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METHODOLOGY Open Access

A simple novel device for air sampling by
electrokinetic capture
Julian Gordon1*, Prasanthi Gandhi1, Gajendra Shekhawat2, Angel Frazier3, Jarrad Hampton-Marcell3

and Jack A. Gilbert3,4,5,6,7

Abstract

Background: A variety of different sampling devices are currently available to acquire air samples for the study of
the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the
use of a novel device, which has no technical complexity and is easily deployable.

Results: An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal
method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to
and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and
electrode assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm.
This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was
determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled
environment chamber. Performance was compared with the same reference filter method in field studies in three
different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was
100 % sensitivity and apparent specificity of 87 %, with the reference filter taken as “gold standard.” Further, bacterial
analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic
device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by
charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to
specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air.

Conclusions: This work introduces a very simple plug-and-play device that can sample air at a high-volume flow
rate with no moving parts and collect particles down to the sub-micron range. The performance of the device is
substantially equivalent to capture by pumping through a filter for microbiome analysis by quantitative PCR and
amplicon sequencing.

Keywords: Atomic force microscopy, Reverse transcriptase PCR, Air sampling, Field study, Aerosol, Nanoparticles,
Aerobiome, Amplicon sequencing, Bacteria, Molds

Background
Understanding of the microbiology of air, the aerobiome,
is an emerging field of discovery. High-throughput se-
quencing methods are being used to explore the spatio-
temporal distribution of bacterial and fungal populations
[1–10]. A variety of sampling methods have been used
for studying the air microbiome [3, 11–14]. A variety of
different sampling devices are currently available to ac-
quire air samples of microbial and viral particles [15].

These technologies include filters, impingers, impactors,
and wet or dry cyclones. The underlying principle of im-
pactors, impingers, and cyclones is the use of an abrupt
change in direction of airflow so that aerosol particles
will continue on to a surface by virtue of their momen-
tum. Filters are microporous membranes, impingers
capture on to the surface of a nutrient agar plate for
subsequent colony counts, and impactors capture on a
solid surface for subsequent elution, as do dry cyclones.
Wet cyclones capture by vortexing into a liquid phase.
Aerosol particles may also be separated into size classes
with multi-stage devices. For existing devices, capture
efficiency falls off rapidly with particle size and there is
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considerable variability in performance [16–18]. All of
these devices require pumping against some resistance.
Different apparent microbial communities were found
from the use of different air sampling techniques [11, 13].
There is thus a need in aerobiome analysis for a sampling
procedure that does not bias the measured biodiversity.
Here, we introduce the use of a very simple device for col-
lection of samples and show equivalence to a reference
method using filtration. In addition, a variety of air sam-
pling methods have been applied to the airborne transmis-
sion of disease [19–30].
Brown first described the principle of ionic propulsion

in US patents [31, 32]. A corona wire is subject to a high
voltage, creating plasma that imparts charge on particles
in the vicinity. The charged particles are then propelled
by the voltage gradient to electrodes at an opposing
potential. The net flow of charged particles imparts
forward momentum on the surrounding medium. The
result is a net airflow with no moving parts. This principle
has been used in commercial air-cleaning devices [33].
Custis et al. [34] used such an air-cleaning device for col-
lecting dust from the air for measuring allergens. We have
developed a mini-scale device using the same principle
with optimized airflow and an electrode cartridge that is

optimized for sample collection (Inspirotec Sampler). We
have demonstrated its use for detection of allergens by im-
munoassay [35, 36] and viruses by quantitative PCR [37].
The device is simple to operate, compact, and can be
placed unobtrusively in any environment. Here, we com-
pare performance with a filter reference method for ana-
lysis of the aerobiome.

Results
For the purpose of this study, three environments were se-
lected for side-by-side comparison of the Inspirotec
Sampler, with an air filter as a reference device. The en-
vironments were a clean bathroom, a basement room
with an exposed sump drain, and a hay storage room in
a large equestrian facility.

Mold spores
Mold spores are ubiquitous in the environment but vary
according to temperature, humidity, season, and other en-
vironmental conditions. Table 1 shows the results of 24-h
samples in the three locations. The Inspirotec Sampler
values have not been corrected for capture efficiency
(approximately 20 %, see “Methods” section). If this

Table 1 Mold spores in three locations

A Inspirotec Sampler, B filter. Spore equivalent values were determined by multiplex qPCR (see “Methods” section). Green shading: detectable by both methods;
yellow: detectable by Inspirotec Sampler only; no shading: below the limit of detection of the qPCR
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correction were applied, the values would all be consistent
within the standard deviations achievable by the quantita-
tive polymerase chain reaction (qPCR). Those cases where
the species was detected by both methods are indicated by
green shading. In no instance was a species detectable by
the filter and not detectable by the Inspirotec Sampler. In
eight instances, the Inspirotec Sampler detected a species
that was not detected by the filter, indicated by yellow
shading in Table 1. By this criterion, if the filter is consid-
ered a gold standard, the sensitivity is 100 % and the speci-
ficity is 87 %. However, these are likely to be true positives
since the Inspirotec Sampler is sampling a larger volume
of air in a given time. To address this concern, we exam-
ined the accumulation rate for Eurotium amstelodami on
both filters and the Inspirotec Sampler (Fig. 1). This
shows that the Inspirotec Sampler processed both a lar-
ger volume, and correspondingly, a larger quantity of
spore equivalents were captured, when compared to the
filter. As with Table 1, these numbers have not been
corrected for capture efficiency. It is not clear why the
quantity of spore equivalents captured appears to peak
at 6 h for both filter sampling and Inspirotec Sampler.
Nevertheless, this illustrates the advantage of the high
sampling volume of the Inspirotec Sampler. This advan-
tage is compounded by the Inspirotec Sampler’s easier
logistical set-up and silent performance.

Bacterial diversity
Timed samples were run in the basement environment
with the same schedule as in Fig. 1. Bacterial 16S rRNA
amplicon sequencing generated a total of 1,294,310 se-
quences from 22 samples. When rarified to 9800 sequences
per sample, 385,076 operational taxonomic units (OTUs;
97 % identity) were identified. No significant difference in
microbial community structure was observed between the
Inspirotec Samplers and the reference method with the
use of the R Project for Statistical Computing freeware
(weighted or unweighted UniFrac distance ADONIS,
p > 0.05, R= 0.06). False-discovery rate (FDR) and Bonferroni-
corrected p values showed no significant differences in
OTU frequencies between platforms. The genus-level
community profile generated by both technologies com-
prised predominantly Acinetobacter, Gordonia, Methy-
lobacterium, and Pseudomonas (Fig. 2). Differences in
abundances in Fig. 2 are therefore not significant.
Interestingly, 180 min produced a signal highly similar

to the time zero (blank) suggesting that this time frame
was insufficient to generate enough biomass for the de-
tection threshold of the amplicon sequencing technology
(Fig. 2). However, by 360 min, the community profiles
were significantly different from time zero. Reagent-based
contamination is known to be an issue [38] and ex-
plains the detected signal for blank and 180 min. The

Fig. 1 Time course for spore collection. Air samples were taken at 0, 45, 90, 180, 360, and 720 min for the Inspirotec Sampler and at 0, 180, 360,
and 720 min for the filters in the stable of Table 1. Volume sampled is computed from the individual Inspirotec Sampler flow rates and from the
15 lpm setting for the filters. Zero time samples were placed in the respective device, power was not turned on, and they were otherwise treated
identically to the timed samples
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significance of the similarity between microbial profiles
generated by the filter and Inspirotec Sampler technolo-
gies at each time point was assessed using Procrustes ana-
lysis including the left and right electrode (technical
replicates) of the Inspirotec Sampler as well as the pump-
driven filter. Over the course of time, there was no signifi-
cant difference between either technical replicate or the
air filter, despite greater variability between samplers at
the starting zero time (Monte Carlo, p > 0.05) (Fig. 3).

Particle size and capture
A prediction of the method of using ionic propulsion to
capture the charge particles is that the capture should
be independent of particle size of mass, unlike current
aerodynamic-based sampling systems. The location of
capture is dependent on the force vectors determined
by the voltage gradient. Mass may affect particle accel-
eration and velocity, but the final capture location is
determined by a potential well. We therefore explored

Fig 3 Procrustes analysis of bacterial community structure as a function of sampling time. A principal coordinate analysis (PCoA) was generated
for each of the replicate electrodes and the filter samples. CV1 and CV2 are the first two dimensions of variance that describe the most variance in the
multidimensional structure of this population, represented by the percentages on the axes. UniFrac distances from each PCoA were comparatively
superimposed by collection time

Fig 2 Relative abundance of bacterial genera as a function of sampling time. Samples were collected following the time protocol of Fig. 1 in the
basement location of Table 1. The top 25 sequences were selected from the OTU table, and relative abundance of bacterial genera was plotted
across consecutive time points between samplers as described in the “Methods” section. Zero time samples were as in Fig. 1
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sample capture with a random sample of air (bathroom
of Table 1) and examined the size distribution of cap-
tured particles by atomic force microscopy. Particles
down to the nanometer range were captured (Fig. 4), as
demonstrated using a visual representation of particle
size density (Fig. 4a), as well as a size distribution
curve, with a significant fraction trailing into the lower
range (Fig. 4b).
The Inspirotec Sampler was run in the bathroom for

24-h (Table 1) and scanned (see “Methods” section). The
inset shows the lower end of the distribution curve and
captured particles extending down into the 500-nm range
and below. The sampler is thus able to capture particles
going down to very low sizes and in the range that will
penetrate the lungs and cause symptoms. This illustrates
the range of sizes of not-identified aerosol particles that
are captured.

Conclusion
We have demonstrated the applicability of an electro-
kinetic air sampler for the molecular detection of micro-
organisms in air. All procedures are of wide applicability
to any measurements in the aerobiome. This technology
is easily deployed as it can be plugged into any electrical
socket, silent, has low visual impact, and so could be
readily applied to indoor settings for identifying and
tracking emerging pandemics. The device performance
was comparable to or exceeded that of the reference
method.

Discussion
The device is inexpensive and requires no technical skill
to operate, compared with any other competing technol-
ogy. Both SARS and MERS [39, 40] epidemics may be
traced back to human-animal interfaces, and early de-
ployment in such emerging pandemics would facilitate
the tracing of early stages and subsequent routes of
transmission. In a separate study [37], we showed the
capability of capturing Venezuelan equine encaphilitis
virus in a controlled environment chamber at the US
Army Edgewood Chemical Biological Center with aerosol
particles down to 1 μm. The viruses had been inactivated
by gamma irradiation. The result was that a large propor-
tion of the original virions had RNA that was not amplifi-
able, so the capture efficiency was apparently very low
based on the original virus titer. However, analysis by
digital PCR using the Poisson distribution at low amplicon
concentrations showed that the capture efficiency was in
the range of 20–40 % for these articles. Here, the perform-
ance exceeded that of the reference method using a
microporous filter and showed ability to detect mold
spores using EPA-accepted PCR technology [41]. Of the
species for which primers and probes were used in the
qPCR, Acremonium strictum, Alternaria alternata, As-
pergillus flavus, Aspergillus fumigatus, Aspergillus niger,
Aspergillus ochraceus, Aspergillus sydowii, Aspergillus ustus,
Aspergillus versicolor, Chaetomium globosum, Cladosporium
cladosporioides, Eurotium amstelodami, Memnoniella echi-
nata, Paecilomyces variotii, Penicillium aurantiogriseum,
Penicillium brevicompactum, Penicillium chrysogenum (type
2), Penicillium purpurogenum, Penicillium variabile, Scopu-
lariopsis brevicaulis, Stachybotrys chartarum, Trichoderma
viride, Ulocladium botrytis, all but Aspergillus ustus, Mem-
noniella echinata, and Penicillium variabile were detectable
as spores over the three locations tested.
Another feature of the electrokinetic propulsion is the

ability to capture and measure particles down into the
nanoparticle range. Particles generated from respiratory
activities in the range of 0.05 to 500 μm are associated
with infection [42]. Most commonly used air sampling
devices have a cut-off at about 1 μm [15]. Allergens may
extend down to a size range that has been missed by

Fig 4 Atomic force microscopy of biomass captured. The Inspirotec
Sampler was run 6 days in the bathroom (Table 1) and scanned
(see “Methods” section). a False color 3D representation of a 10 × 10 μm
square. Height above the plane is in the same micrometer scale.
b Particle size distribution analysis of same data. Size distribution in 512
bins and percent of particles in each bin plotted. Inset: 0–0.8 μm range
shown on ×10 expanded scale
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current sampling technology [43], and there is evidence
that bacterial endotoxin, which exacerbates the effect of
allergens, may exist in size ranges below the size of bac-
teria [44]. The device described in this publication will
have the capability of extending the size range of parti-
cles that can be collected from the aerobiome.
Fahlgren et al. [13] found that the diversity of microbial

communities captured by different samplers in external en-
vironments in Norway and Sweden were similar, whereas
Hoisington et al. [11] have found significant inconsistencies
between different sampler types at locations within a US
retail store. In neither case was consideration made to the
time of run needed to resolve reagent background. We
showed that a minimum of 6 h sampling was required
regardless of the method. We demonstrate the applica-
tion of ionic propulsion technology to capture a wider
range of particle sizes than with traditional air filter
sampling, with no significant bias in fungal and bacter-
ial community recovery.

Methods
Inspirotec Samplers and accompanying electrode car-
tridges were provided by Inspirotec LLC (Glenview, IL).
A commercial air cleaner was modified to achieve a uni-
directional flow. The disposable capture cartridges were
designed to optimize capture of aerosol particles and for
easy release into extraction tubes. They were made by
3D printing at Exact Prototyping, Joliet, IL, and stainless
steel electrode strips by Lakeshore Cutting Solutions,
Zeeland, MI. Electrodes were finished by Able Electro-
polishing, Chicago, IL. Cartridges were washed with 70 %
isopropanol and air dried, and electrodes were washed
with isopropanol and dried in a vacuum oven for 30 min
at 180 °C. Assembled cartridges and electrodes were heat-
sealed into polyethylene bags until use. Once the elec-
trodes have been released, they cannot be re-used. There
is no potentially non-sterile surface that physically con-
tacts the electrodes between removal from the bag and re-
lease into the collection tube. An updated version of the
Inspirotec Sampler has a block of honeycomb-structured
MnO2 catalyst covering the outlet. This modification
removes traces of ozone from the effluent air but does not
affect performance. Samplers and cartridges can be pur-
chased by sending an email to the senior author with
heading “research request.” The sampler will have a lower
cost than any alternative system.
Flow rates were measured with a hot wire anemometer

by averaging measured flow velocities across the width
of a duct placed over the outlet [45]. Individual samplers’
flow rates varied by 130 ± 13 lpm. Capture efficiency
(determined by AlburtyLabs, Inc., Drexel, MO) as judged
by capture of 1 μm Fluoresbrite® YG carboxylate micro-
spheres (Polysciences, Inc., Warrington, PA) in a controlled
environment chamber, compared with capture by a

reference sampler consisting of a 0.22-μM polycarbonate
filter, was (23 ± 5)% based on 16 determinations. Fluor-
escence of captured microspheres was with a Turner
Quantech fluorometer. The reference samplers were run
at 14 lpm. Thus, the capture efficiency is more than com-
pensated by the higher volumes of air sampled.
Following their standard isolation procedure, captured

mold spores were determined by qPCR for the 23 most
common mold species by EMLab P&K, Marlton, NJ.
Primers and probes and amplification conditions used
are in [41]. Electrodes were released into 15 ml Falcon
tubes and shipped overnight for analysis. They were ex-
tracted by vortex mixing intermittently over 10 min with
0.05 % Tween 20, and spores were centrifuged down and
extracted by bead-beating [46]. Results were computed as
spore equivalents [46–49]. These publications show that
standard deviations of spore equivalent counts may be ±1
log or more.
Amplicon sequencing: each cartridge holds two elec-

trodes. Left and right electrodes were processed separately,
and so were effective duplicates. Individual electrodes were
placed into sterile 15-ml conical tubes with 1 ml of sterile
water. Samples were extracted for 1 min on a Vortex Genie
(MO BIO Laboratories, Inc., Carlsbad, CA). Their standard
PowerSoil extraction was performed according to the
manufacturer’s suggested protocol with the addition of
a 20-min incubation at 65 °C after addition of solution
C1, as suggested by the Earth Microbiome Project.
Genomic DNA was amplified using the Earth Micro-
biome Project barcoded primer set, adapted for MiSeq
(Illumina Inc., San Diego, CA) by adding nine extra
bases in the adapter region of the forward amplification
primer that support paired-end sequencing. The V4 re-
gion of the 16S rRNA gene (515F-806R) was amplified
with region-specific primers that included the Illumina
flow cell adapter sequences. The reverse amplification
primer also contained a 12-base barcode sequence that
supports pooling of up to 2167 different samples in
each lane. Each 25-μl PCR reaction contains 12 μl of
MO BIO PCR water (certified DNA-free), 10 μl of 5
Prime HotMasterMix (5 μM concentration), 1 μl of for-
ward primer (5 μM concentration, 200 pM final), 1 μl
Golay barcode-tagged reverse primer (5 μM concentra-
tion, 200 pM final), and 1 μl of template DNA. The
conditions for PCR were as follows: 94 °C for 3 min to
denature the DNA, with 35 cycles at 94 °C for 45 s, 50 °C
for 60s, and 72 °C for 90s; and with a final extension of
10 min at 72 °C to ensure complete amplification. PCR
amplifications were completed in triplicate and then
pooled. Following pooling, amplicons were quantified
using PicoGreen (Invitrogen) and a plate reader. Once
quantified, different volumes of each of the products
were pooled into a single tube so that each amplicon
was represented equally. This pool was then cleaned
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using the UltraClean® PCR Clean-Up Kit (MO BIO)
and quantified using Qubit (Invitrogen). Sequencing of
the prepared library was performed on the Illumina MiSeq
platform, using the sequencing primers and procedures
described in the supplementary methods of Caporaso et
al. [50].
For the atomic force microscopy, a sampler was run

for 6 days in the clean bathroom location of Table 1. It
was examined with atomic force microscopy with a Bru-
ker dimension Icon system which has the capability of
providing sub-nanometer resolution. Imaging was done
in tapping mode with super sharp silicon probes. Results
were analyzed with the Bruker analysis software.

Availability of supporting data
All sequence data will be made available through FigShare,
http://dx.doi.org/10.6084/m9.figshare.1603492
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