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From Dissimilar to Similar: Reverse Fading Assistance Improves Learning
Jay Jennings (jay.jennings@carleton.ca)

Kasia Muldner (kasia.muldner@carleton.ca)
Institute of Cognitive Science, Carleton University

Ottawa, ON, Canada

Abstract

When students solve problems with access to examples show-
ing worked out solutions, they often resort to shallow methods
like copying that do not result in learning. An open question
is therefore how to encourage deeper processing in this type of
instructional context. To address this question, in the present
study, we investigate the impact of manipulating problem-
example similarity over the course of a problem-solving ses-
sion in several ways, including faded assistance (high to low
similarity), reverse faded assistance (low to high similarity),
and a control group with high, constant assistance. We found
that the reverse faded assistance condition resulted in the great-
est learning gains. We analyzed the gaze behaviours to shed
light on this finding and found that participants in this condi-
tion focused significantly more on the problem solution, sug-
gesting more cognitive processing during problem solving than
in the other conditions.
Keywords: worked examples, faded assistance, learning, eye-
tracking

Introduction
When students are solving problems in a domain like math
or physics and encounter an impasse because they are miss-
ing the domain knowledge to generate the problem solution,
they often turn to examples for assistance (i.e., problems that
show not just the final answer but its step by step derivation).
What students learn from this activity, however, depends on
whether they engage in deep processing that fosters learning
(Muldner & Conati, 2010; VanLehn, 1998). Unfortunately
many students miss learning opportunities because they en-
gage in shallow strategies (VanLehn, 1999), as we now de-
scribe.

Impact of problem-example similarity on cognitive
strategies
When students refer to an example as they are solving a
problem, they are faced with a choice: they can copy from
the example, or they can try to learn from it. Copying in-
volves transferring the example solution over to the prob-
lem. Since there are often superficial differences between the
problem and example corresponding to, for instance, vari-
able names, copying may require replacing example con-
stants with ones needed for the problem solution (Reed, 2012;
VanLehn, 1998). In contrast, learning involves inferring the
underlying domain principles required for the generation of
the solution.

An established cognitive strategy that fosters learning from
examples is self explanation, namely the process of explain-
ing instructional materials to oneself (Chi, Bassok, Lewis,
Reimann, & Glaser, 1989). In our target instructional context,
i.e., one involving a problem to be solved and an example,

there are two opportunities for self explanation. One comes
in the context of the example: a student can self explain the
example solution by making inferences over and beyond the
example solution steps. A type of inference that is highly cor-
related with learning relates to induction of the domain rule
that generated the solution step(s) of interest (Chi & Van-
Lehn, 1991). In particular, because worked examples show
the solution steps but not the rules that generated them, stu-
dents who self explain in this manner can subsequently apply
the rule not only to the present problem but also subsequent
problems (without the help of the example). Self explanation
is a beneficial strategy because it requires active processing of
the materials (Chi, 2009). To date, to the best of our knowl-
edge only one study has directly measured self-explanation
from examples in a context that makes them and the prob-
lem available at the same time (Muldner & Conati, 2010).
A second opportunity for self explanation comes in the con-
text of the problem: a student may encounter an impasse, and
overcome it by inferring the rule from the problem (without
referring to the example), for instance by relying on common-
sense or overly-general reasoning (VanLehn, 1999). As is the
case with self explanation from the example, self explana-
tion from the problem fosters learning (Aleven & Koedinger,
2002; Loibl, Roll, & Rummel, 2017).

While learning can in theory happen as a by-product of
copying, students who copy do not tend to also learn the un-
derlying domain rules (Chi et al., 1989; Reed, Dempster, &
Ettinger, 1985; VanLehn, 1999). Copying is more likely to
happen when the problem-example differences are easy for
students to resolve, such as differences in variable names be-
tween the problem and example solution (Muldner & Conati,
2010; Reed, 2012). This type of difference is illustrated in the
Problem-Example1 pair in Table 1. This problem-example
difference can be resolved by generating a mapping between
the variables appearing in the problem and example specifi-
cations (Reed, 2012), and using the mapping to replace the
example constants by ones needed for the problem solution.
This process results in a correct problem solution without re-
quiring learning of the domain principle that generated the
copied step.

It is established that highly similar examples facilitate shal-
low copying without encouraging learning (Lee, Betts, &
Anderson, 2015; Muldner & Conati, 2010; VanLehn, 1998).
However, examples that are too different are also not helpful
(Reed, Ackinclose, & Voss, 1990; Ross, 1987). In particu-
lar, not surprisingly, if the example solution does not involve
overlapping knowledge (rules) with the problem, the exam-
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Table 1: A problem and two examples (similarity of problem-example1 pair is high; similarity of problem-example2 pair is low)

Problem Example1 Example2
Solve for a: Solve for x: Solve for x:

b = (ad)/c [MULTIPLY] y = (xw)/z [MULTIPLY] y = w (x/z) [DIVIDE]
bc = ad [DIVIDE] yz = xw [DIVIDE] y/w = x/z [MULTIPLY]
(bc)/d = a (yz)/w = x z (y/w) = x

ple will not help the student to either correctly copy or to
learn the underlying principles. Thus, traditionally, problem-
example differences have been avoided in situations that in-
volve problem solving in the presence of examples (Weber,
1996). However, more recently, there has been renewed inter-
est in investigating the potential benefits of problem-example
differences.

Muldner and Conati (2010) showed that certain differ-
ences between the problem and example encouraged self-
explanation and learning during problem solving where stu-
dents had access to an example for each problem they had
to solve. The differences, corresponding to problem-example
constants, were systematically introduced using a computer
tutor to block superficial copying (and thus encourage self-
explanation). Similarly, Lee et al. (2015) found that superfi-
cial differences between problem-example pairs that blocked
shallow transfer of the example solution improved subse-
quent performance on tests where the example was no longer
present.

Both Muldner and Conati (2010) and Lee et al. (2015)
found that differences between problems and examples made
students work a little harder (e.g., Muldner and Conati (2010)
showed that differences increased time on task and self expla-
nation), and subsequently fostered learning. However, forc-
ing students to deal with differences may impose a high cog-
nitive load. To address this issue, here we investigate the im-
pact of transitioning the level of similarity between problem-
example pairs over the course of a problem solving session.
One way we operationalize this transition is by having the
initial problem-example pairs be highly similar, but grad-
ually introducing some problem-example pairs that include
differences between them. This type of ‘faded assistance’
has been shown to be beneficial in other instructional con-
texts (Atkinson, Renkl, & Merrill, 2003; Tullis, Goldstone,
& Hanson, 2015). An alternative way of manipulating the
problem-example similarity that we also investigate involves
first presenting problem-example pairs that include certain
differences, and gradually introducing some highly similar
problem-example pairs. While this may initially impose a
high cognitive load, the productive failure paradigm provides
some precedent for this order of presentation (from harder
to easier, given that problem-example pairs that include dif-
ferences are harder for students to process than ones that are
highly similar). The productive failure paradigm involves stu-

dents first working on a novel problem without instructional
support, and subsequently providing them with the canoni-
cal solution to the problem - it turns out that struggling ini-
tially can be highly beneficial, more so than just receiving the
canonical solution (Kapur, 2014; Schalk, Schumacher, Barth,
& Stern, 2017).

Method
Materials: Problem-Example Pairs. Our study involved
problems and examples in the domain of algebra1. Each prob-
lem was presented alongside one example showing a step by
step solution. We manipulated the similarity between a given
problem-example pair to be either high if the only difference
between the problem and example corresponded to different
variable names in their specifications and solutions, and as
low if the example solution was generated by applying a se-
quence of algebraic operations (i.e., rules) in an order differ-
ent from that required for the problem solution. To illustrate
these concepts, we will use the problem and the two examples
in Table 1. The solutions for all three require the application
of two rules embodying two algebraic operations (eliminate
variable by multiplying both sides by it, and eliminate vari-
able by dividing both sides by it, labelled MULTIPLY and
DIVIDE in Table 1, respectively). The similarity between the
problem and example1 pair is high because the only differ-
ence between them corresponds to variable names. In con-
trast, the similarity between the problem and example2 pair
is low, because example2 pair’s solution involves a differ-
ent order of rule applications than required for the problem.
Critically, however, the problem requires the same knowl-
edge (rules) for its solution as example2 pair, and so it affords
the opportunity to infer the two rules from its solution (e.g.,
via self explanation of the example), and subsequently apply
them to the problem solution.

We generated three sets of 12 problem-examples pairs
(each set requiring the application of three to four rules for
their solutions, held constant across the sets, see Table 2). In
each set, within a given problem-example pair, the respective
solutions involved the same rules and number of rules, mean-
ing that the examples provided the opportunity to learn the
necessary rules and apply them to the problem’s solution.

1Algebra was chosen as it allowed rigorous control of both super-
ficial and structural similarity between the problem-example pairs.
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We manipulated the similarity through the type of assis-
tance the examples provided, as follows: (1) high, con-
stant assistance, where the similarity between all 12 of the
problem-example pairs was high (variable name differences
only - this was essentially our control condition); (2) faded
assistance (high to low), where the similarity between the
initial problem-example pairs was high, but faded to low
by the last few problems; (3) reverse-faded assistance (low
to high), where the similarity between the initial problem-
example pairs was low, but faded to high by the last few
problems. Note that as shown in Table 2, both the faded and
reverse-faded sets contained some low similarity and some
high similarity problem-example pairs (in contrast to the high
assistance set, which only contained high similarity pairs). As
mentioned above, because in a given problem-example pair
the respective solutions involved the same set of rules, the ex-
amples provided the opportunity to learn the necessary rules
and apply them to the problem’s solution. Thus, the key dif-
ferences between the three sets of problem-example pairs are
whether they facilitated copying (the case for the high con-
stant assistance set), and the nature of the fading mechanism
(faded vs. reverse faded assistance).

Materials: Pretest and Posttest. We used a pre and
posttest to assess learning gains (each had the same eleven al-
gebra problems, but the pretest had different variable names
as compared to the posttest; examples were not included in
either test, because we wanted to measure students’ ability to
solve problems in the absence of assistance). Each question
was graded based on the number of rule applications needed
(this is a more sensitive measure than just assigning a grade
of 0 based on one mistake early on in the solution).

Apparatus and Problem Solving Interface. An SR Re-
search Eye Link 1000 eye tracker was used to capture gaze
and fixation data during the problem solving phase of the
study. To solve problems and refer to examples, participants
used a Java-based application we created, shown in Figure
1. Because eye tracking data was collected that was sensitive
to movement, to minimize head movement, the interface in-
cluded a virtual keyboard. Participants used this virtual key-
board (bottom of Figure 1) to enter solutions and perform
related actions (e.g., move on to the next problem, erase an
entry).

Table 2: Sequencing of problem-example pairs based on sim-
ilarity and the number of rules required for the solutions. Leg-
end: Sim = similarity; H = high similarity, L = low similarity

High Sim H H H H H H H H H H H H
#rules 3 3 4 3 4 4 3 3 4 3 4 4

Faded Sim H H H L H L H L H L L L
rules 3 3 4 3 4 4 3 3 4 3 4 4

Reverse Sim L L L H L H L H L H H H
rules 3 3 4 3 4 4 3 3 4 3 4 4

Figure 1: The interface used to solve problems and refer to
examples. The boxes illustrate the areas of interest (AOI)
used for the analysis and were not visible to participants.

Participants. The participants were undergraduate students
(N = 60, 34 female) who had not taken mathematics in univer-
sity. Participants were given the option to participate either
for bonus course credit or for monetary compensation ($20).

Design and Procedure. We used a between subjects design
with three conditions:

• high assistance (n = 20), involving only high similarity
problem-example pairs that provided constant assistance
(see Table 2, first row)

• faded assistance (n = 21), involving initially high similarity
problem-example pairs, faded to low similarity pairs by the
last three problems (see Table 2, second row)

• reverse-faded assistance (n = 19), involving initially low
similarity problem-example pairs, transitioning to high
similarity pairs by the last three problems (see Table 2,
third row).

The participants were randomly assigned to a given con-
dition. After 20 participants were run, we began a stratified
random sampling procedure based on pretest performance to
equalize a priori knowledge between the conditions2.

The procedure for the three conditions was the same. Each
session was conducted individually in a quiet room. Partici-
pants completed a paper and pencil pretest (up to 20 minutes),
were introduced to the problem solving interface and given a
training problem (5 minutes), and then were calibrated on the
eye tracker. The experimental phase then began. Prior to
starting, participants were told that ”...the goal isn’t to be fast
but rather to treat this as if you were practising solving prob-
lems to prepare for a test, so do what you would normally
do when studying”. Participants used the problem-solving
interface (Figure 1) to work on the 12 problems in their re-
spective condition (as noted above, each problem included a

2pretest performance was measured by grading the pretest before
proceeding with the eye-tracking portion of the experiment.
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corresponding example). No feedback for correctness was
provided and participants worked at their own pace. After
finishing the problem solving phase, participants completed a
paper and pencil posttest (up to 20 minutes).

Results
Our analysis was guided by the following research questions:

1. Does the type of assistance (high, faded, reverse faded) in-
fluence learning?

2. Does the type of assistance impact where participants de-
vote attention (e.g., to the example vs. the problem)?

3. Does the type of assistance impact attentional patterns that
could be indicative of copying and self explanation?

To answer these questions, we used between subjects
ANOVAs with type of assistance (high, faded, reverse faded)
as the independent variable, and the analysis-specific depen-
dent variable (e.g., learning gains, see below). Post hoc tests
were done using Tukey’s HSD test. Prior to the analysis, we
created boxplots for all dependent variables on a per condi-
tion basis and SPSS-flagged outliers were removed.

Which type of assistance fosters learning the most?
We first verified that the pretest scores were equalized across
conditions prior to the experimental phase and this was in-
deed the case, F(2, 57) = .24, p = .790, ηp

2= .01. We used the
standard method to operationalize learning, by calculating the
difference between posttest and pretest to obtain the learning
gain for each participant, i.e., Post % - Pre %. The mean gains
for each condition are shown in Figure 2. The reverse faded
assistance group obtained the greatest gains, and, in contrast
to our expectations, the faded assistance group obtained the
lowest learning gains, with the high assistance participants
falling in the middle.

An ANOVA with learning gain as the dependent variable
found a significant effect of type of assistance, F(2, 56)
= 3.46, p = .038, ηp

2= .11, with post hoc tests indicating
that participants in the reverse-faded assistance condition had
significantly higher learning gains than the faded assistance
group, p = .029. No other differences were significant.

Does assistance impact attention to example vs.
problem?
To determine if the type of assistance influenced where par-
ticipants were devoting their attention (e.g., to the example
vs. the problem), we extracted the total time each participant
spent looking at the example area and at the problem area,
respectively (see dashed line in Figure 1 indicating these two
areas of interest, AOIs).

As far as the example, as shown in Figure 3, left, there
was little difference between the three conditions in terms of
the total time participants spent looking at the example (and
indeed the effect of assistance was not significant, F(2, 56) =
.38, p = .686, ηp

2= .01). In contrast, the type of assistance did
have a significant effect on the total time participants spent

Figure 2: Learning gains (Post % - Pre %) for each condition
(faded assistance, high assistance, reverse-faded assistance).
Error Bars: +/- 1 Standard Error.

looking at the problem area, F(2, 54) = 9.58, p < .001, ηp
2=

.26. As shown in Figure 3, participants spent significantly less
time looking at the problem in the high assistance condition
than in (1) the faded assistance condition, p = .012, and (2)
the reverse faded assistance condition, p < .001.

For the sake of completeness, we also present the results
related to total time spent, which mirror the pattern we found
above (note that the total time will be slightly longer than
time spent on the problem or example, because the latter does
not include time spent looking at other areas, like the virtual
key board or away from the screen). In general, the high as-
sistance group devoted the least amount of total time during
the experimental phase (on average, 10.2 minutes), as com-
pared to the faded and reverse faded groups (on average, 13.1
and 14.2 minutes, respectively). The overall effect of as-
sistance on time was significant, F(2, 54) = 5.84, p = .005,
ηp

2= .18, with the high assistance group spending signifi-
cantly less time than the reverse faded assistance group, p
= .004, and marginally less than the faded assistance group,
p < .055. The examples were highly similar to their corre-
sponding problems in the high assistance condition, and this
reduced the total amount of time participants devoted.

Does assistance impact sequences of fixations?
In the context of problem solving with access to an exam-
ple, sequences of fixations between the areas of interest (e.g.,
between the problem and example solution steps) can pro-
vide an indication regarding the type of cognitive processing
participants are engaging in (e.g., copying, self explanation).
Here, we focus on four types of fixation sequences:

1. example-problem (Ex-Pro) sequences involve a fixation on
an example solution step (any of the AOIs in the example
area in Figure 1) and a subsequent fixation on a problem
solution step (any of the AOIs in the problem area in Figure
1, see arrow 1 in Figure 1 for an example), indicating a shift
in attention from the example over to the problem. Such
sequences could be indicative of copying (since copying
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Figure 3: Total time spent looking at the example and the problem (left) and total number of each type of sequence (right), for
each condition (high assistance, faded assistance, reverse-faded assistance), prior to the removal of outliers. Error Bars: +/- 1
Standard Error.

requires looking at the example and then back over to the
problem).

2. example-example (Ex-Ex) sequences involve a fixation on
an example solution step and a subsequent fixation on any
other example solution step (a shift between any of the
AOIs in the example area in Figure 1, see arrow 2 in Figure
1 for an example), indicating a shift in attention from one
example solution step to another. Such sequences could be
indicative of self explanation of the example (since self ex-
planation can involve studying the example solution steps).

3. problem-problem (Pro-Pro) sequences involve a gaze shift
from one problem step to another, here taken to be indica-
tive of self explanation of the problem (see arrow 3 in Fig-
ure 1 for an example).

4. problem-example (Pro-Ex) sequences involve a fixation on
a problem solution step and a subsequent fixation on an ex-
ample solution step (see arrow 4 in Figure 1 for an exam-
ple), indicating a shift in attention from the problem over to
the example. Such sequences could be indicative of check-
ing one’s solution against the example.

The type of assistance had a significant effect on one of the
sequences, namely problem-problem (see Figure 3, right, F(2,
50) = 15.09, p < .001, ηp

2= .38). Post hoc analysis confirmed
that the reverse faded assistance group had more attentional
shifts between the problem’s solution lines as compared to
the constant assistance condition, p < .001, and the faded
assistance condition, p < .003. The constant assistance group
also had significantly fewer problem-problem sequences than
the faded assistance group, p = .041.

Discussion and future work
When students encounter examples highly similar to the prob-
lem they are solving, they tend to copy without learning.
Thus, several recent studies have investigated the potential
benefits of problem-example differences in terms of discour-
aging superficial copying and fostering learning (Lee et al.,

2015; Muldner & Conati, 2010; Weitnauer, Carvalho, Gold-
stone, & Ritter, 2014). In the present study, we investigated
the impact of problem-example differences in a novel con-
text, by manipulating differences over the course of a prob-
lem solving session. Our key finding was that a reverse faded
assistance method, one that initially presented low similar-
ity problem-example pairs but transitioned to high similarity
pairs, resulted in the highest pre to post test gains. The learn-
ing results were corroborated with our eye tracking analysis,
which also shed light on where participants were devoting at-
tention in the three conditions.

Why did participants benefit the most from a ‘reverse
faded’ assistance paradigm? In contrast to the other two con-
ditions, the reverse faded assistance group was immediately
faced with problem-example pairs that superficially looked
different. However, the knowledge (i.e., rules) needed to gen-
erate both the problem and the example was isomorphic - the
only thing that we varied in the present study was the order of
the rule applications in the respective solutions. This differ-
ence in the initial problem-example pairs may have encour-
aged participants to engage in deeper processing in general -
we have some evidence of this occurring, since participants
in the reverse faded assistance condition devoted more time
overall and more time to the problem in particular.

What were participants doing that increased their time on
task in the reverse faded condition? While we do not have
verbal protocols, it may be that the problem-example dif-
ferences in the reverse faded assistance condition encour-
aged self-explanation of the problem solution, once partici-
pants realized that superficial copying was infeasible. The re-
verse faded assistance condition also eventually provided the
canonical solution by providing highly similar examples later
on in the problem session, after participants may have initially
struggled to resolve differences, and thus critical feedback,
which in general aids learning (Schalk et al., 2017).

An unexpected result was that the high assistance condi-
tion resulted in larger learning gains than the faded assistance
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condition - while this difference was not significant, this trend
was surprising given the prior work showing the benefits of
faded assistance (Tullis et al., 2015), albeit in contexts that do
not involve mathematical domains of the type targeted here.
A potential explanation as to why the faded assistance condi-
tion obtained the lowest learning gains is that this condition
started with examples that were easily applied to the problem
with minimal alteration, facilitating copying and discourag-
ing self explanation. After the initial highly similar problem-
example pairs provided high assistance by the virtue of the
high problem-example similarity, participants were presented
with a lower-similarity problem-example pair, meant to tran-
sition them over to a situation where they would have to invest
more effort in transferring the example solution. However,
participants in this condition may have failed to recognize that
the example at this stage blocked copying and proceeded to
copy incorrectly. A complementary explanation is that par-
ticipants in this condition may have superficially copied the
first few example solutions, and then arrived at the examples
that blocked copying - at this stage they had fewer opportuni-
ties to view the canonical solutions, in essence receiving less
feedback from the examples.

The present study and analysis opens up avenues for future
work. A key one relates to more fine grained eye tracking
analysis than presently done. In particular, to date we have
not looked at how attention, as measured by eye tracking,
differs between individual problem-example pairs in a given
session, nor how attention patterns change over time. As for
the latter, it would be interesting to investigate if patterns of
attention change at different rates over time during a prob-
lem solving session (e.g., whether participants in the reverse
faded condition paid less attention to the example initially
but reversed that attention pattern when confronted with sim-
ilar examples). Another avenue of future work relates to scan
path analysis to investigate how participants shifted their gaze
over time (e.g., Anderson, Anderson, Kingstone, and Bischof
(2015)), such as looking between lines of the example and
then looking at one line of the problem, indicating study of
the example as well as potential application to the problem.
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