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ABSTRACT OF THE DISSERTATION 

 

Shape Analysis Methods for 3D Brain and Skull Imaging 

 

by 

 

Boris Alexander Gutman 

Doctor of Philosophy in Biomedical Engineering 

University of California, Los Angeles, 2013 

Professor Paul M. Thompson, Chair 

 

Anatomical shape analysis problems are ubiquitous in medical imaging. In brain MRI 

imaging, the problem arises when comparing cortical features of functional importance, such as 

gray matter thickness, as well as when performing fine-grained analysis of sub-cortical 

structures. Two general types of approaches have been developed over the years to perform 

quantitative shape comparison of anatomy: the first, and more intuitive approach, attempts to 

bring surface models into dense point-to-point correspondence; the alternative approach avoids 

the need for dense registration by exploring intrinsic global properties of the shape. Each of these 

methods has their advantages and disadvantages, and I explore examples from each in 
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applications to brain imaging. The general underlying theme of my work has been spherical 

parametric shape registration, and other descriptions based on spherical maps. Several times 

throughout this work I utilize the theory of spherical harmonics, both in their scalar and vector 

form as a means of parameterizing and describing brain anatomy. Using this theory, I develop 

several algorithms for rigid and non-rigid shape registration for a variety of brain shapes, which 

are described in Chapters 1-4.  

In Chapter 5, I present an application of the methods developed in previous chapters to 

developing brain imaging biomarkers of Alzheimer’s disease. I show that using the new surface-

based features and statistical learning, it is possible to develop biomarkers which outperform all 

others to date in terms of sensitivity to disease-modifying effects and disease specificity.  

A more recent field of application for shape-based analysis comes from human skull 

models generated from conical CT imaging. The general registration problems are similar in 

spirit to brain imaging. However, the much lower signal-to-noise ratio and greater topological 

variability of the shape models require a new set of tools to deal with these shapes in practice. In 

Chapter 6, I develop an approach to modify the topology of a skull surface while preserving 

useful features, and again return to the sphere for dense registration and the creation of shape 

atlases. Due to the noisy nature of the data, a fast non-local non-linear correspondence search is 

developed for pairs of skull shapes from different subjects. I show that this search is crucial for 

high-quality registration based on resulting population-based averages and individualized shape 

analyses.  
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INTRODUCTION 

As image acquisition becomes ever-more widespread in medical applications, there is an 

increasing need for more accurate, faster image processing methods focused on capturing and 

quantifying anatomy. Clinical brain imaging studies in particular now involve processing of 

hundreds, and sometimes thousands of images for statistical analysis, with the hope of detecting 

disease effects, effects of growth and aging, etc. One of the most salient aspects of anatomy is 

the geometry of the surfaces which form the boundaries of important, functionally distinct 

anatomical regions. Thus, anatomical shape analysis was born as a discipline to supplement 

existing standard 3D image analysis approaches [1, 2]. In addition to improved visualization, 

such analyses are also typically faster than dense 3D-based approaches due to the reduced 

dimensionality of the problem. The general underlying theme of my work is spherical parametric 

shape registration, and other descriptions based on spherical maps. Several times throughout this 

work I utilize the theory of spherical harmonics, both in their scalar and vector form as a means 

of parameterizing and describing brain anatomy. Using this theory, I develop several algorithms 

for quantifying shape, which are described in Chapters 1-4, and 6.  

Shape-based approaches can be crudely categorized into two categories: the first, and 

more intuitive approach, attempts to bring surface models into dense point-to-point 

correspondence; the alternative approach avoids the need for dense registration by exploring 

intrinsic global properties of the shape. Each of these methods has their advantages and 

disadvantages, and I explore examples from each in applications to brain imaging. While the 

global shape signatures have the benefit of being invariant to Euclidean motion, as is desired for 

analyzing shape, they generally do not lend themselves to reconstruction, and are therefore 
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theoretically not unique to the particular shape [3-5]. Further, there is often some difficulty in 

visualizing the meaning of such description from an anatomical perspective. I show one possible 

means of visualizing an invariant description in Chapter 2, while also showing that the shape 

signature coupled with supervised machine learning can distinguish between a diseased subject 

and a control in an Alzheimer’s study.  

The more intuitive approach – one that involves registering surfaces for dense 

correspondence – is typically more computationally challenging. Further, simply having a 

correspondence does not immediately lead to a local description of the shape. One must design a 

measure of shape that is appropriate for the particular anatomy. In Chapter 1 I develop a robust 

non-local registration approach for bringing general shapes into rough alignment, improving on 

prior work [6, 7]. In Chapter 3 I return to this problem for the case of subcortical structures, and 

develop an improvement on existing medial core methods [8-10] for shape description and non-

linear registration. 

In Chapter 4, I continue the effort to improve shape registration, in this case delving into 

the problem of matching the complex folding patterns of the human cortex. My approach is again 

to use the spherical domain, this time by adopting several well-known Euclidean image 

registration algorithms [11, 12] to the 2-sphere. I develop a technique for smoothing spherical 

tangential fields, which are used to encode the non-linear deformations which match shapes. This 

fast spherical vector smoothing proves crucial for the registration process. The resulting 

algorithms are the fastest spherical adaptation-type algorithms to date [13], and are shown to 

accurately match folding patterns across subjects. 
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In Chapter 5, I present an application of the methods developed in previous chapters to 

developing brain imaging biomarkers of Alzheimer’s disease (AD). Alzheimer’s disease, a 

neurodegenerative disorder associated with neurofibrillary tangles in the brain, is quickly 

becoming one of the costliest diseases in the developed world. AD-associated costs in the U.S. 

approach $100 billion [14]. As a result, there is much interest in developing disease-slowing 

drugs to help reduce this cost, which requires well-formed cognitive as well as biological 

biomarkers of the disease which are sensitive to drug effects. Biomarkers of Alzheimer’s disease 

based on brain imaging must offer relatively high power to detect longitudinal changes in 

subjects scanned repeatedly over time [15-17]. Much research has been conducted towards this 

end in recent years, focusing mainly on developing core morphometric techniques aimed at 

longitudinal studies. While continuing this effort, I also address the need to combine the 

measures into one salient “atrophy score,” that is both interpretable and allows for reduced 

sample sizes in clinical studies. I show that using the new surface-based features and statistical 

learning, it is possible to develop biomarkers which outperform all others to date in terms of 

sensitivity to disease-modifying effects and disease specificity [18].  

A more recent field of application for shape-based analysis comes from human skull 

models generated from conical CT imaging. The general registration problems are similar in 

spirit to brain imaging. However, the much lower signal-to-noise ratio and greater topological 

variability of the shape models require a new set of tools to deal with these shapes in practice. In 

Chapter 6, I develop an approach to modify the topology of a skull surface while preserving 

useful features, and again return to the sphere for dense registration and the creation of shape 

atlases [19]. Due to the noisy nature of the data, a fast non-local non-linear correspondence 

search is developed for pairs of skull shapes from different subjects. I show that this search is 
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crucial for high-quality registration based on resulting population-based averages and 

individualized shape analyses. 
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CHAPTER 1 

Initial Shape Registration: Rigid Alignment on the Sphere 

 

This chapter is adapted from: 

B. Gutman, Y. Wang, L. M. Lui, T. F. Chan, P. M. Thompson, and A. W. Toga, "Shape 

Registration with Spherical Cross Correlation," MICCAI Workshop on Mathematical 

Foundations in Computational Anatomy (MFCA ’08), 2008. 

 

Abstract 

We present a framework for shape alignment that generalizes several existing methods for 

parametric registration. We assume that the shape is a closed genus zero surface. Our framework 

requires a diffeomorphic surface mapping to the 2-sphere which preserves rotation. The 

registration is based on maximizing spherical cross-correlation function of surface-intrinsic 

scalar attributes, weighted by the cross-correlation of the parameterization distortion. The 

similarity measure may be customized according to the surface-intrinsic scalar functions used in 

the application. The optimization is global and non-iterative, leading to fast running times.  

 

1.1 Introduction 

Problems of shape alignment are ubiquitous in medical imaging. While many problem-specific 

solutions exist for particularly common cases (e.g. cortex, hippocampus) [20-22], high quality 
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general shape alignment remains an open problem. Our framework generalizes some existing 

methods without assuming the existence of any landmarks or data-specific features. We assume 

that the shape is a closed genus zero surface. Our framework requires a diffeomorphic surface 

mapping to the 2-sphere which preserves rotation. Our similarity measure is a global spherical 

cross-correlation function of surface-intrinsic scalar attributes, weighted by the cross-correlation 

of the parameterization distortion, sometimes known as the conformal factor. The final similarity 

measure may be customized according to the surface-intrinsic scalar functions used in the 

application. Higher order scalar functions such as mean and Gaussian curvature may be used in 

conjunction with low order ones, like distance to mass center, to incorporate more localized 

shape information in addition to global measures. In this study we have used a global conformal 

mapping as the spherical parameterization, and only the distance to mass center as intrinsic 

scalar shape measure. Using our method, we created atlases and registered shapes from a 

population of hippocampi. 

 

1.2 Previous Work 

There is doubtless a galaxy of existing general shape alignment methods, and for the sake of 

brevity we will only mention those most prevalent and those closest to the present work. Davies 

[23] has used an information-theoretic framework to formulate shape alignment as a minimum 

description length (MDL) problem. Here, each point is treated as an independent variable, while 

the cost function is aimed at reducing the “code length” of each shape’s representation in this 

shape space. The beauty of this statistical approach lies in its ability to register multiple shapes 

simultaneously without the need to select a “target” shape. Of course, this is also its limitation, as 
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for example when a known atlas exists and all data shapes are to be registered to it. The method 

requires a spherical diffeomorphism like ours. 

Variants of the well-known ICP algorithm are another variety of recent developments in 

rigid shape alignment. Granger [7] introduced the EM-ICP method. ICP’s proclivity for 

terminating at suboptimal local minima is greatly reduced by treating the problem as a general 

expectation-maximization problem. A multi-scale approach is used: at coarser scales, the 

blurring factor is sufficient to give crude but correct alignment, which is improved upon in later 

refined stages, where the algorithm approaches the original ICP. Though quite robust, the 

method depends on the scale of blurring factor being set correctly to avoid local minima. Thus, 

avoiding them is not guaranteed. Our method, by contrast, performs a global search non-

iteratively. Thus, a global maximum correlation is guaranteed irrespective of the shape’s original 

orientation without the need to tune any parameters. 

Much like our algorithm, some previous methods have used spherical harmonics for rigid 

shape alignment. Among them are the first order ellipsoid (FOE) method, popularized by 

Brechbuhler [6] and used extensively in medical imaging [10, 24] applications and SHREC, a 

recent variant of the ICP algorithm. Like ours, these methods make use of rotational properties of 

spherical harmonics. 

FOE alignment uses the fact that a shape reconstructed from only the first order spherical 

harmonics forms an ellipsoid in object space. The method works well when the ellipsoid’s three 

axes have distinct lengths, which largely depends on the shape itself and the degree to which the 

spherical parameterization pre serves area. The method gives only a crude alignment and fails 

when two or more axes have similar lengths. Even with a proper ellipsoid, there is a symmetry 

problem. 
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SHREC [25] is another variation of the ICP. As in our case, the correspondence search is 

done iteratively on the sphere via Euler’s rotation formula and icosahedral subdivision. The 

mapping satisfies our conditions, while the similarity measure is the RMSD. Since RMSD 

depends on the position of the object in space, the algorithm requires an initial pre-alignment in 

both spaces. Rigid Quaternion Transform (RQT) is used to align shapes in R
3 

after each iteration 

of parametric alignment. The main limitation of this algorithm is that it is not guaranteed to 

converge to the optimal solution (i.e. a correspondence which, when applied to RQT, minimizes 

RMSD). This is because the optimization in parameter space depends on the object’s position in 

native space. Thus, though the search is more global than in the original ICP, the parameter 

space search is still locally biased. The original ICP suffers the same problem. 

The last algorithm uses a brute force correlation: it computes a cost function anew for 

each rotation. To mitigate the cost of this, a hierarchical approach is used. Instead, we reduce 

parameter space alignment to a global refined search via the FFT. Our numerical scheme 

separates the effects on computation time of the level of detail used for alignment and the 

number of rotation samples. In SHREC, these two are tied together owing to their brute-force 

nature. This means that we can refine rotation space tessellation while maintaining the same 

level of surface detail without significantly affecting computation time. Our use of orientation-

invariant shape attributes in conjunction with scale invariant cross-correlation makes our 

approach completely independent of changes in object position and size. SHREC, by contrast, 

requires volume normalization as a pre-processing step. 
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1.3 Mathematical Preliminaries 

1.3.1 Spherical Harmonics 

Spherical harmonics are functions        which are simultaneously eigenfunctions of the 

Laplace-Beltrami and the angular momentum operators; they are expressed explicitly as 

  
            √

            

        
  

                                               

for degree       | |   , where   
     is the associated Legendre polynomial. Spherical 

harmonics form a countable orthonormal basis for square-integrable functions on the sphere. A 

projection of a function          onto this basis yields the SPH coefficients 

      ̂  〈    
 〉                                                                        

where 〈   〉 is the usual    inner product.  

 A key property of spherical harmonics is their behavior under a shift on the sphere. Given 

an element of the rotation group                 , a rotated spherical harmonic is 

expressed as  

  
     ∑   

           
                                                             

| |  

 

where  

       
                    

                                                              

      are the Euler angles of   and     
  are irreducible representations of       [26], 

    
     ∑      

√                        

                          
 

                           

                                . 
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In particular, (1.3) implies that  

                 ̂  ∑     ̂    
                                                  

| |  

 

1.3.2 Discrete spherical cross correlation 

Given two functions           , their spherical cross-correlation is defined as  

        ∫                                                                  
  

      

In the special case where              ,         is maximized when     , assuming that 

  is not spherically symmetric. For bandlimited functions, i.e. for those functions whose 

spherical harmonic coefficients vanish for all     for some bandwidth  , the correlation 

becomes 

        ∑  ̂        ̂   
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

| |  
   

                                                          

Here,      is the operator associated with the rotation matrix. The expression for shifted 

spherical harmonic coefficients (1.6) implies that 

        ∑  ̂    ̂   
̅̅ ̅̅ ̅    

                                                               

     

 

This expression forms the basis of our similarity measure. 
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1.3.3 Fast cross correlation via FFT 

The material presented so far has been used in the prior works we mentioned. Now, we present a 

simple lemma which leads to a great speed up in computing the correlation (9). It suffices to 

make the observation that any rotation          may be expressed as a product of two rotations: 

 

           (  
 

 
 
 

 
  )   (    

 

 
   

 

 
)                                  
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This simple result has been shown elsewhere [27], but to the best of the authors’ knowledge this 

is the first time it has been used for shape registration. 
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1.4 Shape registration with cross correlation 

1.4.1 Similarity Measure 

Given a 2-manifold M ⊂ R3, a diffeomorphic spherical parameterization        and a 

family of rotation-invariant shape attributes              , let 

                                                                                 

Then, given two manifolds       and their corresponding shape attribute map  {    }   

 
  

{    }   

 
, we define our shape similarity measure as 

      
          

   ∑  

 

   

          
                                                

where    are user-defined shape attribute weights, and       are spherical maps of the conformal 

factor of each manifold. These last two are used to mitigate the fact that scalar functions which 

appear similar on the sphere may in fact represent vastly differently-sized regions on the original 

surfaces due to varying area distortion of the spherical map. Because we recover shifts in object 

space with shifts on   , we require that the spherical parameterization preserve rotation in the 

following sense. Suppose         and        
        are spherical maps. Then, 

           
                                                            

Many existing parameterizations satisfy this requirement, e.g. [6, 28]. 

 

1.4.2 Previous methods as special cases 

SHREC and FOE are special cases of our method. FOE simply takes the conformal factor   to be 

constant and uses spherical harmonics up to order one only. This is equivalent to setting the 

bandwidth B to 2. The single shape attribute used is the Euclidian distance to the surface average 
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value. This is roughly the same as distance to mass center, especially for area-preserving 

spherical maps with which FOE is typically used. 

SHREC minimizes RMSD, which can be reduced to spherical cross-correlation since 
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Thus, minimizing RMSD is equivalent to maximizing the correlation of the two shapes’ spatial 

coordinates. These are, of course, not quite the scalar shape attributes we intend to use in our 

similarity measure. SHREC’s dependence on iterative RQT refinement for correspondence 

optimization makes it less robust. This is the price of using orientation-dependent features. 

Further, it is not clear whether the correspondence which, when applied to RQT, minimizes 

RMSD is truly the best correspondence. One can conceive two shapes with some patches quite 

similar and other very different. One may then like to align the two objects to get the best 

correspondence between the similar patches without regard to the different ones. In such a case, 

cross correlation of invariant features will achieve a better alignment. Still, SHREC could be 

made faster with the use of FFT-based correlation rather than a brute-force approach. 

SHREC requires         operations, where   is again the bandwidth and NR the 

number of rotation samples. This is because recomputing     
     and the corresponding shifted 

spherical harmonic coefficients requires       operations. Our method requires      

        .    is roughly also of the order    even with hierarchical sampling; this means we 

have effectively reduced the order of operations from       to        This allows us to sample 
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rotation space more finely without a significant change in execution time. It also makes using 

higher order coefficients and hence greater level of detail for alignment purposes feasible. We 

see this in experiments below. 

 

1.5 Experimental Results 

We used a population of 45 right hippocampal surfaces extracted from healthy elderly subjects. 

Our spherical parameterization was the global conformal map of Gu. et al. [28]. Spherical 

harmonics were computed with the spherical FFT of [29] and cross correlation was computed 

with the help of the FFTW library [30]. SO(3) was sampled at 200 X 100 X 200 samples, which 

yielded an angle frequency of ∼ 1.8 degrees. A bandwidth of 64 was used throughout the testing. 

Only the distance to mass center was used as an invariant shape attribute for both populations. 

As a preliminary experiment, we applied the cross correlation algorithm to a pair of 

hippocampal surfaces shown in Figure 1A and 1B. Here we see that the initial spherical maps 

do not provide a very good correspondence. Figure 1E shows the result of a spherical shift based 

on cross correlation. Figure 2 shows two point-wise averages of the shapes, before and after 

cross correlation. The improvement is obvious. For B = 64, the average running time for above 

experiment was 44.6  3.6 seconds on a Gateway 7426GX Laptop with a 2.41 GHz AMD 

processor and 1 GB RAM, tested with 45 hippocampal surfaces. This includes computation of 

spherical harmonics, rotation matrices     
  and correlation. Shen [25] reports an average of 23.5 

seconds running time on a common laptop for SHREC, while using B = 12. One would expect 

SHREC to take (64/12)
3
 times longer for our bandwidth (see above), or on the order of 60 

minutes. As a preliminary comparison, we implemented a modified version of SHREC. 

 



15 
 

 

Fig. 1. (A), (B): Two randomly selected hippocampal surfaces, target shape (A) and shape to be registered 

(B). The red circle is homologous to the North Pole on the sphere; the blue circle, to the South Pole; and 

the blue line, to ϕ=0. The initial spherical mappings show significant misalignment. (C), (D): 

reparameterizations based FOE alignment (D) and SHREC (C). (E): reparameterization based on 

spherical cross correlation at B = 64.  
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Fig. 2. Average of two shapes from Figure 1 before (A) and after (B) correlation. 

 

The only difference with the original is that at each iteration, our parameter alignment was 

initially done with cross correlation as described above, and subsequently refined according to 

the scheme outlined in [25]. Again, a bandwidth of 64 was used. We only present the results of 

one subject in Figure 1C. Here, we can see that the initial alignment determines the final result 

to a great degree. This example converged after only 4 iterations. Execution time was close to 7 

minutes. Since the execution time reported in [25] was for a MATLAB implementation, while 

ours is in C++, and because we use a fast cross-correlation, this time is significantly lower than 

the 60 minute estimate. 
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Fig. 3. Average of 45 right hippocampi with (A) FOE, (B) cross correlation, bandwidth = 16, (C) cross 

correlation, bandwidth = 64. 

 

To test the effect of higher coefficients on correlation quality, we increased the 

bandwidth to 128, while keeping the same rotation tessellation and correlated 6 of the 45 subjects 

in our HP population. Running time increased to 404  10.4 seconds, while the shape distance to 

the target hippocampus decreased on average only 3.9  9.4 %.  

To test for the effect of rotation sampling frequency, we also decreased    to 100 X 50 X 

100 samples, while keeping the bandwidth at 64. Running time was 38.2  3.5 seconds, an 

insignificant improvement in speed. In another experiment, we limited our bandwidth to 16 and 

reran cross-correlation based alignment while keeping angle resolution at 200 X 100 X 200. 

Execution time was reduced to about 3 seconds. 
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Table 1. Weighted point-wise distance of 45 (44) hippocampal surfaces by registration method. 

 

Method Distance to Target Distance to Average 

FOE 4.14  1.33 2.89  1.05 

Cross Cor. B = 64 2.64  0.92 2.36  0.75 

Cross Cor. B = 16 3.38  1.06 2.33  0.85 

 

We constructed hippocampal averages using FOE and two versions of cross-correlation 

(B = 16 and B = 64) and compared results. First, a shape was selected, and all remaining shapes 

registered to it using each of the methods. Shapes were then averaged, normalized for volume 

(after registration, only for a fair distance comparison) and a rigid quaternion transform applied 

to each shape to align it both to the target subject and to the volume-normalized average shape. 

Our shape distance was defined as vertex-wise distance between the surfaces, weighted by 

product of the sum of areas of adjacent triangles in each mesh. The results are in Table 1. The 

table does not show a notable fact: distance to the target subject was improved by our method for 

every subject compared to FOE. Minimal improvement was 8%, and maximal 117%. All but one 

subject registered with B = 64 had superior alignment to the result of using B = 16. Compared to 

FOE, B = 16 reduced shape distance for all but 5 subjects. Table 2 shows a summary of intra-

subject differences by registration method. Using a bandwidth of 16 gives a significant 

improvement compared to FOE, but the results are still much improved by using a bandwidth of 

64. Figures 3A-3C illustrate the hippocampal averages achieved with the three methods. Note 

that these averages were computed without spatially aligning the subjects to the target. Doing so 

would have likely given a more detailed shape. 
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 We should note here that the poor result of the FOE average is due in part to the large 

area distortion of the conformal map. The tail of the hippocampus is mapped to such a small 

region on the sphere that it is very hard to match well. We see in Figure 3A that the tail suffers 

the most. The resulting spherical harmonic representation contains much redundant information; 

hence, the area distortion partially cancels out the benefits of using high order coefficients. The 

mapping used in [6, 25] is by contrast area-preserving, and hence better suited for alignment. The 

results of [6, 10] look closer to the one achieved here with cross correlation. This is, however, 

indicative of the potential our method has when applied to area-preserving spherical maps. 

 

Table 2. Intra-subject improvement by registration method, in percentage of the second method’s result. 

 

Common shape FOE vs. B = 64 FOE vs. B = 16 B = 16 vs. B = 64 

target 61%  26% 25%  23% 30%  18% 

average 24%  29% 26%  22% -6%  29% 

 

1.6 Conclusion 

We have presented a framework for shape alignment which generalizes several existing methods. 

Our method is robust, fast and allows for use of greater detail in alignment than was possible 

before. The correspondence search is performed globally and no pre-alignment is required; thus, 

the result and computation time are independent of the shape’s size and initial orientation. 

Reaching a global maximum is always guaranteed. Our method can be tailored to suit a 

particular application by selecting the appropriate shape features for a particular data type. We 

intend to experiment with various shape attributes, apply area-preserving spherical maps to our 

method and extend the technique to automated patch selection and matching. 
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CHAPTER 2 

Global Shape Description: Application to Disease Classification 

This chapter is adapted from: 

B. Gutman, Y. Wang, J. Morra, A. Toga, P. Thompson, “Disease classification with  

hippocampal shape invariants,” MICCAI 2008 Workshop on Computational Anatomy and  

Physiology of the Hippocampus (CAPH ’08):76–86. 

 

B. Gutman, Y. Wang, J. Morra, A. W. Toga, and P. M. Thompson, "Disease classification  

with hippocampal shape invariants," Hippocampus, vol. 19, pp. 572-8, Jun 2009. 

 

Abstract 

Weighted spherical harmonic shape descriptors are based on subspaces of        spanned by 

spherical harmonics of a single degree. Such shape descriptors incorporate both shape and 

scaling information, while preserving invariance with respect to other non-reflexive affine 

transformations. Thus, their application allows for direct comparison of shapes across subjects, 

resolutions and within-subject components. On the other hand, spherical conformal 

parameterization typically leads to highly variable conformal (scaling) factors across the entire 

shape. While an issue for surface registration, this becomes an advantage when using invariant 

frequency-based descriptors: the descriptors attain a spatial interpretation, with higher-order 

terms corresponding to regions with a higher conformal factor. We validate our novel description 

in a classification study of Alzheimer’s Disease vs. control subjects. With global descriptors 

forming our bag of features, Support Vector Machine classification of 49 Alzheimer(AD) and 63 
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elderly control subjects yielded 75.5% sensitivity and 87.3% specificity with 82.1% correct 

overall in a leave-one-out test. We show that our description contributes new information to 

simpler shape measures. Armed with a rigid shape registration tool, we also present a way to 

visualize variation in global shape description as a local displacement map, thus clarifying the 

descriptors’ anatomical meaning. 

 

2.1 Introduction 

Shape of subcortical structures in the human brain is known to correlate with some 

neurodegenerative diseases. This fact has motivated several approaches to quantifying 

subcortical shape in anatomical studies. Since we think of an object’s shape as separate from 

size, position and orientation, shape quantification must be made invariant to these factors. 

Generally, two approaches have been used.  

In the first of these, shape measures are tied to particular locations on the hippocampus 

[9, 31]. These methods lend themselves to immediate visualization. It is easy to see which 

regions of the shape contain meaningful variation. The disadvantage of this approach is the need 

to normalize the data with respect to those factors that are not intrinsic to shape. In other words, 

one must first bring hippocampal models into register and align them in space. This 

normalization step introduces additional noise to the data. Also, in recent years a great multitude 

of ways to spatially register shapes has been developed and each one can lead to a slightly 

different result. 

In the second approach, a global shape description is used instead. Examples of this 

include spherical moments, spherical harmonics, etc. [3, 32]. Although these measures are 
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entirely intrinsic to the object’s shape and require no registration, it is usually not possible to 

reconstruct a surface from them or relate them to particular regions where the variation occurs. 

For this reason they have not been widely used in anatomical studies since their inception.  

This work combines these two approaches. The first part presents global shape 

description as a viable alternative in detecting Alzheimer’s disease (AD). The second shows a 

way to visualize meaningful variation in global description locally. We base our description on 

invariant properties of spherical harmonics (SPH). Such a description has already been proposed 

in the graphics community [3] and prior subcortical anatomy studies [33]. To validate our 

description’s ability to discriminate between patients and controls, we use a linear Support 

Vector Machine (SVM) classifier with leave-one-out testing.  

Finally, taking those features of our description which are most effective in separating 

patients from controls, we reconstruct each hippocampal model from a mixed spherical harmonic 

spectrum. In this mixture, only those components which are selected for SVM are kept from the 

original individual model, while the rest are taken from the population’s average shape. By 

analyzing local distance between the average shape and each mixed reconstruction, we detect 

regions of the hippocampal shape most affected by the selected global descriptors. 

 

2.2 Materials and Methods 

2.2.1 Data 

Our data set consists of 112 1.5T T1-weighted magnetic resonance imaging (MRI) scan images 

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, with 49 AD patients 

and 63 controls, age and gender-matched (mean age: 76.14, 76.76, P = 0.609). Initially, structural 



23 
 

MRI images are automatically converted into binary hippocampal masks with the help of the 

recent Auto Context Model [34]. ACM uses a few hand-traced hippocampi as a training set for 

AdaBoost to create a voxel-level classification function. We then convert the masks to a signed 

distance function and apply topology-constrained mean curvature flow following the topology-

preserving geometric deformable model algorithm [35]. Following triangle mesh extraction and 

minor processing [36], a quick visual check is done on each mesh to ensure that the original 

masks correspond to a hippocampal shape. 

 

2.2.2 Global Description 

After extracting triangle mesh models of our hippocampi, we generate an invariant description of 

each shape. This generation consists of three steps: (1) spherical conformal parameterization 

following [28], (2) computing SPH coefficients of each surface with the help of a spherical FFT 

[29], (3) computing shape invariants from SPH coefficients. 

To preserve rotational invariance of our description we require that the spherical 

parameterization map a rotated object onto a sphere such that the new spherical image is a 

rotated version of the original (these two rotations needn’t be the same, although they usually 

are.) This is the motivation for choosing the global conformal map. Once spherically mapped, 

the surfaces are represented by the three inverse maps              . The SPH-based shape 

invariants are then defined as 

     ∑ ∑ ‖   
 ̂ ‖

 

| |  

                                                        

  {     }

 

To see that this description is invariant under Euclidean motion, we start by revisiting equation 

(1.3) from the previous chapter. The immediate implication is that spherical functions which are 
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contained in a subspace of        formed by harmonics of a single degree,      

    {  
      

       
     

      
 }, remain in this subspace after a rotation of the function on the 

sphere. Since a rotation leaves the norm of a function unaltered, given if                we 

have 

∑ ‖   ̂‖
 

| |  

 ‖      
 ‖

 
 ‖      

 ‖
 
 ∑ ‖   ‖ 

| |  

                         

Further, taking into account the linearity of       we can sketch a proof of     ’s invariance. Of 

course, we must also remember that a rotation of the shape in its native space will alter the image 

of the spherical scalar functions to be rotated parametrically. Letting          {     } represent 

the elements of R, suppose        ∑ ∑ ‖   
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Note the use of the rotation-preserving property of our conformal map above. Now applying 

(2.2) to the last line above, we see that  

      ∑ ∑ ‖〈           
 〉‖

 

| |    {     }

 ∑ ∑ ‖   
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| |  

                      

  {     }

 

By setting the zero-order coefficient to zero we achieve translational invariance. Essentially, the 

l-th shape invariant is the    norm of the Euclidean distance from the surface to the average 

value of the spherical map, projected onto the l-th degree subspace. Note that the average 
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value will only coincide with the center of mass if the mapping is equiareal. 

 

2.2.3 Support Vector Machines classification 

Linear SVM [37] seeks an optimally separating hyperplane to distinguish two classes within a 

feature space. Given {     }    
 data points and their class   , linear SVM minimizes ‖ ‖  

 ∑    
 
   constrained by                , where    are the slack variables, measuring the 

degree of a data point’s misclassification, and w are the weights defining the hyperplane. An 

unlabeled example is classified by the sign of the SVM score       . In this study, we use 

Joachims’ svmPerf package, described in [38]. Shape invariants form our feature space. We 

compute spherical harmonics, and consequently the shape description, up to a bandwidth l < 256. 

Since we have a left and a right hippocampus, we have a total of 510 features. Though far 

smaller than the initial sets of locally-based models, this is still too large to train a good model 

given our number of subjects. Feature selection is needed. 

Feature selection is a problem encountered in many SVM classification studies, and a 

wide array of literature on the subject exists [39]. The most used selection method in AD studies 

seems to be optimal thresholding of SVM weights with cross-validation within the training set 

[40]. For now we have instead chosen simple t-statistic threshold as selection criteria. Thus, for 

each test subject the t-statistic is computed anew and the same threshold is used for each new 

test. 

 

2.2.4 Invariant Descriptor Visualization 

Although no spatial registration is required for our shape measures, it is needed for visualization. 

We require that the shapes are registered by a rigid rotation of their spherical maps, as that 
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ensures that the shape’s global description does not change. We use the method of spherical 

cross-correlation developed in the previous chapter. The idea then is to create an average shape 

based on the newly found local correspondence and rigid spatial alignment. Once a point-wise 

correspondence between each hippocampal model and the average has been established, it is 

possible to reconstruct each individual shape with any desired mixture of averaged and 

individual SPH coefficients. Thus it is possible to visualize the local effect of each shape 

descriptor by keeping only those coefficients which contribute to a particular descriptor from the 

individual surface, while taking the rest from the average. Visualizing a point-wise distance 

between the average and each mixed reconstruction gives an idea of which regions of the surface 

contribute the most to each descriptor. 

To make our visualization as objective as possible, the initial correspondence is 

established using a target subject that is not used in any subsequent analysis, or classification. 

Each hippocampal model is then spatially aligned to this subject using the rigid quaternion 

transform. A different shape average is computed for each test subject, leaving the subject’s 

model out of the computation. The mixed-to-average distance of each individual shape is then 

itself averaged and displayed. 

 

2.3 Experimental Results 

Before using our shape description for classification it was important to ascertain whether its 

theoretical invariance holds in practice. For all its advantages, the conformal map has one 

significant shortcoming: its large area distortion. We illustrate this in Figure 4. Regions of 

extreme Gaussian curvature which protrude are mapped to very small regions on the sphere and 
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suffer from undersampling. This could potentially cause our shape description to lose its 

invariance.  

 

Fig. 4. Rotation and Undersampling: the bottom row shows the original 20K triangle hippocampal surface 

(left) and its sampled version (right). Note the undersampling. The top row shows the effect of a random 

rotation. The same surface was rotated by α = 151.8 β = 75.6 γ = 259.5 reparameterized and resampled. 

Note the slightly different parameterization of the undersampled region. 

 

 

Figure 4 and 5 illustrate the effect a random rotation of a surface has on its invariants. In the 

first hundred orders, error is within 2%. More importantly, the greatest error of the invariants 

selected for SVM classification (see below) is within 0.5%. 

For each training set in the leave-one-out test, we selected a feature if its t-statistic 

exceeded a threshold. After testing a few subjects, we noticed that the best overall accuracy is 

achieved with             , and set it globally to 6.8. This yielded between 6 and 14 

features, depending on which subject was left out. All selected features s(l) were of order 



28 
 

       . Our margin/error coefficient C was set to 1,000. All features were normalized with 

respect to standard deviation (differently for each excluded subject) and translated so 

that               . The transformation was saved and applied to the remaining subject. 

The result was 75.5% sensitivity and 87.3% specificity for a total correct rate of 82.1% (AD 

considered positive).  

 

Fig. 5. Effect of undersampling on invariance. We show the relative error of invariants corresponding to 

the surface in Fig. 4: |s(l)−s′(l)|/s(l) vs. l, where l is the degree of the invariant. 

 

By comparison, hippocampal volume gave 67.3% sensitivity and 76.2% specificity in a 

leave-one-out test, with 72.3% correct overall. To combine our best features into one measure, 

we ran SVM on the entire data set with the same      and C and obtained each subject’s SVM 

score. In regression, SVM score correlated slightly better with Mini-Mental State Examination 

(MMSE) and Clinical Dementia Rating Sum of Boxes (CDR) scores than volume: for MMSE, 

    
        ,     

        ; for CDR,     
        ,     

        , P < 0.001 for all. Since 

all our selected discriminating features came from the right hippocampus, consistent with a 

locally-based study on this data [41], we ran the same tests using only right HP volume. We 

found it is a worse predictor than combined volume in all cases. To measure how much new 

information is contained in our shape description compared with volume, we ran a linear 
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regression on combined volume and SVM score. Results are shown in Figure 6a. Figure 6b 

shows the ROC curve of our SVM model, total volume and the combined model. SVM is 

superior to volume for the entire range of sensitivities. 

 

 

Fig 6. (a) Scatter of SVM score and total hippocampal volume. Regression R
2
 =0.16. (b) ROC curves of 

SVM score, total volume, and the model combining volume and SVM. 

 

The six descriptors that were selected in every case were of degree               , 

and   . Our mixed reconstructions were based on coefficients of these orders (Fig. 7). The 

average mixed-to-average distance is displayed on the overall average surface in Figure 8a. 

Thresholding surface regions based on a peak histogram displacement value gives an idea of 

which surface parts contribute the most to these harmonics (Fig. 8b). 
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Fig. 7 Four examples of right hippocampal reconstructions (a,b) – controls, (c,d) - patients. The original 

shapes (a,c) are on the left and reconstructions (b,d) on the right. 

 

2.4 Comparison to prior work 

2.4.1 Methodology and results 

While achieving modest classification results compared to some recent AD studies, our global 

description appears to contain shape information that is not captured by simpler measures like 

volume. This is apparent in the low correlation between our description’s SVM score and 

hippocampal volume and in the ROC curve. In most AD classification studies to date, volume-

based features, such as gray matter probability maps, are used with SVM to predict diagnosis 

[40, 42]. In the best ones, overall leave-one-out accuracy was 89–96% [43]. More relevant to the 
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current study, some recent works instead classified disease according to hippocampal shape-

based features [44, 45] , with point-wise displacements forming the feature set. Li et al., used 

patch-averages of local displacement vectors projected onto the average normal. SVM was then 

applied to these local features to separate AD subjects from controls. Using hand-traced surfaces, 

the best leave-one-out accuracy reached 94.9%.  

 

 

Fig 8. (a) Average displacement map. Displacements are computed from each mixed reconstruction and 

the average surface. Darker areas correspond to greater displacement; hence, these areas contribute more 

to the discriminant harmonics.  

(b) Dark spots correspond to regions above a peak histogram value from (a). These regions contribute 

the most to the discriminant harmonics. 
 

Davies et al. studied effects of Schizophrenia using the minimal distance length approach to 

statistically align hippocampal parameterizations in [46]. For classification, Linear Discriminant 

Analysis (LDA) is used to find the discriminate vector in the feature space for distinguishing 

diseased subjects from controls. The work is compared to the SPHARM technique [6] with both 

approaches yielding a Student’s t-statistic for the group difference of less than 2.3 along the 
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discriminate vector. Classification rates are not reported, but the authors claim that an SVM 

classifier on this feature space yielded practically the same results.  

An interesting study by Gorczowski [47] et al. recently appeared on classification using 

multi-object complexes. Their approach is advantageous to ours in that it takes into account the 

relative position of several subcortical structures with respect to each other, while we can only 

combine several shape invariants from every structure individually. This study, however, 

acknowledged that the classification results are improved when pose is eliminated from the 

feature space and only structure-intrinsic features (here, radii of m-reps developed by Gerig, 

Styner and coworkers) are used. Though the validation method is more robust than ours, the 

accuracy is inferior: 75%.  

A unifying aspect of the studies above is their emphasis on locally-based features: in each 

case a feature corresponds to either a voxel or a point on the surface. While this facilitates 

visualization, it may not take full advantage of some pattern a shape exhibits globally. Shenton et 

al. [48] perhaps comes closest to our approach in that he uses two nonlocal shape features to 

classify Schizophrenia subjects and controls. This study does indeed use a spherical harmonic 

representation, specifically SPHARM, to align the left and flipped right amygdala-hippocampal 

surfaces for each subject. However, once the shapes are aligned, the study again returns to a 

simple spatial measure — not spherical harmonics or any features derived from them — to 

classify the shapes. Two asymmetry measures, volume difference and mean square distance with 

the volume normalized, are used in an SVM classification. A good accuracy of 87% is achieved. 
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2.4.2 Limitations 

Our study was slightly biased since the same small subgroup we used in setting the selection 

threshold was used in classification testing. Although our shape measures separated patients 

from healthy subjects substantially better than hippocampal volume, other AD classification 

studies have had better results with volume alone, including one that used the ADNI dataset 

[49]. Since using volume for classification is straight-forward, it is hard to point to our 

classification technique as the cause of such discrepancy. More likely, this is because our 

hippocampal segmentation produces lower-quality models than the hand-traced models used in 

other studies. Better segmentation techniques will likely lead to better classification results by 

this method. 

Since the number of features in these studies is much larger than in the present article, a 

very robust feature selection is required as a preprocessing step before SVM can give reasonable 

results. The usual and evidently quite reliable means of doing this is the recursive feature 

elimination (RFE), as in [40, 42, 45]. Here, an SVM model is iteratively trained and at each step 

the weakest (least-weighted) feature is removed. This is repeated until the classification rate or 

the particular cost function of the SVM model stop improving. Though this method is SVM-

centric and well-suited for the problem, it is more expensive than our simple feature selection 

technique. Our naive selection may in part explain why our accuracy is inferior to some of the 

best results in the above studies. 

 

2.4.3 Visualization 

Perhaps the most interesting part of this work is the visualization of a meaningful variation in 

global description as local variation. The ability to represent an individual hippocampus as a 
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mixture of average and individual shape effectively allows for a representation that minimizes 

meaningless shape variation while maximizing variation that has some significance for disease 

detection. Using such a representation could potentially have clinical uses; for example, it could 

make visualization-based diagnosis by non-experts possible.  

When comparing our visualization results with those based on local measures [8, 50], it is 

important to keep in mind that they are unlikely to be identical. For example, Wang et al. [50] 

use a pairwise displacement map as a measure of local atrophy after a large diffeomorphism-

based registration and rigid alignment. In both local and global approaches we can expect some 

degree of noise to contribute to the true effect. Since our noise occurs in the spectral domain, 

unlike the studies above, the effect of our noise can be quite different. It is also important to keep 

in mind that we are measuring different things. First, in [50] change over time is compared 

between the two groups, whereas we compare shape difference at a single point in time. Second, 

we measure the effect of certain spectral components on the overall shape, making our 

visualization a much less direct way to see disease effects. Locally-based studies measure spatial 

differences more directly. 

 

2.5 Conclusion and future work 

It would be interesting to do a cross-validation study to see whether mixed reconstruction 

increases discriminative power of locally-based features. For example, one could break a dataset 

in two parts, use one to find discriminate aspects of a global description and create mixed 

reconstructions of subjects in the other. Ideally, an SVM-based feature selection would be used. 

For an objective comparison, the average shape used for reconstructing the second data set 

would be taken entirely from the first set. 
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Alternatively, we can expand our bag of features by incorporating scalar maps that are 

intrinsic to the surface. For example, incorporating mean curvature and conformal factor would 

create a brand new description and at the same time allow for mixed reconstructions, since it is 

possible to uniquely reconstruct a conformally mapped surface based only on those two features. 

Again, so far the only scalar map we have used is distance to surface average value. 

 We have presented an alternative means of disease classification based on a global 

description of hippocampal shapes. In experiments, our method’s accuracy, though respectable, 

remained inferior to some of the best reported AD classification results. However, the novelty of 

the information contained in our measures means that our feature set may well be useful in 

complementing existing classification methods. In contrast, our visualization of a global 

description appears to be the first of its kind. Although admittedly simple to do, it gives a new 

interpretation of a global description. Our mixed reconstructions allow us to deliberately reduce 

meaningless shape variation while preserving variation that is of interest to the researcher. 
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CHAPTER 3 

Shape Matching With Medial Curves and 1-D Group-Wise Registration 

 

This chapter is adapted from: 

B. A. Gutman, W. Yalin, P. Rajagopalan, A. W. Toga, and P. M. Thompson, "Shape matching with 

medial curves and 1-D group-wise registration," in Biomedical Imaging (ISBI), 2012 9th IEEE 

International Symposium on, 2012, pp. 716-719. 

 

Abstract 

We present a method for shape matching that approximates group-wise shape registration by 

reducing the problem to a 1-D registration. First, a novel medial curve method is proposed for 

computing a 1-D description of the shape. Second, a group-wise registration of the geometric 

descriptor is performed by directly minimizing the group variance. The resulting registration is 

used to adjust a global shape feature used to compute the final correspondence. Thus, the 

problems of description, registration, and statistical analysis are solved in one framework, while 

reducing the computational problem of group-wise registration of shapes substantially. We 

validate our method on 620 lateral ventricles extracted from the ADNI MRI dataset and 19 

lateral ventricles from patients with HIV/AIDS and matched controls, also scanned with MRI. 

We show that our group-wise approach leads to improved statistical results, and also compare it 

to the SPHARM method. 
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3.1 Introduction 

In computational anatomy, it is often desirable to locally compare the geometry of anatomical 

shapes. Essentially, anatomical shape analysis poses three related problems: (1) defining a 

meaningful and intuitive geometric descriptor, (2) registering the shapes in an unbiased manner, 

and (3) statistically comparing the resulting description. These three problems are 

interconnected, but existing methods generally solve these sequentially, or combine at best two 

of the three steps.  

      Several approaches have been proposed towards (1), including medial core-type methods 

[31, 51] which define a local thickness of a shape, and an extension of Tensor Based 

Morphometry (TBM) to 2-manifolds [52]. The latter may require some imagination to be made 

intuitive, but it can be more statistically powerful for detecting correlations between subcortical 

shape and clinical, cognitive and CSF biomarkers.  

      In this work we choose a thickness-based approach based on a 1-dimensional single curve 

skeleton, as many anatomical shapes are oriented and therefore admit such a description. Thus, 

our geometric descriptor is the medial thickness, which is generally accepted as the most 

intuitive measure of shape morphometry. 1D medial representations in medical imaging were 

popularized by Stephen Pizer with the M-reps algorithm [51]. M-reps are comprised of a discrete 

web of “atoms,” each of which describes position, width and local directions to the boundary, 

and an object angle between corresponding boundary points. However, the requirement that the 

direction between each atom’s position and each corresponding surface point must be normal to 

the surface makes this method quite constrained even for anatomical shapes. To endow a shape 

with an M-reps description, the shape must either be quite simple, or it must be excessively 
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smoothed. For example, such a description is not feasible for branching shapes such as the lateral 

ventricles, with all three horns prominently represented. 

      CM-reps, popularized by Paul Yushkevich and colleagues, is an extension of M-reps to the 2-

D continuous medial core. CM-reps offer a way to derive boundaries from skeletons, by solving 

a Poisson-type partial differential equation with a nonlinear boundary condition [31]. The medial 

axis-anchored 3D parameterization of the shape-enclosed volumetric region is continuous, and 

allows a body-centered coordinate system for analyzing shape and appearance. However, 

because CM-reps do not reduce dimensionality, they do not produce significant computational 

speed-ups.  

      A number of methods have also been developed towards the registration step (2), such as 

Minimum Description Length (MDL) [23], intrinsic parameterization methods such as SPHARM 

[6] and conformal maps [52], direct shape mapping based on Laplace-Beltrami eignefunctions 

(LBE) [53], Spherical Demons (SD) [13], and q-maps [54]. MDL is an information-theoretic 

approach for group-wise shape registration. It leads to an unbiased correspondence within a 

sample, but it can be quite slow as it relies on simulated annealing, which may take many hours 

for just a handful of shapes. This method is not feasible for a large cohort such as ADNI where N 

is several hundred. SPHARM, conformal maps, and more recently q-maps compute optimal 

shape parameterizations, either by minimizing angle or area distortion, or by optimizing over a 

metric space of reparameterizations. These methods are quite general, but they do not exploit the 

shape descriptor, and thus do not couple steps (1) and (2). LBE-based direct maps generate 

feature functions to be used for direct registration using level set embeddings. Similarly, SD 

performs shape registration on the sphere by registering spherical images in the Diffeomorphic 



39 
 

Demons framework. Thus, both SD and LBE are capable of combining description with 

registration. However, these methods are designed to register an image to either another image 

or, in the case of SD, to an atlas formed by a set of pre-registered images. This biases the 

resulting parameterization, as the statistical analysis step (3) remains uncoupled with the rest of 

the processing.  Spherical Demons perhaps comes closest to coupling all 3 steps above. Further, 

LBE is only feasible for fairly simple shapes with a clear spatial orientation and no branching, a 

constraint similar to M-reps’ limitations. 

      To mitigate this problem, we maintain the reduced 1-D representation with a single curve, 

but relax the M-reps’ normal-to-surface constraint. Instead, our medial representation is based on 

a variational framework in which the curve is defined by minimizing a weighted total distance. 

Thus, the geometry of the curve and the shape are tied more loosely, and more classes of shapes 

admit such a representation. Although a single curve representation may appear inferior to 2-D 

representations due to the ill-posed nature of the 1-D problem, in fact the reduced dimensionality 

is of great benefit for subsequent processing.  

      Our registration step combines many of the registration methods above. We use the spherical 

domain and a combination of area and angle- preserving regularization, while minimizing the L
2
 

distance between pairs of feature functions. To enable fast spherical registration, we modify the 

unconstrained spherical parameterization (USP) algorithm [55] by simply adding the L
2
 fidelity 

terms to the cost function. The resulting registration remains nearly as fast as the original USP 

tool.  

      The feature functions are induced by our medial curve, in the spirit of LBE. In our case, 

however, the curve is computed first, while in LBE the curve is induced by the function. Finally, 
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before registering the spherical images to a target, we perform a 1-D to 1-D group-wise 

registration in the spirit of MDL. Our 1-D registration non-linearly remaps the scalar feature to 

be used in spherical registration by minimizing the variance of the feature to be used as a 

geometric descriptor, i.e., the feature that will be compared statistically. Thus, this step combines 

all 3 shape comparison problems.  

Our contribution is threefold: first, we develop a relaxed medial curve framework which 

allows noisy and branching shapes to be parameterized consistently by a single curve. This 

allows the computation of intuitive shape description by medial thickness and natural feature 

functions for registration. Second, as the curve has lower dimensionality, we enable a quasi-

group-wise shape registration by group-wise registration of 1-D functions, thereby incorporating 

variance reduction and improved statistical sensitivity into the registration. And third, using a 

modification of the USP algorithm, we show that the spherical registration resulting from the 1-

D registration step leads to improved statistical results based on ADNI and a dataset of lateral 

ventricles from HIV+ subjects and age-matched controls. 

 

3.2 Medial Curve Framework 

Finding the curve-skeleton of an orientable surface is not a well-defined problem, but some 

properties are generally accepted as desirable [9]:  

(1) Centered: we would like our curve to be “locally” in the middle of the shape. In medical 

imaging, numerical accuracy is vital when estimating local thickness on boundaries of 

shapes.  
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(2) Onto, smooth mapping: there must be a surjective, smooth mapping from the surface to 

the curve. This enables us to use the medial curve for registration.  

(3) Consistent geometry: this property requires that the geometry of the curve depend 

continuously on the shape 

 

We assume that our anatomical shape can be represented by a single curve. We also assume that 

the ends of the curve lie on the surface. With the topology of the curve fixed, we focus on 

property (1) above. Intuitively, we can say that a curve is the medial curve if it is smooth and 

every point on it is “locally in the middle” of the shape. Given a surface S, the curve        

[   ], should be a global minimum of            

∫ ∫                  ‖       ‖ 

    

 

 

                                                 

              

Here,             is the weight defining “localness” of point p relative to c(t). A variety of 

weighting functions can be devised, one of the simplest ones being                   

{
         

                { [ (        )  ]|       }   

                                                                            
 

      
         ( 

〈      ′〉

‖    ‖‖  ‖
)                                                 

where        is the signed distance of S at x, and                  . Here,    is a 

continuous approximation of the Dirac delta. We used           
in our implementation. This 
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particular weighting function is only concerned with the differential properties of the curve, not 

those of the surface, making it quite stable when applied to noisy surfaces. The weighting 

function decreases continuously as the vector from the surface to the curve becomes less normal 

to the curve, and vanishes when there is no line of sight to the surface.     

      To ensure that the curve is smooth, we add a smoothing term, so that our final cost function 

takes the form:  

                     ∫ ‖      ‖ 
 

 

                                                 

Solving for the Euler-Lagrange equation of (3.3), we derive the descent direction for the curve: 

  

  
 ∫ [(

 

  

  

   
 

  

  
)‖    ‖         ]   

   

                                   

 

3.3 Group-wise 1-D registration 

    To enable curve-based registration for shapes described by a single curve, we derive two 

surface based functions. The first is the global orientation function (GOF), defined as  

                        {‖       ‖   [   ]}                                              

This is similar to the first LB eigenfunction [6], except it can have more than two local extrema. 

Our geometric descriptor is then the familiar thickness measure:  

                            ‖ (    )    ‖                                                 (3.6)                      
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As we are interested in improving statistical sensitivity of medial thickness, we seek a set of 

mappings    [   ]     such that the total sample variance of a set of functions    [   ]    is 

reduced by minimizing the cost function    {     }   
    

∫
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Fig 9. (a) Medial curve of a left lateral ventricular surface, based on the proposed framework; (b) the 

resulting global orientation function. 

 

The last term simply represents elastic regularization. To enable minimization in thickness 

variance, we set          
∫      {    |       }   

∫   
 
{    |       }

   This may be thought of as a curve-based average 

thickness. Having obtained {  }, we minimize (3.7) according to the descent direction 
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 (      ̅)       
  ], where   ̅     

 

 
∑   [   

        ]. We then adjust the GOF based on 

the 1-D maps by          
     ,                . 

 

3.4 Non-linear Spherical Registration 

We modify an existing, highly robust framework for unconstrained spherical mapping proposed 

by Freidel et al. [55], by adding L
2
 terms to the cost. Using Freidel’s notation, the functional 
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becomes                      ∑   
 
   ∫ (            )

 

    , where       are scalar 

features of the moving and stationary spherical image. We use      and  , the adjusted GOF and 

medial thickness features. Details on the optimization of this cost can be found in [8]. This is not 

a particularly innovative step, but a final surface-to-surface registration based on scalar features 

is needed to complete our shape matching. Our choice of registration framework is driven by 

practical concerns – alternative frameworks exist. In practice, this has proven to be a good 

choice. We use thickness as a feature in spherical registration, but thickness alone would not be 

sufficient to map the surfaces correctly, as it is a local measure. The global measure (GOF) 

primarily drives the registration. 

 

3.5 Implementation and experiments 

We have applied our method to two datasets of left lateral ventricles: the ADNI baseline MRI 

dataset consisting of 391 subjects with mild cognitive impairment (MCI), and 229 age-matched 

controls; and a dataset of 11 HIV subjects and 8 age-matched controls [56]. Parameters were set 

according to Table 3 for both datasets. Our medial curve is evolved in a multi-resolution fashion 

with respect to both the curve and the surface: first, the surface is decimated to a small number of 

triangles (e.g., 300), and the curve is evolved at several resolution levels. We super-sample the 

curve by a pre-set ratio, as convergence is reached at the current level. The resulting curve is 

then used as initialization for the full mesh, at which point only a few descent steps are typically 

required. We show decrease in energy (3) with each step in Figure 11 for an HIV+ subject. 

Typical execution time is 2 minutes for a 10K triangle mesh on an AMD Opteron 152 2.61 GHz 
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single core workstation with 4 Gb of RAM. An example of resulting curves and their GOFs can 

be seen in Figure 9. 

 

Figure 10. P-maps of HIV-NC (top row) and MCI-NC (bottom row) group difference after registering 

with (a) group-wise method, (b) unadjusted GOF + modified USP, (c) SPHARM    

 

 

      Group-wise registration reduced the variance of curve-based thickness by nearly 50% in the 

HIV cohort, and about 30% in ADNI. This step is computed in less than 1 minute. Our 1-D 

registration was done blindly with respect to both diagnosis and which subject was to be used as 

a target in spherical registration, to avoid “double-dipping”. We show 3 average thickness 

functions from the ADNI dataset before and after the group-wise step in Figure 12. 
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Table 3. Parameters for group-wise shape registration 

α β σ
2
             a b 

10 10
-6

 0.1 10
2
 10

6
 5 2 

 

      Our final spherical registration step was initialized by an unconstrained spherical map [8], 

followed by a spherical cross-correlation to remove the rotational component [3]. We then 

registered each subject to an arbitrary target shape from the same cohort using our modified USP 

framework. The L
2 

energy was reduced by 20-80% depending on the subject and the cohort. 

Typical execution time was 10-20 seconds.  

      The statistical analysis consisted of computing overall p-value for group differences based on 

100000 permutations, as in [4]. For comparison, we also applied the SPHARM method to the 

same two datasets. We then computed Cumulative Distribution Functions (CDF) of significance 

maps for each method (Fig. 13). CDF curves are a way of visualizing the multiple comparisons 

problem, so that one sees the tradeoff between the statistical threshold and the spatial extent of 

the effect. While the permutation test remains the gold standard, CDF is still a useful 

visualization. As expected, group-wise registration improved the overall p-value in both studies, 

as seen in Table 2. However, CDF plots show that using the unadjusted GOF, and keeping all 

other parameters the same produces the dominant curve. This is expected: as group-wise 

registration actually localizes the effect, the resulting p-maps have smaller significant regions, 

with greater effect sizes. By focusing the significant regions, the group-wise method makes the 
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p-maps more useful, as we see the true locations of significant change, rather than a washed out 

effect due to mis-registration. This effect is seen in Figure 10. 

 

 

Fig. 11. Medial energy (3.1) vs. gradient descent iterations 

 

 

Fig. 12. 1D Thickness maps of 3 ADNI subjects before (top) and after (bottom) group-wise registration of 

all 620 subjects. Note that the peaks corresponding to the posterior horn are well-matched. 

 



48 
 

Table 4. P-values for group difference after 100K perms 

 Group No Group SPHARM 

HIV 0.00988 0.01039 0.0149 

ADNI 0.00029 0.00046 0.0068 

 

 

Fig. 13 CDF plots of HIV vs. NC (left) and MCI vs. NC (right) 

 

3.6 Conclusion 

We presented a framework to register anatomical shapes that combines the description, 

registration, and statistical analysis aspects of shape comparison in one step. Our approach does 

not lead to true group-wise shape registration, but it approximates the solution to the group-wise 

problem by exploiting the specifics of the geometry of anatomical shapes - they are often 

approximately tubular. We further developed a medial curve method for computing intuitive 
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descriptions of shapes so that the tubular assumption can be relaxed, and show that it works 

stably on the complicated lateral ventricles. As many anatomical shapes are inherently 1D, we 

reduce the computational problem significantly for group-wise registration. Thus, we are able to 

approximately group-wise register over 600 shapes in a few minutes.  

       We chose the most intuitive geometric measure, but other measures such as medial 

eccentricity, TV norm of the thickness, curvature-based features, functional and DTI-based 

measures, and others can all be incorporated easily into the framework. Future developments will 

include exploration of additional descriptors, as well as incorporating distance field information 

into the medial curve framework, and using a probabilistic atlas in the spherical domain. 
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CHAPTER 4 

A Family of Fast Spherical Registration Algorithms for Cortical Shapes  

This chapter is adapted from: 

B. A. Gutman, S. K. Madsen, A. W. Toga, and P. M. Thompson, "A Family of Fast Spherical 

Registration Algorithms for Cortical Shapes," in Multimodal Brain Image Analysis 2013., accepted for 

oral presentation, Nagoya, Japan Sept. 22, 2013 

 

Abstract 

 

We introduce a family of fast spherical registration algorithms: a spherical fluid 

model and several modifications of the spherical demons algorithm introduced in 

[13]. Our algorithms are based on fast convolution of tangential spherical vector 

fields in the spectral domain. Using the vector harmonic representation of spherical 

fields, we derive a more principled approach for kernel smoothing via Mercer’s 

theorem and the diffusion equation. This is a non-trivial extension of scalar spherical 

convolution, as the vector harmonics do not generalize directly from scalar 

harmonics on the sphere, as in the Euclidean case. The fluid algorithm is optimized 

in the Eulerian frame, leading to a very efficient optimization. Several new 

adaptations of the demons algorithm are presented, including compositive and 

diffeomorphic demons, as well as fluid-like and diffusion-like regularization. The 

resulting algorithms are all significantly faster than [13], while also retaining greater 

flexibility. Our algorithms are validated and compared using cortical surface models. 
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4.1  Introduction 

Non-rigid shape registration represents an important area of research in medical imaging, in 

particular for cortical shape analysis. The highly variable, convoluted geometry of the cortical 

boundary together with an abundance of MR data present a significant challenge for fully 

automating reliable correspondence searches. Current methods for parametric shape registration 

range from conformal maps and intrinsic embeddings via the Laplace-Beltrami (LB) operator 

[53, 57, 58] to the more direct adaptations of image registration algorithms in the Euclidian 

domain. The latter approach is appealing, as non-linear medical image registration has by now 

become a mature field with several well-validated methods. For example, an approach taken by 

[59] maps subcortical shapes directly to the 2D plane, and performs the usual fluid registration of 

mean curvature and conformal factor features following [11] to achieve final correspondence. 

The method is fast and reliable, provided a consistent set of boundaries is introduced to enable 

the initial parameterization. The boundary constraint requires a strong prior on the final 

correspondence search, before any registration can be attempted at all.  

 

Fig. 64. Smooth spherical circle to C. No registration paper is complete without the “circle to C.” Here, 

we used diffeomorphic demons with fluid- and diffusion-like regularization. 
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This illustrates the significant advantage that using a parametric domain of the same 

topology as the shape – for example the 2-sphere – offers compared to the Euclidian domain. In 

effect, using the spherical domain enables truly automated parametric registration of genus-zero 

shapes. As a result, several adaptations of Euclidian registration to the sphere have been 

proposed. Thompson et al. [1] proposed elastic matching based on sulcal landmarks, constraining 

the curve-induced flow by the Cauchy-Navier differential operator, and correcting explicitly for 

metric distortions. In [58, 60], the authors extend Miller’s LDDMM framework [61] to point and 

curve-set registration on the sphere. Closer to this work, in [21, 22] the authors propose 

landmark-free methods on the sphere, minimizing the sum of squared distances (SSD) between 

corresponding curvature maps and curvature-derived feature functions. The optical flow 

algorithm is adapted to the sphere in [21], and solved using a narrow band approach, while in 

[22] a straight-forward optimization of coordinates is performed directly on the surface. In a 

more recent effort, Yeo extended the very efficient diffeomorphic demons algorithm [12, 62] to 

spherical images, and showed that registering curvature and thickness features of the cortex leads 

to robust shape registration [13]. The resulting algorithm can accurately register two cortical 

surfaces of high resolution (150K vertices) in under 5 minutes, while maintaining invertible 

warps. This is quite an impressive result, since FreeSurfer [22], perhaps the most popular tool for 

cortical surface alignment, takes on the order of 1 hour. 

Inspired by the recent work on spherical shape registration, we revisit the spherical 

registration problem from the perspective of adapting well-known Euclidean registration 

approaches. At the heart of many image registration algorithms, one finds a Gaussian 

convolution of either the displacement field itself, or the update step/instantaneous velocity of 

the field. On the other hand, it is often convenient to decompose the velocity or the displacement 
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over an orthogonal basis, formed by the eigenfunctions of a suitable differential operator. As the 

most basic example, Gaussian convolution can be performed quickly in the Fourier domain; this 

is often used to approximate the solution to the fluid equation [63]. A more precise solution is 

offered in [64], where the decomposition is in eigenfunctions of the fluid operator itself. The 

many variants of the demons algorithm likewise require a convolution of the field (“diffusion-

like” demons) or the update step (“fluid-like” demons) with a smoothing kernel for 

regularization, which is typically done in the Fourier domain [12]. However, the adaptation of 

this idea to the sphere is not trivial, since the well-known scalar spherical harmonics cannot be 

applied directly to canonical coordinates of tangential vector fields. To mitigate this problem, 

Yeo et al. [13] use a straightforward recursive smoothing scheme. This limits the possible kernel 

range, as the execution time depends directly on the size of the kernel. In this work, we derive a 

smoothing technique for tangential vector fields based on vector spherical harmonics (VSH). 

Vector spherical harmonics form a suitable basis in which to perform the required convolution, 

as they are eigenfields of the Casimir operator restricted to the sphere. This allows for a natural 

extension of Mercer’s theorem to spherical vector fields for the purpose of fast spherical field 

regularization. Such an approach has all the usual benefits of performing convolution in the 

spectral domain.  

We implement a fast VSH transform, and apply our smoothing in several natural 

adaptations of the demons algorithm and the spherical fluid algorithm. We compare the 

performance of the proposed algorithms based on 100 white matter (WM) surfaces, using both 

synthetic warps and true cross-subject registration. We conclude that the combined fluid- and 

diffusion-like diffeomorphic demons offer the best accuracy, followed closely by the fluid 

algorithm. Both of these approaches significantly outperform compositive demons, as well as 
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diffeomorphic demons with only fluid-like or diffusion-like regularization, such as implemented 

in [13]. 

The remainder of the chapter is organized as follows. The first section describes fast heat 

kernel smoothing for spherical fields. The second and third sections outline the demons and fluid 

adaptations to the sphere based on the proposed vector smoothing. The fourth section describes 

some implementation details. The fifth section compares the results across our methods, and the 

sixth concludes the chapter. 

 

4.2  Heat Kernel for Spherical Vector Fields 

     In direct analogue to Fourier series on   , and scalar spherical harmonics – the 

eigenfunctions of the Laplacian and the scalar LB operator on   , VSH can be derived from the 

Casimir operator, or the Laplacian operator on spherical tangential fields. The curvature of the 

sphere implies a non-trivial parallel transport, which complicates the vector Laplacian form and 

distinguishes it from the scalar case. In canonical coordinates, the vector Laplacian of    
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Vector spherical harmonics satisfy               , and can be defined as the gradient of 

the scalar harmonics    , and its orthogonal complement (see, e.g. [65]).  
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This leads to harmonic decomposition of a spherical vector field into 
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Taking advantage of the eigenfields, we can extend Mercer’s Theorem [66] to spherical fields, 

and define the heat kernel as 

        ∑          ∑                
    

 
                ,       (4.4) 

where   is the tensor product. The kernel in (5) represents Green’s function of the vector 

isotropic diffusion equation 
  

  
       √  . Applying the kernel to a field leads to an 

expression which is similar to the scalar harmonics case [67]:  
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It is easy to see that all that is required for an efficient heat kernel smoothing of a spherical field 

is a forward harmonic transform followed by an      operation and an inverse transform.  
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4.3  Spherical Demons 

 The general idea behind a demons approach [62] is a two-step optimization, in which the 

first step represents a search for the update direction of the current warp, and the second – the 

regularization of the new warp resulting from this update. Thus, for fields              we 

have the following optimization problems  

          (‖    {   }‖ 
   

 

 
       {   } )                               

where   is a “hidden” transformation, and the regularization 

          (
 

  
      

 

 
       {   } )                                                                       

with the update        . Here     are fixed and moving images with          defined 

using the Lagrangian frame by {   }[      ]   [ ]. The optimized field   is the warp 

bringing the two images into correspondence. The regularization term      is generally taken as 

a norm of a differential operator, so that the minimization can be achieved with a convolution. A 

well-known example, minimizing the harmonic energy in    is equivalent to a Gaussian 

smoothing of the displacement field  . Likewise, the second term in the first equation (6) can be 

interpreted as a penalty on the harmonic energy of  , as well as its norm, and can be smoothed 

with a Gaussian kernel. Smoothing the displacement field is often termed “diffusion-like 

regularization,” and  smoothing the update, “fluid-like regularization” [12]. The unique 

advantage of the demons family of algorithms is precisely the separation of the two optimization 

problems: each cost can be optimized very efficiently with either a linear approximation or a fast 
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convolution. Lastly, a more recent modification of the demons framework [12] introduced the 

idea of maintaining diffeomorphic warps by passing each update step   through the exponential 

        , thus ensuring invertibiliy. Since diffeomorphisms form a Lie group under 

composition, this approach guarantees a smooth invertible final warp  . Adapting the demons 

approach to spherical images         , we optimize over             
   and following 

the convention in [13], define     by {   }[     { } ]   [ ]  where  

     { }    √  ‖ { }‖   { }                                                 

Although such a parameterization of the warp contains a nonlinearity, as the geodesic  length of 

the displacement is the arcsine of ‖ { }‖, it leads to significantly simpler computations than an 

arc length parameterization. Indeed, given      { } , it is easy to compute  { } by  { }  

           { } , where   is the cross-product matrix, as suggested in [13]. In solving the first 

optimization problem (6), we deviate from [13], who optimize the problem directly in the 

original image space, and follow [12] more closely: we reformulate the problem as  
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This leads to a straightforward linear problem, following the linearization of  ‖  [   ]   ‖ 
   

which can be solved separately for every point on   . 

 { }  
 { }  [   ]   { }

‖ ⃗⃗ [   ]{ }‖
 
 

 
  { }

 ⃗⃗ [   ]{ }                                      

where   { } is a normalization term controlling for image noise. Note that we have omitted the 

matrix 
       

  
, because at     it is simply the identity.  
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The second optimization step consists entirely in applying a smoothing kernel to the 

composition        . In this sense, the energetic norm used in      is in practice defined by 

the kernel of choice, rather than the other way around [58]. However, as mentioned earlier, 

convolving tangential vector fields on the sphere does not generalize directly from scalar 

convolution as in    due to the non-trivial parallel transport operator       :    
     

 . A 

straightforward solution is to recursively approximate the kernel by repeated application of 

       over some neighborhood for each vertex on a mesh. In this case, the effective size of the 

kernel depends directly on the number of smoothing iterations performed. This is an approach 

taken in [13], and allows one to create custom kernels depending on the weighting function. 

Thus, equation (7) is approximately solved by  

 ̃    ∑              

      

{   }                                                   

where      is the 1-ring of the vertex  , and       [ ] is normalized to add up to 1 over the 1-

ring, and monotonically increasing with  . While this appears to work well in practice, the 

approach can only be applied to kernels of a limited size. We replace this with vector heat kernel 

smoothing via the VSH, which eliminates the limitation on the kernel size and speeds up the 

process considerably. Further, the energy minimized can actually be defined in closed form, and 

computed essentially for free as part of the VSH transform. One additional advantage of having a 

low-cost smoothing technique for spherical fields is that it enables us to naturally extend the 

fluid-like regularization of Euclidean demons to the sphere. This modification turns out crucial 

for improving cortical correspondence accuracy, as we will see shortly. We thus have our final 

demons algorithm family:  
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Algorithm 1 (VSH-based spherical demons) 

Given images         , max step     , tolerance 

 Initialize       
     

  to be uniformly 0. 

 While(t < max_iterations AND  
‖    {    }‖ 

  ‖    {  }‖ 
 

‖    {  }‖ 
  > tol.)  

1. Compute update   using (10) 

2. Find   , so that      ‖    ‖        [12] 

  3. For fluid-like registration,              using (5) 
  4. For diffeomorphic registration,         [13]  

  5. Compute     { }              { }      

  6. For diffusion-like regularization,                    

 End While 

Return   
 

4.4  Spherical Fluid Registration 

The fluid registration paradigm, first introduced in [11], differs markedly from the demons 

family in that the fidelity term ‖     ‖ 
  is only represented as defining the body force 

     of the simplified Navier-Stokes equation  

          ⃗⃗ ( ⃗⃗   )         

 [        ]    [ ]   [       {   } ]  ⃗⃗  [       {   } ]                      (4.12) 

The equations model the behavior of a viscous fluid, driven by the instantaneous forces resulting 

from image mismatch. Unlike demons, the fluid regularization has no memory of the previous 

step. Instead, the instantaneous velocity is explicitly integrated over time, allowing for very large 

deformations. The power and popularity of the fluid framework are largely due to this flexibility.  

Optimization is performed in the Eulerian reference frame. In this frame, the velocity 

       describes the motion of the particle at position   and time  . The field        implies that 

from time 0, this particle underwent a transformation parameterized by               , using 

our convention (8). It is easy to see that          {   } . 
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The algorithm’s only memory of previous iterations is expressed in the material derivative, 

which accounts for the field Jacobian    to update the displacement.  

  

  
 [     ]                                                                

To update the field in the spherical domain, one must also account for the non-linearity in the 

displacement parameterization. Since the particle to reside at   after applying      
  

  
 is to be 

found at  [ ,          ] in the original image, where for clarity we mean   

      {   } , we must update the field by  

                 [ ,          ].                                (4.7) 

Because the field is updated at fixed coordinate points on the sphere, the matrices      can be 

pre-computed offline just as in the demons algorithm. 

The most computationally intensive aspect of the fluid registration approach is solving 

for the velocity  , given the body force. In the original formulation [11], the successive over-

relaxation (SOR) approach was used, which, while accurate, proved prohibitively 

computationally expensive. A significant improvement on speed was achieved in [64], where the 

authors derived and applied eigenfunctions of the operator (12). However, the most common 

simplification of this problem in    is to apply a Gaussian filter to the field, which can be shown 

[63, 68] to approximate (12). Following similar arguments, we propose an analogue of fluid 

approximation on the sphere, using VSH-based vector heat kernel smoothing.  
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Algorithm 2 (spherical fluid registration) 

Given images         , max step     , tolerance 

Initialize           
  to be uniformly 0. n = 0. 

 While(n < max_iterations AND  

‖ [ ]  [       {   } ]‖ 
  ‖ [ ]  [       {      } ]‖ 

 

‖ [ ]  [       ]‖ 
  > tolerance) 

  1. Compute body force   using (12) 
  2. Set           

  3. Compute 
  

  
 using (13), set               ‖

  

  
‖  

  4. Compute           using (14), set n = n + 1 
 End While 

Return   
 

4.5  Implementation Issues 

4.5.1 VSH Computation 

We apply the exact quadrature method for spherical harmonics sampled at regular canonical 

coordinates [65]. We vectorize the SpharmonicKit  implementation [29] following [65], except 

normalizing vector and scalar harmonics ‖    ‖ ‖    ‖ ‖    ‖   . This results in slightly 

different weights for computing the vector coefficients from the scalar ones. Setting the auxiliary 

scalar coefficients as in [65],            〈
 

    
        〉       , the vector coefficients can be 

obtained from  

        ∑                    
     +                                  (4.8) 

        ∑                     
     +               ,      

with the weights       pre-computed offline for repeated use. An analogous expression can be 

obtained for computing the auxiliary vector coefficients back from the VSH coefficients. The 

resulting convolution algorithm requires only two forward and two inverse scalar spherical 

harmonic transforms, with an      operation. For a bandwidth of 256, which corresponds to a 



62 
 

grid of 512x512 vertices, typical execution time for the full convolution is around a tenth of a 

second.  

The requirement that the fields be defined at regular spherical coordinates suggests 

performing the entire registration on the regular grid, only interpolating the final warp back to 

the original mesh coordinates. This proves faster and more stable than performing forward and 

reverse sampling of a field at every iteration. Further, sampling on this regular grid is denser than 

the typical FreeSurfer resolution of 150K vertices. 

 

4.5.2 Demons Optimization 

Some notable differences exist between our implementation of spherical demons and [13]. We 

choose to interpolate the moving image at regular coordinates, computing the update step from 

the currently warped image. Thus, there is no need to interpolate the gradient or compute the 

field Jacobian. However, in our implementation we use only a first order estimate of the update, 

while Yeo et al. use the Gauss-Newton scheme. The latter relies on empirically estimating the 

Hessian. Thus, in [1] there is a heavier computational burden for each iteration, but fewer 

iterations are required. We note that a Gauss-Newton scheme could be applied directly to our 

framework as well. Also unlike [1], we follow [12] in setting the gradient term in (10) to be the 

symmetric gradient. This was found to improve convergence.  

An additional aspect of the diffeomorphic demons approach is the “scaling and squaring” 

procedure. We follow [13], but perform the procedure based on regular spherical grids. The 

advantage of this approach is that sampling from a regular grid onto an irregular one is an      

operation per vertex, whereas sampling the other way generally grows with the number of 
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triangles even for fast samplers. The repeated sampling during “scaling and squaring” means that 

using a warp defined on a regular grid leads to faster exponentiation. We note also that the 

“slow” kind of spherical sampling (irregular to regular) must still be done at least once per 

iteration in the demons pipeline. For this, our in-house fast sampling algorithm performs roughly 

2.5 triangle intersection checks per vertex for the spherical grids we use, leading to compute 

times less than 1 second. 

4.5.3  Fluid Optimization 

Our fluid registration is adapted to the sphere to be very close to [63], with the exception of the 

fidelity term (here, SSD). The other main difference lies in not using regridding during our 

optimization. In [11, 63], the authors restart the optimization process setting   [ ]  

 [       {   } ],    , if the Jacobian determinant |  | falls below some threshold. This 

“regridding” step is used to alleviate problems caused by discretization, which can make the 

warp non-invertible. The final output warp   is then the composition of all the intermediate 

warps. Here, we chose not to do this for a more fair comparison to the demons algorithm, where 

regridding is not customary.  

A significant advantage of the fluid algorithm over the demons specifically on    is that 

there is no need for “slow” sampling, as we only interpolate the original image   . This is due to 

the choice of the Eulerian frame, and leads to significantly faster compute times per iteration.  
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4.6  Experiments 

For our experiments, we used 100 left white matter surfaces extracted using FreeSurfer from 

the ADNI dataset. The initial spherical map was computed as in [55]. Throughout the 

experiments, we use only mean curvature as the feature function. We apply a 3-level multi-

resolution scheme, smoothing the curvature maps [67] and regularizing the registration more at 

the first level, and relaxing both at subsequent levels. A rotational pre-registration step was 

applied based on fast spherical cross-correlation of the smoothed curvature [69].  

Three sets of experiments were done on the cortical shapes: (1) Recovering a synthetic 

warp, (2) Pairwise registration, and (3) All-to-one registration. In the first experiment each 

subject’s spherical map underwent a unique synthetic spherical warp. To synthesize a relatively 

large warp smooth, we first randomly seeded a warp field by its VSH coefficients and computed 

a smoothed inverse. This was then composed with a spherical MRF that was passed through an 

exponential, as in [12]. The result was a diffeomorphic deformation that was both large and 

highly non-linear. Further, some noise was added to the original shapes. The SSD and Laplacian 

norm of the warps are plotted in Figure 15. Table 5 shows the relative error and normalized 

cross-correlation with the original warps for each method. 

In the second experiment, shapes were randomly paired and 50 registrations were 

performed for each pair. The SSD and Laplacian norm of the warp are plotted in Figure 16. For 

ease of reading, here we only compare the diffeomorphic variants of the demons algorithm and 

the fluid algorithm. 

In the third experiment, we mapped all subjects to a random target brain, using the 

combined diffeomorphic demons approach, and the fluid approach. We computed the resulting 
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brain averages and compared the result to using only rotational registration. The resulting 

averages are shown in Figure 17. Step size,        and       were tuned experimentally to 

maximize agreement between recovered warp and synthetic warps. This was done separately for 

each method with one exception. For “fluid-like” demons, parameters were set as in the fluid 

registration for fair comparison. In general we found that the diffeomorphic demons favors larger 

step sizes than fluid registration. For the combined demons algorithm, the optimal        and 

      were lower than the corresponding         and       in “fluid-like” and “diffusion-like” 

versions. Overall, we found that the fluid algorithm recovered synthetic warps most accurately. 

However, combined demons approach resulted in visually better results for pair-wise and all-to-

one registration, as well as lower final SSD. 

All diffeomorphic approaches and the fluid approach resulted in invertible warps with no 

triangle flips. Execution time per iteration was roughly 0.5 seconds for the fluid approach and 1.5 

seconds per iteration for diffeomorphic demons. Thus, registration can be achieved in as little as 

10 seconds per resolution level, which is an order of magnitude improvement over [13].  

 

  

Fig. 15. Synthetic warp results. “Harmonic energy” is the vector Laplacian norm. 
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Table 5. Accuracy of synthetic warp recovery. Relative mean squared error and cross-correlation, 

averaged over 100 trials, with standard deviation. DF1 and FL1 stand for diffusion- and fluid-like 

diffeomorphic methods. DF2 and FL2 are the compositive versions. 

 Combo DF1 FL1 DF2 FL2 Fluid 
   

‖     ‖
 

0.192 

+/-0.11 

0.216 

+/-0.11 

0.181 

+/-0.086 

0.236 

+/-0.11 

0.181 

+/-0.086 

0.162 

+/-0.063 

CC 0.875 

+/-0.086 

0.833 

+/-0.099 

0.884 

+/-0.062 

0.807 

+/-0.11 

0.884 

+/-0.062 

0.890 

+/-0.046 

4.7  Conclusion  

We presented a family of fast spherical registration tools for registering cortical surfaces, 

adapting several well-known image registration algorithms to the sphere. The full gamut of the 

demons approaches as well as the large deformation fluid approach are generalized to the 2-

sphere, the latter being the first such adaptation. Our methods are based on fast convolution of 

spherical vector fields in the spectral domain, leading to perhaps some of the most efficient 

landmark-free cortical surface registration algorithms. The algorithms are validated on synthetic 

spherical warps, achieving an average normalized cross-correlation of nearly 0.9, where 1 would 

be a perfect recovery. Registration between pairs of real brains also shows promising results, 

leading to robust diffeomorphic registration in as little as 30 seconds.  

 

Fig. 16. Pair-wise warp results. “Harmonic energy” is the vector Laplacian norm.  
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A comparison of our methods reveals that the combined diffeomorphic demons and the 

fluid registration outperform the others in terms of minimizing geometric and image mismatch. 

A limitation of the tools tested here is their reliance on auxiliary measures of shapes, such as 

mean curvature. We recognize that an explicit correction for geometric distortion may improve 

our results. In particular, the fluid algorithm is flexible enough to handle any geometry-driven 

mismatch function without any additional modification.  

A more complete version of this work will compare the implementation in [1] and [11] to 

our methods based on agreement with manually delineated cortical regions. A future direction of 

a more theoretical flavor would be to explore the relationship between the particular energetic 

norm used here – the vector Laplacian – and the harmonic energy of the automorphism encoded 

in the vector field. Such an exploration would complete the adaptation of the tools used here 

from a theoretical perspective in much the same way we have adapted these tools 

computationally.  

 

Fig. 17. 100-Brain Averages. More detailed geometry suggests better overall registration.   
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CHAPTER 5 

Maximizing Power to Track Alzheimer’s Disease and MCI Progression by 

LDA-Based Weighting of Longitudinal Ventricular Surface Features 

 

This chapter is adapted from: 

B. A. Gutman, X. Hua, P. Rajagopalan, Y.-Y. Chou, Y. Wang, I. Yanovsky, A. W. Toga, C. R. Jack Jr, 

M. W. Weiner, and P. M. Thompson, "Maximizing power to track Alzheimer's disease and MCI 

progression by LDA-based weighting of longitudinal ventricular surface features," Neuroimage, vol. 70, 

pp. 386-401, 2013. 

 

Abstract 

We propose a new method to maximize biomarker efficiency for detecting anatomical change 

over time in serial MRI. Drug trials using neuroimaging become prohibitively costly if vast 

numbers of subjects must be assessed, so it is vital to develop efficient measures of brain change. 

A popular measure of efficiency is the minimal sample size (n80) needed to detect 25% change 

in a biomarker, with 95% confidence and 80% power. For multivariate measures of brain 

change, we can directly optimize n80 based on a Linear Discriminant Analysis (LDA). Here we 

use a supervised learning framework to optimize n80, offering two alternative solutions. With a 

new medial surface modeling method, we track 3D dynamic changes in the lateral ventricles in 

2,065 ADNI scans. We apply our LDA-based weighting to the results. Our best average n80 - in 

two-fold nested cross-validation - is 104 MCI subjects (95% CI: [94,139]) for a 1-year drug trial, 



69 
 

and 75 AD subjects [64,102]. This compares favorably with other MRI analysis methods. The 

standard “statistical ROI” approach applied to the same ventricular surfaces requires 165 MCI or 

94 AD subjects. At 2 years, the best LDA measure needs only 67 MCI and 52 AD subjects, 

versus 119 MCI and 80 AD subjects for the stat-ROI method. Our surface-based measures are 

unbiased: they give no artifactual additive atrophy over three time points. Our results suggest 

that statistical weighting may boost efficiency of drug trials that use brain maps.  

 

 

5.1  Introduction 

Biomarkers of Alzheimer’s disease based on brain imaging must offer relatively high power 

to detect longitudinal changes in subjects scanned repeatedly over time [15-17].  Even so, 

recruitment and scanning are costly, and a drug trial may not be attempted at all, unless disease-

slowing effects can be detected in an achievable sample size, and in a reasonable amount of time. 

Imaging measures from standard structural MRI show considerable promise. Their use stems 

from the premise that longitudinal changes may be more precisely and reproducibly measured 

with MRI than comparable changes in clinical, CSF, or proteomic assessments; clearly, whether 

that is true depends on the measures used. Brain measures that are helpful for diagnosis, such as 

PET scanning to assess brain amyloid or CSF measures of amyloid and tau proteins, may not be 

stable for longitudinal trials that aim to slow disease progression. As a result, there is interest in 

testing the reproducibility of biomarkers, as well as methods to weight or combine them to make 

the most of all the available measures [70]. 



70 
 

Recent studies have tested the reproducibility and accuracy of a variety of MRI-derived 

measures of brain change. Several are highly correlated with clinical measures, and can predict 

future decline on their own, or in combination with other relevant measures. Although not the 

only important consideration, some analyses have assessed which MRI-based measures show 

greatest effect sizes for measuring brain change over time, while avoiding issues of bias and 

asymmetry that can complicate longitudinal image analysis [71-73],  and while avoiding 

removing scans from the analysis that may lead to unfairly optimistic sample size estimates [17, 

71]. Promising MRI-based measures include the brain boundary shift integral [74, 75], the 

ventricular boundary shift integral [74] and measures derived from anatomical segmentation 

software such as Quarc or FreeSurfer, some of which have been recently modified to handle 

longitudinal data more accurately [76-79].  

Although several approaches are possible, one type of power analysis, advocated by the 

ADNI Biostatistics Core [80], is to estimate the minimal sample size required to detect, with 

80% power, a 25% reduction in the mean annual change, using a two-sided test and standard 

significance level        for a hypothetical two-arm study (treatment versus placebo). The 

estimate for the minimum sample size is computed from the formula below.   ̂denotes the annual 

change (average across the group) and  ̂ 
  refers to the variance of the annual rate of change.  

 

 2
2

2/1

2

ˆ25.0

ˆ2



  powerD zz
n




                                                           (1)                                                          

Here    is the value of the standard normal distribution for which  [     ]   . The sample 

size required to achieve 80% power is commonly denoted by n80. Typical n80s for competitive 

methods are under 150 AD subjects and under 300 MCI subjects; the larger numbers for MCI 

reflect the fact that brain changes tend to be slower in MCI than AD and MCI is an etiologically 
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more heterogeneous clinical category. For this reason, it is harder to detect a modification of 

changes that are inherently smaller, so greater sample sizes are needed to guarantee sufficient 

power to detect the slowing of disease. In addition, there is some interest in prevention trials 

targeting cognitively normal subjects who are at risk for AD by virtue of a family history or 

specific genetic profile (e.g., ApoE genotype); for these and other cohorts, efficiency must be a 

high priority, and measures that can distinguish AD from normal aging may be unable to track 

subtle changes efficiently in controls.  

Many algorithms can detect localized or diffuse changes in the brain, creating detailed 3D 

maps of changes [53, 81, 82], but the detail in the maps they produce is often disregarded when 

making sample size estimates according to (1), as the formula expects a single, univariate 

measure of change. In other words, it requires a single number, or ‘numeric summary’ to 

represent all the relevant changes occurring within the brain. To mitigate this problem, Hua et al. 

[83] defined a “statistical ROI” based on a small sample of AD subjects by thresholding the t-

statistic of each feature (voxel) and summing the relevant features over the ROI; this approach 

was initially advocated in the FDG-PET literature to home in on regions that show greatest 

effects [84].  In spirit, the statistical ROI is a rudimentary supervised learning approach, as it 

finds regions that show detectable effects in a training sample, and uses them to empower the 

analysis of future samples; the samples used are non-overlapping and independent, to avoid 

circularity. However, a simple threshold-based masking is known to potentially eliminate useful 

features, as binarisation loses a lot of the information present in continuous weights [85]. While 

many studies have used machine learning to predict the progression of neurodegenerative 

diseases and differentiate diagnostic groups such as AD, MCI, and controls [40, 86, 87], we 

found no attempts in the literature that used learning to directly optimize power to detect brain 
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change. The closest work is perhaps that of Hobbs et al. [88]. In this paper, SVM was used to 

separate subjects with Huntington’s disease from controls, and the resulting score used to 

calculate sample size estimates. Our goal here was to generalize the very simple binary feature 

weighting in the stat-ROI approach by directly maximizing the power estimate in a training 

sample. A linear weighting that optimizes (1) directly, while using multiple features at once, is 

exactly analogous to a one-class Linear Discriminant Analysis (LDA), discriminating the disease 

class from an imaginary sample of zero mean whose covariance is identical to the disease group. 

We propose two approaches to perform this task: one optimizes (1) directly by Tikhonov 

regularization; the other is based on principal components analysis (PCA).  

A common criticism of the power analysis provided by (1) is that it does not take into 

consideration normal ageing in non-high risk healthy subjects [73]. To mitigate this, several 

researchers have proposed simply subtracting the mean value of the change computed from 

controls, while using only the diseased subjects for a variance estimate. This same issue can be 

directly addressed in the LDA framework. In this case, the problem reduces to the usual 2-class 

LDA classification, except that the covariance structure is based on the diseased group only, and 

no assumption of homoscedasticity (equality of variance) is made. This modification is 

particularly useful for revealing subtle disease-specific atrophy in regions that also change, to 

some extent, with normal aging. 

We apply our LDA approach to maps of surface-based “thickness” changes in the lateral 

ventricles over intervals of 1 and 2 years after a baseline scan. The analyses are performed on 

MRI scans from the ADNI-1 dataset. Using two follow-up time points, where available, in 

addition to the baseline scan allows us to estimate the presence of any longitudinal bias, or 
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intransitivity, which has been a subject of controversy in recent ADNI studies [71, 89, 90]. To 

register the ventricles and compute radial thickness measures, we modify the medial curve 

algorithm developed in Chapter 3 [91]  for longitudinal registration. Our general approach is to 

compute a single continuous curve skeleton and use the curve to induce feature functions on the 

surface. Shape registration is then performed parametrically by minimizing the L
2
 difference 

(summed squared difference) between corresponding feature functions of a pair of shapes.  

We note that ventricular expansion is not specific to AD and the ventricles are often also 

abnormally enlarged in vascular dementia, frontotemporal lobar degeneration, traumatic brain 

injury, Huntington's disease, and schizophrenia, among other conditions. Even so, using detailed 

surface-based maps of the location of expansion – in conjunction with a modified 2-class LDA – 

helps to reveal aspects of ventricular expansion associated with the progression of Alzheimer’s 

disease.  

 

5.2  Materials and Methods 

5.2.1. Alzheimer’s Disease Neuroimaging Initiative 

 Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). The ADNI was launched in 2003 

by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging and 

Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical 

companies and non-profit organizations, as a $60 million, 5-year public-private partnership. The 

primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 
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positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild cognitive 

impairment (MCI) and early Alzheimer’s disease (AD). Determination of sensitive and specific 

markers of very early AD progression is intended to aid researchers and clinicians to develop 

new treatments and monitor their effectiveness, as well as lessen the time and cost of clinical 

trials.  

The  Principal  Investigator  of  this  initiative  is  Michael  W.  Weiner,  MD,  VA  

Medical  Center  and  University  of California  –  San  Francisco.  ADNI is the result of efforts 

of many co-investigators from a broad range of academic institutions and private corporations, 

and subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal 

of ADNI was to recruit 800 adults, ages 55 to 90, to participate in the research, approximately 

200 cognitively normal older individuals to be followed for 3 years, 400 people with MCI to be 

followed for 3 years and 200 people with early AD to be followed for 2 years. For up-to-date 

information, see www.adni-info.org. 

Longitudinal brain MRI scans (1.5 Tesla) and associated study data (age, sex, diagnosis, 

genotype, and family history of Alzheimer’s disease) were downloaded from the ADNI public 

database (http://www.loni.ucla.edu/ADNI/Data/) on July 1
st
 2012. The first phase of ADNI, i.e., 

ADNI-1, was a five-year study launched in 2004 to develop longitudinal outcome measures of 

Alzheimer’s progression using serial MRI, PET, biochemical changes in CSF, blood and urine, 

and cognitive and neuropsychological assessments acquired at multiple sites similar to typical 

clinical trials.  

http://www.loni.ucla.edu/ADNI/Data/
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All subjects underwent thorough clinical and cognitive assessment at the time of scan 

acquisition. All AD patients met NINCDS/ADRDA criteria for probable AD [92]. The ADNI 

protocol lists more detailed inclusion and exclusion criteria [93, 94], available online 

http://www.alzheimers.org/clinicaltrials/fullrec.asp?PrimaryKey=208). The study was conducted 

according to the Good Clinical Practice guidelines, the Declaration of Helsinki and U.S. 21 CFR 

Part 50-Protection of Human Subjects, and Part 56-Institutional Review Boards. Written 

informed consent was obtained from all participants before performing experimental procedures, 

including cognitive testing.  

5.2.2. MRI acquisition and image correction 

All subjects were scanned with a standardized MRI protocol developed for ADNI [95]. 

Briefly, high-resolution structural brain MRI scans were acquired at 59 ADNI sites using 1.5 

Tesla MRI scanners (GE Healthcare, Philips Medical Systems, or Siemens). Additional data was 

collected at 3-T, but is not used here as it was only collected on a subsample that is too small for 

making comparative assessments of power. Using a sagittal 3D MP-RAGE scanning protocol, 

the typical acquisition parameters were repetition time (TR) of 2400 ms, minimum full echo time 

(TE), inversion time (TI) of 1000 ms, flip angle of 8°, 24 cm field of view, 192x192x166 

acquisition matrix in the x-, y-, and z- dimensions, yielding a voxel size of 1.25x1.25x1.2 mm
3
, 

later reconstructed to 1 mm isotropic voxels. For every ADNI exam, the sagittal MP-RAGE 

sequence was acquired a second time, immediately after the first using an identical protocol. The 

MP-RAGE was run twice to improve the chance that at least one scan would be usable for 

analysis and for signal averaging if desired. 

http://www.alzheimers.org/clinicaltrials/fullrec.asp?PrimaryKey=208
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The scan quality was evaluated by the ADNI MRI quality control (QC) center at the 

Mayo Clinic to exclude failed scans due to motion, technical problems, significant clinical 

abnormalities (e.g., hemispheric infarction), or changes in scanner vendor during the time-series 

(e.g., from GE to Philips). Image corrections were applied using a standard processing pipeline 

consisting of four steps: (1) correction of geometric distortion due to gradient non-linearity [96], 

i.e. "gradwarp"  (2) “B1-correction” for adjustment of image intensity inhomogeneity due to B1 

non-uniformity [95], (3) “N3” bias field correction for reducing residual intensity inhomogeneity 

[97], and (4) phantom-based geometrical scaling to remove scanner and session specific 

calibration errors [98].  

5.2.3. The ADNI-1 dataset  

For our experiments, we analyzed data from 683 ADNI subjects with baseline and 1 year 

scans, and 542 subjects with baseline, 1 year and 2 year scans. The former group consisted of 

144 AD subjects (age at screening: 75.5 +/-7.4, 67 female (F)/77 male (M)), 337 subjects with 

Mild Cognitive Impairment (MCI) (74.9 +/-7.2, 122 F/215 M), and 202 age-matched healthy 

controls (NC) (76.0 +/-5.1, 95 F/107 M). The 2-year group (i.e., people with scans at baseline, 

and after a 1-year and 2-year interval) had 111 AD (75.7 +/-7.3, 52 F/59 M), 253 MCI (74.9 +/-

7.1, 87 F/166 M), and 178 NC (76.2 +/- 5.2, 85 F/93 M) subjects. All raw scans, images with 

different steps of corrections, and the standard ADNI-1 collections are available to the general 

scientific community at http://www.loni.ucla.edu/ADNI/Data/. We used exactly all ADNI 

subjects available to us (on Feb. 1, 2012) who had both baseline and 12 month scans, and all 

subjects with 24 month scans (available July 1, 2012). The use of all subjects without data 

exclusion has been advocated by [17] and [71], because any scan exclusion can lead to power 

http://www.loni.ucla.edu/ADNI/Data/
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estimates that are unfairly optimistic, and many drug trials prohibit the exclusion of any scans at 

all. 

 

5.2.4 Surface Extraction 

Our surfaces were extracted from 9-parameter affine-registered, fully processed T1-

weighted anatomical scans. We used a modified version of Chou’s registration-based 

segmentation [99], using inverse-consistent fluid registration with a mutual information fidelity 

term [81]. To avoid issues of bias and non-transitivity, we segmented each of our subjects’ two 

or three scans separately. In this approach, a set of hand-labeled “templates” are aligned to each 

scan, with multiple atlases being used to greatly reduce error. There were an equal number of 

templates from each of the three diagnostic groups, with an equal number of males and females 

in each. However, using only AD or MCI templates instead is unlikely to have any measurable 

effect on the segmentation, due to the fact that many templates are used. 

Table 1: Available scans for ADNI-1 on February 1, 2012, for 12 months and July 1, 2012, for 24 

months. Total number of scans used: N = 2065. 

 Screening  12Mo  24Mo  

AD 200  144  111  

MCI 408  337  253  

Normal 232  202  178  

Total 840  683  542  

 

5.2.5 Medial Curve-Based Surface Registration  

In this study, we focus on mapping changes in the lateral ventricles, a fluid-filled space 

that expands as brain atrophy progresses (Figure 1). Clearly, other features could be used with 

our multivariate approach, and it would be equally possible to apply the learning of 
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discriminative features from voxel-based maps of changes throughout the brain, as measured by 

tensor-based morphometry, for example. The method is completely general, and it could even be 

simultaneously applied to multiple types of features; for example, thickness measures from 

anatomical surfaces (cortical and subcortical), maps of volumetric changes throughout the brain, 

and any other biomarkers such as maps of brain amyloid or CSF analytes. In that case the 

meaning of a 25% slowing the pattern of change would be less intuitive, but it might identify 

biomarkers whose progression is slowed by a treatment. For simplicity we present our analysis 

on measures of ventricular expansion, computed from surface models of the ventricles in serial 

MRI. For completeness, we first explain some mathematical concepts from differential geometry 

– such as medial curves and mappings – that are useful when analyzing patterns of changes on 

these surface meshes.  

Mathematical Preliminaries. Anatomical surfaces in the brain, such as the ventricles, 

hippocampus, or caudate, have often been analyzed using surface meshes and features derived 

from them, such as a medial curve, or “skeleton”, that threads down the center of a 3D structure 

[8]. These reference curves are often used to compute the “thickness” of the structure, by 

assessing the distance from each boundary point to a central line or curve that runs through a 

structure.  

The problem of finding the “medial curve” or “skeleton” of an orientable surface is not well-

defined, but a few properties are generally accepted as desirable [100]. Here we focus on those 

properties that are particularly pertinent for registering and comparing surfaces across multiple 

subjects:  
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(1) Centered: we would like our curve to be “locally” in the middle of the shape. This is 

important for accurately estimating local thickness on boundaries of shapes.  

(2) Onto, smooth mapping: There must exist a surjective, smooth mapping from the surface to 

the curve. This is essential in order to use the medial curve for registration.  

(3) Consistent geometry: The geometry of the curve should vary smoothly with smooth 

variations of the shape. 

 

Exploiting the approximately tubular structure of many subcortical regions of interest 

(ROI), we make the simplifying assumption that our skeleton is a single open curve with no 

branches or loops. While this is a strong assumption, it greatly simplifies computation, and 

allows us to focus on (P1) and (P3). In practice, single curve skeletons are robust, even for 

representing branching shapes like the ventricles [91]. Focusing on (P1), we say that a curve is 

the medial curve if it is smooth and every point on it is “locally in the middle” of the shape. 

Formalizing this intuition for approximately tubular shapes, we have the following expression 

for a medial cost function. Given a surface  , the medial curve   [   ]    , should be a 

global minimum of 

          ∫ ∫                  |       | 

    

 

 

                                      

where               Here,             is the weight defining the “localness” of point p 

relative to c. Our weight function is defined as in Chapter 3[91]. Adding a smoothness term 

penalizing curvature   , we have our final cost function: 
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                     ∫ |     |
 

 

 

                                                   

While (P3) is not formally satisfied, it generally holds in practice due to the regularization 

and the fact that             is piecewise smooth. We equip the shapes with two scalar 

functions for registration based on the medial curve, the global orientation function (GOF) 

  and medial thickness  : 

            
 

{|      |   [   ]}                                                  

      | [    ]    |                                                               

An example of a medial curve and the corresponding GOF is shown in Figure 2(a) and the 

weighting function is illustrated in Figure 2(b). To ensure (P2), we apply constrained Laplacian 

smoothing to the GOF if there are any local extrema not at curve endpoints. This step generally 

requires just a few iterations and is needed in only a small proportion of cases. We modify the 

registration presented in Chapter 3 by adding the longitudinal change term: 

                                                                                

We first perform longitudinal registration as in Chapter 3 between each follow-up ventricle 

model and the corresponding baseline model. Thus, the group-wise registration step of [91] is 

done on only two shapes at a time. We then register each pair of shapes to a corresponding target 

pair. We do not use group-wise registration of Chapter 3 during the cross-sectional step to avoid 

“peaking,” or unfairly biasing our n80 estimate by using information from the testing sample 

during the learning stage. Instead, we modify the GOF to minimize the L
2
 difference between the 

1D thickness and thickness change maps of the target surface and each new surface, expressed as 
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∫     
{    |      }

  

∫   
{    |      }

                                                              

where * can correspond to   or   . The 1D registration minimizes           

∫      [      ]    [ ] 
         [      ]     [ ] 

                                  
 

 

 

[      ]  [   ]. 

Here the functions    are the feature functions of each subject’s surface, and     are the 

corresponding features of the target shape. The 1D displacement field r is restricted 

by   [   ]        . The GOF is adjusted by            ,              . Surfaces are 

then registered parametrically on the sphere by simultaneously minimizing the L
2
 difference 

between     ,  , and    of the new shape and the target shape. The target shape is excluded 

from LDA training or testing. In this way, each time point and each subject are treated entirely 

independently; adding new subjects or time points to the dataset does not affect previous results. 

 

5.2.6  LDA-based Feature Weighting 

In designing an imaging biomarker, one generally seeks a balance between the 

intuitiveness of the biomarker and its power to detect disease or disease progression. A natural 

choice for ventricular shape-based features is radial expansion. It directly measures anatomical 

change that correlates with the severity of AD and MCI [8, 74, 101-105]. We use the thickness 

change defined in (7) as our local measure. Having made this choice, we would now like to find 

an optimal linear weighting for each vertex on the surface to maximize the effect size of our 
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combined global measure of change. A linear model may not have the intuitive clarity of a 

binary weighting (i.e., specifying or masking a restricted region to measure), but its meaning is 

still sufficiently clear and can be easily visualized. Thus we would like to minimize our sample 

size estimate (1) as a function of the weights, w: 

      

 
   

∑(  
        )

 

      
 

 

   
 
     

      
                                    

Here     (    
 ⁄
       )

 

,    is the thickness change for the i
th

 subject, m is the mean 

vector, the covariance matrix     ∑        
          , and       . Minimizing (9) 

is equivalent to maximizing 

     
      

      
                                                                    

which is a special case of the LDA cost function, with a maximum  given by 

    
                                                                            

For our purposes,   represents the mean of the diseased group. We denote this by   

        , where         stands for the mean expansion vector in the combined MCI and AD 

group. We make no distinction between these two groups during LDA training. Maximizing (10) 

directly is generally not stable when    has a high condition number, as is typically the case 

when the number of features greatly exceeds the number of examples. For the same reason, even 

if a stable solution is found, it is unlikely to generalize to a new sample. This is indeed observed 

for our ventricle data: direct unregularized solutions yield 1-year training n80’s between 10 and 

30 for MCI subjects, but applying the weighting to a new, non-overlapping sample of MCI data 
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can lead to n80’s over 200, comparable to the stat-ROI results. To mitigate this, we use two 

regularization approaches, one aimed at speed and scalability, and the other at precision and 

generalizability. 

To avoid dealing with dense covariance matrices directly, we apply Principal 

Components Analysis to our training sample, storing the first k principal components (PCs) in 

the rows of a matrix, P, and computing the corresponding k eigenvalues   . This is a standard 

approach when applying LDA to actual two-class problems, as it makes the mixed covariance 

matrix nearly diagonal. In our case, the covariance in PCA space is exactly diagonal, which 

reduces (11) to a direct computation: 

                 [  ]    ⁄                                                        

This approach is very fast: one can compute the first k eigenvectors and eigenvalues of    

without explicitly computing    itself. An alternative to PCA is to incorporate spatial smoothing 

into (11) as Tikhonov regularization. This approach is not as efficient as PCA, but allows us to 

incorporate prior knowledge about the spatial distribution of vertex weights into the solution. 

Thus it has better potential to generalize across samples. The regularized solution then becomes 

     
                                                                             

Here a is the smoothing weight, and L is the Tikhonov matrix. We use the matrix of surface 

Laplacian weights between vertices of the average shape computed from healthy controls. To 

avoid “peaking” with respect to the test n80’s for control subjects, a different average shape and 

Laplacian matrix are computed for each fold during cross-validation. To address the potential 

lack of disease specificity of ventricular expansion and the power analysis of (1), we also 
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optimize (10) for NC-modified sample size estimates. In this case, the mean estimate is modified 

to 

                                                                            

where     is the mean expansion among controls. 

The order of subjects in each diagnostic group is randomly changed to avoid any confounds 

such as scanner type, as well as the age or sex of the subject. This step is needed mainly because 

the standard ADNI subject order corresponds to scanning cites. Where the subjects are scanned 

is known to correlate with reliability in many morphometric measures. This is only done once 

before LDA training, with the same order and same subdivision of diagnostic groups used for 

each method. To validate our data-driven weighting approaches, we create two groups of equal 

size, with an equal number of MCI, AD and NC subjects in each. Each of these folds is then used 

to optimize the relevant parameter, i.e., the number of principal components k, the smoothing 

weight a, or the parametric p-value threshold for stat-ROI. The training fold is again divided into 

two groups with equal number of AD and MCI subjects in each, to tune the parameters. The best 

parameter is then used to train a model on the whole fold, and the model is tested on the other 

fold. We note that for the PCA approach, a different set of principal components is computed for 

each fold so that the covariance information from the test set is not used. We further stress that 

group-wise registration, even if it is blind to diagnosis and time, would constitute a circular 

analysis here, as the covariance structure of the test set would again be used to inform the 

training even if indirectly. In fact, the method proposed in [91] exploits covariance quite directly. 

One alternative would be to group-wise register each fold separately. The analysis would even 

remain objective if we then registered the test fold to a probabilistic atlas created with the 
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training fold, in which case each fold would have two independent homologies, one for testing, 

and the other for training. However, we did not pursue such complicated schemes, and simply 

registered all subjects to a single subject template.  

 To distinguish between the two novel aspects of the LDA model compared to the stat-

ROI – the continuous weighting, and the multivariate analysis compared to the mass-univariate 

approach – we tested the effect of each separately. In practice, this suggests two additional 

weightings: a continuous t-statistic weighting, which can be computed directly with no parameter 

tuning; and a masked version of the LDA. In the latter case, two parameters need to be tuned. In 

addition to the single parameter already embedded in the model, we also need to find an optimal 

threshold. For computational speed, we choose to threshold the PCA model. To devise a 

reasonable set of mask thresholds to test, we compute the cumulative distribution functions 

(CDFs) of the vertex weights, and space our cutoff values at regular intervals along the y-axis. In 

other words, each subsequent threshold adds a surface region of a roughly constant area. Further, 

because the LDA maps are signed, we consider both signed and unsigned masks. For the 

unsigned case, we use the prior knowledge that ventricles are generally expected to expand, thus 

considering only positively weighted areas, and weighing the vertices by 1 when the threshold is 

exceeded. For the signed case, we also assign a value of -1 to vertices whose contraction rate 

exceeds a threshold. In the latter case, different CDFs and threshold magnitudes are used for the 

positive and negative regions.  

 To compute meaningful anatomical summary from the vertex weights of each weighting 

scheme, we normalized the weights by their 1-norm, which corresponds to averaging over the 

ROI for the discrete methods, assuming equal area elements for all vertices. This assumption, 
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however, is only approximately true. These results do not exactly correspond to mean sample 

sizes reported, since the mean n80 is defined as the average of the two folds’ sample size 

estimates. 

 

5.3 Results 

To verify that our measure of annual thickness change has good potential as a biomarker 

of AD and MCI, we initially performed a group mean comparison of radial thickness change 

over 1 year using a permutation test as in [8]. This test relies on the standard t statistic at each 

vertex, and computes a non-parametric null distribution for the surface area that exceeds the 

given t-threshold. A threshold corresponding to        was used as in [8]. We compared AD 

vs. NC groups, and MCI vs. NC. After 100000 random re-assignments of the group data, 

permutation-based p-values for the overall pattern of group difference for AD vs. NC and MCI 

vs. NC were below the threshold for each hemisphere, i.e., p < 10
-5

. Localized p-maps of the 

results are shown in Figure 3, and are consistent with prior papers by Chou and others [52, 104].  

Below we compare the performance of our PCA-based vertex weighting, the Tikhonov-

regularized weighting, and the standard stat-ROI approach, as well as t-statistic weighting and 

signed and unsigned LDA-ROI weightings. In testing each of these weighting methods, we used 

nested 2-fold cross-validation. Only AD and MCI subjects were used in the training stage. 

Further, we restricted our training sample to include only 1-year changes. Twenty-four month 

data was only used for testing, applying 1-year models to the non-overlapping subgroups of the 

24-month data.  
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 Our 1-year sample size estimates based on cross-validation were nearly identical for the 

PCA and the Tikhonov approaches. During training of the PCA model, the optimal number of 

principal components was chosen to be 28, and 47 for folds 1 and 2, respectively. Maps of the 

weights averaged over the two folds are shown in Figure 4a. The Tikhonov approach resulted in 

predictably smoother weight maps, the mean of which is shown in Figure 4b. Twenty 

exponentially increasing values of smoothing weight a were tested, between a = 10
-2

 and a = 10
7
. 

The two folds returned 10
3.5

 and 10
4
 as the optimal values. 

The “stat-ROI” approach led to inferior results with n80’s notably higher for all three 

diagnostic groups, especially MCI. The optimal t-threshold was chosen to be p = 10
-6

 in both 

folds. The range of tested p-values contained every power of 10 between p = 10
-4

 and p = 10
-20

, 

which corresponded to ROIs of every size, from patches covering nearly the entire surface 

(>95%) to just a handful of mesh vertices.  The average stat-ROI mask is shown in Figure 5c.  

As an additional control, we computed sample size estimates based on ventricular volume 

change in both hemispheres. Volume-based estimates for the n80 were significantly higher than 

the three surface-based measures.  Table 2 shows a summary of all 1 year sample size estimates. 

Figure 6 illustrates the mean sample size estimates for all four measures at 1 year. Bootstrapped 

95% confidence intervals (CIs) for each fold were computed as in [74]. To estimate confidence 

intervals for the whole cohort in an unbiased way, we normalized the linear weights of each fold 

by their standard deviation. Although the scale of the weighting vector has no bearing on (1) 

within each fold, the relative scales of the two vectors can skew the CIs significantly when 

considered together. Thus, a similar scaling is necessary when computing overall CI’s. After this 

step, the overall CIs were computed the same way as for each fold. We also computed 

bootstrapped mean n80 comparisons between the different methods for each fold, and for the 
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overall sample. While the two LDA approaches were not significantly different, both led to 

significantly lower n80’s for an MCI clinical trial. The PCA method showed significantly lower 

estimates for NC subjects, if not corrected for multiple comparisons. P-values for n80 

comparisons across the first three methods are summarized in Table 3a. 

Table 2. Sample size estimates for clinical trials, using ventricular change over 12 months as an outcome 

measure. Depending on how we weight the features on the ventricular surfaces, the sample size estimates 

can be reduced, and the power of the study increased. The two LDA-based methods (top two rows) show 

lower sample size estimates (i.e., greater effect sizes) than the standard “statistical ROI” approach, which 

uses a binary mask to select a region of interest. The “t-stat” row shows results when weighting the vertex 

expansion rates with the t-statistic. “PCA sign.” and “PCA uns.” show results when thresholding PCA-

LDA based weight maps, with “sign.” meaning  that negatively weighted areas were considered and 

assigned a weight of -1 when below the threshold. “Uns.” means “unsigned,” i.e. only positively weighed 

vertices were considered, and weighed with 1 if exceeding the threshold. All surface-based approaches 

(top six rows) outperform measures of change based on ventricular volume. The “mean” columns display 

n80’s and CI’s of the two folds’ estimates averaged.  

 MCI AD NC Mean MCI Mean AD Mean NC 

PCA 111/96 

(85,150)/(75,127) 

65/86 

(46,92)/(64,128) 

134/192 

(106,177)/(150,260) 
104 

(94,139) 

75 

(64,102) 

163 

(114,190) 

Tik. 116/105 

(92,154)/(81,146) 

71/95 

(49,100)/(65,155) 

155/186 

(121,205)/(156,247) 

110 

(92,135) 

83 

(63,110) 

170 

(119,196) 

Stat-

ROI 

184/145 

(143,256)/(108,215) 

95/94 

(64,143)/(67,143) 

207/201 

(159,279)/(155,271) 

165 

(134,209) 

94 

(72,125) 

204 

(156,273) 

t-stat 

 

205/151 

(154,289)/(112,247) 

91/99 

(63,143)/(67,147) 

218/212 

(166,298)/(162,288) 

178 

(143,232) 

95 

(72,128) 

215 

(175,264) 

PCA 

sign. 

134/111 

(104,184)/(83,157) 

85/81 

(61,124)/(55,128) 

170/187 

(128,242)/(144,251) 

123 

(100,154) 

83 

(63,111) 

178 

(146,222) 

PCA 

uns. 

226/161 

(166,332)/(120,263) 

95/100 

(65,146)/(68,150) 

242/233 

(182,339)/(176,323) 

193 

(155,261) 

98 

(74,130) 

237 

(192,296) 

Vol. - - - 266 

(216,355) 

145 

(108,199) 

352 

(262,533) 

 

The sample sizes based on t-statistic weighting were very similar to stat-ROI results, with 

no significant difference, though stat-ROI n80’s were generally slightly lower. These weights are 

visualized in Figure 4c. The LDA-ROI sample sizes were greater than the continuous weighting, 

though the difference only reached significance for the unsigned case. For the signed case, 81 

and 71 PCs were selected during parameter tuning for the two folds, and the threshold 
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corresponded to 80% of the vertices. For the unsigned case, only 15 and 7 PCs were used, with 

the threshold set at 90% of the vertices. Comparisons of continuous vs. discrete weightings are 

presented in Table 3b. The masks resulting from the three discrete methods are visualized in 

Figure 5. P-values for n80 comparisons between the discrete and the corresponding continuous 

weightings are summarized in Table 3b. 

 Finally, the control-augmented sample sizes resulting from the 2-class LDA model 

resulted in noticeably different maps compared to the 1-class models. We again used the PCA 

approach, with 32 and 54 principal components used in the two folds. The pattern of the 2-class 

LDA model was characteristic of AD: significantly more weight was given to the inferior horns 

bordering the hippocampus, and more weighting was also given to the middle of the occipital 

horns, characteristic of white matter degeneration. These results are displayed in Figure 4d. For 

comparison purposes, we show the control-adjusted sample size estimates for our weightings in 

Table 4b and Figure 7b, and also those reported in [73], in Figure 9b.  

 All methods had good agreement between the two folds’ models. The sample sizes in 

each fold were similar, and the weight patterns were also in good agreement. We used ordinary 

linear regression for each weighting scheme’s pair of linear models. The null hypothesis that the 

regression model does not fit the data (F-test) returned p < 10
-20

 for all weighting schemes. 

Tables 4 and 5 show corresponding results for 24-month sample sizes. Here, the general trend is 

similar to 1-year, though the sample size estimates in controls are closer to estimates for MCI 

and AD. Figure 7a illustrates this effect graphically. 
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Table 3a. P-values estimating the evidence that the true 12-month n80 (sample size requirement) of the 

first method is equal to or greater than that of the second method. Null distributions were created by 

bootstrapping 100000 samples with replacement. Note that depending on how rigorous one is about 

hypothesis testing, the true p-values may need a Bonferroni correction by a factor of 3, if one accepts a 

separate correction for each subset of the data, or 9 (in which case the two p-values lower than 0.05/9, 

here, should be considered significant). In either case, n80’s for NC subjects are not significantly different 

among the surface-based methods. At 12 months, the two LDA-based methods give statistically 

indistinguishable results.  

PCA vs. Tikhonov PCA vs. stat-ROI Tikhonov vs. stat-ROI 

MCI AD NC MCI AD NC MCI AD NC 

0.545 0.437 0.419 0.00475 0.200 0.0366 0.0035 0.256 0.0529 

 

 

Table 3b. P-values estimating the evidence that the true 12-month n80 (sample size requirement) of the 

first method is equal to or greater than that of the second method. For LDA, continuous weighting gives 

better results, but the difference is only significant when using unsigned masking. For stat-ROI, masking 

is better, but the improvement is not significant.  

PCA vs. signed LDA-ROI PCA vs. unsigned LDA-ROI Stat-ROI vs. t-stat weighting 

MCI AD NC MCI AD NC MCI AD NC 

0.27697 0.43547 0.27105 0.00037 0.15134 0.00421 0.30627 0.48339 0.35982 

 

 

Table 4a. Sample size estimates for clinical trials, using ventricular change over 24 months as an 

outcome measure. Depending on how the features on the ventricular surfaces are weighted, the sample 

size estimates can be reduced, and the power of the study increased. The two LDA-based methods (top 

two rows) show lower sample size estimates than the stat-ROI approach. Control subjects’ average 

atrophy now approaches that of MCI subjects in magnitude.  

 MCI AD NC Mean MCI Mean AD Mean NC 

PCA 80/62 
(65,108)/(44,86) 

67/47 
(47,122)/(31,67) 

69/74 
(54,91)/(57,102) 

71 
(65,98) 

57 
(45,89) 

72 
(52,89) 

Tik. 73/60 
(57,99)/(42,87) 

63/41 
(44,117)/(26,63) 

60/80 
(47,82)/(62,105) 

67 
(54,84) 

52 
(38,76) 

70 
(48,82) 

Stat-

ROI 
141/96 

(113,193)/(69,130) 
93/66 

(69,150)/(43,98) 
119/122 

(89,177)/(92,182) 
119 

(98,149) 
80 

(61,108) 
121 

(90,179) 
Vol. - 

 
- 
 

- 
 

191 
(157,258) 

119 
(88,169) 

196 
(155,253) 
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Table 4b. Sample size estimates for clinical trials, using ventricular change over 24 months as an 

outcome measure, modified by change in controls. The NC-modified analogues to table 4a show a 

marked increase in required sample size. The 2-class model greatly outperforms all other ventricular 

measures, with ventricular volume performing on par with the best 1-class surface measures: unsigned 

LDA-ROI and Stat-ROI. 

 MCI AD Mean MCI Mean AD 

PCA 1170/1373 

(659,2758)/(689,4240) 

426/276 

(240,1157)/(165,576) 

1272 

(760,2239) 

351 

(222,610) 

Tik. 1661/1595 

(859,4892)/(737,6306) 

534/302 

(286,1743)/(167,747) 

1628 

(902,3440) 

418 

(261,875) 

Stat-

ROI 

852/1171 

(529,1610)/(623,3171) 

266/241 

(169,509)/(150,449) 

1011 

(660,1704) 

254 

(176,379) 

t-stat 

 

840/1298 

(517,1628)/(670,3708) 

238/249 

(152,433)/(157,459) 

1069 

(697,1880) 

244 

(171,355) 

PCA 

sign. 

1480/1380 

(794,3803)/(681,4488) 

482/244 

(257,1309)/(140,527) 

1430 

(835,2674) 

363 

(229,676) 

PCA 

uns. 

841/1133 

(514,1650)/(611,2958) 

238/233 

(150,444)/(147,423) 

987 

(641,1696) 

235 

(167,357) 

2-class 461/628 

(290,841)/(380,1244) 

115/174 

(76,191)/(112,306) 

544 

(371,802) 

145 

(101,192) 

Vol. -- -- 916 

(658,1385) 

253 

(182,372) 

 

 

Table 5. P-values estimating the chance that the true 24 month n80 of the first method is equal to or 

greater than that of the second method. Null distributions were created by bootstrapping 100000 samples 

with replacement. Note that depending on how rigorous one is about hypothesis testing, the true p-values 

may need a Bonferroni correction by a factor of 3, if one accepts a separate correction for each subset of 

the data, or 9. The improvement of the Tikhonov-LDA method over the stat-ROI approach reaches 

significance, when uncorrected, for AD subjects. At 24 months, the improvement in power when using 

Tikhonov-regularized LDA model over the PCA model approaches trend levels for MCI subjects.  

Tikhonov vs. PCA PCA vs. stat-ROI Tikhonov vs. stat-ROI 

MCI AD NC MCI AD NC MCI AD NC 

0.129 0.257 0.334 0.00249 0.11 0.00278 0.0001 0.0276 0.00076 
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To assess whether there is any evidence of longitudinal bias of our weighted measures, 

we applied our 1 year models to healthy controls at 12 and 24 months. Using a method similar to 

[89], we used the y-intercept of the linear regression as a measure of bias (bearing in mind the 

caveats noted that there may be some biological acceleration or deceleration that could appear to 

be a bias). We again used bootstrapping to estimate the intercept and linear fit confidence 

intervals [106]. Figure 8 shows the regression plots for all surface models over the two follow-

up time points. Confidence intervals for the linear fits are shown in dotted green lines. The units 

of change along the y-axis represent the weighted ventricular expansion, normalized by the 1-

norm of the weight vectors. The 95% confidence interval for the PCA method was (-0.0218, 

0.036) mm, with a mean expansion of 0.111 mm at 1 year and 0.214 mm at 2 years. For the 

Tikhonov model, the 95% CI was (-0.0126, 0.0242), with mean change at 1 and 2 years of 

0.0704 mm and 0.1351 mm, respectively. The stat-ROI summary resulted in a 95% CI of (-

0.0411, 0.0645) mm, mean expansion  0.158 mm at 1 year, and 0.306 mm at two years. The bias 

test results are summarized in Table 6. Group averages for atrophy rates, with each model, are 

reported in Tables 7a and b.  

Table 6. Longitudinal bias analysis of ventricular surface-based measures. Change in healthy controls is 

linearly regressed over two time points. The intercept is very close to zero, with the confidence interval 

clearly containing zero for each method. The surface-based measures do not show any algorithmic bias 

according to the CI test. 

PCA Tikhonov T-stat 2-class  

LDA 

Signed 

LDA-ROI 

Unsigned 

LDA-ROI 

Stat-ROI 

0.0064  

(-0.0218, 

0.06)  

0.0048  

(-0.0126, 

0.0242)  

-0.0102 

(-0.0617, 

0.0416) 

0.0172 

(-0.0031, 

0.036) 

-0.0031 

(-0.0208, 

0.0143) 

-0.0189 

(-0.0665, 

0.0304) 

0.0115  

(-0.0411, 

0.0645)  
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Table 7a. Ventricular surface summary atrophy measures for continuous weightings. Averages and 

standard deviations for atrophy rates are in millimeters of radial expansion. The vertex weights are 

normalized by their 1-norm, which corresponds to averaging over the ROI for the stat-ROI method, 

assuming equal area elements for all vertices.  

 Tikhonov  PCA  t-stat 2-class LDA 

 MCI AD NC MCI AD NC MCI AD NC MCI AD NC 

12 

mo 

0.0872 

 0.060 

0.105 

 0.062 

0.0704 

 0.054 

0.151 

 0.10 

0.191 

 0.11 

0.111 

 0.084 

0.247 

 0.21 

0.349 

 0.21 

0.146 

 0.14 

0.058 

 0.06 

0.0835 

 0.073 

0.0299 

 0.05 

24 

mo 

0.146 

 0.079 

0.181 

 0.086 

0.135 

 0.067 

0.257 

 0.14 

0.33 

 0.17 

0.214 

 0.11 

0.46 

 0.32 

0.68 

 0.37 

0.304 

 0.21 

0.101 

 0.1 

0.175 

 0.13 

0.0412 

 0.08 

 

Table 7b. Ventricular surface summary atrophy measures for discrete weightings. Discrete analogues of 

results in table 7a, because negative weights are allowed in signed LDA-ROI, the normalized average 

expansion is closer to the 2-class LDA result, while the unsigned version is closer to stat-ROI and t-

statistic weighting. 

 stat-ROI Signed LDA-ROI Unsigned LDA-ROI 

 MCI AD NC MCI AD NC MCI AD NC 

12 

months 

0.262 

 0.21 

0.367 

 0.22 

0.158 

 0.14 

0.0602 

 0.042 

0.0796 

 0.046 

0.0411 

 0.035 

0.226 

 0.2 

0.328 

 0.2 

0.132 

 0.13 

24 

months 

0.468 

 0.32 

0.690 

 0.39 

0.306 

 0.21 

0.108 

 0.06 

0.14 

 0.068 

0.083 

 0.046 

0.438 

 0.3 

0.652 

 0.36 

0.284 

 0.19 

 

5.4 Discussion 

Here we introduced and tested an approach to increase the efficiency of clinical trials in 

Alzheimer’s Disease and MCI, based on multiple neuroimaging features, with a straightforward 

application of Linear Discriminant Analysis (LDA). We applied our measure of brain change to 

a surface-based measure of atrophy in the lateral ventricles. Despite the simplicity of our 

approach, the resulting sample size estimates are significantly better than the stat-ROI approach, 

which has been the standard feature weighting method to date.  The linear feature weighting also 

produces an intuitive, univariate measure of change – a single number summary that can be 
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correlated to other relevant variables and outcome measures. The linear weights can be easily 

visualized, adding insight into the pattern and 3D profile of disease progression. Our longitudinal 

ventricular morphometry showed high sensitivity to local differences in shape change due to AD. 

Local maps of shape change were consistent with previous studies.  

We applied our LDA approach to local ventricular shape change features, with promising 

results. We used two alternative methods for solving the LDA optimization problem. The first 

approach, based on principal components analysis, is very fast and scalable to larger feature sets, 

such as dense Jacobian determinant maps in volumetric Tensor Based Morphometry (TBM). The 

other optimization method exploits the relatively sparse nature of our surface data by adding 

Tikhonov regularization in the form of surface-based scalar Laplacian smoothing.  

To distinguish between the two novel aspects of the LDA approach with respect to the 

stat-ROI – multivariate analysis and continuous weighting – we compared three additional 

weighting schemes. The first is simply the continuous version of the mass-univariate approach 

used in the stat-ROI, the t-statistic weighting. In cross-validation, this weighting performed 

slightly worse than the stat-ROI, but the difference did not reach significance. The second and 

third weighting schemes were designed to be discrete analogues of the PCA-LDA model. These 

performed worse than the continuous PCA model, with the difference between the unsigned 

LDA-ROI and the PCA models reaching significance for MCI and NC subjects. However, the 

signed LDA-ROI model performed notably better than the stat-ROI. These results together 

suggest that both the continuous and the multivariate aspects of the LDA models contribute to 

sample size reduction, but the multivariate aspect may play a larger role. 
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5.4.1  Shape Analysis 

We have modified a shape registration approach for longitudinal shape analysis in the 

lateral ventricles. A variety of “medial-curve type” analysis methods for subcortical shapes have 

been developed over the years. A discrete approach called M-reps was popularized by Pizer et al. 

[51] and extended to the continuous setting by Yushkevich et al. [31]. M-reps consist of a 

discrete web of “atoms,” each of which describes the position, width and local directions to the 

boundary, and an object angle between corresponding boundary points. The approach leads to an 

extremely compact representation of the shape model. However, the method requires a specific 

m-rep model for each type of shape. For a given brain region, this model may need to be 

modified before it can be applied to a different dataset, if the geometry of the new set of shapes 

is slightly different, e.g. after being segmented using a different protocol. This drawback is 

partially overcome when the medial core is continuous. 

“CM-reps” are an elegant extension of M-reps to the 2-D continuous medial core. CM-

reps offer a way to derive boundaries from skeletons, by solving a Poisson-type partial 

differential equation with a nonlinear boundary condition [31]. The resulting 2D medial “sheet” 

continuously parameterizes the shape-enclosed volumetric region, as well as the surface. Thus in 

spirit it is very similar to our approach: a particular topology of the continuous medial model is 

assumed, and the model is deformed to fit each shape. However in certain practical applications, 

the 2D aspect of the cm-reps model can become a liability, leading to inconsistent 

parameterization for a family of similar shapes. One such case is the lateral ventricle, where the 

2D medial sheet can twist unpredictably around the junction of the superior and occipital horns. 

Instead, our general approach is to compute a single 1D continuous curve skeleton and use the 

curve to induce feature functions on the surface. Shape registration is then performed 
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parametrically by minimizing the L
2
 difference between corresponding feature functions of a pair 

of shapes. Wang et al. [52] used radial distance in conjunction with a conformal parameterization 

and surface-based TBM as an improved measure of ventricular expansion. In this case, a single-

curve skeleton was computed based on the conformal parameterization for each ventricular horn. 

Curve-skeletons of fixed topology have also been used before in medical imaging with distance 

fields (DFs) [107]. Our approach avoids the use of DFs, and defines a cost function relating the 

skeleton directly to the surface, eliminating the imprecision associated with the additional 

discretization due to DFs. Further, relying only on the discretization of the surface allows us to 

greatly speed up computation, making analysis of many hundreds of 3D shapes with the 

continuous medial axis achievable in little time without using large computing clusters.  

5.4.2  Machine Learning in Shape Analysis and Alzheimer’s Disease 

PCA-type approaches have been used in prior shape analyses. A regularized components 

analysis approach called LoCA [108] is similar to sparse PCA [109]. The idea, similar to PCA, is 

to generate an orthogonal basis for shape space, while adding a penalty term. However, instead 

of penalizing the number of non-zero weights in each basis vector, as is done in sparse PCA, 

LoCA instead forces all the non-zero components to be spatially clustered on a surface, which 

gives each component a clearer anatomical meaning. However, both of these methods come at a 

much higher computational cost than ordinary PCA: they are iterative, while PCA only relies on 

eigen-decomposition, making it feasible for much larger feature sets. LoCA has been applied to 

shape analysis in AD, including ADNI hippocampal data [110], finding specific component 

associations with AD and other biomarkers. Here, the measure used was very similar to ours, the 
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radial distance. Only baseline data were used in assessing morphometric differences, while our 

current study is longitudinal.  

 Sparse basis decomposition has also been used as a preprocessing step for training an AD 

classifier, for example by applying Independent Component Analysis (ICA) to gray matter 

density maps before using machine learning methods, such as Support Vector Machines (SVM), 

for classification [111]. Many machine learning approaches have been applied to image-based 

diagnosis or classification of AD and MCI. Davatzikos and colleagues applied SVM to 

RAVENS maps [112], an approach similar to modified VBM [113] which assigns relative tissue 

composition to every voxel after a high-dimensional warp. A similar approach was used by 

Vemuri [40], using tissue probability maps (TPMs) - essentially the same VBM measures that 

are constructed using the SPM package. Kloppel et al. [42] further showed that such a model can 

be stable across different datasets. In general, classification algorithms can achieve AD-NC 

cross-validation accuracy in the mid-nineties (~95%) within the same dataset, although 

performance inevitably degrades when applied to new datasets, especially if the cohort 

demographics or scanning protocols are different. 

Cuingnet et al. [114] developed a Laplacian-regularized SVM approach for classifying 

AD and NC subjects, which is very similar in spirit to our Tikhonov-regularized LDA. They 

show that using the Laplacian regularizer improves classification rates for AD vs. NC subjects.  

SVM has also been used, in our prior work, to separate AD and NC subjects based on 

hippocampal shape invariants and spherical harmonics [115]. Another recent surface-based 

classification effort by Cho et al. [116] uses an approach very similar to our PCA method, where 

surface atlas-registered cortical thickness data is smoothed with a low-pass filter of the Laplace-
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Beltrami operator, computed on the atlas shape. Following this procedure, PCA is performed on 

the smoothed surface thickness data and LDA is performed on a subset of the PCA coefficients 

to train a linear classifier. The resulting classification accuracy is very competitive. Another 

surface-based classifier [117] uses the SPHARM-PDM approach to classify AD and NC subjects 

based on hippocampal shape. SPHARM-PDM [118] computes a small number of spherical 

harmonic coefficients based on an area-preserving surface map, and normalizes the spherical 

correspondence by aligning the first-order ellipsoid with the poles. The result is a rudimentary 

surface registration and a spectral decomposition of the shape. Gerardin et al. reported 

competitive classification rates compared to whole-brain approaches. Shen et al. [119] recently 

used a Bayesian feature selection approach and classification on cortical thickness data and 

showed that AD-NC and MCI-NC classification accuracy remains competitive with SVM. 

Finally, to combine multiple modalities for classification, Zhang et al. [120] developed a 

multiple kernel SVM classifier to further improve diagnostic AD and MCI classification.  

It is important to stress that while many studies have used machine learning to derive a 

single measure of “AD-like” morphometry for discriminating AD and MCI subjects from the 

healthy group, no study we are aware of has used machine learning to maximize the power of 

absolute atrophy rates in AD. We have attempted this by using a straightforward application of 

LDA, using either PCA or Tikhonov regularization. The Tikhonov approach was intended to 

improve generalization relative to PCA, but surprisingly, there were essentially no major 

differences in test sample size estimates for AD and MCI subjects between the two methods. 

Only one subgroup at 24 months approached a trend level for a difference in efficiency (sample 

size difference) between the Tikhonov and PCA model. The Tikhonov method was slightly 

better for reducing sample size estimates in MCI, generalizing better - as expected.  A potential 
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cause of this may be an insufficiently thorough optimal parameter search for the Tikhonov 

approach, as the search must remain fairly coarse due to computational constraints. On the other 

hand, it is possible that the covariance structure of the training samples captures the spatial priors 

sufficiently well, and an explicit prior does not significantly improve generalizability.  

Outside of Alzheimer’s literature we found one approach for explicitly minimizing 

sample size estimates [121], and another that uses SVM for classification of Huntington’s 

disease patients versus controls, with reduced sample sizes as a by-product [88]. The first paper 

is methodologically closest in spirit to this work: a fidelity term is explicitly defined to be the 

control-adjusted sample size estimate. A number of non-linear constraints are then added: the 

total variation norm (TV1-norm), sparsity and non-negativity. While the first two have analogues 

that can be linearly optimized as we do here (TV2 and L
2
 norm), the third constraint forces the 

authors to use non-linear conjugate gradient (CG), which leads to far slower convergence than 

the linear CG we use. More importantly, due to the differences in the nature of their data – knee 

cartilage CT images – and ours, the sparsity and non-negativity constraints are perhaps not 

appropriate for brain imaging. We expect the effect over soft tissue to be diffuse without many 

discontinuities, and non-negativity is generally not appropriate in brain MR either. Admittedly, 

though, as we have focused only on the ventricles, non-negativity would probably be appropriate 

here, though it would lead to slower convergence. The second paper [88], which we mention in 

the introduction, simply uses leave-one-out linear SVM weighting of fluid registration-based 

TBM maps to derive an atrophy measure. No spatial regularization, or sample size-specific 

modification to the learning approach is used. In both of these cases the measure used is based on 

the difference between the mean of controls and the diseased group, which is not the main goal 

of the present work. Though we have used the NC-adjusted measure here as well to show the 
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potential to reveal AD-specific ventricular change patterns, the main goal was to optimize 

detection of absolute change. 

5.4.3  Other Ventricular Measures 

Several studies have used a ventricular measure alone, as a predictor of cognitive decline. 

Ott et al. [101] showed that ventricular volume is associated with CSF Aβ. Carmichael [104] 

compared ventricular volume and ventricle-brain ratio (VBR) across MCI converters and non-

converters with significantly increased volume, and VBR at baseline among converters. Nestor et 

al. [102] used a semi-automated highly precise ventricular segmentation to estimate differences 

in rates of volumetric change. Rates of volumetric increase in the ventricles were significantly 

greater in MCI and AD subjects compared to NC, which is in line with expectations about the 

rates of atrophy in each group. Chou et al. [103] performed a cross-sectional ventricular study on 

the baseline ADNI dataset, using a surface-based model. Surfaces were registered – in a similar 

way to [8] - by separating each horn and computing three separate medial axes. The radial 

distance measure was shown to be significantly different between NC and AD, and NC and MCI 

subjects. Several other cognitive measures and CSF biomarkers were shown to correlate 

significantly with the local ventricular surface expansion, in a direction expected from the 

advancing pathology and the intensification of the disease. Ferrarini et al. [122] showed 

differences in local ventricular surface morphometry between AD and NC subjects using 

permutations testing and a novel algorithm – known as “GAMEs” - for surface meshing and 

matching.  
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5.4.4  Power Estimates of Other Measures in AD 

Our ventricular change measures outperformed other common ventricular measures as an 

AD biomarker with respect to the sample size requirements, assuming of course that the 

reference data are comparable. Schott [74] reported 1-year n80’s for the “Ventricular Boundary 

Shift Integral” (VBSI) of 118 (92, 157) for AD and 234 (191,295) for MCI at 1 year. Holland et 

al. [73] reported a Quarc ventricle measure of 92 (69, 135) for AD and 183 (146, 241) for MCI 

for a 2-year trial. FreeSurfer ventricular measures give similar 2-year estimates of 90 (68,128) 

for AD and 164 (133, 211) for MCI. Our approach performs comparably well or better than 

many other imaging measures, in particular those using the entire cortex. An FSL tool, known as 

SIENA [78, 123], achieved a 1-year point estimate for sample size of 132 for AD and 278 for 

MCI. Quarc achieved 2-year whole brain estimates of 84 (63, 123) for AD and 149 (121, 193) 

for MCI. FreeSurfer is reported [73] to achieve 2-year whole brain estimates of  252 (175, 408) 

for AD and 384 (294, 531) for MCI. Schott reported that BBSI, a whole brain gray matter 

atrophy measure [74], required 1-year samples of 81 (64, 109) for AD and 149 (122, 188) for 

MCI. Hua et al. [71] used improved Tensor Based Morphometry (TBM) with the stat-ROI voxel 

weighting to achieve 1-year sample sizes of 58 (45,81) for AD and 124 (98,160) for MCI. These 

comparisons are summarized in Figures 9 and 10. Though all sample size estimates mentioned 

here are based on the same ADNI-1 dataset, different studies were done on ADNI subsamples of 

different size. To shed some light on this, we give the number of subjects used for each study in 

Table 8. Comparison between our study and others is more meaningful where there are fewer 

exclusions. We note that while the Quarc and Freesurfer results from [73] are for a 2-year study, 

and using a slightly different power calculation, in fact even subjects who only had scans up to 1 

year were considered. The variance and disease effect in these calculations were based on a 
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mixed effect model using all available time points for each subject. However, there are still 

roughly 10% fewer subjects used for Quarc and 7% fewer for Freesurfer compared to the full 

ADNI dataset. 

Table 8. Number of ADNI subjects used for computing sample size estimates in Figures 9 and 10. 

 
AD MCI 

Quarc 131 311 

FreeSurfer 135 320 

BSI 144 334 

SIENA 85 195 

TBM Stat-ROI 138 326 

Medial Vent-LDA 144 337 

 

5.4.5  Algorithmic Bias 

Importantly, we showed that our surface-based measures are longitudinally unbiased 

according to the intercept CI test [124], alleviating common concerns about overly optimistic 

sample size estimates due to, for example, additive algorithmic bias. The fact that the baseline 

and follow-up scans were processed identically, and independently, avoids several sources of 

subtle bias in longitudinal image processing that can arise from not handling the images in a 

uniform way [90]. Some issues have been raised regarding the validity of the intercept CI test as 

a test for bias in estimating rates of change. The CI test assumes that the true morphometric 

change from baseline increases in magnitude linearly over time in healthy controls. Relying on 

this assumption, the test examines whether the intercept of the linear model, fitted through 

measures of change at successive time intervals in controls, is zero. If this is not the case, the 

measure of change is said to have additive bias. There are two common criticisms of this test. 

First, the linearity assumption may not always be valid, i.e., true biological changes may be 

nonlinear. In this case, a truly unbiased algorithm could fail the test, while giving accurate 
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results. For example, the loss of tissue may be proportional to the amount of tissue left, so the 

change in volume as measured by TBM, or medial distance to a ventricular boundary relative to 

baseline might decay or expand exponentially. Alternatively, if loss of tissue volume is linear in 

time, radial distance measures might be expected to change in proportion to the cube-root of 

time, or to vary according to some empirical power law relating the distance to volumetric 

measures, depending on which directional changes contribute most to the overall change [125, 

126]. This may partially explain the slight additive “bias” that is detectable in AD and MCI 

subjects (though not in controls). In disease, the power law describing changes as a function of 

time may be different compared to controls due to disease effects. As a result, only control 

subjects should be used when using the linear fit CI test, but even in that case, it is not a perfect 

test, in that an accurate algorithm could fail the test.  

The second common criticism of the CI bias test is that non-additive, atrophy-dependent 

type of bias may not be detected with the test. In other words, if there exists a complex transfer 

function between the true change and measured change, a simple linear regression through 

several time points may not reveal this as a non-zero y-intercept. However, care must be taken 

when such a transfer function is discovered in an algorithm. It is not simply enough to show the 

existence of such a function to call an algorithm “biased”; one must also show that the function 

systematically scales the square of the mean and the variance of the whole sample differently 

over any number of time points. To address this, we will break the possible transfer functions 

into four somewhat-overlapping categories, ordered by plausibility, and discuss each. We assume 

that in all cases an observed transfer function for the mean change is similar in form to the true 

transfer function for individual subjects.  
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1. No additive bias and a transfer function whose second derivative has the same 

sign everywhere. This is perhaps the most likely scenario. For example, measures 

derived from non-linear deformation fields such as TBM are known to undergo 

this kind of bias when inverse-consistency is not enforced; page 5 of [127] gives a 

clear explanation for this. In this case, assuming a linear true change, the 

measured change will follow a non-decreasing (or non-increasing) curve with the 

same convexity everywhere. Since we assume a zero y-intercept for the curve, a 

linear fit through two or more time points will inevitably show a non-zero 

intercept, given enough true change. Thus, the CI intercept test can detect this 

kind of bias even with just two time points in addition to baseline. Most “known” 

cases of algorithmic bias that the CI test has so far revealed in literature [73, 124] 

may well fall in this category. 

2. An additive bias and a transfer function whose second derivative has the same 

sign everywhere. In this case, the additive bias may indeed cancel out the effect of 

the atrophy-dependent bias, if the second derivative and the additive bias have the 

same sign. However, this would require quite a special set of circumstances: the 

sampled time-points and the additive portion of the bias would have to be just 

right for the linear fit to have a zero y-intercept. With sufficiently many time 

points, this situation becomes virtually impossible. However, as we have only 

used three time points, we must admit that this is a possibility, however unlikely, 

in our study.  

3. A strictly linear transfer function with or without additive bias. This scenario is 

the clearest example of when the CI test would fail. In this case, the measured 
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mean change would be a constant multiple of true mean change. However, it is 

unclear whether this kind of transfer function can be properly called a “bias.” If 

such a transfer function had similar form for individual subjects as their sample 

mean, the sample size estimates would remain unchanged, as the variance would 

scale in the same way as the square of the mean. On the other hand, it is 

somewhat difficult to imagine a linear bias that scales the variance and the square 

of the mean differently for many time points. This would violate our assumption.  

4. “Other:” A transfer function with one or more inflection points, with or without 

additive bias. Though experience with image processing algorithms shows that 

this scenario is highly improbable, in the interest of completeness we note that 

this kind of bias can indeed be missed by the CI test, while unfairly inflating 

power estimates. This is also the only scenario in which our assumption regarding 

individual bias and bias of the mean will be invalid. 

Having gone through this exercise, we hope to have shown that while certain kinds of non-

additive bias can potentially be left undetected by the intercept CI test, such a bias is either 

improbable or does not lead to unfair sample size estimation. Far more likely is the breakdown in 

the linearity assumption of the CI test, which renders the test inappropriate. Using a subset of the 

data in which the change is small enough to be at least approximately linear in time, i.e. the 

control subjects, alleviates the latter issue.  

We deliberately chose to use only 12-month data in training our optimized atrophy 

models. This choice was motivated by practical concerns: we wanted to show that using LDA for 

optimizing power generalizes sufficiently well to later time points without requiring real drug 
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trials to recompute the atrophy measure for all scans with each new batch of data. This latter 

situation could be considered a “moving target.” While it may be argued that a better, more 

parsimonious model could be trained on a sample that includes all available time points, perhaps 

even incorporating the time variable explicitly, such an approach potentially hides any 

methodological bias that is inherent in a particular algorithm. Further, a real clinical trial would 

likely require an ability to apply the same measure to new follow-up scans without requiring one 

to recompute the measure for all time points every time a new batch of follow-up scans becomes 

available. In this way, we avoid the moving target problem that bedevils methods requiring scans 

from all time points. Further, because such methods rely on data-driven techniques to reduce 

longitudinal bias, for example by computing a per-subject brain atlas based on all available time 

points, the perceived absence of bias does not indicate that the imaging algorithms themselves 

are unbiased. This may be called a kind of “peaking” or circularity, as the data used to assess the 

bias is also used to compute the atrophy measure. However, we do not rely on any data-driven 

techniques which explicitly force the results to be transitive over time for all available scans. In 

this sense, the absence of bias in our measures is more indicative of algorithmic objectivity with 

respect to the amount and direction of morphometric change.  

 

5.4.6  Total and Relative Atrophy 

There has been some recent debate regarding the need to subtract the mean of the healthy 

controls when estimating sample sizes for a drug trial. Some ADNI collaborators seem to have 

rejected this idea [17, 71], in part because real drug trials do not tend to enroll controls, and even 

if they did, many controls already harbor incipient Alzheimer pathology or some degree of 
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vascular pathology that may also be resisted by treatment. However, the idea is not completely 

without merit, since all meaningful trials must compare a treatment against another (placebo or 

established) treatment group. Further, any additive algorithmic bias could be excluded by 

subtracting the mean rate of controls. In this paper, we addressed this issue by computing an 

additional linear ventricular expansion model, specific to AD and MCI progression. We did this 

by directly applying a 2-class, as opposed to 1-class, LDA with the covariance defined strictly by 

the diseased group, as required by the current practice of NC-adjusted sample size estimates. The 

resulting power estimates for NC-adjusted atrophy outperform all previous ventricular measures. 

 

5.4.7  Future Work 

Future work will include combination of multiple biomarkers, including other imaging 

biomarkers, such as TBM or even non-imaging biomarkers (such as CSF or proteomic 

measures), into the framework. For example, there is no mathematical reason why only the 

ventricular measures should be included, as any pertinent structural or functional measure could 

be incorporated. In the former case, only the PCA-based approach would be feasible due to the 

high computational cost. It is also important to validate the LDA-weighted measures as well as 

stat-ROI measures across different data sets. Further, we would like to extend the use of 

supervised learning to further reduce our sample size estimates. For example, in the PCA 

experiment, we simply used all principal components - up to a cutoff value. Although the 

resulting patterns lead to low sample sizes, their spatial distribution contained high-frequency 

components that may not have anatomical meaning.  A more advanced approach would be to 

perform a greedy boosting-type search over the principal components, with the goal of making 
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the pattern more generalizable and more congruent across the folds. Such a blended LDA-boost 

approach with built-in cross validation for better fold agreement was proposed in [128]. As our 

linear weighting is likely to contain a combination of disease effect and systematic registration 

artifact, a boosting approach over the principle components could potentially isolate and discount 

any PCs containing the artifactual portion of the variance. Further improvements in sample size 

estimates could potentially be achieved by modeling out confounding factors such as age and 

sex, as is done in [74], and by enrichment techniques that take into account ApoE genotype or 

family history of AD. 

There are two other caveats about comparing n80s that have been raised before. First, 

basing a measure of brain change on a certain region or parameter of the brain may overlook 

valuable disease-modifying effects that affect other regions or measures. This is an inevitable 

consequence when choosing any surrogate outcome measure. Second, the slowing of a change 

measure by 25% may have different value to the patient, depending on whether the measure is 

volumetric loss, amyloid clearance, or decline in cognition. As a result, the n80 is a guide to 

biomarker utility that must be weighed against other relevant criteria, in much the same way as 

we advocated the weighting of multiple features within an image here, rather than relying on any 

one marker of disease progression. 
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5.5 Figures 

 

Fig. 1. Lateral ventricles in the human brain. 

 

 

 

Fig. 2.    The medial curve of a lateral ventricle surface in one subject from the ADNI cohort. (a) 

Mesh vertices are colorized by the corresponding Global Orientation Function.  (b) Surface weight map 

from equation 2 corresponding to the curve point marked in red. The weight is maximal at the cross-

section of the surface with the normal plane of the curve, and decays quickly away from the normal plane. 
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Fig. 3.   P-maps show the group differences in annual atrophy rates between healthy controls and 

(left) AD, and (right) MCI subjects. The progressive expansion from normal aging to MCI/AD is 

in line with prior reports. Loss of significance near the ends of the medial curve are likely due to 

the nature of the measurement rather than true anatomical change. 
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Fig. 4. Continuous weight maps, scaled by standard deviation of the weights. (a) PCA-LDA; (b) 

Tikhonov-LDA; (c) t-statistic weighting; (d) 2-class PCA-LDA. The weights in (a) and (b) are quite 

different from the stat-ROI, which indicates that areas of importance in detecting atrophy do not always 

correspond to the area with highest t-statistic. Compared to (a), (b) shows a similar, but smoother pattern. 

Most of the area is positively weighted - as expected - though some ventricular contraction is used for a 

scalar measure as well. This may be partially explained by registration artifact and imprecision in the 

medial axis, as there is no obvious biological explanation. (d) shows a more disease-specific atrophy 

pattern. Significantly more weight is given to the inferior horns bordering the hippocampus, and more 

weighting is also given to the middle of the occipital horns, characteristic of white matter degeneration. 

Unlike (a)-(c), this map is directly comparable with figure 3. The pattern is again different compared to a 

mass-univariate weighting. 
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Fig.5. Discrete weight maps. (a) Unsigned LDA-ROI; (b) Signed LDA-ROI; (c) Stat-ROI. Positive ROI 

is colored in red, negative in blue.  

 

Fig. 6. Sample Size Estimates at 1 year. The surface-based estimates are based on nested cross-validation, 

and averaging the estimates in each non-overlapping fold. PCA and Tikhonov methods require nearly 

identical samples, while Stat-ROI requires a significantly larger sample of MCI subjects. All surface-

based methods need fewer subjects than ventricular volume. 
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Fig. 7a. Sample Size Estimates at 2 years. The pattern is similar to estimates at 1 year. The relative 

difference between stat-ROI and LDA-based methods is greater. 

 

 

 

 

 

Fig. 7b. NC-adjusted Sample Size Estimates at 2 years. The 2-class model outperforms all other 

measures. Volume is second best for MCI and on par with the best 1-class measures for AD. 
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Fig. 8. Regression plots for surface-based ventricular expansion measures in controls. 95% confidence 

belts for the regression models are shown with dotted green lines. All surface models are longitudinally 

unbiased, since the zero intercept is contained in the 95% confidence interval on the intercept, for each of 

the methods. The 2-class model is trending on additive bias; however, in this model the mean of controls 

is subtracted for power estimates. 
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Fig. 9a. Sample size estimates for different ventricular biomarkers. The PCA method is designated here 

as “Medial Vent-LDA.” The Quarc and Freesurfer measures are for a two-year trial.  

 

 

Fig. 9b. NC- adjusted sample size estimates for different ventricular biomarkers. The 2-class PCA 

method is designated here as “Medial Vent-LDA.” All other results are taken from [73]. 
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Fig. 10. Sample size estimates for different whole biomarkers compared to our ventricular measure. The 

PCA method applied to ventricular surfaces is designated here as “Medial Vent-LDA.” The Quarc and 

Freesurfer measures are for a 2-year trial. SIENA estimates are computed from the means and variances 

reported in [123] 
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CHAPTER 6 

Robust Shape Correspondence via Spherical Patch Matching for Atlases of 

Partial Skull Models 

This chapter is adapted from: 

B. Gutman, R. McComb, J. Sung, W. Moon, and P. Thompson, "Robust Shape 

Correspondence via Spherical Patch Matching for Atlases of Partial Skull Models," in Mesh 

Processing in Medical Image Analysis 2012. vol. 7599, J. Levine, R. Paulsen, and Y. Zhang, 

Eds., ed: Springer Berlin Heidelberg, 2012, pp. 89-100. 

 

Abstract 

Problems of dense partial correspondence for meshes of variable topology are ubiquitous 

in medical imaging. In particular, this problem arises when constructing average shapes 

and probabilistic atlases of partial skull models. We exploit the roughly spherical extrinsic 

geometry of the skull to first approximate skull models with shapes of spherical topology. 

The skulls are then matched parametrically via a non-local non-linear landmark search 

using normalized spherical cross-correlation of curvature features. A dense spherical 

registration algorithm is then applied for a final correspondence. We show that the non-

local step is crucial for accurate mappings. We apply the entire pipeline to low SNR skull 

meshes extracted from conical CT images. Our results show that the approach is robust for 

creating averages for families of shapes that deviate significantly from local isometry.   
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6.1  Introduction 

Registration of topologically variably shapes is an often-encountered problem in medical 

imaging. Unlike registration of topologically equivalent models, the problem requires additional 

flexibility and the ability to perform partial matching. A basic solution is the well-known 

iterative closest point algorithm (ICP) [7]. Applying the EM algorithm to the problem of point 

correspondence, ICP alternates between rigid alignment and local correspondence search. The 

major drawback of ICP is the very local nature of its search, and the use of Euclidian distance in 

the ambient space, which can be a crude approximation to true geodesic distance. A more 

general solution proposed by Bronstein et al. [129] is to generalize the multidimensional scaling 

algorithm (MDS) from Euclidian space to a general 2-manifold, replacing the Euclidian metric 

with geodesic distance. Such a framework naturally leads to full and partial matching between 

surfaces potentially differing in connectivity. A further improvement upon this framework was 

proposed in [130], where the geodesic distance is replaced with diffusion distances, while 

keeping polynomial complexity. Such a metric relies on the average path length between two 

points, rather than just the shortest, making it much more robust for cases of variable 

connectivity. The drawback here lies in the assumption that locally the surfaces are sufficiently 

isometric, an assumption that cannot always be satisfied by anatomical shape models.  
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Another traditional alternative is to embed surfaces in a canonical space [13, 28], and 

perform registration in this space. While this eliminates the requirements that the shapes be near-

isometries, or that the search be purely local, it requires that we approximate our shapes with 

shapes of appropriate topology to enable their embedding. Since we are interested in creating a 

statistical average from a population, we must already assume a particular topology for the atlas, 

without necessarily knowing a “correct” topology a priori. Thus, a canonical space approach may 

be most appropriate for our needs.  

There are also practical considerations. Our goal is to create a fast pipeline that is 

immediately useable in the clinic without the need to tune any parameters, and robust enough to 

handle meshes of any quality, like the four real skull meshes in Figure 1.  We would like to 

create a pipeline that is robust with respect to the quality of triangulation and segmentation, and 

low in complexity. For example, computing the Laplace-Beltrami eigenfunctions required for 

diffusion distances is highly sensitive to triangulation quality [5], and so may not be suitable for 

an initial correspondence search. On the other hand, a purely statistical model, the Active 

Appearance Model (AAM) [131] can be used to establish correspondence without relying on 

high mesh quality. AAM couples texture and spatial information to create a compact model of 

appearance. A correspondence search is then driven by maximizing the agreement between the 

new shape and the learned model. AAM works well when the new example to be registered is 

sufficiently similar to the training examples, but generally does not handle outliers very well.   

For these reasons we choose to go back to a common canonical space – the 2-sphere. 

Having chosen this space, we must now ensure that our initial correspondence search is not 

restricted to be local, and is robust with respect to outliers and incomplete matches, as required 
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by our data. A correlation-type search is ideally suited for this purpose: while the localization 

may be coarse, correlation is guaranteed to find a global optimum in the space of allowable 

transformations. This is the key idea of our approach. 

Briefly, our method consists of the following steps. We first use a straight-forward 

spherical mapping, similar to the star-map to initialize a partial spherical parameterization of 

non-genus zero skull models. We then approximate our skull models with shapes of spherical 

topology with an approach similar to minimal surfaces, based on the spherical heat kernel. Next, 

the genus-zero shapes are registered parametrically with a novel weighted normalized cross-

correlation (WNCC) algorithm. The idea is to use spherical maps of curvature features and a 

global search to optimize positions of multiple surface patches simultaneously. A dense initial 

correspondence is found with spherical splines with anchor points defined by patch centers 

[132]. An existing spherical registration algorithm is then applied for a final dense 

correspondence.  

 

Fig. 1.   Four partial skull models. 
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The remainder of the paper is organized as follows. In the second section we describe briefly our 

initial spherical mapping and spherical shape approximation. In the third, we go through the 

mathematical preliminaries of weighted normalized cross-correlation on the 2-sphere. The fourth 

section is devoted to our non-local landmark correspondence search for multiple landmarks. We 

briefly touch on the approach for dense spherical correspondence. Section 5 presents results on 

67 real skull models, and section 6 concludes the paper.  

6.2  Spherical Parameterization  

Our spherical parameterization is a slightly generalized star map. It is based on the principal axis 

of the shape. By principal axis, we mean the line through the center of mass, in the first principal 

direction of the shape’s inertia matrix, parameterized by   [   ]. Given a surface  , we 

define the axial star map and a corresponding “filler” mask as  

        {
                                     

                                                             
                          

       {
                                         

                                                   
                              

Here,      is the principal axis,    is a unit vector normal to the tangent direction of       , 

rotated around the tangent direction by  .                            

     {    |                }, and      is the mean radial extension at  . Though 

simplistic, this mapping is a robust and fast initialization for our spherical approximations. The 

principal axis-based star map is well suited for skull models and leads to much smaller metric 

distortions than the usual centroid-based star map in practice.  
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 To smooth the regions of the spherical shape which do not correspond to real data, we 

approximate heat kernel smoothing with boundary conditions. This is accomplished by applying 

successive heat kernels on the sphere. The following pseud-code describes the approximation. 

We assume that we have a set of   monotonically decreasing radii of the heat kernel       and a 

given tolerance ε for convergence at all levels of smoothing.  

Inputs:   ,  ,     , spherical map    
    ,  

     binary map      {   }   
i = 0; 

WHILE  (i <   ) 

 Set σ =  (i); 
 j = 0; 

 

 WHILE  (‖       ‖   ) 

  Compute            

  Set     by       {
                
                

 

  j = j + 1; 

 ENDWHILE 

 

 i = i + 1;  

ENDWHILE 

 

The result is similar to directly approximating minimal surfaces of the filler mask boundary 

curves. Because    is computed very quickly on the sphere [133], the entire approximation is 

very fast and robust.  

6.3  Weighted Normalized Cross Correlation on    

To initialize a robust correspondence between highly variable noisy shapes, we develop a 

weighted normalized cross correlation on the sphere for use with multiple informative surface 

patches. Some of the details in this section are given for completeness – the main goal of this 
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tool is to enable an initialization that is (a) robust, (b) fast, and (c) based only very loosely on 

statistical learning, to enable reasonable initialization for outlier cases.  

We follow the normalized cross-correlation (NCC) algorithm on the 2-sphere presented in 

[134]. In chapter 1 we introduce the ordinary correlation function between a spherical function I 

and a rotated version of another function, or template T.  

     ∫                
   

                                                       

Alternatively, this can be expressed in terms of spherical harmonic coefficients as 

      ∑ ∑  ̂        ̂   
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

| |   

                                                     

Here as before,      is the rotation operator on a spherical function. In chapter 1 we saw that 

this fact can be exploited to derive a fast O(B
4
) spherical cross-correlation algorithm for 

computing      non-iteratively over the entire space of rotations. 

Suppose now the support of the template function T is not the entire sphere, but a proper 

subset, or patch  ⊂   . In this case (7) would not be sufficient as a true measure of match 

quality, as it is biased by variability in local intensity. We would instead like to compute the 

normalized cross correlation 

       
∫         ̅            ̅   
   

√∫ |       ̅|    
 ∫ |      ̅| 

 
  

                                        

The difficulty, compared to Euclidian NCC, lies in computing the term ∫ |       ̅|
   

 
  as the 

shape of the window   changes for every rotation. As suggested in [135] and done in [134], this 
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can be done by computing two additional correlation functions between a binary mask of the 

support patch   , and both the image I and its square: 

∫|       ̅|
   

 

 ∫                  
   

[∫                 
   ]

 

∫      
     

            

If in addition we wish to weigh our NCC with some weighting function     ⊂       

equation (11) becomes 

         
∫     (         

̅̅ ̅̅ ̅̅ )            
̅̅ ̅̅    

   

√∫     |         
̅̅ ̅̅ ̅̅ |

 
  

 
 ∫     |       

̅̅ ̅̅ | 
 

  

                     

where     
̅̅ ̅̅ ̅̅   ∫                ∫        

    
 and   

̅̅ ̅̅  is defined analogously. Expanding 

the term ∫     |         
̅̅ ̅̅ ̅̅ |

 
  

 
  it is clear that to compute it one simply has to replace    

in (12) with    

∫    |         
̅̅ ̅̅ ̅̅ |

 
  

 

 ∫               
   

[∫              
   ]

 

∫     
   

          

With   
̅̅ ̅̅  and the other term in the denominator of (13) being constant, this makes the number of 

operations required for a spherical WNCC identical to the usual NCC. While this is a trivial 

extension of [10], we have not seen it in literature.  

6.4  Non-Local Correspondence Search with Multiple Patch Matching 

Suppose we have selected multiple corresponding landmarks on several example skull models 

(Figure 2), and wish to find their counterparts on a new skull. A direct approach would be to 

select a patch of a spherical curvature map around each landmark, and approximate its location 
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with NCC over the new skull map. While this is straightforward, this approach fails in practice 

for several reasons. First, a straightforward NCC does not take into account the plausibility of a 

given patch transformation, given that the two shapes are already rigidly aligned on the sphere. 

Second, NCC does not consider the relative stability of curvature features at any given point in a 

patch. And third, the approach does not take into account the relative positions of all other 

patches that are being matched, which could lead to highly improbable landmark placement. We 

develop an approach for multiple patch matching that addresses each of these issues in turn.  

 

Fig. 2.    Spherical Patches. First row: spherical skull model with landmarks marked by black and yellow 

dots. Second row: Spherical curvature map with corresponding landmarks. Third row: patches around 

landmarks marked with yellow dots above.  
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6.4.1  Single Patch Priors 

To deal with the first issue, we modify each individual NCC with two prior terms for spatial 

congruence: 

              (
    

       
)(

    

   〈     〉
)                             

Here             are parameter weights,    is the original spherical position of the patch,   

has the same meaning as in equation 5, and        is the North Pole rotated by R. As all 

patches are moved to the North Pole for correlation, this represents the new position of   . The 

first term penalizes implausible patch orientations, while the second does the same for patch 

placement relative to the original position of the template. In practice, even this modification 

alone turns out to be sufficient for correct placement of skull patches in many cases.  

 To address the issue of spatially variable feature stability in a patch, we apply the 

weighted version of NCC. The weights in this case should reflect the variability at each patch 

point, which could be learned from examples. This is the only aspect of our approach that is at all 

akin to statistical learning: given multiple examples of the same patch, we weigh       with the 

inverse of the standard deviation of the template function T, i.e.      
 

     
.  

6.4.2  Combining Multiple Patches 

 Finally, to address the problem of congruence across patches, we apply two more prior 

terms for a final combined score of match quality. Having computed WNCC for several patches 
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 (     )  we would like to find the set of optimal patch rotations {    

 }
   

 
 for each of 

N landmarks. We define this optimal set as the maximal argument of the combined match score: 

          ({  }
   

 
)  ∏     

 (     )∏       

    

(     )     ( 
    )           

The two terms          and       serve an analogous purpose to the two prior terms for single 

patch correlation in equation (15): 

       ( 
    )     [           

  〈  
   
  

     
   〉]                            

     ( 
    )     [      (    

  〈  
    

 〉         〈 
  
   

  
 〉)

 
]                       

The arguments of the inner product in equation (17) represent tangent vectors of the geodesics 

between the original and new positions of landmarks i and j. The original tangent vector is 

transported to lie in the tangent space of  
  
 : 

  
   

  (  
   

  
 )  

     
  
 
(  

 
   

 )

|     
  
 
(  

 
   

 )|
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|     
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 )|

                                                       

where by        we mean the projection onto the tangent plane of p, and        is the parallel 

transport operator along the great circle from v to w. 



128 
 

6.4.3 Search Strategies for Multiple Patch Placement 

In order to optimize (16), we must select an appropriate search strategy. It is clear that an 

exhaustive search over all possible locations for every patch is implausible even for the coarsest 

tessellation of SO(3) and    . This is because an exhaustive search has exponential complexity. 

Given L possible locations on the sphere, and N patches, such a search requires 

        operations. A straightforward simplification is to select only the top few peaks from 

each individual correlation function. While this makes the search possible when there are only a 

few patches, this strategy also becomes impractical when N exceeds 10-15, depending on L.  

A further reduction in complexity can be achieved by adopting a hierarchical search 

approach similar to fast sorting strategies. Instead of considering all N patches at once, we 

spatially cluster the patches into groups of K elements, and find the top L sets of locations for 

each cluster. We repeat this process so that the previous clusters form elements in the new 

clusters, again selecting only the top L sets of locations. This process is repeated until all patches 

are incorporated in a final search. The complexity of this strategy is             . For a 

reasonable L and K, e.g. L, K = 6, this makes the search quick even for relatively large N.  

6.4.4 Dense Surface Correspondence 

To initialize a dense correspondence, we extrapolate a spherical warp from landmark 

displacements using the spherical splines [132]. To achieve a final correspondence, we modify 

an existing, highly robust framework for unconstrained spherical mapping proposed by Freidel et 

al. [55], by adding L
2
 terms to the cost. Using Freidel’s notation, the cost function becomes 

                     ∑   
 
   ∫ (            )

 

    ,              (23) 
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where       are scalar features of the moving and stationary spherical image. We use mean 

curvature κ and a smoothed filler mask     . More details on this step may be found in [55] 

and [91].  

 

Fig. 3. Two skull averages. Left: local search only. Right: non-local initialization 

 

6.5  Experiments 

We applied our registration framework to 67 skull models of healthy subjects, acquired with a 

NewTom 3G conical CT scanner. The surface models were extracted from the CT images using 

Dolphin software. In the non-local step of our pipeline, we experimented with different numbers 

of landmarks and examples for each patch. A reasonable mapping for our data could be achieved 

with as few as 8 landmarks and only one example subject. However, for added robustness we use 

25 landmarks and 10 subjects. We used circular patches of pre-set radius around each landmark, 

with the radius varying between π/7 and π/5. Landmark origins were set to be the geodesic 

average of the training landmarks. The average patch for each landmark was computed by 

warping each example curvature map to the average position. This was done by computing 

landmark displacement to the average and using spherical splines. The entire training process 

took less than 1 minute. We used the hierarchical search with K=5 elements per cluster and 

L=10 top sets of landmark placements. Using a bandwidth of B=64, our total time for the 



130 
 

multiple patch matching stayed between 2 and 3 minutes, running on a Lenovo W520 ThinkPad 

with an Intel i7 2820QM processor. RAM requirements for 25 landmarks are approximately 500 

MB, although using the hierarchical search allows this to be greatly reduced if required.  

To assess the need for our non-local initialization step, we compared the proposed 

method to using only local correspondence of equation (21). We first computed shape averages 

using both methods, and computed average vertex-wise distance between the average and each 

shape after Procrustes alignment. A paired t-test revealed that the distance decreases significantly 

when the non-local step is applied, with p = 0.026.  The vertex-wise distance decreased by 0.63 

mm on average with the use of multiple patch matching. Training subjects were excluded from 

this comparison. The resulting atlases are shown in Figure 3. 

In the second part of the comparison, we assessed the compactness of our two atlases 

with Principal Components Analysis. A model is said to be more compact if a greater proportion 

of the total variance in the data is captured by a given number of principal components (PC) [23]. 

We plot the total percent of variance explained versus the number of PC’s in Figure 4, 

disregarding the first component as it primarily captures affine misalignment. Note that the curve 

resulting from the non-local step dominates, which shows that this model is more compact. 

Figure 5 shows this effect visually. By varying each shape atlas along its first 3 PC’s, we see 

that the non-local atlas captures anatomically plausible variability, while the local-only atlas 

primarily captures error in registration.  
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Fig. 4. Model compactness (% of explained variance vs. number of principal components). The non-local 

model is more compact.  

6.6 Conclusion 

We have presented a robust pipeline for quickly computing shape atlases from incomplete, 

highly variable, and noisy skull models. The key feature of our pipeline is a non-linear non-local 

correspondence search, made fast by exploiting analytic properties of the sphere and the rotation 

group. Our approach is based on very few training data (as low as 1) and few manually labeled 

landmarks, which makes it more practical than models more rooted in statistical learning, such as 

the Active Appearance Model. The basic idea is to compute global correlation functions for 

patches around example landmarks for locating corresponding landmarks on new shapes 

automatically. We modify an existing fast normalized cross correlation algorithm on the sphere 

to enable its weighted version. The weighted NCC helps to further improve the robustness of our 

pipeline. We have applied our pipeline to 67 human skull models, and showed that an 

anatomically plausible shape atlas is only achieved when the non-local initialization is used in 

shape registration. Our non-local search leads to statistically significant improvements in 

distance to the average shape. 
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A major drawback of this framework is the admittedly ad-hoc nature of our prior terms 

for individual and combined match scores (eqns. 15 and 16), and the weighting function. A more 

principled derivation of prior terms may be possible if one assumes a binary spherical feature 

function. In such a case, the normalized cross-correlation is equivalent to a difference of 

conditional probabilities, which may enable us to cast this problem in a Bayesian framework, 

while keeping NCC as the main workhorse of the algorithm. In this case, probabilistic spatial 

priors could be learned from the training data to use in place of the average case. Another 

direction for future work would be to replace manual labeling with automatic selection of 

informative patches. 

 

Fig. 5. Shape variation along principal components. Left: local only. Right: Non-local.  
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CONCLUSION OF THE DISSERTATION 

With the goal of developing a variety of tools for analyzing and comparing anatomical shapes, I 

have presented several complimentary approaches, and tested them on cortical surfaces, 

boundaries of subcortical brain regions, and 3D human skull models. The resulting tools showed 

great promise, in some cases outperforming existing methods.  

 Focusing on the shape of human hippocampus – a deep structure in the brain implicated 

in neurodegenerative disease – I showed that global shape description based on properties of 

spherical harmonics can augment volume in discriminating hippocampal shapes of Alzheimer’s 

patients from those of controls.  

 I developed a robust non-iterative registration technique for shapes based on spherical 

cross-correlation. The technique is general, and is shown to improve significantly the results of 

spherical rigid registration compared to existing methods in this category, when using spherical 

conformal parameterization. 

 To develop an improved medial shape representation, a variational framework was 

proposed. In this framework, a medial core of fixed topology is evolved to fit the geometry of the 

shape. Using this medial representation, surface-based feature functions are induced and used for 

dense non-linear surface registration on the sphere. An additional 1-D group-wise registration 

step was added, exploiting the generally elongated shape of subcortical structures. I showed that 

the new medial-spherical registration leads to greater statistical sensitivity in an Alzheimer’s 

study, compared to an existing method. Further, I showed that the 1-D step adds additional 

sensitivity to the local measures, which are easily visualized as “p-maps,” or heat maps of 

significance on the surface.  
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 Cortical surfaces were registered using a novel adaptation of well-known Euclidean 

registration algorithms to the sphere. Curvature features were used to drive the registration. It 

was shown that the registration recovers complicated synthetic warps, and performs very well 

across different subjects. In addition, the registration is the fastest such tool for cortical shapes to 

date, able to register two cortical meshes of 200K+ vertices in under 1 minute. 

 In a deviation from brain-related work, I also developed a robust non-linear non-local 

registration approach for human skull meshes. I developed a new weighted normalized cross 

correlation method for the 2-sphere which is sped up considerably with appropriate use of 

spherical harmonic-based correlation. I showed that the new registration is crucial for skull 

shapes derived from conical CT scans in creating population-based averages.  
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