINTS
# Budget
m.addConstr(cost==B)

# Limits
x[0].lb=50000
x[0].ub=400000
x[1].lb=10000
x[1].ub=3000000
x[2].lb=10000
x[2].ub=3000000

# OBJECTIVE
# Maximize the total number of QALYs gained
m.setObjective(qalys, GRB.MAXIMIZE)

# Run the optimization model
m.optimize()

# Print the optimal solution and its objective
value
for v in m.getVars():
print("%s = %.4f" % (v.varName, v.x))
print("Max QALYs = %.4f" % m.objVal)

The first 2 lines import the Gurobi functions and
classes that we will need for the optimization model.
Python allows us to bind a module to a name in the cur-
rent scope (the running file). Thus, when we use the pre-
fix ‘‘gp,’’ Python knows that we are calling a function
from the ‘‘gurobipy’’ package.

Next, we create a Gurobi model object. This object
will hold each of the 4 model components that we out-
lined above. We can call our model by any name (or even
leave it unnamed); here, we call the model ‘‘HIV.’’

The decision variables are denoted by x. We specify
that there are 3 decision variables and that they are con-
tinuous. In practice, the decision variables in this exam-
ple, which refer to the number of people in each
program, must take integer values. However, we set them
as continuous for illustrative purposes. The most com-
monly used decision variable types are continuous
(GRB.CONTINUOUS), integer (GRB.INTEGER), and bin-
ary (GRB.BINARY), with continuous being the default
type. Note that the default numbering in Python starts
at 0 rather than 1; thus, the programs are numbered 0
through 2 rather than 1 through 3. We have also given
them the name ‘‘Program.’’

Next, we define the parameters of the optimization
model. We have defined the costs per person for each

program by a vector called c (again, the first element is

obtained by specifying c[0]). The total costs in the

model will be calculated by multiplying the number of

people in each program by the cost of each program and

summing across all 3 programs. We similarly define the

number of QALYs per person for each program by a

vector called a. We also specify the global budget B.
Next, we add constraints to the model using the

addConstr()function. In our example, we specify that

Table 1 Parameter Values for HIV Programs

Parameter Program 0 (ART) Program 1 (PrEP) Program 2 (CBE)

xmin
i (Minimum investment) 50,000 10,000 10,000

xmax
i (Maximum investment) 400,000 3,000,000 3,000,000

ai (QALYs per person reached) 15.53 1.24 0.222
ci (Cost per person reached) 118,100 140,393 272

QALY, quality-adjusted life-year.
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the total cost should be equal to the global budget. We
also define the lower (.lb) and upper (.ub) bounds for
the decision variables.

We then use the setObjective() method to define
the objective function. This method takes 2 arguments.
The first argument is the objective function expression
(in our example, qalys), and the second argument states
whether the goal is minimization (GRB.MINIMIZE) or
maximization (GRB.MAXIMIZE). Since the problem is
one of maximization, we use GRB.MAXIMIZE.

Now that the model is fully built, we solve it using the
optimize()function.

Gurobi automatically chooses the algorithm based on
the model type and outputs some built-in attributes, such
as the status of the optimization, the solution, the run
time, and other information (not shown here). If the
model is successfully solved, the optimal values of the
variables and the objective value can be obtained, as in
the last 3 lines, where we print the number of people
reached by each program as well as the optimal objective
value (the maximum number of QALYs gained).

Results. The model output from our print commands
yields the following:

Program[0] = 65876.9687
Program[1] = 10000.0000
Program[2] = 3000000.0000
Max QALYs = 1701469.3235

Thus, the model indicates that Program[0], which is
ART, should be funded to reach 65,877 people, Pro-
gram[1], PrEP, should be funded to reach 10,000 people
(which is the minimum allocation), and Program[2],
CBE, should be funded to reach 3,000,000 people (which
is the maximum allocation). The total QALYs gained
are 1.70 million; no other allocation across these 3 pro-
grams will yield a greater number of QALYs.

To see if this result makes intuitive sense, we first con-
sider only 2 programs: ART and PrEP. Figure 1 shows
the graphical representation of the resulting optimization
model. The blue lines are the lower bound and budget
constraints. The upper bounds are far away to the right
and do not affect the allowable choices of decision vari-
ables, so they are not shown in this figure. The red line
represents the area that decision variables can be chosen
from. This area is the intersection of the budget con-
straint and the lower and upper bound constraints. The
orange lines are the level sets of the objective function.
Optimality is reached at the intersection of the budget

constraint and the lower bound constraint for decision
variable x1.

Solving the model in Python confirms the conclusion
from our visual inspection. In particular, the optimal
solution is to invest the minimum amount required on
PrEP (x1 = 10,000) and invest the remaining amount on
ART (x0 = 72,786.37). This intuitively makes sense as
ART has less cost and more per-person benefit. The
optimal strategy results in 1.14 million QALYs.

Now, we consider all 3 programs, where we obtain the
optimal solution using the Python code above. The opti-
mal solution is to invest the minimum amount required
on PrEP (x1 = 10,000) and maximum possible amount
on CBE (x2 = 3,000,000) and invest the remaining
amount on ART (x0 = 65,877). This intuitively makes
sense as CBE has the highest relative benefit while PrEP
has the lowest relative benefit. The optimal strategy
results in 1.70 million QALYs.

We further examine the effect of the budget on the
optimal strategy. Figure 2 shows the effect of increasing
the budget on the optimal decision variables. The first
point of each decision variable is its optimal solution
from the original problem where the budget is $10
billion.

The variable for the third program (CBE) is already at
its maximum (3,000,000), so increasing the budget does

Figure 1 Graphical representation of the resource allocation
problem for HIV programs when only considering Program 0
(ART) and Program 1 (PrEP).
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not allow for more participants to be added to that pro-
gram. The variable for the first program (ART) reaches
its maximum (400,000) when the budget increases to
$49.5 billion. The variable for the second program
(PrEP) then constantly increases as the budget increases
until it reaches its maximum (3,000,000) at a budget of
$469.2 billion. Further increasing the budget would have
no effect since all 3 programs are already at their maxi-
mum limit.

Rewriting the code using matrices and arrays. A common
approach in constrained optimization is using matrix
notation to simplify the model and write it in a compact
form, which is especially useful when the model has many
decision variables and/or constraints.

The code for example 1 can be rewritten as follows. It
is also available as a standalone file as ‘Example1_
matrixnotation.ipynb’:

# Import necessary packages
import gurobipy as gp
from gurobipy import GRB
import numpy as np

# PARAMETERS
# costs, per person reached, by each of 3 types
of programs
# Cost values are divided by 1000 for computa-
tional reasons
c = np.array([118.100,140.393,0.272])

# QALYs gained, per person reached, by each of 3
programs
a = np.array([15.53,1.24,0.222])

# Minimum/maximum number of persons reached by
each program

# in array form
x_min = np.array([50000,10000,10000])
x_max = np.array([400000,3000000,3000000])

# Budget
# The budget is divided by 1000 for computa-
tional reasons
B = 10000000.000

# Create a Gurobi model
m = gp.Model(’HIV’)

# DECISION VARIABLES
x = m.addMVar(3, lb=x_min, ub=x_max, vty-
pe=GRB.CONTINUOUS, name="Program")

# CONSTRAINT
# The total cost across all programs must equal
the budget
m.addConstr(c@x == B)

# OBJECTIVE
# Maximize the total number of QALYs gained
m.setObjective(a@x, GRB.MAXIMIZE)

# Run the optimization model
m.optimize()

# Print the optimal solution and its objective
value
for v in m.getVars():
print("%s = %.4f" % (v.varName, v.x))
print("Max QALYs = %.4f" % m.objVal)

First, we import the gurobipy package, as well as the
NumPy package, which will enable us to efficiently
manipulate Python arrays in the model. As NumPy is
already included within the Anaconda distribution, there
is no need to install it separately.

We then define arrays for the cost parameters (c), the
objective function coefficients (a), the lower bounds
(x_min), and the upper bounds (x_max). The right-
hand-side of the budget constraint (B) is a scalar
parameter.

Creating the model object is the same as before. We
define the decision variables in matrix form using
addMVar()method. In this setting, we also use lower
bound (lb) and upper bound (ub) arguments to define
the bounds for the decision variables so that we do not
need to add them as constraints. The default for lower
bound is 0 and for upper bound is infinite (GRB.INFI
NITY). For the decision variables x, the lower and upper
bounds are x_min and x_max, respectively.

Finally, we add the budget constraint, and the rest of
the model is similar to the previous code. Note that the
operator @ is used for matrix or vector multiplications.

Figure 2 Optimal decision variable values as a function of
adjusting the budget parameter.
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Incorporating parameter uncertainty. The above formu-
lation assumes that the parameter values are known with
certainty. In practice, many parameter values are uncer-
tain, which we address through an extension to our linear
programming formulation using a technique called sto-
chastic programming.

Suppose that the number of QALYs gained for each
person reached with each program is uncertain. To
address this uncertainty, relevant parameter values are
estimated using subjective elicitation from experts, related
literature, and past data. Each combination of parameter
values forms a scenario. In addition to estimating para-
meter values, we also incorporate the probability of each
scenario being realized (using similar data sources).

In this example, we assume that there are 3 scenarios
(sets of estimates), yielding 3 estimates of the number of
QALYs gained per person with each program. Table 2
presents the parameter values for each scenario and the
probability that each scenario will occur. These values
were chosen purely for illustrative purposes. The cost
and budget parameters remain unchanged from the pre-
vious example.

Optimizing the expected objective value is a common
approach to finding an optimal solution for a problem
with uncertain parameters. A naı̈ve way of doing this is
to try every possible solution and calculate the expected
objective value over all the scenarios. However, this is
time-consuming and unlikely to be practical. Instead, we
can use stochastic programming to solve a single prob-
lem instance, which consists of finding a solution that
maximizes the expected objective function value, calcu-
lated as the number of people reached with each program
in each scenario multiplied by the probability of that sce-
nario occurring, summed over all scenarios:

max
X2

j= 0

pj

X2

i= 0

aijxi

To implement this change, we modify the part of the
code that defines the number of QALYs gained for each
person reached with each program and add in the prob-
ability of each scenario:

# QALYs gained, per person reached, by each
program
# in each of 3 scenarios
a_scenario1 = np.array([3.06,20.48,0.05])
a_scenario2 = np.array([15.53,1.24,0.222])
a_scenario3 = np.array([2.42,40.60,0.02])
# Compute the expected number of QALYs gained
per person reached
a = 0.4*a_scenario1 + 0.5*a_scenario2 + 0.1*a_
scenario3

Note that the last line calculates the expected value of
the parameters over all scenarios, so we do not need to
change the objective function part in the code. The com-
plete code that includes this extension is available in the
file named ‘‘Example1_stochastic.ipynb.’’

In this example, we restricted our problem to 3 sce-
narios for illustrative purposes. While incorporating a
greater number of scenarios can lead to a more realistic
model, doing so can rapidly increase the model’s size,
which may lead to computational challenges.

The model output is:

Program[0] = 50000.0000
Program[1] = 23355.8653
Program[2] = 3000000.0000
Max QALYs = 1161186.6984

This output indicates that Program[0], ART, should be
funded to reach 50,000 people (less than before); Pro-
gram[1], PrEP, should be funded to reach 23,356 people
(more than before); and Program[2], CBE, should be
funded to reach 3,000,000 people (same as before), with
the expected number of QALYs gained across all pro-
grams and scenarios equaling 1.16 million.

Example 2: Public Defibrillator Placement

Out-of-hospital cardiac arrest affects more than 6 million
adults annually worldwide. Of these, only 10% to 15%
of victims survive to hospital discharge.18–20 If an electric
shock delivered by an automated external defibrillator

Table 2 Estimates of the Number of QALYs Gained per Person Reached for Each Program in Each Scenario

Scenario (j) Probability of Ccenario (pj)

QALYs per Person Reached (ai)

Program 0 (ART) Program 1 (PrEP) Program 2 (CBE)

0 0.4 3.06 20.48 0.05
1 0.5 15.53 1.24 0.222
2 0.1 2.42 40.60 0.02

QALY, quality-adjusted life-year.
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(AED) is applied to the victim before the arrival of emer-
gency medical services, the odds of survival can increase
by up to 3-fold.21,22 Survival is time sensitive: a longer
delay between the onset of cardiac arrest and the applica-
tion of an AED is negatively associated with likelihood
of survival.23 Since the locations of cardiac arrests have
been found to be spatially stable over time,24,25 con-
strained optimization can be used to determine the ideal
locations for AEDs to maximize their proximity to his-
torical (and future) cardiac arrest locations.

American Heart Association guidelines suggest that
AEDs should be located in high-risk areas of cardiac
arrest such that they can be retrieved and applied by lay-
people to a cardiac arrest victim before the arrival of
emergency medical services.26 Several studies have used
the concept of ‘‘coverage’’ to measure AED effectiveness:
a cardiac arrest that is within a certain distance from any
AED is considered to be ‘‘covered,’’ meaning that an
AED could potentially be used to respond to that car-
diac arrest.27–32 A distance of 100 m is typically used as
a cutoff for coverage to approximate a 3-min round-trip
travel time to retrieve and deploy the AED.27,28,30

The goal of the constrained optimization model is to
determine the locations of a fixed number of new AEDs
such that the number of covered cardiac arrests is maxi-
mized, while considering each potential AED location’s
effectiveness at covering cardiac arrests. Below, we show
an integer linear program formulation presented by Chan
et al.27 Our problem instance will use an artificially gen-
erated data set consisting of 500 cardiac arrests and 1,500
candidate AED locations.

The problem formulation is as follows.
Decision variables:
xj: whether or not to place an AED at candidate location
j {1 = yes, 0 = no}
yi: whether or not cardiac arrest i is covered {1 = yes,
0 = no}
Parameters:
aij: whether or not cardiac arrest i would be covered by
an AED that is placed at candidate location j {1 = yes,
0 = no}. We precompute the value of aij based on a
user-defined cutoff distance for coverage.
K: the total number of AEDs to be placed
Objective: to maximize the total number of covered car-
diac arrests

max
X499

i= 0

yi

Constraints:

aijxj � yi, i= 0, . . . , 499

X1499

j= 0

xj =K

xj 2 0, 1f g, j= 0, . . . , 1499

yi 2 0, 1f g, i= 0, . . . , 499

The first constraint ensures that a cardiac arrest is
counted as covered only if at least 1 location with an
AED placed can cover the cardiac arrest. The second
constraint ensures that exactly K AEDs are placed.
Finally, the third and fourth constraints ensure that all
decision variables are binary.

Code for example 2.
In contrast to example 1, this example has many decision
variables and constraints; thus, it is preferred to use matrix
notation in the code. The code for this example is provided
below. It is also available as a standalone file as
‘‘Example2.ipynb’’:

# Import necessary packages
import gurobipy as gp
from gurobipy import GRB
import numpy as np
import pandas as pd

# Load the data set that contains distances
between
# cardiac arrests and potential AED locations
covered = pd.read_csv(’Example2_distanceMa-
trix.csv’, index_col=’ID’)

# PARAMETERS
# Coverage cutoff limit
coverage_distance = 100

# Number of AEDs to be placed
K = 25

# Compute a_ij, which states whether each car-
diac arrest is
# within the coverage distance of each poten-
tial AED location
covered = (covered \= coverage_distance).
astype(int)
n_cases = covered.shape[0]
n_candidates = covered.shape[1]
A = pd.DataFrame.to_numpy(covered)

# Create a Gurobi model object
m = gp.Model(’AED’)

# DECISION VARIABLES
# x is whether an AED is placed at potential AED
location j
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x = m.addMVar(n_candidates, vtype = GRB.BIN-
ARY, name="x")

# y is whether cardiac arrest i is covered by at
least one AED
y = m.addMVar(n_cases, vtype = GRB.BINARY,
name="y")

# CONSTRAINTS
# Cardiac arrest covered if at least one AED is
# placed within range
m.addConstr(A@x .= y)

# Total number of AEDs placed
m.addConstr(x.sum() == K)

# OBJECTIVE
# Maximize the number of covered cardiac
arrests
m.setObjective(y.sum(), gp.GRB.MAXIMIZE)
# Run the optimization model
m.optimize()
# Print the optimal solution and its objective
value
selected = []
for j in x.tolist():
if j.X . 0.5:
selected.append(j.index)
print("Selected locations: ", end="")
print(*selected, sep=’, ’)
print("Number of covered cardiac arrests: " +
str(int(m.objVal)))

The first 4 lines import the required classes and libraries.
Since the parameters of this example are stored in a file,
we also load Pandas, a data analysis package for Python.
As is the case for NumPy, Pandas is included within the
Anaconda distribution, so we do not need to install it
separately.

We then load the data. The data set comes as a .csv
file named ‘‘Example2_distanceMatrix,’’ where the rows
and columns correspond to the cardiac arrests and can-
didate locations, respectively. The first column is labeled
‘‘ID’’ to indicate the cardiac arrest IDs, and the remain-
ing columns are labeled as the candidate locations (num-
bered 0 to 1,499 in this example). The cells contain the
distance of each cardiac arrest from each candidate loca-
tion. The data file must be located in the same directory
as the Jupyter Notebook file. We use the read_csv()
method from Pandas to load the data. read_csv() has
several arguments, of which we use only the file path/
name (the first argument) and the column index (the sec-
ond argument). The index_col argument sets the ‘‘ID’’
column as the index so that it is excluded from the dis-
tance data. Pandas stores the data set as a DataFrame,
which we call ‘‘covered.’’

Next, we set our parameters, which are the number of
AEDs placed and the coverage limit.

Given the distances and the coverage limit, the next
line transforms the distances to 0/1 data to be used in the
model so that a cell takes value of 1 if the distance is less
than or equal to the specified coverage limit. Now, the
‘‘covered’’ DataFrame contains the aij values for each
arrest-location pair (i, j). We define the number of arrests
(n_cases) and the number of candidates (n_candi
dates) based on the dimensions of the DataFrame so
that if we receive another data set with different number
of arrests and candidate locations, the code does not need
to change. Finally, using the to_numpy() method from
Pandas, we convert the DataFrame, which contains the
aij parameters, to a matrix form and call it ‘‘A.’’ This step
is necessary as a DataFrame object cannot directly be
used in the Gurobi model.

Now that the parameters are set, we create a Gurobi
model object and call it ‘‘AED.’’

Then, we add the decision variables x and y with their
corresponding dimensions entered as the first argument.
Since we set the variable type to binary (GRB.BINARY),
we do not need to additionally define variable lower or
upper bounds.

Next, we add the 2 constraints and set the objective
function.

Finally, we solve the optimization model and print the
optimal values of the decision variables and the objective
function value.

Results. The model output from the above code is:

Selected locations: 1234, 1235, 1236, 1238,
1240, 1242, 1245, 1274, 1276, 1277, 1279, 1280,
1282, 1284, 1317, 1318, 1320, 1321, 1322, 1323,
1364, 1366, 1368, 1371, 1414
Number of covered cardiac arrests: 155

This output shows the indices of the K locations selected
for AED placement and the total number of cardiac
arrests that the selected locations cover.

We solved the resulting problem using different quan-
tities of AEDs placed (parameter K) and different cover-
age limits. The value of the objective function, which
represents the total number of covered cardiac arrests, as
a function of the number of AEDs placed and the cover-
age limit is shown in Figure 3.

As the number of AEDs placed increases, the total
number of covered cardiac arrests increases until all 500
cardiac arrests in the data set are covered. However, the
number of cardiac arrests covered by each additional
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AED placed diminishes as the total number of AEDs
increases. For example, assuming a 200 m coverage
limit, 4 AEDs are required to cover at least 100 cardiac
arrests, 16 AEDs are required to cover at least 250 car-
diac arrests, and 131 AEDs are required to cover all 500
cardiac arrests. This is because the optimization model
will first place AEDs in locations that cover the greatest
number of cardiac arrests, but subsequent AEDs will be
placed in locations that cover fewer cardiac arrests.

The coverage limit also plays a role in determining the
number of AEDs needed: given a fixed number of car-
diac arrests to be covered, larger coverage limits result in
a smaller number of AEDs required, while smaller cover-
age limits result in a larger number of AEDs required.

For coverage limits of 50 m and 100 m, the number
of covered cardiac arrests output by the optimization
model does not equal the total number of cardiac arrests
in the data set, regardless of the number of AEDs placed.
This is because for some cardiac arrests, the nearest can-
didate AED location is farther away than the coverage
limit, meaning that none of the candidate AED locations
would be able to cover that cardiac arrest.

Incorporating equity. Decision makers may want to find
solutions that are not only efficient but also equitable.
However, equity is complex, since it can be conceptua-
lized in many different ways (e.g., equity of opportunity
v. equity of access v. equity of outcome; horizontal v. ver-
tical equity)33,34 and is often considered to be multidi-
mensional (e.g., equity by geography, population, and
health condition). Some of these equity considerations
can be readily incorporated into a constrained optimiza-
tion model through the objective function or constraints.
Other approaches to incorporating equity in constrained

optimization models are beyond the scope of this tutor-
ial. Below, we provide a simple illustrative example that
addresses geographic equity, based on a similar approach
used by Leung et al.35

Suppose the study setting for our AED example is
divided into 4 equally sized regions, each containing 375
candidate locations. For simplicity, let region 0 encom-
pass candidate locations 0 through 374, region 1 encom-
pass candidate locations 375 through 749, and so on. We
introduce additional constraints that require each region
to receive at least a proportion s of the total AEDs avail-
able, where s is a user-defined parameter. These con-
straints ensure that each region receives a minimum
number of AEDs regardless of how many cardiac arrests
occurred in that region:

X374

j= 0

xj � sK

X749

j= 375

xj � sK

X1124

j= 750

xj � sK

X1499

j= 1125

xj � sK

These constraints can be added to our code as shown
below. The complete code that includes this extension
can be found in the ‘‘Example2_equity.ipynb’’ file.

# Equity constraints
# Number of regions
n_regions = 4
# Minimum proportion of AEDs per region
s = 0.2
# Determine the number of candidate AED loca-
tions per region,
# assuming that each region has the same number
of AEDs
break_point = int(n_candidates/n_regions)
# For each region, add a constraint that forces
the number
# of AEDs placed in that region to be at least
proportion s
# times the total number of AEDs available
for i in range(n_regions):
m.addConstr(x[break_point*i:(break_poin-
t*(i+1))].sum() .= (s*K))

The first 2 lines (ignoring comments) set the number of
regions to 4 and the minimum proportion of AEDs per

Figure 3 Cardiac arrest coverage as a function of the number
of automated external defibrillators (AEDs) placed and the
coverage distance.
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region to 0.2, respectively. Next, break_point is calcu-
lated as the number of candidate AED locations per
region rounded up to the nearest integer. Finally, a for
loop is used to add a constraint for each region that
forces the number of AEDs placed in that region to be at
least the proportion s times the total number of AEDs
available (K). Note that x[break_point*i:(break_
point*(i+1))].sum() represents the sum of candi-
date AED locations for region i.

The model output is as follows:

Selected locations: 98, 121, 139, 222, 265,
411, 645, 689, 694, 736, 779, 811, 813, 816,
821, 1234, 1235, 1236, 1276, 1280, 1282, 1318,
1320, 1322, 1323
Number of covered cardiac arrests: 116

The previous model, which did not incorporate equity
constraints, resulted in covering 155 cardiac arrests. In
comparison, enforcing that each region must receive at
least 20% of the 25 AEDs (i.e., at least 5 AEDs per region)
resulted in covering 116 cardiac arrests, a 25% decrease in
coverage. However, the variation in the number of AEDs
placed per region has decreased as well. In the model with-
out the equity constraints, 1 region (region 3) receives all
the AEDs, while the other 3 regions receive none. After
adding the equity constraints, region 3 receives 10 AEDs,
and the other regions receive 5 AEDs (total of K = 25
AEDs).

The total number of covered cardiac arrests and the
difference between the regions getting the most and least
AEDs, as a function of the constraint parameter s and the
number of AEDs placed, are shown in Figures 4 and 5,
respectively. As each region receives a higher proportion
of AEDs (i.e., as s increases), the difference between the
regions getting the most and least AEDs decreases, which
may be viewed as an equity gain, while the total number
of covered cardiac arrests decreases, which may be viewed
as an efficiency loss. Accordingly, this example illustrates
how constrained optimization can be used to explore
equity-efficiency tradeoffs, which are intrinsic to many
resource allocation decisions.

Discussion

We have provided an overview of how to implement
constrained optimization with 2 health-related examples.
Although our examples were stylized for ease of exposi-
tion, the level of model complexity is comparable to
many published examples. Readers of this tutorial can
readily apply these principles to real-world problems.

Constrained optimization has the potential to extend
methods commonly used by decision scientists in health
care. For example, cost-effectiveness analyses typically
assume that programs are perfectly divisible and associ-
ated with constant returns to scale (the ratio of costs to
effects is constant, even if a program is partially imple-
mented), but these assumptions may be unrealistic in
many real-world contexts. Constrained optimization can
address such limitations and consider decisions where
programs are either not divisible or can only be divided
in certain configurations or where returns to scale are a
function of program size. Furthermore, decision makers
often need to consider other factors in the objective
beyond cost and health effects, which can be easily incor-
porated into constrained optimization models.

Figure 5 Difference in the number of automated external
defibrillators (AEDs) placed between the region with the most
AEDs and the region with the fewest AEDs, as a function of
the equity constraint parameter (s) and the total number of
AEDs placed across all 4 regions.

Figure 4 Cardiac arrest coverage as a function of the equity
constraint parameter (s) and the number of automated
external defibrillators (AEDs) placed.
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Constrained optimization problems may be challen-
ging to implement for several reasons.

First, each parameter of the decision problem needs
to be known and quantified, which may be challenging
when this information is not readily accessible. We have
provided an example of using stochastic programming
when complete knowledge about the values of para-
meters is not available. However, stochastic program-
ming is only one of several techniques that are used for
decision making under uncertainty. Alternative methods
include probabilistic sensitivity analysis (simulations in
which uncertain parameters are repeatedly drawn from
probability distributions) and robust optimization (deci-
sions are optimized against worst-case scenarios). These
methods are described in detail in advanced texts.36,37

Second, the objective function needs to be well
defined. While decision problems can have several objec-
tives, they can have only a single objective function.
Practical decision problems with multiple objectives will
need to combine these objectives into one by weighting
and aggregating or by using a hierarchical order for
objectives.

Third, solvers may not find optimal solutions for
some decision problems. Solver issues may be related to
specific algorithms that a solver is using (which may be
addressed by using alternative algorithms) or, more com-
monly, because the problem specified in such a way that
makes it mathematically infeasible or is too large to solve
to optimality. In the latter case, solvers may find approx-
imate solutions, which may still be useful for decision
making.

In summary, constrained optimization is an important
addition to the toolkit of decision scientists, and there are
many types of problems that can be considered within a
constrained optimization framework. Optimization soft-
ware is readily available at low or no cost for academic
researchers and can be integrated with commonly used
programming languages such as Python and R. We believe
that constrained optimization has been underused in health
and hope that this guidance helps to increase its adoption.
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