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ABSTRACT OF THE DISSERTATION 

Modeling the Coupled Cyclic Translational and Rotational Responses of Skew Bridge Abutment 

Backfills 

 

by 

Seyedali Nojoumi 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2016 

Professor Ertugrul Taciroglu, Chair 

 

This study presents a macroelement model that can represent the passive reactions of the backfill 

of a skew abutment and the gapping behavior between the backwall and the bridge deck. The 

model is calibrated against e finite element models that were validated using data from field 

tests. The macroelement model is largely based on physical parameters including the backfill 

soil’s internal friction angle and cohesion, backwall height, and skew angle. It accurately 

produces the normal and tangential reactions as well as the moment causes by the backwall 

rotation and its formulation is based on basic concepts of classical rate-independent plasticity. 

The model is computationally efficient, and thus, it is amenable to repetitive nonlinear time-

history analyses required for performance-based seismic design. 
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Introduction 
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1. Introduction 

1.1 Overview and motivation for research 

Abutments are bridge-supporting structures at the interface of the bridge deck and the soil embankment. 

Fig. 1.1 (left) displays the components of a seat-type abutment, which is a typical configuration in 

California, the United States in general, and many parts of the world (see, for example, NBI, 2002; 

Kawashima et al., 2011; Mitoulis, 2012; Zakeri et al., 2014). During strong seismic events, longitudinal 

motion of the bridge causes a collision between the deck and the abutment backwall—which is lightly 

reinforced and is designed to break—and plastic deformations are induced in the backfill. This 

mechanism is intended to dissipate energy, and concentrate or limit the seismic damage to the abutments  

(Caltrans SDC, 2010). Reversals of inertial forces can cause the deck to unseat from the abutment, and 

thus, sufficient seat-length is required. Seat-type abutments also feature exterior shear keys that are used 

to counter possible transverse deck movements. They are proportioned and detailed to act as fuses that 

will break off under the design earthquake (Kaviani et al., 2014). 

 

Fig. 1.1. The anatomy of a seat-type abutment (left), and plan view of a skew configuration (right). 
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The abutment-deck interaction becomes even more complex for “skew bridges” (Fig. 1.1, right). 

Bridges with skew-angled abutments are constructed to accommodate geometric constraints resulting 

from the alignment of a waterway or roadway crossing that occurs at an angle that is different from 90 

degrees. A significant number of bridges are constructed with some skew (NBI, 2002).  

The typical responses of a skew bridge abutment are schematically illustrated in Fig. 1.2, wherein 

the abutment reaction is decomposed into its normal and tangential components relative to the backwall. 

In the absence of skew, significant soil-backwall interaction occurs only in the normal. However, due to 

the interaction of the bridge superstructure with its abutment, seismic demands on the skew abutment are 

likely to include lateral translations coupled with torsional rotations in many cases (Fig. 1.2, middle). To 

date, no validated or verified model has been proposed for predicting this backfill reaction under the full 

range of possible abutment motions.  

 

 

Fig. 1.2. Tangential and normal components of the backfill reaction (left). Deformation demands from translation 

and torsional rotations for torsionally flexible (middle) and stiff bridges (right). 
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While there are only scarce and very preliminary experimental results on skew abutments, there 

have been significant efforts undertaken to characterize the nonlinear load-deformation characteristics of 

non-skew abutments having cohesive or granular backfills (e.g., Romstad et al., 1995; Shamsabadi et al., 

2007; Stewart et al., 2007). This inventory of data has indeed been utilized directly to develop 

design/assessment guidelines for non-skew backwalls (for an overview see, for example, Shamsabadi et 

al., 2010). Only recently, tests on reduced-scale models by Rollins and Jessee (2013) have offered 

quantified findings on the behavior of skew abutments—they tested skew abutments under only lateral 

translations (i.e., the case illustrated in Fig. 1.2, right). Additional testing is needed in order to examine 

the normal and tangential responses as a function of the skew angle, as well as demands associated with 

lateral displacements and torsional rotations of the backwall.  

  Current engineering practice for seismic design of bridges (Caltrans, 2006) is based on the 

displacement-performance philosophy, for which a complete horizontal load-displacement backbone 

curve of the abutment backwall is needed. There have been numerous attempts to characterize the 

response of skew bridges (for recent work in this area, see, for example, Abdel-Mohti and Pekcan, 2008; 

Kalantari and Amjadian, 2010; Dimitrakopoulos, 2011; Kaviani et al., 2012, 2014; Omrani et al., 2015). 

However, none the existing studies made use of a veritable model for the passive response of the skew 

abutment; instead, they relied on heuristic models.  

1.2 Objectives and approach 

Given the observations provided in the previous section, the main objective of this research is to develop 

a model for skew abutments and to verify, improve, and generalize its predictive capabilities as much as 

possible. The primary (and essential) tool that will be adopted for developing an accurate model for skew 

abutments is the three-dimensional finite element (FE) method. Similar studies were conducted for 

straight abutments using two-dimensional (plane-strain) FE models (see, for example, Shamsabadi et al., 
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2010). Because the expected response of a skew abutment includes rotation about the vertical axis, only 

three-dimensional finite element models can be used in the present pursuit.  

 On that note, it is important to state here that while calibrated and validated continuum finite element 

models are highly valuable in their own right, they are too complex for routine analysis and design 

evaluations by practicing engineers. Nonlinear time-history analyses of a complete bridge including its 

(skew or straight) abutments using a three-dimensional continuum finite element model under multiple 

ground motions is not a practically feasible approach in quantify the broad range of seismic responses of 

bridges (see, for example, Mackie and Stojadinovic 2007; Aviram et al., 2008; Kaviani et al., 2014). As 

such, the development of a simpler—yet computationally efficient—macroelement model that accurately 

mimics the seismic response of skew abutments will be pursued in the present effort.  

 

Figure 1.3 The reacting resultants (left) and the anticipated capacity surface (right) are illustrated for the conceptual 

resultant-based plasticity model that represents the inelastic response of a skew abutment. 

  Macroelement models are lumped, phenomenological representations of the complex behavior 

observed in soil-foundation-structure-interaction (see, for example, Boulanger et al., 1999, Taciroglu et 

al., 2006, Rha and Taciroglu 2007, for macroelements devised for pile-soil interaction). They offer a 
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modular and intuitive structure that is composed of sub-elements, and each of these sub-elements 

represents a particular aspect of the overall behavior—which, in the case of skew abutments, are gapping, 

elastoplastic soil responses, wall-soil friction and slip, etc. The macroelement that will be developed in 

this research will be a resultant-based model (Fig. 1.3) that is grounded within the framework of classical 

rate-independent plasticity theory (Simo and Hughes, 1998). It will provide a skew-angled abutment’s 

reaction forces and moments under longitudinal, transverse, and rotational motions of the bridge deck. 

The initial yield and ultimate surfaces of the resultant plasticity model will be probed using three-

dimensional finite element models for a given soil condition, skew angle, and wall height. Parametric 

studies will be conducted in which the backfill’s strength parameters, along with skew angle will be 

incrementally varied, and the influence of these variations on the ultimate and initial yield surfaces will be 

parameterized, yielding general versions of the model.   

1.3 Outline of this dissertation 

In Chapter 2, research objectives are further delineated, and a review of pertinent literature is provided. 

Chapter 3 is devoted to a review of experimental studies on straight abutments—conducted at previously 

UCLA, UC-Davis, and elsewhere—and to validation studies carried out with data from these tests on FE 

models that will be subsequently used for macroelement model development. Chapter 4 is dedicated to 

the development of a particularly important building block that is needed in the development of the 

general macroelement model. The said sub-model provides a bounded approximation of the lateral force-

displacement backbone curve for a skew—yet non-rotating—abutment, given the physical parameters of 

the backfill (i.e., soil internal friction angle, density, etc.) and the geometric parameters of the abutment 

(i.e., backwall height and skew angle). In Chapter 5, this model is used in devising the general 

macroelement model that allows transverse translations as well as rotations of the abutment. This general 

model is then verified against 3D FEM simulations. A summary and an outlook for future studies are 

presented in Chapter 5. 
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2. Literature Review 

2.1 Incidence of skew 

A bridge abutment system exhibits a complex nonlinear dynamic response under strong earthquake 

loading. The lateral force-deformation relationship between an abutment backwall and its backfill can 

dominate the seismic bridge performance, particularly of bridges with a modest number of spans (see, 

Kaviani et al., 2012). The abutment-deck interaction becomes even more complex for “skew bridges.” 

Because the incidence of bridges with skew angled abutments is quite high, it is imperative to devise 

accurate models to predict the effect of the skew angle of a bridge on its overall seismic response. Figure 

2.1 displays a histogram of skew angles for bridges in California (NBI, 2002). This data indicates that, of 

the 23,000+ Caltrans bridges in the NBI database, more than 13,000 (i.e., more than half) have skewed 

abutments. Most short- and mid-span bridges in California have some skew angle, which can be as severe 

as 60 degrees, and ~90% of these bridges have seat-type abutments.  

 

Figure 2.1 Distribution of skew bridges in California (source, NBI database, 2012; courtesy of B. Cetiner). 
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2.2 Field observations and previous studies on skew bridges 

Observations from past earthquakes (Jennings et al., 1971; Yashinsky et al., 2010; Kawashima et al., 

2011) suggest that there are significant differences between the responses of straight and skewed bridges. 

A manifestation of this difference is the inherent tendency of the decks of skewed bridges to rotate about 

their vertical axes under seismic excitation, which can lead to decks unseating from their abutments, and 

ultimately, to collapse (Figure 2.2). 

 
Figure 2.2 One of the many skew bridges that collapsed during the 2010 Maule, Chile, Earthquake seen on the right. 

The nearby bridge (partially seen on the left) that had straight abutments survived (Kawashima et al., 2011). 

 Excessive deck rotations can also cause loss of bridge functionality and/or stability and significant 

downtime for repairs. Site investigation of the Foothill Boulevard Undercrossing located in California 

(34.25N and 118.5W), which has a skew angle of approximately 60°, showed that the deck had rotated in 

its horizontal plane, resulting in a permanent offset of approximately 7.5 cm (i.e., 0.9×10
-3

 rad. of deck 

rotation) in the direction of increasing skew angle during the 1971 San Fernando Earthquake (Jennings et 
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al., 1971). Reconnaissance reports of the 2010 Chile Earthquake (Yashinsky et al., 2010; Kawashima et 

al., 2011) state that skewed bridges in affected regions rotated, mainly about their center of stiffness, and 

that those with weak exterior shear keys suffered higher levels of damage due to transverse unseating. 

The primary causes of this excessive rotation are usually noted as one or more of the following: 

 Eccentric passive resistance of the abutment backfill 

 Pounding between the decks 

 Pounding between the decks and an integral abutment (i.e., a relatively rigid wall). 

 The analytical/numerical studies on skew bridges to date have primarily focused on pounding/contact 

effects, and represented the abutment backfill response with linear springs and dashpots, or as a rigid 

boundary (see, for example, Maragakis and Jennings, 1987; Abdel-Mohti and Pekcan, 2010; 

Dimitrakopoulos, 2011). As such, these studies omit the primary function of the backfill, which is to 

dissipate energy through inelastic response so that the potential for damage in bridge superstructure and 

foundation elements are reduced—i.e., collapse is prevented and repairs are confined to the abutment 

(Caltrans SDC, 2010). Only a few attempts have been made for developing requisitely detailed (albeit 

non-validated) models in which soil inelasticity is accounted for (Shamsabadi et al., 2006a,b; Kaviani et 

al., 2012; 2014; Omrani et al., 2015).  Some of these earlier attempts are briefly described below. 

 The dynamic behavior of the skew bridges (magnitude-6.7) has received considerable attention 

following the 1971 San Fernando earthquake. Chen and Penzien (1977) studied the effect of seismic soil 

foundation-structure interaction on the global behavior of skew bridges using a finite element model. 

Their model included a linear elastic beam to represent the bridge deck and the bridge columns, and linear 

springs were used to represent the foundation flexibility. A three-dimensional linear continuum finite 

element was used to represent the backfill and the abutment wall. The elastic perfectly plastic Mohr-

Coulomb yield criterion was used to represent the nonlinear abutment-backfill interface interaction. They 

concluded that the foundation flexibility and in particular the poundings between the bridge deck and the 
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abutments have significant influence on the global response of the bridge structures and should be 

included in the bridge model. 

 Traditional bridge design practice evaluates dynamic performance of skewed bridges using spline 

models (Caltrans, 2010). The spline model is a collection of beam finite elements with cross-section 

properties adjusted from geometric data to match the flexural and inertial properties of the deck. 

Researchers have used both the simple spline models and the detail continuum finite element models. 

Maragakis and Jennings (1987) used a rigid beam element to model the bridge deck. Ghobarah and Tso 

(1974) used a spine-line model to represent the bridge deck, and columns, and concluded that the bridge 

collapse was caused by coupled flexural-torsional motions of the bridge deck, or by the excessive 

compression demands that resulted in column failures. Using simplified beam models, Maragakis and 

Jennings (1987) concluded that the angle of the skew and the impact between the deck and abutment 

govern the response of skewed bridges. Wakefield et al. (1991) conjectured that if the deck is not rigidly 

connected to the abutments, then the dynamic response of the bridge is dominated by planar rigid-body 

rotations of the deck rather than coupled flexural-torsional deformations. 

 In more recent studies, Meng and Lui (2000, 2002) proposed that the seismic response of a bridge is 

strongly influenced by the column boundary conditions and skew angle. By using a dual-beam stick 

model to represent the bridge deck, they showed that in-plane deck rotations are mostly due to abutment 

reactions. Using nonlinear static and dynamic analyses, Abdel-Mohti and Pekcan (2008) investigated the 

seismic performance of a three-span continuous RC box-girder bridge for abutment skew angles ranging 

between 0 and 60 degrees. They used detailed finite element as well as simplified beam-stick models, and 

concluded that simplified beam-stick models can capture the coupled lateral-torsional response of skewed 

bridges for moderate skew angles.  

 An approximate method for dynamic analyses of skewed bridges with continuous rigid decks was 

proposed by Kalantari and Amjadian (2010). They developed a three degree-of-freedom analytical model 
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to determine the natural frequencies, mode shapes, and internal forces for short skewed bridges. 

Dimitrakopoulos (2011) investigated the seismic response of short skewed bridges with pounding deck-

abutment joints, and proposed a “non-smooth” rigid-body approach to analyze their response. 

Dimitrakopoulos concluded that the tendency of skewed bridges to rotate after deck-abutment collisions 

is a factor of the skew angle, deck geometry, and the friction between the deck and abutment. 

 Shamsabadi et al. (2006a, b) modeled the skew abutment with inelastic springs. The backbone curves 

of these springs were heuristically adjusted through observations made in three-dimensional finite 

element simulations of the backfill response. Later, Kaviani et al. (2012, 2014) as well as Omrani et al. 

(2015) further developed and refined similar models, and applied a performance-based methodology to 

predict the response of various representative skew bridges. These studies quantifiably showed that the 

deck rotation and column drift ratio values, and the probability of collapse are higher for skew bridges 

than those for straight bridges; but a larger skew angle is not always worse. 

 Although these aforementioned studies resulted in a better understanding of the seismic behavior of 

skewed bridges, a broader and more accurately quantified understanding of their responses and collapse 

mechanisms is necessary. In particular, a validated model of the passive backfill response of skew-angled 

abutments is needed to assess the very large inventory of skew bridges in the US and around the world 

This model should not only be accurate, but also highly computationally efficient so that the requisite 

comprehensive parametric studies on skew bridges subject to broad suites of ground motions can be 

carried out. 

2.3 Caltrans seismic design criteria for skew bridges 

Section 7.8 of the 2010 Caltrans Seismic Design Criteria document describes the design standard for 

longitudinal abutment responses. The representation of lateral backwall-backfill behavior in the design 

standard consists of an elastic-perfectly-plastic spring, which provides a backbone curve (Fig. 2.3, left) 
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suitable for static or pushover-type analyses. The properties of the abutment spring are Keff and Pbw, which 

represent the effective abutment stiffness and capacity, respectively. In the current version of Caltrans 

SDC (2010) Both stiffness model parameters are derived from the experimental results of Romstad et al. 

(1995) and Stewart et al. (2007) for cohesive and granular backfill materials, respectively. Both of these 

abutment tests
1
 were performed using 1.68 m (5.5 ft) tall walls. 

 

Figure 2.3 Backbone of lateral response for abutments (left), and effective abutment width for skew abutments 

(right)  (Caltrans SDC 2010). 

 The effective stiffness is given as 290 kN/cm per meter of wall-width (i.e., 50 kip/in per foot of wall-

width)—for fill material conforming to the requirements of Caltrans Standard Specifications; for material 

not in conformance with the Standard Specification, the stiffness value is halved (applied for clayey 

materials). For wall heights different from 1.68 m, the stiffness is proportioned to the actual backwall 

height as follows: 
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 (2.1) 

                                                           
1 These two full-scale tests will be extensively discussed in Chapter 3, as they are utilized to validate the finite element models 

used in the present study. 
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where Keff is the initial stiffness, Keff,1.68 is the stiffness for a 1.68m wall height per unit width as given 

above, h is the backwall height, and w is the projected width of the backwall—for skew bridges w = wabut 

as shown in Fig. 2.3 (right). Note that the linear/proportional height adjustment factor implies a 

depth-invariant lateral stress distribution behind the backwall.   

 The capacity of the backwall spring is represented in stress units as 239 kPa (5.0 ksf) for the standard 

1.68m (5.5 ft) backfill height. The capacity scaling law with the wall height is, again, linear: 

 

  

P
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 (2.2) 

As indicated by the preceding discussion, present Caltrans SDC provisions are highly simplistic; and 

because they do not anticipate potential rotation of the bridge deck due to eccentric backfill reaction, it is 

not clear whether they are even conservative or not. 

2.4 Macroelements models for soil-structure interaction 

Macroelements are obtained by reducing or condensing the behavior of a subdomain or substructure. In 

soil-foundation-structure interaction (SFSI) problems, this subdomain is usually that of the soil. 

Macroelements for SFSI analysis usually strive to model the response adjacent to the structure (i.e., the 

near field)—which includes soil’s inelastic reactions, and frictional contact and gapping between the soil 

and the foundation elements (see, for example, Taciroglu et al., 2006).  The remote soil domain (i.e., the 

far field) supplies the excitation and extracts energy from the overall system through radiation. These 

responses are usually substantially different for dynamic loading than those predicted for pushover or 

cyclic loading conditions utilized in simplified design procedures.   
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 The macroelement concept has been utilized numerous times in past research on SFSI. In particular, 

material nonlinearities were investigated with the help of detailed finite element simulations (Borja et al., 

1994), as well as experimentally (Funston and Hall, 1967; Stokoe and Richard, 1974; Gazetas and Stokoe, 

1991). In these studies, spring-dashpot assemblies or modification functions to the foundation impedance 

matrix were developed to model the mechanical interaction between a rigid-body and flexible ground. 

Nonetheless, these models were primarily phenomenological and were based on curve-fitting to 

numerical or experimental results for ad hoc scenarios. Therefore, they were highly dependent on the 

calibration conditions (Finn and Yogendrakumar, 1989). Attempts were also made to account for 

geometric nonlinearities associated with gap formation between the foundation and the soil (Wolf 1976; 

Wolf and Skriherud, 19778; Kobori et al., 1982). 

 More recently, macroelements have been developed for shallow foundations on cohesionless (Nova 

and Montrasio, 1991; Paolucci, 1997) and cohesive soils (Crémer, 2001), and for pile foundations 

(Boulanger et al., 1999; Taciroglu et al., 2006; Rha and Taciroglu, 2007).  

  

Figure 2.4 Rigid strip footing, occurrence of plate-soil separation (Nova and Montrasio, 1991). 

 The macroelement model that will be developed in this research similar to the original work of Nova 

and Montrasio (1991), who applied the concept of resultant-based plasticity to develop a reduced-order 

representation of soil reaction under a shallow footing.  Based on number of experiments performed on a 
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rigid strip foundation resting on a frictional soil and subjected to a vertical (V) and lateral forces (H) and 

moment (M), Nova and Montrasio formulated a global elastoplastic model with isotropic hardening for 

the entire soil–foundation system (Fig. 2.4). The model was written in terms of resultant vertical and 

horizontal forces and moment acting on the footing normalized by the maximum supported vertical force; 

and was used for the prediction of the footing displacements for quasi-static monotonic loading. The 

result was a rugby-ball-shaped ultimate surface, which is shown in Figure 2.5.  

 
 

Figure 2.5 Generic soil–foundation–structure system subjected to dynamic loading and macroelement concept (left). 

Rugby-ball-shaped surface of ultimate loads (Nova and Montrasio 1999) describing the behavior of the 

macroelement (right) [figure adapted from Chatzigogos et al., 2008]. 

 This model was later incorporated into a macroelement model by Pecker and Davenne (2002), and a 

similar model with capabilities to explicitly account for gapping was recently proposed by Gajan and 

Kutter (2009). Other related efforts on macroelement models—which primarily focused on dynamic 

behavior—are briefly summarized in Table 2.1. 
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Table 2.1 Overview of existing macro-models for shallow foundations [reproduced from Chatzigogos et al., 2008]. 

Authors Year Configuration Description 

Nova and 

Montrasio 
1991 

Strip footing resting on a 

purely frictional soil 

Isotropic hardening plasticity model and non-associated 

flow rule. Application in the case of quasi-static 

monotonic loading 

Paolucci 1997 
Strip footing resting on a 

purely frictional soil 

Perfect plasticity model with non-associated flow rule. 

Application to simple structures subject to seismic 

loading. Parametric studies 

Pedretti 1998 
Strip footing resting on a 

purely frictional soil 

Hypo-plastic model for the description of the system 

response under cyclic loading. Consideration of uplift 

by reduction of elastic stiffness. Applications to 

structures subject to quasi-static cyclic loading 

Gottardi et al. 1999 
Strip footing resting on a 

purely frictional soil 

Isotropic hardening plasticity model. Detailed 

description of the system ultimate surface (identified as 

the yield surface of the plasticity model) via ‘‘swipe 

tests’’. Application in the case of quasi-static 

monotonic loading 

Le Pape and 

Sieffert 
2001 

Strip footing resting on a 

purely frictional soil 

Elastoplastic model derived from thermodynamics 

principles. Rugby-ball-shaped yield surface and 

ellipsoidal plastic potential. Application to seismic 

loading 

Cremer et al. 
2001, 

2002 

Strip footing resting on a 

purely cohesive soil without 

resistance to tension 

Non-associated plasticity model with isotropic and 

kinematic hardening coupled with a model for uplift. 

Application to seismic loading 

Martin and 

Houlsby 
2001 

Circular footing resting on a 

purely cohesive soil 

Non-associated plasticity model with isotropic 

hardening. Detailed description of the yield surface via 

‘‘swipe tests’’. Application to quasi-static monotonic 

loading 

Houlsby and 

Calssidy 
2002 

Circular footing resting on a 

purely frictional soil 

Non-associated plasticity model with isotropic 

hardening. Detailed description of the yield surface via 

‘‘swipe tests’’. Application to quasi-static monotonic 

loading 

Di Prisco et al. 2003 
Strip footing resting on a 

purely frictional soil 

Hypo-plastic model for the description of the behavior 

under cyclic loading. Application to quasi-static cyclic 

loading 

Cassidy et al. 2004 
Circular footing resting on a 

frictional or cohesive soil 

Fully three-dimensional formulation. Application to the 

offshore industry. Quasi-static monotonic loading 

Houlsby et al. 2005 

Strip or circular footing 

resting on cohesive soil. 

Frictional soil–footing 

interface 

Decoupled Winkler springs with elastic perfectly 

plastic contact-breaking law derived from 

thermodynamics principles. Application to quasi-static 

cyclic loading 

Einav and 

Cassidy 
2005 

Strip footing resting on 

cohesive soil. Frictional soil–

footing interface 

Decoupled Winkler springs with elastoplastic contact-

breaking law with hardening derived from 

thermodynamics principles. Application to quasi-static 

cyclic loading 

Grange et al. 2006 
Circular footing on cohesive 

soil 

Extension of the plasticity model of Cremer to purely 

three-dimensional setting. No separate uplift model 

included 

Chatzigogos et al. 2009 
Circular and squared footing 

resting on a frictional soil 

New formulation for shallow. non-linear constitutive 

law written in terms of some generalized force and 

displacement parameters 
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2.5 Test data on skew abutments 

As described in the introduction section, there have been a number of laboratory/field tests on 

straight abutments. These data sets will be reviewed later in Chapter 3, and will indeed be used 

in validating continuum finite element, semi-analytical models, as well as the special case of 

zero-skew of the macroelement model (in Chapter 5) that will be developed in the present study.  

On the other hand, test data on skew abutments are extremely scarce. In fact, to the best of 

the author’s knowledge, the only such data set is based on a series of laboratory tests on 1.67m × 

6.5m backwall specimens with different skew angles that were carried out by Rollins and Jessee, 

(2013). In these tests, the skew wall was pushed into the backfill while transverse movements 

and rotations were suppressed. Measurements by Rollins and Jessee (2013) indicated a drop in 

the capacity of the lateral backfill reaction with increasing skew angle (see, Fig. 2.6). Later in 

this document (Chapter 4), it will be argued that such drops in lateral capacity are not 

theoretically possible, and the parameters and mechanisms that could have possibly led to the 

said observations will be discussed in detail in a quantitative manner later in §4.6.  

 

Figure 2.6 Force-Deflection curves results from a 1.67 m (5.5 ft.) high and 6.50 m (11.5 ft.) wide wall with 0-degree 

and 30-degree skew angles (Rollins and Jessee, 2013). 
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3. Prior Studies on Straight Bridge Abutments 

and Validation of Finite Element Models 

3.1 Full-scale tests on straight abutments 

Passive response of a backfill is a classical theme in geotechnical engineering research (Kramer, 1996), 

and first studies date back to Coulomb (1776) and Rankine (1857). Predictions from those earlier 

theoretical models and their subsequently enhanced versions (Terzaghi, 1934) have been tested numerous 

times—usually through laboratory-scale tests, or experiments performed on centrifuge models. A fairly 

detailed review of this literature may be found in the report by Stewart et al. (2007), and will be omitted 

here for brevity.  The typical aim in these tests is to develop relationships for lateral pressure and 

displacement and to develop models that can predict these quantities based on fundamental properties of 

the system (i.e., soil strength parameters, wall and backfill geometry, etc.). 

 In this chapter, we review two recent test conducted on full-scale specimens, with the specific aim of 

quantifying passive backfill response for seat-type abutments. Conducted at UC-Davis (Romstad et al., 

1995) and at UCLA (Stewart et al., 2007), these two tests were commissioned by Caltrans to quantify 

passive response of cohesive (UCD test) and granular (UCLA test) backfills that are commonly used in 

California’s highway bridges. At the present time, provisions on abutments in the latest Caltrans Seismic 

Design Criteria document (Caltrans SDC, ver. 1.6) are based on the results of these two tests. There were 

also significant modeling efforts devoted to the generalization of the results from the UCLA and UCD 

tests (see, for example, Shamsabadi et al., 2010; Khalili-Tehrani et al., 2009, 2010, 2011). The validated 

models obtained in those previous studies by will form the basis of proposed studies on skew abutments. 

A review of these validation efforts is also provided in this Chapter. 
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3.1.1 Full-scale testing of an abutment with granular backfill 

University of California, Los Angeles (UCLA) researchers (Stewart et al., 2007) tested a 4.6 m wide, 1.67 

m tall seat-type abutment wall with a silty sand backfill under one-way cyclic loading. The backfill was 

compacted to over 95% Modified Proctor relative compaction. The backwall was pushed horizontally 

between two wingwalls without any vertical movement. The one-way cyclic loading involved pushing the 

wall into the backfill by prescribed amounts, followed by unloading to nearly at-rest conditions, followed 

in turn by further pushing. Gapping at the wall-backfill interface was not allowed. Wingwalls were 

constructed using smooth plywood with plastic sheeting on the interior face to minimize friction, and 

thus, to impose a plane-strain condition. This test is hereafter referred to as the UCLA abutment wall test. 

The lateral capacity of the abutment backfill per unit wall-width was measured to be approximately 477 

kN/m at a lateral displacement of 5 cm (3% of abutment height). The ultimate residual capacity was 

approximately 442 kN/m, which was reached at a lateral displacement of 8.5 cm. This corresponded to an 

ultimate residual capacity of 265 kN per 1 m
2
 of wall area (i.e., 265 kPa). The initial (tangent) stiffness of 

the backbone curve was 345 kN/cm/m. 

3.1.2 Full-scale testing of an abutment with cohesive backfill 

University of California, Davis (UCD) researchers, Romstad et al. (1995) cyclically loaded a monolithic 

abutment to failure. This abutment wall was 3.05 m wide and 1.67 m tall. The sheared part of the backfill 

material in this test was Yolo loam, which was compacted to a minimum relative compaction of 90%. 

Based on strength testing on this material and other recommendations provided by of Romstad et al. 

(1995), subsequent analyses were carried out with ϕ=0, and c=100. The ultimate passive pressure of the 

abutment was measured to be approximately 265 kPa (5.5 ksf), which was reached at a lateral 

displacement of 16.8 cm (10% of the abutment height). The secant stiffness at 50% of load capacity per 

unit width of the backwall was calculated to be approximately 145 kN/cm/m (25 kips/in/ft) (Shamsabadi 

et al., 2007). This test is hereafter referred to as the UCD abutment wall test. 
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3.2 Numerical simulations of full-scale abutment tests 

In what follows, the LSH and FE simulation models and their validation against the UCLA and UCD tests 

are described. For brevity, modeling details are provided for only the UCLA test—for the UCD test only 

input data and sample results are presented. 

3.2.1 Simulation of the UCLA test with Log-Spiral Hyperbolic (LSH) model 

The Log-Spiral Hyperbolic (LSH) model is a plane-strain model that was developed to estimate nonlinear 

force-displacement relationships for abutment walls based on the wall dimensions and backfill soil 

properties (Shamsabadi et al., 2007). The model is based on a limit-equilibrium method for ultimate 

capacity that employs logarithmic spiral failure surfaces, coupled with a modified hyperbolic soil stress-

strain relationship to evaluate load-deflection behavior. Unlike classical limit-equilibrium methods, shear 

resistance of the soil is not assumed to be simultaneously mobilized across the full failure surface in this 

approach, but varies as a function of the backfill’s progressive failure and strain localization. Each 

progressive failure surface is associated with the mobilized shear resistance and strain of the backfill.  

 In an earlier study, Shamsabadi et al. (2007) verified the LSH model against nonlinear 

force-displacement measurements from several full-scale, centrifuge and small-scale laboratory tests on 

abutments and pile caps with a variety of backfills. Shamsabadi et al. (2010) compared LSH predictions 

to the results of the UCLA test and found that model predictions made using upper- and lower-bound 

strength parameters bracket the data. 

Table 3.1 Parameters Used for the Simulation of UCLA Test with the LSH Model (Shamsabadi, 2009). 

 Strength Parameters Displacement Parameters 

 Unit weight, 

𝛾(kN/m
3
) 

Friction angle, 

ϕ 

Cohesion, 

c (kPa)  

Wall friction 

angle,𝛿 

Failure 

ratio, Rf  

Strain, 

𝜖50 

Poisson’s 

ratio, 𝜈 

Lower Bound 20.0 40
o
 14 20

o
 0.97 0.0035 0.3 

Upper Bound 20.0 39
o
 24 20

o
 0.97 0.0035 0.3 
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  The total stress strength parameters (e.g., c and ) used in the LSH simulation model for the UCLA 

tests are shown in Table 3.1, which were obtained through triaxial compression tests on several bulk 

samples from the abutment backfill (Stewart et al., 2007; Shamsabadi et al., 2010). Magnitudes of the 

remaining model parameters—i.e., failure ratio (Rf), strain at 50% of ultimate capacity (ε ), and 

Poisson’s ratio (ν)—were set to values recommended by Shamsabadi et al. (2007). The wall-soil interface 

friction value (δ) given in Table 3.1 is generally consistent with test measurements by Stewart et al. 

(2007), who observed that this quantity varied with lateral displacement, and ranged between 13 and 20 

degrees. The largest value that was observed at lateral displacements greater than 7.6 cm were chosen. 

 

Figure 3.1 Measured and LSH-computed backbone curves of the UCLA abutment test (Shamsabadi et al., 2010). 

 Figure 3.1 displays the simulated force-displacement backbone curves using the LSH model and the 

one-way cyclic curve recorded during the UCLA test (Stewart et al., 2007; Shamsabadi et al., 2010). As 

noted previously, responses predicted with the LSH model using the higher (UB) and lower (LB) soil 

strength parameters bracket the observed response very well. 
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3.2.2 Simulation of the UCLA test with finite element models  

Software package PLAXIS (Vermeer & Brinkgreve, 1998) was used for the finite element simulations of 

the UCLA and UCD abutment tests. PLAXIS is capable of performing two- and three-dimensional 

analyses, and provides a sophisticated library of soil constitutive models.  

Constitutive Model for the Backfill: A recent study that involved triaxial testing of abutment-backfill 

materials from many bridge sites in California revealed that the stress-strain backbone relationships are 

typically hyperbolic in shape (Kapuskar, 2005). These observations led to the selection of the “Hardening 

Soil (HS)” model available in PLAXIS for both two- and three-dimensional finite element simulations. 

This model is formulated within the framework of classical theory of plasticity; it features a yield cap and 

soil dilatancy effects (Schanz et al., 1999). Figure 3.2 (left) displays the hyperbolic relationship that the 

HS model yields between the deviatoric stress (q) and axial strain (ε) in primary loading during a drained 

triaxial test. Here, qf is the stress at failure, qu is the asymptote of the hyperbolic curve (not shown on 

figure), and Rf denotes their ratio (i.e., qf  = Rf  qu). 

 
Figure 3.2 Stress-strain curve of the PLAXIS “Hardening Soil” model (left), and backwall-backfill interface 

relationship adopted in FE simulations (right) (Shamsabadi et al., 2010). 

Interface Elements: Zero-thickness finite elements available in PLAXIS were used to represent the 

frictional contact between the backwall and the backfill. Each interface element is defined by five node-

pairs. A simple bilinear stress-strain relationship describes the response of the backfill-backwall 
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interaction element, and a classical Coulomb criterion discerns elastic behavior—where small 

displacements can occur within the interface—and plastic slip. To wit, the interface remains elastic if the 

shear stress τ satisfies the inequality 

 
  
t < s

n
tanf

int
+ c

int
 (3.1) 

and the interface displays perfectly plastic behavior when 

 
  
t = s

n
tanf

int
+ c

int
 (3.2) 

where ϕint and cint are the interfacial friction angle and cohesion, and σn and τ denote the normal (pressure) 

and shear stresses acting at the interface, respectively. The strength properties of interface elements are 

linked to those of the abutment backfill through a strength reduction factor (Rint  1). Specifically, the 

interface properties are calculated through the relationships given as 

 
  
c

int
= R

int
c ,    

  
tanf

int
= R

int
tanf   (3.3) 

 Figure 3.2 displays the strength-stress ( ) and stress-strain ( ) relationships of the interface 

elements. Once the specified shear strength is reached, shear stress remains constant as long as the 

interface slip rate remains positive. The PLAXIS default value for the interfacial shear stiffness is 

  
G

int
= R

int

2
G , where G denotes the backfill shear stiffness. This default setting was used in the 

simulations. 

 Finite element simulations of the test specimen were performed using both two- and three-

dimensional models. The two-dimensional (plane-strain) finite element model comprised 15-node 

triangular continuum elements, and 5-node backwall-backfill interface elements as shown in Figure 3.3(a, 

b). The right and left vertical boundaries were placed at distances of 4.5H and 1H away from the 
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backwall, respectively, where H denotes the backwall height. The bottom domain boundary was located 

at a depth of 2H below backfill ground-line. These distances were chosen through trial-and-error whereby 

the extent of the domain was increased until the changes observed in computed lateral load-displacement 

response became negligible. The bottom boundary was fixed in both directions in the model and the left 

and right sides of the soil domain were free to move vertically but were fixed in the horizontal direction. 

 
Figure 3.3 Plane-strain FE simulation of the UCLA test (a) original wall location and the deformed mesh; (b) 

interface elements used; (c) deviatoric shear strain distribution in soil; (d) observed failure surface (Shamsabadi et 

al., 2010). 

 The aforementioned triaxial compression tests were used to estimate the previously defined loading 

stiffness (E50), unloading stiffness (Eur), and strength properties of the backfill soil. Specific values of the 

interface and HS model parameters used in the simulations of the UCLA test are given in Table 3.2. 

Following the PLAXIS manual, dilatancy angle was chosen to be ψ = ϕ

1998). The value of the interface strength reduction parameter was chosen as Rint = 0.50, which is 

consistent with the experimental observation that indicated the interface friction angle (δ) to be half of the 

backfill friction angle (ϕ). 
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Table 3.2 Parameters Used in FE Simulations of the UCLA Abutment Test (Shamsabadi et al., 2010). 

Strength Parameters Displacement Parameters 

Unit weight, 

ϒ(kN/m
3
) 

Friction 

angle ϕ 

Cohesion, c 

(kPa) 

Dilatancy 

angle, ψ 

Rint Rf E50
ref 

(MPa) 

Eur
ref 

(MPa) 

ν 

20.0 40
o
 14 10

o
 0.50 0.97 70 140 0.3 

20.0 39
o
 24 9

o
 0.50 0.97 70 140 0.3 

 

 Each finite element simulation comprised two analysis steps: In the first step, gravity was applied and 

the wall was “at rest” (Ko condition); in the second step, the wall was pushed into the backfill with 

prescribed displacements until passive failure occurred. Figure 3.3(a) displays the deformed 

two-dimensional finite element mesh at the final stage of backfill failure. It reveals the formation of a 

passive wedge within the abutment backfill. The shear strain distribution throughout the backfill is shown 

in Figure 3.3(c); and the shape of the ultimate band of localized shear strain is consistent with that of a 

logarithmic spiral curve and the field observations (cf., Fig. 6d, Stewart et al., 2007; Shamsabadi et al., 

2010). 

 
Figure 3.4 Three-dimensional FE simulation of the UCLA test and the deviatoric shear strain distribution 

(Shamsabadi et al., 2010). 

 Additional simulations of the UCLA field test were performed using the three-dimensional finite 

element model shown in Figure 3.4. The extents of the domain at the left, right and bottom of the model 
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matched those from the two-dimensional model, whereas the width was set to 4.6 m to match the UCLA 

test configuration. The backfill mesh comprised 15-node tetrahedral elements, and the abutment backwall 

was modeled using plate elements. The backwall was pushed along the longitudinal direction under 

load-control, and its motion was constrained along the vertical and transverse directions. Again, the 

ultimate band of localized shear strain is in agreement with the pattern and dimensions observed in the 

field. 

 
Figure 3.5 Measured and FE-simulated lateral load-deformation curves for the UCLA test (Shamsabadi et al., 

2010). 

 The lateral force-displacement backbone curves obtained in two- and three-dimensional simulations 

are nearly identical. Therefore, we present the results of only the three-dimensional finite element model 

of the UCLA test here. As it may be seen in Figure 3.5, the backbone curve obtained from the simulation 

using upper-bound backfill properties is in better agreement with the experimental curve. Both upper- and 

lower-bound models appear to slightly over-predict the residual capacity. This was expected, because the 

HS model employed in these simulations does not feature strain-softening effects. 
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3.2.3 Simulation of the UCD test with finite element and LSH models  

Numerical simulations of the UCD test had been performed in similar fashion with those of the UCLA 

test. Table 3.3 displays the material data sets used for the LSH (top row) and Finite Element models 

(bottom row) of the UCD test. These data were selected based on the observation that the failure surface 

passed through the compacted Yolo loam backfill material with the aforementioned properties.  

Table 3.3 Parameters Used in LSH/FE Simulations of the UCD Abutment Test (Shamsabadi et al., 2010). 

Strength Parameters 

Unit weight, ϒ 

(kN/m3) 

Friction angle, ϕ Cohesion, 

c (kPa) 

Wall friction 

angle, δ 

Dilatancy 

angle, ψ 

18.8 0
o
 95.8 22

o
 0

o
 

Displacement Parameters 

Rint Strain, ε50 Failure ratio, Rf E50ref (MPa) Eurref (MPa) Poisson’s ratio, ν 

0.70 0.0075 0.95 14.4 43.1 0.45 

 

 The interface (wall) friction angle of 22
o
 is intended to represent the interaction between the pea gravel 

and concrete, and matches an assumed value from Romstad et al. (1995); there was no test data to support 

this value. Following the PLAXIS manual, dilatancy angle for the HS model was chosen to be ψ
o
 

(Vermeer and Brinkgreve, 1998). There were no measurements of the interface friction/adhesion during 

the UCD test. As such, the value of the interface strength reduction parameter was chosen as Rint = 0.70 

based on trial-and-error, which gave good matches with experimental (lateral load-displacement) data, as 

well as the LSH prediction, which is based on δ= 22
o
, and c = 95.8 kPa.  

 The domain extent and boundary conditions of the finite element models of the UCD test were 

identical to those of the UCLA test; except for the lateral extent (i.e., the width) of the three-dimensional 

mesh, which was set to be 3.05 m to match the UCD field-test configuration. Combined results of these 

simulations are displayed in Figure 3.6, where good agreement between measured data and simulation 

models can be observed. 
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Figure 3.6 Measured and simulated lateral load-deformation curves for the UCD test (Shamsabadi et al., 2010). 

3.3 Extended hyperbolic force-displacement (EHFD) 

relationships 

As demonstrated above by Shamsabadi et al. (2010), both LSH and FE models are capable of reproducing 

experimentally observed results. Nevertheless, neither model is readily amenable for routine design. This 

is because the construction of a finite element model of a bridge—complete with its abutment backfill—is 

laborious and computationally expensive; and the LSH model cannot directly be coupled with the 

structural model of a bridge. As such, Shamsabadi et al. (2010) proposed the use of a simple relationship 

between the lateral load per unit width of the abutment backwall (F) and the lateral displacement (y) for 

backfills tested by UCLA and UCD. They were also able to extend this relationship to different wall 

heights. This Extended Hyperbolic Force-Displacement relationship (EHFD) is given by 
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 (3.4) 

 Figure 3.7 displays the backbone curves calculated using the EHFD relationship above along with the 

UCLA and UCD experimental data (for H=1.67 m) and LSH simulations for H=1.0-2.5 m. The agreement 

between the EHFD and LSH results is seen to be very good across the range of considered wall-heights 

and lateral displacements. The comparison with experimental data is also favorable. 

 
Figure 3.7 Measured and FE/LSH-simulated lateral load-deformation curves for the UCD test. 

3.4 Description of the finite element models and their 

validation 

The software package “Plaxis 3D Foundation” (Brinkgreve and Broere, 2008) was used for FE 

simulations of all the non-rotating walls in the present study. Test data by Stewart et al. (2007), 

henceforth referred to as the “UCLA test,” were used to validate various aspects of these FE models. All 

models featured 15-noded quadratic wedge elements to avoid locking. The models prepared for this study 



 
 

 
 

32 

typically had approximately 50,000 elements (i.e., 360,000 degrees of freedom), which afforded adequate 

resolutions of the backfill failure mechanism. A representative model is shown in Fig. 3, which represents 

a bridge with a 60-deg skew, and 60 ft-wide deck. Other modeling details and the simulation results are 

presented next. 

 

Figure 3.8 Typical finite element model used in the present study comprising 53,000 elements: (a) backfill 

deformations (exaggerated), (b) deviatoric strain distribution plot within the backfill, which indicates the failure 

surface formation, (c) the side-view of the same. 

3.4.1 Constitutive model for the backfill 

The soil constitutive model for the backfill is arguably the most critical ingredient of the FE simulations. 

In this study, the ‘Hardening Soil’ (HS) model available in Plaxis for both two- and three-dimensional FE 

simulations was chosen, because the HS model was observed to provide results that were more consistent 

with field test measurements than the basic Mohr-Coulomb and Drucker-Prager plasticity models. The HS 

model is an extension of the well-known hyperbolic model by Duncan and Chang (1970) for which the 

ceiling values for stress are described in similar fashion to the Mohr-Coulomb model, through the friction 

angle φ, the soil cohesion c, and the dilatancy angle ψ. On the other hand, the HS model requires three 

different input stiffness values—namely, the triaxial stiffness E50, the triaxial unloading stiffness Eur, and 
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the oedometer loading stiffness Eoed. With these parameters, the model takes into account the dependence 

of stiffness moduli on the stress level (unlike the Mohr-Coulomb model, which neglects this variability), 

and all three moduli (E50, Eur, Eoed) grow with increasing pressure (Schanz et al., 1999).  

3.4.2 Interface elements 

In order to model the frictional contact between the abutment backwall and the backfill soil, interface 

elements with eight-node pairs available in Plaxis 3D Foundation v.2 were used. Each interface element 

has zero thickness, and is defined by a simple bilinear stress-strain relationship, which describes the 

response of the backfill-backwall interaction element. This bilinear relationship comprises the classical 

Coulomb friction model combined with linear elastic loading/unloading rules, and is valid for small 

displacements and plastic-slip values. The maximum friction angle modeled the structural wall elements 

and the backfill soil model was 35 degree. The elements used were zero thickness 8 node, node paring the 

backfill and the structural elements. For further details on the interface elements used in Plaxis models 

one can refer to Shamsabadi et. al  JBE 2010,  and Plaxis 3D Foundation reference manual. 

3.4.3 Validation of FE models with data from a full-scale abutment test 

The material and interface model properties used in the present FE model had been validated by 

Shamsabadi et al. (2010) using data from the UCLA test. The calibrated material properties as well as 

comparisons with measured lateral load-deflection curves from the said validation effort will be repeated 

here for the reader’s convenience.  

As described by Stewart et al. (2007), this test involved a 4.6m-wide, 1.67m-high seat-type abutment 

wall pushed against a silty sand backfill compacted up to over 95% modified Proctor relative compaction 

(ASTM, 2009). The wall was configured to mimic a seat-type abutment and loading was applied through 

a cyclic displacement control protocol. The backwall was pushed laterally between two plywood boards 

that allowed the creation of a plane-strain condition. Inclined actuators, which were providing the 

necessary lateral forces, were used to suppress any vertical movement. The loading protocol was designed 
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to avoid any separation between the concrete abutment wall and the backfill soil. After the backfill 

capacity was reached, half of the backfill was excavated in order to visually identify the failure surfaces. 

The ultimate, hence the deepest, failure surface extended down from the bottom edge of the abutment 

wall and reached the backfill ground surface. The horizontal distance from the wall to where the failure 

surface met the ground surface extended to approximately three times the height of the backwall in a log-

spiral shape. 

The calibrated (Plaxis) HS model parameters for this test are shown in Table 3.4. Some of these 

parameters (cohesion, internal friction angle, density, elastic moduli) were obtained from laboratory (e.g., 

triaxial) testing, whereas the others were selected initially from literature-suggested values, and were 

subsequently iteratively adjusted.  

Table 3.4 List of material parameters for Plaxis “Hardening Soil” and LSH models for the UCLA test. 

Strength Parameters 

Unit weight, 
3
) e,   

Cohesion, 

 c (kPa)  

Wall friction 

 

Dilatancy 

angle (deg)  

20 40 14 20 10 

Other Parameters 

Rint  Strain, 50 Failure ratio, Rf E50
 
(MPa) Eur

 
(MPa) Poisson’s ratio, ν 

0.50 0.0035 0.97 70 140 0.3 

 

 The shapes and sizes of backfill failure surfaces, as well as the lateral load-displacement curves were 

well captured by the FE model (Figs. 4a, 5). The lateral total capacity of the abutment backfill was 2200 

kN, which is approximately 477 kN/m (per unit wall width). Capacity was reached at a lateral 

displacement of 5 cm (3% of abutment height). The residual capacity was 442 kN/m and was measured at 

a lateral displacement of 8.5 cm (5% of abutment height). This brought about the residual capacity of 265 

kPa (per unit wall area). Fig. 5 displays the computed lateral load-displacement backbone curve, which 

mimicked the UCLA test both for capacity and initial stiffness. 
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Fig. 3.9 (a) Incremental deviatoric strain distribution for a straight 15ft-wide wall obtained using Plaxis, and (b) 

failure surfaces obtained with the LSH model described in Shamsabadi et al. (2007). 

 
Fig. 3.10 UCLA full-scale test results (see Stewart et al., 2007) for a 5.5ft-high wall and numerical results from 

Plaxis 3D Foundation. 

3.4.4 Verification of FEM results with a semi-analytic limit equilibrium model  

Using the validated FE model, several new FE models were generated. The new models were identical to 

the original model, except that they had different wall widths. The objective of this study was twofold: (i) 

to determine how the backbone curves change/scale with wall-width, and (ii) to verify the FE model 

against a well-established (and validated) limit equilibrium model that was devised for straight abutments.  

The aforementioned limit equilibrium model is the Log-Spiral-Hyperbolic (LSH) model described in 

Shamsabadi et al. (2007). The LSH model is a plane-strain model that utilizes a kinematic hypothesis 
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regarding the shape (a log-spiral curve) of the soil failure surface(s). This model was validated against 

various field and centrifuge test data (see Shamsabadi et al., 2010). The specific material parameters of 

the LSH model for the UCLA test are also shown in Table 1.  Figure 4b displays the mobilized failure 

surfaces computed using the LSH model for the UCLA test. These surfaces match very well with both 

Plaxis results and the measurements taken after the excavation of the backfill at the test site (see Stewart 

et al., 2007). Deeper failure surfaces correspond to larger lateral wall displacements. As the lateral 

resistance approaches ultimate capacity in both LSH and Plaxis simulations, new failure surfaces form in 

the immediate vicinity of the previous ones with diminishing separation towards the ultimate failure 

surface; therefore the rupture lines are concentrated near the bottom-end of the backwall.  

 The LSH model calibrated for the UCLA test—which had a backwall width of 4.57 m (15 ft)—was 

then used in subsequent simulations wherein all model parameters were kept constant, except the wall 

width, which was varied from 4.57 m to 36.58 m. Widths less than 4.57 m were not explored because 

they are too narrow to encounter in actual bridges. A total of 47 such simulations were carried out in this 

backwall width range (more-or-less uniformly spaced). The same model matrix was also evaluated using 

Plaxis.   

 Figure 6 displays backbone curves for some of these simulations, wherein it can be seen that the 

results from LSH and Plaxis are very consistent. Furthermore, the shapes and extents of the failure 

surfaces predicted in both the LSH and Plaxis simulations are also consistent (as seen in Fig. 4, for 

example). In both LSH and Plaxis simulations, the ultimate failure surface is observed to intersect the 

ground line at approximately at 4.7 m away from the wall. This distance is more-or-less constant for all 

wall-widths. Since the wall-height was constant in all these simulations, which was 1.67 m (5.5 ft), it is 

fair to state the failure surface reaches the ground level at approximately 3 times the wall-height, 

regardless of the wall-width (at least for the present plane-strain case with UCLA soil—i.e., Table 3.1). 
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Fig. 3.11 Lateral load-displacement backbone curves obtained from FE simulations (Plaxis 3D Foundation) for 

straight abutments with different widths, and those obtained using the Limit State Hyperbolic (LSH) method. 

 The results of the aforementioned simulations suggest that FE Models can be used for 

geometries and loading conditions other than those that were tested, or simulated using LSH. In 

particular, with all other parameters being the same, it is fair to state that Plaxis will produce 

accurate predictions when the wall skew angle is changed from zero to other values. Such 

parametric studies will be presented next, and those results will be used to develop lateral load-

deflection relationships for skew abutments. 
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Chapter 4 

Behavior of Skew Bridge Abutments under Lateral 

Translations  
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4. Behavior of Skew Bridge Abutments under 

Lateral Translations 

The objective that will be pursued in this chapter will be to tackle the relatively restricted case of the 

lateral—and only lateral—movements of a skew abutment’s backwall. The objective is to obtain a 

closed-form expression for lateral behavior that is, by-and-large, based on physical parameters. This 

expression will be derived using verified and validated high-fidelity three-dimensional continuum Finite 

Element (FE) models described in the previous chapter. It is expedient to note here that while such a 

model (i.e., one that only applies to non-rotating backwalls) may appear too restrictive at first, it will be 

extremely useful in two ways: (i) it will enable the development of a more complex model that is based 

on resultant-based plasticity (described in Chapter 5), by serving as an anchor point in that model’s yield 

function; and (ii) it will directly yield the lateral behavior of a skew abutment that belongs to a bridge that 

is torsionally stiff in plan (e.g., a bridge with multiple bents). 

 Based on parametric studies using the validated numerical models, a simple relationship will be 

devised using regression techniques, which quantifies the effects of the skew angle on the lateral load-

displacement backbone curve (and, incidentally, the lateral capacity). The veracity of the proposed 

relationship will be assessed against 3D FE results through a series of blind predictions, for which the 

model matrix comprises different combinations of wall widths and skew angles. Because the scenario of a 

backwall translating only laterally (i.e., no rotations or sidesway) is very unlikely, even for torsionally 

stiff bridges, a series of additional sensitivity studies are carried out. These studies provide a quantified 

understanding of how small rotations and sidesways can affect the backbone curve, and shed light on 

some of the findings from the recent study by Rollins and Jessee (2013), which was also discussed 

previously in Chapter 2. 
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4.1. Response correlations between straight and skew 

abutments  

Using the LSH model—or the EHFD model presented in Shamsabadi et al. (2010), which provides the 

backbone curve in closed-form for different backfill properties and backwall heights—it is possible to 

obtain the backfill reaction for straight seat-type abutments. The method that will be described below will 

seek to utilize this information in predicting the response of a skew abutment (for any skew angle) that 

has the same backfill and backwall height. 

The method is based on a simple conjecture: A skew version of a straight abutment will have lower 

capacity if the skew abutment has the same wall length as the straight one; and a skew version of the a 

straight abutment will have higher capacity if the skew abutment has the same deck-width as the straight 

one. This is true for any skew angle as long as the backwall is not allowed to rotate about the vertical axis. 

These lower and upper capacity curves are henceforth referred to as the lower-bound (LB) and the upper-

bound (UB) backbone curves, respectively. 

The conjecture above means that the two skew configurations will bracket the backbone curve of a 

straight abutment. That is, 

   (4.1) 

where FL and FU denote the lower and upper-bound lateral passive abutment reactions, and  denotes the 

lateral displacement. This conjecture is tested and demonstrated with three separate Plaxis simulations in 

Figure 4.2 using the UCLA test’s backfill properties. The non-skew configuration’s wall width was 9.1 m 

(30 ft), which corresponds to a typical two-lane bridge. The skew angles for both the upper and lower 

curves were set at 60 degrees. 
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Fig. 4.1 (a) Schematic plan of the straight abutment and two bounding skewed models for α degrees in the generic 

configuration of (b) straight/skew abutment FE meshes; (c) backbone curves for a straight abutment (middle curve) 

with 9.1 m length, a 60-degree skew abutment with the same deck width (upper curve), and a 60-degree skew 

abutment with the same backwall width (lower curve) are also shown (all abutments have “UCLA backfill”). 

The veracity of the conjecture is further examined by carrying out parametric studies with various 

skew angles. The results (shown in Fig. 4.2 and Table 4.1) indicate that the conjecture is valid for skew 

angles ranging from 15 to 60 degrees and for any abutment width. As expected, Fig. 4.2 also 

demonstrates that the UB and LB curves approach the straight abutment curve as the skew angle 

decreases (obviously, for a 0-degree skew angle, all three curves are identical). An interesting observation 

is that the straight abutment curve appears to be almost an average of the UB and LB curves. 

Nevertheless, since this assertion is not necessarily correct for all skew angles (see the UB and LB 

capacities for the 60degskew walls shown in Fig. 4.2(b) as well as the values displayed in Table 4.1). As 

such, it is necessary to explore the optimal weight(s) for averaging the LB and UB curves.   
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Fig. 4.2 Response for various skew angles of a 30 ft-wide abutment: (a) backbone curves, (b) capacities. 

Table 4.1. Ultimate Capacities (kN) vs. different wall widths and skew angles for the study analysis matrix, 

including the nominal (0 degree skew wall) and the upper bound and lower bound limits for each skew angle. 

      α 

W  

0
o
 

 

15
o
 30

o
 45

o
 60

o
 

4.6m 

(15ft) 
2157.5 

UB 2313.2 2357.7 2735.8 3234.0 

LB 2081.9 2032.9 1783.8 1592.5 

9.1m 

(30ft) 
4470.6 

UB 4693.1 4799.8 5102.3 6752.7 

LB 4350.5 4159.3 3856.8 3398.6 

13.7m 

(45ft) 
7001.8 

UB 7357.7 7468.9 7891.5 10556.0 

LB 6254.4 6049.8 5947.5 4844.3 

18.3 

(60ft) 
9390.6 

UB 10044.5 10097.9 11254.4 14074.7 

LB 8887.9 8585.4 7664.6 7415.5 

22.9m 

(75ft) 
12228.6 

UB 12677.9 13549.8 14653.0 16975.1 

LB 11886.1 11748.2 9243.8 8105.0 

27.4m 

(90ft) 
14470.6 

UB 15062.3 15742.9 17139.7 21859.4 

LB 14012.5 13545.4 11752.7 11000.9 

32m 

(105ft) 
17268.7 

UB 18669.9 19172.6 19715.3 24853.2 

LB 17086.3 15742.9 14653.0 14070.3 

36.6m 

(120ft) 
19105.9 

UB 20649.5 22375.4 24377.2 26814.9 

LB 19008.0 17629.0 16014.2 12464.4 
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  Before making any further progress, it is important to note that even if an optimal weight can be 

determined, it is not yet possible to obtain/predict the backbone curve (or capacity) of a skew abutment, 

given the backbone curve (or capacity) of a straight abutment, which is the objective here. To do so, we 

must first establish a relationship between the UB and LB backbone curves (and/or capacities). For this 

purpose, a second conjecture is put forth: The capacities of the UB and LB curves scale linearly. To wit, 

 

  

CPW(a ) º
F

U

ult
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U

»
F

L

ult

L
L

=
F

L

ult

L
U

cosa
Þ F

U

ult cosa » F
L

ult

 

(4.2) 

where CPW(α) denotes Capacity Per unit Wall-length for a given abutment with α degrees of skew. If 

this conjecture is true, then it will be possible to relate the capacities of UB and LB backbone curves to 

each other. 

 This second conjecture can be tested by examining the variation of a dimensionless parameter, 

dubbed here as Mutual Capacity Ratio (MCR), which is defined as 
  
 MCR

ij

a  º CPW
i

a / CPW
j

a . Ideally, if 

there are no distorting factors (e.g., the boundary effects due to the presence of wingwalls) then MCRij 

will be equal to 1 for any wall length (different values indexed by i’s and j’s here). Fig. 4.3 displays the 

MCR values computed for different wall-widths and skew angles, wherein the diagonal elements (MCRii) 

have unit values, by definition. As seen, the largest violations of the second conjecture are bounded from 

below and above by approximately 15%. For most of the important cases (i.e., backwall lengths larger 

than 15 m and skew angles less than 45 degrees) the second conjecture is even stronger (i.e., ±10% or 

less). 
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Fig. 4.3 Mutual Capacity Ratio (MCR) values for different skew angles. 

4.1.1 Correlation parameter λ 

With the two conjectures in hand, it is now possible to formulate a direct relationship between (i) the 

lateral capacities and load-displacement curve of a straight wall and (ii) the lateral capacities and load-

displacement curve of a skew-angled version, given any angle α, in combination with height and backfill 

soil properties.  
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 To achieve this, we first introduce the weight (or mixing) λ parameter. There will be two different 

versions of λ in this study: One obtained from capacity-only considerations, and another by considering 

the entire backbone curves. Starting with the capacity-based version, we define λ through the weighted 

sum:  

   
F

Straight

ult » lF
L

ult + (1- l)F
U

ult

 
(4.3) 

Eq. (4.3) also implies 

 
  

F
Straight

ult » l cosa F
U

ult + (1- l)F
U

ult = 1+ (cosa -1)léë ùûF
U

ult

Þ F
U

ult » 1+ (cosa -1) léë ùû
-1 F

Straight

ult  
(4.4) 

where the substitution was made from Eq. (4.2). Therefore, Eq. (4.4) represents a relationship between the 

capacity of a straight wall and a skew-angled version of it. Given the capacity of a straight abutment, a 

skew angle α, and appropriate value of the mixing parameter λ, Eq. (4.4) will yield the capacity of its 

skew-angled version. It is now only a matter of finding the appropriate values of λ, which inevitably vary 

with respect to wall width and skew angle. However, as discussed above in conjunction with the findings 

presented in Figure 4.2 and Table 4.1, it may be possible to obtain a single optimal value of λ that works 

well for all wall widths and abutment skew angles. This can simply be achieved by defining the 

minimization problem: 

   
min

l
e

ult
(l) º F

Straight

ult - lF
L

ult (a ) + (1- l)F
U

ult (a )é
ë

ù
û( )

2

 
(4.5) 

This is a linear least-squares problem and the optimal λ value (denoted by λ
*
) is simply, 
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 The approach presented above to determine a capacity-based optimal value for λ could also be 

applied equally to the entire backbone curve. In other words, a single/optimal value of λ can be obtained, 

which approximates the entire backbone curve of the skew abutment (not just its capacity value) using 

that of its corresponding straight abutment. This version of λ can be computed by minimizing 

  
(4.7) 

where  denotes the discrete values of lateral displacement at which the nominal, upper  and lower-

bound backbone curves are sampled. Again, this is a linear least-squares problem. The optimal λ value 

(denoted by λ
#
) is simply, 

  
(4.8) 

 It is expedient to note here that all three curves in Eq. (4.8) are generated through 3D FE simulations 

with force-control and automated sub-incrementation to achieve convergence in equilibrium iterations. As 

such, they will not necessarily be sampled at identical displacement increments. Therefore, in order to 

achieve constant displacement increments, we carried out simple searches to bracket and linearly 

interpolate the needed capacities between those that were directly obtained from the 3D FE simulation.   

 Optimal λ values given by Eqs. (4.6) and (4.8) (i.e., capacity- and backbone-based, respectively) are 

shown in Figure 4.4. As suggested earlier, for both cases, most of the optimal λ values are clustered 

around 0.5. Also, according to the definition based on capacities only (Eq. 4.6), it is always guaranteed 

that the optimal value is bounded as 0 < λ
*
 < 1. This is confirmed by results shown in Figure 4.4(b). On 
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the other hand, for the backbone-based definition, there are cases in which λ
#
 can reach magnitudes 

higher than one. This means the straight abutment’s backbone curve intercepts the upper-bound backbone 

curve somewhere before the plateau region. It is useful to note that this only occurred for the wall that had 

the lowest skew angle and the largest wall length (i.e., the 15
o
 and 40 m abutment in Fig. 4.4.a). 

 

Fig. 4.4. Optimal λ values computed using least-squares minimization on (a) complete backbone curves, and  (b) 

lateral capacities. 
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4.2 Sensitivity intervals 

Optimal λ values shown in Figure 10 do not provide the full picture by themselves. It is also necessary to 

determine how sensitive the least squares fits are to variations in the values of λ. These sensitivities are 

computed and presented in the form of 90% and 95% sensitivity intervals. A 95% sensitivity interval 

indicates that the values of λ within this bracket produce a variation of ±2.5 at most, in the objective 

function value. The said intervals are shown in Figures 4.5 and 4.6 for the capacity- and backbone-based λ 

values, respectively.  

 As seen, for lower skew-angles the sensitivity intervals are larger, which implies that all three (UB, 

LB, and Straight) response curves are already very close to each other. It can also be deduced from these 

figures that there is no single λ value that falls within even the looser (i.e., 90%) sensitivity interval that 

provides a good fit for all skew angles and wall widths. Nevertheless, it is still possible to produce an 

acceptable single/constant λ value, as described next.  

 
Fig. 4.5 Capacity-based λ values and their 90% and 95% sensitivity intervals. 
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Fig. 4.6 The variation of λ’s determined through least square minimization of the entire backbone curves and their 

90% and 95% sensitivity intervals (i.e., broader and narrower brackets in the figure, respectively) with skew angle 

and wall width. 

4.3 A recommended λ value for engineering practice 

Although an optimal λ within the 90% confidence interval was not achieved, it is still possible to 

introduce a single/constant λ value that will provide the minimum possible error when estimating the 

capacity and backbone curve of a skew-angled bridge (i.e., a pareto-optimal λ). This value can be 

computed by using the optimal λ’s (and their corresponding objective function values) obtained for each 

skew angle and abutment wall length combination. As stated earlier, this single λ value will not be within 

the 90% sensitivity interval for all cases, but it can be devised to work very well for most commonly 

encountered deck widths (> 10 m or 30 ft) and skew angles (< 45
o
).  

-1.0 

-0.5 

0.0 

0.5 

1.0 

1.5 

2.0 

0 5 10 15 20 25 30 35 40 

λ
  

Wall Length (m)  

15o skew 

0.0 

0.5 

1.0 

0 5 10 15 20 25 30 35 40 

λ
  

Wall Length (m)  

30o skew 

0.0 

0.5 

1.0 

0 5 10 15 20 25 30 35 40 

λ
  

Wall Length (m)  

45o skew 

0.0 

0.5 

1.0 

0 5 10 15 20 25 30 35 40 

λ
  

Wall Length (m)  

60o skew 

	



 
 

 
 

50 

 To compute the pareto-optimal value of λ, we used three different minimization methods, results of 

which are shown in Figure 4.7. The curve marked as “L1
 
norm” indicates the values of an error function, 

which was devised by simply adding the absolute values of the differences between the candidate 

pareto-optimal λ (the x-axis on Fig. 4.7) and those optimal λ values that are shown in Figure 4.5. The 

alternative approach was to relax the requirements and only to insist on minimizing the L1-distance 

between the pareto-optimal λ and those λ values that resided within the 90% sensitivity interval (i.e., the 

L1-distance for a candidate pareto-optimal λ is measured from the closest edge of this interval; and if 

candidate pareto-optimal λ is already within the interval, then its L1-distance is set to zero). This objective 

function’s value with respect to λ is marked as the “L1 + Dead Zone minimization” on Figure 4.7. The 

third and final approach was to introduce a weighing scheme into the second method; and its objective 

function is given by,  

 
  

e(l) º w
i

l - l
i

i

å , w
i
º 0.1 l

i

90%-ceiling - l
i( )  

(4.9) 

where 
  
l

i

90%-ceiling
 denotes the ceiling value of the i-th optimal λ. This type of weight (

 
w

i
) gives more 

importance to narrower sensitivity brackets (while noting that the coefficient 0.1 is arbitrary and has no 

effect on the pareto-optimal λ value, and it is used merely to scale the objective function in Eq. 4.9). 

 The three approaches above yielded the pareto-optimal λ values as 0.550, 0.553, and 0.572, 

respectively. In view of many anticipated epistemic and aleatoric uncertainties associated with the present 

problem (e.g., uncertainties soil parameters and field compaction, finite element modeling errors, etc.), it 

is reasonable to round this number and use l  = 0.6 to predict the behavior of skew abutment walls using 

the curves estimated for straight abutments results (see, for example, Shamsabadi et al., 2010; and 

Khalili-Tehrani et al., 2010).  
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Fig. 4.7 Variation of L1-norm, Dead-Zone L1-norm, and weighted Dead-Zone L1-norm objective functions with 

respect to λ. The pareto-optimal λ values correspond to the lowest point of each curve. 

 

It should be noted that only the capacity-based optimal λ values (i.e., data from Figure 4.5) were used 

in the calculations above. Also, walls with 5 m wall-lengths as well as 60
o
 skew angles were all included 

in the calculations. It goes without saying that a more accurate λ value (than 0.6) for a specific case can 

easily be obtained by finding the closest possible λ’s from Figure 4.5 (or 4.6), and then by interpolating 

between these values. 

4.4 Blind predictions  

In order to assess of the accuracy of the proposed l = 0.6 , some additional abutment configurations were 

studied. These are four new configurations that were not used as data in the optimization procedures 

described earlier, which include two wall lengths—i.e., medium (17.4 m) and wide (36.6 m)—and two 

skew angles—moderate (25
o
) and severe (55

o
). The results are shown in Table 4.3. For each case, the 

estimated upper and lower bound walls’ capacities are calculated using the proposed  l = 0.6  and Eq. (4), 

wherein the value 
  
F

Straight

ult  is computed using the LSH formulae described in Shamsabadi et al. (2010). 
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Another set of LB and UB estimates is provided by using l  values interpolated from data presented in 

Figure 4.5 (the interpolated l ’s are shown in parentheses in Table 3). Also, exact values are calculated 

using FEM models for each case and displayed in Table 4.3 in order to gauge the accuracy of the 

aforementioned estimates. The relative error for each calculation is computed as 
  
e

R
= F

l

ult - F
FEM

ult F
FEM

ult . 

Table 4.2 Lateral capacity predictions for the blind tests to appraise the accuracy of using  l = 0.6 . 

   Capacities (kN) 

            α 0
o
  25

o
  55

o
 

       Meth. 

 

 Lwall 

 

LSH 

 

FEM 

 
LSH 

 

FEM 

 

 
LSH 

 

FEM 

 with l   eR with λint  eR with l  eR with λint  eR 

36.6m 

(120ft) 

17164 19105 

UB 

(0.6)  

18186 

12% 
(0.77) 

18498 

11% 19359  

(0.6) 

25674 

3% 

(0.57) 

25240 

1% 24975 

LB 

(0.6) 

16482 

7% 

(0.77) 

16768 

6% 17797  

(0.6) 

14726 

8% 

(0.57) 

14477 

6% 13595 

17.4m 

(57ft) 

8153 8295 

UB 

(0.6) 

8639 

2% 

(0.49) 

8545 

3% 8843  

(0.6) 

10956 

7% 

(0.65) 

11279 

4% 11746 

LB 

(0.6) 

7830 

2% 

(0.49) 

7744 

3% 7979  

(0.6) 

6284 

2% 

(0.65) 

6469 

1% 6391 

 

 As seen, the recommended  l = 0.6  works nearly as well as the interpolated l  values. Moreover, the 

results appear to be adequately accurate with maximum relative error for predicted capacity being 12%. It 

is important to note that the values marked under the LSH columns are computed purely from closed-

form formulae, i.e., by using Eq. (4),  l = 0.6 , and the formula provided for 
  
F

Straight

ult  in Shamsabadi et al. 

(2010)—or the more general version provided in Khalili-Tehrani et al. (2010)—which use the backwall 
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height and soil data as input parameters. As such, these LSH calculations are instantaneous in comparison 

to 3D FEM simulations. Moreover, they can be used to obtain estimates of the complete backbone curves.  

4.5 A sensitivity study on wall rotations and sidesway  

In a recent study, Rollins and Jessee (2013) carried out a series of laboratory tests on skew angled 

abutments. In these tests, Rollins and Jessee kept the deck width constant, and pushed against compacted 

backfills, the compositions of which are similar to the soils considered in the present study, without 

allowing any rotations of the backwall. Their measurements indicated that the lateral capacity of the 

backfill decreased (quadratically) with respect to the skew angle. If indeed the abutment was not allowed 

to rotate (or sidesway) in these tests, then the results by Rollins and Jessee (2013) are in contradiction 

with the findings presented earlier in this study, since the simulations here indicated that the capacity 

should have increased! 

Given this contradiction, we explored the sensitivity of the lateral capacities computed using the 3D 

FEM simulations with respect to small rotations and sidesways, in an attempt to understand the 

discrepancy between results obtained by 3D FEM simulations and the direct measurements by Rollins 

and Jessee. 

For the sensitivity studies, we chose the deck-width and the abutment wall-height as 3.35 m and 1.67 

m, respectively. These dimensions are larger than those tested by Rollins and Jessee (which were, 

respectively, 1.28 m and 0.91 m) and are incidentally identical to the wall tested by Stewart et al. (2007). 

The soil properties in the sensitivity simulations were the same as those presented earlier in Table 3.1, 

except the cohesion value was lowered to c = 7 kPa to match Rollins and Jessee’s nearly cohesionless 

backfill material. In order to study the effect of slight wall movements, a 45-degree skew abutment wall 

and its non-skew (straight) counterpart were investigated. For the skew-angled abutment, two types of 

backwall movements were considered: (i) rotation about the vertical axis, and (ii) sidesway. For all the 
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studied cases, a 14cm lateral displacement was prescribed to the backwall. Along with this lateral 

movement, either a rotation or a sidesway was proportionally applied (for example, if the target maximum 

rotation or sidesway was set to 5 degrees, then this maximum rotation was simultaneously reached with 

maximum lateral displacement of 14 cm). It should be noted that often the lateral capacity was reached 

prior to reaching the target maximum displacement at which point the simulations were terminated, 

typically due to convergence issues (which are expected because even though the lateral wall 

displacement was prescribed, the majority of the finite element degrees of freedom were free, and thus, 

nonlinear equilibrium iterations were still needed). 

Figures 4.8 and 4.9 display the results for various wall rotations and sidesways. It is clear that 

even small movements (in either mode) can reduce the lateral capacity to values below those 

exhibited by the corresponding straight abutment. This is the same trend observed by Rollins and 

Jessee in their tests. Even though Rollins and Jessee did not intend to allow any sideway 

movements or rotations to take place, they acknowledge that this has occurred by stating that, 

“…because of the flexibility of the actuator piston, there was still a small amount of movement of 

the backwall at the soil-wall interface.” 

Given the observations above, it is clear that further tests are required to quantify the sensitivity of the 

lateral capacity of a skew abutment with respect to transverse movements and rotations about the 

abutment’s vertical axis. Due to the general eccentricity of a skew angled backfill’s passive reaction to the 

center of stiffness of a bridge, the tendencies for such motions will directly increase with skew angle. 

Ultimately, such movements are inevitable in real bridges and as such, it is essential to develop passive 

abutment response models that take them into account. The model presented in this study considers only 

pure lateral movements. Although limited in scope, this simple predictive model can be used as a starting 

point to develop more complete models that take into account all three possible movements of the 

abutment (i.e., lateral movement, sidesway, and rotation).   
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Fig. 4.8 Sensitivity of the response backbone curves to small rotations (left) and lateral sidesway (right) of the 

abutment. 

 

Fig. 4.9 The effects of slight wall sidesway and rotation on lateral capacity of a 45-degree skew abutment. 

4.6 Some Remarks 

This study provided a method to predict the lateral load-deformation behavior of seat-type skew bridge 

abutments under pure lateral displacements. This predictive model for skew abutments was based on two 

conjectures, which were put forth in the present study and tested for accuracy through numerical 
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simulations with three-dimensional finite element models. These simulation models were identical to 

those that were validated against test data from a straight abutment given by Stewart et al. (2010), except 

for the abutment skew angle, which was gradually varied in systematic parameter studies. The results 

from these studies suggested the use of an optimal λ coefficient (with a recommended value of 0.6) with 

which the lateral load-displacement backbone curve of a straight abutment (as well as the lateral capacity) 

can be transformed into that of a skew-angled abutment given the skew angle (α). A previously verified 

and validated limit equilibrium method that uses physical parameters (such as the abutment backwall 

height, soil properties, etc.) supplies the lateral behavior of the corresponding straight abutment 

(Shamsabadi et al., 2010; Khalili-Tehrani et al., 2010). 

 A sensitivity study using 3D finite element model of 45-degree skew abutment indicated that the 

lateral reaction would reduce rapidly if the abutment rotates about its vertical axis or moves transversely 

(sidesway). Since these motions are inevitable, and will be exacerbated by increasing skew angles, it is 

essential to incorporate them into predictive models of skew-angled abutment responses. The simple 

model presented in this study considers only pure lateral movements. Although limited in scope, this 

predictive model can nonetheless be used as a starting point to develop a more complete model that takes 

all three possible movements of the abutment (i.e., lateral movement, sidesway, and rotation) into 

account.   
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Chapter 5 

A Macroelement Model for Skew Abutments 
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5. A Macroelement Model for Skew Abutments 

5.1 Methodology  

The macroelement that will be developed herein is based on a resultant-base plasticity framework, and 

will provide a skew-angled abutment’s passive reaction forces and moments under lateral and rotational 

motions. The vertical motions are not of interest, because the passive reactions are induced by bridge 

decks that are typically constrained against vertical rigid body movements. Also, additional features such 

as sub-elements to represent radiation damping, shear keys, and unseating-switches can easily be added to 

this present macroelement, but are out-of-scope in the present effort. 

It is also expedient to note here the while PLAXIS had been sued in previous verification and 

validation studies, ABAQUS will be used in the development of the macroelement model here, because 

PLAXIS is not suitable for modeling contact conditions and prescribing displacement time-histories.  On 

the other hand, ABAQUS does not feature an direct equivalent of the “Hardening Soil” model of PLAXIS 

(Schanz et al., 1999), which was shown, in Chapter 3, to mimic passive backfill behavior very 

successfully.” As such, the Modified Mohr-Coulomb model in ABAQUS was utilized and its mobilized 

cohesion coefficient was calibrated so that lateral load-deflection backbone curves obtained from 

ABAQUS and PLAXIS agreed.  

The verified ABAQUS models are then used in parametric studies to probe the skew abutment 

behavior, and these results are interpreted and organized through the prism of the model obtained in 

Chapter 4 for a non-rotating backwall as well as other analytical considerations. During the process of 

loading in ABAQUS simulations, the deformation of the backfill is taken into account throughout the 

history of deformations, and the frictional contact as well as partial gapping between the backwall and the 

backfill is rigorously modeled. The backwall is assumed to be rigid. 
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5.2 Geometry and kinematics 

Here, the geometric quantities that control the backwall kinematics are defined (see, Fig. 5.1). Deck width 

(D) the width of the bridge deck perpendicular to the traffic direction. Wall width (W) is defined as the 

total length of the abutment backwall. As such, 𝑊 = 𝐷 cos𝛼 where 𝛼 is the skew angle. The height of the 

backwall is denoted as H.    

 

 

Fig. 5.1. Instantaneous center of rotation and radius 𝜌. 

 Taking into account only the lateral displacement and the vertical rotations of the wall, all the 

possible motions (kinematics) can be described by the displacement Δ, and rotation ɵ. Based on the 

incremental displacement and rotation, the Instantaneous Center of rotation (IC) can be determined with 

respect to which the entire motion of the wall can be described as a rotation only.  It is important to note 

that IC is constantly changing throughout the loading history. The parameter ρ is introduced as the 

distance between the point of IC and the Center of wall O.  



 
 

 
 

60 

 The sign convention we set for parameter ρ is defined through the expression 𝜃𝑛
+⃗⃗⃗⃗  ⃗ × ∆𝑛

+⃗⃗⃗⃗  ⃗= 𝜌𝑛
+⃗⃗⃗⃗  ⃗ where 𝜃𝑛 

is the normalized rotation. This implies, that the cross product from left-positive 𝜃 into positive Δ will 

yield the positive direction for 𝜌. Positive direction of 𝜃 is taken to be the rotation towards the acute 

corner of the wall, which is the rotation that increases the original skew angle. The positive direction for 

displacement is designated to be from the backwall towards the backfill.  

It is important to mention that the axis of IC, which we parameterized here by 𝜌, is always 

perpendicular to the traffic direction, since we designate Δ to be the displacement along the traffic 

direction (Fig. 5.2). The determination of the traffic-direction reaction (Fx) will be the key value in 

determining the rest of the unknown reactions to the input displacement pair (displacement and rotation). 

 
Fig. 5.2.   (a) Typical seat type abutment  (b) Traffic direction and the tangential coordinate system. 

Given the aforementioned conventions, applying a positive displacement and positive rotation places 

the IC on the acute side of the wall from the wall center, hence produces a positive 𝜌. A positive 

displacement and negative rotation puts the IC on the obtuse side from the wall center, which means that 
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𝜌 is negative. A negative displacement combined with positive rotation causes a negative 𝜌, and placed 

the IC on the obtuse side. Finally, in case both negative displacement and rotation are imposed, the IC 

will lie on the acute side from the wall center, and 𝜌 will be positive, which is given through the simple 

formula    

 𝜌 =
∆

tan(𝛼+𝜃)−tan(𝛼)
 (5.1) 

Eq. 4.1 describes 𝜌 in terms of the traffic direction displacement of the backwall ∆, the skew angle 𝛼 

(which is the undeformed angle of the abutment), and the rotation angle 𝜃.     

5.4 Utilization of the straight non-rotating abutment model  

The cornerstone of the skew abutment-backfill behavior model is the lateral reaction of its corresponding 

straight abutment (where the skew angle is zero). In our models, the results for the straight abutment will 

be obtained using the Generalized HFD (GHFD) model (Khalili-Tehrani et al., 2010).  The GHFD model 

yields the backbone curve for the lateral passive reaction of a straight abutment backwall for any soil type 

and wall height. The no-rotation scenario obviously guarantees full contact between the backwall and 

backfill under monotonic lateral translations, as well as symmetry with respect to the centerline. 

Assuming that boundary effects (at wingwall locations) are negligible, the lateral reaction will be scalable 

by wall/deck-width, and thus lateral reaction per unit wall length will be a constant for a given wall 

height, skew angle, and backfill material. 

Figure 5.3 displays results obtained from the LSH/GHFD method for a set of different soil types, for 

a 4.57m-wide (15 ft) and 1.67m-high (5.5 ft) wall. The soils considered in this figure range from cohesive 

to granular. In cohesive soils, the soil internal friction angle ∅ is low, and granular soils, the soil cohesion 

c is low. As described earlier in Chapter 3, the two typical backfills used in California abutments had been 

tested by groups at UC Davis (cohesive), and UCLA (granular) and capacity values measured in those 

tests are also shown in Fig. 5.3, for comparison. 
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Fig. 5.3.  Results from the GHFD model: effect of soil parameters on the backfill’s ultimate reaction. (a) effect of 

cohesion for different internal soil friction angles (Phi) (b) vice versa. 

 

The ability of the GHFD (thus, indirectly, of LSH) to rapidly yield lateral capacity values will be 

exploited here in devising the macroelement model. The GHFD model can easily be used to in 

combination with the correlation model (λ) described in Chapter 4 to extract the backbone curve 

(incidentally, the ultimate strength) of the backfill of any skew abutment, as long as there are no rotations. 

As it will be described below, the lateral reaction estimated thus from GHFD for a given skew angle will 

play a pivotal role in calculating the remaining elements of the unknown reaction set. 

We begin that analysis by first defining lateral capacity of the backfill normalized by the area of the 

wall for a given skew angle 𝜶 (henceforth referred to as 𝐶𝐴𝑊𝛼) as  
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 𝐶𝐴𝑊𝛼 =
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑊𝑎𝑙𝑙
 (5.2) 

In Eq. (5.2) “Capacity” denotes the ultimate capacity of the backfill in the traffic direction. We then 

define ratio of the capacity of a skew wall with that of its nominal straight wall (i.e., Capacity-to-Nominal 

Ratio, or CNR).  

 𝐶𝑁𝑅 =
𝐶𝐴𝑊𝛼

𝐶𝐴𝑊𝑁𝑜𝑚𝑖𝑛𝑎𝑙
=

𝐶𝑎𝑝𝛼

𝐶𝑎𝑝𝑛
×

𝐴𝑛

𝐴𝛼
 (5.3) 

Here, the nominal wall corresponds to a straight wall that has the same deck-width as the skew wall (thus, 

the skew wall is the Upper-Bound wall to the nominal wall defined earlier in Chapter 4). Finally, we 

define the normalized skew angle as, 

 𝜈 =
𝛼

π/2
 (5.4) 

 
Fig. 5.4. CNR and normalized capacity versus the normalized skew angle  (a), and CNR correlation with FE results 

for different geometries and soil types (b). 
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Fig 5.4(b) displays CNR values for a variety skew walls and for a broad range of backfill material 

types. These values are obtained through the use of the GHFD model as well as validated ABAQUS FEM 

simulations. It is interesting and fortuitous that the normalization scheme devised above yields such a 

regular trend in the CNR-versus-ν curves. To wit, the following simple formula  

 𝐶𝑁𝑅 = 1 −
3

4
𝜈2  (5.5) 

provides as excellent fit even up to normalized skew angles 𝜈 = 0.9, as seen in Figure 5.4(b).  

Note that in all these calculations, the backfill and the backwall are in full contact (no separation) and 

there is no rotation. The direction that CNR is calculated for is the lateral direction (x-direction), which is 

aligned with the traffic flow. Using Eq. (5.5) and CNR can be calculated for any skew angle. Then, the 

following identities can be used to determine the lateral capacity of a skew-angled backwall (𝐶𝑎𝑝𝛼) as 

 𝐶𝑎𝑝𝛼 = 𝐶𝑁𝑅 ×
𝐴𝛼× 𝐶𝑎𝑝𝑛

𝐴𝑛𝑜𝑚𝑖𝑛𝑎𝑙
= 𝐶𝑁𝑅 ×

𝐴𝑛𝑜𝑚𝑖𝑛𝑎𝑙
cos(𝜈)⁄

𝐴𝑛𝑜𝑚𝑖𝑛𝑎𝑙
∙ 𝐶𝑎𝑝𝑛   

             →        𝐶𝑎𝑝𝛼  = 𝐶𝑁𝑅 × sec(𝜈) × 𝐶𝑎𝑝𝑛 (5.6) 

or equivalently, 

 
𝐶𝑎𝑝𝛼

𝐶𝑎𝑝𝑛 
 = 𝐶𝑁𝑅 × sec(𝜈) = sec(𝜈) [1 −

3

4
𝜈2]  (5.7) 

The ratio given in Eq. (5.7) is also plotted in Fig. 5.4(a). Thus, if the capacity of the nominal (straight) 

backwall (i.e., 𝐶𝑎𝑝𝑛) is known—which can be easily obtained using the GHFD formulae—then the 

lateral capacity of its non-rotating upper bound skew wall can be determined using Eq. (5.6). 

5.5 Reactions for rotating skew abutments 

In the discussion above, the response of a skew non-rotating bridge abutment is characterized. Introducing 

the backwall rotation will produce a more complicated scenario. As depicted earlier in Figure 5.2, for any 
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general abutment wall there will be three reaction components—namely, the two in-plane perpendicular 

force reactions, and the out-of-plane moment reaction.  

  The backfill reaction calculations will begin by determining the correlation between the normal 

component of the abutment reaction (N) and the tangential component (T), using a parameter henceforth 

referred to as the average mobilized friction coefficient (𝜇𝑎𝑣𝑔). This coefficient will be extracted from FE 

simulations. Once this relationship is established, it will be possible to refer to the lateral direction 

capacity (Fx), which can be computed using Eq. 5.6 for the no-rotation case, as well as the tangential 

reaction  (Fy) through a simple coordinate transformation. FE simulations will also inform the pressure 

distribution pattern on the wall, including contact/gapping conditions, from which the moment reaction 

can be computed.  

5.5.1 Elements of the rotating wall reactions 

We begin by first transforming an unknown Fx and unknown Fy into N and T using the skew angle. 

Working in the backwall coordinate system that allows the utilization of the backwall-backfill frictional 

behavior as an auxiliary relationship. This auxiliary equation, as will be described in detail in the next 

section, will allow the correlation of the mobilized friction coefficient (𝜇𝑎𝑣𝑔), the instantaneous radius of 

rotation (𝜌), and the skew angle (𝛼). 

We define 𝜇𝑎𝑣𝑔 to be the simply ratio of the tangential to the normal components of the backfill 

reaction, as in 

   𝜇𝑎𝑣𝑔 =
𝑇

𝑁
  (5.8) 

This coefficient is obviously a function of geometry and the loading kinematics (because of varying 

contact area). Since the mechanical friction coefficient between any backwall (most probably a concrete 

surface) and the backfill soil is a physical property that can be measured (e.g., by laboratory tests), then it 



 
 

 
 

66 

is reasonable to normalize the average mobilized friction coefficient of surface reactions by that 

measurable constant maximum friction ratio, 𝜇𝑚𝑎𝑥, to define 

 𝜇𝑛 =
𝜇𝑎𝑣𝑔 

𝜇𝑚𝑎𝑥
 (5.9) 

Likewise, we can also define a normalized instantaneous center of rotation 𝜌𝑛 using the kinematics we 

had defined above, as 

 𝜌𝑛 =
𝜌

𝐷
=

∆/𝐷

𝑡𝑎𝑛(𝛼+𝜃)−𝑡𝑎𝑛(𝛼)
 . (5.10) 

Any correlation for normalized friction coefficient would be a function of skew angle (𝛼) and the 

normalized instantaneous center of rotation 𝜌𝑛. We have the following bounds for these quantities: 

  𝛼 ∈ [0,
𝜋

2
[   and  𝜈 =

𝛼
𝜋

2⁄
 → 𝜈 ∈ [0,+1[ (5.12) 

  𝜌 ∈ [−
𝐷

2
, +∞]  →  𝜌𝑛 ∈ [−

1

2
, +∞] (5.13) 

Using these bounds as the feasible range of parameter space for the problem at hand, a series of FE 

simulations are carried out for a broad range of 𝛼 and 𝜌𝑛 values. Results of these simulations are shown 

in Figure 5.5. These results can be used to obtain the following simple formula for the normalized 

mobilized friction coefficient as a function of skew angle and instantaneous normalized radius:   

 𝜇(𝛼,𝜌𝑛)
𝑛  = −sign(𝜌𝑛) × tanh ((2𝜈)2 ∙ |𝜌𝑛|

1

2) +
1

5
sin(𝜋𝜈) (5.14) 

Although the algebraic range for 𝜇𝑛 would span from −
4

5
 to +1

1

5
 , since physically the average mobilized 

friction coefficient cannot surpass 𝜇𝑚𝑎𝑥 and 𝜌𝑛 cannot physically attain values below-0.5, the feasible 

range for 𝜇𝑛 is 
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 𝜇𝑛 ∈ [−
4

5
, +1]. (5.15) 

Thus, the expanded correlation relationship for the mobilized friction coefficient can be expressed as  

 𝜇𝑎𝑣𝑔  = 𝜇𝑚𝑎𝑥 {−sign (
∆

tan(𝛼+𝜃)−tan(𝛼)
) × tanh(

16∙𝛼2

𝜋2 ∙ |
∆

𝐷[tan(𝛼+𝜃)−tan(𝛼)]
|

1

2
) +

1

5
sin(2𝛼)} (5.16) 

Although the mobilized friction coefficient results are theoretically asymmetric for pro- and counter-skew 

rotation scenarios, this variation is seen to be marginal in all FE simulations, and thus Eq. (5.16) offers a 

unique formula for both pro- and counter-skew motions of the wall.  

 

 

Fig. 5.5. The Normalized Average Mobilized Friction (μ
n
) versus the normalized instantaneous radius (ρ

n
) 

for a 60-degree to 0-degree skew backwalls (FE data for 45-degree wall is shown in detail). 
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Based on the coordinates described earlier, the relationships between the Fx and Fy, and T and N is 

simply 

 𝑁 = 𝐹𝑥 𝑐𝑜𝑠 𝛼 + 𝐹𝑦 𝑠𝑖𝑛 𝛼, (5.17) 

 𝑇 = 𝐹𝑦 cos 𝛼 − 𝐹𝑥 sin 𝛼. (5.18) 

Since the following is true at all loading conditions, 

 𝑇 = 𝑁 𝜇𝑎𝑣𝑔 (5.19) 

 Thus, Eqs. (5.17) through (5.19), together with (5.16), form a constitutive relationship that links the wall 

kinematics (Δ, θ) to the wall reactions (T, N). We also have 

 𝑁𝛼
𝑚𝑎𝑥 =

𝐹𝑥
𝑚𝑎𝑥

𝑐𝑜𝑠𝛼−𝜇𝑎𝑣𝑔 𝑠𝑖𝑛 𝛼
. (5.20) 

and note here that 𝐹𝑥
𝑚𝑎𝑥 can be directly computed using Eq. 5.6 for the no-rotation case. 

5.5.2 The moment reaction 

Having the normal effective force in hand, we finally arrive at the determination of the moment reaction, 

Mz, which we define, without loosing generality, with respect to the center of the wall. The reason for this 

choice is to avoid potential complications that may be encountered if we take either the acute or the 

obtuse-end of the wall as the reference point of the moment reaction.  

By integrating the lateral incremental reactions of the backfill along the wall, we can calculate the 

moment reaction. The macroelement should take into account the effective area of contact between the 

backwall and backfill, which, at every time increment, can be calculated simply by updating the deformed 

shape of the backfill and by taking into account the displaced position of the backwall. While the said 

calculation (integration) is simple, we do not yet know the variation of the normal pressure along the 
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length of the wall within the contacting areas. Determination of the said pressure will require utilization 

of FE simulation results, as well as adoption of a simplifying assumption. 

One major difference between a straight abutment and a skew one is the simple fact that due to 

symmetry, the stress distribution along the face of a straight wall is uniform. Hence it can be deduced that 

a unit area of soil provides the same stiffness and strength for a straight wall. This is not true for skew 

backwalls, and as it will be presented later, the unevenness in the strength of different portions of the 

backfill increases with increasing skew angle.   

The said trend was explored here to determine how different portions of the backfill react to the 

backwall’s motions. The pressure at the bottom edge of every wall was chosen as a representative 

location for the mobilized pressure acting on the backwall. The bottom edge of the wall is more important 

than other locations on the wall because the ultimate failure surface originates from this location (see, for 

example, Stewart et al., 2007).  

 

Fig. 5.6.   Distribution of the normalized pressure over the normalized width of the wall. 
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Figure 5.6 displays how for four different increasing skew angle cases the pressure at the bottom edge 

of the backwall becomes more uneven and increase towards the obtuse-end of the backfill.  For all the 

four cases, the horizontal axis is the distance from the center of the wall normalized by the wall width, 

and the vertical axis is the pressure values at different sampling points at the bottom edge normalized by 

the average pressure. 

The results from this part of the study were used to devise a relationship that helps modeling the 

out-of-plane moment reaction in an approximate, albeit realistic manner. The pressure distribution for 

each studied FE simulation case was represent with the generic function, 𝑥𝐷
𝑛𝑜𝑟 is the distance of every 

point from the center, normalized by the wall width,  

 𝑝(𝑥)
𝑛𝑜𝑟 = 𝑚𝛼 ∙ 𝑥𝐷

𝑛𝑜𝑟 + 1 (5.21) 

where 𝑝𝑛𝑜𝑟 is the normalized pressure at every point of the bottom edge divided by the average pressure 

of the same edge, given by 

 𝑝(𝑥)
𝑛𝑜𝑟 = 𝑝(𝑥)/𝑝𝑎𝑣𝑔 (5.23) 

𝑥𝐷
𝑛𝑜𝑟 is the distance of every point from the center, normalized by the wall width, given by 

 𝑥𝑤
𝑛𝑜𝑟 =

𝑥𝑤
𝐷⁄ , (5.22) 

and 𝑚𝛼 is the slope of the fit for every skew angle 𝛼.  From these basic definitions we have the following 

identity, 

 ∫ 𝑝(𝑥)
𝑛𝑜𝑟𝐷/2

−𝐷/2
𝑑𝑥𝐷

𝑛𝑜𝑟 = 1. (5.25) 

Figure 5.7 displays the relationship that is used to model the rate of increase for the backfill’s strength 

for different skew angles. Every rate of increase in Fig. 5.7 (m, on vertical axis) is basically the slope in 

the associated part of Fig 5.6.  In Fig. 5.6, the wall center is set as the origin of the x-axis. In order to 

reduce the number of unknowns in determining the pattern of pressure against the wall, it was assumed 

that the correlated pressure meets the average pressure observed in FE simulations, and that its 
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distribution is linear along the wall width. Obviously, these assumptions are made to simplify the problem 

and more detailed study could be carried out to determine the actual distribution of pressure. Such a study 

would also allow the observation of the disturbing effects of the boundary elements (wingwalls) on the 

pressure distribution. That said, these additional studies are omitted here for the sake of keeping the 

model simple; and as it will be seen later, and adequate accuracy will be attained with the current 

simplifying assumptions in place. 

 
Fig. 5.7. Change rate of the pressure in FE model, and the regression-based model used for the 

macroelement. 

 

The approach chosen from this point on is to use the pressure distribution obtained for the bottom 

edge of the wall to determine the normal force per length of the wall. That is, 

 𝑛(𝑥) = 𝑁𝛼
𝑚𝑎𝑥 ∙ 𝑝(𝑥)

𝑛𝑜𝑟 (5.26) 
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5.5.4 The effective versus full contact area 

In order for the model to reproduce the reactions correctly, it should adaptively take into account the 

deformed shape of the backfill and the updated geometry of the wall. An adaptively changing contact area 

is needed between the wall and the surface of the (deformed) backfill soil. For the present model, we will 

keep track of the effective contact area. 

 

Fig. 5.8. Full area of the wall in contact with the backfill (a), versus reduced (effective) contact area (b). 

 

When the length of in-contact segment is less than the deck-width, the longitudinal reaction (Fx) 

will not reach its maximum possible value (i.e., the backfill capacity will not be fully mobilized). Based 



 
 

 
 

73 

on the distribution determined earlier for the normal stress on the face of the wall, the out-of-plane 

moment reaction can be calculated as follows, 

 𝑀𝑧 = ∫ 𝑛(𝑥)𝑥
𝑛𝑜𝑟𝑑𝑥

𝐴𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = ∫ 𝑁𝛼
𝑚𝑎𝑥𝑝(𝑥)

𝑛𝑜𝑟𝑥𝑛𝑜𝑟𝑑𝑥
𝐴𝑐𝑜𝑛𝑡𝑎𝑐𝑡   (5.27) 

where 𝑁𝛼
𝑚𝑎𝑥 is the normal maximum reaction of the wall for a skew model.  Both the ultimate capacity 

and the stiffness of soil in this model are assumed to vary by following same distribution function. This 

way, both the ultimate capacity and the stiffness of the soil, per length of the wall, will follow the same 

pattern of increase towards the obtuse end of the backfill. 

5.5.5 Description of the overall model for macroelement 

With the relationships at hand, it is now possible to devise an incremental displacement-driven procedure 

that produces the entire set of macroelement reactions, given the wall translations and rotation.  

The entire process begins by acquiring the backfill soil’s mechanical parameters and backwall’s 

geometry. Based on those data and using the previously developed and validated methods such as GHFD 

(Khalili-Tehrani et al., 2010) or the LSH method (Shamsabadi et al., 2013) the maximum lateral reaction 

of the nominal wall (the counterpart straight wall to the given backwall with the same deck-width) can be 

calculated. Using this information, and the CNR relationship derived above (Eqs. 5.5 and 5.7) can be used 

to compute the lateral ultimate reaction of the skew wall, 𝐹𝛼
𝑚𝑎𝑥. 

 With the ultimate normal capacity of the skew backfill calculated, the load combination parameter, 𝜌, 

and the previously calculated deformed shape of the backfill can now be used to determine the effective 

area of contact between the backwall and backfill at every time increment. A full knowledge of the 

loading scenario is needed to find the total mobilized friction coefficient between the backfill and the 

wall, 𝜇. Using Eq. 5.20, the ultimate normal to the wall component of the backfill’s reaction, 𝑁𝛼
𝑚𝑎𝑥, can 

then be calculated. 

In order to determine the moment reaction, the distribution of the resultant normal reaction along the 

wall has to be determined; which can be computed by using Eq. 5.21, which relates the skew angle, the 
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slope of the distribution of the stiffness, and the strength normal to the face of wall as a function of 

position on the backwall, 𝑝(𝑥)
𝑛𝑜𝑟. 

Based on this, the calculation of the normal stress distribution, 𝑛(𝑥), can take place. After determining 

𝑛(𝑥), the out-of-plane normal moment, 𝑀𝑧, can be calculated through 5.27. This calculation would then 

yield the full set of resultants needed to complete one increment of loading. A flowchart for the 

calculations described above is shown in Fig. 5.9. 

 

Fig. 5.9. Flowchart describing the proposed macroelement model. 
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5.6 Verification and validation of the macroelement model 

5.6.1 Comparisons against test data and other validated models for straight 

walls 

In order to evaluate validity the proposed macroelement model, UCLA full-scale backfill test 

(Shamsabadi et al., 2010) results used. This is, of course, a partial validation, which tests the 

macroelement only for the no-rotation case, because the UCLA test was performed to mimic the behavior 

of a narrow straight abutment and no rotation was applied or permitted in the process of loading and 

unloading of the backfill. Present lack of data in this area postpones a complete validation in this regard.  

 

Fig. 5.10. Results for straight abutments; UCLA 15ft (4.57 m) wall full-scale test: results obtained with LSH, 3D 

FEM (Plaxis 3d foundation), and the macroelement model. 

Figure 5.10 displays the measured data from the UCLA full-scale abutment test and predictions by 

different models. The other two simulations in this figure had also been shown earlier in Chapter 3, which 

were obtained using the Log-Spiral Hyperbolic (LSH) method (Shamsabadi et al., 2010) and a 

three-dimensional finite element model developed and analyzed with PLAXIS 3D FOUNDATION 
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(v.2.1) software. The Hardening Soil properties used in the Plaxis model as well as the properties of the 

soil used for LSH model were described in Table 3.1, previously.  

As these results indicate, the macroelement model offers adequate accuracy. Naturally, the 

macroelement model exhibits an elastic-perfectly plastic behavior, whereas the other two numerical 

simulations show a gradual decrease in the tangent stiffness of the lateral reaction. Again, this comparison 

serves as a partial validation of the proposed macroelement model (one that is limited to non-rotating 

walls). 

 

Fig. 5.11. Straight abutments with 1.65m height and various lengths: LSH, FEM, and macroelement 

results. 

 

The macroelement model is also evaluated for a set of backwalls with 1.65m height and different 

deck widths varying from 4.5m to 36.5m, having the backfill of UCLA soil (properties previously 

presented in Table 3.1). These results are compared with those obtained using PLAXIS 3D 

FOUNDATION as well as LSH in 5.11, and good agreement is observed. Again, the constitutive 
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behavior of the macroelement is elastic-perfectly plastic, and the backfill is pushed uniformly (plane-

strain) in all wall models. This explains why all macroelement models for different walls widths fail at the 

same deflection. The failure deflection is 2 cm for all macroelement models for all skew angles. In this 

study, the potential variation of the failure deflection with wall width is not considered, however results 

from FEM analyses and the developed macroelement, suggest that studies on the variation of the failure 

deflection ∆𝑓 could be considered in the future to further improve the model. Apart from this issue, the 

results obtained by the macroelement model as very good and provides a verification that the model can 

automatically take into account the wall height. 

5.6.1 Model verification under cyclic loading for a straight abutment 

All of the comparisons above involved the use of PLAXIS. For the subsequent comparisons, the results 

obtained from the macroelement model will be compared against FE models constructed and analyzed 

using the ABAQUS (v.6.11). This switch is made, because ABAQUS allows cyclic and 

displacement-controlled loadings, and has robust models of frictional contact between the backwall and 

the backfill, which are features that were lacking in PLAXIS at the time of the presentation of this 

document.  

The macroelement model results under the cyclic loading scenarios are compared to ABAQUS FE 

models with approximately 600K degrees-of-freedom. All the models and the designed problems in this 

sub0section are for non-skew backwalls. The goal here is to see first how much the complication of the 

loading scenario can affect the results, especially to see if for higher number of load cycles, the error in 

the macroelement model results relative to FE model results blows up or not. Results show that not only 

for larger deformations of the backfill the error remains bounded, but also they remain highly accurate. 
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The first comparison involves the UCLA test configuration again. This involves a straight abutment with 

5.5ft height (1.65m), and 30ft length (9.1m), displacing a cohesionless backfill with properties described 

previously. Various loading scenarios are considered, as described below: 

A pure lateral push test 

An increasing amplitude cyclic push/pull-only load pattern was applied to compare macroelement and 

ABAQUS results, which are shown in Figure 5.12. Again since the loading is push/pull-only, the 

response of the macroelement is elastic-perfectly plastic. The discrepancy between the two models is 

larger in small deformations, especially when the macroelement model is still in its elastic regime. Also 

because the backwall is straight, symmetric with respect to centerline, there is no out of plane moment 

mobilized in the FE model, and this also is taken care of, since the distribution parameter m in the 

macroelement model is zero (m = tan𝛼) for a non-skew model. 

 

Fig. 5.12. Push-only test (𝜌 = ∞). 
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A pure rotation rest 

In order to test the behavior of the macroelement moel in the rotation only load cases, a 

cyclic-rotation-only loading scenario was devised. The loading is symmetric in positive and negative 

directions, and is applied around the center of the wall. Results are shown in Fig. 5.13.  Obviously, a pure 

rotation in the wall will cause moment and lateral force reactions simultaneously. Again, the FE and 

macroelement results are in very good agreement. 

 

Fig. 5.13. Pure rotation test (𝜌 = 0). 
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A combined cyclic loading test 

To further study the performance of the proposed model, a combined harmonic displacement and rotation 

scenario is devised. Figure 5.14 shows the force versus displacement, moment versus rotation, and 

force-moment diagrams for both the FE and the macroelement model simulations. The applied 

displacement was made sure to maintain positive values, but the cyclic rotation was symmetric with 

respect to wall center. Again one can observe that the discrepancy in small deformations is more 

significant, but the overall agreement is very good. 

 

 

Fig. 5.14. Straight wall cyclic load combination. 
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5.6.2. Model verification under cyclic loading for a skew abutment  

Here, results are presented from the analysis of the 45-degree skew abutment backwall of a 1.65m-high 

and 9.1m-wide deck.  

 

Fig. 5.15. Force and Moment reactions of a 45-degree skew wall under a monotonic-push-only load. 

Pure push and rotation tests 

A push-only monotonic analysis was performed to examine the behavioral differences in the 

macroelement and FE models. As opposed to the straight abutment case, a pure push can cause a moment 

reaction in abutments with nonzero skew angles. Figure 5.15 displays the results from the two models. 

Pure rotation analyses were also performed using the both FE and macroelement models. Figure 5.16 

shows the results. Since the abutment is skew, neither the lateral force nor the moment reactions are 
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symmetric with respect to the wall center. The results for both pure-push and pure-rotation cases indicate 

that the macroelement model provides very good accuracy. It is noted that the macroelement model does 

not exhibit the moment-softening response in the pure push case. While such a shortcoming can be fixed 

by introducing additional features into the macroelement model, such an extension is not warranted 

because the moment in a pure push case is a secondary effect compared to the lateral and transverse 

reactions, and can typically be neglected all together. 

 

 

Fig. 5.16. Force and Moment reactions of a 45-degree skew wall under a monotonic-rotation-only load. 

Combined cyclic loading test 

A combined harmonic displacement and rotation scenario was also applied to a 45-degree skew abutment 

model. Figure 5.16 shows the force-displacement, moment-rotation, and force-moment diagrams for both 
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the FE and the macroelement models. Displacements applied were kept within the positive range of 

motion, but the cyclic rotation was symmetric with respect to the wall-center. Results indicate that while 

there is some discrepancy in small deformations, the overall agreement between the two models is very 

good for the broad range of motions considered. 

 

 

Fig. 5.17. Force and moment reactions of a 45-degree skew wall under a cyclic displacement and rotation 

combination load; (a) loading scenario (b) lateral reaction versus displacement, (c) moment reaction 

versus rotation (d) moment versus force. 

Quasi-seismic motion test 

In order to further study the behavior of a skew abutment, both degrees-of-freedom (DOF) were subjected 

to earthquake-like motions. The displacement diagram chosen to be applied onto the lateral displacement 

DOF was the El Centro EW (El Centro 270N), and in order to apply rotation, the displacement of the El 
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Centro NS (El Centro 180N) was applied to a hypothetical 3.50m-distant point from the wall center. This 

created the out-of-plane rotation applied to the wall center (Fig. 5.17). Since the load scenarios in two 

degrees of freedom were independent, the analysis mimicked a random rotation and displacement set of 

input that could be acting on a actual bridge during a real earthquake.  Figure 5.18 displays the results 

from the FE and macroelement model simulations. Again, the agreement is very good. It is expedient to 

note here that while the FE simulations take more than a day on a desktop computer, the macroelement 

computations are almost instantaneous. 

 

Fig. 5.18. Modeling a both lateral displacement and rotational excitation at the backwall. 
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Fig. 5.19. A 45-degree skew wall with 30ft deck under EW El Centro for longitudinal displacement and 1/350 of the 

SN El Centro displacement as rotation. (a) Force reaction and (b) and Moment reactions vs. pseudo. 
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Fig. 5.20. A 45-degree skew wall with 30ft deck under Imperial Valley displacement for longitudinal displacement 

and 1/350 of the Kobe displacement as rotation: (a) Force reaction and (b) and moment versus force. 
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Chapter 6 

Summary and Recommendations 

for Future Research 
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6. Summary and Recommendations 

This study offered a method to solve for the reactions of skew bridge abutments in the form of a macroelement that 

accounts for the nonlinear contact-gapping between the backwall and the backfill and the backfill’s highly inelastic 

behaviors. The entire set of reactions (lateral, transverse, and moment) is deduced from a knowledge of the lateral 

reaction and a phenomenological model of the distribution of pressures that form this lateral reaction. Given these, 

as well as the physical parameters of the abutment system, the transverse reaction and moment could be computed.  

Two methods were offered for the calculation of the lateral reaction itself—these were, namely (i) an 

interpolation method (see, §4.1-§4.4) that produced the lateral reaction from that of a solution for a straight 

abutment, which could be obtained using a physically parameterized and (ii) a another regression-based model that 

was based on the observation that capacity-per-unit-wall-area exhibited a consistent variation for a broad range of 

skew angles when normalized by the capacity of a straight wall that has the same deck-width as the skew one  (see, 

§5.4). Both methods were verified against detailed FE solutions and produced consistently accurate results.  

In the macroelement model the distribution pattern of the stresses in the backfill was assumed to be linear where 

the slope was found to be primarily a function of the skew angle; however this study also identified that further 

investigation and quantification of this stress distribution would yield more accurate and general models. 

Nevertheless, the resulting overall macroelement model was based, by-and-large, on physical parameters that 

included the backfill soil’s internal friction angle and cohesion, backwall height, and skew angle. It was shown to 

accurately produce the normal and tangential reactions as well as the moment caused by the backwall movements 

under a large variety of adequately general displacement-controlled tests, in comparisons against results obtained 

using detailed FE models.  

The model is computationally efficient compared to an FE model by several orders of magnitude—in that a 

macroelement model takes only a few seconds to produce results whereas nonlinear FE simulation involving soil 

plasticity and frictional contact takes hours. As such, the macroelement model is amenable to repetitive nonlinear 

time-history analyses required for performance-based seismic design. 

Several research topics could be mentioned here to follow up with the present effort. These are: 

 Implementation of the model into a general analysis package, such as OpenSees, and investigation of 

the response of bridges with skew abutments. While there have been studies in this area (see, for 
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example, Kaviani et al. 2012, 2014), they were all based on heuristic models of the skew backfill 

behavior. 

 Investigation of the effects of wingwalls on the overall behavior. While for large deck-widths, the 

wingwall contributions are deemed minor, for narrow abutments, these effects may not be negligible. 

 Validation of the macroelement model through field- and/or laboratory testing. The only feasible 

(low-cost) approach to achieving this validation appears to be through hybrid testing wherein the two 

skew abutments of a bridge, and the bridge superstructure form the physical, and virtual portions of the 

test specimen, respectively. 
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Appendix: Matlab Codes 

This appendix provides the reader with the Matlab codes for the macroelement described in 

Chapter 5.  

clc; clear all; close all 
tic 

  
DeckWidth= 30*.3048      ; % Wall Width in m (example 30ft wall =30*0.3048) 
WHeight  = 1.65          ; % Wall Height (example: to be 5.5 ft (1.67m))   
alpha    = 45/ 180 * pi  ; % Skew Angle  
miumax   = 0.35          ; % Maximum mobilizable Friction Angle  

  
xNRMD    = 0:0.01:10     ; % xNRMD = Normalized x , xNRMD=x/x_max *10  

  
% i= HALF the number of Integration Points 0:30  =>60 total Integration Points 
% FNRMD  = C * xNRMD./(1+D*xNRMD); 
FultUNIT = 2.2E6 /(15*.3048) ; % N/m*1m 
cowar    = -0.8712*(alpha/pi)^2 + 0.0893 *(alpha/pi) + 1;  

 
% Capacity Over Wall Area Ratio 
% COWAR  = Capacity of Skew Wall over the Wall Area Normalized by that 
% of the non-skew wall case with the same wall height 

  
UnitWallStiffness = 4e8 / (15*.3048)    ; 

IntegralPt =  200                       ; 
ElemWid    =  DeckWidth / IntegralPt    ; 
KElem    =  ElemWid * UnitWallStiffness ; 
FultElm  =  ElemWid * FultUNIT * cowar  ; 

  
[e,time] = DispDriver ()           ;% Applies Displacement Control loading by calling DispDriver 

  
force    = zeros(1,size(e,2))      ; 
Nforce   = zeros(1,size(e,2))      ; 
mom      = zeros(1,size(e,2))      ; 

  
theta    = e(2,:)                  ;  
dis      = e(1,:)                  ;  

  
plasd    = zeros(IntegralPt,size(e,2)) ; 
GapElem  = zeros(IntegralPt,size(e,2)) ; 

  
fElm     = zeros(IntegralPt,size(e,2)) ; 
dfElm    = zeros(IntegralPt,size(e,2)) ; 
NElem    = zeros(IntegralPt,size(e,2)) ; 

  
miu      = zeros(1,size(e,2))         ; 
fibx     = zeros(IntegralPt,1)         ; 

  
    for i=1: IntegralPt 
         fibx (i)  = ((ElemWid * (i-1/2) - DeckWidth/2) )   ; 
          NArm(i)  = fibx(i)   / cos(alpha)                 ; 
        WallWidth  = DeckWidth / cos(alpha)                 ; 
         fibxnrm(i)= fibx(i)   / WallWidth                  ; 
    end  

  

  
[ KElemVar, FultElemVar ] = Stifness( alpha, KElem, FultElm, fibxnrm ) ; 

  
% miu     = -0.35* ones (1,size(e,2))  ;   
  miu     =  MiuFinder( e, DeckWidth, alpha, miumax  ) ;  
  % This is the function that finds the appropriate Mu at every load increment.  



 
 

 
 

91 

  % This is based on the load scenario and the Maximum Friction coefficient between the 
  % concrete backwall and the backfill soil (this should be 
  % reported/obtained from lab experiments) and Deckwidth. 

  
for t=1:size(e,2)-1 

     
    for i=1: IntegralPt 
        dispElm(i,t+1) = (tan(e(2,t+1)+alpha)-tan(alpha)) * fibx (i) + e(1,t+1) ; 
        ddispsl(i,t+1) = dispElm(i,t+1)-dispElm(i,t) ; 

  
         if  dispElm(i,t+1)< GapElem(i,t+1)  % if you want the gap be active 
              fElm (i,t+1)=0 ; 
             dplasd(i,t+1)=0 ; 
         else  
              dfElm (i,t+1) = KElemVar(i) *  ddispsl(i,t+1)  ; 
               fElm (i,t+1) = fElm (i,t) + dfElm (i,t+1)   ; 
             if fElm (i,t+1)>= FultElemVar(i) 
                 fElm (i,t+1) = FultElemVar(i) ;  
                 dplasd(i,t+1)=ddispsl(i,t+1)  ; 
             else 
                 dplasd(i,t+1)=0;   
             end 

              
             if fElm (i,t+1) < 0; fElm (i,t+1) = 0 ; end 
             if dispElm(i,t+1)<0; fElm (i,t+1) = 0 ; end 
         end 

 
        NElem(i,t+1) = fElm(i,t+1) / (cos(alpha) - miu(t+1) * sin(alpha));  

            
        force(t+1)     = force(t+1)  + fElm(i,t+1); 
        Nforce(t+1)    = Nforce(t+1) + NElem(i,t+1); 
        mom(t+1)       = mom(t+1)    + ( NElem(i,t+1) * NArm(i) ); 
        plasd(i,t+1)   = plasd(i,t)  + dplasd(i,t+1); 
        GapElem(i,t+2) = plasd(i,t+1);  

         
    end 

     
% -----------------------   Live Deformation Monitor ---------------------- 
headway=(t+1)/size(e,2)*100; 
LiveMonit( IntegralPt, DeckWidth, alpha , e(1,t+1) ,e(2,t+1), GapElem(:,t+2),... 
                                                                 headway  ) 

                                                           
%v = VideoWriter('KobeImperial.avi','Uncompressed AVI'); 
% ------------------------------------------------------------------------- 

  
end 

  
dispAV=sum(dispElm,1)/IntegralPt ; 

  
x=0:size(e,2)-1; 

  
figure (2)  
    subplot(2,1,1) 
    plot( dispAV , force ) 
     xlabel('Displacement at Wall Center (m)') 
     ylabel('Resultant Force (N)') 
    subplot(2,1,2) 
    plot( x , force ) 
     xlabel('Time') 
     ylabel('Resultant Force (N)') 

  
figure (3) 
    subplot(2,1,1) 
    plot( theta, mom ,'g') 
     xlabel('Rotation (Rad.)') 
     ylabel('Moment (N.m)') 
    subplot(2,1,2) 
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    plot( x, mom, '-g') 
     xlabel('Time') 
     ylabel('Moment (N.m)') 

  
figure (4) 
    surf(dispElm) 
     xlabel('Time Increment') 
     ylabel('Elem#') 
     zlabel('Elem Displacement') 

  
figure (5) 
    surf(fElm) 
     xlabel('Time Increment') 
     ylabel('Elem#') 
     zlabel('Elem Reaction') 

  
figure (6)  
    plot(force, mom) 
     xlabel('F_X') 
     ylabel('Moment') 

  
figure (7)  
    plot(x, Nforce) 
     xlabel('Time') 
     ylabel('Normal Force')    

    
figure (8)  
    plot(force, Nforce) 
     xlabel('F_X') 
     ylabel('Normal Force')  

  
figure (9) 
    plot( dispAV , theta ) 
     xlabel('Displacement (m)') 
     ylabel('Rotation (Rad.)')  
toc 

_____________________________________________________________________ 

 

This is the function MiuFinder. Miu the the mobilized friction coefficient. This function takes the full 

loading scenario and the geometry of the wall—i.e., deck-width (DeckWidth) and the skew angle (alpha) 

as well as the maximum friction coefficient between the concrete surface of the backwall and the backfill 

soil, which is a parameter that can be obtained from field or laboratory tests. 

 
function [ miu ] = MiuFinder( e , DeckWidth, alpha, miumax ) 
% MIU is the "Mobilized Friction Angle" 
% The Mobilized Friction Angle between the abutment wall and the backfill  
% miu = F_T/F_N  
% _______________________________________________________________________ % 
%%{ 

  
miu=-miumax * ones (1,size(e,2)); 

  
for iii=1:size(e,2) 
    if e(2,iii)==0  
     miu(iii)= -1/5*miumax*sin(2*alpha) ; 
    else   
     roo = e(1,:)/( tan(alpha+e(2,:))-tan(alpha)); 
     roN = roo / DeckWidth                      ; 
     miu(iii) = miumax *( -sign(roo) * tanh(16*(alpha/pi)^2 *  ...  
             (abs(roN))^0.5) + 1/5 *sin(2*alpha) )                  ; 
    end 
 end  

 

end 

________________________________________________________________________________________________ 
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This is the function DispDriver. It returns a 2 by n array for the displacement and rotation and a 1 by n 

vector for time associated with the motion vector. It does not need any input: 

 
function [e,t] = DispDriver ()  
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - % 
%            This is a Library For Load combinations                       % 
% 
%  

% 
%     Linear monotonic push;I'm pushing 10cm here.               
%   t = 0.0 : 0.001 : 0.1;  
%   e = zeros(2,size(t,2));    e(1,:) = t;   e(2,:)=0.0*pi/6*t; 
%        
%            

%Linear monotonic Rotation;I'm Rotating -.03 Radiants  

%(0.03 Rad CounterSkew here.               

%           t = 0.0 : 0.00001 : 0.01;  
%           e = zeros(2,size(t,2));    e(1,:) = 0.0*t;   e(2,:)=5*t; 
%                              
                       % Sinusoidal Loading 
%                         
%   t = 0.0 : 0.0025 : 0.1;  
%   e = zeros(2,size(t,2));    e(1,:) = 5*t;   e(2,:)=10*pi/6*t.*sin(49*t); 

  
%                     %  Push till failure and Then Rotation 
%     t = 1 : 1 : 100 ;  e(1,1:50) = 0.07/50 * t(1:50) ; e(1, 51:100) = 0.07; 
%                        e(2,1:50) = 0; e(2, 51:100) = pi/180*15/50*(t(51:100)-50); 

   
%  et=[0,0;0.025,0;0.07,0;0.12,0;0.01,0;-0.01,0;-0.1,0;-0.15,0;-.05,0;.01,0]; e=et'; 
%  et=[0,0;0,0.025;0,0.07;0,0.12;0,0.01;0,-0.01;0,-0.1;0,-0.05;0,0.01];  e=et'; 
%   et=[0,0;0.01,0.025;.015,0.07;0.03,0.10;0.05,0.01;0.05,-0.01;.005,-0.07;.01,-0.05;0,0]; e=et'; 

  
%     t = 0.0 : 0.0250 : 5.0;  e(1,:) = 0.5*t./70 ; e(2,:) =10*t./10; 

    
%  
%     t = 0.0 : 0.001: 5.0;  e(1,:) =0.05*(5*t./(t+1)).*(.505+.50*cos(5*t))   ; e(2,:) =0*t; 

  
%     t = 0.0 : 0.005 : 5.0;  e(1,:) = t./30 ; e(2,:) = t./20;  

   
%     t = 0.0 : 0.0070 : 7.0;  e(1,:) = t./70+0.1* t.*cos(10*t); e(2,:) = 0.01*t.*sin(1*t); 

  
%      t = 0.0 : 0.0070 : 7.0;  e(1,:) = 0.01*t.*(.505+.50*cos(10*t))  ; e(2,:) = 

0.00175*t.*sin(10*t); % this is the analysis being run by ABAQUS as well 
%      t = 0.0 : 0.0010 : 7.0;  e(1,:) = 0.01*t.*(.505+.50*cos(10*t))  ; e(2,:) = 

0.00175*t.*sin(10*t); 
    

% this is the analysis being run by ABAQUS as well for the most Skew models: 
t = 0.0 : 0.25 : 100.0  ;    

e(1,:) = 0.07*0.01*t.*(.505+.50*cos(0.21*t))  ;  

e(2,:) = 0.07*0.00175*t.*sin(0.21*t);  

 
%      t = 0.0 : 0.001 : 7.0;  e(1,:) = 0.01*t.*(.405+.50*cos(10*t))  ; e(2,:) = 

zeros(1,size(t,2)) ; 

  
%     t = 0.0 : 0.001 : 7.0;  e(1,:) = zeros(1,size(t,2))            ; e(2,:) = -

0.00175*t.*sin(10*t); % ABAQUS  Pure Rotation test 
%    t = 0.0 : 0.01 : 7.0;  e(1,:) = zeros(1,size(t,2))            ; e(2,:) = -

0.00100*t.*sin(2.5*t); 

  
%      t = 0.0 : .1 : 100.0  ;   e(1,:) = 0.07*0.01*t.*(.505+.50*cos(7*0.035*t))  ; e(2,:) = 

0.07*0.00175*t.*sin(7*0.035*t); % Skew Model Abaqus , this is the analysis being run by ABAQUS as 

well for the most Skew models 

  
%     t = 0.0 : .1 : 100.0   ;   e(1,:) = 0.07*0.01*t.*(.505+.50*cos(7*0.035*t))  ; e(2,:) = -

0.07*0.00175*t.*sin(7*0.035*t); 
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%      t = 0.0 : .5 : 100.0   ;   e(1,:) =21* 0.07*0.010*(t.^0.25).*(.505+.50*cos(7*0.014*t))  ; 

e(2,:) =21* -0.07*0.0040*(t.^0.25).*sin(7*0.014*t); 

  
%      t = 0.0 : 0.05 : 100.0   ;   e(1,:) =21* 0.07*0.010*(t.^0.25).*(.505+.50*cos(7*0.014*t))  

; e(2,:) =21* -0.07*0.0040*(t.^0.25).*sin(7*0.014*t); 

  

  
%      t = 0.0 : .1 : 100.0  ;   e(1,:) = 0.07*0.015*t.*(.505+.50*cos(7*0.035*t))  ; e(2,:) = 

0.07*0.00175*t.*sin(7*0.035*t);  

      
%      t = 0.0 : 0.00250 : 7.0;  e(1,:) = zeros(1,size(t,2))            ; e(2,:) = -

0.01000*t.*sin(10*t); % ABAQUS  Pure Rotation test/pushing more 
%       t = 0.0 : 0.00010 : 7.0;  e(1,:) = zeros(1,size(t,2))            ; e(2,:) = -

0.01000*t.*sin(10*t); 
%      t = 0.0 : 0.0010 : 10 ;  e(1,:) = 0.01*t.*(.25+.25*cos(100*t))  ; time=[0, e(2,:) = 

interp1p( 

  
%       t = 0.0 : 0.1 : 30 ;    
%       tm=[0 , 2.5 , 5, 7.5] ; rot=[0 , .4 , 0, -0.4 ];    % This is a Loading simply ... 
%       e(1,:) = zeros(1,size(t,2));  e(2,:) = interp1q (tm',rot',t') ;    % ...   and unloading 

Rotation  

       
%       t = 0.0 : 0.5 : 100 ; 
%       td=[0, 50, 75, 90, 100]; dis=[0, 0, 0, 0, 0.07]; 
%       tm=[0 , 20 , 30, 45,50, 100] ; rot=[0 , .4 , 0, -0.4, 0, 0 ]; 
%       e(1,:) = interp1q (td',dis',t') ;  e(2,:) = interp1q (tm',rot',t') ; 

  
%     t = 0.0 : 0.0070 : 7.0;  e(1,:) = 0.021*t.*(.32+.68*cos(10*t))  ; e(2,:) = 

zeros(1,size(t,2));  %Only Push, Periodic 
%     t = 0.0 : 0.0010 : 7.0;  e(1,:) = 0.01*t.*(.505+.50*cos(10*t))  ; e(2,:) = 

zeros(1,size(t,2));  
%     t = 0.0 : 0.025 : 10.0;  e(1,:) = 0.035*t.*(sin(1.5*t))         ; e(2,:) = 

zeros(1,size(t,2)); 
%     t = 0.0 : 0.025 : 10.0;  e(1,:) = 0.035*(t+5.0).*(sin(5*t))     ; e(2,:) = 

zeros(1,size(t,2)); 
%     t = 0.0 : 0.025 : 10.0;  e(1,:) = 0.032*(t+5.0).*(sin(.7*t))    ; e(2,:) = 

zeros(1,size(t,2));  

  
%    t = 0.0 : 0.025 : 10.0; e(1,:) = zeros(1,size(t,2)); e(2,:) = -0.0021*(t+10.0).*(sin(1.4*t))  

;  

  
%       t = 0.0 : 0.01 : 10.0;   e(1,:) = zeros(1,size(t,2))   ; e(2,:) = -0.0750 * sin(3*t); % 

e(2,:) = -0.0021*t.*sin(3*t); 
% ------------------------------------------------------------------------- 
%            t1=0:333     ; e1(1,:)=( -abs(t1-1000/6)+1000/6)*6/1000*0.03 ;  
%            t2=333:666   ; e2(1,:)=( abs(t2-1000/3)-1000/3)*6/1000*.03   ;  
%            t3=666:1000  ; e3(1,:)=( -abs(t3-5000/3)+1000/6)*6/1000*0.07 ;   
%               for t=1:1000 
%                   if t<1000/3 
%                       e(1,t)=e1(1,t); 
%                   end 
%                   if t<=666 && t>333 
%                       e(1,t)=e2(1,t-333); 
%                   end 
%                   if t>666 
%                       e(1,t)=e3(1,t-666); 
%                   end 
%                    
%               end 
%               e(2,t)=zeros(1,size(t,2)); 
% ------------------------------------------------------------------------- 
%  t = 0.0 : 0.0070 : 7.0;  e(1,:) = 0.01*t.*cos(10*t)  ; e(2,:) = 0.0018*t.*sin(10*t); 
%  t = 0.0 : 0.0070 : 7.0;  e(1,:) = 0.01*t.*(cos(10*t))  ; e(2,:) = 0.00175*t.*sin(10*t); 
%  t = 0.0 : 0.070 : 7.0;  e(1,:)=0.01*sin(1*t)       ; e(2,:)=0.01*t.*cos(1*t); 

  
%  t = 0.0 : 0.0010 : 7.0;  e=0.01*t.*t.*sin(7*t);    
%  t = 0.0 : 0.0070 : 7.0;  e=0.1*sin(t)+.15/7*t; 
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%  t = 0.0 : 0.0070 : 7.0;  e=0.05*sin(1.7*t)+.14/7*t; 
%  t = 0.0 : 0.0001 : 0.25; e = 0.125 - abs( t - .1250 ); 
%  t1= 0.0 : 0.00005: 0.25; e1 = 0.125 - abs( t1 - .1250 );  
%  t2= 0.25: 0.00005: 0.50; e2 = 0.125 - abs( t2 - .1250 ); 

  
%      ElCENTRO DISPLACEMENT (m) BaseLine Corrected 
% disptest=textread('ElCentroCorrectDis.txt'); 
% t=0:0.01:(0.01*(size(disptest,1)-1)); 
% e(1,:) = -2 * disptest'      ; 
% e(2,:) = 1/450 * e(1,:)      ; 

  
%{  
% SHOWING THE ULTIMATE SURFACE 
t      = textread('TimeUltimateSurfaceFinding.txt'); 
dispm  = textread('DispUltimateSurfaceFinding.txt'); 
rotrad = textread('RotUltimateSurfaceFinding.txt') ; 
e(1,:) = dispm'  ; 
e(2,:) = -rotrad'  ; 
%} 

  
%{ 
t=0:0.01:21.25;  % Same Analysis as the one by Abaqus  
dispcm = textread('ElCent270cm.txt'); 
rotcm  = textread('ElCent180cm.txt'); 
e(1,:) = 0.01 * dispcm(1:size(t,2))'  ; 
e(2,:) = -1/350 * rotcm(1:size(t,2))'  ; 
%} 

  
%{ 
 dispm = textread('ImperialValleyDISPm.txt'); 
 rotRad  = textread('KobeRotationRad.txt'); 
t=0:0.01:size(dispm,1);  % Same Analysis as the one by Abaqus  
e(1,:) = dispm'  ; 
e(2,:) = rotRad'  ; 
%} 

  
% %      ElCENTRO DISPLACEMENT (m)  
% disptest=textread('ElCentroDIS.txt') 
% t=0:0.02:(0.02*(size(disptest,1)-1)); 
% % e(1,:) = -2 * disptest'      ; 
% e(1,:) = -2 * disptest'      ; 
% e(2,:) = 0.0 *t          ; 
% % 
%%{ SHOWING THE ULTIMATE SURFACE 
%%} 
End 

_________________________________________________________________________________________________ 

 

This is the function LiveMonit. It provides the user a view of the progress in the analysis, as well as the 

deformed shape and plastic deformations in the backfill and the motion of the backwall. 
  

function   [ ] = LiveMonit(SlcNum, WWidth, alpha, e1,e2 , GapVector, headway) 
        xw     =  -WWidth/2:0.01:WWidth/2 ; 
        yUnd   = (tan(alpha))* xw  ; 

  
        exager = 50 ; % Deformation Exaggeration for illustration purposes 

  
        xwgap  = -WWidth/2:WWidth/(SlcNum-1):WWidth/2 ; 
        xgapt  = xwgap'; 
        deform = ( tan( e2 +alpha ) - tan(alpha) )* xgapt + e1 ; 
        yUndG  = (tan(alpha))* xgapt  ; 
        yExage = yUndG + exager * deform ; 
        yGap   = yUndG + GapVector*exager ; 

  
        figure (1)  
        plot(xgapt,yExage) 
        hold on 
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        plot(xgapt,yGap,'-.r') 
        plot(xw,yUnd,'k') 

  
        z=legend( [sprintf('Wall Motion, Progress =%.0f', headway) '%'],... 
                         'Soil Plastic Deformation', 'Undeformed Shape',... 
                                                  'location','southeast' ); 
        title... 
        (sprintf('Wall and Soil Motion, Exaggerated by a factor of =%u',...  
                                                                 exager) ); 
        hold off 

  
end 
_________________________________________________________________________________________________ 

 

This is the function Stiffness. It takes the skew angle, alpha, and procudes the element stiffness and 

strength. 
  

function [ KSliceVar, FultSlcVar ] = Stiffness( alpha, KSlice, FultSLC, fibxnrm ) 
%STIFNESS Calculates the stiffness of the Slice  
%        m = tan(alpha)     ; 
        m = 2/3 * tan(alpha)     ; 

             
    knorm = m * fibxnrm +1 ; 
%  knorm     = ones(1,size(fibxnrm,2)); 
%    knorm = (0.5 * m * fibxnrm +1) ;  % ??? I have to find a better way to 
%    : 

  
%KSliceVar = KSlice * knorm ; 
KSliceVar = .300 * KSlice * knorm ; 

  
FultSlcVar= FultSLC* knorm ; 

  
end 
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