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ABSTRACT

The object of the computation is to determine the ground=
state energy, E_, and the effective mass, m*, of the polaron for
a range of coupljng otrength S5, 8¢ 1t is intehded to determine these

values with greater accuracy than has hltherto been attained, and

at the same time to arrive at a quantltatlve estimate of the:

_accuracy'of these results. Because'of the second consideration N

in partlcular, any ad hoc reutrlctlono or simplifications are

studiously avoided.

The procedure is a variational one. >T§e tfiél étate is_eﬁ?andéd
as a linear combination of basis states chosén’in—advance. These
basis states are corefully chosen:to acéelerate'convefgence, and
urranged in systematic sequences go that fhé'érror from states no

included can be estimated,
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The coefficients'in-the expansion (variational parameters)
are determinéd numerically with the use of advanced computers.
The Eiggest obstacle to achieving éccurate results is the limitation
imposed by finite computer memory. By choosing numerical pfocedufes

carefully adapted to this problem, it is possible to include nearly

- 1000 states in the fundamental expansion of the trial_state.

It was possible to determine the’groundwstate energy, Eo’

for an 1mportant but restricted range of coupling SUrengths,

1ncludlng most of the so-called 1ntermed1ate-coup11ng reglon.'

»The results were gencrallj lower (io.ee better) than the results of

other varlatlonal_computat;ons, The estimated fractlonal error in E

ranged from 0.1 per-cent (weeker coupllng) to 1.0 per=-cent. TneSe

‘estimated errors are usefully small; ut at the same time larger

than one ﬁould have anticipated or hoped from a‘computation on this
scale. At.theisame time, the possibility of malking erfor-estimaﬁes
gffectiVeiy gives a1sb (aﬁproximate) lovwer bounds,‘an advantage
not shared by most previouS'compﬁtatiOns.f.

| The effective mass, h*; Qas'determined for the same range of
counling strengths. The accuracy of theSe results is more difficult

to estlmate, because they do not have the cheracteristic of being

-+ a bound (e.g; upper bound), and because of numerical consideratlons.
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T. INTRODUCTION

The name'po;aron refers to quantized excitaﬁions of the system.

- consisting of a conduction electron interacting with the lattice of

an ionic cryétal through a poiarization field. Mofe‘precisely,
"polaron” refers'to a.particular simplified model of such an inter-
action. This model is due to Frohlicht and‘the Hamiltonignlcorres—
ponding to this-modél is reférred to in thé literature as the
"Frohlich Hamiltonian." |

" The Ffbhiicthamiltonian describes ﬁn interaction whosé
éﬁrength is charécterized by a dimensionless coupling'constént, gf
For crystals of physiéal interest, the coupling strength varies from
the fegion of weak coupling (g2<f 1) to coupling strengths of -order

g? = 10. - As a mathematical problém, the polaron is well-defined

for all coupling strengths.

In addiﬁion to the coupling-constant, g, the "crystél momentum"
E-appears as a pafameter when the Hamiltonian is written in a suitable
form. The dependence of the ground-state energy of this system'on
the momentuﬁ-P, for small P, is convéntionally described in terms

of the "polaron effective mass" m¥, which is defined as
1 -1 . : :
w* = 3 (aB/ar?) | | (1.1)

so the ground state energy E may then be written

* oome authors conventionally use o to denote the coupling strengths

2]
The correspondence is of = g°.
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E =B + P/ (1.2)

for small P,

Of the various properties of £hé system that may be predicted
by theory, the effective mass is of particular interest fyom the
physical point of view. This quantity enters into the mobility,

[J)., through the relation

,/LL = e?Tjﬁn* | | | i | S '(1;3)’

and into the‘cyclotron-resonance frequency, ﬁé,'through the relation

OJ gem®% o ' o ‘___ (L&)
_Ihréﬁgh‘theSélbbservabies,'m* prqvides the‘cqnhection Eetwéenitheory
'énd eXperimeﬁﬁ; |

The pdlaron prgblem'may”be viewed apért from its'physicél
motivafion}as”an eigenvalue problem in méthemétical bhysics. The
Frohlich Hamiltonian has in the past served as an instructive
testing-ground for computational techniques, and it is primarily in
this spirit thét we shall attack the problem. We shall, neverthe—.
less, avoid introducing any arbitrary or unphysical assumptions,
so that our results may be useful to the physicist and the experi-

mentalist,

e, 3
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The polaron pnoblem attracts our atteﬁtlon because it describes
a non=trivial fleld-theoretlc problem which is free from dlvergences
and which exhibits somezof the chracterlstlc; and difficulties of
a wider class of problemé. There are several more or less distinct

regions of coupling strength, each of which calls for its own methods

of attack. Finally, there are an unusually large number of approxi-

-métions, or modifications, of the polaronlproblem, each of which is

solvable, or has solvable aspects, and which shed some light on the
real problem. -

If the literature of the polarbn problem cannot be described as

' pfofound, it can fairly be described as a rich source of original

and creatiﬁe"techniques in computational physics. The most notable

‘of these is péfhapS'Feynman's application of his path-integral formal-

ism for the numerical solution of the polaron prOblem.2 This formal-

ism; an ingeﬁiohs éppfqéch with several mathematical and philosophical

ramifications, found in the polaron the first test of its powers

as a practical computational tool. Our work will provide new conw
firmétion of the surprising accﬁracy of Feynman's method,

The strong-coupllng theory of the polaron has been descrlbed3

as belng ’...1nterest1ng in its own right,. presentlng us with a

number»of fascinating mathematlcal problems." The strong-coupllng

- theory is an exceedingly complicated field which is a subject in

itself and which we will not discuss here.
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Between the strong-coupling region, which is a very difficult
area, and the weak-coupling region, whiéh is subject to treatment by
perturbation theory, there lies the so-called intermediate-coupling
region, which is not suﬁjéct’to treatment by the téchniques suitable
for the two extreme regions. This region can be defined in terms
of the conventional dimensionless coupling constanf, g, as the
region roughly correséonding to

1< = 9 : - (@.5)
The coupling cénstant is a propefty of the cfystal, and a great
majority of thevcrystals of interest lie in this region.
It is in tﬁe'intermediate coupling region that the variational

. technigues have played the most important role. The simplest of

these is motivated by the Tomonaga approximation of Meson field theory,

This approach was developed concurrently by several authors4’ 5 but
.is now popularly referred}to as due to Lee,Low, and Pines.é The Lee-
vLow~Pines calculation has implications for our own study, and will
be discussed in some detail in a later sectiocn. |

A generalization of.the Lee~Low=-Pines approach is given by'
Lee and Pines7, and ﬁhis study will also be reviewed. The Lee-Pines

paper is particularly instructive as a model calculation. Judged as

a numerical computation it is limited in its écope and does not begin

to draw on the full power of modern computational techniques.

©

A
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Our Qofk is a variational calculation that beginé somwhat in
the same spirit as the work of Lee-Pines menticned zbove. However,
weAshall proceed in a more systematic ménner, avoiding éqy un-~-
necessary réétrictive assumptiohs, and'preparing to draw on the full

power of modern computing techniques if that is where the problem

‘leads us (and we shall soon see that it does!)

After giving a specific_definitiOn of the polaron problem
(Chapter II), we will review those attempts at solutions that are
Jnown and that are relevant to our work here. (Chapter III). In
Chapter IV we discuss in some detail the choice of a bésis of
vectors, or states, from which to construct the trial sfate for
the variational computation. In Chapter V we discuss some principles
that underly our'analysis; and in Chapter VI we outline the numerical
techniques tﬁat are needed for a problem sﬁch aé we will encounter.
Finall&, thé results are pfesented and‘discussed in Chapter VII,

and a brief: ‘summary follows.
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II. THE POLARON PROBLEM

In this chaptér we summarize some of the physical principles
and mathematical manipulations that lead one to the Erohlich
‘Hamiltonian, which will then be the starting-point of our calcu-
lation. These remarks are intended neither as originél nor as
rigarous, but are included to lend perspecfive to the main bedy
' of this paper. In what follows we are guided principally by what
Ethlichg'has.written in atrecent review, .

| At the outSét séveral-assumptions a?é made with regard to the
nature of the oscillations of the crystal lattice. It is assumed
-the crystal can be treated as a macroséopic dieiectric; character-

izedvby a cOmplex:dielectric constant, £,. It is further assumed

that the digléctric constant €, can be regarded as independent of wave- -

. _vector,.and'that is has two characteristic absorption frequencies.

From these assumbtipns, elementary considerations lead to

) the concept of an' "effective dielectricvconstant" £ ', which relates

the polariéation'field to the electric displacement D according to .
Px) = (L/AMEDE) e
where is defined as

VE = g, -Ye (2.2)

&
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Here & is the static dielectric constant and £,is the dielec

. tric constent fér high frequencies. Frohlich makes the simplifying

“assumption that the frequency of lattice vibrations; W, is a constant

(independent of wavelength). It is also assumed that in the absence
of the polaron interaction (i.e. the interaction of the elecﬁron with

the polarization field) the electron can be described by an "effective

Vlmass"‘m, that will now be referred to as the bare mass, or simply as

the electron mass to distinguish this concept from the polaronQ‘

“effective mass m*. For the purpose ‘of computing the electric field;

the électroﬁ'isiregarded as a point charge.
- The Frohlich Hamiltonian is derived from a'Lagrangian of the-

form

L 5P -6'P6) ) + 0e)RE) (23

VHere P(r) is the polarlzatlon field, and D(r) is the electric field
; due to the electron. The parameter’AL will be determined shortly.
~ Taking P(r) as the ‘generalized field coordinate q(r), the congugate

'momentum is found to be

o) = 5Py = pke @

and the'Haﬁiltonian

B = der /;_':( ;’Z(r) +wz‘P2(r.) ) = D(r)Blx) - (2.5)




The equatiens of motion for the field

Ae) =SHI/Sp(e) = p)/pe 28

x':(r) = =SH'/8q(r) = -/mh(r) + D(r) (2.7)
lead»éo the relation
BE) +WRG) = (1/mdE) | (2.8)

This form shows that in. the absence of the electron (D=0) the

polerization field is described by the equations of simple harmonic

3ﬁotion, as we would want to require., Considerb(2.8) in the static

1imit P'= O , and referring to (2.1) we arrive at the expression for

the constant . , hitherto undefined:
/U, - 4 n— g/ C(_)l S v v(2-9-‘)

Considering the electron as a point charge -

| - . e . |
D(r,r ) = -V, ] - (2.10)

The polarization field satisfies curl P = O and so may be derived

o,
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O
frbm a‘polarizatioﬁ potential, #(r):
*60) = ATV IE) - )
After an integratiqn by pérts, theAinteracfion term of the Hamiltonian,

Hint

=f.fd3rn(r)'P(r)_ ,  (212)

can'hOw bé-written

H_, = ef(x) o (2.13)

To take into account the electron kinetic energy we modify the

Hamiltonian H' (2.5) by the addition of a term so that our Hamiltonian

H is now given by ‘

CH=H + pii/Zm R (2.14)

The;electron équafionS'of‘motibn are then easily found:

o1 =Pog/m . o (2.15)

1251 - e-‘7e1 ¢(rel) e .‘v (2.16)
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Before proceediﬁg with gquantization, it is convenient to
introduce temporarily a cubic volume V, and to apply periodic-boundary'
‘conditions with respect to this volume. |

At this point it is conventional in similar probléms to
Fourier-analyze the fields and to express fhe commutation reiatioﬁs
'of the 0perétors in terms of these Fourier components.‘ In our case,
the condition that P(r) be real introduces an auxiliarj relation
which has the effect that the<Fourier components are no longer
independent. The resulting difficulties are circumyented'by

the introduction of a complex field, B(r), which has independent

‘Fourier components. Following Frohlich, we write

) =]/j-§—g(;1’(r) " GFED) | (2.17)

As curl(P) = 0, B{r) has a Fourier-composition that can be written in

the form

B(r,t) = ,ﬁz '—Elbk eﬂ‘:'; . (2.18)

One can.then show straightforwardly that the commutation relations

of the B fields

(2,0, S en] =6, 8w  (229)

lead in turn to the relations

S N UV USSR JRVUO T 2 P

s Y"‘?

"

s¢
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1l

(B0 Ba] = Dy o ‘(Vz.zoo,

[bk, bk,] = 0 | (2.21)

—
s
w4
Nl
i

The Hamiltonian (2.14) can then be written

H= H

A (2.22)

el int

where
! v 1- | ‘
Bp= Ry W by | (2.23)

1 ,-ﬁz/p,m)v:.d - (2.24)

=
i

4‘e(ﬁ/2Vfcu/4)l/ 24 Z% (1:;kc~,~'ilf"r - bkeik'r)' (2.25)

"The factor 41fe(ﬁ]2V€%;)1/2 is conventionally written
Bwb/ma) Grdmt? (2.26)

where g is the dimensionless coupling constant referred to earlier.

The constant g is then given by

. e ~e§> v A '
2 . (2c27)

7 uselanw

B T——— e e it



iy o

Using (2.2) and (2.9) we may then write

g2 - ff.(.l. - i - (2.28)
1 le. gllnw T

Here

e = charge of.the electron

€, = high—frequency dielectric constant

& = static dielectric constant

% = Planck's constant / 2W

m = "pare masé" of the electron

( = freguency of lattice oscillations (longitudinal modes)

It will be more conveniént for our purposes to consider the
Hamiltonian in the form it bakes in the limit V . As periodic

boundary conditions lead to the summation over (2 _)3 points in .

k-space per unit volume, the replacement , _ :
- Z—-ﬁv "“'“‘3 dk ' N ' a (2.29)
v L (2T) : o 1

gives' the properly normalized form in this limit. We will also .
~ want to remove.the awkward complex f acftor in the interaction by
making the simple unitary transformation

— e t ... s + : " )
a. - lb 9 a}( - "lbk : | . ("‘30)

- )}

i+



- toa new form in which the coordlnates of the electron, l’ do not ’ : v .

~13-

With these changes the three terms of the Hamiltonian (2.22) can be

written

H’F; '= .dek ‘atak | , (2.31)
oy =~/ | o '(2'32)
Hig © dek(V*(k) Yolk'r 4 V(k)a(k)eQik’r) (20_33)

" where we have chosén units in whichh = 1. We have now

) T2 1/2 » | ~ | -
V() = - “(me)-l/A 4785 : (2.38) :

For computati’onal pu:t'po:se's it is convenient to transform the Hamiltonian

appear. Consider the unitary operator

U= exp(—ifd?k a:;{ak K'r ) o v O (2.35)
The transformed qpérators
§ _.. ~1 _ . ix'r - o » : o . B |
k — u ‘aJkU —_v ake . - - : . S (2036) i B ,

ol
H
[

o

e}
[eu}
i}

o]
+
ol

A\
=
93
m
wi
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lead to the transformed Hamiltonian

AH>= '(‘p—deka;akk)2/21n"" 'deRG;akak' “: | }- : \.
+[d3k (WRa(e) + Vet ) oy

:ﬁhere we have dropped_the "bars" indicating the Opefatorsvaré.trahS-
formed. One can verify that p (now written p) as defined by (2.38)
commutes with the Hamiltonian. One may then choose the elgenstate
of the Hamiltonian to be an eigenstate of p, ﬁith eigenvalue'P.
Making this choice, and expanding the first term of (2338), one can
write | |

2t
H= P2/2m - |dk aa 'k

2,y 1 : S S
+ a’x (W+x"/2n) a8, +fd3k( v(k)ak + V¥(k)a, ) -
| We have used the commutation relations
([ ak’ a_-kl] = 'Skk' ‘ : - ' '4(2-40) o #.

- to write the creation operators to the left of the destrﬁction'operators

in the third term of (2.39).
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The Hamiltonian (2.39) is the particular farm of the Frohlich

Hamiltonian with which we will begin our calculation.
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IIT. FREVIOUS SOLUTIONS AND APPROXIMATIONS

In this chapter we will review some previously-published'
attacks oh the polafon problem which are precedents for our work,
or which are of fundamental importance.

- The simplest approach to the polaron treats the ihteraction
term

Hop = & ( V(k)ak + v*(k)a{';{ )> o | (3.1)_

as a perturbation., In the absence of the interaction (3.1) the

ground state of the system is the vacuum state:

The interaction (3.1) allows transitions to one=phonon states of all

momenta, k:

/8 = & /0) 3 R

' The first non-vanishing contribution to the energy is the second=-order

perturbation theory term:

V2 (k)

K "
(@ 4+ K*/2m = k"P/m)

Cﬁ:



: energy.

=17
This form can be easily integrated, and one finds for small P
E = -0g® - (€°/6)(F/m) (3.5)

According to (1.1), this corresponds to an effective mass

.'~‘l

#fy = ————————— .6
m*/m a m'gz/é) | | (3.6)

A second approach;, based on the intermediaﬁewcouplingﬁapproximation

of Tomonaga, is the calculation of Lee-LoW-Pinesé, to which we have

" referred. The ?omonaga.approximation is characterized by the assump-

tion that the eigenstate /@) has the property

. ) . |
(ykpeaeky / 8) = o [ £0) : (3.7)
. : ' {

~ This theofy éssﬁmés there is a phonon mode,'defined by f(k), which

:*can uSefully descrlbe all phonons, and that correlatlons between
E phonons may be neglected. The object of the calculation is then

“to flnd the functional form f(k) that glves the lowest ground-state'

The Lee-Low—Pines calculation beglns w1th the trlal state

/) ;'_exp' ; d3k"<a§f<k).+'ak' e | ) 6.8

which is in fact a special case satisfying (347)¢ - The function f(k)'

remains to be determined,




Tt is suggested that (3.8) be viewed as a unitary transformation

~ from the vacuum state /0) to a new state /@) with the unitary 6peratof
= &% (afr) +aigxt) ) ) ‘
U = exp (L]|dk akt‘(k) +a£*(k) ) ) A (3.9)
This transformation yields
a, = U~ aU = a_ + f(k) , | (3.10)

and is referred to as a translation by f(k)

The problem may now be viewed as the problem of flndlng the form
£(k) that minimizes the expectation value of the transformed Hamil-
tonian E = U™MHU in the vacuum state /O). This computation is

v:easily carried out, and one finds

20 = [ ) g
| (W +*/on + (@)K ) |

If P=0 the thlrd term in the denominator does not arise. if A0

q is defined by the relatlon
B 4 N : ERE o
: f Pk £(x) k¥ = qP | j o (3.12)

Considerations of symmetry dictate that a relation of this form should

exist. One finds—for small P
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K
i

and '
B= -gfw + (P/m)a +ge) L | (G.14)
fromiwhich the effective mass

" may be derived.

The éccurécy of this calculation may be judged by comparing the
results w1th,those of more SOphlstlcated calculations, some of
which we shall discuss shortly. Note that E_, the ground-state

energy for P=0, is the same as that given by perturbatlon theory

",(3.5)

" For the case P=0 the Lee-Low-Pines procedure reduces the

polaron problem to one formally equivalent to a fixed-source neutral

. scalar fleld model--an elementary problem in field}theory. The

Hamiltonian defining this problem is of the form’
H'I = d3k w(k) A\ +. EE (;v(k)a + v¥(k)’a+ ) (3.16)
- Xk k . k ¢

If ve take W(k) =+ k°/2n and identify ¥(k) above with our previous

.
o

(g2/6)/(1+g2/6) + 0(1?2) tous | .(3.13) |
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definition (2.34), the Frohlich Hamiltonian (2.39) only by the presence

‘'of the additional term

o ++ — = |
. HQ = [dBk[dBk' 218113, 81 (kek?!) ‘ (3:17)

One can attempt to take into account the term (3.17)’by con-
sidering it as a perturbation, starting from the Lee-Low-Pines
state (3.8) as the zero-order solutioﬁ. This is pbséible because
the state (3.8) (with £(k) given by (3.11)) t"is in fact an exact

| solution of the u#perturbed "neutral saaléf field"-type'Hamiltonién
(i.e., of the Froﬁlich Hamiltonian (2.39) minusvthe "perturbation" |
_(3.17)). The resglt of this perturbation célcﬁlation gives an

- energy shifﬁ |

B = -0.0159 ¢t w ) . (3.18)

so the grdﬁhd-étépe energy (for P=0) is given by

E = -—wg® - 0.0159Wg* . (3,19)
We will refer to this computation as the "second" perturbation calcu-~
lation, to distinguish it from the first calculation we discussed,

which treats the interaction term (3.1) as the perturbation.
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We will see that this resﬁlt has greatﬁ;ccuracy, and range
of validity (in terms of coupling-strength g) thaﬁ one might be led
to conclude from its perturbation—theometic.origin.* Note in'thisv‘
connection, however, that the term (3.17) (the "pertufbation")
is not characterized by g as a coupling strength.

" The point of view discussed here, which treafs (3.17) as
a perturbation, will be useful to ﬁs in our later work. In
éelecting and ordering the basis of states, we will be guided by
ﬁhe succeséively higher orders of approximation to the'eiéenstate,

in the sense of this calculation. Later discussions will clarify

these remarks.

A more general variational calculation, in the same spirit
as that of Lee-Low-Pines, is described in the paper by lLee anvaines7.
The‘Lee—Pineé approach is a generalization of Lee~Low-Pines in that
the phonon may be emitted into either an S-state (as before) or one
of.three P—states. With certain additional as§Umptioﬁs it is .
-poss1b1e to carry through the variational calculation analytlcally.
The numerical results are tabulated in thefbmrth:row of Table 1.

One assumption mede by Lee-Pines is that the elgenutate /%)
méy be usefully approximated by a state which is a product of.an
S—yave factor and a P-wave factor. Specifically, the trial function

used by Lee-Pines is of the form

* See row 3., of Table [l.
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where the stafe /#') contains no S-phonons, but only a distribution
(to be determined) of P-phonons. Lee~Pines justify this special

form on‘the grounds that the resulting solution can be shown té be
 exact in the weak-coupling limit (g2< 1), and in the strong-coupling
limit fof the problem defined with a momentum cut-~off, K. The latter
observation is an interesting one. However, the introduction of a cut-
off in the integrals is a non-trivial modification of the problem,
and the sighificance of the fesults for the problem without cuﬁ—dff

is not clear, o

| The introduction of a cut-off in effect creates a new kind of

strong=coupling region that has no immediate relation to what is

conventionally referred to as the "sthng coupling region." Certain

. integrals that occur in the solution of lee-~Pines, and which are there

neglected as being negligible next to 1/g° (in the limit go> o0 )
are in fact integrais-that diverge (in one.case as steeply as Kﬁ)
~ in the 1imit K o0, The lee-Pines strong-coupling solution then

deScribes a region that is "strong" in the sense that
Kl €€ 1 o L (3.21)

This:is‘a ﬁégion that does not exist at all for the problem as we are

considering it.
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The results of Lee-Pines in the intermediate-coupling region

are a considerable improvement over the earlier results of lee~

Low-Pines. In order to judge the accuracy of the Lee-Pines results,‘

" we turn to still another approach: the highly original attack on

the polaron problem by Feynman.

: Feynman approacﬁes the polaron problem by recasting it in ‘
terms of his' "path integrai" formalism. In this formalism, the
quantum-mechanical kernel, or Green's function, plays a central
. role. The kernel is defined by Feynman in terms of a path-integral,
or sum over paths, where the integrand is the expoﬁential of the‘
classical action (considered as a functional of the path). This

fundamental definition is usually wriften in the form
CK(x!',t'3x,t) :fﬂx(t) exp( %1[1 (x,x,t) dt ) (3.22)
9

The reader iS'referfed to the original paper of Feymman’ or #o anyv
of sevefal review artiCléslo’ll for a detailed s£udy of the meaning
of this expression. | S

Iﬁ the problem at hand one-doesn't in fact ﬁeed the kernel
expiicifly. The ground-state energy can be shown to Be given by the
asymptotic decay-rate of thé Green's function for largevimaginary

times:

100 : '
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Including this limit early in the caleulation permits simpli-
fying manipulations.

Uthrtunately, the class of path-integrels that can be ex;
v’plicitLy computed is very small, and the integrals arising in this
prdblem are not included in that class. Feynman circumvents this
 difficulty by introducing a novel variational principle. A
>simplified "model problem" is introduced, which is presumed to
represent a decent approximation, in some sense, to the real
preblem, and for which the corresponding path-integrals can be
computed. Feynman shows how the solution of this model probiem can
be used to get an‘upper-bound on the groued-state energy of the real
~ problem. The upper-bound characteristic of the approximation is

based on the ineqﬁality

{(e*) é("} S B ,(3;%)

where‘<r }g-denotes the average value.

The Feynman procedure involves no numerical work until the end
of the calculation, where a functioe (involving one integral that must
‘be solved numerically) of two variables must be minimized with reSpect.
 to those two vari%bles. This procedure leads to the fesults tabu-
lated in the fiﬁﬁﬁh row of Table I. The sﬁecific figures given are

due to Sc»hu;tzm
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Keeping in mind the variational character of all three sebs of
results (i.e. Lee-Low-Pines, Lee-Pines, and Feynman); it is clear
that Feynman's are everywhere supérior, most markedly in the region
of stronger couplinge.

Uhlike.the work of Lee-Low~Pines, Feynman's approaéh does not
seem to admit an obvious generalization that might be used to get
an estimate of accurady. If one is inclined to be suspicious, one
~can point ou£ that the "model problem" introduced by Feynman seems
inadequately to reflect the true complexity of the real problem.

On ihe mathematical Sidé, the inequality (3,24) may be too "weak"

fof accurate numerical results. The Weightwof the available evidence,
including the results of our own calculation, seems to show‘that

these objections carry little force, and attests to the quite
remarkable accura§y Qf Feynman's results over a wide range of coupling

constants.
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IV. WAVE FUNCTIONS AND STATES

The calculation which we propose to do is, like those of Lee-

Low-Pines and Feynman, a variational calculation. Unlike the pre#ious

attacks on the polaron problem, we will be prepared to lean heavily

on large-scale numerical techniques. We hope in this way to obtain
more accurate results and, at the same tinme, get an estimate of the
probable error of these results. Particularly because of the second

requirement, we will proceed in as thorough and systematic a manner

as pos sible.. We shall avoid introducing arbitrary assumptions

or restrictions whose effect on the results cannot be estimated.

In particular, we sﬁall iﬁtroduce no arbitrary restrictions on the

.size of the basis (such as the restfiction to S and P states), except

as is determined byglimitatiens of eomputer space and time. |
Accurate resultSJWill require a trial state with a very'large

humber of parametere. Theee parameters will be determlned, as always,

by the requlrement that the Rayleigh quotient (#,H#)/(d,#) be stutlonary.

~ The equations reoultlng from this condition can, in general be

. solved efflclently and accurately only if the variational parameters

are llnear. That is, our trial state /ﬁ) should be expressed in

terms of a sultable basis of states /j),(j=1,2...) by a linear ex-

pansion

M=y esn e

!
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We will refer to equétion (4.1) ds the "fundamental expansioﬂ."
If‘ﬁ terms of this sum are included, one is led to a sjstem.
- of n linear equations. A varieti‘of fechniques are known for'the , .
numerical solution of such a system, and those appropriate to ocur
problem wili be discuséed in a later sectibn.
A neéessary step in setting up the calculation ié then to
construct a suitable basis of states /j) (j=1,2,...) to use in
thelfundamehtal expansion (4.1). Before constructing such a basis,
one needs tolchoose a representation for the one-~phonon wave functionse
The many-phonon states /j) are then constructed in the conveﬁtional»
manner by specifying occupations (numbers of phonqns) in each of
the various states, or modes, each mode being defined in terms of a
~$ét of quantum numbers.
The problem as defined by Frohlich is set up in termsAof a

representation where the phonon wave function u(k) are given by |
u(k) = - KT | - (42)

ie€ey in‘the momentum repreSentation. This representation is not -
useful for‘our_Wng. What we must do is choose a new complete set R
of functions u(k) which play the role of (4.2) and which are better
suited to our purﬁoses. | | -

~ In the same spirit as Lee-Pines, ve wiil choose to describe the ¢
angular dependence of our phonon wave-functions in terms of an angular-

momentum representation. That is, we write
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W® = RO (4.3)

‘ where'YiM are the spherical harmonics, and.gzlrepresentS'the pair

~ of angles 6,f, The radial function R(k) is then given by

R(k) = fdQ ¥, ( € Juli) . | (424)

R will be independent of M, but will, in general, depend on L, in

addition to a "radial quantum number" N, We write then

() = R 01, (Q) | (4-5)

where the -complete set RNL(k)»must now be defined.

The calculation of Leé-Low-Pines, which we have discussed in

:somé‘detail, can be looked at as a speCial case of the aboVe,bwith
; phonons restricted to spherically symetric states (I=0) and to
4”':one radlal state (the "radlal ground state") N—Oo In the same sense,

. the Lee-Plnes calculatlon corresponds to the restrlctlon N=0, L=

0,1 (;gnorlng for the moment certaln other special assumptions made

by Lee~Pines).

Because of limltatlons of computer 51ze, and other factors, it

_W111 be necessary’to restrlct the occupatlons of states to only a

few lpadlng terms from the radial sequence N=0 l,k,.... ‘We will want

* to choose the ground radial state N=0 to give a respectable approxi-

‘mation to the exact answer, and to choose the renaining ones (N=1,2,...)

ilf
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if possible, in such a way that only a few terms of the radial \
series will suffice for an accurate approximation. .Before con-
structing the sequence of radial states RNL in the general case,

we turn our attention to the groﬁnd radial states ROL for arbitrary
L.

Tt is natural to be guided in this respect by the results of
Lee-Pines, and Lee-Low-Pines, because of the close relation between
their computation and ours, which we have just pointed out. These
calculations determihe analytically the optimum functional form of
the gro{md radial states RoL(k) under the restriction that there be
only‘one radial state (Tomonaga apprbximation), in addition to the
restriction on angular momentum,

According to (3.11), the Lee-Low-Pines result (for P=0)

suggests that we make the choice

/

COO

- o " (4.6)
Roo(k) x (@ +¥k°/2m) |

. It will be contenient to carry out ourvdiscussion in terms of the

dimensionless unit x = k/(2mu))l/2, so that (4.6) will be written

COO

2 (4+7)

vR AX ‘
OO( : x (1 +x%) , - A "

The corresponding Lee-Pines results, in contrast, involve three non-

linear variational parameters (in addition to the usual normalization
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constants). In tefms of our present notation, these results suggest

Cog V0x) (x2+4a?) |

R (x) = (4.8)
00 PP + 0%
c v

Ry (%) 3 O%Z (Xi 5

(x"=b")" + c"x

G x : ‘

=L ———r ) . (49)
COO (x“42~) :

As we have pointed out, we will want to work principally with
linear variational parametefs. Tt will therefore not be convenient

ﬁo use functions with a complicated non-linear parametric dependence

such as (4.8) and (4.9). However, the form of these functions will '

give us some useful clues,

The most important consideration in the choice of phonon wave-

‘functions is to approximate the analytic_prcperties of the Solution‘

(insofar as they dre known, or can be estimated) as well as possible.

In particular, we are concerned with singularities and limiting

properties. It is important to study the asymptotic functional

forms of lim R..(x) and 1im R, (x) and to choose these to match
oL 1am R,

X0

' the corresponding properties of the solution. What are the known

properties of the solution?  On the basis of the Lee-Pines calcu- .

lation, (4.8) tells us




1im ROO(X) = V(x) = 1/x
X0

and from (4; 9)

lim Ry (x) o =¥(x) =
x>0

These results suggest

ﬁifLROL(X) 20 ()

Similarly,

X~7°°

lim Roo(x) V)& = 1%
and

1im R () &~ Rk o 1/
,_,Jf.,‘;, 01x - Roglx)/x e

These results forilarge X suggest the pattern

1in ROL(x) V) /A

Y~ 02

(4.10)

(4e11)

 (4e12)

(4.13)

C ed)

(4015)
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Conditions (4.12) and (4.15) can be satisfied simultaneously

if we assume that the asumptotic behavior of ROL(X) is governed

§

in both extremerrégions by a factor of the form

: xL—l
ROL(X) = - e i

1+ y:2)L-1£l.

X . _vx) (4o16)

@) (@ + %)

This same factor is suggested by a perturbation~theoretic argument

similar to the "second".perturbation-theoretic point of view, discussed

earlier. We tentatively accept (4.16) as a condition to be imposed '
on the rédial fupétions ROL(X); |

_ IWe afe faced, then, with coﬁstructing a set of functions ROL(X)
with the aSymptotic behavior described by (4.16), and which coincidé
- with, or closely approx1mate, the results of Lee-Plnes for the case
I=0 and IL=1. These and other minor con51derat10ns 1ead us to make

the following choice for_the leading radlalrfunctlons RoL(x).

| a2 / x(1 +2%°)

Here 7 is a free parameter, analogous to the parameters asbyc
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appearing in the Lee-Pines solutions (4.18) and (4.19). It is in’

the nature of a scale factor, and it is intended that 2 will initially

play a minor role in the calculation. In fact, ﬁe begin with 2=1,
éo that (4.17) coincides with the Lee-Low-Pines result for L=0.
After preliminary calculations, we may makebadjustmenté in Z to
further optimize our results. The function (4.17) has the simpli-
'c1ty required for the kind of nunerlcal techniques we will need to
use, with a small concession (1 e. the scale factor Z) to the
flexibility of the three-parameter functions of lee-Pines.
We have now made a choice for the ground radial functions R (x).
The next step is to define the complete set RﬁL(X) for arbitary N.
Tt is convenient to chcose the radial funétions RNL(X) in the form
L
1

RNL(X) =t na j 2%2) | (1 + 2%°)x i (4e28)

where PNL are a set of complete polynomials over the interval (O

€ X< o ). We intentionally omit the argument of By, because we
will want to make a new choice of independent variable, v(x). We
turn now to this question.

In order to preserve conditions (4.12) and (4.15) we will want

1im PNL(V(X)) = constant = (419)
XK= oo .
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Also, v(x) should be of such a functional form that the integrals
arising in our calculation will not themsélves require numerical
treatment., We find these requirements are met by the choice

v(x) = 1/(1 +2%°) o o - (421)

The radial functions RNL(X) then have the form

R (X) = C - .
NL NL‘(J_ +-sz2 x(1L + 2°%°)

X 1 .
( ) 57 P (v(x))  (4.22).
. Tt remains to determine exactly what polynomials th(v) to use.

This choice is determined by the condition of orthosnormality:

_ oo ' ,
S_NN' = fx2 dx Ry () Rypg () (4.23)
o | | L
Tn terms of the new variable v(x),

S o
§ o = L f av@n)2 S 2 )Ry () (4a24)

1 i
NN 2ZL%L +1 A

The "wéight factor" P (v) of the forn |

P (v) = @) +° - : | _ (4+25)

on the ’éinterval (0,1) defines the Jacobi Polynomial Gn(p.,q,v)



with f ' , - :
p = a+b+l gq=b+1l o (4+26)

Acéordinle.
Pp(v) = Gy (2141, L43/2; v) (4027)

For the explicit definition and properties of these polynomials,
the reader is referred to Apgendixége
Thié completes the task of constructing a representation of

.phonon'wave functions. The functions we have chosen are described

by three quantum ﬁumbers: the radial, ‘or principal quantﬁm numBer, N;
the angular momentum L; and the z=projection of angular momentum; M. |
We will ﬁant to order these states iﬁ someVSpecific wéy so they

 cah be referred to by a single index, i, ratber than by the corres—.
-éonding’triplet of ihdi¢es N Li’ Mil A particular ordering that
L will be’convenienﬁ for our later purposeés is the one given in Table 2.
"'The 1ist is cOnstfucted for the éase where ﬁhé-aliowéd states corres- -
‘pond to 1=0,1,2,3, and N=0,1,2,3,4. Within the limits of computer
ﬁemory, this déscription was found by experieﬁce to be close to the
optimai choice. In any special case where we may wént to use-
another descriptién (sucﬁ as including a higher range of L but a .
smaller Tange of N), we will order the states acdofding to the same

general scheme.
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3 16

TABIE 2: Ordering of Phonon Modes *
N: 0 1 2 3 4 5
TR
0 0 1 17 33 49 65 81
0 1 2 18 | 34 50 66 82
o 2 3 19 35 51 67 83
o 3 4L 20 36 52 68 84,
S| 5 21 37 53 69 85
-1 2 6 22 | 38 5/, 70 86
A3 7 23 39 55 71 87
+1 1 g 24 40 56 72 88
o2 9 i oo, s 73 89
a3 w2l 2 s 90
2 2 o w59 1 R
2 3 | 12 éé; L4, 60 ..76' 92
® o2 1329 45 e ™ 9
w3 | v o w6 e e %
-3 3 13 W & 19 %
3 32 48 e, 800 - 96

© % The figures in the main body of the ‘table
. number of the mode with the purticular L,
and particnlar N (above).

mode ie 18-th mode.

give the sé§uence '
M (left hand columns)
For example, the M=0, L=l, N=1
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CorreSponding to the eigenfunctions we have constructed,

now introduce a new set of creation and destruction operators.

we

Suppose that Li,M.i,Ni ié the i-th triplet of quantum numbers‘aé

ordered in Iable 2. We then write uy 1 y (x) simply as ui(x)

and we define

3

—_ *

Ay = fui(x) a_ d’x

Frai the ortho-normality of the ui(x) it follows
a, = Zui(x) Ai

Using the commutation relations

{ax, a{{] = $Gw)

one verifies -

t - |
| [ Ay Ai'} = b0

Substitutingi(4.29) in the Hamilionian (2.39) one finds

H.—_mb-knint-kHQy‘&i,"

(4.28)

(4+29)

(4030)

(4031)

(432)
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where
L ' T Afﬁ o : (4.33)
“ 3 » . 'f;'k
. . _ t | ’
Hipg = Z (30, + I8 (434)
5 o
'* | t+ ' | |
HQ = Z Q.(i,j,k,l)AiAjAkAl ' (4'35)‘
i.j-k-( . .
| -t . | .
mP = 2P% Z KiinA.j - | (4+36)
and where, in turn,
o= 3 =, 2 ‘ :
5= [Erw@asAae G
EA— . 3 ; o . s
3, L2 ORR) . (4.38)

. s e oa Y 1 33 3.1 % ‘*‘!"""l . ! ;

g Q(i,i,k,1) = jd xfd x ui(x) uj(x ) X% uk(x)-ul(x ) (4.39)
= . _ 13 *‘ - o .
Ky = : [d x uf(x) X uj(x) | (4.40) ‘

Our next task is to choose a set of states to serve as a basis for

~the fundamental expansion (4.1) of the trial state. Having decided

on a specific representation for the phonon modes, we must prescribe

what occupations, or combination of occupations, of these states will

be included in the expansion. A4s even a fairly restricted choice for
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the range of N,L leads to a very iarge:number of'pgssib1e~states,'
'-we will need to be véry selective in choosing which particular stateé
to include.

What states will play a role, in pz;_r_x_g;_g;g, is determined by
the selection rules for the various integrals (4.37), (4-38), (4.39)
'and (4+40). These rules are easily determined by elementary con-
siderations and are summarized in Iable 3; We observe that each
I term of the Hamiltonian separately conserves M, the zécomponent'of Le
Also each term except (4.40) (which does not play a role of ELO)
‘conserves parity. From the various approx1mate solutions we see
that statesbwith even parity, and with M=0, contfibute the impbrtantj'
components ﬂo the gfound-eigenstate. We conclude that.the ground
‘stateris characterized, in principle, by even parity &f P=0, and
o in any case. by M=0. Accordingly, we need to include only states with
these characteristics in the expan31on (4.1). (£ P # 0 we will
need to allow states with odd parlty also).
. If one were interested exclu31ve;z in the case P:O, one could:
take advantage'of the,Spherical symmetry of this problem by-choosing
the trial staté egplicitiz as an.eigénstatéjof 1%,  This would .
éffectively reducévthe.number of variational parémetérs, but would
introduce other complications of a programming and computational
nature. Because of these complications, and particularly becaﬁsé '

we are interested in studying the case PA0 also (faor which spherical
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- TABIE 3: Seiecﬁion Rules

PR

T.. = O unless

4

L;-L;=0 and M -M =0 and P&/Pﬁ 1
K,. = O unless
1J
- = . ‘ - - 3t . —
L, Lj £ and M, Mj tloroO and Pi/?Pj 1
Q(i,j’k,l) = 0 unless

all of the following are true

L =L = 1 | M, -M =41ar 0 |
» | ' FiF5 = AR
L, - L1 = ; 1 Mj ~- Mi =‘i lorO
M.‘i‘Mj-i-Mk-MI:Q | |
or all of the following are true Y
Ly =Ly =41 M,=M¥,=flor 0O S
i 4 Pin::PkPl
L f Lkv= 1 Mj - Mk = ;'1.or 0 B .
K+ =g 0
Ji =0 unless L, =0
% B, = parity of i-th mode = (-1)%%
% z-camponent; of Ky, = 0 unless I, - M, = 0, This is the

cbmﬁoenent that enters into the ‘computation.
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symmetry is violated) we will not choose our trial state explicitly

as a function of'Lz.

We now make a brief digression to discuss a métter of notatione
A state can be defined by giVing a sequence of occupation-numbers——
i.e. by giving the number of phonons in each of the 96 modes. This
‘occupation~number notation is very awkward in a situation where we must
concern ourselves with the details of the states, or actually listihg
the occupation numbers for each of several hundred states. Whilé
~ we encounter up to 96 modes, we ordinérily will encounter sfates
where the great majority of these modes are unoccupied. That is;
the number of phonons in a typical many-phonon state will be three
or four, and in the largest case, seven. In this circumstance it is

e

more convenient to use .a notation in which the state

1 - A
is‘wiitten /hi, né, ..an). Different_states may then have different
numbers of entries, depending on the number of phoncns. If we re-
strict Qurseives to states with less than seven phdnons, for example,
no state>will reqﬁire more than six numbers for its completevdescrip-
tion (instead of 96 numbers for every sﬁate, in-thé'alternative |
notation). |

A épécial case is represented by the vacuum state, which we.will
continue to write as /0), without risk of confusion.

3
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'If this notation is only a matterﬂof'cbnvenience for this
Ctexty it is essential for sﬁoring the ihformation about the states :
in the computer.  We will see that we will encounter bases with

up to 1000 states,'so that stOring.the states albne in the occupation-
number notation would require 96,000 words—-larger than the memory

of mbst-computers} In the program used for this compuﬁation, a
 still more condensed notation, baéed on the above, Qés used).

.We return now to the problem of explicitly constructing these
states.‘ We may begin»by donsiderihg eveh-parity stateé onlye. |
These states‘suffiée for the special casé‘PEO. The odd parity
stétes éan‘ﬁﬂen be constructed accbrding to ﬁhe samé general |
principles. = &7 | |
| The number of states arising from all possible distributions
of a moderate nmumbér (e.g. three or four) of phonons among 96 states
 -_is, of course,.astfonomical; Fortunately, we are not facéd with this
general,sitﬁation. The restriction M = E:M& =0 (the_sum being taken

over ghongns) tqgether with the restriction that parity is even-~i.ee.

I '.;. | s ' , ‘
Tt = @2=® - o (4ed2)
fhoweons A ' v ' . .
. enormously reduces the number of states that must be considered.

(In (4.42) n(L) denotes‘the number of phonons in all state character=-

' ized by angular momentum L)



_Even with these restrictions, the number of states to be
ﬁonside!d results in a problem that exceeds the capacity of any
computer. It is essential to introduce ;t the outset hypothetidal
notions about the relative "impartance " of various basié vectors.

A vector ié said to be "important" if inciuding it in the funda-
mental expansion (4.1) reéults in an energy that is significantly '
‘lower than the result when the stabe is not included. Our intui-
tive ideas about ﬁmqmmtaﬁce$a5 are then checked by computation
and accepted or modified, as the case may be. |

We begin'the explict denumeration - of states by restricting
" ourselves to the radial ground;state N=0. A1l other states can
then be though of  as ariéing from these states by "radial excitatiéhs"
and will be relatiﬁely easy to describe.

The one-phonon states can be written down by inspection. The
 condition on parity dictates the one phonon_be in'a state of even L;
ji.e. L:O or I=2. f(We do not allow 1= Statés). The other_édnditidn
dictates M=0. Thé only pbssible states are then /1) and /3) -'(see
Table 2 to verify state /1) corresponds to L=0, M=0, N=0, and
/3) corresponds to 1=R, M=0, N=0).

The two-phonoﬁ states are only siightly more complicated.

' The two occupied modes can have the.following péirs of quahtum numbers
- L: I=0, L=0; I=1, 1=1; I=2,I=2; IL=3, L=3; or L=l, L=3. These
"=profiles" are written 82, P2, D2, FZ,'and P respectively. |

Similarly, the possible pairs of quantum‘numbers M for the two
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_ _x’ - phonons are, respectively (by pai;s): M:O,leoj M=+¥1, M%nl;
M=12, M=-2; M=t3, M=~3. The two—ﬁhohon states satisfying these
}'éoﬁditions are easily enumerated: | )
/1), f22),  [5,8),  /33) /6,9), /11,13,
fioh)s  /1520), /12,04),  A15,16), /1,3,
/5510),  /8,9). B

The states with three or more phonons require an even more systematic
approach. It is, of course, péssible ﬁo assign the task of con-
structing these stateé to the computer. That would be easily
‘programmed, but it would be a short-sighted ﬁdlicy; because we ¢ould
not possibly do the numerical computation with all the states the
computer would giv% us. The classificatiohvschemes that we will

v dlscover in the course of constructing the list of states w1ll also
be useful for ch0031ng whlchlones %oilnclude, and for ordering them

-

.

P : 1 [
. £ i

> ‘in a suitable sequence. Iﬁ

§oo
i

-iﬁg?, -; One scheme’that suggests 1tse1f is to consider first only S

f states (a tr1v1al case), then S and‘P states together, and so one

S . ' : : ‘
[ ¢« 'to-face the problem of writing down all six~phonon states, for

_;E ;'g }aThls will be only temporarlly useful because we will stlll need.

|
% example, with L = 0,1,2,3 adnitted. This will give a very large
number of states, so it is necessary tofbegih thinking about relative

orders of imertance. Suppose that we have proceeded along such a

sequence to the point where we are ready to admit Dephonons. It
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Cis natural tbréonsider first stétesvwiﬁh éhe D-ﬁhonon, then states
- wlth two D-phonons, and so on. Bﬁt among those stdtes with one D—
phonon (for example), we will encounter states with (addltlonally)
two P~phonons, others with four P—phonons, and so on. It would be
a plausible.conjeéturé'that among those states with one D—phonon,:
those with successively larger numbers of additional P-phonons would
be successively less important. (This conjecture will be confirmed by
. pumerical computafions). It is then suggested that we invent an index
thaf describes not only the highest L-mode occupied, but also takeé
into account the number of phonons in this highest L mode and in the
other lower I-modes I#0,1,.... A simple and (as it will turn out)
very useful index that has this property is the index we shall refer

to as the xggg; R. This is defined as
=Y &n) | | (4e43)
L ' -

‘where, as in (4.42), n(L) is the number of phonons in éll modes
characterized by angular momentum L, Note that (4;42) then implies
that states with even parity have even rank, states with odd‘parity

" odd rank.

| The rank has an interesting relation to the second pertﬁrbation—

, thééreﬁic calculation we discussed. In this calculatibn, the zero-

. order soluiion coincides with the Lee~Low-Pines splution, and is
" described éntirely in terms of S-phonons. The first-ocrder theory gives

rise to states with rank R=2, and the next order to R~4 states



(in additioﬁ, of ceﬁrse5 to modifying the distfibution of R=2 and
R=0 states). Succeeding higher orders giﬁe rise to states of rank
R=6,8,000e |

As one considers a sequence of trial functions, containing

first states of rank R=0 only, then successively states of R=2,

4,6, the n=th trial state includes all besis vectors that would be

included in the n~th order perturbation theory. (The cohverse ‘is

not true: there'aie a few special cases of states of R=2, for

-:eXample, that correspond to second-ordér perturbation, not first).
_ The calculations arranged in this way are rot, of course, equivalent

‘to perturbation theory (even ignoring the exception just mentioned).

The resulting eigenstates will, in general, not ‘be given by the same

setiefdmplitudes for the various basis vectors, as would be dictated

by perturbation theory. The energy as determined by the varia-

tional calculation will, in general, be lower then the perturbation

. theoretit¢cresult of corresponding order, in the sense described here.

The usefulness of the rank, R, as defined by (4.43) would
at first glance appear to be severely impaired by the fact that
the rank is insensitive to the number of S-phonons (1=0). The S~

phonons in any case Qill play a special role in our calculation.

- For other reasons we will want to consider the number of S-phonons

as an independent chafacteristic, or index, of a state; and we will
want to study this characteristic separately. We will see below that

the problem can be reformulated in such a way that the S-phonons
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(partlcularly the N=0 S~phonons) play a very minor ‘role in the ex=
p1101t basis. These circumstances together weaken the force of
the objection that the rank R is ineensitive to S-phonons.

For the present, we make use of the rank strictly as a "book-
keeping device." TFor states Qith a prescribed number of phonons,
and a prescribed rank, it is possible‘to write down by inspection
the corresponding allqwed L-profiles. For example, threeéphonén
states of rank R=2 must be either SlP2 or.$2Dl. The three-phonon
states of rank R=4 will be SID°, STPFY, or P°D states. For each
of these "L~profiles" it is possiblé to write down the;allowed
Mi-profiles” that satisfy the requirement M=O. From these dis-
tributions it is then an easy matter to write down the states ex-
plicitly in terms of fhe occupation numbers ('or;rather, in terms
;Z of the alternatlve notatlon defined by (4e4d))e

We have already said that S-phonons w111 turn out to play a

pécial role and (after somé manipulations to e discussed in a
later sectlon) in fact are reiatlvely unimportant. This circum-
stance suggests that we further qlmpllfy the labor of constructing
long lists of states by wrltlng down only those states with no S~
~ phonons. Each state of this list then leads to a sequence of related
. admissable states by successive additions of S-phonons. As a short~
hand device, each state of our abreviated list can be taken to repre-
sent itself together with all other states derived from it in the

manner described. Ig.this sense, the vacuum state reminds us of
S

_—



~6o=

i

the whole sequence of states /0), /1), /1,1), /151,1)540.5 formed

from the vacuum state by the successive additions of N=0 S-phonons. |

With this convention, we can easily write down all states with
total phbnoﬁ’0ccupations up to reasonably high numbers and rank
up to R=6, for example. Such a list of states is given in Table 4.

~ In following discussions we will refer to the states given

- in Table 4 as "§keleton states" because they form a kind of fréme-
work, or skeleton, from which the complete liét of states (with

- S-phononé and radial excitations) can immediately be buiit.: Let us
look now at just hoﬁ this may be done.

A "padial excitation" refers to the transfer of a phonoﬂ from
a state L,M,N to a state L',M!,N' with L'=L, M'2, N'> N,
With'the;particulaf'ordering of states given in gghig_g, this-alwéys
cor¥55pénds to a ﬁ?ansition from the i~th stat? to the (i+16)th
state (if N'-N=1), to the (i432)-nd state of N1 = 2, and so forth.
As?an example; consider thé'"?keleton state" /5,8). From this state
we can derive by radial excitations the seauénee of states /5524)
/8521); /2L,24), /5,40) /8,37, [21,40),124,31); [31,40)sueee
Each of thesé staﬁes is characterizéed by having tw6 phonons in I=l,
M=l and L=l, M:;l, reSpectiVely; They differ in their patterns of |
vzv-radialimode aistributions. We expebt'thafiihese stétes,'derived by
. successiveiy higher-order radial eicitatioﬁsrwill be (at least
.foughly) in descending order of-importénce. This expeotatibn wili

be confirmed by our resultse.

b
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TABIE 4: | Ili-st of'"Skeléton States" by Ra:ﬂ; (r)
R =2 2, 2 2, 35 4 2, 2, 5, 10
| 5, 8 by 5, 9 2, 8,8, 12
Ly 6, 8 2, 55, 5, 14
R =4 3, 3 3, 7, 8 8, 8, 8, 15
6, 9 2, 75 9 5, 5, 55 16 -
11, 13 3, 5, 10 3, 5, 5, 13
2,2, 3 2, 6, 10 3, 8,8, 11
2, 5, 9 8, 9, 12 2, 2, 2, 2, 3
2y, 6, 8 5, 6, 14 2, 2; 3, 5, 8 |
35 5, 8 8, 13, 15 3y 55 5, 8, 8
5, 5, 13" 5, 11, 16 2, 2,8, 8 11
8 8, 11 2, 2, 3, 3 2, 2, 5, 5, 13
2,2, 2,2 2, 2, 6, 9 | 2, 2, 2, 5, 9
2, 2, 5, 8 2, 2, 11;~13 2, 2, 2; 6, 8
55,8, 8 53,58 2,558 09
| _ 5, 6, 8, 9 2,5, 6,8, 8
R=6 4,74 5, 8, 11, 13 55 55 55 8, 13
7,100 2, 2, 2, 4 5, 8, 8, 8 11
12, 14 | 2, 4y 5, 8 2, 2, 25 2, 2, 2
15, 16 2, 2, 7, 8 2, 2,2, 2, 5, 8
2, 2, 5, 5, 8 8
54 5y 8, 8, 8
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A second consequence of admitting radial excitations is that

each skeleton state (or, for that matter, each state with radial

excitations) leads to several sequences by the addition of ground-

state (N=0) gr radiallx—exéitgd-ﬁq> 0) S-phonons. The state £5,8)

_then reminds us of the existence of the states /1,5,8), [17,5,8),

£3355,8) 50003 /1,1,558), /1:17’5:8): /17,17,5,8), /1,335558) 50003
/l,l,l, 5,8)y /1,1,17,558)5.. o/17517,17,5,8) 5000y /33:33,33:5,8)’ cse

Of course, there will be a similar sequence for the state /5524.)

‘and for every other state derived by radial excitations from /558)e

It is clear from these observations that the moderate number

of skeleton states (Table 3) can lead to an enormous number of basis
states if more than just a very few terms from each of these sequences

~ are included. Unless the sequences of approximate eigenvalues

converge extremely well, the size of the basis will have exceeded

the maximum size (as determined by computer characteristics) before

satisfactory accuracy is achieved. Having devised a systematic

procedure by‘which:we can, more or less easily, write down explicitly
those States £hat enter into the calculation (in prinéiple), we must
now turn ouf aﬁtention to determining, systematically;by numerical
coﬁputation, what states must be included, in practice, to achieve

a giﬁen standard of accuracy. More realistically, we will want to

optimize the results for a given size basis (the maximum size we can

handle) and then to try %o estimate>the accuracy of the results.
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'Y, THE METHOD OF ANALYSIS

In the previoﬁs section we outlined a procedure for the s&s—
tematic description of a large set of basis vectors. In this |
connection we found it useful to characterize each state by an
index, ‘called the rank. A second characteristicsof a given state
is the pattern of radial excitations. Still another might be taken
to be the number of S-phonons. In order to visualize thé process
we are about to describe, it may be helpful to think of each of
these characteristics (rénk, pattern of radial excitations, etc)
as a coordinate difection in an abstract vector space, S. The '
dimensionality of S depends on the number of characteristics we
. want to focué attertion on., Each point in this abstract space; S,
then represents a set of §§g§§§, the characteristics of the set
correSpondlng to the projection of the p01nt onto the various
'coordlnate dlrectlons. For example, if the "R-coordinate™ is.

R=2, the set is a set bf states with rank R_2. (For most coordinates,
or characterlstlcs one may think of, only 1nteger-valued coordlnates |
are permltted)

Practical consideratidns restrict 6ur basié'toAa~strictly
limited number of basis vectors. This situation can be represented,
a llttle loosely, by saying that our basis must correspond to a
Vllmlted (i.e. not too large) "volume" in our Space, S. We will
find, for example, that we are able to include.states only up to

f

rank Reb (or, in some circumstanc'u, R=8). That is, we can go only
% ,

so far‘out the R-axis. For a giv,n choice in this respect, we will
. , {
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be limited torstates with some restricted pattern of radial excitations;»
o of coﬁrsa, the restrictions are not independent; if we restrict
ourselves mofe-severely in one respect, we can allow more freedom
in another. The process of optimizing these choices is a somewhat
laborious one, involving repeated computatlons with gifferent
sets of basis vectors, "explorlng" each of the various directions
in the abstract space Sa

In this proceus we make fundamental use.of a notion that is
' hot rigorous but which is extremely useful. “This is the notion
“of the incrementél change in the eigenvalue correspoding to a par-
tlcular state or (more often) set of states. Think of doing a vari;
ational calculation with some basis, B; (con31st1ng of n basis vectors),
call the corresponding eigenvalue En. Repeating this calculation
- with some larger basis B 1 (which includes Bn), one gets a second
(better)'approximatioh Eﬁ" The difference En,-En is then thought of
as ﬁhe increment résulting from the set of basis vectors that are
| included in Bn, but not in B .

Now strictly'Speaking, this notion has no meaning, because the
blncrement E=E !t E depends not only on tﬁe augmented states
B ,-B but also on the "background" of ‘states B itself. This fact
| notwlthstandlng, one finds one can speak as if the increment E were
-a functional of the set Bn,-»Bn and that this notion has semiquanti-.
tative validity.

We will generally be concerned with sequences of increments:

'El, E2,..@, and we will find that the properties of these .sequences
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(such as rate of cénvergence) will be largely unaffected by the
"packground" of states which is common to all the bases in the sSequence.
In this connection, there is one precaution that should be taken.
The nested sequence of basis vectors should be arranged so that the
corresponding increments in the eigenvalﬁe are monotonically
decreasing, or as close as possible to monotoni;ally decreaéing.
That is to say, we should begin with the most important states,
and add sets of states of successively smalier importahce. dne
can be misled if one goes very far down one-sequence, studying |
the role of states of very minor importance, while states of relatively
much greater importance (perhaps belonging‘té some othar sequence )
have not yet Eeen included. As an extreme example of this siﬁuation,
one can‘even»reach the apparent conclusion that a particular set of
_ states gives a stricfly vanishing contribution to the eigenvalue

(when iﬁ fact thié is not the case). Suppdse one excludes from the
- background of stafes B all states that are connected to the incremental
set B ,~B, by the Hamiltonian. The new set is then "isolated"

and thevborresponding amplitudes will ail vanish. This situation is
‘not likely to arise in pchtice;vit is mentioned tb_illustrate the
role that theu"backgrOund" of ététes can play, in pfinciple. |

A detailed.discussibn'of numerical results will be the subject
fbr a following chapﬁer. Here we want to anticpate one aspect of
the iesults that was discévered in preliminary gompﬁtations, and which

will require special attention. We refer to the role played by the



phonons in the ground state (1=0, N=0). We enter into this discussion
here because the difficulties that arise will require a very impartant
- modification of the procedure. This modification will also be re-
flected in the analysis of numerical results, to be considered in
a following chapter.
Consider a particular set of states (e.g. all skeleton states

of rank R:A); and then consider the sequence of sets derived from
this set by sﬁccessively adding more ground-state phonons to each
state. If there are n states in the original set, there will be

n states with one "augmented" S=phonon, n stafes with two S-phonons,
and so oﬁ. In the course of studying the eonvergence of the corres-
ponding sequence of eigenvalues, 6ne~finds it'necessary to include
(fﬁr a fairly large claés of skeleton states) states with as many

as ﬁwelye of fourteen S~phonons before even moderate accurécy is
urachievéd; The situation is less severe for weaker coupling-(g%z-l)
'-but becomeS'intolérable for coupling stréngths g?>> 5. As the effect
 of including (up to ) n "augmented" S-phonons is to myltiply the
size of ‘the basis by n (and the number of matrix elements by n2),
this circumstance:could have catastrophic implications for our
computation. | |

Analysis shows that this regretable situation is not really
- surprising. Recall that the Lee-Low-Pines*calculation was con=
cerned with the role of S-phonons, and that our ground state corres-

ponds closély to the (one) state used there. The Lee~Low-Pines solution
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gives an amplitude

o, = (/p) = &2 | o Ga)
for finding exactly n phonons in the ground sfate; One would not
expect to get smooth or rapid convergencé until one had included
states with 1,2,...n' phonons, where nﬁ is in the asymptotic
region (i.e. where c n! is small and remains small for n>n' )
The close:correspondence between the convergence behavior of the
numerical‘résults énd;the predictions of this model suggests that
the Lee—Low-Pines Ealculatipn is applicable to this analysise
This insigﬁt'will also provide us with a means of circumventing
the difficulties. TInasmuch as the difficulty is seen to arise
from the distribution of groundfstate phonons, and inasmuch as the
Lee-Low-Pines calculation describes the distribution of phonons in-
v this state (apparently to a good approxlmatlon), it is suggested
-that we 1ncorporate the Lée~-Low~Pines work analytlcally in our
‘procedure before commenC1ng with the numerical computatlon. |
Con31der the case P=0, with Z=1, so_that we can identify our
ground state L:O,’N=O_With the Lee-Low-Pines function (k) as given
by (3.11); The Lee-Low-Pines solution (3.8) can be written in our

notation

, ' - + _ | ,
/B) = exp (iW (ay +5.)) /0) » | (5.2)
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A generalization of this result is to write a variational trial state

in the form
o . E ‘
/8) = exp(iW (&, +4; ) ) /") (5.3)

where /#') is an arbitrary state to be described by an expénsion
of the form (4.1); That is, we can regard (503) as a unitary
tfansformatibn from /@) to /¢') and prpceéd as beforee
:'{The factor W arises because the "tiailslation function® f(k)

dii‘feré from the gromd-stgte Roo(x) in that the latter is normalized
"~ while, 't‘he _fprmer ‘is not. - The Lee-Low-Hrie’é solution cbrresbonds to
'w,_z'-('g2/2)1/ 2, - One can now regard W as a second non-linear vari-

- ational parameter I(in the same sense as Z)e

i‘he unitary operat@r
U = egip(iW'(Al,‘_+ A)) . . (544)
gégerafpes t'he"‘-'l‘,'ran;sformed operators
E, v= u"lgu = A+ wgi,l - | o _(5.5)'

- which equation corresponds to the rule formerly written

- a'x v+ fazx) . . . - (5.6)

—

®

X
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The transformed Hamiltonian B = Uy differs from H (in form)

by the addition of three sets of terms:

H L= H +H (507)

HH FH

Ql

What is meant by (5.7) is more precisely ECKi,Ki ) = H(Ki’ Ki HHeooo

The term HI is proportional to the identity operator, I, and is

given by

2
Hy = L SR 2 3, _(5.8)

The integrals T;; and J, ave defined by (4.37) and (4e38).

The second addition, HQ,, has a more complicated forms:

-

- o ot
= (T al,3,1,0) (A, + AAL)
A J 1

Bt

+ . ,
+Q(1,1,5,1) Ajh; (5.9)

T G +1 LA
+ (ijkci(l,a,k,l) (ashhy *+Byhsh) )

The integrals §(i,j,k,1) are defined by (4+39).

Finally, the new interaction-like term Hint' is given by -

r

Hygr = WTpp (B +4 ) - (5.10)



a An important p01nt is that wlth a sultable ch01ce of W
the term H 41 can be made to cancel out the term H, (see (3.1))
‘exactly. This is the same value of W that minimizes the value

H, , and corresponds to the Lee~Low-Pines solution.

I
We have restricted our comments to the case P=0 because

Viny'in this case does our ground-state Roo(x) correspond to
the Lee-Low-Pines momentum distribution f(x) (except, as we havé
said, for normelization). In the genéral-case, PAO, the operator U
(5.4) still generates a unitary transformation that is well defined
‘and that we will find useful. But this is not the same transformation
as was used by Lee-Low-Pines for the case P#O. |
For the essentially trivial case /80 ) =70} (ih. (5.3))
our result coincides with the Lee-Low-Pines calculation. Successive
higher approximations (i.e. all non-trivial terms in our computation)
can then be lookeé'at as correction to the Lee-ﬁdw—Pines solutione
In this sense, our camputation can be said to begin where the
.Lee~Low-Pihes result stopse
| Note that the transformation (5 3) is not equivalent to the
Lee=Pines "factored" trial state, given by (3.20), which equatlon
“has a similar form. The Lee~Pines state (3.20) includes the 1mp11ea
restrlctlon that the second factor /@Y) has no occupations of S-
states. We dovno£ meke this assumption; our equation (5.3) 1mp11es‘
no similar loss of-gqnerality.

With the modified trial state (5.3) the Rayleigh quotient
(4,59)/(#,8) takes the form




~56m

@, | ug) @, Eg)
= I o (5.11)

@vtug) tg,9")

which shows>that we can use the transfcrméd Hamiltonian H .
and compute matrix elements of H between basis states in the
same sense as we formerly computed matrik elements of H.

Our modified trial state can then be described alternatively
 as a unitary transformation of the matrix representation of
the Hamiltonian. Thié.transformation in some sense brings
the matrix closer to diagonal form, simplifying the ekpénsion
of the eigenstateé,

So faf we have described this device as a plausible conjecture.:
Preliminary'calcuiétions (and‘succeeding ones ) confifm.that this
procedure succeeds almost beyond reasonable expectatlons. The
: measure of success in this instance is the question of how many
.S-phonons must be 1nc1uded in basis states in -order to achleve
satlsfactory numerlcal convergence. If the factor (5.4) were to
descrlbe the distribution of ground-state phonons exactly, then no
occupat;ons of this state»would have to be included in the explicit
basis. Now that is not actually the case, but we will find that we
ﬁeed to include only one or two S-phonons, and - these only for the

most important "skeleton states."
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| The usefulness of this transformation would seem to suggest
h that there may be other similar transformations that furthérA |
reduce the difficulty of the numerical computation., One such 7
: transformation is naturally suggested by the procedure of Leemfinesg
Each additional sucﬂ transformation, however, introduces additional:
terms into the Hamiltonlen which increase ths complexdty of the
j } nurerical computation in other respscts, The additional terms
give rise to new matrix elements, complicating the logic of

" computing these elements, and tending to offw-set the a&vaﬁtage |
. iof the transformation, While sucﬁ & transformation would be iikely‘

“to reduce the size of the basis, the corresponding matrix would \\\'

be less sparse, introducing compensating difficulties of storage ?\\'
and efficiency, These considerations lead to the qusstion of
numerical techniques, which will be the subject of the following

chapter,
L

3
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VI. NUMERICAL TECHNIQUES

In the previdus sections we describéd, in principle, a

systematic procédﬁre for determining thevground eigenstate and
" eigenvalue for the polaron., After transforming the Hamiltohianv
(2.39) by the unitary operator (5.4) the procedure is to expand
the trial state /@) as a linear combination of basis states, which
:are chosen in advance., The Rayleigh Quotient |

Ay o

B = ee———— ' - (6.1)

(8/9) ' ’

‘then takes the form
g o= AALId o (6.2)

Here xi are thé cbefficients in the fundémental expansion (4.1) _
‘of the trial state, and the Hij are the matrix elements of the

Hamiltonian between the i~th and j-th state of the basis
Hy, = (i/ H /i) - (6.3)

“As a preliminary step, one must compute these matrix elements.
The matrix elements will typically include two factors: One factor.
is a function of the occupation-numbers of the states (modes) in-

volved in transitions, and arise from the action of the creation and
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destruction operators Ai and Ai s respectively, adcording to the rules

By fay gy en) = VL peeenelen) (6

)

A, /hl,'n , “f) Y n,+1 /hl,...ni+1,,..) (645)

 The second factor will be one of the integrals Ti50 I QE3.k1),
or Kﬁj given by (4637), (4.38), (4.39), (4.40). Explicit formulas
for these integrals are given in Appendix A. o

Assuming now the matrix elements Hij are known, the condition

p) 2: E:‘li. i X,

X

é;a S SO . e =0 (i=1,2,...n) (6.6)
L
‘ i i
leads to the system of equations
gj( H -ESJ._J.) x, =0 (1=1,2,.,.;1) | (6.7)

for the expansion' coefficients (variational parameters)., Here E

mneans - _ :
R IDN .
L o ijoiydy . 6.8)
s . E = : . °
| L2 -

i %

which, of'course, is the energy eigenvalue when the Xy éétisfy (6.7).
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There are a number of well-known methods for numericallyv
determining the eigenvalue E and the amplitudés X;o Which method
‘is appropriate depends on the characteristics of the problem
at hand. The most important characteristic of our problem in
this respect is that the matrix (H;;) is very large, and that it
is reasonably sparse. We will need to deal with matrices of
dimensionalities rahging from about 100 up to almost 1000. For
a typical basis one finds that about 7 per-cent of the matrix
- elements are hon-zero.

The most 6bvious problem is that of Storing the matrix eléments ,
themselves. Because these quantities are used repeatedly iﬁ the |
computation, it is almost imperative that they Be stored in thei"fast
memory"éof the computer, rather than on tape 6r disc. Now é matrix
of dimensionalitvaOOO has lO6 matrix eléments, which figure exceeds
the capécity of the largest computers by a factor éf ten. One must
then take advantage of the fact that the matrix is éparsevby storing
only the ﬁbn—zero elements (together with a code giving the location
of each non-zero élement), | |

| These same éqnsiderations of space exéluﬂe?frdﬁ considératioﬁ
any ﬁ&merical‘methods invthe course of which the matrix "fills
up" wiﬁh non-zero elements—-i.e., any.method that requires storing
appreciably more inférmation than is contained in the matrix itself,
This effectively excludes computing high powers of the matrix, or

. its inverse,
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Theserconsidérafions point in the direction of the so-called
- ecyelic iteraﬁive methods of numerical analysis. In these schemes
‘the'basic operafibns are matrix multiplication alternated with
'i£veréioﬁ of a very small, or even trivial (i.e. diagonal) sub-
matrix, ih_terms'of our reqﬁirgments, this approach is suitable
because these operations can be carried out very ﬁaturally aﬁdv
-efficiently for matrices stbred in the form we have'deséribed.
Moreover, the amount of information to be stored remains constant
throughout the computation,
Cycllcvlteratlve schemes have another prOpefty that wiil fit
,'§ery conveniéntly with our purposes. One ordlnarlly beglns such
- a computatlon with a rough (or even arbitrary). approx1matlon, and
approaches the solutlon in a sequence of convergent steps. It is
very natural'to choose these steps to coincide with the.solutions:
cbrreSponding to sﬂcceésiVely more general sets of basis vectofs.r
fThe sequence of 1ntermed1ate elgenvalues obtained then glve us the .
flnformatlon we need about the importance of the various classes of
 states:' We have, tthen, a happy coincidence between our requirements
'vin,principle;'and whét is naturaily suggested by practical considerad: -
‘tioné. |
When a’ Sequence of 1ntefmed1ate values is requlred, the iterative

“schemes are 11kely to be mOre efficient than other procedure». This
is because the work is cumulatlve each step makes eff1c1ent use of

the information gained in previous steps. Moreover, the beneflts are
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greafest where they are needed most. As the basis (and the matrix)
- increases in size, the solution is presumably conyerging, so that.
progressively fewer iterations are required to obtained the next
approximation to a desired sténdard of accuracy. We have here a
second important reaéon for ordéring the states so that successive
,incremenﬁs in the eigenvalue tend to decrease (in magnitude)
monotonically.

The eigenvalue E in (6.7) is determined in prinéiple’by the

condition
det (H~E) = 0 | | (6.9)

which implies that tﬁe.system of equations (6.7) is "redundant:ﬁ

One of the cqefficients x; may be chosen arbitrarily, and the
remaihing n-1 coefficients are determined by any subset of n=1
equations taken from (6,7). In our case it will be convenient to
standardize the solution by taking the_first coefficient Xy = 1,

and to consider the last n—i equatiqns as determining the coefficients
x; (i=2,3,.cn). \

In this‘probiém we begin withgut precise knowledge of either
the eigenvalue E or the eigenvector X = (Xifx2"")' From previous
calculations (particularly that of Feyhman, discussed earlier) we do
have an~es£imatev(and upper bound) on the eigenvalﬁe E which may be
regarded as & decent approximation. In this special circumstance there

is a simple and rapidly convergent iterative scheme for determining the
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~eigenvalue. Let us assume for the moment that we have a suitable

scheme for solving the system
> (H,, -E§. )% =0 (122,3,.0un5 x, = 1) - (6.10)
i=1 J d Jd

for xi»(i:Z,B,...n), assuning E is given, (We shall return soon to
the question of héw this can be done. Suppose that E =E_

is an initial "guess" for the eigenvalue (based, if one chooses, on
previous calcﬁlations); oﬁe can then solve the system (6,10) for

the first approximation X = X(l) to the eigénvector. (if the

schéme forvsolvingi(é.lo) is an iterative one, the zero-th order
approximation;XEX(o) will also be needed). If we can prescribe a
rule for determining the next approximation E = E(l) to the eigenvalue

(1)

using the vector X'7/, then by repeated application'of this rule one - .
can define a éyclic iterativé scheme for -determining the eigenvalue o ‘ i
E (and the eigenvéctor X). o
We seek a fgnctional:df the vector X that will give us the best

. possible approxim;tion to the eigenﬁalué for a given>approximation

Hté the eigenvector.‘ We recall that the Rayleigh quotient (6;1) itself
has the property ghat it is stationary‘as a-funéﬁional of X if X | g
is near the eiéenvector, That is to séy, aﬁ error.dX in ihe‘eigenVector |
' causes a ffactional errdr‘gf order (dX)2 in the éigenﬁﬁlue,'when'the.

- latter is computed from the Rayleigh quotieﬁt,
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Accordingly, it is suggested that we define our iterative =

scheme for determining the eigenvalue E by the equations
T Ll ) @) -
R H. . - E : o] X, = 0 6.11
; (8, PIES v (6.11)

for i=2,3y...n3 and
: (X.(n)y HX(n) )

(n) _ N
glie) o (X(n),X(n)) (6.12)

To rev1ew brlefly what this means, we begin with an approxi~-
mation E = E(O) to the elgenvalue,'and solve the system (6.11)
for the appoximate‘eigenvector X = X(l). (We will discuss below
just how this may'£e done). This vector is then used as the

' gumenﬁ in (6.12) to compute E(l). The cyéle is repeated by

agaln solv1ng (6.11), this time with E = E(l)
Tt is found in practice that this scheme is both eff1c1ent
v.and‘remarkably insensitive to the zero=th order approximation
to the elgenvalue, particularly when the approximate value lies
below the true value. If one takes care to slightly under-approx1—
mate the eigenvalue, the procedure convergeé very rapidly, and aIWays
t§ the ground state.
We turn now to the question of solving the system (6.10) of

n~-l linear equations, given E(n). It is this step that presehts the
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greatest difficulties ifi terms of finding a procedure that is efficient
in time and space. The arguments givén earlier in favor of the cyclic .
vitérative pfOCedures apply particularly to this problem of determining

‘ o X for a given E,

For the present discussion we write the equations (6.11)

“in the form
. Here A is the matrix H-EI, and Y is the inhomogeneous ter (vector)
that results from the convention X = 1.
Suppose that we write
so that if X is a solution of (6.13) it is also a solution of
DX = -UX + ¥ | | {6.15)

_The?form of (6.15) then suggests the iterative scheme defined by

Dx(‘_")' = D) gy O (6.16)

This scheme satisfies all the requirements that arise from limitations

of space, if the decomposition A = D + U is suitably chosen. Whether

the scheme is also efficient in time will depend on the rate of con~-
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vergence which depends, in turn, on the decomposition.

If the solution of (6.16), i.e.
x®) = pl( g xn-1) 4y ) (6017)
is iterated formally, one arrives at the series

PG R B O S s (6,18)
_ j=0 A
As.in,the aﬁalogous algebraic series, to proﬁe convergence it
is sufficient to show that the operator D—lﬁ‘is "small, when small-
ness is measured in the appropriate way. In this case a éuitable
measure is the "spectral fadiuso" One can show that the series (6,18)
will converge to the solution of (6,13) if the spectral radius of DU
is less than unity, Here we are not concefned, in fact; with formalv
quéstions of convergence, but with practical problems, particular .
with régérd to the rate of convergence, It may happen that a schene
that cénverges inlprinc%ple converges so slowly ih practice that it
is not usefule
One choice for the matrix D corresﬁoﬁdé to the.well-known

Jacobi'methaa.lé

In this procedure, D is chosen to be diagonal,
 Specifically, D is the mat®ix derived from the matrix H - IE by
setting all off-diagonal matrix elements to 0. In our problem, the .

.Jacobi method does not result in satisfactory convergence, except

for the case of very weak coupling. The procedure which we use, and

/
|



which will ‘have non-vanishing off-diagonal elements,

will be good or bad according to the particular choice of basis vectors—

‘i.e. according to what restriction of the Hamiltonian is being consi-

b7~

‘which we are about to describe, corresponds in a sense to a generali-
zation of the Jacobi method. The matrix D will be chosen to be

diagonal, except for a relatively small principal submatrix, DY,

Our procedure is motivated by the conjecture that the iterative

scheme (6.17) will converge more quickly, generally speaking, if the
matrix D is, in some sense, an "important" part of H. It is necessary .

now to give some kind of operational definition to this notion of

. "importance. "

We have already seen, in the context of our general discussion,

- that each specific set of basis vectors leads to a matrix H, which

matrix in turn defines an eigenvelue problema This matrix H is

‘referred to as the restriction of the Hamiltonian to the space

spanned by avgiveﬁ set of vectors.

"In making oﬁr choice of the matriX-D;’lét us consider the class
of matrices that arise from the Hamiltonian in the mamner described
(i.e. in the -sense of restriction)° The eigenvectar and eigenvalue
of eaéh_of these matrices may be regarded as an approximation ﬁdlthe

eigenvector and eigenvalue of the Hamiltonian. This approximation

dered.  This suggests that these matrices (i.e. these restrictions

of the Hamiltonian) may be regarded as "important® or "Unimportant"
accofding tolwhether the ground eigenvalue and eigenvector give.gobd

or bad apprdximations to the eigenvalie aﬁdieigenvector for the polaron,

Our conjecture then suggests that D be chosen so that its ground' 
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~ eigenvalue and eigenvector correspond as‘closely as possible to the

exact eigenvalue and eigenvecfor of the Hgmiltdnian. |
Practical considerations at the same time put a certain

restriction on the choice of D, According to (6.17), the itefation

requires solving an equation 6f'the form
DX = V | (6.19)

This step we will want to solve directly (as opposed to iteratively);
otherW1se we become involved in an absurd regression of 1terau10ns
within 1terat19nsl Wlth limited computer memory, only relatively
small iinear systems can be solved in this manner. (This remark

| applies, of coﬁrse,'only to non-trivial linear systems). Suppose

that D is of the form

- D'!,O
D = -~ ol - o ‘ . (6,20)
o | F

!

where F is a diagbnal’matrix, and D! is acﬁatrix ihat has, in general,
non-vanishing of f~diagonal elements. The restrlctlon ‘that we should
 be able to solve (6 19) dlrectly then imposes a restrlctlon on the
dlmen51ona11ty of D!,

Note that the elgenvectors of D! are . also elgenvectors of: 7
:‘D (1nsofar as the former may be thought of as being imbedded in the
1arger space). Our congecture then 1mp11es that D' should be chosen

!
so that its eigenvalue and.eigenvector coincide as closely as possible
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©with the.eigenvalug and éigenvector for the polaron. The set of
states to which Df—éorresponds (in the sense of restriction) should
then be the set of the most "important" basis ve¢tofs-;i.e.'the
basis'#ectors whose ampiitudes in the polar0n eigenstate are large.
The number of vectors to be included in this set (i.e. the dimension-
élity ofaﬁ')bis then limited, as we have‘aiready said, by practical
~ considerations.
Wé'are ﬁbw ready to give the prescripbion according to‘which
the matrix D is chosen in our computation;; We state first that D
~ is chosen to be of the special form (6.20). On the basis of intu~
-ition, and preliminary computations, a set of about twenty of the
ﬂ.most Mimportant® basis vectors is chosén.A‘(in practiée this set
consisted mainly-éf the so-called "skeleton states" of rank R less
~than 6). The matrix D' is then determined by this set. The diﬁgonal.
‘elements of the métrix F are chosen so that these elements (as they
'ioécur in D) are identical to the cofrespbnaing diagonal matrix |
' elements of H=-IE (i.é., exactly as théy-would be»giﬁen by the Jacobi B
‘ methdd)-  {§ |
Wéiemphasize that the choice of'D,'énéé made, is not changed in
~the cqufséiof the comﬁutation. As new staﬁés are added, the diagonal
‘elements corresponding to these states beg&ﬁe-part'of the suﬁmatrix
F,"and'the of f-diagonal elements become part dffthe submatrix U,
Thisrprocedure, as desribed above, gives satisfactory con-

o vefgende for a range of coupling constants that is not restricted
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to the weak=coupling range. 'Howevér, tﬁe rate of convergence weakens
:as the coupling strength-increases. The convergence becomes too weak
+6 be useful, and then diverges, for coupling strengths within the
fange we want to study. Fortunately, this situation can be corrected
by a simple modification. ﬁ

The modification is suggested by studying the detailed behavior
of the solutions in the case where the convergence is very weaks
It isvfound that, in général, the componenis x; of the eigenvector
undergo damped oécillations (as a function of the order of apprdii—
matibn, n), With successive approximations, each component oscillates
about a meah.value‘which turns out to be very close‘to the solution
" when convergenCe'ié achieved. This suggests that the vector to be

 used as the beginning for the (n+l)st approximation should not be

“simply

.x(-"nﬂ) =0 o x4y ) o (6.21)
v (L3 |

as given by {6.17) but rather by

. (n+1) (n) |
2ntl) _ . o (6.22)
| ; v . ,

which is the average between the previous value and that suggested -

by (6¢21).
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A generalization of this form is to consider the weighted.
average
ey X )
X = : (6023)
1 + r

where ¥ ié a parameter that must be chosen in some way. If the
originai'scheme converges satisfactorily, r may be chosen to be O.
‘At the other extreme; one can show by simple examples that a choice
r>1 méy transform a divergent behavior (according to (6.21)) into
afconVergent one. ‘ | _

It ié féund that the rate of convefgeﬁce is not highly sensitive
tb'tﬁe'value of T, within a certain range. The optimum choices
of r were found to increése slightly with coﬁpling consgbant, ranging
~ fromr = O. (approx1mately) far g2 =2 to r = 2,0 for g = Te
With these ch01ces, more or less satlsfactory rates of convergence
were achleved in every case. | _ |
i vv-Ahy,ﬁuﬁaxidal:pmbﬂedure;land parficuiarly one on the large scale.
t;we are bonsidéring; is subject to rounding errors. The general
préblem of determining.the eigenvalue and eigenvectcr of‘a matrix
vof'dimensionality 1000 would indeed préseﬁt»very severe broblems’in
this respect. In our case the inaccuracies in the result afising from
rounding errors are believed to be smaller than errors due to other
' factars, and will not 8fféct the answers within the puber ofs::.gm.-

ficant figures we are interested in.
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This fortunate circumstance can be attributed to at least three
factors. The first factor is that the matrix is sparses We have
mentioned ear1ier tﬁét thé matrices we work with ggneraily have
about 7 per-cent non~zero elements. This enoimously reduces the
number of numerical steps in the computation, and greatly reduces
the round-off error. A second factor is that the matrix appears.to
be well conditioned in the context of our numerical procedures.
Finally, we are helpéd by the advance of computer technology. The
majority of the cOmputations‘(and'all of the ones with very large
bbases) were done with the CDC 6600 computer, ﬁhich has as a standard
feature a 60-bit word (which breaks down into a 48-bit fraction,
ah-ll-bit exponent,;and a sign). Translated, this means that every
number is stored to 14 significant figures, instead of 8 significant
_figurés ih‘the moreiadvanced older machines. The accurééy of- our
‘computatibn fhen almoét equals what was formerly qalled "double
_.preciéién." | |

| Vaiious checké are programhed inﬁé fhe pfocédure to give infor-
mation about about rounding-errors. The vector X as a solution of
(6.13) can easily be checked, by direct substitution. We define the

vectar V by
V=AX ~ 2 I o - (6.24)

If X is an exact solution of (6.13), Z = O. The norm of Z (eege

the Euclidean norm) then serves as a useful measure of how well



73~

X'approiimatéslﬁhe solution of (6.13). As a matter of fact, the

- vector V can be computed efficiently at everylstep 6f the iteration
vvbecause the non-triviél éteps in the right hand side of '(6.24)
coincide closely with the multiplicative step of our iterative
scheme. The‘prOCédure followed was to use the norm of ¥ as a

" test to decide when to stop the iterative cycle (i.es the cyéle

. :fof computing X for a given E).

There is an independent check on the accuracy ofaany.approxi-
mationE(n) to the eigenvalue E of the matrix H. Recall that the
system (6.10) involves the last n-1 equations of the Systeﬁ
(6,77. The first eéﬁatioﬁ has then not been explicitly used in
vthe‘célquiation. If'E(n) is exactly the eigenvalue E, this first
“equation will be a:iinear combination of some set of equations taken
Afféﬁ the5nex£ n-1 equationé. Conversely, if X is a very accurate
n) '

solution of thé last h-1 equations for B ='E*"/, then if we use

. . ‘ | . ) . . .
| - E" +.v X, =0 - 6.25 :
.(Hllv ) ,3:'2H1'33 : (6.25) .
(iﬁé;,'the first equation of the system (6.7)) to determine E!, we
. will find E':'E‘n) 3¢ 50 is the eigenvalue of H. At each order
"of approximatibn,~E‘ was computed, and the iterations wéfeAcontinued

(n)

until E' and E agreed to within one-yart in 105.



VII. RESULTS

In this cﬁapter we shall present an analysis of the numerical
results that were obtained according to the procedure outline in
earlier sections. For various coupling constants (and for several
P for each g) we have a sequence of approximate eigenvaiues.. These
approximate eigenvalues correspond to a sequence of successively |
more general sets of basis vectors. The difference between successive
approximations to the eigenvalue is then referred to as the increment
corresponding to states that are included in the larger basis, but
not in the smaller one., Our analysis will rely heavily on the
information that can be extracted from these sequences of incremeﬁts.

We restrict ourselves first to the special case‘P = 0. This
reléiively simpler problem will in fact préSent enough difficulties
to occﬁpy the largest part of our efforts.. This special casé is at
the same time sufficiently general to illuéﬁrate many of thé.queétibns
.;it is our intention to explore. |
| We pause to makgra few comments éﬁout the aCcﬁracy-of the results,
:?ﬁis¥égarding for the moment any numerical errors in the computation

itéelf (sucﬁ as rouhding errors), our resulﬁs give oniy'an-approxin
'matioﬁ to_the'exact results because our trial state necessariiy
involves only a finite number of parameters. The main body of this
chapter will be devoted to optimizing the result’of thié.finite,4ﬁiua

computationy.and to estimating the error due to truncatibn of the basis,.
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" T¢ carry out this program we need to have at the outset a
realistic appraisal of what order of accuracy we hope to achieve.

A preliminary survey of results leads to the guess (which will turn

out a little optimistic) that it may be possible to reduce the . ~-o-

fractional error to about two parts in 10° (two-tenths of one

per-cent). In any case, it is clear that it will not be possible

to reduce the uncertainty to substantially smaller limits (except

for a resﬁricted range of coupling strengths). On the basis of
‘this ésﬁimate, we make the convention that iﬁcrements in the eigen=
_Zyalue giVing'a fraction contribution smaller than two parts in
iiO4 may be ragarded as negligible. The smallest increments included
will thén be one order of magnitude smaller than the projected
funcertalnty in the result. As limitations of space will present the
:  most Serlous restriction on our computatlon, it is absolutely.
' necessary to begin with an estimate of what is important and what
:is hegligibie, Only in this way can one systematically and con-

. sistently extlude from the basis those states that give ﬁnimpertant

'f,.contrlbuthns, and makes room for those that may give importent ones.

"~ The crlterla set down here are consistent with the estlmated

numerical uncertalntles in the 1ntermediate results themselves.

- These uncertalntles are due to round-off error and to a residual error -

‘resulting from cutting off the iterations after a finite (in fact,

small) number of steps. ZThe second of these two errors is believed
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to predominate under the Conditiqns of our computatioh.x The
rule used in the computations was to cut off the: cyciiC'iterations
when (and only when) the estimated re31dual error in the elgenvalue
was smaller than one part in 105. This is better than an order of_j
magnitude smaller than the smallest increments we need to consider
(two parts in 104).' These smallest increments will then have
validity to at least 5 per-cent.

We have at our disposal an almost bewildering wealth of
_’ynnﬁerical information waiting for analysis and interpretatioﬁ;-
In order‘to carry out this analysis, which will involve constructing'
overlapping sequences of- many sorts from out tables of results,
1t will be helpful to restrict ourselves to one coupllng constant.
We choose this constant to be g = 5, This value is typical of
the intermediéte coupling region, and wili be convenient for. demon—
strating the conVergence patterns that may be found also for weaker
and stronger coupllng. When it is useful we will give Spec1flc ”

examples for other coupling strengths. - In what ﬁg;lggg all

} eigenvalues or increments of eigenvalues refer to the tase gz =5

‘unless otherwise stated.
In view of the criteria established earlier, we can say. that

2 ~3

| (for g7 =5 ) increments smaller than 1 x 10 © in magnitude may

be regarded as negligible, and a1l increments are subject to-an

uncertainty 4+ 5 x 10~5.



We are.now almost ready to begin our analysis. In an earlier

section the concept of rank (R) was introduced. The rank is defined

by

R = o n(l)L | o (7.1)
I=0 :

-and gives a one-parameter description of tﬁe angular-momentum dis-
tribution of the phonons. The rank of a state can be reiatéd
' toithe order of pérturbation-theory in which the state_first makeé
a contribution to fhe eigenstate (according to a-particﬁlar
‘perturbation-iheoretic scheme).

Prellmlnary calculatlons, which we are now ready to present,

strongly confirm the usefulness of this notion.

- Properties qgrthe ﬁqgg_igl

One simple test is to computevaféeqﬁence'of eigenvalues;,
using'first a basis of R=0 states only (a trivial case);'then
-with a basgis of of R=0 and R=R states; then wiﬁh R=0, R=2, and R=4
" states, and so on. These préliminary calculations were done with
the phonons restricted to one radial mode (N=0). In tﬁis caéé the
R=0 case (the first in the sequence) is equivalent to the Lee~Low~-
Pines calculation and the eigenvalue is known to be =5.00 exactly.
A sequencé of results is given in the following table., The first
columh describes the basis; the second gives the eigenvaluej the
third gives the differences between eigenvalues; and the fourth the

number of states in the glven basise
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R=20 . =5,0000 s ' 5
: © =0,2071 . L . ’
RL 2 =54 2071 A 7 ' , .
=0,0308 . : . )
Rg< 4 «5,2278 ' N .22 , : : S
\ ' " =0,0031 . . o .
o : 67 ' z -

R<6 . -5.2409

1 The convergence of the successive incréments is evén‘sfronger- “ ‘ -
for weaker coﬁpling, slightly wealer for stronger coupling. In
-each cace the pattern demonstrated here is evident: ThF seguence
of increménts between succeeding eigenvalues forms a monotonically
decreasing, rapidly éonvergent (almost geomatric)bsequencé.

One would also like to have it that states with the same

rank should be géneraliy of the same orcder of importance. &s en
exanple, consider the states of R=4, Exclﬁsive,of Sechonons, the

' possible distributions in L are D%; PDOF, D°; PADZ, Port; oy 2°

The distributions are grouped by sets according to whether there
are two, three, four, five, or six phonons, respectively; The

increments corresponding to each of these classes were found and v o,

are given here:

two phonons =0.0014 . ; L states

three thonons =0, 0042 o RN ’
four phonons =0, 0067 ) 16 g , . :
five phonons ~ =0,0038 on | | |

T gix phonons . =0,0C07 ' 4
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The close agreement between the second, third, and fourth terms

in particular shows that these sets of states can properly be thought

of és belonging to the same order of importance. (Yhese figures

were not taken from the computation referred to earlier, where

phonons were restricted to one radial mode. The sum of thesé increments

willvnot agree with the increhent for all R=6 states quoted before,

because the earlier computation was done with.a very restricted basis).
ﬁTheISequence shown here is not‘a special case, but is typic%l

B of"mény cases that Were examined. We)conclude that it is usefu;,-

. to group stateé together by rank,‘R, with the éxpectation that states

of the same rank will give roughly similar cohtributioné, and that

" the sequence of eigenvalues will converge as states of successively

higher rank are included in the basis.

ﬁole*gi Ground-State (L=0, N=0) Phonons

In an earlier section wé made a unitary transformation of the
hHémiltonian, an& we asserted that with the transformationbthe ground-
state phonons wQuld-play a very minor role in the explicit basis.
As an illustbation, consider the sequence of states /1), /1,1),
/1,1,1)5.... These are the states with one, two, three,.,.‘phonons
in the ground state L=0, N=0, and they are the states from which the
‘ Lee~Low-Pines solution was constructed.  With the'Hamiltonian in
its coBventional form (untransformed), thése §tat§s played a &ominanf

role.
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The first state /1) was inclﬁdéd in the block of states'giviné‘l
‘the zero-th order approximation, and fhe correspénding_increment
is not available. The increments corresponding to the following
states are, respectively
/1,1) ~0.00270
©,1,1)  =0.000L4

/1,1,1,1) =0, 00001

The first increment is non-negligis;e but small, the second
is negligible, and the third has no numerical significance. The
very rapid convergence of these increments support our conjecture
that the factor (5.4) which was suggested by the Lee-Low~-Pines
calculation, also gives a good approximation to the distribution
. of ground-state phonbns in the more generai case. In particular,

it is suggested tha% this factor gives the correct asymptotic |
distriﬁution;ai.e.ifor'large numbers of'phonons.

For completehéés we should look at the grouné-stafe phonons

as they occur in states that also have non=5 phonéns (i.e. P-phonons,
D-phonohs,'etc.) We refer to these states as "augﬁented skeleton
states.” It turns out that the increments corresponding to thése
séts of states are, in general, smaller than our minimum "important"
increment 1 x 10-3; moreover, the terms of the sequences grow small
so rapidly that the values are obscured by mumerical uncertainties.
While it would be nice to be able to study the convergence of these

. sequences in detail, we are pieased that the contributions are in

fact small, so that the large numbers of states arising in this way
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. . do not have to be included in the basis. This s:Ltuatlon is in marked
‘contrast to that of earller calcujatlons, where these states gave
very importantvcontrlbutlpns (up to those with ten, twelve, or

- even fourteen phonons),

- The very minor role played by the ground state phonons (particu~

larly in "augmented states" can be illustrated again in the context

of another aspect of our results, to which we now turn our attention.

+

| The Role of S~Phonons in the Radial Modes Nz0y1,2;..s

" In -the previous discussion we were concerned with ground state
‘phonons-~i.e, S-phonons in the radial mode N=0. We now look at
‘the more genefal case of S phonons in arbitrary radial modes.

If N>0 we refer to a "radially excited" S~phonon.

‘Let us restrict our attention first to states with rank R:O

That-ié to séy, We are concerned with states that havé 'nlz S-phonons.f '

To ?roceed systematlcally, we‘examlne first the case of such states
w1th‘ggg‘g_gggg¢ The natural sequence of states is then /1),
/17),;/33): [49) 5000y égrfesponding 10 one S;phonon (1=0) with )
fNio,lﬁé,B,.. respeétiVély. The incfeménfs for the third; fourth,
“and fifth states are available, and are given below.
L o 33). . -0.omou4
| - O 9) - -0.00159
e ~0.00008




~82m

The first two stétes again hag to be included in the initial
block of states, and the increments for.these are not available.
THis.sequence typifies what we ideally hOpe tonfind through-
.out this analysis: The sequence of increments converges monotonic-—
. ally.énd smoothly to O, énd converges rapidly enough that a few
terms suffice to reduce the probable residual error to within the
established limits.

The very satisfactory convergence of‘ihis particular séquence
giVes‘encouraging evidence thaf the choice of radial modes was
a suitable:one. The conclusion suggested by this simple example
is Suppéfted by other evidence. For example, one can lpok at the
two phonon states of the same general type.

We arrange these two phonon states into subsets, COrresponding
to having the phonéns restricted to N=0; N=0,1; N:O,i,Z;-and so fOrth.v
The fifst set contains oniy /1,1); the second contains /1,17), /17,17);
the third /1,33), /17,33), /33,33). Following sets are ;onstruétea
according to the éame pattern. The increments cOrrespdﬁding to
" -these sets are | | |

N2 ~ =0.00621.

Ns3 ~0.00105
N < 4 ~0, 00012

A“similarAsequence for three-phonon states is found to be

Ng2 ~0.00063
N <4 ~0.00001

-,
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Each of these cases (the sequence for two~phonon states and
the sequence for three~phonon states) demonstrates the same
impressive convergence patterns that were found in the one-phonon
sequence. Furthermore, a comparison of the total contrlbutlon of
one-phonon states, the total contribution of two~phonon states,
and the total contribution of three-phonon states leads to the
conclusion that states of this type with four or more phonons make

‘a contribution that is negligible by our standards. Thé sequences
thencconverge:séﬁisfaétoriiy'both in the direction of higher radial
éxcitétion, and in the direction of larger phonon ACCupations.

The S-phonons we have been studying can, of course, occur

‘in states that also have occupations of higher L modes. These states

will not have R=0, but rather R=2,4,.... An example of such a state
48 /17,2,2). We pldce this state in our scheme of classification
byAthihking of it as arising from the "skeieton state" /2 2)
(two phonons in the mode L—l ,M=0) by the addition ‘of one S-phonon
7 in the first excited radlal mode (N—l)

VConsider the.skeleton states with R=R, and then cohsidef the
‘sequence of states derived from these by adding one S-ph&hon in
successively highef radial modes N=0 1,2,.... The first set of
the sequence is then /1,2 2), /1,5,8); the second set is /17, 2,4),

/17,2,2), /17,5,8). This sequence parallels the sequence /1),

- /17), /33),...studied earlier,

. Lo
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The sequence: of increments for'these'sétsris-giVen:below

N =0 =0, 00001
N =1 ~0.03512
W=2  -0.00261
N=3 -0.00036

With the very dramatic exception of the first term, the
sequence demonstrates the same sharp con%érgence that ﬁas
evident in earlier examples. The very.small term corresponding
to N=20 1llustrates the special role played by the ground state,
which is s1ngled out by the unitaery transformation (5.4) as a
special case. We had stated that the anomolously small role played
by the ground state could be illustrated in the context of thev
whole sequence of fadia11y~excited S-phonons., This example confirms
our expectations and supports our earlier conclusions about the use=
fulness of ﬁhé‘unitary transformations The terms for N=1,

N#Z, N=3 again show -that the radial modés were well chosen, and
that terms for N=4 or higher are not expected to.give important
.contributions.

The same principles can be illustrated by a sequence derlved o

'vfrom R=2 skeleton states by the addition of two S-phonons. 013331—

fying the paris of S-phonons (as before) by the hlghest radlal

mode occupied, we find

]

N=0 ~0, 00039

IN

N£1 - =0.00348

-0.00060

=
IN
N



-85~

A few terms from‘the sequence for three added S-phonons afe

knowns:
N=0 . ~0.00001
N1 . ' -0,00625
The oontribution from all tWo-phonon-increments is about

eﬁvorder'of magnitude smaller .than for the one~phonon case;
the  same coﬁparison holds for the three- and.two~phonon casesS,
Moreover, the three;phonon case iabove) already giﬁes a negligib1e .
cenﬁrihution.lFWe may confidently conclude that the sequences
‘eonvergeﬁalso in the direction of higher occupations (as well
as in the direetion of higher-eréer radial excitations), and that .
similar . termD with four or more phonons do not need to be 1ncluded.

The results quoted were prlmarlLy sequences beginning from
R=2 skeleton states. The R=2 states were used for this study beéausev
they were expected fo give the leading cehtributiohs, ehd because }
there are- very few R=2 skeleton states, S0 1t is- p0831ble to study
: several terms of a sequence before rumning into enormous numbers |
- of states.;vBelow we glve some similar examples tekenvfrom R=4
‘and R=6;sequences, ‘With progressively higher rank, we will find
1imitations of Space pre;ent us from including as many ﬁeimS'of
'each sequence as in preceedlng examples. If the magnitude of’the‘.
contrlbutlons grows!smaller with 1ncrea51ng rank (as we hOpe they :
will), not as many_@erm will be n@eded, for a given standard of
: accﬁraey, At the sume time, our confidence in the extrapolations

" may suffer,
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We present the seduence of results for adding one'S-phonon |

in successively higher radial modes to the skeleton states of rank

R=. |
N=0 -0.0.0048
N=1 | ~0.01195
N =2 =0, 00018

We see again the phenomenon of a very small leading term
(N=0) followed by a relatively larger N=1 term, and a sharply
convergent sequence for higher modes. |

The terms for adding two bhonons to R=4 skeleton states are

f N0 ~0.00011

N=1 --o.o?om
Higher‘termé of this sequence were not studied,
One term derived from R=6 states was studied. This term
wag for the addition of one S~phonon in the N=] mode. (We have
learned the N=0 case glves negllglble contrlbutlons) This term'is
N=1 | -0.00300 |

It is instructive to. compare the contrlbutlons from correSpondlng :

~ terms of R=2, R=4,, and R=6. The 1ncrements (quoted above) for

| _
addlng one N=1 S:phonon to each of these sets are

!
I

R=2 ~0.03592
"R = 6 -0.00302
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These increments show an almost geométric convergence, with
ratio about 1/4. It is strongly suggested that higher terms (e.g.
‘R:8, 10,...) give unimportant contributions |
While it is impossible to give rigorous estimates of the
cumilative contribution of all terms not included in our basis,
the convergence of all sequenc;s studied so far has been so
satiSfactory that one feels confident these contributions are wifhin

the established bounds. Moreover, the results invite the inter-

?-pﬂetatlon that thelba51s used is close to the optimal basis for

a glven 31ze (w1th respect to the characteristics we have studied),

I i

i
The Role of Radially-Excited Non-S Phonons ( N 0, L = 1,2’,.A..)
We have taken the poiﬁt of view that the S-phonons are in
 a category apart from non-S phonons (L=1,2,,..). In the context
of ou;'computation, this is reasonable because the S-phonons (in
the dominant radial mode N=0) are described”analytically (to a

good approximation) by the unltary transformation t6 which we

have referred. We have studlcd the role of these "eround state"

phonons (N=0, L=0) in specifid examples‘and have verified that they

now play a minor role. The S-phonons in higher radial modes (N:
1,2 ,...) have also been studled, and 1t was found that the 1mpor--
tance of these states dropped:off rapldly with lncred31ng N.

In these studies, we have considered pr1n01pally states
in whnch “the non=S phonons werc in the dominant radial mode N=0,
It is now time to study the role of these non-5 phononc when they

are allowed also in the higher radial modes.
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The sequence of states that will:interestiusvmay be thought
of as being derived from skeleton states (ail phonens in N=0 mode)
by successive radisl excitations (i.e. transitions of a phonon from
the state L,M,N to the state L,M, N+l ). In our particﬁlar scheme
of numbering states, this coerSponds to a transition from the i-th
state to the (i+16)£h states de think of the excited radial states
(N=1,2,...) in a category apart from the ground radial state (N=0),
and separate the states under donsideration into sets according to
whether there one,.two, three,;(orﬂmore) phonons ip the excited -
radial states,

‘The .first category of states e exémlne is the set of states

derlved from skeleton states w1th rank R=2 by the ex¢itation of

r

one phonon to succe%slvely higher radial modes. The 1ncrements

~are labelled by the radial mode of the phonon, and are given below: -

N=1. ~0.02143

. o : \ : L - )
NE2 0oL
N=3 ~0.00047 ‘ ' | |

A similar sequence can bF studied for the case of states derived
, ‘ _ B v

- from R=2 skeleton states by the excitation of two phonons. The

1ncrements are labelled by the highest occupied radlal mode., ' B i

NS1  -0.00921

. } 3
Ng2 ~0.00091
NE 3  =0.00057
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We flnd that the magnltudé of the 1ncrements drops off very
sharply with increasingly higher radial modes, and also that the
contrlbutlons from states with two excited phonons is less than
that from states with one exctled phonon. in this connection,
it is encouraging to compare the results quoted with the increment
for R=2 states with no excited phonons. If we begin with a basis
of only R~O states (B==5,000) and think of adding the R=2 skeletoh
states, the 1ncrement correSpondlng to these states is =0.207. '

_The contrlbutlon of states w1th excited phonons is then small
1|;-

]by comparlson to the contrlbutlon from the 'skeleton states (i.e.

the states W1th all' phonons ln!the ground radial mode). This

Justlfles the spe01al role these skeleton states play in our analysisa

fSimllar sequences ‘can be studied startlng from the R—A ‘skeleton .

states or the R=6 skeleton states. Consider the R=4 states. The
sequence for raising one phonon to successively higher radial modes

is
N=1  -0.02466
N=2 -0.00333,
' Highef teroé of fhiS-sequence ﬁere excluded for lack of‘space,
but their contrlbutlon cleorly may be expected to be negllglble.
" For Reb’ states, the correspondlng sequence (for raising one phonon
“to. succe531vely higher radial modes) is

N=1 -0.01109

N =2 .-0100254
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For the R=4 and R=b6 cases, the.péésibility of raising two
or more phonons to excited radial modes was also studied, and the
results were qualitatively similar to the R=2 case, and confirmed
the. general conclusions reached there.

One rather unfortunate result that emerges from these results
and from others is that the notion of "rank"vwhich has served so
usefully until now is of more limited usefulness in éonnection
with the higher radial modes. Consider the increments (quoted
above ) for raising one phonon to the first excited radial mode

(N=1) for the case R=2, R=/, and R=6 skeleton states, respectively:

R=2 . "000214—3
R =4 ~0.02466 |
R=6 | ~0,01109

Similar sequences quoted earlier, with all phononé restricted to the
ground radial mode; gave monotonic and, in fact, véry sharp con=~
.vergence with increasing rank. We find here that the-contributién
of the vazz; term in this sequence is inm fact slightly larger than the
| =3 term. The most optimistid guess for the next term (R=8) in fhei
sequence WOuid be based on an, extrapolation from R=4 and R=6, and |
 would lead to something of the order ~0.00500 (which is not negligible
vaccording to our criterion). It is probably useless to speculate én
the sum of all succeeding higher terms. This example is the

first case where the estimated residual error from states not
included exceeded our tentative standard of -0.00100. The number

of states of the kind involved (i.e. R=8 states with radial exci=-
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':.tatins) is so large that it was not possible to extend the compu-

tation to include these terms.

States with Radially-Bxcited Non-S Phonons and Added S—Phonons.

In the preceeding discussion we considered states derived
from skeleton states by suiccessive radial excitations. Inasmuch.
as skeleton states by definition have no S-phonons, these states
will also be without S-phonons, and the radially-excited phonons
réfgrred to will be noA-S phonons, From these states one can -
noﬁ'defive still other Sequénces of states by successive additidﬁé
of S—pﬁonons (in the ground or radiallyhexcgted states). In an
earlier sectidn we discussed such sequenées derived from the
skeletén states themselves. |

The sequences we have just described were studied in
accordance with the same principles that have been illusirated
vin our previous ex;mplés. In order to shorten the discussion we
omit specific numerical resulfs, and summarize the conciusions
derived from these results. |

Beginning with a given set of states withouf S-phonons_(bﬁt
with radiallyéexcited non-S phonons), the sequences derived by
additioﬁ,of‘one (or more) S~phonons in subéessively higher radial
modesldiSPIayed the same émooth convergence that was found in

similar sequences derived from skeleton states. Comparison of the

contributions from states with one, two, or more augmented phonons

showed that the sequences converged (as before) in the direction

of larger occupation of S-ghtates,



The one characteristic that differentiates these results
from other analogous seguences is that the term corresponding
to putting the S-phonons in the ground state (N=0, L=0) is no
longer exceptionally small, as it was for sequences derived
‘directly from skeleton states. In the earlier examples the
exceptionally small c§ntribution from this term was attributed
to the unitary transformation (544.) which apparéntly described
the distribution of these phonons with great accuracy. In the
 present case the term corresponding to N=0 plays the fole one-
would normally expect it to play in the Sequencé N=0,1,2504003
i.e. it gives thelleading contribution. - As was jusﬁ ﬁentioned,
the succeeding tefms display smooth and satisfactory convergence, -
The normé; role of the N=0 term in this case (as compared to'

the anomolous;z small role in earlier cases) can only be 1nter-
preted by saying that the unitary factor (5.4) does not correctly
describe the distribution of ground-state phonong in states with
radiélly-excited phonons present., | .

In our study of these seQuenCes we encounter the same difficulty ~
tﬁat'was encountered in our study of stétes without .édded“S*; -
phonons (but ﬁith radially~excited non-S phonons): the sequences’

of given rank R converge welliin all respects, but comparison of
contributions from different rank leads to ambiguous er disturbing.
_results. There ére a few examples where the contribution from R=4 -
states ié larger than the contribution from R=2 states. Limitafions

of space in each case prevented including the R=0 terme.
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We pause now to review what has been said.

Preliminary calculations (particularly with phoﬁcnsfrestricted'
to the first radial mode) tended to support our conjecture that the
fank classification gives.e useful hierarchyrofsapprokimations.

More detailed computations showed that not ehly do states of higher

rank give successively smaller contributions, but different kinds

of states of the same rank gave roughly similar contributions.,

.

‘The,neit observations confirmed that (after the unitary

transformation) the ground-state (I=0, N=0) phonons played a very

_ minor role. This fortunate circumstance was attributed to the unitary

transformation (5.4), which in effect gives an analytic description

of the distfibufion of these phonons which closely approximates the

- correct distribution,

* The diséusSicn was extended to S-phohons in the'highef‘radial

modes. Sequences of R—O states (SUates w1th onlv S-phonons)

. were studled, and the correspondlng sequences of increments were
'found to converge smoothly and rapidly to O with increasing occupation

of phonons, and with higher patterns of radlal ex01tatlons. The

radlallycexclted S-phonons were studled also in their role in
"augmented states," ‘and 31m11ar conclu51ons were reached,

Next we examlned states derived’from skeleton stetes by exciting

.non«S phonons to higher radial modes. For states of a given rank,

these Sequences agaln converged smoothly Difficulties arose when

cone compared :corresponding contributions. from states of rank R—Z,v
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" R=4, and R=6, Unlike similar Sequencesvstudied earlier; these rank- .
sequences did not cénverge smoothly enough to allow inferences
about higher terms.

A.similar situation was encountered when we examined the
states with non-S radial excitations and with added S-phonons.
Here again, the various sequences within a block of states of a given
rank were found to converge more or less satisfactorily. Comparison
between blocks .of different rank were inconclusive or even disturbing.

We had pointed out eaflier that our analysié could be ﬁhought'
of ?s "exploring" a region in an abstract space, S, in which each )

! ’ . |

coordinate direction corresponds to one characteristic that may-
describe a set of ;tates. In the discussion we have just completed,
the principal characteristics--i.e. coordinate directions, or
‘dimensions, in S-éwere rank (R), humber of added S-phonons, and
‘radial excitations. As'we explored further along the various
direétions, we séﬁghtvto make our basis as éfficient asvpossiblé by
cutting off the sequences of states at the point where the residual
error was reasonably expeéted to be negligible according to our
criterion. In many cases the sequences of inéremehts converged S0
smoothly that we were able to make these estimates with great con-
fidence. In a few other cases the results were ambiguous and no
confident estimate of the residual error could be made. This circﬁmr
stance, of course, does not invalidate the.ca1¢u1ation in the sense -
that our results continue to give upper bounds on the ground-state
cnergy of the polaron; it does somewhat cémplicate the tdsk of |

estimating the uncertainty in our results.
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Estinetes of Brrer

| Let us mow face the fuestion of estimating the uncertainty
ineeur reeults. In making such an estimate we are, of course,
faced with several obstacles, both in principle and in practice.
‘The difficulties that arise in principle involve the question of how
the various residual errors that we have (perhaps accurately)
estimated are to be combined. It is a fundamental characterlstlc
of this kind of problem that the contributions from various sets

of states do not combiyelinearly and independently. Secondly, |

| thefé is the question of the validity of thé extrapolation proceés i
 thet'1ed'us'to these eetimates. We are inclined to have stronger

--confldence in the extrapolation if we ‘have a larger number of terms

.f'iﬁ’the sequence, less confidence if we have fewer. There is then the -

1’practlca1 problem that in some cases it was 1mp0331ble to compute
'as many terms ef a glven Seguence as one WOuld have liked.

' | These dlfflcultles notwithstanding, it is p0531b1e to. make

' _eome meaningful oﬁservatlons. To the extent that the following
_.éiseuSSéon is valid, our computation offers one advantage ovefi

| previdu; computatiens}in that the'numericai reSUltsiaiso'gifev

‘ 1nformat10n “that can lead to a seml-quantltatlve estlmate of the ;
.laccuracy of the results themselves. Given a confldence in ¢ertain’
estlmates that cannot be rlgorously Justlfled, one then has not
only an upper bound but also a rough lower bound on the energy-ofe

|
I

the polaron,
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Recali that earlier in the discussion we compared‘the eigenvalues
dbrreéponding to baées with states R<¢ 2, R<4, and R( 6, réspectively.
These comparisons were made with a basis with phonons festricﬁed tq‘
the ground radial mode (N=0), and showed very impressive convergence.
One ié»naturally led to look at the same sequence for a-general.
basis, in which radial excitations are éllowéd; In particular,
we may select from the "optimal" basis we have been studying all
states with R €2, then ali'stétes with R¢ 4, and so on. The

eigenvalués for this!sequence of bases are given below:

.

R=0 | ~5.00000
R £2 =56 34304
- RZ4L ~5.46897
R £6 | -5.50264

The increments corresponding to each of these: sets are’ givenh in -
the next table:

RE2 ~0.343

R=4 . =0.126.
"R=6 0,034

Exirapolating these results, oné is led to something of the
order of -0.010 for the increment corresponding to ﬁhe R:8‘stafe§.
The validity of this estimate may be open to queétioﬁ on fhe_grduna
- that the sequence of states arranged by.fank may seem to ﬁaVé*been
‘biased in favor of the lower-rank states. In studyiné.the various

sequences that begin with skeleton states and proceed by successive
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: éxcitations, additions of S-phondns, etc., it waé‘nét possible

| to inciude-nearly_as many terms- for the higher-rénk stétes than f@r'

" the lower-rank states, due to lack of space. (For example, if we
cohsidef the states derived by exciting one non—Svphonon to the

'N%l mode, there are three such R=2 states, twenty-six R=4 states,
and one hundred twenty-three R:C states), This procedure, of
includinéfewer térms for the higher-rank states, can be justified

on the ground that the leading terms for the lower-rank states are

_ laréer (ih magnitude), so that it is necessary to include more terms
’wté achievé'é giveﬁ)sﬁandard af accurééy.‘ Itdié almost certainly trué'
ithat the fréctional error in the R=6 increment (=0.034) is greater
than the fractional error in the increments for R=4 or R=2,

Th;tlis, we might?guess that we know the R=2 increment to within =
one part in one hﬁhdred, but the R=6 inc?ement to only one part in
‘teh; “This'is aCCéptable, beéause thé'R:é{incfementﬁis an order of
‘ﬁagnitude.sﬁaller, and the terms enter intolthe results additively.
This having been said, the fact remains that we are‘leésbéonfident
in the'higher-rank increments than the lower-rank iﬁérements,

because as the rahk (and the number of skeleton statés) increases

we are able to include féwer terms of all sequences, éhd our estimates

and extrapolations are less well-founded. On top of this, there were

. ‘a few seguences studied that did not exhibit convincing convergence -

in the direction of higher rank, and a few cases in which the terms
even appeared to grow with increasing rank, One must ‘say that it is

possible (or probable, depending on how one interprets several
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resﬁlts) that the abéolute error kn the R=b increment, for example,
'is larger than the error for R:4 or R=2. Making a rather conserva-
fiVe (i.e. pessimistic) view of this effect, one might be led to
modify the estimate of the R=8 increment from -0.010 to -0.020.

Whatever résidual errors remain in eacﬁ of the sets of states
(for a given rank) also affect us, in another respect: In addition .
to affecting our extrapolation to the R=8 term and suéceeding terms,
these residués accumulate in some way (i.e. not linearly er
independently) to glve an error in the approx1mate eigenvalue
(even for a ba51s cut off with states of rank R=6). It is dlfflcult
to make quantltatlve estimates of the cumulative effect of these
errors. There vere a number of residual errors that were estimated
(more or less réaiistically) to be each éf order -0.0di‘or less. |
We estimate thatithese small increments accumulate to give something
an-order of magnitude larger——i.e. of order -0.010. That is to say,
we anticipate that:the energy would be lower by_fQ.Olo (approximateiy)~
if all these next higher order terms were iﬁcluded in the basis.
Maklng the nlau31ble assumptlon that the extrapolated estlmate of
the contrlbutlon from R_8 states will be unaffected by this perturbatlon,‘
we are led to estlmate an error of order -0.030 in our results.

If thesa estimates are not grossly over—optlmlstlc, the elgen-
value.for g2 5 is accurate to within about one~half of one perec en&.
Making’ a generous allowance for the accumﬁlation of higher terms not
studied, and for overly~optimistic estimates, we can say that the

eigenvalue -5.50 is almost certaln Xot in error by more thapn 1.0 per-

cente -
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4  ‘Aﬁother ﬁeasure of what hés been accomplished-isé of course,
the vcompa.x"iSOn of our ground-state energy Eo to that obtained by
. other variational calculations. A>survey of such a comparison
was given by Table 1, for a range of coupling strengths. For
"g2 = 5, which is the case we are studying, the "next-best" rééuit
(Feynman's) is E_ = =5.44. Next is the figure B = =540, according
to the Lee-Low~Pines result corrected by perturbation theory., The
compapison is slightly misleading, because this result (=5.40)
"is not én upper-=bound. Our result is seen to be a modest but: sig- "
nificant improvement over Feymman's result, and a‘considerablé
bimprovement over Lee-Pines result‘Eo = ~5.50. | o
In one sense a more suitable standard for comparison is ﬁot
Eo itself, but that part of Eo that we are computing numerically.
»in a non-~trivial wéy. If we separate out the Lee-Low—Pineé term-
-gaﬁ) from the‘éigenvalue, and write _

!

E = g% - E! | o  (1.2)

then our computation is directed toward deterﬁining E', Our fesulﬁ
for g2 =5 is B! = 0.50; the others are E' = 0.44 (Feynman), and
‘B! = 0.30 (Lee-Pines). o
Thig separation is also useful inlrelation to the'diSCus$ion'Qf
errors. Ohe finds that many important sets of states give contributions
(for diffefent g):more closely proportional to E! (which. is in ﬁurn.

rbughly pfoportional to gé) than to Eo .
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. The analysis we have made for g = 5 is.summarized iﬁ Table J;
together with a corresponding summary for g2 =1, g2 = 3, and
= 7. The results are, of course, in units of L . If the
estimated error (second vow from bottom) is computed as a fraction

of E_, the results are (approx1mately)

g2 | fractional (probable)
error (in per—cent)
1.0 0.10 pgr-cent
" 3.0 0.20 per-cent
- 5:0 o 0.50 per=-cent
- 7.0 1.10 pé-;-cént

“Judged.in relation to E! (see (7.2)) the error“doés'nét
grow so stéeply a; a function of g; on the other hand, the
errors are then much lafgef in absolute value, For the expefi-
mentalist, the form given in the table above is the meaningful one,
and our’results accurate enough to be ﬁsefﬁl; At_the'same time,'ﬁhe

error is larger than one would hope to achieve from a computation

on such a large scale. We return to this'point in the next chapter.

The Case P £ 0, and the Effective Mass m*

Previous discussions of the general case have been restricted
in most cases to determining the energy for small P. In this ranée'
one conventionally writes
E, = E  + P/ o (7.3)

P

 which defines the effective mass m¥
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Heretofore we iﬁeluded in our basis only states with even
parlty. In the general case P£O the term (4.36) in the Hamiltonian
connects states with even parity to states of odd parity. The
states with odd parlty that must now be added to the basis are
states of odd rank; 1ﬁe. R:l, R=3, R=5j¢00 The basis of odd—parlty :
etetes is eonstructed according to the same principles as in the
even-parity case. In pafticular, one finds that the sequence of bases
including states of successively higher rank gives e'emoothly con-
vergent’ sequence of approximate elgenvalues.’ The'convergence'of.
thlo sequenoe 1s extremely strong for verv small P, and moderate
for P of order unity. (No computations were made for very large P)

" At this juncture we are faced with a severe problem arising
from limitations of space. In principle,‘one would want to treat
the even and odd-parlty stebes on an even footing, so that the basis
.should 1nclude roughly as many suutes of one Category as of the other;
Now our prev1ous results were based on a set of states w1th more
than 900 basis vectors; this problem itself stretches the capac1ty <
of the available computers nearly to the limit. It 1S'not p0531b1e
to 1nclude in addltlon a similar set of odd—parlty states. - »

One answer to this difficulty is to cut bacy the even—parlty
‘states, selectlng for example, the 500 most 1mportant states, allowing
room for a comparable number of odd—parlty ‘states. % second alter- |
native, whieh is the one we choose, is to restriet ﬁhe'compotation
(as is customafy) to small momenta, so that the convefgence,with

increasing rank of the odd parity-states is very strong, and rela- -

13
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tively few odd-parity states need to be included. Tﬁese computations

sufficé to determine the effective mass, m*, which is in any case.

the quantity of greatest interest. We find that we are able to
V'carry the computation out far enough to get some information about

how the energy deviates from the quadratic dependgnce on P that

is observed for small P,

An énalyéis‘was carried out, similar to the one.we have

‘vdiscu5sed, (but in slightly abbreviatédfferm)itoIdétérmineithe

‘optimal basis of odd~parity states within the given festrictions : : L

. B .
on the size of this basis. These exploratory computations resulted
i A

N . | o ' \
| in'a'bésis of 750 of the even-parity states previously discuésed,
and 200 oddéparity.states of rank R=1, R=3, and R=5. With this
basis, the estimaied error in the eigenvalue (foﬁ npﬁ%vanishing'
but small P) was found to be comparable ﬁo the error estimated
in the special case P=0. |

-, If we now take P to be be a dimensicnless unit  (corresponding

to‘wha# was formerly written P/4/2m@) ),vwe can wriﬁé (7.3) as

Ep = VEO + PP (m/m*) 0 - | S (7.4)%,
:from which
@)

o= P /E -E)

: which, in principle, should be independent of P for small R..
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The basic soundness of our effectivé—mass cOmputation‘
is supported by the fact that our results 001n01de exactly
with the perturbatlon-theoretlc result (3.6) for weak coupllng
andvclosely approximate the Lee-Low-Pines intermediaté~coupling

result (3.15) for g2'= 1. One side~-comment is apprOpriate:in

' this connection. For the case P=0 we pointed out that the Lee; x

Low-Pines computation corresponds to a trivial 1ihit'in the
context of'our‘work (i.e. to the casevwhereAihe basié Set_inCludes
only thé vacuum' state). The same correspOndencehdoes not hold

in the case E£O, because our unitary transformatlon (5¢4) is no

longer equivalent to the Lee~Low-Pines transformation (3.9).

In our case the ﬁerturbation arising from'ndn-vanishing P must

be taken inté account explicitly, rather than being_described to
thé,first approximation by the unitary transformétion,: The. close
cofrespondence between the two results (in the region whereALee~_
Low-Pines is exbected to give a good approximafion),ié then not tﬁe

trivial_observation it would be in the special case.E&O.

Feynman2 pdints out that in his approach the éffectivé¥mass. 

computation is attended by difficulties not present in the special

case P=0.- In particular, the Feynman energies for P#0 do not
represent uppér bounds. In any case, the effective maéé, even
when computed from upper4bound approximations to the energy (such
as Lee-Pines' reéults, or ours), is not itself an upper (offlower)
bound on the exact result. This circumstance éompliqates the

interpretation and comparison of resultf.

R 5
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The error-analysis of the effective-mass results involves
.v“}an‘additional degree of speculetion that was not preseﬁt in the

- analysis of the P=0 results. Consider an elementary'sﬁudy of .
the propagation-of~error from the energiee EP end_Eo tO'thereffective

“mass ratio m*/m. From (7.5) one finds

d(m*/m) A(E -E_ ) P ,
— = —E  (7.6)
(m*/m) (E - E, ) '
~ —_— - =2 (7.7)
E -E E E :
o] (o]

To minimize the error in m¥*/m one would then want to choose

.a basis that glves EP and E with comparable accuracy (so that o

pthersecond factor in (7.7) is small; and one would~want to;compute |

m*/m from (7.5) with P as large as possible (but within the‘range

where Ep depends quadratically on P) in order to maximlze E-E .

Because the second factor in (7.7) may have either eign,

4tthe fractional error in m¥*/m may be positive or negative; this

: Shows_that our approximation does nof:have:an upper- or lower~bound

f; characteristic, As this factor may also-vanish, it-isepossible»ten
.arriVe'at'the gxggi result for m*/m,'even when E and Eé are known

_only'crudely. We can in no way derive (or estimate) a ;ggg;-pgggg
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on the maghitude of the fractional error in m¥*/m. An upper~bound
estimate on the error in m*/m must be based on the possibility that
there iS'(effectively) no cancellation between the two terms in

the factor dE/E - dEo/Eo. The factor E/CEAEO) is gquite large
(typically of order 50 or larger). If the error in the energy is

~ comparable to that estimated earlier (about 1.0 per-cent), then

in the worst of circumstances the effective mass as given by our compu-
tation has a fractional error of order 50 per~-cent. This is certainly"
an ovérly;pessimisticn view, perticularly considering the close

t

agreementtbétween our results and other réliable computations for
O . . ’ . ;

weak and moderate cou@lihg. For the bésis described earlier‘and
used in these computations, the fractional errors dE/E aﬁd &EO/EO '
are proﬁably close in magnitude; (because of the variational charécter.
of the energy, they must be of the same sign). The difference dB/E
-@EO/Eo‘is1probably then an order of magnitude smaller than either
of these terms: i.e. the difference is perhaps of order 0.l per=-cent.
Our value m*/m may then have a fractional error of order 5.0 per-
cent, These estimateé do not carry the same confidence'as our.
earlier estimates of the error in Eo‘

We are now ready to give a few numerical examples.to illustrate
the above discussion.

Consider firstthe weak-coupling limit (e.g. g2 =_O.2).
| The'gneréy'Eo (i.e. for P=0) in this case is found b¥ our computatioﬁ

to be B, = ~0,20062, in very close agreement with the "second"

0
perturbation-theoretic computation (3.19) which pgedicts E =~
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~0.20064. In this weak=-coupling limit we computed EP for é_range-_~

of P as given below:

P m*/h_y
0.10 1.0344
0.20 L 1.0246
0440 1.0357
0.60 11.0376
0.80  1.0408
L L00 f”!, 1.0458
é 120 ; 1.0539
140 10686
160 1.0987
1.80 . 1.1613
200 1.2564 _,

:TheAsecond column gives m¥/m for Varioust under the assumption that
thé‘energy'dependé strictly quadratically on P (i.e. m*/m as |
;given by (7.5))e One sees that m*/m-remagns nearly_¢onstaht
rfor é conveniently wide range of P. To say somefhingJSpecific, ‘
" m¥*/m remains constant to within 1.0 per;cenf for P aS'iargé

~as 0.80. The smali-P 1imit m*/h = 1;034 is in 61966 @greement __ 
with the weak-coupling result (3,6)« The trend of the figures
: “in the'sgcond column above for larger P shows—thatﬁthe'energy

vdrOps below the curve given by the strict quadratié dependence

(7.4), if P is not small.
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A.cofreSponding set of results far'gz = 1.00 shows the:
same qualitative behavior, and gives an effective mass ratio
m*/m = 1.19. This is in close agreement with ﬂhe perturbation- :
theoretic result m*/h = 1,20 and the Lee-Low~Pines apprbxiﬁation
m¥/m = 1,265. The close agreement between our result and the
others in this case ana in the ?revious case gives a good indication
that the numerical errofs in our cbmputation are much smaller than

a very conservative error-analysis might lead one to believe.

~ For g2;ﬁy3,,we have the sequence of results as follows:
\‘ﬁrlp : m*\ﬁi; .i . S -
| 010 1.778 :
0220 1,783
0440 ~ 1.800
10,60 | 1.829
0.80 | 1871

The limiting ¥alue forssmall P, m¥/m .—..,1.77 is in :reniarkably close
- agreement with Féynman’s m*/m = 1.78, and in reasonable agrgement.
ﬁiih Lee~Pines' m¥/m = 1.61. Lee~Low~Pines preaict n¥/m = i;SO.v'

| For g2 = 5 (which is the case we have studied in”some détail)
a similar sequence yields the result m*/m = 2.59; which is inter-
\mediate between Feynman's m¥/m = 3.56 and Lee-Pines' m¥%/m = 2,15,
If Feynman's rgsult is correct, our result is in error by 40 pereéent;
Our error-analysis indicates that this is not inconceivable, but V

is at the same time not likely.
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For g2 =7, our result is m¥*/m = 3. 24, which is much closer
to Lee=Pinss!' m¥/m = 2,82 than to Feymman's result m*/m = 13.2.
For thls case, intermediate-coupling theory predicts 2,16, The
' wlde discrepancy between these various results attests to the Spec1al
gifficulties attending the effective-mass computation, as compared
to the simpler computation forvdeterming E_. The result of our |
analysis suggesté that Feynmen's result for the effective mass
is in this instance quite likely to be in error by at least 50 per-
cent, |

: L v o ) . v
The results discuss€d here are summarized in Table o8

Cgmgutatlons with Jternatlve Bases

" We conclude this chapter with a brief discussion of some
side~computations that shed light on the validity of our assumpbions
and the accuracy “of our computatlon. i | |

| The radial functions RNL(x) as given by (4.22) 1nc1ude a
'non-linear varlatlonal parameter Z. Although Z enters into the
radial functions in an apparently very c0mp11cated way, the
resulting matrix elements (see Appendix 1) depend on'Zz in a falfly
51mple way (i.e. they turn out to be prOportlonal to varlous i
powers of 2Z). We indicated that our computations would be mage

. initially with Z=1l, so that our ground radial state N=0 corres-

ponds exactly to that of Lee-Low-Pines.
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g" = 0.20 1.00 3.00 5,00 7.00
2% .03 1.19 1.77 2.59 3.2/,
LIP.* 1033 1.17 1.50 1.83 217
LP, * ' 1.61 215 283
F.* 178 3.56

13.2

Z. = Zimmermann (this study).

LLP = Lee~Low=Pines®

LP = Lee-?ines/

F = Fey'mlrxan2



~109-

‘ Y<The question arises whether our results could be improved
LA A ‘(&r; in fact, whether they change at all) by a different choice
. 'of Z. Because of the:non=linear character of Z, it is not possible
to compute the "best" value of Z in the same way it is possible
to compute the optimal value of the other 900 or so linear co-
- ~ efficients. One must resort to doing a series of repeated coﬁpué;
tations, each independent of the others and for different Z. One
can thén plot: out the dependence of the energy on Z and rbughly o
determlne the Optlmum p01nt._

I 1t were to turn out tﬁat the energy depends very sen31t1vely
on Z, thﬂs would be a very 1neff1c1cnt procedure. Now in pr1nc1p1e
the_energy should be independent of Z if sufficiently many terﬁs |
from the radial séquence N=0,1,2,... are included in the basis.
This is true because the radial states (4e22) form a complete set
for any Z. (The case Z=0 must be excluded because then certain
integrals diverge). Inasmuch as our basis is restricted in certain
reSPects with regard to radial ercitationg, oné'expects to find a
weak dependence of the energy on Z. This expectation is confirmed
by an_eiamination of the results.

- : The nature of the dependenca of E'on 2 will be 1llustrated by
a sequence of results for g = 4. These results are summarized

in the table below:
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Z E
[0}
0.65 - 4229408
0.75 L ~4.30177
0.85 /430075
0.95 4429490
1.00 4, 28765

One finds that the optimal Z in this case in near Z = 0s75.
These results show.the weak but non~-trivial dependence of |
Eo‘on Z that we expebted'to find. Results for other coupling

strengths are qualitatively similar. Because of the weak '

 character of this dependence, it 1s not necessary to choose

a finer mesh of points on the Z-scale than is indicated by
the tabulstion above. Any change in E_ that may result from
a more accurate getermination of 7 would be small compared to

the errors from other sources. All results quote& in this chépter3

| inqluding'the detailed study for the case gz = 5, wére derived

from a basis wiﬁh the optimal value of Z for that coupling constant,

as determined by a tabulation similar to the one given aboves

A second study was made which was directed toward the same

" question of the suitability of the radial basis. In this study |

“the phonons were restricted to one radial mode, but the functional.

form of this radial mode RoL(x) was taken in a very general forme

Consider a function rOL(x) constructed from our radial basis RNL(X)'



~111~-

by a linear expansion:

Nt

D S .

N=0

where the maximum index N! &s something like N'=3 or N'=4.

Using roL(x) in the role formerly played by ROL@x), one can,

for a given set of coefficients Cy? compute;the matrix elements

of the Hamiltonian., For a given set of coefficients one can

then ‘determine the ground state energy E o By varying the .
coefficients ¢y one can optimize the energy by the same procedure
that we optimized the energy as a function of Z. This computation
is a 1little more compliéated because we must search out a Spacé

of three of four'parameters instead of a one~parameter.épace.
Unlike the prev1ous case, one {inds the aependence of E on ‘the
COEfflCantS xy is in this case very sharp. In partlcular, one

flnds for all coupllng—strengths that the ﬁggg&;gn@l ﬁggm gﬂ Lh_

 'gg6un stgte chosen (i.e. RoL(x) ) ;g-almgs 232&.11 the optimal

choice. To put it otherwise, the optimal choice of coefficients
is oy =1; ey =0, =..=0, A relatively small departure fram
this optimal condition results in significantly inferior approxi-

mations to B 0°

Still another study was directed toward checking the valldlty

of the,assumptlon.descrlbed by (4.16). We concluded there that 1t 3

is suitable to choose the radial modes R L(x) for different L

to be proprtional to the factor (x/(1+x )) . This choice was
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based oﬁ a heuristic argument that may not seem éntirely chVincing.

Using a moderate~-sized basis, a numﬁer of computatibns were made, for

various coupling strengths, in which the erependénce we are discussing
' ﬁas based on simple alternatives to the form (4.16). The result of

these studies was again that the choice originally made gave superior

results to other simple alternatives, |

For a given choiée of phonon modes, and fér a given basis;vit
is possible to arrive at different conclusions with regard to the

probable error,. according to what particular systematic sequence of
l:I! : “ i : “! ”‘H - ) .
results isﬁbtudied. Our results were arrived at by using a sequence

i
!

that made use of the notion of "rank." Another alternative is to
arrange the states in sequences according to the highest angular
momentum mode occupied: i.e., after states with only S-phonons,

we have states with S and P phonons, then S,P, and D, phonons, and so 1

forth, -Forg2 = 6, a typical set of results is quoted here.

S only ~6,000 ‘

‘ -0.5145
S,P " - =b.5145 -
. - - ‘-001321
S,P, D -6,6466
S,P,D,F ‘ . 646665 ‘ ‘

The projedtéd probable error derived from these sequences is
' typically a little smaller, but of the same order, as when derived

from the "rank" sequences.

A review and discussion of these results will be included in

the following chapter.
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~ of basis states, and to a numerical computation several orders of
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VIII. SUMMARY AND EVALUATION

The concept with which we have approached the‘bolaron problem
is, in essence, a very_simple one; The basic notion is known as
the Rayleigh-Ritz variational principle, which refers to the
well-known fact thet the expectation value of the Hamiltonian of
a quantum-mechanical system in a "trial state" /@) is stationary
as a functisnal of:/ﬁ) when the trial state is exactly the eigen-
State. Moreover, the stationary p01nt is 2lso a minimum point,
so that the energy in any approx1mate elgenstate glVes an upper
bound on the energy eigenvalue of the “dystema |

To apply this principle, it is necessary to vary the trial

state /@) in some systematic and numerically accessible way.

‘The simplest procedure, which is the one used here, is to expand

the trial state as a linear combination of basis states, which have

‘been chosen earlier., The coefficients of this linear exPanS1on

then become the Vdrldtlonal parameters, and the energy of the

system is a quadrat;c function of these parameterse. The variationv

of the energy with‘respeet to these coefficients leads to a syétem
of linear equations. The eigenvalue E is determined by ﬁhe condition .
that this linear, homogeneous system.hes a non-trivial éolution. 

A very straightforward appllcatlon of this procedure to the

polaron problem leads immediately to an astronomically large number

magnitude beyond the scope of available computers and known tééhniques.
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The difficulties presented by the véryllarge séale of'the_
problem are attacked simultaneously from two'directioms. On
the one hand, it is possible to find a sequ‘eﬁge of unitax:y
transformations, which méy be carried'outlexpliéiﬁly, and which
bring the Hamiltonian (in a sense) closer to diagonal form.
This procedure may also be looked at as.incorporating-Certain
factors explicitly in the trial state, analogously to well-
known procedures in'theaéolution of elemenﬁary quantum~mechanical |

prob%ems..vwith th?se devicesﬂthe problem may be reduced consider=
ably from its @riginal size. .Iﬁlis still neceés;fy to.pay
careful éttention to the?numerical t;chniques used for the solution
of this problem, in order to make efficient use of the capécity_ -
of modern computers. By reducing the scale of ﬁhe problem as
| much as‘possible'by analytic transformations, and by stretching
thevpractical téchniques for the mumerical solution fo their
limits, it is possible to proceed systematicaily with_the édmpueir
tation, . v

' The'qhoicefof the basis for the_fﬁndaﬁenfal expansion of the
trial stat;'is a ‘crucial step. Uhderlying‘this basis‘is_a repre~
sentation of phonon wéve'functions, or modes. The staﬁés then
describe the pattern of occupations of these modess In the
| ‘selection of these modes we were guided principally by the results'

of previous computations, particularly those of lee, Low, and Pinesé,

and Lee and Pines.7 In an important sense our computation may be



Athought of‘as a natural extension of these calculations. *In
these computations, the optimal functional form of the phonon
modes are determined explicitly under certainhvery restrlcted
conditions. ”
Havingvdetermined the phonon modés, one must select the

pattern of allowed occupations in some systematic and orderly

way. We were guided in this task by a scheme for the classification |

of states. An important role in this scheme was playe& by an

~index, R, called the rank, which describes the pattern-of

the dlstrlbutlon of phonons  among the modes w1th varlous angular

. : HE] i
it |. i "Ii

momenta. This concept allows us to give practical meaning to
the intultlve notion that the lower angular momenta are most
important,

The selection of basis states was conéidefébIV»simplified

- by a unitary transformation referred to earller. Con31dered as
'a transformatlon of the states, the effect of this unltary operator .'
- was to distribute’ ohonons in a partlcular way into the ground '

state" N*O, L-O. Whereas this particular mode had, played a pre- k

domlnant role, the unliary transformation had the effect of re- .
.du01ng the mode N=O, 1=0 to very minor importance. That is to say,
the predominantly important basis vectors were now states with -

no phonon occupations of this mode., Of these states, the most

imporﬁant states are those wiih~all»phononswin the leading-radiél‘v—¥f

mode N=0., States of this type were used as a point of reference
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in our discussion, and were referred to as "skeleton-states." Other
states were thought of as beiné derived from these states by |
"radial excitations," or by additions of S~phonons, or both,

The numerical techniques suitablé to the solution of the
problem naturally involve a sequence of approximations, each
utilizing a basis generalized from the previous instance by
the inclusion of an additional set of states. The corresponding
seQuence of approximate eigenvalues, and the increments in the
eigenvalues corresponding to the vério,s sets of states, served
as the basis for our analysis., This anélysis was in the first
inétanée directed toward selecting thé Opﬁimal basis within the
given restrictions on the size of the basis. Having determined
such a basis, the analyéis was directed toward estimating the
residual error in the results arising from the finite nature of
the computation., This analysis was carried out by arranging the
sets of states in a systematic way, and by extrapolating the
sequences of increments<corresponding to these sequences of states,r

By a progressive sophistication of techniques it was possible |
- to extend the'proﬁlem to a!basis with more than 900 states. That
is to say, it wasvpossible to determine accurately the ground
state energy eigehvalue of a Hamiltonian matrix of dimensiocnality
960; With this basis,‘we were able‘to obtain‘approximatioﬁs (énd
' uppef bounds) to the ground-state energy B (for P=0) of the pblaroﬁ |

- for an important range of coupling strengths. The results obtained



&
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were superiér to (i.e. lower than)ithe results of other meﬁhods
for'coupling stregths up to g2 = 7, approximately. The method
is applicable in principle to stronger coupling, but within

the limitations imposed by finite computer memory it gives
infefior results,

It was possible to determine approximations to the efféctive
mass, m¥*, for the same range of coupiing strengths. These results,
however, do not have an upper; or lower-bound characteristics |
This dgfed@-isvshared by mosf otger appypachqs to the polaron
effecti?e ﬁa553 ’

!
The error analysis was carried out according to the procedure

outlined. The neéults for weak and modérate coupling were

~relatively more accurate than for strongef coupling, and

‘were in agréementtwith the results of other compﬁtatioﬁs (where
the ofher computations were valid). -Foriexample, our result for
32 =1 ié in close agfeement with the‘"csrrected"_Lee;Low-Pines

~ computation (see equation (3.19)). The estimaﬁed error grév |
sharply with increasing coupling stréngth;=the fractional error
(estiméted) Varieg from 0.1 per—cent for g2 = 1 to about 1.0
pef«cent for g2 =:7. |

| The errof;éhalysis for the eféQCtiVe;mass computation was

more problematical. Because m* is not a "vatiational! quantity,

___the error may be of either sign, or;:in fact, may>vanish~alto-

gether. It is therefore impossiblefto get a lover-bound estimate on

the magnitude of the error. It is possible to get an upper~bound



‘that is generally:Small enough to make the,results useful,

~-118-

estimate on the error in m¥, but this estimate is very weak

and almost certainly leads to a grossly pessimistic result.,

In comparison to previous approaches to the polaron-

problem, the biggestredvantage of the procedure used here

is that, ih principle, it gives us, along with the results,
a possibility for estimating the aceuracy of these results.
Whereas othef approaches have involved certain restrictive
assumptlons whose effect on the resulte cannot be estimated;
the only restrlctlons in our procedure are the restrlctlons

I !
on the size of the basis, made necessary by practical con51der-

ations. A large part of our effort was devoted to estimating

the effect of this truncation of the basis. While our estimates,

which were based on the sequence of intermediate resUlts, vere

vnot rlgorous, they were at the same tlme meanlngful

The conclusion of these studies glves an error eotlmate

but larger than one would hope or expect from a computatien on

isueh a very lergeAscale. At the outset it was certainly intended

théﬁ a computation with a basis of many hundreds of states (and

“in particular with nearly 1000 states) would yield results with | »

probable errors smaller than the 1.0 per-cent estimated in a typical .

case. It must be regarded as a disappointment that the scale

of the problem is so out of proportion to the accuracy of the results.
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/// '
' This conclu51on is underllned particularly by a comparlson w1th
Al

Feynman s work. The path-integral formalism, ' conceptually more
sophlstlcated and more complicated than our approach, is almost
Atr1v1al from the point of view of the numerical computations
involved, and gives results close to ours for g~< 7 and actually
lower than ours for stronger couplinge. This comparison, and

the light it sheds on Feymnman's approach, is in itself.one ofb

the interesting results of our study. It would not have-been
aﬁ£idpated thet the Feynman method,:involving as it does some
assumytlons that are dlffloult to evaluate, would in fact Dbe
competetlve v1th a ‘variational oompucatlon involving many hundreds
of parameters, |

Tt is possible that some modificatione of our approech,

‘but within the present framework, would reeult iﬁ a more favorable
'COmbarison.v One alternative is to make. lurther unltary trans-
formations, of the same general character as. those already
'_-dlscussed, in orcer to bring the matrix st;ll closer toﬁdlageﬁal
form, One.such transformation is suggeeted by the Lee-Pines
calculation. Given their restriction to S and P-phonons, and
ceftain additional assumptions about the form of the trial etate,
the yeSuiting problem can be solved explicitly. (This explicit

solution still contains such parameters as may have been included

~in the functions describing the radial modes). It is Suggested that

the tmitary transformstion that affects this solution might be
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.incorporated into‘our computation in the same sense as the
LeeuLow—Pines transformation was incorporated. In this case o
the trivial version of our ccmputation would be équivalent to
the Lee-Pines calculation, rather than to the less accurate
one of Lee-Low~Pines. While this would undoubtedly be of
some usefulness, it would also carry with it certain practical
,difficulties, Each such unitary transformation has the effect

of adding certain new classes of terms to the Hamiltonian

1 = H
] H

operator; the effect of these terms from a.cbmputaﬁional point
§f view isqtb.increase consiéerably tﬁe:density ofithe_Haﬁiltonian
matrix (i.e., the number of non-zero éléﬂents for glmatrixiof given
size). . Unless the transformation is of significant usefuiness
in itself, the loss may be greater than the gain. _
Another possibility is to look still more carefully at the
choice of radial modes. It is regarded as likely thét some improvemenf
:could be made in this respect, but it ig also uhliEél?nﬁhat‘the
improvement, w0uld be very greate
As our intérest was primarily methociological; we would point
out that many of the difficulties in this computation ﬁay be regarded
as arising from specific characteristics of this partiéular problem
which may not be present in other important problems. It is possible
to invent a number of simple modifications of the polaron problem,‘ |

for which results of comparable accuracy could be achieved with a

much smaller basis. Alternatively, for these model problems much ‘

more accurste results could be obtained for a basis as large as the

v
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one used hefe. One example of such a model is that used by
Devreese and Eyrard 39 study the possible existence of
exci%ed bound states of the polaron. In this model, phonons
may,ﬁe'emiited with only one momentum k, or ité opposite, ~ke

An analogous model in angular-momentum space may be constructed

by restricting the angular-momentum vector to a plane (M=0"

fof;all phonons ). For any problems with such characteristics,
or forlproblems for which these models are meaningful approximations,
the procedure studied here may be of, very great usefulnesso
We have already sald that one of the 1nterest1ng reoult"
bf our work is the llght it sheds on‘F;ynman‘s approach. This

suggests it may be possible to find an approach that combines

the conceptual eleagance and apparent power of the patheihtégral

'fovmallsm with a method for evaluating ‘the probable error of

~ the results. One possible approach muy be based on the numerlcal

evaluation of the path-integrals Lnstead of resorting to the "model
problem." The numerlcal evaluation of such path 1ntegrals has
already been studied by several authors, but not with ‘particular

reference to this problem.
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© With the aid of (4e5), 1o

" .pne can write
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APFPENDIX A

In this Appendix we compute the various integrals that arise .
when the Hamiltonian is expressed in terms of the discrete modes
defined by the creation and destruction operators (4+28). These

integrals are given by (4e37), (4e38), (4+39), and (4.40). They N

are
Tij‘ = /dBX ujif(;f:) (1 + x2) a ) | | | (A.>l')
f‘f" R o

Qli,j,k,1) = deX/dBX' ué_*(z) u}"(x?) Xox! uk(;) u]_&') (A-B;)

d

K = deX ul(x) ;c-‘uj(}‘c) | IR (A.4)

w6 =g @ = Ry 6y () s
, ' i1 i~i i1 ) : .-

Tiy ¢ gij +5L.L.8MM/X2dXRNL(X)XZRNL(X) O (a.6)
. B i7j i'i i
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Similarly

0

o

Making use of

x
L]
M‘
i

x x! P;(cos ¢XX') \ .’ :v (4.8)

i
m .

we can write

20 _ P
CQ(iydsksl) = (M/B)szdx Ry g (%) xRy | (x)) Xdx Ry 1 ()
: | ii Tk

“ (c) k \“o 35
where in turn |
83500 = - fdQ Yi'fiM.i( M) Y‘j‘:’-’M(Q) YLij( 0 (1)

vTheSe integrals over three spherical harmonics may be expressed
in terms of Clebsch-Gordon coefficients, and are well=known, If

we define
o0

T(N,L; N',L', 8) = .j[;gdx RNL(X) XQ,RN'L'(X) . : (A.12)

o)

. - _ S
K3 F 5 LysLgtl [ XdXRNiLi(X) XRNij(X) | (4.7)

ORIV (o)L oD O

/



“frovided T -1 and K'Y =L,
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then the integral in (A.10) is I(N,L;N',L'; 2) and the integral.
in (4.11) is I(¥,L; N',L', 1). The normalization for the radial

functions RNL(x) may then be written
T(N,L; N,L,°0) = 1 | (A.13)

The integrals we need to compute are then Ji (A.2) and I(N,L; N',L', s)
for s:O; s=l, and s=2, In working out these integrais-we will
repeatedly encounter a particular definite integral. For con-

venience we define

4 '
oot I

I | \ D
B(5,K) = f 1= v)7 v av = [ (30) [ (x2)/ T3 542) (A.14)
o : S

Using the definition (4.22) of the radial functions

L -
| X 1 . _‘. . .
Byp, () = ] +szz) . (1257 i, (v ?) o as)

one can write

!
' O . Lilitdds
' NL _N'LS. SR
I(N,L; N',L'; s) = 2 LLl . f(1 my) "2 T
( e ) o LA sl ( ) ,
) [«4
- LiL'4s=l

(v) 2 PNL(x}) Py (v) av © (8.16)



- (A.18): i.e., without a normalization constant.. The constant
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In the ortho-normality condition (A.13) this integral occurs with =

L=L', s=0. We are therefore concerned with polynomials ortho-

normal on the interval (0,1) with respect to the weight function - L

L-1/2 L+1/2 S
w(v) = (A ~v) v | | | (A,17)

These polynomials are defined by the "Rodrigues' Formula'

o1 &t . o | L =
P, (v) = ;a:;;;ﬁ— (w(¥) v ‘(1 - 7) ) cee T _v‘(A.18’),

t . B R
T I AU S I

where w(v)'is as in (A;l7). These polynbmials are known in the

literature as the Jacobi Polynomials inzh§.3e¢5nd Kind, and

are conventionally denoted by Gy (2L#l, L#3/2; v). (See, for
example, reference 15 ). | o

" We wish to define these polynomials étricﬁly as given by

C

ML is determined so that the whole radial’function'RNt(x).is‘,'fr '.i C e

" normalizede

If

=

Pp(v) = a§ v - Caa9) .

j:

Q

one can easily show

UM = T+ s2) T+ 32)  (a20)
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and

AW o) [(an + 28 + 1)/ + 2L +1) | (.21

The normalization integral I(N,L; N,L, O) may be computed by

substituting (A.18) into (A.16) and differentiating by parts N

times to obtain

! A |
1,5 5 0) (2 GI?&L[ af2 ~N:'(“( N o)
I‘ N,L. N,L’ O = . AT : : ‘*“ ' wilv) ly - T ‘
T 228 ) o [u() o »

w(v) (1 - sz!vN dv , ; | (A;22)

' According to (A.18) the factor in brackets [ } is again P (v)e

Then from (A.19) and (A.21)

B ) = W S . a2
av .
~ One finds
. . W2 : ,
o (-1 o S |
“I(N,Ls N,L, 0)'= — 1L a“(,N’vL). B(LAL/2) W-1/2)  (A.24)

2Z2L~+1

where the last factor is an abbreviation for an integfal, as,givenlr\

by (A.14).
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- After some simplification, the normalization condition (A.13)
then leads to
(N + 21)i 1

S LY ’ | |
c,. = 2z-t/e 5,25
NL T wm Cav + 1 +1/2) (A.25)

The same general procedure may be followed fo'compute'the integral
I(N,L; N',L'; 2) that arises in the termiTij. e can éssgme:
without loss of genérality N'> N. Also, L:L"(otherwise‘the'
“term does got enter into (4.10)). Aftér Substi£ution.and anvv

N'-fold integration by parts

T Wt Ta 2Y = (3N Nt
I(N,L, Ni,L; 2) = (=1) ol d 1 NL(V)
- 1
o 7242 va 3
: 'y 2; 1 -
vw) =" e - S (8.26)
If N'5 N,
@ ( P <v)) -2y 2Nt L) =t (a.27) ,
: _
va
We have then
| C,.C ., | -
I(,L; N',L; 2) = —elll yiy aéN L) gt 4L a1/2, L -1/2) (.

o 7741

- 2iﬁﬁ' (he28)

7,2
4d



After substitution of Gy (A.25); aéN’L) (£.20); and

B(N' 4+ L =~ 1/2, L = 1/2) (4.14); and after considerable

simplification, one finds

(W + 2L)F N'E (2N + 2L + 1)

l N

; - I(NL; NLL, 2) = |
z= (@ +20)d nb (2L + 1)

4 (h29)

i The intbgfaistICN;L;'Nf;LF; 1) involve Bﬂiy a few édaitional
complications.” We are interested in the cases L' =L +1
and L' =1L - 1, (We agsume as before N!' P NJ. We denote
| I(N,L; N',L*; 1) as I, and I_ in these two cases, respectively.
Tt is coﬁvenient‘also to write wL(v) where formerly'wevwrote

w(v), in order to distinguish between the cases for L and Li°

We note

(8.30)

v (v) = v (V) = v (1= v) wp(v)
© . .Using (A.30) and meking the usual substiﬁntions, one finds -
- ' o
| o ' |
- - '
— (1" CprCrapr [ g0 Ir )
T P N ,
R 24 - ® dv’ v
N'LA1 /2 _N? 2 .
1 - v) 4L41/. o +143/2 dv (£.51)
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Again after substitution and simplification, one arrives at the result

NE W+ 20)L (2N 4 2L 4 1)

1, = I(%,L; N',L41; 1) = (A.32)

NI (Wt + 21 + 2)1 7

By an analogous procedure, one may show -

- I(N,L; N',I-1, 1), =

H
Il

‘Ci | C ' .\ N ‘. - ' 1 . ) . » |
ML 0Ll gy g o 60) poviggica o, wiant4a/2) (a.33)
s ) B NI T4 _

if N' = N41, end I_ = O otherwise. With this stipulation

N+1

N+ 2L ‘ _

' Tt remains only tb compute the integral 3, (h.2). Using (4.9) and
‘the definition | o
Al ey . S
e w1 o (w3)

V(x) =

one can show




s o 2 . : ' . L
o i, = AGx) V(x) xfax . o = - {a.36)
'é”, N V
P
] 1 ' T T o
: = 55 P Mm % | (8.37)
o + 4% o :
it L= Li = 0., Ctherwise, Ji = 0. Uo have written N for Vi
& e A PR Fe) 1 - by J. 8 L
in (4.37). Chenging variables Trom x to v, and substituting
(.18} FTor (v), one finds '

Llac-

!

]
S

- . 7 %
. ¥ 1 d*“ i
N " : '\}- 4 - \l\af/vg_ A e
= D = -m: 1V A e TS ﬁﬁdﬂ‘ : N {Aej':?')_
: v dv 4 '
'Q' ~ :
where
n '
i 27 = . '
. Oyl 26 2" 1o, ‘
D o el § i ) o ; — (A.,JLO)
. - e W RN
oz BT § i PO e /2

*
il
s}
=

=]
O
tus]
e~
§
NS
A%

1
2
™Y
S

shich, after simplification, turns out to be independent of N:
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