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“ABSTRACT
Determination of the current settings in the circular pole-face windings
of fixed-frequency circlotrons for optimization of the magnetic field may be

solved with the mathematical feéhnique of linear programming, The resulting

fields are optimal with regard to particle phase lag as well as radial and

vertical stability, and the currents do not exceed preassigned limits in mag-
\ N\ .

nitude.
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CALCULATION OF CYCLOTRON .TRIM-COIL CURRENTS: FOR
FIELD OPTIMIZATION BY LINEAR PROGRAMMING METHODS
Alper A Garren -
Lawrence Radla.’mon Laboratory
University of California

Berkeley, California

‘March 7, 1962

. 1. INTRODUCTION

The purpose of the c1rcular pole-face windings of tr1m coils in fixed-
frequency variable - energy spiral -ridge cyclotrons is.the adjustment of the
radial profile of the: magnetlc field for each energy and each type of particle
to be accelerated. In particular one wishes the magnetic field to approximate
the isochronous field as well as possible, This paper describes a method
for determining current settingé' of the trim and main coils that minimize the
maximum phase lag or lead the particles will experience during acceleration,
while keeping these currents within allowed limits, A generalization is made
to keep.the radial gradient of the corrected field within acceptable limits, so
as to avoid instabilities of the betatron.oscillations,

To determine the proper trim-coil settings one needs the following

information: the radial profile of the desired isochronous field for the energy

. and particle required, the uncorrected radial profile at an appropriate main-

coil setting, the.change in this uncorrected field produced byv small changes

in the main-coil current, and the contributions to the radial field profile re-
sulting from unit current in each trim coil. This informat_ioﬁ must be deter-
mined at the same main-coil setting as was used in,meésuringithe uncorrected

field, Further, one must specify the allowable limits for the trim-coil currents,

and the charge, mass, and energy gain per turn of the ions.
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' I‘he procedure rests upon the assumption that'the‘depend'ence of the h
field on the trim-coil currents and o.n sﬁall clhanges in main-coil current is
linear in those currents. If the currents involQed are too large, the field can
-be remeasured with the c‘alcﬁla.ted.c”urrer‘lts in the eoils, and the procudure
repeated to correct the ‘first—approx‘imatien field.

T;he. method.can. obviously be eXtended to other similar. problems in
magnetic -field adjustment, such as magnet shimming.

A sYstel;n. of I‘B‘M 709 cedesthas been assembled to carry out.the cal-
culations necessary‘ for. choosing the proper. current setfings. These codes
include an ‘Oak Ridge orbit code;l, a Berkeley code .for.‘calculating'is-ochronous
.fi'elds;z the SCROL linear programming code, 3 which calculates the current

settings; and Berkeley codes for calculating the input quantities for SCROL

and for predicting the corrected fields,etc. The latter codes and the use of

. the total complex of codes are described in a separate report.,z,1 These reports

. and codes will be.available on request.  The results of these calculations on

_‘the fields measured in.the 88-inch cyclotron will be presented in a separate

report,

2. ISOCHRONOUS FIELD SHAPE

It is aesumed that we are given.a . measured med1an -plane. uncorrected
fleld w1t1;1 ee rtain radlally dependent azimuthal variations. Let the az1muthal
.average of thlS f1e1d be denoted by B( R). We first ask what average field,
B (R w), would keep the partlcles in synchromsm with a prescrlbed time -
independent rf frequency on the deesl assuming that we do not alter the azi-
muthal fieidvariations. | |

'I.v,et. the particle's rest mass,an.d charge be 'mo and eZ, respectlvely,

The synchrounous field at R =0, Bso(w) = BS(O, w), may be determined by
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observing that when R— 0 the azimuthal variations go to zero, and the parti-
cle becomes nonrelativistic, Hence the particle rotation frequency in the
field B_SO(O) is wp = (eZBsO)/(mOC)" Since the field is assumed synchronous,

‘the rf frequency’ f must be related to the particle rotation frequency wp/ZTT

by
w = 27hf
- eZB . (w)
e =50 (2
- P oS -

if the particles are to be accelerated by thg Eth.ha.rmonié .olf fhe funaaméntal
rf frequency., .

In the following discussions we make use of these‘cycvlotron'un.its:
Time. unit: » ’I‘A= w—l |
Léngth unit: a = c/w . | (2',2)

_Magnetlc field unit: BO = B_'s.0°

In these units we denote time, radius, and magnetic field by 7, r, and b,
respectively. The se units are related to similar quantities.in conventional
units. by
T = wt,
- :
r =2 R, (2.3)

b(r) = B(R)/B .

Also, we use for velocity, momentum, and energy, respectively, the dimen-

sionless quantities

B =v/c,
_ P L
P = mge Pys (2.4)
‘E - * .
Total 1
Y = 2 : > = 1‘+ pZ
moé 1 -8
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If the field had no azimuthal variations.the equilibrium orbits would

be circles, of radius related-to particle momentum by \
| p:rb(r), S o ' | (2.5)
In an azimuthally varying field we regard this relation as defining the so called
.eciuilibrium radius as a function of momentum, The equilibrvium (or clos‘ed)
~orbit for tha.t momentum will oscillate. about the circle whose radius is the
equilibrium ra.d1us defined by (2. 5), and in general it will have a different
As

path.length from that circle, If we call 0 = 2.1Tr the fractional change in path

' len‘gth from that of the 'e‘quili.'brium.circle, then the lehg‘tl} of the‘equilibrium

orbit (in one turn) is

| = 2nr [1 +o(r)]. f (2.6)
An expression 0 in.terms of a Fourier representation of .the .fiéld has been in -
.a. repont by Lloyd Smith and the author [reference 6, Eq. (17)]. A good

approximation to the general expres:sion'givénvthere is

S S 2 R.dF

> (2.7)
(1 +G)N“-1) S

where F is the flutter, defined: by

2T .

2w

.. | B
; 2 C
F?(R)=§; f (B(R, ) - BIR" 49, B(R) =— fB(R,e)de,
O‘

2
0 B™(R)

- (2.8)

_ R dB
and G is the grad1ent index; G B 3R° |
The time 7 to complete one revolutionis given, using (2.4)to (2.6),

by

T =

2nr [1 +o(xr)] _, [L+olr)] | (2.9)

S
B P/Y | (rW1-p2(r)

If the field is isochr’onoué, .t'hen'vb(f) is sucvh that 7 = 2.

L9
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Hence . A B .
Bir) =s/7 =1 [1+0(r)] (2.10)

~and the isochronous field bs(r) is “g‘ivén‘.by ‘

1+ 0o(r) '
b (r) = =, _ . (2.11)
s N1-r?[1+0(r)]2 ’ " '

.This expression for the s?hch_ron‘ous field is-exact. However, in practice one
does not know 0 exactly, We compute bs to. sufficient accuracy w-ith ‘the help
~of two IBM 704 codes, and mggne@i;: measuremenfs of\B(,-R, 6‘) oh.a.polér grid,
The f1rst code, called DCRO, 2 calculates 0 approximately by using Egs.

(2.7) and:(Z.S),/ It.thgn substitutes this value of:‘-o in Eq. ‘(2_.10') to calcuiate

bs. 'If.' desired, DORO will théﬁ modify the original field pvoint.s with a purely
.radial correction so that b(r)—» bs(f). The modifigid grid field values are then
used as input for an Oak Ridge orbit code, No. 1482, 1,, which calcula-tes the-
frequencies. of oscillation about the. equilibrium orbit, and the révo.lution time,
We fi:;d that for the 88—in¢h..cyclotron t:;his first épproximation.to bs using

:Eq, (Z,?)»givesvbs go;ad to about 'twol parts in 104,- Higher accu?acy can b_e
obtained by the following-.itération procedure, The tirﬁe va.lﬁes I%L R
calculated by the orbit codevare read back into the compﬁtor, a'nd‘ the DORO
code is run aga,in,‘ but this time it multiplies the bs(r) calculated from Eqs.

(2.7) and (2.11) by these. time values. One such iteration gives improvement

of about a factor of ten.

3, PHASE ERROR

A. Nonsynchronous Field Error

" Having determined what the radial field profile should be for isochronism,
we now wish to know the phase errors that will be induced by departures of
the field from the isochronous field given'by;’Eq; .(Z:,l’lv)'., '

Let the actual field depart from the synchronous field by
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Ab =Db - bs" so that

Ab(r) ]

M) =b () [L+83m ). By
. . s C ] R - L3
From Eqs,‘_(2,4) and_(Z,S)_ we have o
- 1 _',\/ N 2,2
vy = = =1 +p? =N1 + %), . (3.2)
- oW1 -p% - |

\

and substltutlng th1s in Eq (2 9) we get
’T_':.Z'rrl'j.;%z)—"\)l +r bz(r) : - - (3.3)

Next we substitute expression (3.1) for b(r), and Eq. (2,11) for bs(r) into

Eq.(3.3) to obtain Jl +r2(1 + 0)2 Ab(2+Ab)
T=2m ~ s % . | (3.4)
1L+ A |
B S
or to first order in Ab/bs—:
T=2m{l -2 [1 - r%(1.+ 0)%] ). S (3.5)
. . S .

Since an. increase of T from 2w represents’a phase lag of the par«ticle relative

to the rf the phase lag per. turn, d(.’p/dn, is glven from Egs. (3 5) and (2 11)

by ' | - | ]3/2 |
' ﬁ_v' Ab . 2 279 _- 11 -r7(1 + 0) _
2%, [1-r4(1 + 0)°] = 2m AD 75 (3.6)
To obtain the phase lag-as a function of radius, we write
% _dy . db ,dy B |
dr T dr dn’ /'dn : ' {3.7)
The energy gain per turn, for l'_1th..ha1jmonic, operation, is .
d _AE '
= egcos(hd), e 5 (3.8)
moc' ®

- where AE is the maxnnum energy galn per turn, To obtain lwe use the

synchronous value of {3, Eq. (2.10), in Eq. (2 4) for Y
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! _rlrenllisdn vrotn] (5

L
dr vl-jrzk_(lJrG) A .[1,-7r2(-l_ +.0)2]3/2

Q-lQ-l
g 7

By substituting Eqs (3.6), (3.8), and (3.9) in Eq. (3.7), multiplying both sides
by cos (hé)dr, and__in-tegra.ting from zero to r, one obtains the change in the
sine of the phase lag: (vNo,'_ce that as here de_fine)d, $ is positive if the ions lag
behind the rf,’. negative if they lea{,d,it;‘)” | | |
S(r)Z= sin [W§(r)] - sin[hH(0)]
2mh

.
= - f Ab(p )1 + o{p) +vp0'(p)]p dp. (3.10)
0 , § , ,

0 .

b
- s

fluctuations in_sin(hé) are the same for all particles, regardless of starting

)

Equation (3.10) is exact to first order in &b . Its mean’ing is that the

‘phase--so that the phase width of «the“beam in terms of sin(hé) is constant
with radius,

B. Frequency Error

Equation (3.10) gives the phase err—orv_ arising when the actual field is
different from the synchronous field appropr\iate to the rf frequency f. We
will find it useful to know the additional phase error that will ensue if the
frequency is shifted, leaving the field as it was. |

Let w-'be.the,original frequency, ' the actual frequency, and fw=w'-w:

o = o1+ 22y,
Then from (2.1) the new normalizing field is
‘ ' : Cbw :
I AN } hided .
B oo B_lw)1 5 )s .
so that the actual field with the new normalization is
B ' BsO

. b's = = =o— b=y b.
BSO \BSO _w
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From (2.3) and (2.11) the synchronous field is

1 + 0(R)
N1 - {221+ o(R)])

H

bS( R,w) =

-so that the syhchronous field for the frequency w' is

i bS(R, w)

. | B - - _ ¢ 600
bS = bS(R, wt+ dw) —_bS(R, w) + 5% Sw +

201 6 -
= b (R, @l +PHUR)TE + e,

where we have used g = r[l + O(r)] a.nd.pZ = BZ/(I - 52)0 Hence, relative to
the actual frequency w', the field error becomes
Ab' =b' - b 1= [Ab - (1 +p)b_ 22 +---]

s w' YT s W T

The length unit has also changed, so that from (20'3) we have

AL
rt= 2 r,
w

Now we can obtain the phase. error by substituting primed variables

instead of unprimed ones in Eq. (3.10):

2vh T
S(r) = - S fA.b'(p Nk(p ) p' dp’,
L

0 0

where
k(p) =1+ a(p) +p 0'p). R : (3.11)
Expressing this in terms of the old variables, and keeping only first order

terms, we get o
T

S(r, w + dw) = Sr') = ?Z'eﬁh ]%’[Ab(p)_(l+p%)bs(p)%ﬁ+° o ]k(p')(%‘)Zp % -
: 0 Jy | |
But
1 +p% =[1-p2(1+0)2] ", so to first order in b, 52
) r
S(r,w+6w)':S(r,w)+6—w 5(r, w) _*_vZETThf e 3/2 Ke)pdp (3.12)
_ o 0 Jp [1-p%(1+0)?]

ol
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where S(r,w) is gi?en b3-r (3,10*).,-

Expressions (3,10) and-(}.lZ) give us-the sine of the phase lag, which
concerns the p.artic.ie's‘, in'ferms of the field _anci frequency.error s, which
~we can control with the >t1v'im coils, ) |

| S C. Mass Error

Now s’uppose we leave the fieldras it was, but a.ccelerate“a. part1cle ‘
with a. slightly different mass from the original one, (We might a.lso need
to know the effect of using a.slightly incorrect mass in the. calculations, )
What will be the.adaitional. phabseserrof resulting from the mass change? This
‘depends partly on.what we do with the frequency, Itis.best to keep the field-
no~rmaiigin'g censfant. unchanged: B_, = ~Be.0° | |

N\

Let the original mass be m, the new one m'. Then from (2.1), (2.3),

w' m ,

and {(3.8) we have w t= —2—, w, ' = r= —=r,e = %, €, b'" = b--while

‘ from/precedlng dlscusmon of frequency error

b t=b (L+p” 22y = (1 e,
. 80
Do ot . 2.6m sm
Ab'=b' - b '=b -b (1 -p° )= ab+p” b 22,
— . i v
Then from (2.10), (3.10), and p* = p2/(1-p%):
_2m7h = m c 2, 6m
SYR) = - —— () [ (&b+p"b =) klp) pdp
(fﬁ' ) 0 |
S WR - \
2wh 1+ k{
- (1 -%) (R) - % Zh ¢ [ "g")] » (9)3/2 03do . (3.13)
mofo oy [1ep .(l+0)2] |

For 60- Mev deuterons in the 88: 1nch cyclotron, ‘the. coefficient of

_ dm in the last te rm is about 100. Hence if %< 10 3, the additional phase

error is less than 6 deg, provided the frequency is shifted accord1ng to

w' = (1 - 6&) w, and the field is unchanged.
m



-10- UCRL-9916

4,. EXPLICIT EXPRESSION OF FIELD, PHASE SHIFT,
'AND RADIAL GRADIENT IN TERMS OF COIL CURRENTS

Slnce we wish to use our. control of the trim- and main-coil currents
to limit the maximum excursion .in phase shift, and to hold the radial field
gradieﬁt Witl'.lin.the bounds needed for stability of the betatron oscillations, we
must first expi:e ss‘ these qﬁantifies in termsé of the coil cur;;centS;

A. Definitions
I = main-coil current se'tting.at which measurements of

main-~- and trim-coil effects are made,

I+ wy = actual main-coil setting. :
Wi = current in_i_t‘hb tvri'rn:coil (i=2, -+, m),’
w = frequency for which synchronous field is calculated:
Wiy 6w/oo = relative .frequency shift from base value, -
B%(R) = 'synchrorious field for freqdency w --calculated from

measured B(R 8).

B(Rs le WZ, PR

with. currents. W in the coils,

, wn'l)‘— actual azimuthal average of the field

B(R) = B(R,0,0, .., 0) = the rrieasured “iron'' field with.current
I in main coil, and no current in trim coils.
i _ e B(R,w)| B : L .
B(R) = [_8—\;/_1_} =0 ° measgred change in field per unit

chénge in.the ith 'c_:urrent i=1,..., m.
Q = {Wl, WZ, e W } = set of all adjustable currents.
AB(R w) B(R w) - BS(R) = residual field error, for frequency w.

0(R) = B(R) - B (R) = uncorrected f1e1d error,
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B, Quantities to be Obtained by Measurement or Prior Calculation

The necessary magnet measurements will give us the quantities
B(R,6) and the Bi(R, 8), from which the azimuthal averages B(R) and Bi(R)
may be computed, The synchronous field BS(R) can be calculated from the
uncorrectod f1e1d B(R 8) if we 1gnore the small changes in flutter that
the currents w, w1ll introduce, This is done for. exa.mple by the DORO
- code mentioned previously, 2 One has to choose a value of w--our method
hér.e' has been t§ choose it to correspond to a synchronous field B® such that
- B® B at a- spec1f1ed radius, Because such a choice’is rather arbitrary we
shall give the mathematical algorlthm a chance to alter it by 1ntroduc1ng a
frequency shift §w from this value. Finally, we need the path-length factor
0= As/so, which is also calculated by the DORO code.

C. Residual Fleld Error

- We expand B(R, w) in a-Taylor series. about w = 0:

- ™ (oB
B(R,w)=B(R)+ Z ( ) . e w. t e (4.1)
ow. _ i ,
i=1 w—O
m i -
- = B(R) + = B‘(R)wi+“°_,
i=1 :

By using the last two expressions in Subsec., 4-A with (4.1), one obtains the
residual field error to.first order in terms of thewi:
AB(R,w) = B4R) + z: B(R)w | (4.2)
i=1

D. Phase Error

. The phase error can now be expressed in terms of the w, by substituting

(4.2) in (3.10) or (3.12), using (2.3). The result is
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: S(»R, o+ 50) = sin [A3(R)] < sin [03(0)]

‘m+l . : '
= A (R) + = AYR)w,, \ (4.3)
i=1 ' S
ther.e
| ‘R :
o i Q
A(R)-~ﬂ}l 2)? BYR)[1 + (R + R X )R ary,
‘o sO dR
0 . N
i=0,1, -eo, m+1 T (4.4)

and .
: (1 +o(R)) B
+1(’R) _ BO(R) N s0

372 -
<1 - { [1+o(R)]})

E. Radial Gradient

Th_e'influencer of the trim coils on betatron stability arises chiefly

through their contribution to the radlal gradient of the az1mutha1 average of

the magnetic field, since they do not affect the flutter very much. Spec1f1ca11y’,

the quantity involved (usually denoted by -n or k) is

_ R dB
G F @®-
If we substitute (4.2) into this definition,-'subtr,act off the synchronous

value of G, Gs, .then‘to.first order in.the Wi; : B

N

AGI(R, W) = AR, w) - GXR) = DAR) + = DYR)w,, (4.5)
i=1 ‘
where . _
| 0 0 .
pO(gr) - R_ 4B RB® dB
T g5 R (Bs)z ar
. R B? a4l B' aB |
DYR) = & [(1.- y B2 oo } C(4.6)
. 4Bs dR BS dR S
S
GS(R) _ R dB

Bs dR
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Alternatively, one could expand about the uncorrected field B rather than

the synchronous field B®, 1In that case

. 0 0 .

0 ., B R . dB"Y .. B~
D =(1+—) = - D =D-G,
.Bs B dR s

. i
! (4.7)

. _R.
D=5 3®

o
oy
o

B
B

The expansion (4.6) is probably beét, but we have so far used (4.7). The

difference is not too important,

"F. Third Radial Derivative

The qu’a.ntity>
.3 3
H=5 22 (4.8)
= dR

is also an.importé.nt one in beam stability, Proceeding as with G, one

obtains
HR,w) = H3R) + TAR) + = T(R)w,, (4.9)
s R> a’°pS
H =~ 3
B® dR
o R} 43B° 380 B .
0 R . - XB_ 4B (4.10)
: B dR (B7)" dR’
fi_ R [“' ) BO) s B 4B |
N AU 3 s 34
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o »‘G.. Summary. .
‘We will, from now on, deal with all quantities at a finite set of radii
Rk’ and denote these with an index k [i. e., lleE li(Rk)] . Listed below are

the first order expressions for the quantities defined above, in the field

o . . . ‘ . . _ 6w,
obtained with currents I +:w1, Woy T, wm,,\and frequency ,s.h1ft Wil t
. _’ m i
Field: : : Bk(w) = Bk + = Bk'.vvi ‘ , (4.11 1)
I
. - : - 0, _
Field error: _ABk(w) = Bk + = Bk W » (4.11 2)
' i=1 _ -
. _>' 0 m+l i .
Sine of phase shift: Sk(w)_ = Ak + = Ak W (4.11 3)
First radial gradient N s o m fi. L
index: G (w) = +D,. +Z D w, \ (4.11 4)
o : S k Gk k =1 k i o
Third radial gradient N s 0 m ;
index: . H.k(w) = Hk T+ Tk + = Tk' W, _ (4.11 5)
o i=1

We now.have: at hand; vi\anqs. _(4“,‘.11), the explicit dependence,vovn_the.
_coil currents of the most important acijustable propgrties of the magnetié
.fiel.d. The re_latioﬁs afe.é.ll linear.in the indépendent variables W Itis
possible to state quite a varied set of criteria for. an__optimall field, each of
whi.ch can be expre-s sed as a so-called '"linear programming' (L. P. )‘problem.
There exist algorithms and. computer codes.for the solution of such problems.
In the balance of this report a number of possible ¢riteria for optimal cyclo-
tron fields will be translated.into the form of L, P. problems, From these
formulations. it will be.clear how to construct the input data for an L. P. code.
The computor will then calculate cgrrents W1 that optimize. the field according}

.to the criteron.chosen, -
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5. THE LINEAR PROGRAMMING PROBLEM FOR MINIMIZING
THE PHASE ERROR

:In this section, crite_rié for optimal fields basedén minimizing the
phaéé §£ift orii}._r:_will be put in the_z_ form of L ‘,P, problems, h We start with a
deﬁnitioln"(l)f_th;e standard form of L. P, problem usedv,v f‘or further aetails
a tex‘t. on 1ir1éa; brqg?amming may be consulted; fovr example, that by Gass.

A, Standard Form for Linear Programming Problem

Primal Problem (A4): Choose values. of xJ,j' = 1,‘° °°,n that minimize

z, where , o } , )
' n 0 i ‘
z =X a. xJ, . (5.101)
j=1 J .
. subject to ,
' i i i ' . | .
Z a. x =b, i=1,""", m(m<n) _ ,(5.102).
, o1

x) = 0, o j=1,",n. ; " (5.103)

* Dual Problem (A4'): Choose values of W, i=1,--<,m, that

"minimize y, where
‘m - . _
y=Z w bl, ' -_ (5.201)
A i=1 ‘ »
subject to _
m. . 0 : .
z w.oa = sa;, j =100, (5.202)

e

™ We will label L. P, problems with or without primes, accotding as the;

are cast in the dual or primal form, respectively.
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The primal-and dual problvems are closely related, in that the solutions
of each give the same values of the "(Sbj’ective forms" or '"costs,'i,e.,
z =y, a.nd._if one is solved the sohjlt‘ion‘of thé other is obtained as a.byprédﬁct, _
In this repozlt all criteria fér optimal.' fields ;;vill be cast in the dual .form (A4,
The IBM 704 code used by us, SCROL, 3 éolve s problemé given in the primal
form A4, but also provides the solution of the dual problem (A4'). 8

Standard Tableau,, For each problem in this report, cast in the form (A4'),

we will also displayv'the b and aj1 in tabular form apﬁropriate to .the input

of the problem for SCROL in the form A4, as follows:

J .
i 1 j n
. L0 50 20 |First B
1 ] _ n
1 1 1 1
Wy g +1 Lay a a b
. i i i i
Wil attop %] n | P
w_ | g+m]| . a ™ . - . a, ™ . . .o ™M e
m 1 o n

Actually,. in.the SCROL code, the column indices j may be.aihy
symbol of up to five characters,. but the ro;;v indices i.must be consecutive.

However, the number q must be =1, The data.are input into the code by

columns, starting with the bl, then the ail, az'l, cee . A *

sa
-~

Our first test of the L, P. method employed an IBM 650 code written by
Mr. Roger Symons of IBM for calculating optimal blends of chicken feeds!
This code required putting the problem in a somewhat different form,. and

could not handle more than seven.coils because of the small memory of IBM 650,
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tf_é code different from SCROL 1s used, it may be necessary to put
. the "problem originally gffve_n 1n dual f’(')rm-(vA4'). into primal form. This can
-be done by first addingbonstants.to the W1 to make the variables always
‘positive, and then by introducing f"slac_k.var.iables"v to convert the inequalities
in (A4'j to equalities. The resulting problem will then have v.the structure of

- the primal problem (A4).

B. The Phase-Minimization Problem

The sinﬁple:s.f problem we éan solve is that obtained from the criterion
that the largest phase excursion the particle experienc_es‘during acceleration
.be minimized, subject to ‘prac;tiga.l _limitsv. on the currgnts. _‘ For the present
we fix the fijequericy‘w, ‘so .that Wrﬁﬂ" = 0. |

Bés_id_e's the variables w., we introduce. into the p3rok_blerm__b,a new variable
X, vdefinedv to be.an upper bourid...to the phase excuréions lSkl e)'iperienced'.by
the beam. Specifically, we make \ obey" ’

-\ <5 <\, .1_<.= 1, -, K, | (5.3)
where the Sk are given in.terms of the currents W, by (4.,113);. Next we force
the currents W to lie be‘.tween upper and lower bounds Wii: |

WS w, < w' o S (5.4)

and finally we specify that X should be minimized subject to ‘(‘5.,3) and (5.4).

Putting these require‘ments together, and u_s'ing (4.113) for Sk, gives us an
L. P, problem in.the form (A4'):

L.P. 1'' Choose valuels of w, (i=i, e, m) and \, that minimize vy,

where

y = N, | (5.501) .

ste

" The method used is partly inspired by an article by James E. Kelley, Jr.,

I
reference 8,



_18- UCRL-9916

Subject to
.m i 0. X
NEE A w2 - A, k=1,7"K,
i=1 o L :
_ et S - (5.502)
)\ Ld Z Ak W. 2 AL{ 2
i=1 !
w. =W. , i=1, , m,
1 1
(5.503)

The optimal solution to L., P, 1' will give values of the’ w, that make
X\, the largest phase excursion, a minimum. Since particles are lost
whenever | sin g3_| >1, this criterion does the most to avoid loss.

The standard tableau for this problem is shown.in Table I.
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C., Control of Extraction Momentum

So far the frequency w has been held fixed; But the magnetic field
at the extraction radius has not, so the extraction energy is not well defined.
" To remedy this defect we now let the frequency vary, by letting Wl 6w/w
be a fre¢ variable, subject to upper and lower limits’ Wﬂr:n+l' That is, the
index i in (5.5) shoﬁld now run fromi=1,°*+, m+l. Now suppose we wish
the momentufn at the‘extraction radius’ RL to be p}_‘ From Eq. (2.5), that
means we must have

py, = rp blry)

" so this is equivalent to specifying the field at RL" Let ﬁs refer Py, to its base

value ij’ obtained with the synchronous field:

3 s wR .
M1, s L ,
j(,‘o:f.)h v BL = '[1 + O‘(RL)], (5.6)

s s 3
PL = rLb (YI‘L) = \7’;

and write P, © pf + 6PL° Then, using the above relations and (4.112), we

obtain
' o i
6pL = PL + ‘Z PL Wos . (5.7)
i=1 -~
where
T wR . ' .
i_ L 1 eZ 1
PL = =B B~ = 5 RL BL - (5.8)
s0 mOc .

To fix 6pL at a specified value, we write (5.7) as two inequalities:

0 o ™
6py, < P, + T Ppw, ép, =P +Z Py w,

=1 b i=1
or
m =0 ‘
+ .Z PL W = + PL, (5.9)
i=1 '
where
-0 __0 ,
P = PO - spp (5.901)
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Then the revised problem, in which the frequency can vary but the extraction

momentum is fixed, is L. P, 2', described below, K
and A, th"at"'mininvlizev)\‘f

L,P.2': Choose values of w LW

17 Ymel

subject to tw o> W

NE = A lw. =21 A T (5.10)

i
|

An alternative procedure is to let 6pL be another variable, 6pL =W 42

and.then set such bounds as desired about it. Then the problem becomes

" L.P, 3', described below.

o : 5w
te - P : = — = :
L.P.3"'":' Choose values of Wi s W3 Wy S W 6pL,
and A, that minimize '\, subject to-
£ w, >¢W’;, i =1, °, mt2,
m+l i _ 0 :
R L
- i - 0
+ _6pL + ‘Z PL'Wi = + PL o

i=1

D. Arbitrary Starting Phase and Programmed Radial
Phase Dependence

If parfi_cles are injetfed frdrﬁ,a source offset from vthe_cente‘r of th‘ex

| d.ene gép', they will start with a nonzefo- .start.ihg' pha{se ?‘)_(0)., This might be

| desifable 1n order to bbtéin electric vertical focu'si'ng\,\ which occurs for
small radii if iy i‘sbvpc.)'sitive,,‘ Then the phase as a function of radius is $(R),
vwhe,r‘e"‘ @(‘?R) is given by Eq. (4.3).

‘Since this phase should go from §(VO) to zero in a smooth fashion, we
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-specify a programmed radial phase dependence, @p(R), which we would like

the field to produce. Then we should minimize |sin [h$(R)] - SP(R)|, where

SP(R) = sin [hP(R)]. Rewriting (4.3) as.
© sin (h@k) = sin [h3(0)] + sk,
we now set
- X < {sin [E§(0)] + 8} - Skp <\,

Proceeding as in Subsec. 5-B, and again using(4.113) to express Sk in terms
of the currents w, ;0 We arrive at two sets of 1nequa11t1es ‘like the first two in

(5.502), with the difference that the right-hand-side factors Ak are replaced

by Ak : where

—0 0 ;
AY =AY _sP ;sin [h3(0)], ‘
N K (5.12)

_Skp = sin.v[hép(Rk')], §p = programmed phase.

E. Varying the Limiting Phase Shift with Radius
One might not consider a phase error a equally serious at all radii,
For example, one might Wish to keep the phase especially small ﬁear an
electrostatic extractor channel so as to maximize turnvse_paration there. We
could introduce a factor Qpes defined as the fraction.of fhe nominal pha§e

maximum X\ to be tolerated at radius’ R‘k That is, we require .

|sk| < a.k:x;
This means that the \'s in (5.502) .shoullcl.'be repla.;ed by qu. In. the tableau,
Table I, this means that 1's in the first 2K columns of the lést ’r-ow, berlon'ging
to the variable \, should be replgce_d by thg Oye Lf oﬁe does not care at all
-about phase error at some particula?r_.Rk, then a} should b(_a set vefy'large;
if one wishes strictly zero phase error at R, then ay should be. set equal to
zero. ‘Rather than set a = ® in the fp_rmer case, »the same result can be achieved

by simply removing from the matrix the two columns involved, L.Sk.and USk.
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F. Summary
We summarize this section with a statement of the L, P, i)roblem
obtained when . all of the features of this section:are included:

L.P.3': Choose values of the variables w, i=1,- <, m+1, and \

that minimize \, subject to
: m+l . 0 ’

1 n A : .——. e 0o o » . :
ak)\:!:i?l Ak'wi = + Ak , k=1, K, (5.131)
m i - = 0
) £ 2 Pillw =% P (5.132)
i=1
£ w, > Wi+, i=1,000,m+l, (5.133)

The solution.of L, P. 3' will give: a main-coil current change Wy trim-coil

; and a parameter
m+l p

_currents W, i=2,**°, m; frequency shift -6-(1:- = w

A. This parameter will have been minimized, such that: the magnitude of
, . P, . L | _
th‘e phase. error | sin (h§k) - Sk | at each R, is less ‘;han or equal to a; A;
.o . . _ 8 .- S
the momentum at the extraction radius RL is p; =Py, + 6pL, where PL

is the momejn.tum‘in the synchronous field at RL’ [Eq (5.6)}; and the

currents are bounded, -Wi— < W, < Wi+’ i=1,°°"", m+1, Here SkP is the
sin(h$) desired, and the quantities Algl, _Ak'o, P'Ll, I_DLO. are defined by

Eqgs. (4.4), (5.12), (5.8), and (5.901), respectively,

The tableau for. the dual of L.P.3"is given in Table II.

\
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6. LINEAR PROGRAMMING PROBLEMS INCLUDING
RADIAL-GRADIENT CONTROL

A, Specification of Gradient Limits

In Sec. 4, the necessity for keeping the radial gradient index G bounded
was mentioned, This is because the frequencies of radial and vertical

oscillation, 'vr and v respectively, obey relations

Vr%(R),

and - (6.1)

v 2(R)

Z

1 + G(R) + n%('R)

-G(R) = n_(R),

Where'ﬂr and n, express the focusing effects obtained from the azimuthal
field variations, and G is given by Eq. (4.5). By processing; the field
mga’surements with the Berkeley code DORO2 and the Oak Ridge Code 1482, 1
one can obtain Vi- and v, in the measured field, corrected— in its radial‘
dependence only - for isochronism, Qne can then examine these results, and
vdeci‘de.how much fluctuation in vr2 and vz2 is to be tolerated, and this in
turn gives the permissible deviations of G from its isochronous value
[which is G (R) = 84(R) 1.

To be more spécifié, suppose one wished to impose the conditions,

roughly appropriate for a low-energy cyclotron:

: 1
v =20, v =21, v € 5, v_=-2v_ =0,
z r z 2 T Z

referring to linear vertical and radial stabiltiy, fir st-harmonic-induced

vertical instability, and lowest-order coupling resonance, respectively.
C . 2 2

Rewriting in terms of Ve and v, s we have

VZZO,VZ$1/4,112>1,v2—4v220, (6.2)
z z r r zZ :

For more complete expressions in terms of the Fourier coefficients

representing the field, see reference 6.
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The last of these relations is redundant, so we drop it. Referring to (6.1)

and letting subscript. s refer to values for the isochronous fields, we have

_ e <1
RS v, Vs AG Anz I’ |
| (6.3)
vZ2=-y 24+AGTAN = 1. |
Tr rs ) r

The variations Anr and Anz with respect to gradiént c'hanges are compara-

tively small, and for the moment we will drop them. Hence

AG< v 2, N (6.401)
zS » | »
1 2 :
8G> -3 - v, | | (6.402)
AGE (v 2 1) | o (6.403)

If we now define :i:yk:t to be the upper and lower bounds to be allowed in the

fluctuations of G at R’k’ we have from (6.4),

ka: VZS-Z(Rk)’

v o=min LIy AR) 11 (3 -y, A% (65)

For a high-energy machine other resonances would enter, butin a

.similar fashion one could arrive at the a’pprvop'ri_ate values.of the gradient
. . + *
fluctuation limits vy, = to replace (6.5).

By using (6.5) the relations (6.4) can now be written

Y < AG < fYk+‘

o,

" In the 88-inch cyclotron.the field has a bump hear:the_center, to enhance
vertical focusing, hence yr-(:l'chan-ge s, from negative to positive values at

about 6 in. By suitable juggling of the v * one.can c;ontz;olv the radius for

k

which,,‘\}ljz‘:l,: and keep | v:r.—'l" | maximized at other radii!
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Since we would like to have the gradient fluctuations even smaller, we replace

these relationsr-with
. - + ‘
=K Y}J.. s AGk < }.LYk o N
| - (6.6)

<
B S Hmax?

where p is a parameter to be minimized, and pmax-is set at some value

not greater than one, The gradient fluctuation AG ;, from Egs. (4.5), (4.6),
" and (4.114), is '
AG = Gk - Gk = Dk + lfl Dk W . (6.7)

Substituting this expression.into (6.6) , we obtain the féllowing'relé.tions,

which serve to keep the gradient fluctuations within proper limits:

pom .0
hy,  * = Dk Wi'2+-Dk’ k=1, , K,
i=1 '
(6.8)
H > Hmax~( and Fmax L.

B. "Effective' Gradient

The above formulation i.grrlorevs the fact that the fluctuations in G do
not completely account for those. of vZ2 aﬁd_vrz, since there are terms in
n.and n_, Eq., _(6.}),, involving G and its higher derivatives. The effect
has been explained qualitatively by H. G. Blo‘s ser: since the equilibrium
orbits oscillqte, they do not vsee the field gradient index G  at one radius,
but rather some kind_of average G‘ .over the radial ijange they sweep oﬁt,
Th,is. has the beneficial effect of making the particles less sensitive to short-
rdnge ﬂgctua’tions in 'G. Lloyd Smith has inve stigated a similal; effect in
.conventional cyclotrons,

Quantitatively this effect is rather well described by a single term in
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bnr a.nd.'nz,' namely‘(FZH“) /[Z(N2 - .1‘)‘2]; where F is the flutfér, Eq. (2.8);

H is the third-derivative index, Eq. (4.8); and N is thé number df"secto"rs; ”
This term is just what would be obtained by-averaging G over the equilibrium-
orbit oscillations, We can take it into account by replacing G by an

"effective" gradient index G, where

G= G+

2
F'H
> (6.9)

2(N?% - 1)
and by using AG instead of AG in (6.4) and (6.6). Thus if one wishes to -
satisfy relations (6.3), taking into account the noncircularity of the equili-

brium 'orbit,r one fhu'st replace the Dk‘l. with the quantities -f)kl,_ in relatibns
(6.8), where ' :
—s—— - ) ' (6.10)
2(N™ - 1)" -

AV

S =D +

o

Here sz is the flutter squared at R, and the Tkl. are given by (4.10). Since
the additional term tends to.dampen the fluctuations of vzz, it is conservative

to leave it -out,

'C, Summary: Combined Phase.and Gradient Control

The simultaneous control of the phasé error and the gradient is achieved -
by; inclﬁding the contraints (6.8) with constraints (5.13) of L. P, 3', There
are now two parameters to minimize, \'and p, so we must put an-absolute

bound on \:

““max’

" This term is. included in the expressions for vr2 and vzz in reference 6,

Appendices 2 and 3. The notation there is G =p', H=p'""
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Then we minimize some linear combination bM + bpp, where b)\‘ and b" are
Mcost coefficients' to be assigned. The combined problem for phase error
and gradient control is as follows:

"\, and p) that

L.P. 4': Choose values of the variables _(-wl, °

W1’
minimize ; : -
yo=bM o+ b, (6.111)
subject to
-\ = '-)\max’ il LIS (6.112)
| - wr .
w, =W, -w; = -=W. (6.113)
1 i i i
mil g |
ak)\ézifl Ak \yi.?/ +A'k 5 (6.114)
Sl == .0
+ ? P, w. > +P;", (6.115)
i=1
n o -0 -
Y B + = I’)k Wi-? +Dk . (6.116)
- i=1 :
P ” ‘ 0 _ i =.0 ,
Herei =1, ,m+l andk =1,"--,K. The A, 7, PL . PL are.defined by

Eqs. (5.12), (5.8), and (5.901); Akl and D’ by (4.4) and (4.6); and the v
by (6.5). The D'fé in(6.116) niay'be replaced by D's, Eq. (6.10) to control
_the "effective'' gradient. | |

P'robiem L.P.4' will agcqrni;lish all that L. P. 3"‘does, except that the
objective form (6.111) can,invblye p as well as \, and in addition it bounds AG;,
the departure of the gradient. from ii:s'isochronous value., .according.v'to ~pyk_
< AGkS p.\{k+, Fu.rthgrrnore,' N a.nd,ApL.'have, up;)er‘ bounds )\max and Mo

Of course, if these are taken too small there may be no feasible solutions.

The tableau for L, P. 4, the dual of‘L,, P.4', is shown in Table IIL.
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7. CONTROL OF NONLINEAR EFFECTS RESULTING FROM
THE THIRD-DERIVATIVE INDEX'

It might be necessary to control the th1rd-der1vat1Ve index H, 'Eq.' _(4,8),
 other ways besides that specified in the preceding section., We will discuss
two such possibilities,

A, Cubic Terms in Vertical Equations

The vertical equation of motion for y = z/R contains the nonlinear te.m

3 . sk
—é— Hy ', so that the equation of motion is
a2y 2. 1., .2 |
LY (v “+ zHy )y =0, - (7.1)
2 z 6 '
do N
- 2 | - _gF? -
Now, as we have seen, v contains the term ————— . Hence the total
S | L 2AN2-1)% /
' contribution to the vertical focusing by H is =
‘ 5 o A
F 1 2
H[ - —5 > + z v ] ( (7.2) .
2(N” - 1) C o

The first term predominates so long asy < Vs where::

le_'*/_-f’z_?_, - (7.3)
- ON° - ’

For the 88 -inch: cyclotron.thi_s»us{la.lly gives é..zl = Ryl' = 1 in,, at the Valués
of R for which H is significan't, which is larger than the dee height. Hence,
~ at Berkeley, we probably will not need‘ t.o worry about H so far as this non-
liﬁear effect is. Vconcerned, but since the situé.tién could be different in another
machiﬁe we . will set ‘dov}”n thé .f;)rmul;;;.tion necéssary for contr-olling'it.,
Suppose one w1shes to attempt to insure \;ertlcal stablllty of all
~part1c1es for \%/hlch Z < Zaxt As We have seen in the precedlng section,

thé fluctuations in v_= are given By those of the effective bgradient

" Strictly speaking, this equation is true for another variable g, related to
v aind.dy/d@ by a 6-dependent linear transformation., However, q =y, Also,
the factor H should really be H = p''' +.u'" - p', where p(rf)= (R"/B)(a"B/dR")

rather than just p''
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[Eq. (6.9)], that is, VZZ = vzsz - AG. Thus to keep the force term in
Eq. (7.1) positive for z < z ____, we must vput |
2 F2AH 1 Zmax \2° :
v - [AG e ] = m;x) AH = 0 (7.4)
2(N" - 1) A
or
o - ,
AG € v s _ (7.5)
zs : , ,
where _
~ F 1 Zmax 2
AG = AG +[—-2—————2 s (m;, ) ]-AH. (7.6)
2(N® - 1) T

‘Relation (7.5) plays the same role.as (6.401), only it refers to.stability of
particles'with vertical amplitude up to Z_ax rather thaﬁ 'zer‘o,v One één pro-
ceed from it in exactly_ the same way as before, to reach the following con-
straints, which insure that pafticles with amplitude up to zmax'will retain

vertical focusing:

m
e - Z B'w =D° | ()

"where

2 ,
. . Zz .

v iopif Tk L (_r_&ai)@] T i (7.8)
" L(Nz 1) 6§ TR K .

To incorporate this vertical focusing feature into the combined problem,” L.P.4'
of the preceding section, one simply adds the constraints (7. 7) to constraints
(6.112) to (6.116). This will add K new columns to the tableau, Table III,

which will look like those labeled UGk, but the Dk1 will be replaced by the

i

G
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'B. Effect on Nonlinear Radial Instability \

. A discussion of the nonlinear 3-3 resonance which is important in a
three-sector machine is given in reference.6. The Hamiltonian for the radial
motion, Eq. (52) of reference 6, in?:lude'd twov.terl;ns involving p''' = H. How-
ever, theseterms were dropped before arriving at a final expression relating
the amplitude to thé phase of the.radial 'oscillatidns, Eq. .(61) o,f.‘reference 6
If these terms are included, one finds that a given particle. will'.have its radial
amplitude A and phase ¥y alWays co,ns..traine_d to lie '6n an.iﬁvérilant curve
satisfying

s T LGl B (7.9
~where : ' , ' | 1
_ H 2 . H 242
D = {[a3“ +5al, +(3.+ =) a,] 4 [, +5b', (3 + ) b.] } .
| (7.10)

Here a, and b. are the coefficients of the cos 3.6 and sin 36 terms, respectively,

3 3
in.the Fourier expression.of the field; primesbdenote derivatives with respect
tox =(R - RO)/Rd’ where RO isuthe.equi»libr.ium» radius; and C is a constant,
déttemined by the initial vé,lues of A and . Obviously if H is large it has
a profognd.effect on the character of the radial oscillations.” This is particu-
larly important for régénerativé e};traction,. a fact which has been noticed
by R. H. Bassel and T. A. Welton at Oak Ridge (pfivaté communication).

. The most importéﬁnt effect ariseé-fi_'ofn the last term in (7,9),. which stablizes
large';amplifude oscillations _tha:t Wodd.ofherw_i;e be u‘nsta.ble, sO they repre- .
‘sent pé.r.ti'cﬂes that will no longer escape the. cyclotron. . | |

a Consequen.tiy,. one vmight wish to attempt to keep H itself within -
acc':ep.ta"ble;flimi.ts, Let us call these limits + mi , refering to radius R.-

Thus we require

_,qk‘-”‘s H < nk+,
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Again we can introduce a new variable, £ , which we will try to
minimize, and rewrife as .
_,gnk < H_k.s gnk , . (7.11)
‘ £ <§ s, £ <1,
Substituting Eq. (4,115) for Hk into (7.11), we obtain the fol.lowing' set of

‘inequalities, that serve to bound the third-derivative index H:

- m i
Ene * T T oow 2T
i=1
En, - = Toow 2T | (7.12)
i=1
S ' =
2 gmax’ g'rna.x <1

These constraints may be added to those of L, P, 4" of Sec. 6. However,
we have also added a new variable, £, so the objective form should be expanded R
to o

Yy = bf):\,)\+bFL p+bg§,

This concludes all of the physical effects we shall consider in this paper,

8. VARIATION OF THE EXTRACTION MOMENTUM
In the L, P, problems we have considered, " all except L. P.1' permit
one to specify Py s the value of the momentum at the extraction radius RL°
In particular, one has to assign a value tov _PLQ = PL.O + _6pL [see Egs. (5.6),
(5.901)], which appears twice in the i = 0 row. To see how the solutions vary
with 6pL one may make use of the ‘parametric cost row (PCR) feature of the

SCROL code., We have two values of j for which the ajo vary linearly with

g = 6pL, namely j = LPL and j = UPL, for which
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| . |
/aLPL o o
- : :~i(PL +

6 1), 06 =208p,.
0 ' | L

\aUPL

The input for SCROL then consists of putting = P 0. in the j = LPL, UPL

L
colurmns of the i = 0 row; and the coe'fficie‘nt.s of é, :L- 1, in the'i = 2 row, *

'_'One ther'1 specifies the uppér and lower bands o‘f 6 = 6pL that Ohe wants solutiéns
for, The machine will then compute solutions as. functions of 6pL between.
those 1imiﬁs, - That is, it prinfs out a new solution each time the’. basis changes;
the intermediate solutions vary linearly with 6Py -

3 Actually, sir_lce one wants Py, to be both positive and negative, one will

__‘ha.ve to do PCR twice, first with the i = 1 row co_'n.ﬁaini'ng +1, then with the
i = 2 row, which should contain +1. The sum~row index q must be set eqﬁal

- to 3, The constraint matrix rowsA will;, start a.tjq +1=4,

It.isv contemplated that the measurements de;cribed in Sec., 4 will be
carried out at a number of discreet maip-—coil current 'set‘tin.gs Il For each
~of these one should, by exai’ninigg the uﬁcorrected field, make an educated
guess as to thé bes:t value of BS(RL)’ and from this vca-lculate assoqiated
values of the rf frequency f and the momentum 'p’Ls,, This can be done by

‘solving for pL‘S and w as follows:

s eZ s
Py = | R; B (RL.),
. m_.C
0
. i
B S - P
L - ] 2 9 .
©oNe
. éﬁLs~

w.= T o
: Ryl +o(Rp) -

“In the physical problem the right-hand side are -ajo,‘ In the dual to this

problem the ajo become the '‘cost'' row.
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Such values of w and pLs-are calculated by the DORO code if one includes

in the input R, = R, and one of the following three quantities: Br = BS(RL),

L9
: . .8 ' S
- EF = energy in Mev at RF’ Or P = Py, - They constitute base values of
one
w and P, for the L, P, problems. Thus there will be!\pL_S (Il) for each of the

- measurement values of Il" Parametric programming will then bridge the

gap be'tween‘.these discrete values of pLs,

9. SUMMARY OF LINEAR PROGRAMMING PROBLEMS FOR TRIM -
. ) COIL ADJUSTMENT ‘

We have now described a considerable variety of conditions one might
wish to imi)ose on.the magnetic field, :One might prefer not to impose all of
them, 61‘ one rnight wish to impose others not treated here, For ;onVe‘nience
‘we .now‘ state a linear programmihg prbblem that contains all of the features ,
discussed in this paper. If the user does not wish to impose all of these
‘conditions, he can omitv the corresponding constraints, which will ‘mean_
omitting"the "corl‘.e?spondiﬁg ‘columns of the tétél matrix shown in Table IV,

For those "cons‘tr'aints referring to a radius Rk’ one may include only those
Rkvthat are of interest for the particular constraint involved, ~ If the remaining
constraints do not involve all of the variables X\, n, or £, then those not
involved should be left out of the problem and the correspﬁnding rows omitted
from T.a.ble Iv.

In general these linear programming’ teéhniques ‘only provide a method

for making certain types of optimiz.ations subject to preassigned conditions.

If these conditions are made too sf_cfingerit the tfim coils may be incapable

of satisfying all of them, and the L~., P. codes will state '"No feasible solution, "
The user should usé his judgeineﬁt. to try to impose conditions whose mutual

satisfaction is within the capacities of the trim coils, and then trust to the



UCRL-9916

-37-

‘MOI-}S0D 92U} U
) 273 Ul wnj
mox b oYy,
" TIpeI 9Y} ISAO S°

- £
0

® 9Yj) SUTRJUOD MOI (=T YL,
Suea 3 Xapur oy,

JTUYM ]
d Axe

1 ,dun.m Aq dnH ooerdar jsnwu 2uo 9s®D YOIYM Ul ‘D-g °dasqng ‘¢ °d "I JO Hwﬁﬁwg 9AT]RUIIITE
suwowx @mlﬂum.ﬂxo 91} JOJIJUOD 0} SIUBM DUO JT ATUO PISN ST MOI 3S® YL ‘B 3y} SUTBIUOD
*peI[oI3uod oq pnoys uorjsanb ur seryryuenb Sy
‘A1eamyoadsaa < 1dg F 103 ¢ ‘¢=1 smox ytm Yng waojiad
“18d-"1d wnjuswiow uorjorvIlxe 2413 ITIM MO "Idg ou pue mox 1500 Q=T Ym walqoxd 9y} jo uonios aYfJ, ®

e g
A O]

-Q--0+4 O||-0-|-0-|-0 0 N =1 -0<|-0- 0 20 -| .0 |Sru+b dp
R | B 7R I o--o -l o | o o -0-f-0] of o] o0 jrrub] =M
9 umt:m -0 -1 -0 0 .+x\\. +vw~\. .tm_\h. - 0. 0 <0 |- 0" 0 0| +0 | somsb| w=Fm
A&u«t:o“ 0.0 o -a-}-0-.0-| 0 0 0 | o MTp - c 0] s 0 skl M

Q | 0 y O * O ' O * 0 <0 0 0 Q. _”?Equi .+EX<. 0 s 0 - e Q ¢ _+_\£+.»U Qlwﬂ\bﬂ"*.v&g
0 Sx ] .Ex.._.h 0 Ex@l .Ele. ..Ev_D. 0 wd= wd "WV = .Ex<. 0 S0 -0 ] wtb M
o -] L] o | -g-|Ja- [ Ja ] o |- G v o =] k] M
0 ..Nx - ~.anu_v. Q .M@I. .dv_o.l. .NXQ . 0 dJ - Nu_& M.(l dv_( 0 . O:. . Q -] 2+b 4
I S B < B R I IR I B B R N B
0 +Q-«|-.0 o |-0- o-|0 | O 0 0 -0-|-0 - 0 0|0 -] £=Pbf MO4Z
0 Q0 -0 o |~-0-|-0-|-0 /] O 2 -1 .-0-{-0 - 0 0-|-0 Z | dp-140d
0 c0-|-0 0 |-90 - o-|-0 .| @ - I+ |.0.]-0-] o 0«0 - | dp+:¥9d
0 , xL..l A x.l_n rews .oxm... ,.onI‘ .on . [xowyy” o.._ll u_mm .oxkfl. .ovr.& . xdE& .+.._>\_. ....N\Sl. /) >.>o\. vonv
0 |PMHN|MHT-JNISd|AWoN- |- 190|197 - [ywaw | Tdn | TdT | -%Sn+|-AST-| xwagTf mn- [ IMT | NI | M
SHISYES Teddn T Tome| | Tedda| Jeddr [ Fsddn | Mo [ deddn | Xeddn | Jsme] | dsddn | aemo| | Feddn | aeddn | Aemo] u..E.;LuBaT?.omm:
+x%M |¥&Ml XHEU i +v.\\.3\ +vr3\ IV_X.SR XUy ._WL &BJN xuuKI x,or;/A +.._>> . IQ\S 2n[wA ufp1wiT
13 xepul e Mg RS (S Hw :
) §Iu>tw1‘w;_=_._. $ XPW xﬂ.ﬂ_wm\w FU1pYio . \XSE L WNIUTWON @ cC uis 1Y XDIN| A FUBAAND _ow:o\i:oo h:u:s:nu

EQE.OHQ

e ‘yeurzoy TOMDS UT ‘(,S°d "I JO Tenp) §'d T

juowysnfpe- [100-witl} Jerduad 1oy nesalqey, ‘Al 219®L




-38- | UCRL-9916

B

optimization properties of linear programming to make matters-as good as

possible,
The specifica'tion of what constitutes an acceptable solution is made

by one's choice of constraints to be imposed, and the choice of parameters

s, G

'~ defining the size of such constraints, e.g., A "

“max’ Mmax’ gmax k’ 6pL’

* +
Y o zrnax’ e - _
- The specification of what constitutes a ''best' solution is made by
~one's choice of the ''cost coefficients" 'b)\, bp, bg,
' We state the general trim-coil-adjustment problem in L. P.5' below.
The tableau for its dual, L.P.5, is shown in Table IV, The‘meaning'of the
quantities in the rows i = 1,2 is explained in Sec. 8.

L.P.5 ':‘ General trim-coil —a.djustment.problem.

Find values of the variables w,,*°*,w__ 3 \; p; and £ that
- 1 - m+l -
minimize

y = b)\)\ + b”p + bg‘g, _ . (9.1)

subject to the constraints:
: Curi‘en\ts (and frequency) wj:
ER2 2 + Wi:r, i=1,e0.,mtl. | (9.2)
- Sine of phase i:ag, S, [cf. Eqs. (4.4) and (5.12) for defining

equations]:

e | (9.3)
mo g | '
,’aki)\:l: = Akwi>+Ak, ‘ (9.4)
=1

Momentum at efctraction radius Py, :[Eqs. (5.8) and (5.901)]:

| - =0
:I:iZ:I PL wi;+ L . (9.5)

Gradient error AGy (for control of ”!é:f.fective,”'gradient error

A—GL’ replace Dki by ﬁki by 51i ) [Eqs. (4.6), (6.10), and (6.5)]:

-M = "}.Lmaxg (9.6)
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i e % Dlw i D0 ‘ (9.7)
.Yk,H vi:l k Vi L ) o ) .

Effective gradient error for’zma-g, 'AGk [Eq. (7.8)]:

3

+ ~ i ~ 0
Vi B- Dk w, p3 Dk ) . v . (98)

1

It M

1

Nonlinear radial —insfability control of H.k:

- £ = -£ , . {(9.9)
max
: ) m i _ :
T T g%iflTk w, = + T, (9.10)

The Vaiues of k to be ﬁsed depend on the radii Rk'at which the constraint

in question is to be imposed,
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. APPENDIX: LINEAR PROGRAMMING

A, Statement of L., P, Problem

‘We start with the statement of the general linear programming (L. P.)

problem, In this statement the symbol ® may stand for either >, <, or =:

A1l: Choose values of the variables‘XJ; j=1,°%°,n tha.t(mlm.ml.ze>
22 o : . maximize
the objective function
n . '
z= % c x . | (Al.1)
| j=r
. subject to the constraints
n i S :
z a'xd ®@0b,i=1",m | ' (A1.2)
and
x> O(for a. partlcular subset of the xJ) ‘ (A1.3)

Any value of X.= x.,°°° ,xn that satisfies the constra.1nts of Eqgs. (Al.2)

1’

and (Al.3) is called a feasible so_lutlon,, . Any_—feas1bl=e solutlon.that minimizes

or maximizes the 'objecti've function z(sometimes ca,ll_ed'the cost) is called the

optimal feasible solution., Any'L; P, probleﬁlei'ther has io_ feasible solutions,

or if it has feasible solutions it either has.an unbounded solution (that is,

small)

.z can be made as ( )as desired), or it has a finite optimal solution at

large

either one or a set of values of the vector X = {x..l; RIS xn} .

: B., . Geometrical fnte_:r-pretation :

It is helpful to visualize the problem geometncally (see Flg‘ 1),
‘Suppose the constralnts of Eq° (Al 2) are all 1nequal1t1tes and we ere con- .
sidering a two d1mensmnal problem, n = 2 Each 1nequal1ty of Eq. (A1.2)
divides the x1, x_ plane»1nto an allqwed .and a forbidden part, separated by'

a straight line, = Together, Egs. (Al1.2) and(A1l.3) define a-convex pol.y-gonal
region K on which the feasible solutions must lie. The objective function
z is constant on a family of parallel lines, That z line with the smalle st

z value with ‘at least one point in K, is the optimal one, and the points of
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LLLLL L L

MU-26273

Fig. 1. Geometrical representation of a two-dimensional L, P, problem,

: The hatched lines represent constraints, which restrict the feasible
solutions to the polygonal region K. The dashed lines are lines of
constant z.- The optimal solution will be a vertex (called an extreme-
point solution), or on the line between two vertices,
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‘intersection with K. constitute the optimal solutions, Usually the inter-

section is at a vertex, called an extreme-point solution, but sometimes it

* “is along an edge.. In the general cdse;-z assumes its optimal.value either

"at an extreme point or at:a set of points which are co_m>ext combinations of
'-extrefne p'oihts -.\x}hekre z has the sar‘ne:(optimal’) value. (A convex,combination
is a linear combination -Wi_th .nonnegat_iv,e,coefficien.t's, ) -

: C. Slack Variables

‘An.L. P, problem with inequality constraints may be con:ve,rtéd to one
with equality constraints by the introduction of new .variables, called slacks.

Suppose the original.problém is o S '_ ,

) - n .
A2 Choos'e'xJ,j =1,°+*,n, that minimize z = 2 cj XJ.,
j=1
subject to .
=0, j=l,o00,n,  (A2.1)
\' Doy o5 | S
.2 a, x =D, i=1,°°:,m, v (A2.2)
j=1 J ? - L T

We can then s'uvbtra.ct from each inequality of (A2.2) a new positiVe variable
x" * 1, which will be just the difference between the left and right sides of
" the inequality, so the problem becomes

§_§_ Choose variables ’xJ‘, j=1,°++,n + m, that minimize

n . ntm .
z=2 C. XJ = cc, XJ:
: le J le J
subject to

< = 0, j=1,+°+,nt+tm, (A3.1)
n . n+i “nt+tm _1‘_; '. i L
) atx - x = X a x‘]=b, i=1,°¢°,m, (A3.2).
J=1 j=1 7
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and clearly the content of the problem has not been altered, If (A2.2) had
‘< relations one would have a term - ﬂfx?+;' in Eq. (A3:2).
The feasible solutions of Eqs. (A3) for which no more than m of the

n + m variables x’ is nonzero (or for which at least n of them are zero)

. are called basic feasible svolu.ti'ons’(‘BFS). These coerSpond to the extreme;
point solutions of (A2),-since an extreme point of thej polygon defi-neci by
(A2.1) aﬁd (A2,2) is the point of intersection of n of relations‘i(AZ.i) and
(AZ,,Z) wrii:;en' as e'qua.litiés., But each of these relations, wri-tteﬁ as an
equality, is equivalent to one of the xj, j=1l,°°°, n+m, in Eqsa (A35.bei}ng
zero., Since there are n such relations, n of the xj, j =1y -; n +m é.re

zero, which we have defined as a BFS,

D. Making All Variables Positive

Any variable: x of Eq. (Al) not constrained to be positive can be
replaced by two new positive variables x 9 andfcj where xJ = xJ - xJ and

xJ > 0, . Then ‘the”original:problem should be restated in-terms of

Jso0

A |

3 and x: , substituting _‘(:?J - }zc.‘]v) for xj in Egs. (‘A.l.l) and (Al.2).

E. ._Stand_ard',,Form ) .
By the above methods, any L.P. problem can be cast in the following
standard form: (If the original problem calls for maximum z, then’change
the signs of the cj.)

A4: 'Choose values of the variables xj, j=1;°+°,n, that minimize the

objective function,

n .
z= B e, x, - - (A4.1)

n .
T . a'x=b , i="1,°*°, m, where m<n, . (A4.2)

,; I3
x>0, j=1,°"",n. (A4.3)
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F. : Solution of L., P, Problem

Eguation (A4) is t];1e form required by the SCROL L,‘P.. progré.l'l'l" O
course it is not essential that the methods used by this code to find the optimal
solution, if any, be unc.lxe'rstood "by the user., However, the natufe. of the method
can be hinted at here. As suggested above, the only candidates for optimé.l

| solutions are the vertices or extrernum points of the polygonal region defined
by the constraints, which are the .same as the BFS defined‘above. In terins
of .(A4), each BFS haé n - m of the xj set equal to z'ero.v Thusv(A4,3) is re-
duced to a system of m equations in m unknowns, which has a unique

- solution, Those columns .of A = ll_aji || belonging to the ‘nonzero ) constifuté
the basis B (not to be confused v;/ith the A's and B's of the text, Sec.4)
corvl;esponding to-.the BFS, or extreme point., The code proceeds from one
extreme point to a neighboring one by removing one column from B, and re-
placing it by one currently not in B. It has a test to detect when it has arrived
at the optimai BFS, and if it has not it chooses the n’eighboringvextyreme point
that reduces’ \z the most.

One problem that the user mgst know about is how the code finds an

extreme point to start with, Suppose A contains as one square submatrix
the unit matrix L Then it chooses this as its initial basis, for it gives the

BFS ;;O =b., If-A does not c’ontain all of

with so-called artificial variables in such a way as to build I. These artificials

I it internally augments the problem
are subsequently eliminated. However, to save the machine time, the user
should specify if A contains aﬁy columns that can be part of I, i.e., columns
containing only one element, of value +1, These columns are specified by a

special column designation.
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G. Dual Programming

Every L, P, problem has a so-called dual problem. Here we shall
discuss only the dual problem to a problem in the standard from (A4)., Let
(A4) be called the primal problem. Then the dual problem may be written.
as follows*

A4'':. Choose values of the variables w;, i = '1,°°°, m that maximize

the functional

subject to

m :
. a,  w.£c.,, j=1l,°°°;n,
i=1 J 7

The following theorem relates the optimal solutions of the primal and dual
problems (pa,raphrasing'Gass?),, : \

Duality Theorem: If either the primal or dual problem has a finite

optimal solution, then so has the other problem, and the extremes of the
linear functions are equal, i.e., min z = max y. If either problem has an
unbounded solution, then the other pr}oblem.has no feasible solutions,
The explic;i't.formula. for the dual variables in terms of the optimal bésis
Bis -
"Tw,.=.Z c, (B-l)ifj, for those j' in the basis,’

i .
j J

whereas the primal variables are given by

= = B> (:Bml)iJ b, j in the basis,
" 'The SCROL progfam Simultaneously‘ computes the solutions to both a
primal problem in form (A4) and its dual, -(A4'"), . Hence if one has an original

problem in form (A4'") one may solve it by entering problem (A4) into the

machine.

o

" The dual relationship is reciprocal: if A'is the dual problem to A, then

A is the dual problem to A',
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For our purposes it is more convenient to have the dual problem in the -

- following form—obtained by changing the signs of aj_l._ and b in (A4) and (A4'"),

A4': Choose values of the variables W5 i=1,°°, m that minimize the
functional
m : :
y=2 b W (A4',1)
i=1 ’ :

. subject to

mo ) - | |
T a, w. = -c,, j=1l,°c°,n, (A47.2)
=1 J 1) _

By comparing ‘the primal problem and its dual we can see the significance
of the dual variables ot the primal probl‘em and vice-versa, for by the Duality..
Theorem, at optimum we have z = y. Suppose that in the primal, one varies
the cj slightly, For a small change the original optimal basis will notcha;nge,

hence the xJ will not change either. Therefb:r.e_

dy . 23z J

— = X7,

dc, oc.

: _ ) J . v o

" But in the dual problem the cj are the right-hand sides of the inequality con-
straints. Hence the derivative of the objective function (at optirhum) with
respect to a righ_t-ha'nd-side paranieter is equal to the dual variable corres-

‘ponding to the constraint in'(iue stion,

H., Parametric Programming

Often one Qvants to know how thé optimal solutions vary-as; the "'cost
coefficientS"".cj or right-hand-side coefficients bi vary continubusly,
. Caée‘l ('PCR): : SupPose‘in (A4) we let c; = ~dj + de', where Qis 6 <. E,
- Then it can be shown that: 7 |

(a) The setof 09 for'which fninimum solutions X existis

closed and connected.
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(b) Given any finite miinimum solutioﬁ,. a set of so‘lutior_is )—{, |
and associated z values corresponding to-all possible values
of 6 can be found, |
{(c) Each such. solution is minimum over a closed interwval of - -
6 (so the basis rerhains th¢ same in that interval too),
(d) In each such closed interval of 6, the d\_lal solution w.
varies 1inearly'with 6: wi(G) = s1 + Gr.i., The procedure in the
SCROL code is to put the 'dj inthe i = 0 row, the d,jl in some
other row i < q,. where q is the index of the "'sum row,' which
is a row with zero elements juét above the cﬁonstraint.rxiatr‘ix
rows, |
:Casé‘lz (PLP): On the other hand, if ih._(A4) the bi :'ei + Ge “i., the ‘above
sifua.’;ion is reversed—the xj will vary linearly with 6 in the various
closed intervals; xj(G) = qj + Gpj, while in those intervals the dual
solutions w, are fixed, |
. The SCROL code prints out the solﬁtions'; and v_vb,‘ and the value of the
functional form z ="y at the beg.in;ning* o»f each interval of 6 in whiéh the basis
is fixed, In‘Ca.se l.‘one' can trace out wi(G) bby joini%xg,l wi.th straight lines,
these values of wi‘given by the code a"& deéireci’x(;alugs of 6; w}’lile‘ the xj(G)
remain constant through e_ach interval, The situatic;n for Case 1 (PCR) is

shown in Fig, 2.
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MU.-26274

.=Fig.‘ 2. Parametric programming of the cJ = dj + Gdj";
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I. Tableaux for L. P, Problems

The following tableau shows the relation between the primal and dual

probems (A4) and {A4''), respectively:

- Tableau for standard L, P. problem (A4), showing primal-dual relations, -
— v
Xl o L » xj 4 @ ° xn =
1 1 1 1
W ay a,J. a b
W, a’t a,’ a ' b
i 1 j n
w a, ™ a, ™ ab‘m ™
m 1 ] n
< c o C. C max
S -1 N n
min

However, all the tableaux in the text refer to the following standard

tableau, which in turn is regarded as equivalent to (A4), (A4'), and (A4''):

. Standard ‘tableau for standard L.P. problem (A4),

J
i 1 . n
0 <,y cj <.
o1 1 1 1
qtl 2, aj a, b
i i i i
qt+i a, aj a, b
qtm alm ajrn anm b

In the IBM 704 codes the cost coefficients cj are labeled ajO, otherwise
the notation vis ;;bout the same a$ ::).b_c>.ve,° Howeve_,r,..thevfirst row, here labeled
i=1, fhere'has index i =2 or greater, The column indices j are replaced by
arbitrary alphanumeric labels, We will sometimes follow that pratice too, The -
codes print the xi in a column headed BETA,. ankd’the wy in a'column headed Pi.
The index corresponding to j and the i:index are printed in columns headed

J and I, respectively.
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