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RESEARCH ARTICLE Obesity, Diabetes and Energy Homeostasis
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Martinez B, Soñanez-Organis JG, Godoy-Lugo JA, Horin LJ,
Crocker DE, Ortiz RM. Thyroid hormone-stimulated increases in
PGC-1� and UCP2 promote life history-specific endocrine changes
and maintain a lipid-based metabolism. Am J Physiol Regul Integr
Comp Physiol 312: R189–R196, 2017. First published November 30,
2016; doi:10.1152/ajpregu.00395.2016.—Thyroid hormones (THs)
regulate metabolism, but are typically suppressed during times of
stressful physiological conditions, including fasting. Interestingly,
prolonged fasting in northern elephant seal pups is associated with
reliance on a lipid-based metabolism and increased levels of circulat-
ing THs that are partially attributed to active secretion as opposed to
reduced clearance. This apparent paradox is coupled with comple-
mentary increases in cellular TH-mediated activity, suggesting that in
mammals naturally adapted to prolonged fasting, THs are necessary to
support metabolism. However, the functional relevance of this phys-
iological paradox has remained largely unexplored, especially as it
relates to the regulation of lipids. To address the hypothesis that
TSH-mediated increase in THs contributes to lipid metabolism, we
infused early and late-fasted pups with TSH and measured several key
genes in adipose and muscle, and plasma hormones associated with
regulation of lipid metabolism. TSH infusion increased the mRNA
expressions of peroxisome proliferator-activated receptor gamma co-
activator-1� (PGC-1�) more than 6.5-fold at 60 min in muscle, and
expression of uncoupling protein 2 (UCP2) more than 27-fold during
the early fast at 60 min, in adipose. Additionally, during the late fast
period, the protein content of adipose CD36 increased 1.1-fold, and
plasma nonesterified fatty acid (NEFA) concentrations increased 25%
at 120 min, with NEFA levels returning to baseline after 24 h. We
show that the TSH-induced increases in THs in fasting pups are
functional and likely contribute to the maintenance of a lipid-based
metabolism.

fasting; lipids; metabolism; thyroid; uncoupling protein

THYROID HORMONES (THs) exert many physiological and meta-
bolic effects (3, 40, 60). Physiologically, they regulate skeletal,
cardiovascular, and nervous system homeostasis; metaboli-
cally, they stimulate cellular metabolism in most tissues (ex-
cept the brain, spleen, and testicles) through acceleration of
protein, carbohydrate, and lipid metabolism (both anabolic and
catabolic pathways) (15, 37, 45–47, 60). Peroxisome prolif-
erator-activated receptor gamma coactivator-1� (PGC-1�) is a

master coregulator of both glucose and lipid metabolism and
an important cofactor for the peroxisome proliferator-acti-
vated receptor � (PPAR�). As it pertains to lipid metabo-
lism, PGC-1� regulates the transcriptional activation of
genes associated with fatty acid oxidation, directly increas-
ing palmitate oxidation rates (51). Interestingly, given that
PGC-1� expression is upregulated through genomic-medi-
ated TH action, not only is PGC-1� a direct target of THs,
but PGC-1� itself also coactivates liganded thyroid hor-
mone receptor (62).

As a promoter of oxidative metabolism, upregulation of
PGC-1� maintains the potential to upregulate the expression of
genes that regulate the tricarboxylic acid cycle, �-oxidation of
free fatty acids, and oxidative phosphorylation, thereby pro-
moting oxygen consumption. These cellular responses are
induced in times of physiological stress, coupled with energetic
burdens such as fasting and exposure to cold (21, 61). To meet
such demands, PGC-1� facilitates fatty acid transport through
increases in the fatty acid transporter (CD36) (5). In terms of
glucose metabolism, studies using PGC-1� knockout mice
have suggested that PGC-1� is associated with glucose intol-
erance and insulin resistance (26). Although the specific role of
PGC-1� remains unclear, it has been established that PGC-1�
drives anabolic processes such as glucose refueling and whole
body lactate homeostasis (48).

Mitochondrial uncoupling is another biochemical process
that can mediate glucose homeostasis and lipid metabolism.
Although mitochondrial uncoupling protein 2 (UCP2) has been
suggested to regulate lipid metabolism, it may alter glucose
homeostasis as well as insulin secretion through metabolite
transport, which also implicates UCP2 in insulin resistance and
glucose utilization (54).

Previous studies using northern elephant seal pups have
identified some unique physiological responses to prolonged
fasting that would accommodate their natural adaptations;
however, the functional or evolutionary purpose of some of
these perplexing responses remain elusive. For example, north-
ern elephant seals exhibit tissue-specific insulin resistance,
hypertriglyceridemia, paradoxical increases in circulating THs
and upregulation of TH-associated cellular signaling (33, 34,
55–58). To address the hypothesis that TSH-mediated in-
creases in TH regulates other endocrine systems and substrate
metabolism, we compared the changes in several key genes in
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adipose and muscle associated with lipid metabolism, plasma
hormones, and metabolites following an acute TSH infusion in
pups that were fasted early and late. The aim of this study was
to assess the contributions of TSH-induced increases in THs on
cellular function and subsequent changes in substrate metabo-
lism in a large mammal in which TH activity is increased
despite prolonged fasting.

MATERIALS AND METHODS

All procedures were reviewed and approved by the Institutional
Animal Care and Use Committee of both the University of California,
Merced, and Sonoma State University. All research was conducted
under National Marine Fisheries Service marine mammal permit
87–1743.

Animals. Northern elephant seal (Mirounga angustirostris) pups
were studied at the Año Nuevo State Reserve (30 km north of Santa
Cruz, CA) during their natural postweaning fast while they are still on
land. Ten pups were sampled during the early fasting period (1–2 wk
after weaning) and 10 were sampled during the late fasting period
(6–8 wk after weaning). The elephant seal pups were isolated on the
beach during the procedures to protect them from the much larger
adults. The pups were initially sedated with 1 mg/kg tiletamine/
zolazepam HCl (Telazol; Fort Dodge Laboratories, Fort Dodge, IA)
administered intramuscularly, and once immobilized, an 18-gauge,
3.5-inch spinal needle was inserted into the extradural spinal vein to
facilitate infusion of saline (control) or TSH. Body mass was mea-
sured using a hanging-load cell suspended from a tripod following the
procedures.

Intravenous TSH infusion. Before infusion (T0, baseline) blood
samples were collected in chilled, EDTA-treated vacutainer sample
tubes and kept on ice until they could be centrifuged. Preinfusion
adipose and muscle biopsies were collected as previously described
(33, 50). After the initial sample collection, animals were infused with
sterile saline (n � 4) or bovine TSH (8 IU, n � 6; Sigma, St. Louis,
MO) concurrently, for a total of 10 during the early fasting period, and
similarly a total of 10 during the late fasting period. After the
infusions of both saline and TSH for control and study groups,
respectively, blood samples were collected at 15, 30, 60, 120, and
1,440 min after infusion (Fig. 1). The study assessed acute re-
sponses (up to 120 min) and prolonged responses (1,440 min, or
24 h after infusion). The study was terminated after 24 h, when the
last sample was collected following infusion. Subsequent adipose

and muscle biopsies were collected at 60, 120, and 1,440 min.
Blood and tissue samples were prepared in the field as previously
described (33, 50). Total protein content in nuclear, cytosolic, and
membrane-bound fractions was measured by Bradford assay (Bio-
Rad, Hercules, CA) to normalize loading of samples into gel wells
(Bio-Rad).

Quantification of mRNA expressions. Tissue samples were pro-
cessed for quantification of mRNA expressions, and PCR reactions
were performed as previously described (33, 34). Specific primers for
PGC-1� and UCP2 were designed based on homologous mammalian
nucleotide sequences, and partial sequences were confirmed. Ex-
pression of �-actin was used as an internal standard to normalize
the expression of each target gene. Gene expression was measured
by quantitative PCR using PGC-1�Fw1 � PGC-1�Rv1, UCP2Fw1
� UCP2Rv1, and �-actinFw1 � �-actinRv1 primers, respectively.
Positive (with cDNA) and negative (no cDNA) controls were
included in each assay. Statistical analyses were performed to
confirm that �-actin expression did not change with fasting dura-
tion or in response to exogenous infusions, confirming its utility
for normalizing as a reference gene.

Quantification of protein expression by Western blotting. Protein
expression was quantified by standard Western blot as previously
described (33, 50). The primary antibodies for CD36 and �-actin
(Santa Cruz Biotechnology, Santa Cruz, CA) were diluted 1:500 to
1:5,000. Blots were visualized using an Odyssey Clx Li-Cor Imager
(Li-Cor Biosciences, Lincoln, NE). In addition to consistently loading
the same amount of total protein (15 �g) per well, densitometry values
were further normalized by the densitometry values of �-actin. Again,
statistical analyses confirmed the appropriateness of using �-actin
expression to normalize the CD36 values.

Plasma analyses. Glucose and lactate were measured in duplicate
on a YSI 2300 autoanalyzer. Insulin (SRI-13K; Linco Research, St.
Charles, MO) and IGF-1 (22-IGFHU-E01; ALPCO Diagnostics, Sa-
lem, NH) were measured in duplicate as previously described (7, 42,
43, 55). Triglycerides were measured in duplicate on an Analox GM7
analyzer (Analox Instruments, London, UK). Nonesterified fatty acids
(NEFAs) were also measured using a commercial kit (Wako Chem-
icals, Richmond, VA). All samples were analyzed in duplicate and run
in a single assay with intra-assay percent coefficients of variability of
�10% for all assays.

Statistical analysis. Means (� SE) were compared using repeated-
measures ANOVA to determine changes following infusions.

Tissue Biopsy
followed by

Saline infusion

Experimental Design for Saline Infused Animals

Time  (minutes)

0 15 30 60 120 1440

IV Blood sample
IV Blood sample
Adipose BiopsyIV Blood sample

Experimental Design for TSH Infused Animals

Tissue Biopsy
followed by

TSH infusion Time  (minutes)

0 15 30 60 120 1440

IV Blood sample IV Blood sample IV Blood sample
Adipose Biopsy

IV Blood sample 
Adipose Biopsy

-----------------------------------------------------------------------------------------------------------------------------

Sedation

Sedation

IV Blood sample
Adipose Biopsy

IV Blood sample
Adipose Biopsy

Fig. 1. Protocol diagram representing the
sampling period for both TSH- and saline-
treated animals. The pups were sampled dur-
ing either the early fasting period (1–2 wk
after weaning) or the late fasting period (6–8
wk after weaning).
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Changes were considered significantly different at P � 0.05. Statis-
tical analyses were performed using R software.

RESULTS

TSH-stimulated increase in THs is increased with fasting.
We have previously published these data demonstrating the
TSH-induced increase in THs in these animals (32). In sum-
mary, in response to the same TSH stimuli during both early
and late fasting duration, mean concentrations of total (t) and
free (f) tT4, fT4, and tT3 increased (P � 0.05), with levels
peaking after 120 min. Although concentrations returned to
baseline after 24 h in the early fast period, in the late fast period
mean circulating levels of tT4 and fT4 remained elevated after
24 h, demonstrating sustained elevation of tT4 with acute TSH
infusion (32).

Fasting differentially altered TSH-induced changes in
mRNA expression of PGC-1� and UCP2. The mean mRNA
expression of adipose PGC-1� decreased 90% (P � 0.05)
during the early fast period at 120 min, with levels returning to
baseline after 24 h, whereas during the late fast period there
was no detectable change in expression after TSH infusion
(Fig. 2A). The mean mRNA expression of muscle PGC-1�
decreased 32% (P � 0.10) initially at 60 min, then increased
1.5-fold at 1,440 min during the early fast period. During the
late fast period, mean expression levels increased approxi-

mately 6.5-fold (P � 0.05) at 60 min and returned to baseline
at 120 min (Fig. 2B).

The mean mRNA expression of adipose UCP2 increased
more than 27-fold (P � 0.05) in response to TSH during the
early fast period at 60 min but returning to baseline after 120
min, whereas there was no detectable change during the late
fast period (Fig. 2C). The mean mRNA expression of muscle
UCP2 decreased to 11% (P � 0.10) at 120 min in the early fast
period in response to TSH, but levels increased more than
50-fold (P � 0.05) at 60 min in the late fast period, returning
to baseline after 120 min (Fig. 2D).

TSH-infusion increased adipose CD36 and plasma NEFA
during late fasting. Neither the mean protein content of adipose
CD36 nor plasma NEFA concentrations changed signifi-
cantly in response to TSH in the early fast period (Fig. 3, A
and B). However, during the late fast the mean protein
content of adipose CD36 increased 1.1-fold (P � 0.05) and
mean plasma NEFA concentrations increased 25% (P �
0.05) at 120 min, with NEFA levels returning to baseline
after 24 h (Fig. 3, A and B).

TSH increased circulating glucose and insulin during late
fasting. Although mean plasma glucose concentrations were
not significantly altered in the early fast period in response to
TSH, mean plasma glucose levels gradually increased 5% (P �
0.10), 12% (P � 0.05), and 12% (P � 0.05) at 15, 30, and 60
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Fig. 2. Messenger RNA expressions (means � SE) of adipose peroxisome proliferator activated receptor gamma coactivator � (PGC-1�) (A), adipose uncoupling
protein 2 (UCP2) (B), muscle peroxisome proliferator activated receptor gamma coactivator � (PGC-1�) (C), and muscle uncoupling protein 2 (UCP2) (D) from
northern elephant seal pups before (0) and 60 and 120 min and 24 h after TSH infusion in early fasted (n � 6; 2–3 wk after weaning) and late fasted (n � 6;
6–8 wk after weaning) elephant seal pups. #Significant (P � 0.05) difference from 2 to 3 wk after weaning. *Significant (P � 0.05) difference from T0 within
a group.
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min, respectively, peaking at 18% at 120 min, and returning to
baseline after 24 h in the late-fast period. In response to TSH,
mean plasma insulin decreased 10% (P � 0.05) at 120 min,
and 27% (P � 0.05) at 24 h in the early fast period. Con-
versely, in late fasting, mean plasma insulin decreased 26%
(P � 0.05) at 30 min, and remained suppressed at 60 and 120
min, and increased 16% (P � 0.05) at 24 h (Fig. 4).

Fasting differentially altered the TSH-associated responses
in circulating metabolites. Mean plasma lactate concentrations
increased 13% (P � 0.05) at 120 min during the early fast
period in response to TSH, with levels returning to baseline at
24 h. However, during the late-fast period, mean circulating
lactate levels increased 33% (P � 0.05) at 15 min in response
to TSH, and gradually returned to baseline levels at 120 min
(Fig. 5A). Mean plasma triglyceride levels did not change

significantly in response to TSH in either early or late fasting
(Fig. 5B).

TSH decreases IGF-1. To assess the capacity for cellular
TH-mediated events to contribute to and regulate other endo-
crine systems such as the growth hormone/IGF-1 axis, we
measured circulating levels of IGF-1 in response to TSH. In
response to TSH, circulating levels of IGF-1 decreased 10%
after 24 h in the early fast period (Fig. 6).

DISCUSSION

Recent studies have demonstrated that northern elephant seal
pups undergo a physiologically perplexing fast, characterized
by increases in THs as a direct result of markedly increased
thyroidal production (32), which is coupled with fasting-in-
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duced adipose-specific insulin resistance (55–58) and other
shifts in cellular metabolism (6, 23). Given the contributions of
TH signaling to substrate metabolism, including lipid and
glucose mobilization (4, 14, 16, 39, 45), this study investigated
the potential of increased cellular TH-mediated events during
prolonged fasting to drive tissue-specific metabolism. The
central hypothesis is that these changes in cellular events with
fasting duration elicit, or at the very least, enable life history
transitions facilitating the survival of northern elephant seal
pups during a period of adaptive fasting.

TSH-mediated effects on adipose. Though several studies
have related UCP2 function (which is regulated by TH levels)
with lipid metabolism, more recently, its involvement in glu-
cose and insulin regulation has been revealed (8, 11, 24, 31,
59). It seems no coincidence that the gene location of UCP2
lies in The obesity and Type 2 diabetes trait loci (18). Specif-
ically, increases in UCP2 have been associated with impaired
glucose-stimulated insulin secretion, leading to insulin resis-
tance (2). This is further corroborated by other studies showing
that inhibiting UCP2 expression reversed diet-induced diabetes

and improved insulin signaling in adipose in both ob/ob and
diet-induced obesity mouse models (12). Given that northern
elephant seal pups develop adipose-specific insulin resistance
(55–58), coupled with our most recent data, which demon-
strated that plasma T3 levels were increased and metabolized
as a function of increased thyroidal production and peripheral
deiodination (32), respectively, UCP2 is likely contributing to
adipose-specific insulin resistance in fasted pups.

The mechanism by which UCP2 regulates adipose-specific
insulin resistance during prolonged fasting may be associated
with adiponectin expression because adiponectin is markedly
reduced in UCP2 knockout studies (9). Adiponectin is an
abundant adipokine expressed in adipose and sensitizes tissues
to insulin, with low levels corresponding with insulin resis-
tance (25). In northern elephant seal pups, adiponectin is
decreased with fasting duration, suggesting that it likely con-
tributes to adipose-specific insulin resistance observed in late-
fasted pups (57). Additionally, recent next-generation whole
transcriptome analyses in elephant seals show that the adi-
ponectin receptor is also decreased with fasting duration in
adipose (Martinez B, Rutherford K, Crocker DE, Gemmell N,
and Ortiz RM; unpublished data from our laboratory in col-
laboration with the Otago Medical University in New Zea-
land). Interestingly, UCP2 has been shown to mediate glucose
signaling through the direct regulation of adiponectin gene
expression and vice versa (9, 31, 63). In UCP2-null mice, both
adipose and plasma adiponectin are reduced (9). In this study,
we showed that the TSH-induced increase in T3 (and accom-
panied increase in TH-mediated signaling) was associated with
a more than 27-fold increase in adipose UCP2 mRNA expres-
sion during early fasting when animals are not insulin resistant.
However, during the late fast period, there are no detectable
effects of TSH on UCP2, and it is during this time when
northern elephant seal pups have been shown to exhibit insulin
resistance. This would suggest that the fasting-associated de-
sensitization of UCP2 expression to TSH is a deliberate mech-
anism to help maintain tissue-specific insulin resistance, which
is also likely facilitated by suppression of plasma adiponectin,
and adipose adiponectin and adiponectin receptor levels. This
tightly controlled mechanism also seems to be mediated by

A B
2.5

2

1.5

1

0.5

0
0 15 30 60 120 1440

Pl
as

m
a 

La
ct

at
e 

(m
M

/m
l)

Pl
as

m
a 

Tr
ig

ly
ce

rid
es

 (m
m

ol
/l)

Infusion Time (min)
Early LateEarly TSH Late TSH Early Saline Late Saline

0 15 30 60 120 144045 75 90 105

Infusion Time (min)

5

4.5

4

3.5

3

2.5

2

1.5

1

Fig. 5. Plasma circulating levels (means � SE) of lactate (A) and triglycerides (B) from northern elephant seal pups before (0) and 60 and 120 min and 24 h
after TSH infusion in early fasted (n � 6; 2–3 wk after weaning) and late fasted (n � 6; 6–8 wk after weaning) elephant seal pups. #Significant (P � 0.05)
difference from 2 to 3 wk after weaning. *Significant (P � 0.05) difference from T0 within a group.

Pl
as

m
a 

IG
F-

1 
(n

g/
m

l)

Early TSH Late TSH Early Saline Late Saline

0 15 30 60 120 144045 75 90 105

Infusion Time (min)

18

16

14

12

10

8

6

4

2

0

Fig. 6. Plasma circulating levels (means � SE) of IGF-1 from northern
elephant seal pups before (0) and 60 and 120 min and 24 h after TSH infusion
in early fasted (n � 6; 2–3 wk after weaning) and late fasted (n � 6; 6–8 wk
after weaning) elephant seal pups. #Significant (P � 0.05) difference from 2 to
3 wk after weaning. *Significant (P � 0.05) difference from T0 within a group.

R193THYROID HORMONE-DRIVEN LIPID METABOLISM DURING FASTING

AJP-Regul Integr Comp Physiol • doi:10.1152/ajpregu.00395.2016 • www.ajpregu.org

 by 10.220.33.6 on F
ebruary 22, 2017

http://ajpregu.physiology.org/
D

ow
nloaded from

 

http://ajpregu.physiology.org/


suppression of PPAR	 activation, which also decreased with
fasting duration in northern elephant seal pups (57) rendering
any increase in PGC-1� incapable of mediating UCP2 gene
expression, at least through this mechanism.

Additionally, PGC-1� may contribute to lipid metabolism
through fatty acid oxidation (FAO), oxidative phosphorylation,
and lipid secretion (17), as well as regulating glucose metab-
olism (41). PGC-1� couples �-cell lipid metabolism to facili-
tate efficient insulin secretion. This is demonstrated in �-cell-
specific PGC-1� knockout mice exhibiting decreased insulin
secretion attributed to a lack in fatty acid potentiation (41).
Additional studies corroborate that decreases in peripheral
PGC-1� expression lead to insulin resistance and glucose
intolerance (38). Adipose-specific PGC-1� knockout mice are
more insulin resistant than wild-type mice, providing strong
evidence that adipose PGC-1� regulates whole body glucose
homeostasis (26). In this study, although we did not observe
statistically different increases in mean PGC1-� in adipose,
the increasing trend during the late fast period is suggestive of
the potential for PGC-1� to serve as a cofactor that contributes
to a shift from glucose to fatty acid oxidation which would
spare glucose for the duration of the prolonged fast. Moreover,
PGC1-� increases the mean protein expression of CD36 (10).
Furthermore, T3 alone has the capacity to increase expression
of CD36 and drive lipid metabolism (36), and in humans, TSH
stimulates mRNA expression of CD36 (20). In this study, TSH
increased CD36 protein expression at 120 min after infusion,
possibly corroborating the trending increase in PGC1-�. None-
theless, these data suggest that lipid mobilization is more
sensitive to thyroidal stimulation in the late fast period. Given
that CD36 shuttles NEFAs into the cell, increased CD36
should decrease plasma NEFA levels, a response that was
observed during the late fast period at 24 h after infusion after
a modest increase at 120 min. Although the contribution of
PGC1-� to the TH-induced increase in CD36-mediated regu-
lation of NEFA remains elusive, our data corroborate that of
previous studies suggesting that the fasting-associated increase
in TH-mediated cellular activity contributes to lipid metabo-
lism via CD36.

TSH-mediated effects on muscle. The effects of TSH infu-
sion on muscle PGC1-� and UCP2 are intriguing because these
data support the concept that UCP2 contributes to mediating
the development of insulin resistance in adipose; however, its
role in insulin-sensitive muscle is likely differential. This is
likely the case for PGC1-� as well, because decreased PGC-1�
is associated with insulin resistance and glucose intolerance
(38). In this study, TSH increased PGC-1� expression in
muscle (noninsulin resistant) at 60 min, but not adipose (insu-
lin resistant). Interestingly, T3 directly increases the expression
of PGC-1�, which in turn coactivated liganded thyroid hor-
mone receptor, suggesting that an autoregulatory loop may
exist in muscle that implicates PGC-1� (62). The potential for
PGC-1� to serve as a coactivator in muscle is increased
because both the peripheral receptor, THr�1, and coreceptor,
PGC-1�, are simultaneously upregulated in response to TSH in
muscle, resulting in upregulation of the key TH target, UCP2
(32). These data highlight the dynamic, tissue-specific contri-
butions of PGC-1� in regulation of UCP2, which likely trans-
lates to differential metabolism of lipid by tissues in fasted
elephant seal pups.

Studies have shown that increases in NEFAs not only
interfere with insulin-mediated glucose uptakes, especially
uptake in muscle, but they also have the capacity to drive
mitochondrial uncoupling events (53). Specifically, studies
show that infusion of lipid increases NEFA concentrations,
which inhibits insulin-mediated glucose uptake in muscle (53),
suggesting that increased lipolysis contributes to the induction
of insulin resistance. The increase in NEFA in response to TSH
stimulation suggests that THs are capable of driving lipid
metabolism, which is further corroborated by increases in
protein levels of CD36, possibly mediated by PGC1-�. More-
over, glucose disposal in muscle seems plausible given the
increases in UCP2 expression at 60 min, which potentially.
may mediate glucose utilization through the insulin-sensitizing
actions of adiponectin. However, the most intriguing aspect of
these findings is that despite the TSH-mediated increase in
NEFA and increased CD36 to facilitate lipid mobilization in
the muscle, the muscle remains insulin sensitive during pro-
longed fasting, suggesting that the insulin-desensitizing ability
of NEFA is mitigated with fasting duration in seal muscle.

Study limitations. This study was performed to complement
another in which we thoroughly examined the effects of fasting
duration on thyroid gland secretion and TH-mediated cellular
signaling using a TSH-infusion protocol described here. Thus
the sharing of biopsies for both studies limited the availability
of sample for each time point, which ultimately restricted our
ability to statistically compare some time points to detect a
change. For example, at 120 min after TSH infusion, although
there appears to be a trend that agrees with our conclusions,
sample size hindered our ability to detect significance. How-
ever, the ability to detect significant changes for a majority of
our analyses with the given sample sizes underscores the value
of these changes.

Perspectives and Significance

Northern elephant seals have evolved unique endocrine
responses to facilitate the adaptation to life history-related
events such as prolonged fasting. Whereas the development of
fasting-induced insulin resistance is not entirely unusual, and
often provides some survival advantage (13, 19, 34, 35, 44, 49,
52, 56–58), the functional relevance of increased TH produc-
tion and subsequent cellular TH-mediated effects are far less
common for a fasting mammal (1, 22, 27–30, 49). Given the
confounding relationship between thyroidal derangements and
insulin resistance, the 2- to 3-mo fasting period of the elephant
seal offers an invaluable opportunity to assess the integration
of multiple endocrine systems under naturally adapted condi-
tions. How this relationship enables the maintenance of a
primarily lipid-based metabolism can potentially have far
reaching implications in the elucidation of the mechanisms that
contribute to an array of metabolic disorders. The present study
highlights the effects of prolonged fasting in a naturally
adapted mammal on the dynamic alterations in TH-mediated
cellular events that contribute to the maintenance of a lipid-
based metabolism. The main relevance of this study is that it
highlights a TH-mediated reliance on lipid metabolism that is
not otherwise observed in human patients with diabetes. The
phenotype of northern elephant seal pups make them an in-
triguing model for elucidating such mechanisms by which
endocrine systems have evolved to exert cellular effects that
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protect tissues, and ergo, function, against the consequences of
dyslipidemia and insulin resistance.
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