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ABSTRACT 

S 	 Determination of the current settings in the circular pole -face windings 

of fixed-frequency cyclotrons for optmization.of the magnetic field may be 

solved with the mathematical technique of linear programming. The resulting 

fields are optimal with regard to particle phase lag as well as radial and 

vertical stability,, and the currents do not exceed preassigned limits in mag-

nitude, 
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1. INTRODUCTION 

The purpose of the circular pole-face windings of trim coils in fixed-

frequency variable -energy spiral -ridge cyclotrons is the adjustment of the 

radial profile of the magnetic field for each energy and each type of particle 

to be accelerated. In particular one wishes the magnetic .field to approximate 

the isochronous field as well as possible, This .paper describes a method 

for determining current settings of .the. trim and main.coils that minimize the 

maximum phase lag or lead the particles will experience during acceleration, 

while keeping these currents within allowed limits. A generalization is made 

to keep..the radial .gradient of the corrected field within acceptable limits, so 

as to avoid instabilities of. the betatron.oscillati.ons, 

To determine the proper trim-coil settings one.needs..the following 

information:, the radial profile of the desired isochronous field for the energy 

and particle required, the uncorrec.ted radial profile at an appropriate main-

coil setting,. the change in this unco.rrected field produced by small changes 

in the main-coil current, and.the contributions to the radial field profile re-

suiting from unit current in each.trim coil. This information must be deter-

mined at the same main-coil setting as was used in.measuringthe uncorrected 

field. Further, one must specify the, allowable limits for the trim-coil currents, 

and the charge, mass, and energy gain per turn of the ions, 
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The procedure rests upon the assumption thatthe dependence of the 

field on the trim-coil currents and on small changes in main-coil current is 

linear in those currents. If the currents involved are too large, the field can 

be remeasured with the calculated. currents in the coils, and the procudure 

repeated.to correct the first-approximation field. 

The method.can. obviously be extended to other similar problems in 

magnetic -field adjustment,. such as magnet shimming. 

A system. of IBM 709 codes has been assembled to carry out.the cal-

culations necessary for choosing the proper current settings. These codes 

include an Oak Ridge orbit code; 1  a Berkeley code for. calculating is.ochronous 

fields; 2  the SCROL linear programming code, which calculates the current11  

settings; andBerkeley codes for calculating,the input quantities for SCROL 

and for predicting.the corrected fields,etc. The latter codes and the.use of 

the total complex of codes are described in a separate report. 	These. reports 

and codes will be. available.on request. The results of.these calculations on 

the fields measured in. the 88-inch. cyclotron will be presented in a separate 

report, S 

2, ISOCHRONOUS FIELD SHAPE 

It is assumed .that we are given.a measured median-plane uncorrected 

field with certain radially dependent azimuthal variations. Let the azimuthal 

average of this field be denoted by B(R). We first ask what average field, 

B(R,), would keep the partic.les in synchronism with a prescribed time-

independent rf frequency on the dees, assuming that we do not alter the azi-

muthal field.variations,  

Let the particlets rest mass. and charge be m 0. and eZ, respectively. 

The synchrounous field at R = 0, B 0(u) = B(0, w), may be determined by 

AN 
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observing that when R--* 0 the azimuthal variations ;  go to zero, and the parti-

cle becomes nonrelativistic. Hence the particle rotation frequency in.the 

• field B 0(0) is o = (eZB 0 )/(m 0c), Since the field is assumed synchronous, 

the rf frequency: f must be related to the particle rotation frequency w/2,T 

by 

u2whf 

eZB 0(c) 
= 

 

W
. 

 

p 	m0 c 

if the particles are to be accelerated by the lith harmonic of the fundamental 

rf frequency. 

In the following discussions we make use of the se'cyclotron'units: 

Time unit: 	 T = 

Length unit: 	 a = c/ 	 (22) 

Magnetic field unit: B 0  = B. 0 , 

In thes.e units we denote time, radius, and magnetic field by T, r, and b, 

respectively. These units are related to similar quantitie:sin conventional 

units by 

T = wt, 

	

rR, 	 (2,3) 

b(r) = B(R)/B 0 , 

Also, we use for velocity, momentum, and energy, respectively, the dimen-

sionless quantities 

p = v/c, 

=c = 	• 	 (24) 

ETtl 	1 	I 	2 

m 
2

='.jl +p 
0 	'Jl- 
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If the field had no azimuthal variations the equilibrium orbits would 

be circles, of radius related to particle momentum by 

p = rb(r), 	 (2,5) 

In an azimuthally varying field we regard this relation as defining the so called 

equilibrium radius as a function of momentum. The equilibrium (or closed) 

orbit for that momentum will oscillate aboutthe circle whose radius is the 

equilibrium radius defined by (2,5), and in general it will have a different 

path length from that circle. If we call a =-_r the fractional change in path 

length from that of the equilibrium circle, then the leng.tli of the equilibrium 

orbit (in one tuirn) is 

s = 2r [1 + G(r)]. 	 (2,6) 

An expression a in terms of a Fourier representation of.the field has been in 

a report by Lloyd Smith and.the author [reference 6, Eq. (17)]. A good 

approximation to the general expression given there is 

or 	1 	(F2 +), 	 (27) 

(l+G)(N 2 -1) 

where F is the.flutter, defined by 

F2(R) = _L f 
[B(R, 

2 
 B(R)]2 dO, B(R) = 	f B(R,O)dO, 

Zir 	 B(R) 	. 

(2,8) 

. 	 RdB • 	
i and G s the gradient index, G = - 

The time T to coithplete one revolution is given, using (2.4)-to (2,6), 

by 

= - = Zirr 11 + a(r)] •= 2-TI' [1 + a(r) 
T 	

] 

• 	 P 	• P/V  

If the field is isochronous, .then.b(r) is such that t= Zir. 

(2.9) 
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Hence 
s/T. = r [1 + 0(r)]  

and the isochronous field b 5(r) is given.by 

b (r) = 	
+ 0(r)  

S 	T1r1_[1+0rfl2 

This expression foi'. the synchronous field is exact. However, in practice one 

does not know a exactly. We compute b to sufficient accuracy with the help 

of two IBM 704 codes, and magnetic measurements of B(,•R,O) on.a.polar grid. 

The first code, called DORO, calculates Cr approximately by using Eqs. 

(2,7) and.(2,,8), It then substitutes this value of.0 in Eq. (2,10) to calculate 

b. If. desired, DORO will then modify the original field points with a purely 

radial correction so that b(r)-* b(r), The modified grid field values are then 

used as input for an Oak Ridge orbit code, No. 1482, 
1 
 which calculates the 

frequencies. of oscillation aboutthe. equilibrium orbit, and.the revolution time. 

We find that for the 88-inch..cy6lotronthis first approximation.to b using 

4 
Eq. (2,7) gives b 5  good to about two parts in 10 . Higher accuracy can be 

T(r) 
obtained by the following iteration procedure. The time values 

calculated by.the orbit code are read back.into The computor, and the DORO 

code is run again, but this.time it multiplies the b(r) calculated from Eqs. 

(2,7) and (2,11) by these.time values. One such iteration gives improvement 

of about a factor of ten. 

3, PHASE ERROR 

A. Nonsynchronous Field Error 

Having determined what the radial fieldprofile should be for isochronism, 

we now wish to know the phase errors that will be induced by departures of 

the field from the isohronous field givenby'Eq. (2,11). 

Let the actual field depart from the synchronous field by 
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Ab = b - b, so that 

b(r) = b(r) [1 + 	 (3.1) 

From Eqs. (2,4) and (2,5) we have 

1 2 = 	+ p2  

and substituting this in Eq. (1,9) we get 

T. 2 	 1 +r 2b2(r) 	 (3.3) 

Next wesubstitute expression (3,1) for b(r), and Eq. (2,11) forb (r) into 

Eq,(3.3) to obtain 	 +, r 2 (1 + a) 	(2 + 

T=2rr 	 (3,4) 

or to first order in ib/b: 

r 	2Tr 	- 	{ 1. 	r 2 (1.(y) 2 ]}, 	 (35) 

Since an.increaseof 'i - from Z'rr represents a phase lagof the particle relative 

to the rf, the phase lag per turn,. d/dn, is given from Eqs. (3,5) and (2,11) 

by 	 2 3/2 

- 	
= 	[l-r2(1 + )2J = 	

b {i - r (1+ a)2] 	 (3 6) 

To obtain the phase lag as. a.function of radius, we write 

dj = i 	1 k / 	 ( 37) 
dr 	dr 	dn •dn 

The energy gain per. turn, for hthharmonic, àperation, s 

dy AE 
E 0.cOS(h), E0 = 	2' 	

(3.8) 
m 

0 
 c 

dv 
where AE.is the maximum energy gain perturn. To obtain 	we use the 

dr 

synchronous value of 3, Eq. (2,10), in Eq. (2,4) for ': 
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cl'yd 	 1 	= r[1+a(r)][1+a(r) + ra(r)] 	 (39 
dr dr Ji 211+ 2 	 2 	

2 3/2 
r • 	U 

	r (1 + a) 

By suhsttuting Eqs. (3,6), (3.8), and (3,9) in Eq. (3,7), multiplying both sides 

by cos.(h4)dr, and integrating from zero to r, one obtains-the change in the 

sine of the phase lag: (Note that as h&re defined, 	is positive if the ions lag 

behind.the rf, negative.if.they leadit, 

S(r)i sin [h(r)] - sin.[h(0)] 

= - 
	fo 

b(p.)[1 + a(p) +pa'(p)]p dp. 	 (3,10) 
0  

Equation(3.10) is exact to first order. in 	. Its meaning is that the 

fluctuations in sin(h) are the same for all particles, regardless of starting 

phase--so that the phase width of the beam in terms of sin(h) is constant 

with radius, 	 . 

B. Frequenc yiError 

Equation(3.10) gives the phase error, arising when the actual field is 

different from the synchronous field appropriate to the rf frequency f. We 

will find it useful to know the additional phase error. that will ensue if the 

frequency.is shifted, leaving the field.as  it was. 

Let w be the original frequency, w' the actual frequency, and öww'-: 

Then from (2.1) the new normalizing field..is 

B() =B o()(1 

so that the actual. field with the new normalization is 

B - B sO 
b 	

B 	- B 	
.b - 	b. 

sO 	sO 	. 
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From (2,3) and (2,11) the synchronous field.is  

	

- 	1+a(R) 

	

b(R, w) - 
	- { 	[1 + o(R) }Z 

so that the synchronous field for the frequency w is 

ab(R,) 
b'=b(R,+öw)b(R,)+ 

S 	S 	 . S 

= b(R, )[1 +. 2 (R) 	+ 

/ 	2 
where we have used 3 = r[1 + G(r)] and p2 = 13 (1 - 13 ). Hence, relative to 

the actual frequency , the field error becomes 	 - 

AbI 	bv-b 5 '-- [b -(1 +p2)b 5 W  +".]. 

The length unit has also changed, so that from (23) we have 

= 
(A) 

Now we can obtain the phase. error by substituting primed variables 

instead of ünprimed ones in Eq (3J0):  
r' 

	

'S'(r') 	z(p )k(p ) p I dpt, 

	

Er 	I 

	

') 	JO 

where 

k(p) = 1 + G(p) +•p a'(p).  

Expressing this in terms of the old variables, and keeping only first order 

terms, we get  

S(r, 	+ ö) = S 1(rt) = 	 ]k(p)() 2p dp 

0 fo 
But 

1 	 2  + p 	[l-p(1 + 0)21 ', o to first order in b , 

_ 	 3/2 k(p)pdp}., 	(3l2) 

	

0 	o [l-p2(l+(x)2] 
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where S(r,w) is given by (3,10), 

Expressions (3,10) and.(3.l2) give us the sine of the phase lag, which 

concerns the particles, in terms of the. field .and frequency errors, which 

we can control with.the trim coils. 

• . 	. 	 C. Mass Error 

Now suppose we leave the field.as it was, but accelerate.a particle 

with a.slightly different mass from the original one, (We might also need 

to knw the. effect of using a. slightly incorrect mass in the calculations. 

What will be the additional phase.erroi resulting from the mass change? This 

depe.nds partly on.what we do with the frequency. It is b.est to keep the field-

normalizing constant.unchanged: B 50. B 50 . 

Let the original mass be m, the new one m'. Then.frorn (2,1), (2.3), 

m 	 WI m 	m 
and (3.8) we have wl= -i- w, r' = - r = -- r, E = - E, b = b- -while 

m 	 m 	 m 
the 

from/ceding discussion of frequency, error 

b 	= b (1 + 2 
	

(1. 	
.m) 

so 

Then from (2,10), (3.10), :nd 	= 2/(l2): m 

	 s m 

wIt 	 . 
2h 	m2 - 2 '6 

S(R) = - m 	(TV) 	f 	 (b +; b --) k(p)pdp 

- VE
o  

= 0- -) S(R) 	
c[l.+o(p)]3k(p) 	p 3 dp . (3.13) 

m 	 rn E0 	 [1p2(1+a)2]372 

For 60-Mev deuterons .in.the 88-inch cyclotron, the, coefficient of 

öm. 	 .. 	 • 	. 	 öm 	-3 
- .in the last term is about 100. . Hence if -< 10 , the additional phase 
m 	 ' 	m 	 -. 

error is less than 6 deg, provided the .frequency is shifted according to 

(1 - 	-) w, and the field.is unchanged. 	. 	. 
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4. EXPLICIT EXPRESSION OF FIELD, PHASE SHIFT, 
AND RADIAL GRADIENT IN TERMS OF COIL CURRENTS 

Since we wish to use our control of the trim- and main-coil currents . 

to limit the maximum excursion in phase, shift, and to hold the radial field 

gradient within the bounds needed for stability of the betatron oscillations, we 

must first express these quantities in terms of the coil currents. 

A. Definitions 

I = main-coil current setting,at which measurements of 

main- and trim-coil effec.ts are made. 

I + w 1  = actual main-coil setting, 

w., = current in ith trim coil (i = 2, 	', 

u.= frequency for which synchronous field is calculated. 

w+i = 	= relative frequency shift from base value., 

B 5(R) = synchronous field for frequency w --calculated from 

measured B(R, 6), 

B(R, w 1 , w 2 ,., , , w) = actual azimuthal average of the field 

w.ith currents w.. in the coils, 
1 

B(R) = B(R, 0, 0, 	0) = the measured iron'.field with.current 

I in main, coil, and no current in trim, coils, 

B(R) = [aBR w)] = 
	

= measured change in field per unit 

change in-the ith current i = 1, , ,,, m. 

= .{w 1 , w 2 , 	w} = set of all adjustable currents, 

B(R,w) = B(R, w) - B
S  (R) = residual field error, for frequency u. 

B 0(R) = B(R) -B 5(R) = uncorrected field error, 
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B. Quantities to be Obtained by Measurement or Prior Calculation 

The necessary magnet measurements will give us the quantities 

B(R,6) and the B'(R, 6), from which the azimuthal averages B(R) and B'(R) 

may be computed. The synchronous field B 5(R) can be calculated from the 

uncorrected field B(R, 6) if we ignore the small change sin flutter that 

the currents w 	will introduce, This.is done, for example by the DORO 

code mentioned previously. 2 One has to choose a value of - -our method 

here has been to choose it to correspond to a synchronous field BS  such that 

5 .  B = B at a specified radius. Because such a choice. is rather arbitrary we 

shall give the mathematical algori.thm.a chance to alter it by introducing . a 

frequency shift 5u from this value. Finally, we need the path-length factor 

G = which is also calculated by the DORO code, 

C. Residual Field Error 

We expand B(R,) in aTaylor ser.ies. about w = 0: 

(4,1) 

= B(R) + 	Z B(R)w. +  

By using.the last two expressio.ns.in  Subsec, 4-A with(4.,1), one obtains the 

residual field error to.iirst order. in terms of the, w.: 
i 

B 0(R) + E B'(R)w., 	 (4,2) 

D. Phase Error 

The phase error can now be. expressed in terms of the w. by substituting 

(4.2) in (3,10) or (3,12), using (2,3). The result is 
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S(R, 	+ 6) 	sin [h(R)] 	sin [h(0)] 

m+1 . 
= A (R) + 2 	A'(R)w., 	 1

(43) 
i=l 

where. 

:A'(R) =iTh () 	 f B'(Rv)[l + a(R') + R' da(R)]R, 	dRy, 

i = 0, 1, 	m + 1 	 (4.4) 

and 
(1+o(R))B 

Bm(R) B0(R) 	
sO 	

3/2 
(1 	{.[1+R)]}2) 

• 	E, Radial Gradient 

The influence of the trim coils on betatron stability arises chiefly 

through their contribution to the radial gradient of the azimuthal average of 

the magnetic field, since they do not affect the flutter very much. Specifically, 

the quantity involved (usually denoted by -n or k) is 

RdB 
G BdR' 

If we substitute (42) into this definition, subtract off the synchronous 

value of G, GS,  then to.first order. in.the w.: 	 - 

	

G(R, ) = G(R,) - GS(R) = D 0(R) +Z D(R)wi, 	• 	(4.5) 	• 

where 	 . 

(R) - D° 	
R dB0  RB°  dB 

 dR 	(B)2 dR' 

p D'(R) = 	
] , 	

• 	(46) 

GR 	
dBS 

dR ' 
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Alternatively, one could expand, about the uncorrected field B rather than 

the synchronOus field B 5 , 	 In that case 

D0=(1+—) 	
dB ° . 	D_ = DGS 

BS 	B 	dR 	BS 

= 	 - D (4,7) , 

•BdR' 

The expansion (4,6) is probablybest, but we have so far used (4,7). The 

difference is not too important. 

F. 	Third Radial Derivative 

The quantity 

d 3 B 
H=—  B 	dR 

(4,8) 

is also an important one in beam stability. 	Proceeding as with G, one 

obtains 

H(R,) 
= 

H(R)+T 0(R)+E T1(R)w,, (4,9) 

B  SdR3  

R3B° R3 	d 3 B °  - (4,10) 
B 8 	dR3 	(BS)Z 	dR 

i 	R3 	B ° d3B' 	
' B• 	d 3  - 

T 	Rl 	3 	s 	3 I. )  
B 	B 	•dR 	B 	dR 
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G. Summary 

We will, from now on, deal with all quantities at afinite set of radii 

and denote these with an index k[i,,e., LI)k qi(R)], Listed below are 

the first order expressions for the quantities defined above, in the field 

	

dbtained with currents I + w , w , 	, W .  , and frequency shift w 	= 

	

1 2 	m 	 m+1 

Field: 	 Bk() = Bk + T, B Wi 	 (4.11 1) 

Field error: 	 Bk() = B °  + E Bk'.  w. 	 (4.11 2) 

m+l 

	

- 	0 	 i 
Sine of phase shift: 	Sk(w) = AK + E A w 1 	

(4.11 3) 
jj 

First radial gradint 	 m 
index: 	 Gk() 

= 	S 
+ Dk + M Pki wi 	 (4,114) 

- 	 i=1 

Thirdradial gradient 	= } S. + 
Tk° + 
	

Tk' .  

We now.have at hand, in Eqs. (4,11), the explicit dependence on the. 

coil currents of the most important adjustable properties of the magnetic - 

field, The relations are all linear in the independent variables w. It is 

possible to state quite a varied set of criteria for. an .optimal field, each of 

which can be expressed as a so-called ulinear . programming" (L. P. ) problem. 

There exist algorithms and computer codes for the solution of such problems. 

In the balance of this report a number of possible criteria for optimal cyclo 

tron fields will be. translated into the form of L. P. problems, From these 

formulations.it will. be .clear how to construct the input data for an L. P. code. 

The computor will then calcu:late currents w. that optimize the field according 

to the criteron.chosen, - 
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5, THE LINEAR PROGRAMMING PROBLEM FOR MINIMIZING 
THE PHASE ERROR 

In this section, criteria for optimal fields based on minimizing the 

phase shift only will be put in the form of L. P. problems, We start with a 

definition of the standard form of L. P. problem used. For further details 

a text on linear programming maybe coxsulted, for example, that by Gass, 

A. Standard Form for Linear Programming Problem 

Primal Problem (A4): Choose values of x3 9 j = 1, 	n that minimize 

z, where 

z =E a °  x, 	 (5.101) 
j=1 

subject to 

• 	 a, 1 x1  =b 	i 	1,''',m(m<n) 	 (5.102) 
j=l• • 

x 	0, 	 j = 1,' '',n, 	 (5.103) 

Dual Problem (A4): Choose values of w, i 1, '', m, that 

• minimize y, where 

Y=Z w. b 	 (5.201) 

subject to 

° w. a.' 	a., j = 1,'",n. 	 (5,202) 

*•:We willlabel L,P, problems with or without primes, accordingas the; 

are cast in the dual or primal form, respectively. 
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The primal-and dual problems are closely related, in that the solutions 

of each give the same values of the "objective forms I?  or "costs, " i, e, 

z = y, and if one is solved the solution of the other is obtained as a byproduct. 

In this report all criteria for optimal fields will be cast in the dual form (A4'), 

The IBM 704 code used by us, SCROL, solves problems given in-the primal 

form A4, but also provides the solution of the dual problem (A4'). 

Standard Tableau. For each problem in this report, cast in the form (A4'), 

we will also display-the b' I and a. 1  in-tabular form appropriate to the input 

of the problem for SCROL in the form A4 2  as follows: 

1 	 i 	 n 

0 
0 	 0 	 0. 

a 	 a. 	 a FirstE 

w 1  q+1 a 1 	 . 	 . 	 . 	 a 	. 	 . 	 . 	 a b 

w. 
1 

q+. i a 	. 	 . 	a. 	. 	 . 	 . 	 . 	a 
1 	 j 	 1 

w 
m 

q+.m 
m 	 m 	 - m 

.a 	. 	 . 	 . 	 a 
1 	fl 

. 	 . 	 . 	 - 	a 
m 

b 
J 

Actually,. in-the SCROL code, the column indices j may be, any 

symbol of up to five characters, :  but the row indices i must be consecutive. 

However, the number q must be 1. The data.are input into the code by 

columns, starting with the b', then the a' a21, 0 0 , a. 	 - 

* Our first test of the L. P. method employed an IBM 650 code writtenby 

Mr. Roger Symons of IBM for calculating optimal blends of chicken feeds 

- 	 This code required putting the problem in a somewhat- different form,. and 

could not handle more than seven coils because of the small memory of IBM 650. 
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If a code different from SCROL is used, it may be necessary to put 

the problem originally given .in dual fbrm (A4'). into primal form. This can 

be done by first adding constants to the w. to make the variables always 

positive, and then by introducing slack.variables" to convert the inequalities 

in (A4') to equalities. The resulting problem will then have the structure of 

the primal problem (A4). 

B. The Phase -Minimization Problem 

The simple:st problem we can solve is that obtained from the criterion 

that the largest phase excursion the particle experiencesduring acceleration 

be minimized, subject to practical limits, on the currents. For the present 

we fix the frequency w, so that w 1  = 0, 	 . 

Besides .the.variables w., we introduce.,into the problem.a new variable 

X, defined to be an upper bounçl to the phase excursions ISk I experienced by 

the beam. Specifically, we make X obey 

-x 	5k 	
k = 

where the Sk  are given.in..terms.of the currents w. by(4,113), Next we force 

the. currents w. to lie between upper and lower bounds W i± : 

W1 	w.< W.,  

and finally we specify that X should be minimized subject to (5,3) and (54). 

Putting these requirements together, and using (4,113) for Sk.  gives us an 

L. P. problem in.the form (A4'): 

L. P. 1': Ch9ose values of w. (i=1. '' ' , m) and X, that minimize y, 

where 

yX, 
	 (5.501) 

The method used .is partly inspired by an article by James E. Kelley, Jr,, 

reference 8. / 
	 - 
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Subject to 

X. + 	
- 	

k =1, 	,K, 

(5.502) 

X-A1   

w. >1 'W., 	i = 1, 	, 

- 	 (5.503) 

-Wi  ' - W. 

The optimal solution to L. P. 1' will give values of the.' w that make 

X, the largest phase excursion,' a minimum. Since particles are lost 

whenever , sin 	> 1, this criterion does the most to avoid loss. 

The standard tableau for this problem is shown in Table I. 
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C. Control of Extraction Momentum 

So far the frequency 	has been held fixed, but the magnetic field 

at the extraction radius has not, so the extraction energy is not well defined. 

To remedy this defect we now let the frequency vary, by letting wm+l = 

be a free variable, subject to upper and lower limits W 	That is, the 

index i in (5.5) should now run from i = 1, , m+l, Now suppose we wish 

the momentum at the extraction radius RL  to be p. From Eq. (2.5), that 

means we must have 

= rL b(rL) ,  

so this is equivalent to specifying the field at RL.  Let us refer P L
to its base 

value p  obtained with the synchronous field: 

	

p = r L  bs (rL) = 4-1
__ 	

= 	
{ 1  + a(R)], 	(5.6) 

and write L  = 	
+ 	Then, using the.above relations and (4,112), we 

obtain 

	

6=P 	
+ i1 	

(5,7) 

where 
1 =  wR 

 B = eZ 2 RL BL'. 	 (5.8) 

	

sO 	m0c 

To fix 5p at a specified value, we write (5.7) as two inequalities: 

	

m 	 0 m 
6L PL + E PL w., 	L 	L + Z L 

i=l 

or 	 - 

r PLWi+PI 

where 

pI  =P 	6L 	
(5,901) 
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Then the revised problem, in which the frequencycan vary but the extraction 

momentum is fixed, is L. P. 2, described below, 

L,P,2': Choose values of w 1, 	
m+l 

,w 	and X, thàtminimize X 

subject to 
±w. ?±W. 

1 	 1 

± 	
A'w , 	A ° , 	 (5 10) 

m 	• 	 0 
± 	P'w+P 

L i 	L 
1=1 

An alternative procedure is to let 6p be another variable, 6.pL= 

and then set such bounds as desired about it. Then the problem becomes 

L, P. 3, described below, 

L, P. 3 1 : Choose values of w , ''', w; w 	 ; w 	= 
1 	m m+1 c 	m+2 	L 

and X, that minimize X,, subject to 

± w. 	 i = 1,.,m+2, 

m+1 
X. ±z 	' w. 	

0 	k = l,''',K,  

1=1 

• :

i1 	
L 	

i 	L' 

D. Arbitrary Starting Phase and Programmed Radial 
Phase Dependence 

If particles are injected from a source offset from the center of the 

dee gap, they will start with a nonzero starting phase (0). This might be 

desirable in order to obtain electric vertical focusing, which occurs for 

small radii if 	is positive, Then.the phase as a function of radius is (R), 

where 	(R) is given by Eq. (4,3), 

Since this phase should go from (0) to zero in a smooth fashion, we 
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specify a programmed radial phase dependence, 	(R), which we would like 

the field to produce. Then we should minimize I sin [h(R)] - S1 (R), where 

S(R) = sin.[hP(R)], Rewriting (4,3)as, 

sin (hk) = sin[h(0)} +Sk, 

we flOW set 

- X 	{sin [h(0)] + Sk } - Sk p < 

Proceeding as in Subsec. 5-B, and again using (4,113) to express Sk  in terms 

of the currents w, we arrive at two sets of inequalities like the first two in 

(5,502), with the difference that the right-hand-side factors Ak° are replaced 

by 	where 

Ak° -k' + sin 

Sk = sin [hP(Rk)], JP = programmed phase, 

E. Varying the Limiting Phase Shift with Radius 

One might not consider a phase error a equally serious at all radii. 

For example, one might wish to keep the phase especially small near an 

electrostatic extractor channel so as to maximize turn separation there. We 

could introduce a factordefined as the fraction of the nominal phase 

maximum X to be tolerated at radius Rk.  That is, we require 

Ik' 	ak 

This means. that the )'is in (5,502) should be replaced by akX. In the tableau, 

Table I, this means that Ps in the first 2K columns of the last row, belonging 

to the variable X, should be replaced by the ak  If one does not care at all 

about phase.error at some particular. R.1 , then ak  should be set very large; 

if one wishes strictly zero phase error at Rk, then  ak  should be set equal to 

zero. Rather than set ak = 	in the former case, the same, result can be achieved 

by simply removing from the matrix the two columns involved, LSk. and USk, 
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F. Summary 

We summarize this section with a statement of the L. P. problem 

obtained when.all of the features of this  section are included: 

L,P,3': Choose values of the variables.w., i=1,°",m+1, and X 

that minimize X, subject to 
m+l 	. 

akX±E Ak'.w. > + 	, k, 1,''',K, 	 (5.131) 
1=1 

	

L 	i 	+PL, 	 (5.132) 

+ 

	

± w. 	± W. , i = l,'.',m+l, 	(5,133) 

The solution of L. P.3' will give: a main-coil current change w 1 ; trim-coil 

currents w, i 2, ', m; frequency shift 	w+1; and a parameter 

X. This parameter will have been minimized, such that: the magnitude of 

the phase.error Isrn (hk) - Sk P at each Bk  is less than or equal to ak 

the momentum at .the extraction. radius RL 	
= 	+ 8L' 

 where p 
S 

 PL 

is the momentum.in  the synchronous field at RL,  [Eq, (5.6)]; and the 

currents are bounded, -W. - 	w. 	W., i. = , 000 , m+1, Here S 	is the 

sin(h) desired,. and.the quantities 	O 	L' L are defined by 

Eqs. (4,4)., (5,12), (5,8), and (5,901), respectively. 

The tableau for. the dual of L. P. 3'is given..in Table 11. 
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6. LINEAR PROGRAMMING PROBLEMS INCLUDING 
RADIAL-GRADIENT CONTROL 

A. Specification of Gradient Limits 

In Sec. 4, the necessity for keeping the radial gradient index G bounded 

was mentioned, This is because the frequencies of radial and vertical 

oscillation, V and v, respectively, obey relations 

v (R) = 1 + G(R) + 
r 

and 
	

(6,1) 

v 2(R) = -G(R) = 

where i-i  and mi  express the focusing effects obtained from the azimuthal 

field variations, and G is given by Eq (4.5), By processing: the field 

measurements with the Berkeley code DORO 2  and the Oak Ridge Code 1482, 1 

one can obtain v and v in the measured field, corrected— in its radial 
r 	z 

dependence, only— for isochronism. One can then examine these results, and 

decide how much fluctuation in V and v 2  is to be tolerated, and this in 

turn gives the permissible deviations of G from its isochronous value 

[which is G(R) 

To be more specific, suppose one wished to impose the conditions )  

roughly appropriate for a low-energy cyclotron: 

v 	0, v 	1 	v 	, v - 2v 	0, 
z 	r 	z 	2, 	 r 	z 

referring to linear vertical and radial stabiltiy, first -harmonic -induced 

vertical instability, and lowe st-order coupling resonance, re spectively. 

Rewriting in terms of V 2  and v 2 , we have 

v 
2 	

0, V 
2 	

1/4, v 
2 	

1, v 
2_ 

 4v  2 
	

(6,2) 
z 	z 	 r 	r 	z 

For more complete expressions in terms of the Fourier coefficients 

representing the field, see reference 6. 
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The last of these relations is redundant, so.we drop it. Referr.ing to (6,1) 

and letting'subscript. s refer to values for the isochronous fields, we have 

0 	v 	 .- 	G - 
z 	zs 	

z 
' 	z 	4 

(6,3) 

= V 	+ AG + 	1. 

The variations Ail and Aq with, respect to gradient changes are compara-

tively small, and for the moment we will drop them. Hence 

v2, 	 . 	 (6,401) 

-(- v a ), 	 (6.402) 
zs 

G. 	-(v rs 

If we now define to be the upper and lower bounds to be allowed in the 

fluctuations of G at RK,  ,we have from (6.4), 

+ 	2 
= v(Rk) , 	 . 	. 	 •.. 

= mm ,{.[v2() - i], ( 	- V2) }.
zs 

For a high-energy machine .other. resonances would enter, but in a 

similar. fashion. one. could arrive at the appropriate values of the gradient 

fluctuation limits Ykto replace,. (6.5). 

By using (6,5) the relations (6.4) can now be written 

* In.the 88inch cyclotron.the field has a bump near:the center, to enhance 

vertical focusing, hence v -lchanges, from negative to positive values at 

about 6 in. By suitable juggling of the vk ±  one can control the radius for 

which,v1, and keep v r _l I maximized at other. radii, 
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Since we would like to have the gradient fluctuations even.smaller, we replace 

these relations with 

-; 

(6,6) 

max 

where ji is a parameter to be minimized, and max 
 is set at some value 

not g.reater than one. The gradient fluctuationGk, from Eqs. (4.5), (4,6), 

and (4.114), is 

	

D ° + 	D'.w. 	, 	 (6.7) 

Substituting this expres.sion.into (6,6), we obtain.the following relations,. 

which.serve to keep the gradient fluctuations within proper limits: 

± 	
.D. W. 	; 	. k 

(6,8) 

-L 	 (andp. 	1). 
max 	, max 

B. flEffec tive u Gradient 

The above formulation ignores the fact that the fluctuations in G . do 

not completely acount for those, of vZ and. vr2, since.there .are terms in 

and ii,  Eq. (6,1),. involving G andit"s higher derivatives. The effect 

has been explained qualitatively by H.. G. Blosser:., since the equilibrium 

orbits oscillate, they do not see the field gradient index G. at one radius, 

but rather some kind.of average G over the radial 'range they, sweep out. 

This has the beneficial effect of making the particles less sensitive to short-

range fluctuatIons in G. .L1oyd.Snith has investigated a similar effect in 

conventional cyclotrons. 	- 

Quantitatively this effect is rather well described by a single.term in 
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namely (F 2  H) / [2(N
2 	l)]; where F isthé flutter, Eq.(2); 

H is the, third-derivative index, Eq. (4.8); and N is the number of sectors 

This term is just what would be obtained by.:averaging G over the equilibrium-

orbit oscillations, We can take it into account by replacing G by an 

v e ffec tive tt gradient index G, where 

F2  H 2 
	

: 	(6.9) 
2('N 2 -l) 

and by using 	G instead.of AG in (6.4). and(6,6). Thus if one wishes. to 

satisfy relations (6.3), taking into account the noncircularity of..the equili-

brium orbit, one mu'st replace the Dk'.  with the quantities Dk',.  in relations 

(6,8), where 2 
FT' 

k = k 	2(N2 - 
) Z 	' 	

(6.10) 

Here Fk2  is the flutter, squared at R , a.nd.the Tk'. are given by (4.10). Since 

the additional term tends to dampen the Iluctuations of v 2 , it is conservative 

to leave it out, . 

C. Summary: Combined Phase. and Gradient Control 

" The simultaneous control:of the phase.error and the gradient is achieved 

by including the contraints (6,8) with. constraints (5.13) of L. P. 3 1 . There 

are now two parameters to minimize, X and p,  so we must put an.absolute 

bound on 

xx. max 

This term is. included in the 	
2 

	

r 	
z 2 i expressions for v 	and v 	n reference 6, 

Appendices 2 and 3. The.notation.there is G = ri', H p.". 
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Then we minimize some linear combination bXX + b, where bX  and b are 

"cost coefficients" to be assigned. The combined problem for phase error 

and gradient control. is as follows: 

L,P.4': Choosevalues of the variables (wi'wm+i X,and ) that 

minimize 

.y=b,+ b, 	 (6.111) 

subject to 

-x >1 -x 
max 

., 	_.. 	- max , 
	 (6.112) 

W. 	 -w 	 (6.13) 

m+l 	. 	. 0 
akX± E Ak'w..+Ak, 	 (6.114) 

± 	
L 	

p 0 	. 	 . . 	 (6,115) 

±Z .D 	+D 	, 	. 	 (6,116) 

Here i, = 1, ',m+l and k = 1," , K. The k 0, P L' L are defined by 

Eqs. (5,12), (5.8), and(5901); A, and Dk'  by (4,4) and (46); and the 

by (6.5), The D's in (6,116) may be replaced byb's, Eq. (6.10) to control 

the "effective" grathent. 

Problem L. P.4' will accomplish all that L. P. 3' does, except that the 

objective form (6,111) can.invblve p. as well as X, and in addition it bounds AG, 

the departu.re  of the gr.adient from its isochronous value, according to 

LGk. 	 Furthermore, X and p. have upper. bounds Xmax and 

Of course, if these are taken too small the.re may be no feasible solutions. 

The tableau f o r L. P.4, the dual of L. P.4', is shown in Table III. 
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7, CONTROL OF NONLINEAR EFFECTS RESULTING FROM 
THE THIRD-DERIVATIVE INDEX 

It might be necessary to control the third-derivative index H, Eq. (4,8), 

other .ways besides that specified in. the preceding section. We will discuss 

two such possibilities. 

A. Cubic Terms in Vertical Equations 

The vertical equation of motion.fpr y = z/R contains the nonlinear te.m 

- Hy 3 , so that the equation of motion is 

2 
-_ +(v 2  ± -Hy2 )y =.O, 	. 	 (7,1) 

	

dO 	 . 	 2 
Now, as we have seen, v 2 contains the term -HF 

	, Hence the.total 

	

Z 	 . 	. 2N2 1) 2. 

contribution to the vertical focusing by H is 

2 
- 

2(N 	l) 	
- 

2 	2 	+ 	y ], 	 (7,2) 

.- 	 . 	 . 

The first term predominates so long as y 	y 1 , where.:  

'.j3F 
l 	2' 
	 (73) 

N - i 

For the 88 -inch cyclotron this usually gives az 1  = Ry 1  1 in,, at the values 

of R for which H is significant, which is larger. than the dee height. Hence, 

at Berkeley, we probably will not need to worry about H so far as this non-

linear effect is. concerned, but since the situation could be different in another 

machine, we will set down the formulation necessary for controlling it. 

Suppose one wishes to attempt to insure vertical stability of all 

particles for which z 	z 	As we have seen in the preceding section, 
max 	. 

the fluctuations in .V 	are given by those,.of.the.effective gradient 

Strictly speaking, this equation.is true for anothervariable q, related to 

y and dy/do by a 0-dependent linear transformation. However,  q .y. Also, 

the factor H should reallybe H 	+." - , where 	(R/B)(dB/dR), 

rather than just J)'t. 
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- 

[Eq. (6,9)], that is, v z 2 = v zs - zG. Thus to keep the force term in 

Eq. (71) positive for z 	z 
max

, we must put 

• 2 - [G + F2  H 	1 + 	
Z 	

)2 H 0 	 (7,4) 

[ 	2(N2 - 1) 2  j 	6 	R 

or 

	

v 2 , 	
(7,5) 

zs 

where 

	

r 	2 	 z 

	I 

	

G= G. +1 	F 	1 .. max.) (7,6) 

L2(N - 1)  

Relation (75) plays the same role.as  (6,401), only it refers to stability of 

particles with vertical amplitude up to zmax rather than zero, One can pro- - 

ceed from it in exactly the same way as before, to reach the following con-

straints,. which .insure that particles with. amplitude up to z max 
 will retain 

vertical focusing: 

	

- i1 	
w. 	Dk, 	 (77) 

	

-i1.L 	. 	 1), 

	

max . 	max 

where 	
F2 

Dk. = Dk' 	(N2 	)2 	
- 1 (maX )] Tk1. 

	(7,8) 

To incorporate this vertical focusing feature, into the combined problem, L, P.4' 

of the preceding section, one simply adds the constraints (7, '7) to constraints 

(6,112) to (6,116). This will add K .  new columns to the tableau, Table Ill, 

which will look.like those iabe'led UGk, but the Dk'  will be replaced by the 
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B. Effect on Nonlinear Radial Instability 

A discussion of the nonlinear 3-3 resonance which is important in a 

three-sector machine.is  given in reference 6. The Hamiltonian for the radial 

motion, Eq. (52) of reference 6, included two terms involving J)' = H. How-

ever, these terms were dropped before arriving at a final expression relating 

the amplitu1e to the phase.of the radial oscillations, Eq. (61) of reference 6. 

If these terms are included, one finds that a given particle will have its radial 

amplitude A and.phase x always constraine,d to lie onaninvariant curve 

satisfying 
24 (yr - 	1 	:c 	3 	-_ A, 	 (7,9) 

D 	A A3 4 D 

where 	 1 

D= {[a 3 t + 5a' 3  + (3+ 	) a 3] 	+ [b' 3  +5b' 3  +(3 + 	) 

(7,10) 

Here á 3 and b 3  are the coefficients Of the cos 36 and sin 36 terms, respectively, 

in.the Fourier expression of .the field; primes denote derivatives with respect 

to x = (R - R0 )/R0 , where R0  isthe equilibrium radius; and C is a constant, 

determined by the initial values of A and X. Obviously if H is large it has 

a profound effect on the character of the radial oscillations. This is particu-

larly important for regenerative extraction, a fact which has been noticed 

by R. H. Bassel and T. A. Welton at Oak Ridge (private communication), 

The. most important effect arises from the last term in (7,9), which stablizes 

large-amplitude oscillations that would otherwise be unstable, so they repre-

sent particles that will no longer escape the.. cyclotron, 

Consequently,. one might wish to attempt to keep H itself within 

acceptable.limi.ts. Let us call these limits ± r, refer.ing to radius R,. 

Thu.s we require 

Hk. 	O 
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Again we can introduce a new variable, 	which we. will try to 

minimize, and rewrite as 

TkHkk ,  

max max 

Substituting Eq. (4.115) for Hk  into (7,11), we obtain the following set of 

inequalities, that serve to bound the third-derivative index H: 

+ 	T w i  >
1 7 T, 

 Z 
I 

- 	
T 	w 	T kr. 	 (7,12) 

max max 

These constraints may be added to those of L. P. 4 1  of Sec. 6. However, 

we have also added a new variable, , so the objective form should be expanded 

to 

1 

This concLudes all of the physical effects we shall consider in this paper. 

8. VARIATION OF THE EXTRACTION MOMENTUM 

In the L. P. problems we have considered, 	all except .L. P. 1' permit 

one to specify p
L' 

 the' value of the momentum at the extraction radius RL. 

In particular, one has to assign a value to P 	=+ 6L [see Eqs. (5,6), 

(5,901)], which appears twice in the i = 0 row, To see how the solutions vary 

with 	one may make, use of. the parametric cost row (PCR) feature of the 

SCROL code, We have two values of j for which the a. °  vary linearly with 

= 6L' namely j = LPL and j = UPL, for which 
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(aLPL° 	
o 	, 	= 

I 	o 	± 	
+ 0 	1) 9 	0 

.aUPL 

The input for SCROL then consists of putting ± L°' in the j = 'LPL, UPL 

coluinns of the i = 0 row; and the coefficients of 6, ± 1 9  in the i = 2 roW, 

One then specifies the upper and lower bands of 6 = ÔPL that one wants solutions 

for. The machine will then compute solutions as functions of5P L
between. 

those limits, That is, it prints out a new solution each time the basis changes; 

the intermediate solutions vary linearly with 6L' 

Actually, since one wants 
PL 

to be both positive and negative, one will 

have to do PCR.twice, first with the 1=1 row containing ±1, thenwith the 

i = 2 row, which should contain f -i, , The sum-row index q must be set equal 

to 3. The constraint matrix rows will, start at q + 1 = 4. 

It is contemplated that the measurements described in Sec. 4 will be 

carried out at a number of discreet main-coil current settings I, For each 

of these one should, by examining the uncorrected field, make an educated 

guess as to the best value of Bs(RL),  and from this calculate associat€d 

values of the rf frequency f and the momentum
I 

pL5' 

 This can be done by 

solving for p 	 and w as follows: 

= 	2 RL 
BS (R) 

m0c 

S 

s 	L 	 , 

cpL..  
W. 	RL11. +(R)j '. 	 . 	. 

In the physical pro1lem the right-hand side are _a ° . In the dualto this 

problem the a. °  become the tcostu  row, 
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Such values of w and PLare  calculated by the DORO code if one includes 

in the input RF = RL, and one of the following three quandties: BF  BS(RL), 

EF = energy in Mev at RF.  or PF = L 	
They constitute base values of 

one 
o. andpL  for the L.P. problems. Thus there willbeApL  (I) for each of the 

measurement values of 	Parametric programmingwill then bridge the 

gap between these discrete values of p L S  

9, SUMMARY OF LINEAR PROGRAMMING PROBLEMS FOR TRIM - 
COIL ADJUSTMENT 

We have now described a considerable variety of conditions one might 

wish to impose on. the magnetic field. One might prefer not to impose all of 

them, or one might wish to impose others not treated here. For convenience 

we now state a linear programming problem that contains all of the features 

discussed in this paper. If the user does not wish to impose all of these 

conditions, he can omit the corresponding constraints, which will mean 

omitting the corresponding columns of the total matrix shown in Table IV, 

For those constraints referring to a radius R, one may include only those 

that are of interest for the particular öonstraint involved. If the remaining 

constraints do not involve all of the variables X, Fi,  or , then those not 

involved should be left out of the problem and the corresponding rows omitted 

from Table IV, 

In general these linear, programming techniques only provide a method 

for making certain types of optimizations subject to preassigned conditions. 

If these conditions are made too stringent the trim coils may be incapable 

of satisfying all of them, and the L, P, codes will state No feasible solution. 

The user should use his judgement to try to impose conditions whose mutual 

satisfa,ctionis within the capacities of the trim coils, and then trust to the 
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optimization properties of linear programming to make matters as good as 

possible. 

The specification of what constitutes an acceptable solution is made 

by one's choice of constraints to be imposed, and the choice of parameters 

defining the size of such, constraints, e, g., X . 
 .i 	, 	, a , 

max max max k L 

	

± 	 ± 
k 

z 
 max,  

The specification of what constitutes a "best" solution is made by 

one's choice of the "cost coefficients" bX,  b, b. 

We state the general trim-coil-adjustment problem in:L.P. 5' below. 

The tableáü for its dual, L. P. 5, is shown in Table IV. The meaning of the 

quantities in. the rows i 1,2 is explained in Sec. 8. 

L. P. 5 1 : Gener3l trim-coil -adjustment.problem. 

	

- 	Find values of the variables w1,'' , w 1 ; X; p;  and that 

minimize 

y = b 
X 
 X + b 	+ b, 
	 (9.1) 

subject to the constraints: 	. 

Currents (and frequency) w:  

± w. 	±Wi 	i. = 1,, m+'l. 	 (9.2) 

Sine of phase lag, 
5k 

 [cf. Eqs. (4,4) and (5.12) for defining 

equations]: 	 . 

	

.-x >1 -x 
max., 
	 (9.3) 

0 
ak X ± 
	

> 	
. 	

. 	(94) 
i 1  

Momentum at extraction radius p.[Eqs. (5.8) and (5.901)1: 

± Z P w 	P. 	 . 	( 9.5) 

Gradient error G(tor control of "effective" gradient error 

AG L' replace DbyD 1 byD.)[Eqs. (4.6), (6.10), and(6.5)]: 

	

max' 	
'' 	 (9.6) 
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± Z 	 Dk° . 

Effective gradient error for Za 	G[Eq (78)1: 

Dk Wi 	 ( 98) 

Nonlinear radial-instability control of 

- 	 (9.9) 
max 

± E Tk1  W. 	 T, 	 (9.10) 

The values of k to be used depend on the radii R k  at which the constraint 

in question is to be imposed, 
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APPENDIX: LINEAR PROGRAMMING 

Statement of L. P. Problem 

We start with the statement of the general linear programming (L. P. 

problem. In this statement the symbol ® may stand for either. , , or 

/minimize 
Al: Choose values of the variables x , j = 1, 0,n that 
- 	 maximize 

the objective function 

z = 	c. x  
j=l 

subject to the constraints 

a. 1  x ® b1 , 
i= 1,00 , m 	 (ALa) 

3. 

and 

x3 	O(for a particular subset of the x 3 ) 	 (Al 3) 

Any value of X. x 1 ,",x that satisfies the constraints of Eqs0 (ALZ) 

and (Al 3) is called a feasible solution Any feasible solution that minimizes 

or maximizes the objective function z.(sometimés called the cost) is called the 

optimal feasible solution0' Any 	P. problem either has no feasible solutions, 

or if it has feasible solutions it either has an unbounded solution(that. is, 

\' 	 .. 
z can be made as (small 

largei 
jas desired), or it has a finite optimal solution at 

either one or a set of values of the vector 	= 	• , n} 0  

.. Geometrical Interpretation 

It is helpful to visualize the problem geometrically(see Fig 0  l) 

Suppose the constraints of Eq 0  .(ALZ) are all inequalitites, and we are con-

sidering a.twä dimensional problem,n'Z. . Each inequalityof Eq0 (ALZ) 

divides the x1,x2  plane into an allowed and a forbidden part, separated by 

a straight line. Together, Eqs. (ALZ) and(A103) define a convex polygonal 

region K on which the feasible solutions must lie. The objective function 

•z is constant on a family of parallel lines0 That z line with the smallest 

z value with at least one point in K, is the optimal one, and the points of 
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\\ \ 

\\ 

f \\ Optimal 
solution 

\ 

x l  

MU-26273 

Fig. 1. Geometrical representation of a two-dimensional L. P. problem. 
The hatched lines representconstraiflts, which restrict the feasible 
solutions to the polygonal region K. The dashed lines are lines of 
constant z. The optimal solution will be a vertex (called an extreme-
point solution), or on the line between two vertices. 
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intersection with K.. constitute the, optimal solutions. Usually the inter-

section is at a vertex, called an extreme-point solution, but sometimes it 

is along an.edge. In the. general cáse,z assimes its optimal value either 

at an extreme point or at.a set of points which are convex combinations of 

extreme points where z has the same (optimal) value. . (A convex. combination 

is a linear combinatiOn with nonnegative coefficients. ) ... 

C. Slack Variables 

An L. P. problem with inequality constraints may be converted to one 

with equality constraints by the introduction of new .variables, called slacks. 

Suppose the original, problem is . . . . . . . . 

AZ: Choosex,j = l;°,n, thatminimize z.= Z c. x3 , 
j=l 

subject to  

	

x3 	0, 	j = .l 	",n, 	. 	 (AZ,l) 

E a'x'?b', 	i=l,  

j=l 

We can then subtract from each inequality of (A2.,2) a new positive variable 

x 
n+i 	 j , which will be ust the thfference.between the left and right sidesof 

the inequality, so the problem becomes 	 . 

A3: Choose variables x3  j.  = .1,• ,n + m, that minimize 

n 	. 	n+m 	 . .. 
Z F 	C. x3  = E. x3  

	

.j1 	 j=l. 

subject to 	 . 	. 	 . . 	. 

xj 	0,1  1. j = 1, 	,.n+m, 	 . 	(A3.l) 

n. 	. 	 n+m 	........ 	 . 
i .j 	n+i 

	

-13 	. 	i 	.• 	. 	•' 	. .. 	. 

	

Z a. x - x 	. . . a. x = b 	m, (A3.2) 

.j=l 	 j=l 	. 	. 	 . 



-44- 	 UCRL-9916 

and clearly the content of the problem has not been altered, If (A2.2) had 

n+i 
relations one would have a term 	i +x 	n.Eq. (A32). 

The feasible solutions of Eqs. (A3) for which no more than :  m of the 

n + m variables x is nonzero (or for which at least n of them are zero) 

are called basic feasible solutibns(BFS) These correspond to the extreme-

point solutions of (AZ), since an extreme point of the polygon defined by 

(AZ.l) and (AZ,Z) is the point of intersection of n of relations (A2.1) and 

(A22) written as e4ualitiès0 But each of these relations, written as an 

equality, is equivalent to one of the x3 , j = I t  ., n + m, in Eqs. (A3) being 

zero. Since there are n such relations, n Of the x3 , j 1, 	, n + m are 

zero, which we have defined as a BFS. 

D. Making All Variables Positive 

Any variable x3  of Eq. (Al) not constrained to be positive can be 

replaced by two new positive variables x and i3  where x3 = 	X= j and 

0, i 	0. Then the originalproblem should be restated interms of 

and 	, substituting (3 - i) for x3  in Eqs. (Al.!) and (Al.Z). 

E. Standard Form 

By the above methods, any L. P. problem can be cast in the following 

standard form: (If the original problem calls for maximumz, then change 

the signs of the C..) 

A4: Choose values of the variables x3, j=l, 	, n, that minimize the 

objective function. 

c.x, 	 (A4. 1) 

j=l 

subject to the constraints 

a. x = b i = 1, °, m, where.m < n, 
	 (A4.2) 

j=l 

x3 0, j=l,",n. 	 (A4.3) 
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F. :Solution  of L, P. Problem 

Equation (A4) is the form required by the SCROL L, P. program. Oi 

course it is not essential that the methods used by this code to find the optimal 

solution, if any, be understood by the user. H'owever, the nature. of the method 

can be hinted, at here. As suggested above, the only candidates for optimal 

solutions are the vertices or extremum points of the poiyonal region defined 

by the constraints, which are the same as the BFS defined above. In terLis 

of (A4), each BFS has n - m of the x 3  set equal to zero, Thus (A4.3) is re-

duced to a system of m equations in m unknowns, which has a unique 

solution, - Those c'olumns of A = 	a.' belonging to the nonzero x 3  constitute 

the basis B (not to be confused with the A's and B's of the text, Sec,4) 

corresponding to the BFS, or extreme point. The code proceeds from one 

extreme point to a neighboring one by removing one column from B, and re-

placing it by one currently not in B, It has a test to detect when it has arrived 

at the optimal BFS, and if it has not it chooses the neighboring extreme point 

that reduces z the most. 

One problem that the user must know about is how the code finds an 

extreme point to start with, Suppose A contains as one square submatrix 

the unit matrix I. Then it chooses this as its initial basis, for it gives, the 

BFS x = b. ' If A does not contain all of I it internally augments the problem 

with so-called artificial variables in such a way as to build I. These artificials 

are subsequently eliminated. However, to save the machine time, the user 

should specify if A contains any columns that can be part of I, i. e,, columns 

containing only one element, of value ±1, These columns are specified by a 

special column designation, 



-46- 
	 UCRL-9916 

G. Dual Programming 

Every L, P. problem has a so-called dual problem. Here we shall 

discuss only the dual problem to a problem in.the standard from (A4), Let 

(A4) be called the primal problem. Then.the dual problem .may be written 

as follows 

A411 ::  Choose values of the variables-wi,  i =1, ',m that maximize 

the functional 
m 

1 
b w.1 , 

:i=l  

subject to 

a w. 	c., j = 1, 	0 n. 
i=1 3 	1 	3 

The following theorem relates the optimal solutions of the primal and dual 

problems (paraphrasing Gass 7 ). 

Duality Theorem: If either the primal or dual problem has a finite 

optimal solution, then so has the other problem, and the extremes of the 

linear functions are equal s  i, e., min z = max y. If either problem has an 

unbounded solution, then the other problem has no feasible solutions. 

The explicit formula for the dual variables in terms of the optimal basis 

Bis 

	

w:=F, c. 	 )j. for those j in the basis, 

whereas the primal variables are given by 

	

j 	 -iji 
x = E (B ). b , j in the basis, 

The SCROL program simultaneously computes the solutions to both a 

primal problem in form (A4) and its dual, (A4tt).  Hence if one has an original 

problem jn form (A41t)  one may solve it by entering problem (A4) into the 

machine. 

The dual relationship is reciprocal: if At  is the dual problem to A, then 

A is the dual problem to At, 
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For our purposes it is more convenient to have the dual problem in the 	- 

fllowing forrri—obtained by changing the signs of a. 1  and b' in (A4) and (A4'). 

A4: Choose values of the variables w., i = 1, .' ', m that minimize the 

functional 
m 

	

b 
1

w., 	 (A4t, 1) 
1=1 

subject to 

rn 
E 	a.' w, ? -c,

3
, j.= 1,'" ,n, 	 (A4 1 ,2) 

3 	1  

By comparing the primal problem and its dual we, can see the significance 

of the dual variables ot the primal problem and vice-versa, for by the Duality-

Theorem, at optimum we have z = y. Suppose that in the primal, one varies 

the c. slightly. For a small change the original optimal basis will not change, 

hence the x3  will not change either. Therefore 

8y8z 	j 	/ 

ac, 	ac. 
3 

But in the dual problem the c, are the right-hand sides of the inequality con-

straints, Hence the derivative of the objective function (at optimum) with 

respect to a right-hand-side parameter is equal to the dual variable corres- •  

.ponding to the constraint in question. 

H. Parametric Programming 

Oftenone wants to know how the optimal solutions varyas the cost 

coefficients. c, or right-hand-side coefficients b' vary continuously. 

Case 1 (PCR): Suppose in(A4) we let c = 
d. + 6d 9  where o 	e 

Then it can be shown that: 

(a) The set of 6 for which minimum solutions x"  exist is 

closed and connected. 
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Given any finite niinimum solution,. a. set of solutions x, 

and associated z values corresponding toall possible values 

of 6 can be found, 

Each such, solution is minimum over a closed interval of 

6 '(so the basis remains the same in that interval too). 

In each such closed interval of 6, the dual solution ' 

varies linearly with 6: w 1(6) = s. + 6r, The procedure in the 

SCROL code .is to put the d, in the i = 0 row, the d, in some 

other row i < q,, where  q  is the index of the 'sum row, which 

is a row with zero elements just above the constraint.matrix 

rows. 

Case 2 (PLP): On the other hand, if in..(A4) the b' =e' + Oe', the 'above 

situation is reversed—the x3  will vary linearly with 6 in the various 

closed intervals, x3 (6) = q3  + 6p3 , while in. those interv3ls the dual 

solutions w. are fixed, 
1 

The SCROL code prints out the solutions x '  and w,, and the value of the 

functional form z. y' at the beginning of each interval of 6 in whiôh the basis 

is fixed, In Case 1 one can trace out w(6) by joining, with straight lines, 

these values of w
i 
 given by the code at desired values of 6, while the x 3 (6) 

remain constant through each interval. The situation.for Case 1 (PCR) is 

shown in Fig, 2, 



I - 	- 

-ö 
MU-26274 

Fig. 2. Parametric programming of the c. = d. + 
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I, Tableaux for L, P. Problenis 

The following tableau shows the relation between the primal and dual 

probms (A4) and (A4 1 .), respectively: 

Tableau for standard L. P. problem (A4), showing primal -dual relations. 

x l  • 	xi x n = 

1 . 1 
. 

1 
a b w 

1 
a 

1 
a 

3 n  

W. a a, a b 
1 1 3 n 

m m - m m 
a. a b 

rn 1 3 n 

	

c. 	 c 	 max 

 nun 

However, all the tableaux in the text refer to the following standard 

tableau, which in turn is regarded as equivalent to (A4), (A4r),.  and  (A4t) :  

Standard tableau for standard L. P. problem (A4), 
- 

3 
1 
	 1 
	 n 

0 	c 	 c. 	 c 

.1 	 1 	1 
q+1 	a 	

1 
1 	 a 	 a 	b 

i 	 i 	 I 	i 
q+i 	a 	 a. 

3 	
a n 
	

b 
1  

m 	 m 	 m m 
q+m 	a 	 a. 	 a 	b 

	

1 	 3 	 n 

In the IBM 704 codes the cost coefficients c. 
3 
 are labeled a 

.3  
.°, otherwise 

the notation is about the same as above.. However,, the first row, here labeled 

i = 1, there has index ± = 2 or greater. The column indices j are replaced by 

arbitrary alphanumeric labels. We will sometimes follow that pratice too. The 

codes print the x1  in a column headed BETA,. and the w in a column headed Pt. 

The index correspondingto j and the i:. index are printed in columns headed 

J and I, respectively. 
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