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ABSTRACT OF THE THESIS 

 

Applications of deep learning and cloud computing for the analysis of X-ray data to predict 

COVID-19 outcome, and for cardiac MRI segmentation  

by 

Manoel Tamraz 

Master of Science in Biomedical Engineering 

University of California, Irvine, 2021 

Professor Arash Kheradvar, Chair 

 

 

Current advances in both deep learning techniques and in cloud computing allow the 

advancement of innovations that work to the benefit of physicians and patients. This 

dissertation explores leveraging of these advancements to create a cloud-based analysis 

platforms for physicians to analyze cardiac MRI as well as a four-tier outcome prediction 

machine learning model for COVID-19 patients based on their chest X-rays and metadata. 

The MRI analysis website is hosted on the American Heart Association’s (AHA) Precision 

Medicine Platform (PMP) and integrates the cardiac MRI segmentation model by Karimi-

Bidhendi, et al.2 The back-end web framework was created using Python and Django, with 

MySQL as the database manager. This allowed a flexible and reliable base to build the 

website on as well as strong support from the AHA. The website includes an automatic end-

systolic (ES) and end-diastolic (ED) detection system for each ventricle, which allows 

physicians to upload patients’ MRI DICOMs without the need to manually select files 
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relating to each cardiac phase for each ventricle. Hundreds of files are processed in seconds 

and a report of all segmented images relating to the ED and ES phases for each ventricle as 

well as the associated ventricle volumes would be immediately presented after file 

processing.  

With regards to the COVID-19 outcome prediction model, 6,259 chest X-ray images 

from 1,771 patients seen at UCI and UCLA Medical Centers were used to train two VGG16 

models and a CheXNet model. The first VGG16 model is a convolutional neural network 

(CNN) that processed only the chest X-ray images and the second is a CNN for the images as 

well as a separate deep neural network (DNN) for patient metadata including age and BMI 

and another DNN that processes the combined output of the CNN and the metadata DNN. 

This combination allows both images and metadata to be factored in when training the 

model. The CheXNet model is tailored specifically for chest X-ray images and was used to 

assess the performance of the VGG-16 models. The accuracy of the image-only VGG16 

model was 56% on the four-class prediction, compared to 59% for the image and metadata 

VGG16 model. The CheXNet model resulted in 60% accuracy. This suggests that the 

metadata did not significantly improve the performance of the model and that the image 

data was not informative enough beyond 60% accuracy for four-tier predicting of COVID-

19 patients’ outcomes.  
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CHAPTER 1: Introduction 

1.1 Application of deep learning in Medical Imaging 

Medical imaging provides a large wealth of information for physicians’ use for patient 

diagnosis. As more imaging modalities emerged and became increasingly accessible to 

physicians, the need to process this data in an efficient manner also arose. Deep learning 

has been increasingly researched as a means to deliver this efficiency to physicians in order 

to save vital time in the patient diagnosis process.1 Application of machine learning in 

medical image diagnostics can be seen in a wide range of settings from feature 

segmentation2, 3, 4 to classification for diagnosis5, 6. The goal of current work towards deep 

learning for medical imaging is to achieve an operational accuracy on par with the 

physicians who will use it to assist in diagnosis and to be able to predict patients’ prognosis 

based on their imaging and other clinical data. 

Some current cloud-based tools that are used to analyze medical images include Adioc 

and Arterys.8, 9 Adioc is an advanced cloud-based analysis tool for CT scans that can detect 

and diagnose various health issues such as brain hemorrhaging, spine and rib fractures, 

and large vessel occlusions using AI and machine learning. The Adioc team claims that their 

tool has saved over 45 million minutes of turnaround time.8 Arterys is another cloud-based 

platform that has a suite of tools for different applications within healthcare, including 

cardiovascular, lung, chest, and neurological diagnosis. One of which, called CardioAI, can 

perform advanced volumetric and flow calculations for 2D and 3D cine heart MRI scans. 

The Arterys team claims that CardioAI saves 25 minutes per patient study and is as 

accurate as 7 experts.9  
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1.2 Current deep learning applications for COVID-19 

Since the beginning of the pandemic, the need to further understand COVID-19 has 

prompted a large effort to make new discoveries that can help tackle the virus and save 

lives. Deep learning research is no exception to this. As testing ramped up, AlJame, et al.10 

proposed a Deep Forest model to detect COVID-19 in routine blood tests. When concerns 

regarding the long-term effects of COVID-19 infection rose, Chen, et al.11 demonstrated that 

deep learning can be used to predict whether COVID-19 patients would develop Post-

Traumatic Stress Disorder (PTSD) symptoms. Prior to the widespread availability of 

vaccines, there was also the need to find drugs that would help fight the symptoms. Jha, et 

al.12 applied deep learning to discover such drugs. Other studies tested the ability of a 

learning algorithm to diagnose COVID-19 infection as positive or negative from patient 

chest X-rays (CXRs) or CT scans.13, 14, 15, 16 This was further developed by Liu, et al.17, where 

CT images of COVID-19 lung infection were segmented by a learning model. Prakash, et al.18 

expanded on this by leveraging CXR segmentation of COVID-19-infected areas to perform a 

binary classification of COVID-19 viral infection. Given that a sufficient amount of 

annotated CT image data was not available for training, Zhang, et al.19 used encoders and 

decoders to both identify COVID-19 infection features in lung CT scans and segment them. 

Although these efforts are pivotal to improving the speed, efficiency, and accuracy of 

COVID-19 patient diagnosis in the long term, Pennisi, et al.20 sought to deliver a tool for 

immediate hospital use by combining a deep learning model that categorizes lesions shown 

in CT scans, a user-friendly interface, and an explainable model. Explainability refers to the 

ability of a model to describe its reasoning for a decision that is understandable by the user. 

To expand on the hospital application of deep learning for COVID-19, Perumal, et al.21 used 
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a hybrid regression model to combine patient metadata, laboratory data, and CT image 

data for prediction of COVID-19 criticality score, which categorizes patients as having 

either early stages of symptoms or having life-threatening symptoms, to make it easier for 

physicians to prioritize care for at-risk patients.21 CXRs and CT scans were not the only 

studied data acquisition methods. La Salvia, et al.22 and Diaz-Escobar, et al.23 demonstrated 

that lung ultrasound data is also an effective input for deep learning models that can detect 

COVID-19. As treatment of COVID-19 evolved and new methods were introduced, Wang, et 

al.24 focused on applying deep learning to predict the recovery time of hospitalized COVID-

19 patients. This large surge of proposed deep learning models to address COVID-19 

rapidly grew in a short span of time. Sadre, et al.25 sought to create a method for validating 

the quality of the emerging deep learning models. On another front, Iloanusi and Ross26 

utilized deep learning along with global weather pattern data to predict the spread of 

COVID-19 infection as the seasons change. However, like other COVID-19 forecasting 

attempts, the introduction of new variants complicates those efforts. Rashed and Akimasa27 

studied the effects of variant introduction on deep learning forecasting models to study 

how drastic they are and how long it takes for the models to readjust.  

1.3 Outline of the thesis 

A cloud-based platform for segmentation of pediatric cardiac MRI and a learning model 

for the prediction of COVID-19 outcome to help critical patient care are the two primary 

goals of this dissertation. In pursuit of the first goal, a Django-based web framework was 

created on the American Heart Association’s Precision Medicine Platform to leverage the 

model created by Karimi-Bidhendi, et al.2. This VGG-16-based model utilizes a fully 

connected convolutional network with 33 layers to segment the left or right ventricle in a 
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heart MRI DICOM image. It was integrated into the web framework and an interface was 

created to upload DICOM files for which the cloud would output the results of segmentation 

and ventricle volume calculation. In discussion with Dr. Andrew Cheng at The Keck School 

of Medicine, University of Southern California and Children’s Hospital Los Angeles, Los 

Angeles, it was made clear that an auto-detection feature for the end-diastolic (ED) and 

end-systolic (ES) phases for each ventricle would save physicians time trying to manually 

separate the corresponding images. An auto-detection capability was subsequently added 

to the platform. Users are now able to simply upload all DICOM files for patients and the 

volumes for the left and right ventricles at ED and ES phases are reported along with the 

ejection fraction.  

In pursuit of the second goal of creating a learning model for the prediction of COVID-19 

outcome, a VGG-16 model was selected to perform a classification task. The data was 

composed of CXR DICOMs along with metadata for each patient. Each patient’s outcome 

was labeled on a four-tier scale, with 0 meaning death, 1 meaning ICU or intensive care, 2 

meaning inpatient non-intensive hospital care, and 3 meaning outpatient status. The model 

consisted of a Convolutional Neural Network (CNN) as well as a Deep Neural Network 

(DNN) for prediction. We trained the model on the images from four datasets. Two sets of 

x-rays and metadata were obtained from the UCI medical center and two other sets of x-

rays and metadata were obtained from the UCLA medical center. This training led to an 

accuracy of 56% for classifying the 4 outcomes for the patients, after optimizing the model 

parameters. Subsequently, we expanded the model to include patient metadata via two 

methods. The first method was to directly concatenate the metadata into the model right 

before the DNN, merging it with the CNN output (Figure 11). This method did not improve 
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the accuracy of the model. The second method was to create a second DNN to train off from 

the metadata and then concatenate the output into the original model similar to the first 

method. This approach slightly improved the accuracy to 57%. Then, the application of 

Support Vector Machines (SVMs) was explored by extracting the output of the CNN and the 

metadata DNN and making classification predictions using an SVM. After optimizing the 

SVM, the accuracy slightly improved (58%), but not significantly. Further optimization of 

the ratio between training and test data brought the VGG16 model with one CNN and two 

DNNs to a peak accuracy of 59%. 

Finally, a new approach was taken to validate our previous approach by exploring the 

application of the CheXNet model.5 This model has been applied to the diagnosis of 

pneumonia by analysis of CXRs, which we found is a good candidate to compare to our 

VGG16 model. After slight modifications to the CheXNet code to work with the COVID-19 

dataset and the prediction labels, as well as optimization of parameters, a peak accuracy of 

59% was reached. Thus, the second approach validated the results of our previous VGG16 

model. 
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CHAPTER 2: Cloud- based approaches for analysis of medical imaging 

2.1 Background 

With the ongoing modernization of medicine, many different cloud-based platforms 

have been introduced for use by physicians across varying specialties.  Some examples 

include Adioc and Arterys, as mentioned above, as well as Apteryx. 8, 9 Apteryx is a cloud-

based software for dental office use. It helps dentists process 2D and 3D X-ray imaging for 

quick and reliable results during a patient visit.28 Although software such as Arterys may be 

helpful for adult cardiovascular patients, there are no current solutions for pediatric 

cardiovascular patients. The reason for this is due to the differences between pediatric and 

adult heart anatomy. A child heart is not a scaled-down version of an adult heart, which 

means that segmentation of pediatric cardiac MRIs requires a new model to be trained 

specifically for such group of patients. The pediatric ventricle segmentation model created 

by Karimi-Bidhendi, et al.2 allows this to be realized. Manual segmentation of 

cardiovascular MRI images is very labor intensive and is largely dependent on the skills of 

the operator. Due to this challenge, there are variations in the results even among expert 

physicians and among institutions. The goal of this online cloud-based platform is to 

accelerate the process of MRI image analysis by physicians for their pediatric patients.  

2.2 AI Platform 

The American Heart Association’s Precision Medicine Platform (PMP) was leveraged to 

host a pediatric cardiovascular MRI segmentation and analysis online platform. The PMP is 

enabled with an Amazon Linux 2 operating system and includes a 16GB NVIDIA Tesla V100 

GPU. The reliability and high-quality support behind the PMP made it an ideal choice for 

this application.  
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2.3 Methods and processes for segmentation of pediatric heart MRI  

Python, Django, and MySQL were used to create a web-based framework that would run 

on the PMP due to ease of implementation, reliability, robustness of features, and large 

support base. Below is a table describing the various components of the Django web 

framework for this website (Table 1). 

Component Function 

Settings 

• High-level web framework details 
• Auto-generated by Django upon project creation 
• Settings modified for this project: 

o MySQL chosen as database management tool 
o File storage location modified 
o Administrative account established 

URLs 
• Contains a list of all the pages of the website as well as their 

linked backend files 

Apps 

• Multiple applications (Apps) can share the backend framework 
• This project has one App to handle current functionality 
• Allows expansion of website capabilities by adding new 

applications without affecting existing applications 
• Allows segmentation of website backend to protect different 

applications during maintenance.  
• Each App contains its own set of URLs, front-end HTML 

templates, backend file management and processing of any 
input data.  

Models 

• Objects saved within MySQL-managed database 
• Can include any user-inputted information 
• Do not directly store files, but links files and information from 

an upload into a group 
• This web framework incorporates one model for upload 

information including upload name and contour type selection 
and another for the uploaded DICOMS.  

Forms 

• Translate the structure of the models for front-end user 
interaction 

• Links elements of the models to input fields placed on front end 
• Validates user inputs after form submission 
• Enables processing of uploaded data in the “views” component 
• This framework includes one form for each model 

o Form for DICOM model includes a link to the upload 
information model for grouping and processing 
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Templates 

• HTML templates create the front-end of the website 
• One template for each page 
• CSS used for styling 
• JavaScript used for dynamic content such as populating tables 
• This website uses three templates 

o Upload page template includes the upload form as well as 
background images and website information 

o Latest upload page template includes upload results of 
the last user upload after processing. Results include 
segmented DICOM images and volumes of the left and 
right ventricles for the ED and ES phases.  

o Upload history page template includes all previous 
uploads and corresponding results 

Views 
• Handles all backend processing within an application 
• All front-end user interaction passes through this file, where 

input is processed and the user is redirected if necessary 
 

Table 1: An overview of the components in the Django web framework for the website 

 

With the general framework of the website in place, the fully connected network (FCN) 

machine learning model from Karimi-Bidhendi, Saeed, et al.2 was implemented into the 

views.py code. Subsequently, the front end of the website was created using HTML 

templates, CSS styling, and JavaScript.  

The backend process of the web framework is as follows. When the user accesses the 

URL of the upload page, it is passed through the URLs file and into the Views file, where the 

correct HTML template is selected and shown to the user on the front-end page. Once the 

user fills out the upload form and selects the DICOM files, they are uploaded and sent to the 

Views file, which calls on the correct Django form and associates the uploaded information 

to the correct models. When the forms are validated, the DICOM images begin processing. 

Since the segmentation model was trained on 128x128 images, they are first downsampled 

to 128x128. All black margins are also removed to prevent interference with segmentation. 
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Then, the integrated FCN machine learning model creates a mask for the selected ventricle 

for each image. The areas of each mask are used in conjunction with the slice thickness, 

pixel spacing, and relative image plane, all of which are part of the DICOM metadata, to 

calculate the volume of the selected ventricle using a truncated cone approximation. The 

calculated volume is added to the upload information of the model and saved. The masks 

are then overlayed on top of the original DICOMs and saved as well. Once processing is 

finished, the resulting overlayed images and upload information is passed to the “latest 

upload” template, redirecting the user to that page so they can view the results.  

 

Figure 1: Process flow diagram for a user upload 

Upon meeting with Dr. Andrew Cheng (pediatric cardiologist collaborator), it was 

pointed out that manual selection of patient images corresponding to the ED and ES phases 

for each ventricle is a labor-intensive task that significantly raised the difficulty barrier for 

using the website. Thus, a feature for the automatic detection of the ED and ES phases for 

each ventricle was created. The process flow for this functionality is as follows. When the 

user creates an upload, they select “auto-detect” in the “contour type” dropdown. When the 

files are uploaded, they are separated into numbered phases and slices of each phase as 

labeled in the DICOM metadata. Then the volume for each ventricle is calculated by first 

segmenting each image in a phase via the FCN model from Karimi-Bidhendi, et al.2 and then 

taking a truncated cone volume approximation using the pixel spacing, distance between 
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slices, and the orientation of the slices. The phase with the largest volume for the left 

ventricle is selected as the ED phase (LVED) and the phase with the smallest volume for the 

left ventricle is selected as the ES phase (LVES). The same is determined for the right 

ventricle (RVED and RVES). These volume values and the corresponding segmented images 

are stored and reported in the “latest upload” page of the website.  

2.4 Results 

With regards to the performance of the website, the segmentation of each image takes 

249.6ms and 246.6ms for the left and right ventricle, respectively. The complete processing 

time, from the moment the files are uploaded to the moment the user is redirected to the 

“latest upload” page is 589ms and 560ms for each image in the left and right ventricle, 

respectively. With regards to the accuracy of the segmentation, the model used to segment 

the images has a reported accuracy of 91.3% for the LV at the ED phase, 86.7% for the LV at 

the ES phase, 84.5% for the RV at the ED phase, and 77% for the RV at the ES phase.2 Figure 

2 is a screenshot of the ”latest upload” page of the website. Since the model was trained on 

images that are pre-processed with a different downsampling package than the one used 

on the website, a test was done to verify that there is no significant change in mask 

generation accuracy. 298 images were pre-processed using each package, and dice metrics 

were calculated for the masks generated from those images (Table 2). The overall mean 

dice coefficient for the LV masks is 0.99 with a standard deviation of 0.02 and for the RV 

masks is 0.95 with a standard deviation of 0.10. The small difference in masks is due to the 

scaling done by the packages. The package used for training the model rescales the images 

to 0 – 255 while the package used on the website scales the images to 0 – 1. However, the 
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model contains a normalization layer that counteracts these differences, resulting in 

similar masks.  

It is important to note that, due to the more challenging nature of the RV segmentation 

model, as mentioned above, it is less robust to the downsampling package change than the 

LV segmentation model. Thus, when this change is introduced on the website, the RV 

segmentation model performance is slightly less consistent than the LV segmentation 

model performance. This results in the lower mean dice coefficient as well as the higher 

standard deviation for the RV masks as compared to the LV masks. This does not imply, 

however, that the resulting volume calculations are less accurate, as this is only a 

comparison of the masks generated between the two pre-processing methods and not a 

comparison to the ground-truth masks used to train the models.  

Subject LV Mean Dice 
Coefficient 

LV Standard 
Deviation 

RV Mean Dice 
Coefficient 

RV 
Standard 
Deviation 

2 0.98 0.02 0.89 0.08 
11 0.98 0.04 0.94 0.09 
12 0.996 0.003 0.96 0.06 
13 0.996 0.004 0.95 0.07 
14 0.99 0.02 0.97 0.05 
15 0.99 0.003 0.85 0.21 
16 0.99 0.02 0.95 0.14 
17 0.99 0.01 0.98 0.02 
18 0.99 0.01 0.90 0.09 
19 0.98 0.04 0.99 0.01 
20 0.99 0.03 0.99 0.01 
21 0.99 0.01 0.98 0.02 
22 0.99 0.01 0.95 0.08 

 

Table 2: Comparison of pre-processing methods between the website and that used for 

training the segmentation model 
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Figure 2: Cloud-based platform “latest upload” page 



 

13 
 

2.5 Limitations and future work 

With regards to future work on the MRI segmentation website, there is room for a 

plethora of features that can be added as the need arises. One such feature is automatic 

detection of ventricles in an MRI image slice. The segmentations model used to process the 

uploaded images was trained on images that all contained the ventricle being segmented. 

However, when uploading a full patient imaging session, there are images within each 

cardiac phase that may not contain either ventricle. In these cases, the model attempts to 

find a ventricle and segment it and does not ignore images with no ventricle. As a result, 

these images would be incorrectly segmented and contribute to the volume calculation, 

leading to incorrect results with regards to both phase selection for ED and ES as well as 

ventricle volume. To fix this issue, a new model must be trained that can identify the 

existence of a left or right ventricle. This model must then be integrated into the pre-

segmentation image processing steps to label or filter out all images that do not contain a 

ventricle. The flexibility of Django also allows the creation of new apps that can support 

entirely different purposes on the back-end system. Continuing to work closely with Dr. 

Cheng and all other future users of the website is vital to making improvements and 

working on new features or apps.  
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CHAPTER 3: AI-based analysis of medical images for COVID-19 patients 

3.1 The global impact of COVID-19 on hospitals 

As the COVID-19 pandemic grew globally, the healthcare systems of every country were 

tested. A study in the United States examining the period from March 26th, 2020 to June 

30th, 2020 found that on April 12th, 2020, among 13 geographically dispersed hospital 

locations, only three had an ICU capacity under 80% and six had an ICU capacity over 

100%.29 When looking at countries other than the United States, the situation becomes 

even worse. A study of the availability of hospital beds during COVID-19 found that 

multiple countries had less than 200 hospital beds per 100,000 people and less than 1 ICU 

bed per 100,000 people (Figure 3 and 4).30  

 

Figure 3: Number of hospital beds available per 100,000 population, from Sen-Crowe, et al. 

30 
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Figure 4: Number of ICU beds available per 100,000 population, from Sen-Crowe, et al.30 

Due to the high demand for hospital beds and particularly ICU beds, hospitals have to 

create a prioritization system to ensure that the patients who need ICU beds the most gain 

access to them. Roy et al. created a prioritization tool based on patient data such as 

preexisting conditions, body mass index (BMI), and age.31 Leclerc et al. also created an ICU 

prioritization tool for the COVID-19 pandemic based on patient data.32  

3.2 Applications of AI and Deep learning in the global COVID-19 effort 

From the moment that the scientific community realized that COVID-19 would turn into 

a large-scale pandemic, research on the topic, particularly with regards to AI and deep 

learning, accelerated rapidly. To understand the scale of the COVID-19 pandemic, the need 

for cost-effective and accurate testing methods quickly arose. A false negative meant that 

the virus would spread undetected and make contact tracing very difficult. Every extra 

hour that a test took to determine results meant the potential for another contagious 

interaction with the individual. As test strips took days for a response, AIJame et al.10 

sought to create a testing solution that was both early and accurate. To accomplish this, a 

routine blood test was selected as the testing method. This allowed sufficient sample 
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collection without the need to waste traditional testing swabs, which were in very short 

supply in the earlier stages of the pandemic. With publicly available datasets, a deep 

learning model was trained to predict whether or not the patient had been infected. The 

model was a deep forest (DF) type, where multiple classifiers make a prediction at different 

layers and a consensus is achieved. This model has a reported accuracy of 99.5%.10  

As the virus spread further, the need for a remedy was clear. Before the widespread 

availability of mRNA vaccines, many different existing drugs were recommended and 

circulated as effective medication for COVID-19 symptoms. However, most of the 

recommendations required significant testing for physicians to be confident in their 

recommendation. Jha et al.12 suggested a deep learning method to work backwards and 

find an existing drug that best fit the virus. To achieve this, a quantitative structure-activity 

relationship (QSAR) model was used in combination with linear regression, support-vector 

machines (SVM), and random forest to construct a deep learning model that analyzed 

binding affinities and protein interactions and then trained a molecular descriptor dataset 

to discover existing drugs that would best prevent the multiplication of the COVID-19 

virus.12 

When patients began to stream into hospitals at an increasing rate, the need for a 

method of quick analysis of symptoms was evident. Liu et al.17 proposed a deep learning 

method that allowed the segmentation of the infected region of lungs from CT images. The 

purpose of doing so was to provide physicians with an analysis tool that could decrease the 

time required to diagnose patients’ COVID-19 symptoms. The deep learning model that 

segmented the images leveraged attention-aware feature fusion and large receptive fields 
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to combat low boundary contrast and large variations in infections, two prominent issues 

related to COVID-19 lung infection segmentation.17 

Although chest X-rays (CSR) are more simple and more mobile than CT scans, they have 

been reported to be less informative in the early stages of infection.18 To address this issue, 

Prakash et al.18 proposed leveraging the SqueezeNet classifier model and modifying it for 

segmentation. The output is then used to classify the input CXR image as COVID-19, viral 

pneumonia, or normal. With regards to performance, this model, called the COVID-19 

Super pixel SqeezeNet (COVID-SSNet), can distinguish between these three different 

classes with a reported accuracy of 99.79%.18 Alternatively, Zhang et al.19 focused on 

improving segmentation efficiency of COVID-19 lung infection lesions on CT images. A 

major roadblock to deep learning in the first months of the outbreak was the lack of 

sufficient manually segmented images for deep learning training. To work past this issue, 

Zheng et al. implemented two encoders. One encoder was trained on non-COVID-19 patient 

CT images to detect and segment lung lesions. The other encoder was trained to target 

COVID-19 lesions. The features extracted by the two encoders were combined for a 

decoder segment. This method improved the dice similarity coefficient of the segmented 

lesions by 3%.19 

Another way to circumvent the lack of segmented images was to not rely on 

segmentation for classification. Existing models such as ResNet, DenseNet, and VGG-16 

have already been in use for various image classification tasks, including chest X-ray and 

CT scan analysis. As COVID-19 diagnostic image databases grew, the amount of data 

required to train these large models became sufficient. Many researchers have created new 

models based on the previously mentioned existing models to show that CXR and CT 
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images can be used for classification tasks for COVID-19 with accuracies above 90% in 

most cases.13, 14, 15, 16 The goal of these efforts has been either binary classification to 

determine positive or negative COVID-19 status or multi-class classification to differentiate 

between COVID-19 and other lung infections such as pneumonia.  

One of the biggest challenges to bringing deep learning and AI into practice at hospitals 

is explainability. This refers to the idea that for a physician to make a potentially life-

threatening decision, they need to understand the reason that a particular 

diagnosis/decision is reached. The reason this is a challenge for AI and deep learning is that 

even though the models are initially created by humans, they become a mystery black box 

once they have been trained. This means there is no way for any person to understand the 

reasons behind the decision of a traditional deep learning model. To combat the issue of 

explainability and bring machine learning tools to the front line of hospitals, Pennisi et al.20 

integrated their two-part deep learning model with a user-friendly interface. One part of 

their model is a CT scan segmentation model and the other is a lesion categorization model 

trained to detect COVID-19 lesions. With a categorization accuracy of 84%, this online 

platform allows physicians to both visually see the segmentation of the images where 

lesions are identified as well as the decision made by the algorithm based on these lesions. 

This approach greatly improves the explainability of the models because physicians can 

confirm that the model is, in fact looking at the right areas and allows a degree of trust 

towards the platform.20 

As the pandemic problems moved beyond detection, hospitals found themselves 

overwhelmed by the number of patients requiring ICU attention. The scarcity of ventilators 

also contributed to the worsening situation. While companies were hard at work 
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manufacturing more ventilators, Perumal et al.21 were applying deep learning to help 

physicians determine which patients needed ICU attention the most. This was 

accomplished by leveraging VGG-16 and linear regression to take CT scan data, patient 

metadata, laboratory results, and any reported symptoms to create a two-level symptom 

categorization tool. The two levels were early symptoms and severe/late symptoms.21 

Despite strong advancements in image analysis for both CT scans and CXRs, both are 

still expensive for developing nations and expose patients to radiation. Lung ultrasound, 

however, can be more accessible and has no radioactive side-effects. However, a great 

amount of expertise is required to analyze the data from a lung ultrasound, so it is not 

commonly used for diagnosis of COVID-19. La Salvia et al.22 and Diaz-Escobar et al.23 took 

on this challenge by using deep learning techniques to analyze the lung ultrasound data. 

The latter achieved 89% average accuracy in detecting COVID-19. As new treatments for 

COVID-19 emerged, recovery times based on symptom severity were an important metric 

to use for comparison. Wang, et al.24 created a tool to determine these metrics by applying 

deep learning to predict how long it would take for hospitalized COVID-19 patients to 

recover. One of the greatest features of this tool is that on top of reporting estimated 

recovery times, it reports which features or characteristics are associated with accelerated 

recovery times. The models trained on their dataset reported that treatment schemes, age, 

symptoms, comorbidities, and biomarkers have the most impact on recovery times.24 

The emergence of hundreds of deep learning tools with regards to COVID-19 screening 

from CXR data and the constant demand for more work in this area has made it difficult to 

stay on top of validation. Sadre et al.25 have created a method that validates these deep 

learning models so that their quality is ensured for real-world applications. Namely, their 
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ROI Hide-and-Seek protocol either hides or emphasizes specific regions of CXR images to 

test the models’ skill at anomaly detection as well as how that relates to radiological 

signatures. This is a factor that tends to be overlooked in many current deep learning 

tools.25 

Deep learning and COVID-19 are not limited to hospital settings. Organizations such as 

the CDC and WHO as well as global leaders are in need of information regarding the spread 

and world dynamics considering COVID-19 to make decisions that would affect large 

populations. The ability to predict the spread of the virus remains a vital task in being able 

to fight the pandemic. Iloanusi, and Ross26 leveraged deep learning along with global 

weather pattern data to create a dynamic tool that can predict the spread of COVID-19 

infection as the seasons change. 36 countries from 5 different continents were studied via 

regression analysis to see which factors are the most important to consider for the random 

forest and deep learning models. The models predict the COVID-19 case to mortality ratio 

based on these factors. Temperature was found to be a very important factor for countries 

not in tropical locations. Being able to leverage these unique factors for each country is 

what makes the forecasting tool powerful.26 

However, the introduction of new variants of COVID-19 has complicated forecasting 

efforts. To study the impact of such variants on forecasting, Rashed, and Akimasa,27 looked 

at COVID-19 daily positive cases within Japan since the outbreak started and compared 

that data to their deep-learning based forecasting model, which was trained on Japan’s 

data. They found that the models had high accuracy for periods before the introduction of 

the Alpha variant. This variant caused an unexpected increase of the daily positive cases for 

which the model was not able to predict. They also found that it took the models four 
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weeks to adjust their predictions and regain high accuracy. These studies are of great 

importance to the current and future work on forecasting models because they outline the 

value of incorporating variant introduction and what effects these events may have.27  
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CHAPTER 4:  Data acquisition and analysis to predict COVID-19 outcome 

4.1 Background 

Although there are many deep learning applications for detection of COVID-19 and for 

segmentation of lung infection lesions as mentioned above, there is still a need for quick 

and efficient patient outcome prediction methods. Patient outcome prediction is a vital 

metric for hospitals that are overburdened by COVID-19 patients. A deep learning tool that 

can inform physicians of the care needs for each patient based on their current lung 

infection severity will help hospitals save more lives by providing ICU care to the patients 

that need it the most.  

4.2 Data sources 

Four batches of both images and patient data were acquired for training a model to 

predict COVID-19 patient outcome. Two batches of anonymized data were sent from UCI’s 

medical center containing 715 CXR images and 313 CXR images, respectively, and the other 

two batches were sent from UCLA’s medical center containing 3,278 CXR images and 1,998 

CXR images, respectively, for a total of 6,259 images. Each patient is labeled with a four-tier 

outcome status where label 3 indicates outpatient/healthy, label 2 indicates inpatient/non-

ICU, label 1 indicates ICU necessary, and label 0 indicates death. A table detailing the 

number of images per label and per batch is below (Table 3). With regards to metadata, the 

patients’ age, race, gender, BMI, and comorbidities including diabetes, CKD/ESRD, 

Asthma/COPD, and obesity were provided.  
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Batch Label 0 Label 1 Label 2 Label 3 Total 

1 109 269 131 206 715 

2 610 997 620 1051 3278 

3 3 2 107 201 313 

4 151 96 1279 472 1998 

Total 873 1364 2137 1930 

 

Table 3: Number of image data from each batch and for each outcome label 

4.3 Splitting of available data for training purposes 

For training, the available data was split into a roughly 80:20 ratio of training images to 

test images. This split was made per label for each batch to maintain equal splitting for 

each label. The training data was further split by a ratio of 80:20 for training and validation, 

respectively. The two tables below show the actual number of images per label and per 

batch for training (including validation) and for testing, respectively (Tables 4 and 5).  

Batch Label 0 Label 1 Label 2 Label 3 Total 

1 79 219 102 152 552 

2 483 783 503 816 2585 

3 2 2 90 105 199 

4 119 78 1045 400 1642 

Total: 683 1082 1740 1473 

 

Table 4: Data split for training and validation 

Batch Label 0 Label 1 Label 2 Label 3 Total 

1 30 50 29 54 163 

2 127 214 117 235 693 

3 1 0 17 96 114 

4 32 18 234 72 356 

Total: 190 282 397 457 

 

Table 5: Data split for testing 
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CHAPTER 5:  A VGG16 model for the prediction of COVID-19 outcome 

from images and metadata 

5.1 Background 

Machine learning is a method where a computer tries to improve its ability to predict an 

outcome based on a set of training inputs. With every iteration, where the computer 

processes the inputs and makes a prediction, it uses a separate set of validation inputs to 

calculate its prediction error. Then, it automatically adjusts its equation to reduce this 

error. After repeating this process enough times, the model has been trained and has 

reached its best accuracy. Deep learning is a subset of machine learning, where “hidden” 

processing layers between the input and output layers are inserted to increase complexity 

of the model. To evaluate the model, it is provided a test input that is not part of the 

training or validation data and makes a prediction. The accuracy of this prediction is said to 

be the accuracy of the model.  

There are multiple types of models that can be trained, and each has a different 

application or advantage based on the type, amount, and size of the data. A deep neural 

network (DNN) consists of a series of interconnected layers that contain nodes through 

which the data passes. As each data point passes through a node, it is processed, and an 

output is sent to every node in the next layer. The number of nodes in each layer and the 

number of layers can vary and are parameters that can be optimized. Once the flow of data 

makes it through all the internal layers, or “hidden” layers, it arrives at the final 

prediction/output layer. The number of nodes in this layer corresponds to the number of 

choices the model has. Each node in this layer will report a probability of being the correct 
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prediction, and the node with the highest probability is selected as the final prediction (see 

Figure 5 below).  

 

Figure 5: Example of a fully connected deep neural network, original image 

A convolutional neural network (CNN) seeks to efficiently dissect an image and extract 

features from that image before inserting those features into a DNN. To do this, the model 

first creates a random matrix of 0s, 1s and -1s, called a kernel, that it passes over the pixels 

of an image. Starting from the top row and moving to the right, the kernel extracts the total 

value of the pixels within the area covered by the kernel after each pixel is multiplied by 

the corresponding value in the kernel. It then saves this value to the top left cell of a new 

matrix and the kernel moves one step (stride) to the right to repeat the process (see Figure 

6 below). After the row is finished, the kernel begins again on the left side of the second 

row and so on until the entire image is processed. This is repeated multiple times with 

different random kernels. This step is called the convolutional step. Then, another kernel 

size is selected and placed over the top left portion of one of the new matrices. However, 

unlike the convolutional step, the cell within the kernel space that has the largest value is 

selected, and that value is stored in a new matrix. The kernel then moves over to the next 
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set of values and moves along as before for each matrix created by the convolutional layer 

(see Figure 7 below). This step is called the max pooling step and reduces the size of the 

matrices while extracting the most dominant features. Multiple convolutional and max 

pooling layers may be added to further process and reduce the complexity of the input 

images. After the final max pooling layer, the output is “flattened” by connecting all the 

rows of each matrix into a single list of values and is then fed into a DNN for prediction (see 

Figure 8 below).  

 

Figure 6: Convolutional layer showing progression of a kernel across a pixel matrix, 

altered from https://towardsdatascience.com33 

 

Figure 7: CNN max pooling layer showing how the kernel moves across the convolved 

matrix, altered from https://cs231n.github.io34 
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Figure 8: Combined CNN structure including convolution, pooling, and a deep neural 

network, altered from https://towardsdatascience.com33 

The VGG16 CNN model was chosen as a baseline for the COVID-19 dataset training due 

to its proven top 5 accuracy of 92.7% on ImageNet, a very large image database with 1000 

classification types.35 This model features 13 convolutional layers, 5 pooling layers, a 

convolutional kernel size of 3x3 with a stride length of 1, a pooling kernel size of 2x2 with a 

stride length of 2, and two final dense layers (see Figure 9 below).  

 

Figure 9: VGG model structure visualization, altered from https://neurohive.io36 
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Another prediction method that will be used below is the support vector machine 

(SVM). This method involves fitting an equation to a set of data that allows it to best be split 

by slightly adjusting the coefficients within the equation in each iteration to decrease the 

error in prediction. The complexity of the equation is one of the variable parameters used 

to optimize the SVM. Although an SVM is simpler than a DNN, it can be more effective at 

prediction than a DNN depending on the nature of the data.38  

 

Figure 10: Visualization of support vector machine classification task for 2D input data, 

altered from https://scikit-learn.org37 

5.2 Computational Platform 

All training was completed on an in-house server at University of California, Irvine. The 

server contains four GPUs that were used for training including one NVIDIA RTX A6000 

GPU with 48GB of VRAM and three NVIDIA GeForce GTX 980 GPUs with 6BG of VRAM each. 

This allowed four models to train at the same time, while focusing the heavier models on 

the RTX A6000.  

5.3 Model Structure 

Two models were chosen for comparison. The first model consisted of the VGG16 

framework described above, with slight variations. A mean-variance standardization is 

performed on multiple layers within the model. Also, dropout layers, where some of the 

X 

Y 
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data is randomly removed, are used throughout the model. The number of kernel filters as 

well as the number of nodes within the DNN layers is also different (see Figure 11 below). 

The input for this model is the images from the training dataset described above. To factor 

in patient metadata, a second model was created that adds two additional DNNs to the 

VGG16 model. The first additional DNN (DNN1) separately processes the patient metadata 

and the second additional DNN (DNN2) processes the combined output from the original 

VGG16 model and DNN1 (see Figure 11 below). This model allows training with both 

images and patient metadata to explore benefits from metadata utilization. The comparison 

of these two models provides insight into the impact of patient metadata on the prediction 

results.  
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Figure 11: Two VGG16 models for processing only COVID-19 chest x-ray images (left) 

and for processing both images and patient metadata (right) 
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5.4 Support Vector Machine Utilization 

To implement SVMs, the outputs of the CNN flatten layer and the raw metadata were 

merged and used as input. An algorithm was used to automatically loop through all the 

parameter options of the SVM as available through the Scikit-learn SVM package.38  

5.5 Results 

The first training goal was to get a baseline accuracy drawn from only images and the 

VGG16 model. Each image was extracted, downsampled to 128x128, labeled with a patient 

outcome, and fed into the CNN. The models were also tested with larger images of size 

256x256. However, since this did not improve the accuracy of any of the models described 

above, the 128x128 images were preferable as they greatly reduced the training time. After 

repeating the training multiple times to optimize the parameters, including learning rate, 

batch size, and the number of nodes in the DNN segment, the highest accuracy achieved 

was 56%. As there were four different outcome classes, the accuracy of random prediction 

would be 25%. Thus, 56% accuracy is over two times random prediction. The next step was 

to repeat this with the model that also factors in the metadata and includes one CNN and 

two DNNs (see Figure 12 above). This model involved more parameters to adjust including 

the number of nodes and number of hidden layers in DNN1 and DNN2, all the parameters 

from the first model, and what size output to merge with the CNN. As a result, the 

optimization of these parameters involved a lengthy testing process where each was 

adjusted independently to see what the best value would be. The resulting accuracy after 

optimization improved to 59%. It was also determined, by selecting different metadata to 

input, that patient age and BMI were the most effective categories. When any other 

category was included, the accuracy was lower (ranging from 56% to 58%). This may be 
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due to the binary nature of the other data categories such as comorbidity existence (see 

Conclusions section below). These results meant that the addition of metadata slightly 

improved the accuracy of the model, but not significantly as there was only a 3% 

improvement compared to the image-only model.  

With regards to the SVM implementation, the DNN1 output and the CNN output were 

selected as the data source for SVM training. To optimize the SVM, an algorithm was set up 

that automatically loops through all parameter options for the SVM, as available through 

Scikit Learn SVM tools.38 These parameters included changing the kernel function type 

between linear, polynomial, radial base function (RBF), and sigmoid. Each kernel function 

type included different parameters, such as degree for polynomials, tolerance, gamma, and 

shrinking. The parameter settings with the highest accuracy (57%) were as follows: a 

third-degree polynomial with a gamma set to “auto”, shrinking set to true, and tolerance set 

to 0.001. Gamma refers to a coefficient that is equal to 1/n_features. Shrinking refers to a 

process where input variables that do not change with subsequent iterations are removed 

to “shrink” the number of features trained and decrease training time.   
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CHAPTER 6:  Implementation of the CheXNet learning model for the 

prediction of COVID-19 outcome from X-Ray images 

6.1 Background 

CheXNet is a machine learning model that was created by Pranav et al.5 to diagnose 14 

different diseases from x-ray images with a better F1 metric than average radiologist 

performance. The model has been converted to a Python-Keras format that is available on 

GitHub.39 It is a 121-layer CNN that accepts an input of 224x224x3 images and outputs a 

14-class prediction.  

The CheXNet model was a good fit to validate our results using the VGG16 model 

training—as described earlier—given that its original intended application was chest X-

rays. To apply the CheXNet model to our dataset and compare its output with the VGG16 

model’s, we had to slightly modify the CheXNet model. The first functional modification to 

the Python-Keras CheXNet code was to integrate the same image pre-processing steps and 

patient data splitting as the VGG16 models. This ensured that the input was identical for 

both the VGG16 models and the CheXNet model. The second functional modification was 

the input type and output type. For input, the images were converted from single-channel 

to three-channel as per the requirements of the CheXNet model. Since the images in the 

COVID-19 dataset were single-channel, they were copied to channels two and three, 

creating a three-channel image with identical channels. For the output, the original 

CheXNet code was created to diagnose a chest x-ray among 14 disease options. This was 

modified so that the output layer predicted four different classes correlating to the four 

patient outcome labels, mirroring the output of the VGG16 models.  
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6.2 Results 

The CheXNet models were trained and optimized using the exact same image data as 

the VGG-16 models and with the same split of training and testing sets. The data included 

6259 images from four different datasets sent from both the UCI and UCLA medical centers. 

The images were split in an 80:20 ratio for training and testing (Tables 4 and 5). The 

CheXNet model was also trained on the same hardware as the VGG-16 models. The main 

difference was in the training and testing batch sizes. Since CheXNet is a much larger model 

and requires more memory, a batch size of 10 was selected for optimal processing time. 

CheXNet model variations were also parameter-based. To keep as close to the original 

CheXNet model optimization, only the initial learning rate, learning rate reduction factor, 

number of epochs, and batch size were optimized. The highest accuracy of 60% was 

achieved with 2,000 epochs, batch size of 10, learning rate of 0.01, and learning rate 

reduction factor of 0.1. 

  



 

35 
 

CHAPTER 7: Comparison between the VGG16 models and CheXNet 

7.1 Structural comparison between the model types 

 

 

Figure 12: Visual comparison of VGG16 (top) and CheXNet (bottom) model structures, 

altered from https://neurohive.io36 and Huang, Gao et al.41, respectively 

The purpose of implementing the CheXNet model was to compare its performance to 

the VGG-16 model. Since the CheXNet model has already been proven effective with and is 

designed for CXR image analysis, it is a good model to compare the custom VGG-16 model 

to. If the accuracy of the CheXNet model greatly differs from that of the VGG-16 model, it 
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would indicate that either an error was made in the design on the VGG-16 model, or that 

the VGG-16 model was not a good choice for this usage.  

With regards to model structure, the VGG16 model is simpler than the CheXNet model 

with fewer layers and fewer parameters for training. On the other hand, the CheXNet model 

leverages the Keras DenseNet121 model, which includes 121 layers. It includes four dense 

growing blocks with a convolutional and pooling layer between each. Dense growing blocks 

are sets of dense networks that are connected across the layers as well as between (see 

figure 12 above). This counteracts a common issue among large CNN models, which is the 

“washing away” of relevant data as more layers are added. This occurs due to the large 

amount of data manipulation inherent in a CNN. To address this, each layer in a dense 

growing block receives the output of every preceding layer in that block as an input. Thus, 

the fourth layer receives the output of the three preceding layers. This keeps the 

information from the first layer relevant after multiple layers of manipulation and prevents 

it from “washing away.”41 However, the shorter nature of the VGG16 model also prevents 

this from occurring due to its relative simplicity.  

7.2 Comparison between the results 

Both the VGG16 models and the CheXNet model were able to achieve a similar highest 

accuracy of 59-60%. This similarity indicates that the accuracy of the VGG16 models is not 

limited due to the model’s structure or to any flaws during construction, but rather it is 

limited due to the images’ lack of sufficient riches for accurate prediction of COVID-19 

outcome. Since the CheXNet model was specifically designed for analysis of chest x-rays 

with high accuracy, it should have performed better leading to an improved accuracy, if 

there were enough information within the CXR images.  



 

37 
 

CHAPTER 8: Conclusions 

8.1 Results 

The first goal of this thesis was to create a cloud-based website that allows physicians 

to quickly analyze pediatric heart MRIs for diagnosis. The American Heart Association’s 

Precision Medicine Platform was used to host a Python and Django based web framework 

that leveraged the trained machine learning model from Karimi-Bidhendi, et al.2 to segment 

ventricles of pediatric cardiac MRI and calculate the corresponding ventricle volumes for 

the end-systolic (ES) and end-diastolic phases (ED). The website is also able to 

automatically differentiate between the ED and ES phases for the left and right ventricles, 

which allows physicians to upload all the DICOM files for a patient’s MRI session and get 

the resulting volumetric reports within seconds. The total time for image processing and 

volume calculation is 589ms and 560ms per image for the left and right ventricle, 

respectively. For just the segmentation task, it takes 249.6ms and 246.6ms per image for 

the left and right ventricle, respectively.  

For the second goal of creating a machine learning model to predict COVID-19 patient 

outcome, two VGG16 models were optimized for the prediction of COVID-19 outcome. The 

first model focused on modifying and optimizing the standard VGG16 model for the COVID-

19 datasets obtained from UCI and UCLA medical centers. This model was able to achieve 

an accuracy of 56%.  

The second model extended the original VGG16 model to incorporate a DNN (DNN1) 

that processed patient metadata and another DNN (DNN2) that processed both the output 

of the image CNN and the metadata DNN. This model, after optimization, achieved an 

accuracy of 59%. To investigate the reason behind the lower-than-expected accuracy of the 
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model, the CheXNet model was adapted for use with the COVID-19 dataset and prediction 

outcomes. After optimizing some of the parameters of the CheXNet model, the highest 

accuracy achieved was 60%. This meant that the accuracy of the VGG16 models was limited 

by the informativity of the data as opposed to the quality of the models. Furthermore, the 

14 available categories of metadata were not all effective at improving the accuracy of the 

VGG16 models. Only the age and BMI of the patient were beneficial. However, the impact of 

metadata on the accuracy of the models was also small (only 3% increase). This indicates 

that the patient metadata had a low correlation with the outcomes. It also indicates that 

factors including gender, race, and comorbidities did not help the model predict the 

outcome of the patients. 

8.2 Study limitations and future work 

The data acquired for the COVID-19 patient outcome prediction models were received 

in four separate batches between the summer of 2020 and the spring of 2021. During this 

time, hospitals and other medical facilities learned how to provide better care for COVID-19 

patients.40 As new methods and practices emerged and were implemented, the outcomes 

for many patients changed. A patient that might have required ICU attention or could have 

died due to deteriorating health in June of 2020 may have been an outpatient with mild 

symptoms in February of 2021 after healthcare procedures improved. This can cause 

complications with prediction since these factors cannot be considered during model 

training. Traditional methods to combat this type of issue, such as separate training for 

each data batch or only training on the latest data, have drawbacks. Most importantly, 

there was not enough data available to separate trainings or to only train on the latest data. 

Furthermore, each batch of patients was recorded over an extended period as opposed to a 
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short time span. This further complicates any attempt to segregate the data as even the 

more recent batches would get split, reducing the available data again.  
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