
UC Berkeley
UC Berkeley Previously Published Works

Title

A complete quasiclassical map for the dynamics of interacting fermions

Permalink

https://escholarship.org/uc/item/28q373jh

Journal

The Journal of Chemical Physics, 150(23)

ISSN

0021-9606

Authors

Levy, Amikam
Dou, Wenjie
Rabani, Eran
et al.

Publication Date

2019-06-21

DOI

10.1063/1.5099987
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/28q373jh
https://escholarship.org/uc/item/28q373jh#author
https://escholarship.org
http://www.cdlib.org/


A complete quasiclassical map for the dynamics of interacting fermions
Amikam Levy,1, 2, a) Wenjie Dou,1 Eran Rabani,1, 2, 3, b) and David T. Limmer1, 3, 4, c)
1)Department of Chemistry, University of California, Berkeley, Berkeley, California 94720,
United State
2)The Raymond and Beverly Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv,
Israel 69978
3)Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720,
United States
4)Kavli Energy NanoScience Institute, Berkeley, California 94720, United States

We present a strategy for mapping the dynamics of a fermionic quantum system to a set of classical dynamical variables.
The approach is based on imposing the correspondence relation between the commutator and the Poisson bracket,
preserving Heisenberg’s equation of motion for one-body operators. In order to accommodate the effect of two-body
terms, we further impose quantization on the spin-dependent occupation numbers in the classical equations of motion,
with a parameter that is determined self-consistently. Expectation values for observables are taken with respect to
an initial quasiclassical distribution that respects the original quantization of the occupation numbers. The proposed
classical map becomes complete under the evolution of quadratic Hamiltonians and is extended for all even order
observables. We show that the map provides an accurate description of the dynamics for an interacting quantum
impurity model in the coulomb blockade regime, at both low and high temperatures. The numerical results are aided
by a novel importance sampling scheme that employs a reference system to reduce significantly the sampling effort
required to converge the classical calculations.

I. INTRODUCTION

Molecular simulation is an indispensable tool for under-
standing many-body quantum systems driven away from
equilibrium. Describing the dynamics of molecular- and
mesoscopic-electronics on time-and length-scales relevant
to experiments, however, is challenging. In recent years,
significant progress has been made by introducing numer-
ically converged techniques, such as methods that rely
on real-time diagrammatic sampling techniques1–9, wave
function-based approaches such as numerical renormaliza-
tion group techniques10–12 and multi-layer multiconfigura-
tion methods,13,14 or reduced and hierarchical density matrix
approaches.8,15 While significant progress has been made us-
ing these methods to understand the transport in various corre-
lated scenarios,16–18 their application to more realistic systems
is still limited.

An alternative approach to these numerically converged
techniques is based on approximate methods that are more
flexible in describing realistic complex scenarios, but of-
ten introduce simplifications leading to uncontrolled errors.
Among the more poplar methods are master equations (QME)
and their generalizations,19–25 and approaches based on the
nonequilibrium Green’s function methods with specific clo-
sures for the self-energy.26–31 More recently, quasiclassical
mapping techniques32–42 have been developed that cast the
many-body quantum problem onto a set of classical dynam-
ical variables and describe the transport in extended sys-
tems coupled to complex non-linear environment, with vary-
ing coupling strengths. Such classical mapping procedures
further admit the use of advanced sampling techniques of

a)Electronic mail: amikamlevy@gmail.com
b)Electronic mail: eran.rabani@berkeley.edu
c)Electronic mail: dlimmer@berkeley.edu

rare fluctuations43 developed for classical molecular dynam-
ics simulations.

Previous attempts to map the dynamics of fermionic sys-
tems onto a set of classical dynamical variables failed to
reliably reproduce correlation effects, such as the Coulomb
blockade staircase.36,38–40 This is mainly due to the lack of
quantization of the number operators in the classical map,
leading to a continuous increase of the current with the in-
crease of bias or gate voltage, in a quantum point-contact
setup. Moreover, the description of the dynamics of observ-
ables that depend non-linearly on a pair of creation and anni-
hilation operators, for example, in shot-noise measurements,
has not received any attention. As shown below, a naive and
straightforward application of the classical maps to such ob-
servables leads to significant errors, even for noninteracting
model Hamiltonian, where the map generates the exact dy-
namics.

In this study, we develop a new strategy to map the dy-
namics of an open quantum system driven away from equilib-
rium onto a set of classical dynamical variables. The method
maps a pair of creation or annihilation fermionic operators to
phase-space variables in Cartesian coordinates that satisfies
a correspondence relation between the commutator and the
Poisson brackets. In order to accommodate the effect of two-
body terms (electron-electron interactions), we further impose
quantization rules on the spin-dependent occupation numbers
in the classical equations of motion, with an onset parameter
that is determined self-consistently. Combining this map with
the initial value representation44–46 that incorporates the dis-
crete nature of quantum mechanics results in a robust descrip-
tion of the dynamics on diverse time-scales, as illustrated for
the Anderson impurity model47 for a wide range of tempera-
tures and on-site electron-electron repulsion term. We further
show that for quadratic Hamiltonians, higher order fermionic
operators can be mapped accurately as a consequence of com-
pleteness, providing a framework to study the fluctuations and
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high order correlations within this mapping approach. Finally,
we develop a reference sampling approach to reduce signifi-
cantly the number of trajectories required to converge expec-
tation values.

II. ANDERSON IMPURITY MODEL

For concreteness, throughout this manuscript, we consider
the evolution of observables for the Anderson impurity model.
This model is defined by the Hamiltonian H = HS +HB +V ,
where

ĤS = ∑
σ=↑,↓

εσ d̂†
σ d̂σ +Ud̂†

↑ d̂↑d̂
†
↓ d̂↓ (1)

describes the impurity (or dot), referred to simply as the ‘sys-
tem Hamiltonian’,

ĤB = ∑
σ=↑,↓
k∈L,R

εkĉ†
kσ

ĉkσ (2)

describes the noninteracting fermionic baths (or leads), and

V̂ = ∑
σ=↑,↓
k∈L,R

tkd̂†
σ ĉkσ +h.c., (3)

describes the hybridization between the system and the leads.
Here, d†

σ (dσ ) are the creation (annihilation) operators of an
electron on the dot with spin σ =↑,↓ with a one-body energy
εσ . U is the on-site Hubbard interaction, ĉ†

kσ
(ĉkσ ) are the

creation (annihilation) operators of an electron in mode k of
the leads with energy εk, and tk is the hybridization between
the dot and mode k in the lead. The coupling to the quasi-
continuous leads is modeled in the wide band limit. The spec-
tral function of the left (`= L) or right (`= R) lead is:

J`(εk) =
Γ`(

1+ eA(εk−B/2
)(

1+ e−A(εk+B/2
) . (4)

where Γ` determines the coupling strength to the `-lead, B
is the width of the spectral function, and A determines the
sharpness of the cutoff. The coupling tk between the dot and
the k-th mode is expressed in terms of the spectral function as
tk∈` =

√
J` (εk)∆ε/2π , where ∆ε = 2εmax/(N`/2− 1) is the

discretization of the leads energy spectrum, N` is the numbers
of modes in the `-lead, and 2εmax is energy range in the leads.
To model accurately the wide band limit, one should consider
sufficiently large values for B such that the energy scale of
the system is encompassed inside the spectrum of the leads
and that the modes in the leads are dense enough, i.e. ∆ε is
sufficiently small. In the simulations below each lead consists
of N` = 600 modes, where half are with spin up and the other
half with spin down. Throughout, we take h̄, kB and the charge
of the electron e, to be 1.

To assess the accuracy and robustness of the quasiclassical
mapping procedure, we focus on the Coulomb blockade ef-
fect that is manifested by a staircase structure of the current
versus voltage, as shown in Fig. 1. When the bias voltage
is not sufficiently large to overcome the on-site repulsion en-
ergy, only one conductance channel is open. When the bias
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FIG. 1. The steady-state current from the left lead (〈IL〉) as function
of the bias voltage (VSD). The black symbols are the results from the
QME approach. The blue and red curves correspond to the LMM
and CQM, respectively. Parameters used: Γ = 2ΓL = 2ΓR = 1, ε↑ =

ε↓ = 10Γ, T = 4Γ, U = 40Γ, ∆σ = 0.32, Ntr = 3× 104, and µL =
−µR =V/2.

becomes sufficiently large compared to U , an additional con-
ducting channel opens up, and the current increases to its max-
imal value of a two-channel quantum point-contact. In Fig. 1,
we show the results of two quasiclassical mapping procedures.
The mapping approach that is isomorphic to quaternions (Li-
Miller map (LMM))38 provides an accurate description of the
I-V characteristics at low and high bias voltages (VSD), but
fails to reproduce the Coulomb blockade staircase. On the
other hand, the current complete quasiclassical map (CQM)
provides a qualitative description across all values of VSD. In
particular, it captures the staircase structure characteristic of
the Coulomb Blockade effect. We will return to discuss the
CQM results after we introduce the strategy of mapping quan-
tum to classical degrees of freedom.

III. COMPLETE QUASICLASSICAL MAP (CQM)

For an operator Â, in the Hilbert space of the Anderson im-
purity model, the Heisenberg equation of motion reads

dÂ
dt

= i
[
Ĥ0, Â

]
+ iU

[
n̂↑, Â

]
n̂↓+ iUn̂↑

[
n̂↓, Â

]
. (5)

where Ĥ0,

Ĥ0 = ∑
σ=↑,↓

εσ d̂†
σ d̂σ + ∑

σ=↑,↓
k∈L,R

εkĉ†
kσ

ĉkσ + ∑
σ=↑,↓
k∈L,R

tkd̂†
σ ĉkσ +h.c.

(6)
is the one-body, noninteracting part of the Hamiltonian. We
wish to find a map for Â to a function of classical phase-space
variables, A[~R], that would preserve the dynamics

〈
Â(t)

〉
=

〈A(t)〉c, where
〈
Â(t)

〉
= Tr

(
ρ̂Â(t)

)
, and

〈A(t)〉c =
∫

d~Rρ0(~R)A[ ~R(t)] (7)
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is the classical expectation value with respect to the initial
probability distribution ρ0 of the total system. We do this in
two parts. First we construct a complete map for quadratic
Hamiltonians, which is extendable to any even order opera-
tor, and valid for noninteracting fermionic systems. Then, we
propose a strategy for mapping Hamiltonians of higher order
containing onsite Hubbard interactions. In all the simulations,
the equations of motion are solved numerically using an adap-
tive Rung-Kutta(4,5) method. The number of trajectories, Ntr,
used to converge the results is specified below for each case
study. For the steady-state results, additional time averaging
is considered.

A. Noninteracting fermions

We first consider the case of non-interacting fermions, U =
0, described by a Hamiltonian that depends quadratically on
the creation and annihilation operators, Ĥ0. To reproduce the
dynamics of the expectation value of quadratic operators un-
der the evolution describe in Eq. (5) we require:

(a) For any quadratic operator Â, and its classical counter-
part A, the commutator and the Poisson bracket satisfies
the correspondence relation i

[
Ĥ0, Â

]
= {A,H0}.

(b) For any quadratic expectation value, the initial proba-
bility distribution ρ0 must satisfy

〈
Â(0)

〉
= 〈A(0)〉c, and

respect the quantum discrete nature of the occupations.

It is straightforward to show that condition (a) is satisfied by
mapping a pair of creation and annihilation operators to a
phase space of conjugated variables, ~R = (x, px,y, py), as

â†
nân 7→ xn py,n− yn px,n, (8)

â†
nâm 7→

m 6=n

1
2
[i(xn px,m− px,nxm + yn py,m− py,nym)

+ (xn py,m− px,nym + xm py,n− px,myn)] ,

â†
nâ†

m 7→
1
2
[i(xn px,m− px,nxm− yn py,m + py,nym)

− (xn py,m− px,nym− xm py,n + px,myn)] ,

ânâm 7→
1
2
[i(xn px,m− px,nxm− yn py,m + py,nym)

+ (xn py,m− px,nym− xm py,n + px,myn)] ,

This identifies positions, (x,y) and their conjugate momenta,
(px, py), and the Poisson bracket can be used to check
that this map returns the quantum commutator of any pair
of quadratic creation/annihilation operators. Because any
quadratic Hamiltonian with a set of quadratic operators con-
stitutes a closed Lie algebra of quadratic operators, condition
(a) insures a loyal representation of the dynamics in terms of
Hamilton’s equations. We note in passing that we subtracted
1/2 from the classical map of n̂i ≡ â†

i âi to include a Langer-
like correction48.

For leads that are in thermal equilibrium and uncorrelated
initial state, condition (b) can be satisfied by setting the initial

occupation of each mode in the left and right leads to a value
0 or 1, such that the expectation value, averaged over the set
of initial conditions, satisfies the Fermi-Dirac distribution.36

Operationally, we choose a random number ξkσ ∈ [0,1] and
then select the occupation of mode kσ of the `-lead according
to

nkσ =

 0 ξkσ >
(

1+ eβ`(εk−µ`)
)−1

1 ξkσ ≤
(

1+ eβ`(εk−µ`)
)−1 , (9)

where β` = 1/kBT` and µl are the inverse temperature times
Boltzmann’s constant and chemical potential of the `-lead, re-
spectively. The Cartesian coordinates are then sampled ac-
cording to39

xkσ = cos(θkσ ), px,nσ =−nkσ sin(θkσ ) (10)
ykσ = sin(θkσ ), py,nσ = nkσ cos(θkσ ),

where θkσ is chosen randomly in the interval [0,2π] and nkσ =
xkσ py,kσ − ykσ px,kσ satisfies Eq. (9), resulting in 〈n̂kσ 〉 =
〈nkσ 〉c = (1+ exp[β`(εk−µ`)])

−1 at the initial time. By con-
struction, the expectation value at the initial time is

〈
a†

nam
〉

c =〈
a†

na†
m
〉

c = 〈anam〉c = 0, as expected for averages taken with
respect to uncorrelated thermal distribution. The sampling
choice in Eq. (10) is not unique, but it does provide an effi-
cient averaging of the expectation values with respect to the
number of trajectories.39 In a similar manner, one can set the
initial occupation of the dot.

Comparing the proposed CQM given by Eq. (8) to the
LMM, we find that the mappings of the diagonal term â†

nân
and of the linear combination â†

nâ†
m + â†

mâ†
n are identical in

both maps, but the remaining terms in Eq. (8) cannot be ex-
pressed using the LMM. This leads to the Hamiltonian being
expressed identically in both maps,

H0 = ∑
σ=↑,↓

εσ (xσ py,σ − yσ px,σ ) (11)

+ ∑
σ=↑,↓
k∈L,R

εk
(
xkσ py,kσ − ykσ px,kσ

)
+ ∑

σ=↑,↓
k∈L,R

tk
(
xσ py,kσ − yσ px,kσ + xkσ py,σ − ykσ px,σ

)
.

For this non-interacting Hamiltonian, mapping H0 and then
deriving Hamilton’s equations of motion for the phase space
variables is identical to deriving Heisnberg’s equation of mo-
tion for the bi-linear operators and then mapping the results
using Eq. (8).

We can also map other quadratic observables, such as the
current from the left lead:

ÎL=−
d
dt ∑

σ=↑,↓
k∈L

ĉ†
kσ

ĉkσ 7→ (12)

∑
σ=↑,↓

k∈L

tk
(
yσ py,kσ − py,σ ykσ + xσ px,kσ − px,σ xkσ

)
.

As a diagonal term, the above form is also identical to the ex-
pression obtained by the LMM.39 In the upper panel of Fig. 2
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we compare the results for the left current generated by the
CQM (which in this case are equivalent to the LMM) with
exact quantum mechanical results for a noninteracting model
Hamiltonian. As expected, the agreement between the CQM
(or the LMM) and exact quantum mechanical results is excel-
lent. In the next section we show that for the CQM these result
can be extended to higher-order operators.

B. Higher order operators

Mapping higher order operators, operators that involve
more than one pair of creation/annihilation operators, is more
difficult due to the nonlocal character of fermions arising from
their exclusion statistics. Ignoring the fermionic nature does
not seem to make any significant difference for a single pair
of creation/annihilation operators,36,39 but for higher order
operators, the anti-commutation of the creation/annihilation
fermionic operators plays a significant role and describing
quantum fluctuations such as shot noise requires a careful con-
sideration of this effect.

For example, consider a map for the operator Â =
a†

nama†
mak. Using the anti-commutation nature of {a†

n,an} =
1, we can express the expectation value of Â using four differ-
ent terms that are identical quantum mechanically, but differ
when mapped onto classical phase space variables. Specifi-
cally, expanding

〈
Â
〉

〈
â†

nâmâ†
mâk
〉
= C1

〈(
â†

nâm
)(

â†
mâk
)〉

(13)

+C2
〈(

â†
nâk
)
−
(
â†

nâ†
m
)
(âmâk)

〉
+C3

〈(
â†

nâk
)(

âmâ†
m
)〉

+C4
〈
δnk
(
âmâ†

m
)
− (âkâm)

(
â†

mâ†
n
)〉

.

we find there are four unique combinations of operators,
which generically have coefficients, Ci. To determine the best
choice of Ci, we impose conditions (a) and (b) of Sec. III A
on the time evolution of Â and require that the time evo-
lution of Â be exact for a quadratic Hamiltonian, i.e., that
i[Ĥ, Â] = {A,H} and that

〈
Â(0)

〉
= 〈A(0)〉c. For an uncor-

related initial thermal state, the values that satisfy these con-
ditions are C1 = 1,C2 = −1,C3 = 1, and C4 = 0. Note that
Eq. (13) contains pairs of creation or annihilation operators
(a†

na†
m or anam), which cannot be described within the LMM.

Applying this procedure to the second moment of the left
current for the noninteracting Hamiltonian yields a simple ex-

0
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〉

FIG. 2. Upper panel: The average left current for spin up (〈IL↑(t)〉)
as a function of time for a non-interacting model Hamiltonian. The
solid black line represents the exact quantum mechanical result36

and a the red symbols are the result of CQM. Lower panel: The
average left current squared for spin up (〈I2

L↑(t)〉) as a function of
time. In addition to the exact quantum mechanical (solid black curve)
and CQM (red symbols) results, we also show the individual terms
〈I2

L,1(t)〉 (blue), 〈I2
L,2(t)〉 (cyan), and 〈I2

L,3(t)〉 (green). Parameters
used: Γ = 2ΓL = 2ΓR = 1, ε↑ = ε↓=−Γ, T = Γ

5 , U = 0, Ntr = 105,
and µL =−µR = 6Γ.

pression for
〈
Î2
L
〉
=
〈

Î2
L,1

〉
−
〈

Î2
L,2

〉
+
〈

Î2
L,3

〉
, where

(14)〈
Î2
L,1
〉
= ∑

σ=↑,↓
j,k∈L

t jtk
〈(

ĉ†
jσ d̂σ

)(
d̂†

σ ĉkσ

)
+
(
d̂†

σ ĉ jσ
)(

ĉ†
kσ

d̂σ

)〉
〈
Î2
L,2
〉
= ∑

σ=↑,↓
j,k∈L

t jtk
〈(

ĉ†
jσ ĉkσ

)
−
(

ĉ†
jσ d̂†

σ

)(
d̂σ ĉkσ

)
+ δ jk

(
d̂†

σ d̂σ

)
−
(

d̂†
σ ĉ†

kσ

)(
ĉ jσ d̂σ

)〉
〈
Î2
L,3
〉
= ∑

σ=↑,↓
j,k∈L

t jtk
〈(

ĉ†
jσ ĉkσ

)(
d̂σ d̂†

σ

)
+
(
d̂†

σ d̂σ

)(
ĉ jσ ĉ†

kσ

)〉
.

As can be shown explicitly, this mapping of the second mo-
ment of the left current operator satisfies both conditions (a)
and (b).

In the bottom panel of Fig. 2 we show the time evolution of〈
Î2
L
〉

for a quadratic Hamiltonian where U = 0. The agreement
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FIG. 3. Left panel: The steady-state quantum dot population as a function of the gate voltage ε = ε↑ = ε↓ under equilibrium conditions
(µL = µR = 0). Right panel: The dependence of the steady-state dot population on the choice of the value of ∆σ (cf., Eq. (15)). Parameters
used: Γ = 2ΓL = 2ΓR = 1, T = Γ/100, U = 10Γ, Ntr = 3 ·104, and for the left panel: ∆σ = 0.18.

between the exact quantum mechanical result and the CQM is
excellent. We also plot the individual terms

〈
Î2
L,1

〉
,
〈

Î2
L,2

〉
,

and
〈

Î2
L,3

〉
(dashed lines). Only the proper combination of all

three terms yields an accurate description of
〈
Î2
L
〉
. We note

that the LMM can only be used to map the first term, but not
the other two that contribute to

〈
Î2
L
〉
.

C. Interacting fermions

The on-site interaction, Un̂↑n̂↓, that manifest the Coulomb
blockade effect, is a four index term that is outside the space
defined by the CQM. In order to account for this two-body
interaction term, we map the two terms proportional to U in
Eq. (5) according to

iU
[
n̂↑, Â

]
n̂↓ 7→U

{
Ac,n↑

}
θ
(
n↓−∆↓

)
(15)

iUn̂↑
[
n̂↓, Â

]
7→U

{
Ac,n↓

}
θ
(
n↑−∆↑

)
,

where θ is the Heaviside step function. The idea behind this
choice is that the term Un̂↑n̂↓ contributes to the dynamics only
when both electrons with spin up and spin down occupy the
site. Classically, the occupation number admits a continuous
value, which implies that the Hubbard term can become sig-
nificant for fractional populations of the two spin-channels.
Much like a mean-field approximation, these fraction contri-
butions of the Hubbard term will smear the Coulomb blockade
effect. By introducing the step function, we impose that con-
tributions to the dynamics from the Hubbard term arise only
in trajectories for which n↑(↓) > ∆↑(↓). The parameter ∆↑(↓)
is determined according to the distribution of n↑(↓)c and will
be discussed in detail below. We note that the classical ex-
pression in Eq. (15) is not derivable from a Hamiltonian, and
therefore does not in principle conserve energy or the norm
of phase space. Nevertheless, we find relaxation to an inter-
mediate time, long lived steady-state for all of the observables
studied on timescales shorter than the recurrence times.

Considering the Anderson impurity model, the equations
of motion for the Cartesian variables for the lead degrees of
freedom are

ẋ jσ =−ε jy jσ − t jyσ , (16)
ẏ jσ = ε jx jσ + t jxσ ,

ṗx, jσ =−ε j py, jσ − t j py,σ ,

ṗy, jσ = ε j px, jσ + t j px,σ ,

and those for the system’s degrees of freedom are

ẋσ =−εσ yσ − ∑
k∈L,R

tkykσ −Uyσ θ (nσ̄ −∆σ̄ ) , (17)

ẏσ = εσ xσ + ∑
k∈L,R

tkxkσ +Uxσ θ (nσ̄ −∆σ̄ ) ,

ṗx,σ =−εσ py,σ − ∑
k∈L,R

tk py,kσ −U py,σ θ (nσ̄ −∆σ̄ ) ,

ṗy,σ = εσ px,σ + ∑
k∈L,R

tk px,kσ +U px,σ θ (nσ̄ −∆σ̄ ) ,

where σ̄ =↓,↑ is the opposite spin to σ =↑,↓.
In Fig. 1 we plot the I-V curve obtained by the CQM and

compare it to the QME in Ref. 49 and to the results obtained
by the LMM. We consider the limit of weak system-bath cou-
pling and high temperature where the QME provides a good
approximation for the dynamics of the system. The LMM pro-
vides a good description of the I-V characteristics at low and
high bias voltages, but it fails to capture the staircase struc-
ture reminiscent of the Coulomb blockade. The CQM repro-
duce the QME results quantitatively, specifically, it captures
the staircase structure due to the Coulomb blockade effect.
In this high temperature regime, the agreement between the
CQM and the quantum mechanical results is observed for a
wide range of onsite Hubbard repulsion term and also for the
quantum dot population.

Next, we consider a regime where the QME breaks down,
namely, the low temperature regime. For simplicity we focus
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on the equilibrium case where µL = µR = 0. In this regime,
solutions for the population as function of the gate voltage
(ε = ε↑ = ε↓) are readily available using the numerical renor-
malization group (NRG) technique.50,51 In the left panel of
Fig. 3 we plot the quantum dot total population (〈n↑+n↓〉) as
a function of the gate voltage. The NRG results show a stair-
case shape which is a manifestation of the Coulomb block-
ade effect. The CQM agrees quantitatively with the NRG re-
sults over a wide range of gate voltages. Specifically, it cap-
tures both the position of the blockade as well as its width.
The QME approach, however, captures only the position of
the resonances; the broadening of the transitions are missing
completely. This qualitative difference between the CQM and
QME approaches signifies the advantages of the quasiclassical
mapping techniques over the commonly used QME approach
for a broad range of temperatures.

The mapping of the Hubbard term in Eq. (15) introduces
a parameter, ∆↑(↓), which is determined self-consistently. For
the results show in Fig. 3 we use a single value for ∆σ = 0.18,
determined by considering the particle-hole symmetry point,
where ε↑ = ε↓ = −U/2. At the symmetric point, the steady
state value of the average dot populations is 〈n̂σ 〉= 1/2. Since
quantum mechanically n̂σ can only assume two value, 0 or
1, whereas the distribution of nσ is continuous, to obtain an
average dot population 〈n̂σ 〉= 1/2, we set ∆σ to the median of
the distribution of values of nσ . This ensures that the Hubbard
terms in Eq. (15) are significant only when nσ is sufficiently
large, modeling the discrete nature of the spin-dependent dot
occupations.

In the right panel of Fig. 3 we show the results obtained
for the total dot occupation for different values of ∆σ . Only 3
iterations are required to converge the results for ∆σ . We start
with an initial guess of ∆σ = 0.34. In the next iteration, we
set ∆σ to the new median of the distribution of values of nσ ,
in this case ∆σ = 0.24. We then repeat this procedure until
convergence (only one more iteration is required). The results
clearly show that the expectation value is not very sensitive to
small variations in the value of ∆σ , but the converged results
provide the best agreement with the NRG results.

The agreement between the CQM and the quantum me-
chanical results are not limited to steady-state properties. In
fact, our mapping also captures quantitatively the hallmarks
of the Coulomb blockade in the relaxation towards the steady
state. Shown in Fig. 4 is the time dependence of the dot oc-
cupation for two different values of U , with a bias voltage of
VSD = µL−µR =Γ, and temperature T =Γ. Here we compare
the CQM to numerically converged real-time stochastically
sampled diagrammatic techniques applied within the reduced
density matrix formalism.7 For both values of U we find that
the full time dependence is in good agreement with the nu-
merically converged data. In each case, the dot population
increases monotonically and the timecales required to reach
the long time limit are comparable.

0 1 2 3 4 5
time [1/Γ]

0

0.1

0.2

0.3

0.4

0.5

〈n
↑
〉

U=Γ
U=6Γ

FIG. 4. Comparison of the dot population (〈n↑+n↓〉) derivative from
the memory-kernel formalism7 (solid lines) and the CQM approach
(dot symbols) for an initially unoccupied dot for two values of the
interaction energy (U =Γ and U = 6Γ). Parameters used: Γ= 2ΓL =
2ΓR = 1, T = Γ, µL =−µR = Γ/2, ε↑ = ε↓ =−U/2, Ntr = 6×104,
and for the CQM results; ∆σ = 0.24 for U = 6Γ, and ∆σ = 0.31 for
U = Γ.

IV. REFERENCE DYNAMICS FOR STATISTICAL
CONVERGENCE

When evaluating the classical expected value Eq. (7), the
integral over the initial distribution is replaced by averaging
over different initial configurations of the leads that satisfy the
Fermi-Dirac distribution. For a large number of initial con-
ditions, Ntr, the procedure converges to the desired distribu-
tion and to the exact expectation value. However, the low di-
mensional nearly harmonic system generically requires a large
number of initial conditions to statistically converge the result.
To reduce the number of initial conditions for a given statisti-
cal error, we introduce a reference system whose expectation
value can be determined exactly and inexpensively. Specifi-
cally, the expectation value of an observable A is calculated
according to

〈A〉= 〈Ar−Ar +A〉= Ār + 〈∆A〉 (18)

where Ar is an observable used as the reference, and Ār is the
exact expectation value of Ar evaluated using a different inex-
pensive method. In the limit Ntr→ ∞ we have 〈Ar〉 → Ār and
〈A〉 will approach the real expectation value. However, for a
finite Ntr, and a smart choice of Ar, one can reduce signifi-
cantly the statistical error of this estimator. This is clarified by
considering the variance using the reference system

Var(∆A) = Var(A)+Var(Ar)−2Cov(A,Ar). (19)

If A and Ar are correlated, it is possible to have Var(∆A) <
Var(A). As we are now propagating both A and Ar, to reduce
the computational effort we desire that

Var(∆A)
Var(A)

<
1
2
. (20)
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FIG. 5. Left panel: The ratio of the variances of the left currents for spin up as a function of time. The red line is for U = 6Γ and the blue
for U = Γ/2. Computational superiority is observed below the threshold ratio 1/2 noted by the black dashed line. Right panel: The black
line is the exact reference current (U = 0), the red and blue line are the currents obtained using a reference system for U = 6Γ and U = Γ,
respectively. The parameters are: Γ = 2ΓL = 2ΓR = 1, T = 0.5Γ, ε↑ = ε↓ = 2Γ, Ntr = 3×104, and µL =−µR = 2Γ.

Given that the sample variance reduces as 1/Ntr, to obtain
computational superiority the ratio in Eq.(20) is bounded by
1/2. However, improvement in the computational effort can
already be seen for ratios that are above this factor, since typi-
cally propagation of the reference system is not as costly as of
the system of interest. Non-interacting or mean-field Hamil-
tonians that can be solved analytically serve as examples of
reference systems that can reduce noise for the dynamics of
interacting systems. Other possibilities include considering
dynamics that are generated from some effective Hamiltonian
with the same initial configurations.

Shown in Fig. 5 are two examples, one in which the ref-
erence system method works good and one in which it fails.
On the left panel we plot the ratio of the variances of the left
current with spin up as a function of time, and on the right
we plot the corresponding currents. The reference considered
here is the current calculated for noninteracting systems where
an exact solution can be obtained by direct diagonalization of
the single-particle Hamiltonian. We see that when the refer-
ence current, Īr, becomes very different from the real current,
Īr+〈∆I〉, (for U = 6Γ in the figure) the ratio of the variances at
steady-state exceeds its bound 1/2. However, when the refer-
ence and the real currents are proximate but still quite different
(for U = Γ/2 in the figure), we see that the ratio of the vari-
ances is reduced significantly as a consequence of correlations
between the trajectories of the currents.

We note that for parameter regime where the reference and
real currents almost coincide the fluctuations drastically de-
creased, the ratio of the variances at steady state reaches as
low as ∼ 10−4. This implies that for a fixed statistical conver-
gence threshold, the number of initial conditions decreases by
two orders of magnitude, since each estimate is statistically
independent. One can also note that at short times the ref-
erence system always reduces the fluctuations significantly.
The reason is that we used an uncorrelated initial condition
and thus the short time behavior is set by ∼ Γ−1. It takes a
certain amount of time for correlations to build up and for the
interacting part in the Hamiltonian to influence the dynam-

ics, yielding a statistical benefit for short times even when the
steady-state result is far from the noninteracting limit.

The idea of using a reference system can be extended be-
yond the description above. For example, if one wishes to
calculate the current as function of U , one can start the eval-
uation for small U and increase it “adiabatically”. For each
calculation of the current, the previous current (with smaller
U) can be used as the reference system. Of course, the exact
term in Eq. (18) is no longer exact and carry with it some error,
but this can still be beneficial, as trajectories of the different
currents are likely to be correlated given that the change in U
is small.

V. CONCLUSIONS

We have presented a quasiclassical method to simulate
nonequilibrium dynamics of interacting fermions. We have
constructed this map using the correspondence relation be-
tween the commutator and the Poisson bracket, in order to
preserve Heisenberg’s equation of motion for one-body op-
erators. We have shown that this classical map is complete
for quadratic expectation values under quadratic Hamiltoni-
ans and it can be extended to higher moments accurately. This
feature makes the study of fluctuations and higher-order cor-
relations accessible.

For interacting systems, the dynamics is approximated by
mapping the equation of motion and enforcing a quantization
rule that determines for which values of nσ the dynamics is
influenced by the Hubbard term. This, together with a qua-
siclassical initial distribution, provides a quantitative agree-
ment with other methods in regimes where those other meth-
ods are known to be accurate. Thus, a quantitative description
of nonequilibrium currents in the Anderson model, including
their steady-state behavior as illustrated by the presence of the
Coulomb blockade, their fluctuations as encodes in the sec-
ond moment of the current, and the relaxation of each to their
steady state can be obtained.
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We have also shown a way to enhance the statistical con-
vergence of this method by introducing a reference system,
whose dynamics can be computed exactly, and averaging the
difference between the reference system and the system of in-
terest. Provided the reference system is correlated with the
system of interest, fluctuations are reduced in the averaging
procedure, and we have shown that this can increase the com-
putational efficiency by up to 2 orders of magnitude over
naive sampling. Together, these results make the quasiclas-
sical method appealing for studying nonequilibrium phenom-
ena in complex chemical systems. Indeed, realistic systems
of molecular junctions routinely operate a low effective tem-
peratures, and finite interaction strengths rendering other low
scaling approximate approaches inaccurate. The method we
have presented here is capable of probing these regimes, at
a small computational cost that scales linearly in the system
degrees of freedom. This should enable studies in correlated
transport behavior in high dimensional, molecular systems, far
from equilibrium.
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APPENDIX: RELATION TO QUATERNION MAPS

The LMM38,39 is based on expressing the fermionic cre-
ation and annihilation operators in terms of a set of quater-
nions:

â† =
1
2
(
√
−1 î− ĵ) (21)

â =
1
2
(
√
−1 î+ ĵ).

The quaternions operators î, ĵ and k̂ satisfy the anti-
commutation relation:

îĵ =−ĵî = k̂, ĵk̂ =−k̂ĵ = î, k̂î =−îk̂ = ĵ (22)

î
2
= ĵ

2
= k̂

2
=−1.

Using the relations in Eqs. (21) and (22), quadratic creation
and annihilation operators can be expressed as:

â†
nân =

1
2
+

√
−1
2

în ĵn (23)

â†
nâm =

1
4

(
−în îm− ĵn ĵm +

√
−1

(
în ĵm + îm ĵn

))
â†

nâ†
m =

1
4

(
−în îm + ĵn ĵm−

√
−1

(
în ĵm− îm ĵn

))
ânâm =

1
4

(
−în îm + ĵn ĵm +

√
−1

(
în ĵm− îm ĵn

))

The commutation relation of two elementary quaternions are
then mapped to a cross product of vectors in phase space,√

−1
2

î→ r =
(

x
y

)
,

√
1
2

ĵ→ p =

(
px
py

)
. (24)

The CQM replaces the map in Eq.(24) with√√
−1
2

î→ u =

(
x
px

)
,

√√
−1
2

ĵ→ v =
(

y
py

)
. (25)

This choice implies that
√
−1
2

în ĵm→ un× vm = xm pym− pxnym (26)
√
−1
2

în îm→ un×um = xm pxm− pxnxm ∀n 6= m
√
−1
2

ĵn ĵm→ vn× vm = ym pym− pynym ∀n 6= m,

and
√
−1
2 îî =

√
−1
2 ĵĵ =−

√
−1
2 for n = m. The LMM given by

Eq. (24) can be used to map the terms â†
nân and â†

nâm + â†
mân.

The CQM extend this to terms like â†
nâ†

m, ânâm and â†
nâm.
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