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Functional identification 
of microRNA‑centered complexes 
in C. elegans
Shilpa Hebbar1, Ganesh Panzade1, Ajay A. Vashisht2,4, James A. Wohlschlegel2, 
Isana Veksler‑Lublinsky3 & Anna Y. Zinovyeva1*

microRNAs (miRNAs) are crucial for normal development and physiology. To identify factors that 
might coordinate with miRNAs to regulate gene expression, we used 2′O‑methylated oligonucleotides 
to precipitate Caenorhabditis elegans let‑7, miR‑58, and miR‑2 miRNAs and the associated proteins. A 
total of 211 proteins were identified through mass‑spectrometry analysis of miRNA co‑precipitates, 
which included previously identified interactors of key miRNA pathway components. Gene ontology 
analysis of the identified interactors revealed an enrichment for RNA binding proteins, suggesting that 
we captured proteins that may be involved in mRNA lifecycle. To determine which miRNA interactors 
are important for miRNA activity, we used RNAi to deplete putative miRNA co‑factors in animals with 
compromised miRNA activity and looked for alterations of the miRNA mutant phenotypes. Depletion 
of 25 of 39 tested genes modified the miRNA mutant phenotypes in three sensitized backgrounds. 
Modulators of miRNA phenotypes ranged from RNA binding proteins RBD‑1 and CEY‑1 to metabolic 
factors such as DLST‑1 and ECH‑5, among others. The observed functional interactions suggest 
widespread coordination of these proteins with miRNAs to ultimately regulate gene expression. This 
study provides a foundation for future investigations aimed at deciphering the molecular mechanisms 
of miRNA‑mediated gene regulation.

Developmental and physiological processes require precise spatio-temporal regulation of gene expression. One 
post-transcriptional gene regulatory mechanism is directed by a class of small non-coding RNAs called micro-
RNAs (miRNAs). miRNAs regulate a wide range of developmental and cellular processes, with dysregulated 
miRNA activity prevalent in  diseases1,2. To exert their regulatory roles, miRNAs are loaded into Argonaute 
(AGO) proteins to form a miRNA Induced Silencing Complex (miRISC), which ultimately associates with an 
effector protein GW182. miRISC binding to the target mRNA via partial sequence complementarity between a 
miRNA and 3′ UTR of mRNA triggers a series of gene silencing mechanisms including translation inhibition, 
decapping, and mRNA  decay3,4.

miRNAs are produced by a complex biogenesis process which involves enzymatic processing of miRNA 
intermediates in the nucleus and cytoplasm. Primary miRNAs are first cleaved by the Microprocessor complex 
(Drosha and DGCR8) to form pre-miRNAs5,6. After export from nucleus into cytoplasm, pre-miRNAs are further 
processed by Dicer to generate a miRNA  duplex7,8. The miRNA duplex bound by Argonaute is then unwound, 
with the guide miRNA strand retained to form the mature miRISC, and the passenger strand released and 
 degraded9,10. Each of the steps in miRNA biogenesis process can be regulated by RNA binding and other auxiliary 
factors thereby modulating the final gene-regulatory impact of miRNAs. These factors could bind miRNA inter-
mediates or miRISC protein components to affect miRNA activity. For example, several RNA binding proteins 
including RBFOX3 and HnRNP A1 have been identified to bind to the hairpin structures of primary miRNAs 
and modulate their  processing11,12. Other proteins, such as NHL-2 and CGH-1, associate with ALG-1 and AIN-1 
to promote mRNA  targeting13. RNA binding proteins  Staufen14 and  HuR15,16 indirectly affect miRNA-mediated 
gene silencing by competing for binding of the 3′UTRs of target mRNAs. Characterizing miRISC-associated 
protein complexes followed by functional analyses and mechanistic studies has high potential to identify addi-
tional mechanisms by which miRNA activity may be regulated.
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Identifying proteins that associate with Argonaute proteins or miRNAs has been a productive approach to 
begin to unravel the mechanisms by which aspects of miRNA biogenesis and activity are  regulated17–20. In human 
cells, investigation of proteomic profiles of AGO complexes led to identification of common protein interac-
tors of all four AGO proteins, which included heat shock proteins, helicases, and components of translational 
 machinery17. Some proteins identified in this study, including Hsc70/Hsp90 chaperone machinery, were later 
characterized for their roles in RISC loading of small RNA  duplexes21. In mice, exploration of Dicer dependent 
and independent interactions of  Ago218 identified proteins that participate in miRISC-mediated  decapping22, 
among other mechanisms. However, while proteomic approaches have characterized miRNA-associated com-
plexes, it has been challenging to identify which of these co-factors are functionally important for miRNA activity, 
especially in tissue culture. In contrast, functional assays that quantitatively assess miRNA activity are available 
in model organisms such as C. elegans.

To identify miRNA/miRISC auxiliary cofactors important for miRNA gene regulatory activity, we took a 
functional proteomics approach. Specifically, we used 2′O-methylated biotinylated oligonucleotides to pull down 
three miRNAs of interest (let-7, miR-58, and miR-2) and subjected the associated protein complexes to proteomic 
analysis. Comparative analysis of miRNA pulldown and ALG-1 immunoprecipitation  precipitates19 identified 
high confidence interactors common to all four datasets. In addition, we identified a unique set of interactors 
in each miRNA pulldown dataset. To assess whether the co-precipitated proteins are functionally important 
for miRNA activity, we performed RNAi knockdown of genes encoding for the putative physical interactors in 
multiple miRNA sensitized genetic backgrounds. Of the 39 interactors tested, depletion of 25 factors modified 
miRNA reduction of function phenotypes in one or more assays. Overall, we demonstrate that capturing physi-
cal interactors of miRNA machinery followed by in vivo functional assays is an efficient approach to identify 
novel players in miRNA-mediated gene regulation. While further mechanistic characterizations are necessary to 
determine the extent of the physical and functional interactions, this study identifies a functional requirement 
for a subset of potential ALG-1 and miRNA co-factors.

Methods
C. elegans maintenance, strains, and RNAi. All C. elegans strains were maintained on NGM and fed 
with E. coli OP50. Strains were maintained at 20 °C unless otherwise noted. RNAi knockdown was performed 
by feeding as previously  described23.

The following strains were used in this study: N2 (wild type), MT7626 (let-7(n2853)), HW1113 [Pdpy-
30::GFP(PEST)-H2B::lin-41 3’ UTR (xeSi78); Pdpy-30::mCherry::H2B::artificial 3’ UTR (xeSi36)], HW1114 
[Pdpy-30::GFP (PEST)-H2B::lin-41 3’ UTR (xeSi78); Pdpy-30::mCherry::H2B::artificial 3’ UTR (xeSi36), let-
7(n2853)], VT1367 (col-19::gfp (maIs105)), VT1296 (mir-48 mir-241(nDf51) col-19::gfp (maIs105)), BW1932 
[hbl-1p::gfp::NLS::hbl-1 3’ UTR (ctIS39)] and UY458 (mir-48 mir-241(nDf51); hbl-1p::gfp::NLS::hbl-1 3′ UTR 
(ctIS39)]), OH812 (otIs114 [Plim-6-gfp + rol-6(su1006)]), OH3646 (lsy-6(ot150); otIs114 [Plim-6-gfp + rol-
6(su1006)]), PS3662  (syIs63[cog-1::gfp + unc-119(+)]), OH7310  (otIs193 [cog-1p::lsy-6 + rol-6(su1006)] 
syIS63[cog-1::gfp + unc-119(+)]).

2′O‑Methyl oligo pulldowns and mass spec analysis. All experiments were performed on mixed-
stage animals. Whole worm  extracts24 and 2′O-methyl oligo  pulldowns25 were performed as previously 
described. For mass spectrometry, each sample contained 20 mg of total protein. miRNA pulldowns were per-
formed in two biological replicates using 2′O-methylated oligos with perfect complementation to miR-58, let-7, 
and miR-2, and scrambled oligo control (IDT). Sequences of the 2′O-methylated, biotinylated oligonucleotides 
are as follows: miR-58 oligo (5′-CAU CAU UGC CGU ACU GAA CGA UCU CAA GUC -3′), miR-2 oligo (5′-AUU 
CAG CAC AUC AAA GCU GGC UGU GAU AUU CCA-3′), let-7 oligo (5′-UCU UCA CUA UAC AAC CUA CUA CCU 
CAA CCU U-3′), and scrambled oligo (5′-CAU CAC GUA CGC GGA AUA CUU CGA AAU GUC -3′).

Mass spectrometric analysis of pulldown factors was performed as previously  described19. Briefly,  DTASelect26 
was used to filter the proteins identified by applying a criterion that required proteins to have at least two unique 
peptides with total spectral intensities greater or equal to four in both replicates. To determine enrichment of 
protein association in a miRNA pulldown, the Normalized Spectral Abundance Factor (NSAF) values in miRNA 
pulldown were divided by that in control pulldown. NSAF value of zero in control was replaced by 1. Proteins 
with the pulldown/control ratio of ≥ 4 in all replicates were considered putative physical interactors.

GO term and network analysis. Gene ontology analysis was performed using Database for Annotation, 
Visualization and Integrated Discovery (DAVID)27. Factors that had a fold change ≥ 4 in both replicates of the 
miRNA pulldowns were used for this analysis. For comparison, we included factors identified in atleast two 
replicates of ALG-1 IP for GO term analysis (as previously  described19). Protein domain information, domain 
enrichment analysis, and the associated statistics were retrieved using  STRING28. Enrichment for proteins har-
boring an RNA binding domain (RBD) among the proteins that passed our criteria was determined against a 
background set of C. elegans proteins that harbor the same RNA binding domain. Statistically significant enrich-
ment was determined by applying Benjamini–Hochberg procedure on p-values to correct for multiple-testing. 
Network analysis was performed on the top 40 most enriched factors using  STRING28 after excluding ribosomal 
proteins.

Functional assays. let-7(n2853) vulval bursting assay. Vulval bursting assay was performed as previously 
 described29. Briefly, let-7(n2853) and N2 worms were grown and maintained at 15℃. Embryos obtained through 
 bleaching30 were plated on RNAi  plates23 and grown until L4 larval stage. L4 animals were shifted to new RNAi 
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plates and scored as day 1 adults for vulval bursting using a Leica dissecting microscope. Total number of worms 
(n) scored for this assay across two to four independent RNAi experiments ranged from 45 to 330.

col-19::gfp expression and seam cell number assay. mir-48 mir-241(nDf51) col-19::gfp (maIs105) animals were 
transferred to RNAi plates as L3 stage larvae and their progeny were scored for heterochronic phenotypes 
for hypodermal col-19::gfp expression. Worms with seam-only reporter expression were classified as having 
“delayed hypodermal col-19::gfp expression”. Seam cell numbers were scored by counting the number of seam 
cells expressing col-19::gfp between pharynx and anus. For most candidates, the total number of worms scored 
(n) across two to four replicates ranged from 22 to 80. For genes whose knockdowns resulted in severe develop-
mental defects such as snr-4, snr-6, let-363, and rnp-7, the (n) was either 18 or 19.

lsy-6(ot150) ASEL cell fate assay. lsy-6(ot150); plim-6::gfp and plim-6::gfp worms were transferred onto RNAi 
plates as embryos. Their progeny were scored as L4s  for specification of ASEL cell fate based on plim-6::gfp 
reporter expression. Worms lacking the reporter expression in ASEL neurons were scored as cell fate defective. 
Across two to four replicates, a total of 90 to 286 worms were scored.

pdpy-30::gfp::lin-41 reporter assay. pdpy-30::GFP(PEST)-H2B::lin-41 3’ UTR (xeSi78); pdpy-30::m 
Cherry::H2B::artificial 3’ UTR (xeSi36) and pdpy-30::GFP (PEST)-H2B::lin-41 3’ UTR (xeSi78); pdpy-
30::mCherry::H2B::artificial 3’ UTR (xeSi36), let-7(n2853) embryos obtained by bleaching were plated on RNAi 
plates and grown at 15 °C. Reporter expression was measured in L4 stage animals by imaging the vulva at 63× 
magnification. To quantify expression levels in six vulval cells, ROIs were manually drawn and signal intensities 
within the ROI were measured using the Leica image analysis software. For each vulval cell, GFP signal intensity 
was divided by mCherry signal intensity and relative signal intensities were averaged across the six cells imaged 
in an individual animal. Representative images were equally adjusted after quantification to make the fluores-
cence more observable.

hbl-1p::gfp reporter assay. hbl-1p::gfp::NLS::hbl-1 3′ UTR (ctIS39) and mir-48 mir-241(nDf51); hbl-
1p::gfp::NLS::hbl-1 3′ UTR (ctIS39) embryos were obtained by bleaching. Embryos were transferred to RNAi 
plates and animals were scored for hbl-1p::gfp expression in hypodermal cells at early to mid L3 stage. Animals 
were staged by time of development, and gonad size and shape.

Uterine cog-1 reporter expression. cog-1::gfp and pcog-1::lsy-6; cog-1::gfp animals were transferred onto RNAi 
plates as embryos and their F1 progeny were scored at L4 stage for cog-1::gfp expression in the uterine cells. 
Worms expressing cog-1::gfp in both uterine cells and vulval cells were scored as wild type. Worms that lacked 
cog-1::gfp reporter expression in either of the two uterine cells were scored as abnormal.

Fluorescence microscopy, image capture and illustrations. Fluorescence equipped Zeiss Axioplan 
2 or Leica DM6 upright microscopes were used for scoring phenotypes. Images were captured using the Leica 
DM6B camera and processed using the Leica Application Suite X (3.4.1.17822) software (https:// www. leica- 
micro syste ms. com/ produ cts/ micro scope- softw are/p/ leica- las-x- ls/). Illustrations in Figs.  1a and 6e–g were 
drawn using BioRender (biorender.com).

Statistical analysis. All statistics were done using GraphPad Prism (9.2.0 (332)) software. Statistical signif-
icance was determined using a one-way ANOVA test with predetermined comparisons. Bonferroni correction 
was applied as a post hoc analysis. T-test was used to determine statistical significance of pdpy-30::gfp::lin-41, 
hbl-1p::gfp, and cog-1::gfp reporter assays.

Results
miRNA pulldowns (PDs) identify overlapping sets of putative physical interactors of 
miRNA‑centered complexes. To identify factors that may regulate miRNA activity, we sought to deter-
mine the molecular composition of protein complexes associated with let-7, miR-58, and miR-2 miRNAs. let-7 
is highly conserved across all bilateral  animals31 and is required for the larval to adult transition in C. elegans32. 
miR-58 is a highly abundant miRNA that regulates lifespan and dauer  formation33, primarily by coordinat-
ing with the TGF-β  pathway34,35. miR-2, a neuronal miRNA conserved among  invertebrates36, is necessary for 
proper neuromuscular junction function in C. elegans37. We used biotinylated, 2′O-methylated oligonucleo-
tides with perfect sequence complementarity to mature miRNA sequences to pulldown miRNAs of interest 
and characterized the precipitates using a shotgun proteomics approach (Fig. 1a) to identify proteins associated 
with miRNAs of interest compared to scrambled control (Fig. 1b–d, Supplementary Table S1). To identify high 
confidence interactors, we retained only the proteins that were ≥ fourfold enriched in miRNA pulldowns over 
the scrambled control, had a minimum NSAF value of 4, and were identified in all replicates. Overall, a total 
of 211 proteins passed the criteria we set (Fig. 1e), with 136 factors co-precipitating with let-7, 54 factors co-
precipitating with miR-58, and 25 factors co-precipitating with miR-2 (Fig. 1e, Supplementary Table S1). Among 
the proteins enriched in miRNA co-precipitates were known miRISC components ALG-1 and ALG-2, the two 
major miRNA-associated Argonautes in C. elegans38 and AIN-1 and AIN-2, GW182 homologs and miRISC 
 effectors39,40 (Fig. 1b–f). In addition, DCR-1 nuclease, responsible for pre-miRNA processing, was detected in 
all pulldown experiments performed, but did not meet our stringent interaction criteria in the let-7 pulldown 
(Fig. 1e,f, Supplementary Table S1).

https://www.leica-microsystems.com/products/microscope-software/p/leica-las-x-ls/
https://www.leica-microsystems.com/products/microscope-software/p/leica-las-x-ls/
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To determine the overlap between complexes precipitated by miRNA pulldowns and those previously found 
to associate with ALG-119, we compared miRNA and ALG-1 co-precipitated factors (Fig. 1e,f, Supplementary 
Table S1). Eleven (8%) let-7 interactors, ten (18.5%) miR-58 interactors, and five (24%) miR-2 interactors were 
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Figure 1.  miRNA pulldowns (PDs) identify putative physical interactors of miRNA complexes. (a) Protein 
complexes associated with miRNAs were isolated using 2′-OMe modified oligonucleotides complementary 
to the miRNA of interest and subjected to MudPIT mass spectrometry analysis (drawn using BioRender 
(biorender.com)). (b–d) Average Normalized Spectral Abundance Factor (NSAF) values of factors identified 
in pulldown experiments (Y-axis) are plotted against that of corresponding scrambled oligo controls (X-axis) 
for (b) let-7 PD, (c) miR-58 PD and (d) miR-2 PDs. Highlighted in black are key miRISC components and 
components of miRNA biogenesis machinery. (e) Venn diagram showing the number of factors that passed a 
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found to overlap with the ALG-1 co-immunoprecipitated dataset (Fig. 1e, Table 1). Overall, 41 proteins were 
present in at least two interaction datasets (Fig. 1e,f, Table 1), potentially representing general miRNA-associated 
co-factors. In addition, four proteins, HRPK-1, SMG-2, IMPH-1, and SUP-26, were present in 2 out of 3 pull-
downs and the ALG-1 IP (Fig. 1e,f, Table 1). Their homologs were also found to co-immunoprecipitate with 
human and/or mouse  Argonautes17–19, suggesting that they may have a conserved function in miRNA-mediated 
gene regulation. In fact, we previously confirmed a physical HRPK-1 interaction with ALG-1 and reported 
hrpk-1 to genetically interact with multiple  miRNAs41. Five proteins were commonly captured in all the miRNA 
pulldowns (Fig. 1e,f, Table 1). Interestingly, one such protein was LET-363, an mTOR  homolog42 (Fig. 1e,f, 
Table 1). Similarly, we observed overlaps between our miRNA co-precipitates and previously reported miRNA 
physical  interactors43,44 (Supplementary Table S2). Overlaps among our miRNA interaction datasets and AIN-1 

Table 1.  Proteins that co-precipitated with two or more miRNAs or with ALG-1. The table shows the proteins 
that co-precipitated with either two or more miRNAs in our study and/or identified in previously reported 
ALG-1  IP19.

Sequence name Protein name

Average of NSAF  ratiospulldown/control (spectral 
count)

Descriptionlet-7 miR-58 miR-2 ALG-119

F48F7.1 ALG-1 6 (88) 19 (328) 8 (73) 573 (229) Argonaute, miRISC component

C06G1.4 AIN-1 5 (25) 16 (83) 11 (28) 125 (122) miRISC component (GW182 homolog)

C04E6.11 C04E6.11 6 (86) 5 (35) 5 (7) NA Unknown

T07D3.7 ALG-2 115 (70) 293 (292) 105 (47) NA Argonaute

B0261.2 LET-363 5 (8) 9 (8) 47 (24) NA C. elegans Mtor

T23F6.4 RBD-1 20 (124) 5 (55) 27 (28) NA rRNA processing

M88.5 IMPH-1 9 (310) 10 (237) NA 23 (39) KH domain, RNA binding protein

F26B1.2 HRPK-1 146 (19) 44 (4) NA 8 (14) KH domain, RNA binding protein

R10E4.2 SUP-26 139 (20.5) 43 (5) NA 113 (29) Translational regulation

Y48G8AL.6 SMG-2 6 (43) 45 (17) NA 9 (4) NMD protein

B0041.2 AIN-2 22 (6) 87 (83) NA NA miRISC component

Y49E10.15 SNR-6 7 (41) 5 (19) NA NA Small nuclear ribonucleoprotein

Y71F9B.4 SNR-7 8 (42) 260 (14) NA NA Small nuclear ribonucleoprotein

W08E3.1 SNR-2 9 (48) 5 (19) NA NA Small nuclear ribonucleoprotein

Y116A8C.42 SNR-1 10 (55) 4 (10) NA NA Small nuclear ribonucleoprotein

C52E4.3 SNR-4 381 (31) 4 (13) NA NA Small nuclear ribonucleoprotein

F43H9.3 F43H9.3 4 (23) 52 (8) NA NA Predicted to enable nucleotidyltransferase activity

ZC373.2 ZC373.2 56 (5) 43 (5) NA NA Unknown

W07E6.1 NSUN-1 12 (5) 67 (12) NA NA Nop2 (NOP2)/SUN domain family member

Y38C9A.2 CGP-1 61 (22) 52 (8) NA NA Predicted to enable GTPase activity

K10D2.3 CID-1 16 (53) 14 (6) NA NA RNA 3′ uridylation

W05F2.6 W05F2.6 139 (21) 114 (14) NA NA Unknown

T01H10.8 LYST-1 41 (38) 15 (12) NA NA Lysosomal trafficking regulator protein

K04G7.10 RNP-7 36 (14) 66 (5) NA NA RNA binding protein

Y37H2A.1 Y37H2A.1 147 (25) 65 (8) NA NA Predicted to enable hydrolase activity

F56B3.5 ECH-5 94 (20) 64 (12) NA NA Enoyl-CoA hydratase

F57H12.6 F57H12.6 166 (12) 4 (9) NA NA Unknown

F42A6.7 HRPA-1 30 (5) 14 (4) NA NA RNA binding protein

F25B5.7 NONO-1 84 (14) 100 (13) NA NA Conserved nuclear protein

H20J04.8 MOG-2 161 (34) NA 114 (6) NA Enables U2 snRNA binding activity

W02F12.5 DLST-1 88 (75) NA NA 18 (12) DihydroLipoamide S-SuccinylTransferase

F33D11.10 F33D11.10 16 (7) NA NA 29 (4) RNA helicase activity

ZC434.5 EARS-1 14 (9) NA NA 7 (4) Glutamate-tRNA ligase activity

H05C05.1 H05C05.1 32 (9) NA NA 12 (4) Predicted to enable RNA strand annealing activity

Y47D3B.10 DPY-18 NA 15 (9) NA 23 (5) Procollagen-proline 4-dioxygenase activity

K02F2.1 DPF-3 NA 58 (14) NA 42 (15) Serine-type peptidase

F52B5.3 F52B5.3 6 (40) NA NA 6 (4) Predicted to enable ATP binding activity

F18H3.3 PAB-2 NA 20 (9) NA 5 (69) Poly-A-binding protein

K12H4.8 DCR-1 NA 153 (84) 27 (10) 6 (5) Small RNA processor

F37C12.11 RPS-21 NA NA 89 (4) 39 (33) Ribosomal protein

Y71F9AL.9 Y71F9AL.9 NA NA 45 (6) 37 (7) Unknown
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and AIN-2 co-precipitates40,44 were also observed, further emphasizing that our approach captured potential 
miRISC interactors (Supplementary Table S2). Finally, candidates identified in genetic screens for miRNA and 
siRNA pathway genes also intersected with many of our miRNA co-precipitates29,45,46 (Supplementary Table S2). 
The observed overlaps among various groups of physical and genetic interactors support the idea that we are 
detecting real physical interactors of miRNA-centered complexes.

Due to a high level of sequence similarity amongst the let-7 miRNA family members, the let-7 comple-
mentary oligonucleotide precipitates other members of the miRNA family, albeit with reduced  efficiency47. 
To determine whether distinct populations of proteins might associate with let-7 miRNA family members, we 
performed additional let-7 pulldown experiments in mir-48 mir-241(nDf51); mir-84(n4037) mutant animals 
(Fig. 1g, Supplementary Table S1). 55 (29.4%) proteins were in common among both let-7 pulldowns, suggest-
ing that these factors may interact with let-7 itself (Fig. 1h). The 51 (27.3%) proteins that precipitated with the 
let-7-complementary oligonucleotide from the mir-48 mir-241(nDf51); mir-84 (n4037) animals may similarly 
represent let-7-interacting factors, having been enriched in the let-7 pulldown in the absence of miR-48, miR-
241, and miR-84 (Fig. 1h). In contrast, 81 (43.3%) proteins were present only in wildtype background pulldowns 
(Fig. 1h), suggesting that these factors may normally associate with miR-48, miR-241 and miR-84 (Fig. 1h). 
While we cannot rule out an association with the remaining let-7 family miRNAs, miR-793–795, the low rela-
tive abundance of these  miRNAs19 suggests that miR-793–795 interactors are unlikely to represent significant 
fractions of the observed co-precipitates. Finally, some co-precipitates could represent non-specific interactions.

Ribonucleoprotein complex components are enriched among miRNA interactors. To under-
stand what biological processes and functions are represented in the miRNA-precipitated complexes, we per-
formed Gene Ontology (GO) analysis on putative miRNA interactors (Fig. 2a–d, Supplementary Table S3). Fac-
tors implicated in embryonic and larval developmental processes were commonly enriched in all interaction 
datasets (Fig. 2a–c; ALG-1 interactome analysis is shown in Fig. 2d for  comparison19, Supplementary Table S3). 
Selective enrichment for splicing associated factors was observed in let-7 and miR-58 PD datasets (Fig. 2a,c, Sup-
plementary Table S3). Components of intracellular ribonucleoprotein complexes were consistently captured in 
all datasets (Fig. 2a–d and Ref.19). Enrichment for ribosomal components was observed only in let-7 and ALG-1 
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Figure 2.  miRNA pulldowns identify components of translation machinery and mRNA processing factors, 
which may form a functional network. (a–d) Terms identified through GO analysis for biological processes (top 
four), cellular components (top four) and molecular function categories (top three) among let-7 PDs in (a) wild 
type, (b) mir-48 mir-241(nDf51); mir-84(n4037) backgrounds, (c) miR-58 PD and (d) ALG-1  IP19. Total number 
of proteins classified under each term shown adjacent to respective bars. (e–h) RNA binding domains identified 
in factors captured in let-7 PDs from (e) wild type, and (f) mir-48 mir-241(nDf51); mir-84(n4037)) backgrounds, 
(g) miR-58 PD and (h) ALG-1 IP. The FDR adjusted p-values for enrichment of proteins harboring individual 
domains are shown within the respective bars. (i–l) The reproducibly enriched proteins form functional 
network. Network analysis was performed using  STRING28 on top 40 enriched interactors in (i) let-7 PD (wild 
type), (j) let-7 PD (mir-48 mir-241(nDf51); mir-84(n4037)) (k) miR-58 PD and (l) ALG-1 IP. Ribosomal proteins 
were excluded from this analysis. Thickness of edges represents degree of confidence of functional linkages. The 
number of edges is significantly higher than expected, with a p-value < 1.0e−16.
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datasets (Fig. 2a,b,d and Ref.19). Unsurprisingly, the RNA/nucleic acid binding term was commonly overrepre-
sented in all the datasets in the molecular function category (Fig. 2a–d and Ref.19). miR-2 interactors did not 
show an enrichment for any of the GO terms (Supplementary Table S3), potentially due to the low number of 
interactors captured in our pulldown and were therefore excluded from further analysis.

As RNA binding proteins (RBPs) were enriched in miRNA co-precipitates (Fig. 2a–d) and RBPs carry distinct 
domains critical for their RNA binding activity, we examined what RNA binding domains (RBDs) were present 
in proteins identified in our pulldowns and ALG-1 IP (Fig. 2e–h, Supplementary Table S3). At least 5 different 
RBDs were observed among RBPs in all the datasets. Notably, RBDs such as RNA Recognition Motif, KH, PAZ, 
and Nucleotide-binding alpha–beta plait domain superfamily were present in RBPs in one or more datasets 
(Fig. 2e–h, Supplementary Table S3). Overall, miRNA pulldowns captured factors that may play critical roles 
during the lifecycle of RNA.

To determine whether factors identified through our proteomics approach form a functional network, we per-
formed network analysis using  STRING28 (Fig. 2i–l). STRING predicts candidate protein interactions by utilizing 
both known and predicted protein–protein interactions sourced from databases, text mining, experimental, and 
co-expression  data28. Top 40 enriched putative interactors in each dataset, minus the ribosomal proteins, were 
chosen for this analysis. Interestingly, we observed that in all the datasets proteins formed functional networks 
with a significant number of edges (p-value < 1.0e−16, as determined by STRING) (Fig. 2i–l), further supporting 
the idea that miRNA pulldown-captured proteins form functional complexes that may coordinate with miRNAs 
to regulate gene expression.

Functional analysis of putative miRNA interactors. To identify which putative interactors might 
functionally coordinate with miRNAs to regulate gene expression, we took advantage of sensitized genetic back-
grounds with reduced miRNA or miRNA family activity. These functional assays with quantifiable phenotypic 
outputs allow for assessment of a gene’s role in miRNA-mediated gene repression. Our pulldown experiments 
targeted miRNAs with varied functions and spatio-temporal expression patterns. Some of the identified interac-
tors of miRNA- or ALG-1-centered complexes could have broad functional requirements, while others could be 
specific to a particular tissue or a developmental time. We hypothesized that knockdown of generally-required 
factors in multiple sensitized miRNA backgrounds would modulate phenotypes in multiple functional assays. 
In contrast, spatio-temporal specificity of the putative interactors may limit their functional relevance to specific 
miRNAs and may not result in a phenotype in some, or all, of our assays. In addition, the miRNA-centered pro-
tein complex analyses potentially identified interactors that may positively or negatively modulate microRNA 
activity. Knockdown of these factors in sensitized genetic backgrounds may therefore result in an enhancement 
or a suppression of the phenotype associated with reduction of miRNA function.

For our functional assessment, we prioritized factors that were highly enriched in our pulldown and/or 
ALG-1 IP  experiments19 and were captured in multiple datasets. We excluded ribosomal proteins and factors 
lacking RNAi clones. The 39 candidates assayed ranged from common interactors of miRNA(s) and ALG-1 
(6), common miRNA interactors (6), ALG-1 interactors (16), and specific miRNA interactors [let-7 (10), and 
miR-58 (1)] (Supplemental Table S4). Among the ALG-1 interactors, we assayed genes encoding for six proteins 
consistently identified in human and mouse AGO IP (referred to as conserved AGO interactors from hereon).

RNAi knockdown of genes of let-7 and ALG-1 interactors alters let-7(n2853) mutant phenotype. let-7 is essen-
tial for C. elegans development and promotes transition from the fourth larval stage (L4) to  adulthood32. 
Loss of let-7 function results in vulval bursting and failure of seam cells to differentiate during the L4 to adult 
 transition32. let-7(n2853) is a temperature-sensitive reduction of function mutation that impairs regulation of 
let-7 targets, including lin-4148. let-7(n2853) mutants have a partially penetrant vulval bursting phenotype at 
permissive  temperature32 (15 °C) (Fig. 3a). To determine whether the identified let-7 and ALG-1 interactors 
are functionally important for let-7 miRNA activity, we used this well-established genetic background to assay 
the effects of gene knockdown on let-7(n2853) bursting phenotype. RNAi of six genes enhanced vulval bursting 
of let-7(n2853) mutant (Fig. 3b,c, Supplementary Table S4). One such gene (pab-1) encoded a conserved AGO 
 interactor19 (Fig. 3b, Supplementary Table S4) and five genes including C04E6.11, ech-5, and rbd-1, which code 
for let-7 interactors (Fig. 3c, Supplementary Table S4). RNAi of cey-1 suppressed the bursting (Fig. 3c, Sup-
plementary Table S4). Knockdown of ifg-1 also mildly suppressed let-7(n2853) vulval bursting from 30 to 6% 
(Fig. 3b, Supplementary Table S4), although the suppression did not reach a statistically significant level (Anova 
p-value = 0.078). RNAi knockdown of these genes in the wild type background did not result in vulval bursting, 
suggesting that these genes do not play a central role in gene regulation, only revealing the function in the sensi-
tized let-7(n2853) background (Fig. 3b,c). We cannot, however, rule out the possibility that RNAi knockdown in 
wild type background may have been ineffective. Overall, these findings support our hypothesis that the identi-
fied let-7 physical interactors play a role in let-7-mediated gene repression.

Since dysregulation of let-7 target gene lin-41 in vulval-uterine system is sufficient to cause vulval  rupturing49, 
we wanted to determine how depletion of putative physical and genetic let-7 interactors affects lin-41 expres-
sion in the relevant cells. To do this, we used an established let-7-lin-41 reporter  system49. We performed RNAi 
knockdown of genes that enhance (ech-5, rbd-1, C04E6.11, and let-363) and suppress (cey-1) let-7(n2853) vulval 
bursting in the background of two reporter strains: pdpy-30::gfp::lin-41 3ʹUTR  and pdpy-30::gfp::lin-41 3ʹUTR; let-
7(n2853)49. RNAi depletion of these genes did not alter pdpy-30::gfp::lin-41 3ʹUTR  reporter levels in the wildtype 
background (Fig. 3d,e, Supplementary Table S5), suggesting that these genes do not have a major effect on lin-41 
levels on their own. However, in let-7(n2853) background at 15 °C, knockdown of ech-5 or rbd-1 substantially 
increased lin-41 levels, while cey-1 depletion reduced pdpy-30::gfp::lin-41 3ʹUTR  reporter levels in the vulval cells 
(Fig. 3d,e, Supplementary Table S5). RNAi of let-363 led to a mild increase in the reporter levels in let-7(n2853) 
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at 15 °C, although the increase was not statistically significant (Fig. 3e, Supplementary Table S5). Interestingly, 
let-363 depletion was previously reported to increase levels of let-7 target reporters hbl-1p::gfp::hbl-1 in VNC and 
col-10::gfp::lin-41 3′UTR  in hypodermal  cells50. These observations suggest that ech-5, rbd-1, cey-1 and perhaps 
even let-363 may be contributing to regulation of vulval bursting by modulating let-7 miRNA activity.

RNAi knockdown of genes of let-7 and ALG-1 interactors alters mir-48 mir-241(nDf51) mutant phenotype. We 
next asked whether miRNA and ALG-1 interactors might functionally coordinate with other members of the 
let-7 family of miRNAs. let-7 family members mir-48, mir-84 and mir-241 specify developmental timing in C. 
elegans, regulating seam cell divisions and contributing to L2–L3 larval developmental  transition51 (Fig. 4a). 
Deletion of all three miRNAs (mir-48 mir-241(nDf51); mir-84(n4037)) results in reiteration of L2 stage seam 
cell divisions, resulting in an increased number of seam cells and delayed terminal cell differentiation in young 
 adults51 (Fig. 4a). Partial deletion (mir-48 mir-241(nDf51)) mutants display incompletely penetrant heterochro-
nic phenotype which can be monitored using an adult stage marker, col-19::gfp, expressed in seam and hypo-
dermal cells (Fig.  4b). RNAi of 11 genes enhanced the abnormal col-19::gfp expression in hypodermal cells 
(Fig. 4c,d, Supplementary Table S4), with five genes, pab-1, dlst-1, C43E11.9, snr-4, and rbd-1, enhancing the 
phenotype to > 50% (Fig. 4c,d Supplementary Table S4). This suggests that these potential miRNA interactors 
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are required for regulation of developmental timing programs. We also examined the effects of gene knockdown 
on seam cell number. RNAi of three genes, pqn-70, dlst-1, and cey-1, increased the seam cell number of mir-48 
mir-241(nDf51) mutants (Fig. 4f, Supplementary Table S4). RNAi of nine genes suppressed seam cell lineage 
defect, with knockdown of let-363, rbd-1, snr-6, and snr-4, restoring the seam cell number to an average of 
13 or lower (Fig. 4e,f, Supplementary Table S4). We should note that while most genes were assayed across a 
minimum of two independent RNAi experiments, four genes (snr-6, snr-4, let-363, and rnp-7) were tested only 
once, as knockdown of these genes caused lethality, reduced brood size, and slowed growth. Depletion of some 
genes had varied effects on hypodermal col-19::gfp expression and seam cell lineage. Knockdown of C43E11.9, 
pdi-2, and Y71F9AL.9 modified col-19::gfp expression but not seam cell number, while knockdown of pqn-70 
and C28H8.3 modified the seam cell number of mir-48 mir-241(nDf51) animals without affecting hypodermal 
col-19::gfp expression (Fig. 4d,f). This could perhaps be explained by distinct roles these genes may play during 
proliferative seam cell divisions and terminal hypodermal cell fate specification.
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Since let-7 family miRNAs promote L3 cell fates by repressing hbl-151, we sought to determine whether the 
genes that affect heterochronic phenotypes in mir-48 mir-241(nDf51) background do so by regulating hbl-1. We 
used the hbl-1p::gfp::hbl-1 3′UTR  fusion construct as a reporter to assess the effects of gene knockdown on levels 
of HBL-152. Strong hbl-1 expression can be seen during embryogenesis with hypodermal hbl-1::gfp::hbl-1 3′UTR  
expression decreasing beyond detection at the L3  stage52 (Fig. 4g). RNAi knockdown of pdi-2, rbd-1,Y71F9AL.9, 
and cey-1 resulted in higher percentages of L3 animals expressing the reporter in the wild type background, 
potentially indicating a miRNA-independent effect (Fig. 4h, Supplementary Table S5). Since depletion of these 
genes did not affect col-19:gfp expression or other heterochronic defects in the wild type (Fig. 4d), perhaps the 
extent of hbl-1 derepression was not strong enough to impact developmental timing. This notion is supported 
by the observation that hbl-1 reporter expression in mir-48 mir-241(nDf51) background is observed at a higher 
rate (75%, Fig. 4h). Knockdown of enhancers of mir-48 mir-241(nDf51) mutant phenotype derepressed hbl-1 
reporter expression in the mir-48 mir-241(nDf51) background (Fig. 4h, Supplementary Table S5). Overall, these 
findings suggest that our proteomics approach captured proteins that may co-ordinate with let-7 family miRNAs 
to repress their target, hbl-1, and ultimately coordinate developmental timing.

Depletion of ALG-1 physical interactors altered lsy-6(ot150) phenotype. We hypothesized that some of the 
ALG-1 and/or miRNA putative physical interactors could be factors that are generally required for miRISC 
activity. To test this, we RNAi depleted them in lsy-6(ot150) background. lsy-6 is essential for cell fate determi-
nation of chemosensory ASE  neurons53. lsy-6 represses an ASER cell fate promoting transcription factor cog-1, 
leading to an ASEL neuronal specific gene expression pattern. Loss of lsy-6 leads to dysregulated gene expression 
of cog-1 and downstream effectors resulting in defective ASEL cell fate which leads to lack of plim-6::gfp reporter. 
However, the reduction of function mutant lsy-6(ot150) shows partially penetrant cell fate defective phenotype 
in approximately 20% of  animals53 (Fig. 5a). Knockdown of 8 genes modified lsy-6(ot150) defective phenotype 
(Fig. 5b,c, Supplementary Table S4) including previously reported conserved AGO interactors pab-1, and larp-
119 (Fig. 5b). Interestingly, we identified two suppressors (ifg-1, and F28B4.3) of ASEL cell fate defect (Fig. 5b,c, 
Supplementary Table S4). To determine whether these candidate factors can influence ASEL cell fate independ-
ent of lsy-6 miRNA, we knocked them down in wild-type worms and observed no change in plim-6::gfp reporter 
expression in ASEL cells (Fig. 5b,c).

We next determined whether genes that modified lsy-6 phenotype upon knockdown were important for lsy-6 
mediated target activity using cog-1 reporter  system54 (Fig. 5d). cog-1 is expressed in vulval and uterine cells where 
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lsy-6 is absent (Fig. 5d, top left panel). When lsy-6 is ectopically expressed in these tissues under cog-1 promoter, 
there is reduced expression of cog-1 as a result of lsy-6 mediated  repression54 (Fig. 5d, top right panel). We per-
formed RNAi knockdown of top hits from lsy-6 assay in the cog-1 reporter strain and observed no difference in 
cog-1 expression (Fig. 5e, Supplementary Table S5), suggesting that these factors do not regulate cog-1 directly 
in uterine cells. RNAi knockdown of F33D11.10 and psf-1 (enhancers of lsy-6(ot150) phenotype) restored cog-1 
expression in the presence of lsy-6, suggesting their requirement for lsy-6 mediated cog-1 repression (Fig. 5e). 
Knockdown of larp-1 did not restore cog-1 expression to a statistically significant level (Fig. 5e, Supplementary 
Table S5). This could be due to RNAi variability among replicates, or possibly because lsy-6 activity was initially 
assessed in ASE neurons, while cog-1 reporter expression was assessed in uterine tissue. Previously reported 
tissue-specific composition of miRNA-centered complexes and distinct mechanisms of target  suppression44 
support this potential explanation for the observed discrepancy in larp-1 effects. lsy-6(ot150) and cog-1 reporter 
assays collectively demonstrate that we identified factors that may directly or indirectly coordinate with lsy-6, 
affecting its target cog-1 expression.

Overall, depletion of miRNA complex interactors did not produce a phenotype in the absence of the sen-
sitized miRNA mutations (Figs. 3b,c, 4c,d, 5b,c). While we cannot rule out inefficient RNAi knockdown as a 
possible explanation, we hypothesize that the tested factors are not critical for regulation of miRNA target gene 
expression, but rather play a modulatory role in miRNA production and/or activity, or influence gene expression 
downstream of miRNA activity.

Discussion
To better understand miRNA mediated gene regulation, we performed miRNA pulldowns to identify components 
of miRNA-centered complexes. Our proteomics approach captured 211 miRNA-interacting proteins, some of 
which were previously reported to precipitate with other miRISC components (Supplementary Table S2). Knock-
down of 25 out of 39 genes significantly modulated miRNA mutant phenotypes in one or more assays, suggesting 
that our pulldowns captured proteins that coordinate with miRNAs to affect gene regulation (Fig. 6a, Supplemen-
tary Table S4). Of the 25 hits, knockdown of five genes (pab-1, let-363, rbd-1, cey-1, and lys-8) and dcr-1, a positive 
control, consistently modified miRNA phenotypes in two or more assays (Fig. 6a, Supplementary Table S4). Of 
the 22 candidate genes tested, RNAi of six genes modulated let-7(n2853) vulval bursting phenotype (Fig. 6a,b, 
Supplementary Table S4). Five of these functional interactors were identified in let-7 PD experiments, either in 
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let-7 PD alone or in let-7 PD plus additional precipitation experiments (Fig. 6b, Supplementary Table S4), sug-
gesting that let-7 interacting factors indeed functionally coordinate with let-7 activity. Knockdown of 16 putative 
interactors did not modify vulval bursting phenotype of let-7(n2853) (Fig. 6b), perhaps due to tissue or time 
specific physical interactions of these proteins with let-7 miRNA or ALG-1 complexes. Such spatio-temporal 
complex compositions could explain the corresponding lack of activity in vulval tissue. We cannot, however, rule 
out insufficient RNAi knockdown or non-specific interactions of these proteins with anti-let-7 oligonucleotide. 
Knockdown of 18/38 candidate genes genetically modified hypodermal and/or seam cell lineage defects of mir-48 
mir-241(nDf51) mutants (Fig. 6c, Supplementary Table S4). 12 of these factors were identified in let-7 pulldowns 
from wild type and/or mir-48 mir-241; mir-84 mutant backgrounds, suggesting that let-7 PD proteomics captured 
factors that support let-7 family miRNA activity in developmental timing.

As lsy-6 miRNA activity is highly localized and unrelated to miRNAs precipitated in our PD experiments, lsy-
6(ot150) mutation provided a convenient genetic background to identify which factors may be broadly involved 
miRNA-mediated gene regulation. Of the eight functional hits from the lsy-6(ot150) assay, seven factors were 
identified as ALG-1 interactors (Fig. 6d, Supplementary Table S4), consistent with the idea that ALG-1 IP perhaps 
precipitated proteins with broad specificities. Lack of lsy-6(ot150) phenotype modification by knockdown of 
let-7 and/or miR-58-associated proteins suggests that miRNA-centered complexes may be unique to the specific 
miRNAs, possibly due to distinct spatial or temporal expression patterns.

Several genes that modified let-7(n2853) vulval bursting in our study, cey-1, ifg-1, pab-1, and rbd-1 (Fig. 3b,c, 
Supplemental Table S4), were previously tested in an RNAi screen for suppressors of let-7(n2853) vulval burst-
ing, aimed at identifying let-7 target  genes55. We observed multiple differences between the results of our RNAi 
screen, performed at the permissive temperature of 15 °C and the previous work, performed at non-permissive 
25 °C55, which eliminates let-7 activity. For example, rbd-1 knockdown enhanced vulval bursting at 15 °C (Fig. 3c, 
Supplementary Table S4), while it suppressed bursting at 25 °C55, suggesting that rbd-1 may have both let-7 
dependent and independent functions. Knockdown of cey-1 suppressed let-7(n2853) vulval bursting at 15 °C in 
our study (Fig. 3c, Supplementary Table S4), however, no let-7(n2853) suppression was observed at 25 °C upon 
cey-1  knockdown55. These observations suggest that cey-1 may coordinate with let-7 in target mRNA regulation. 
Direct comparisons across RNAi studies performed under different conditions can be difficult to interpret and 
further explorations will be needed to understand the roles of these genes in let-7-mediated regulation of gene 
expression.

How could these putative physical miRNA interactors be coordinating with miRNAs to regulate gene expres-
sion? The factors identified in this study could be acting via multiple mechanisms to affect miRNA mutant 
phenotypes. Some of the miRNA interactors identified in this study have wide-ranging roles in regulation of 
gene expression. Thus, their knockdown could modify the miRNA reduction-of-function phenotypes directly 
through miRNA regulation and/or indirectly through regulation of mRNA lifecycle. For example, pab-1, a 
poly(A) binding protein and a homolog of human  PABPC156, has well established roles in regulating the stabil-
ity of mRNA transcripts by affecting translation initiation and mRNA stabilization and decay. PAB-1 has been 
previously shown to interact with  miRISC19,56 and to aid miRNA-mediated  deadenylation56. The enhancement 
of miRNA reduction-of-function phenotypes upon pab-1 knockdown may therefore be a result of miRNA-
dependent and/or independent functions of pab-1, perhaps through loss of target mRNA deadenylation and 
subsequent mRNA stabilization.

We used the biological and molecular functions predicted by GO term analysis to consider the possible mode 
of action for the identified miRNA and miRISC interactors. RNA binding proteins were among the classes of 
genes enriched in our pulldowns (Fig. 2a–h, Supplementary Table S3). Through functional assays, we identified 
nine interactors with predicted and/or experimentally validated RNA binding activity as genetic interactors of 
miRNA mutants (Supplementary Table S4). Interestingly, knockdown of genes encoding all nine RNA binding 
proteins enhanced miRNA mutant phenotypes, consistent with the recent finding that 3’UTR-binding RBPs 
generally promote miRISC  targeting57. Some of these RBPs could play a role in miRNA processing (Fig. 6e), 
some RBPs could potentially facilitate miRISC targeting or activity (Fig. 6f), while other RBPs could regulate 
localization and stability of miRNAs and/or miRNA targets, ultimately affecting gene regulation.

Translation regulators were also captured in miRNA pulldowns and ALG-1 IP (Supplementary Tables S1, S3), 
with two of them modifying miRNA phenotypes. Depletion of ifg-1, encoding translation initiation factor 4G 
(eIF4G)58, suppressed the ASEL cell fate defect of lsy-6(ot150) (Fig. 5b). Given the potential physical association 
of IFG-1 with ALG-119, it is possible that IFG-1 and miRNAs share common targets; with loss of IFG-1 reducing 
translation through loss of initiation, thereby suppressing target mRNA overexpression in miRNA reduction 
of function mutants. RNA helicase F33D11.10 co-precipitated in let-7 pulldown (Supplementary Table S1) and 
was previously identified as an interactor of ALG-119. Loss of F33D11.10 activity enhanced the ASEL cell fate 
defect of lsy-6(ot150) mutant (Fig. 5c). RNA helicases have been previously implicated in miRNA processing 
as well as miRISC  activity59 and F33D11.10 may be similarly involved in either facilitating miRNA processing, 
miRISC activity, or both.

A surprising category of interactors identified in our study was the intermediary metabolic enzymes. RNAi 
depletion of metabolic enzymes DLST-1, OGDH-1 and ECH-5 modified miRNA mutant phenotypes in our 
study (Figs. 3c, 4d,f, Supplementary Table S4). Several reports have suggested that some metabolic enzymes pos-
sess RNA binding functions, previously unidentified due to a lack of conventional RNA binding  domains60–62. 
It is possible that the metabolic enzymes identified in our study possess similar dual roles. For instance, ech-5 
encodes a homolog of human AU RNA binding methylglutaconyl-CoA hydratase (AUH)63. In humans, AUH 
plays a dual role as a hydratase and as an RBP, binding AU-rich elements in the 3′ UTR of  mRNAs64. Other ARE-
binding proteins have been previously shown to aid in rapid degradation through  deadenylation65. In our study, 
ECH-5 co-precipitated with let-7 miRNAs and ech-5 depletion enhanced let-7(n2853) vulval bursting phenotype 
(Fig. 3c, Supplementary Table S1). Thus, we might speculate ECH-5 could bridge miRISC complex interaction 
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with deadenylation machinery, with loss of ech-5 exacerbating the target mRNA stabilization in miRNA mutant 
backgrounds (Fig. 6g). How other metabolic genes such as dlst-1 and ogdh-1, key players of TCA  cycle66,67, 
influence gene regulation remains unclear. Thorough investigations into molecular mechanisms by which these 
factors coordinate with miRNAs in gene regulation will be needed.

Interestingly, LET-363, C. elegans mTOR was identified as an interactor of all three miRNAs in this study 
(Fig. 1f, Supplementary Table S1). RNAi of let-363 enhanced the vulval bursting of let-7(n2853) and suppressed 
the seam cell lineage defect of mir-48 mir-241(nDf51) mutant (Figs. 3c, 4f, Supplemental Table S4). While we did 
not test for functional let-363 requirement in our lsy-6(ot150) assay, RNAi of let-363 was previously reported to 
exacerbate the cell fate specification defect of lsy-6(ot150)50, consistent with a let-363 role in miRNA-mediated 
gene regulation. mTOR activation has been reported to downregulate miRNA biogenesis through Mdm2-medi-
ated DROSHA degradation in  mice68. However, the physical association of LET-363 with miRNAs was surprising. 
If confirmed, these persistent physical and functional interactions of LET-363 with miRNA-centered complexes 
should be further explored to establish the mechanistic connection between mTOR and miRNA-mediated gene 
regulatory activity.

Do miRNAs within the same family associate with same set of protein interactors? let-7 family miRNAs are 
well-studied in C. elegans. The four most abundant members of the let-7 family, let-7, mir-48, mir-84 and mir-241, 
are crucial components of the heterochronic pathway, regulating cell fates during larval  development32,53. The 
miRNAs are thought to function semi-redundantly, with distinct targeting  capabilities69. Part of their ability to 
target unique targets could come from discrete protein interactors adding a layer of specificity between a let-7 
family miRNA and its target. Yet not much is known about the protein interacting partners of individual members 
of this family. By performing pulldowns with a let-7 specific oligo from wild type and mir-48 mir-241(nDf51); 
mir-84(n4037) background, we began the task of unraveling which interactors may be specific to let-7 itself or 
other family members (Fig. 1h, Supplementary Table S1). For example, ECH-5 and C04E6.11 were identified 
in let-7 pulldowns from both genetic backgrounds, suggesting that they most likely interact with let-7 (Sup-
plementary Table S1). RNAi depletion of ech-5 or C04E6.11 enhanced the let-7(n2853) phenotype but showed 
no effect on the mir-48 mir-241(nDf51) associated phenotypes (Figs. 3c, 4d). Thus, it is possible that ECH-5 and 
C04E6.11 specifically interact with, and provide functional support for, let-7 itself. CEY-1 was captured in let-7 
pulldowns from both wild type and mir-48 mir-241; mir-84 mutant background, but depletion of cey-1 suppressed 
let-7(n2853) vulval bursting and enhanced mir-48 mir-241(nDf51) mutant phenotypes (Figs. 3c, 4d). This sug-
gests that cey-1 may functionally interact with multiple members of the let-7 family, potentially through distinct 
mechanisms. Previously, miR-241 complementary oligo pulldown captured CEY-144, although it remains difficult 
to assess specificity, as miR-241 oligo may capture other members of the family, similar to let-747. Overall, we 
cannot rule out the possibility that some of the factors precipitating in miRNA pulldowns are non-specifically 
interacting with the precipitating oligo, rather than with the miRNA-centered complexes. It is also possible that 
let-7 interactions may be altered in the mir-48 mir-241(nDf51); mir-84(n4037) background. Similarly, the severe 
developmental timing defect of mir-48 mir-241(nDf51); mir-84(n4037) animals could hinder identification of 
bona fide interactors of let-7 in that background. However, the high rate of functional relevance of these factors 
for miRNA-mediated gene regulation suggests that this approach captures auxiliary factors that may coordinate 
with miRNAs mediated gene regulation.
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