
UC Davis
UC Davis Previously Published Works

Title
A Global Bifurcation and the Appearance of a One-Dimensional Spiral Wave in Excitable 
Media

Permalink
https://escholarship.org/uc/item/28m357wt

Journal
SIAM Journal on Applied Dynamical Systems, 8(1)

ISSN
1536-0040

Authors
Cytrynbaum, Eric N
Lewis, Timothy J

Publication Date
2009

DOI
10.1137/080722254
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/28m357wt
https://escholarship.org
http://www.cdlib.org/


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. APPLIED DYNAMICAL SYSTEMS c© 2009 Society for Industrial and Applied Mathematics
Vol. 8, No. 1, pp. 348–370

A Global Bifurcation and the Appearance of a One-Dimensional Spiral Wave in
Excitable Media∗

Eric N. Cytrynbaum† and Timothy J. Lewis‡

Abstract. It is well known that excitable media can sustain “fast” stable traveling pulses of excitation. In
models for which analysis is tractable, the fast pulse solution is known to appear through a saddle-
node bifurcation accompanied by a “slow” unstable traveling pulse. Furthermore, the uniform rest
state is also a stable solution. It is generally assumed that the boundary between the basins of
attractions of the rest state and fast pulse (i.e., threshold) consists of the stable manifold of the
slow pulse. We use numerical experiments to explore this issue. Our results indicate that, near
the saddle-node bifurcation, the stable manifold of the slow pulse does indeed act as the threshold
between the rest state and fast pulse. However, further away from the saddle-node bifurcation, a
global bifurcation involving the heteroclinic connections between slow and fast pulses occurs. This
bifurcation gives rise to an unstable periodic solution that has been referred to as a one-dimensional
spiral wave. Beyond the bifurcation point, the stable manifold of the one-dimensional spiral wave
appears to act as the threshold between the rest state and fast pulse.
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1. Introduction. Spatially distributed excitable media are ubiquitous in nature, appearing
in many chemical, physical, and biological systems. These systems have a stable uniform “rest”
state, but when perturbed locally above a threshold, they have the ability to generate pulses
of elevated activity that propagate without damping (see [22]). Detailed information about
the threshold separating the rest state from propagated pulses can be extremely important.
For example, it could lead to a better understanding of how aberrant propagated activity can
arise in cardiac tissue and induce dangerous arrhythmias [45, 46, 42, 47]. It could also lead
to insight into optimal stimuli for annihilating this pathological activity [15, 41, 27, 43, 25].
In this manuscript, we explore the structure of the threshold surface between the basins of
attraction of the stable rest state and a stable propagated pulse in an idealized model of
excitable media.

1.1. The FitzHugh–Nagumo equations. The general FitzHugh–Nagumo (FHN) system
is a family of two-variable models that capture the essential properties of spatially distributed
excitable media and serve as minimal models for excitable systems. The original FitzHugh–
Nagumo system [11, 37] was formulated as a reduction of the Hodgkin–Huxley model for nerve
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A 1D SPIRAL WAVE IN EXCITABLE MEDIA 349

axon [18]. Since then, many variants of the general FHN model have been proposed. Some of
these models were motivated by specific physiological systems, e.g., the ionic-current–based
Morris–Lecar (ML) model [32]; others were proposed for the sake of analytical tractability,
e.g., the piecewise linear McKean and Pushchino models [30, 35]. In their general form, the
FHN equations are

(1)

∂u

∂t
= D∇2u + f(u, v),

∂v

∂t
= εg(u, v),

where u is the excitation or activator variable, and v is the recovery or inhibitor variable. For
typical parameter sets, f(u, v) has three zeros as a function of u over a finite interval of fixed
values of v and ∂f

∂u (u, v) < 0 at the lower and upper zeros giving the u equation a bistable
structure on that interval. Outside that interval of v, f(u, v) has only one zero. g(u, v) is
an increasing function of u and decreasing in v so that the kinetic (spatially homogeneous)
equations have only one stable steady state which sits on the lowest solution branch of the
curve f(u, v) = 0. The phase plane for one example of such a system is shown in Figure
1 (bottom half of the inset). We consider dynamics in one spatial dimension with diffusive
coupling in the excitation variable u only. We concentrate on the case of a spatially periodic
domain (i.e., a ring), but we will also consider an infinite domain when appropriate.

1.2. Steady traveling solutions. Three solutions to the FHN system are well known and
well characterized: (i) the spatially uniform stable rest state, i.e., the solution to f(u, v) =
g(u, v) = 0, (ii) a fast-moving and generally stable traveling pulse, and (iii) a slow-moving
unstable traveling pulse [33, 12, 38, 21] (see Figure 1). For the periodic domain, these trav-
eling pulse solutions correspond to activity circulating around a ring with a fixed velocity.
Composite solutions consisting of multiple traveling pulses are also possible.

The level of excitability of the FHN system, as reflected in the upstroke velocity and
propagation speed of an action potential, is dependent on the parameter ε: smaller values
of ε correspond to dynamics with stronger excitability. The stable rest state exists for all
positive ε, whereas the fast and slow traveling pulse solutions exist only for positive values of
ε below a critical value εSNB . These traveling pulses disappear via a saddle-node bifurcation
as ε is increased through εSNB [38] (Figure 1). The terms “fast” and “slow” arise from the
observation that the speed of the fast pulse is asymptotically O(1) with respect to ε [17, 5],
while the speed of the slow pulse is O(

√
ε) [17, 6, 14]. In the singular limit (ε → 0), the fast

pulse can be calculated as a composite structure formed by matched asymptotics of solutions
to the singular inner and outer equations [5, 44, 7], and the slow pulse approaches a standing
pulse solution to the inner (u) equation of system (1) with v set to the kinetic steady-state
constant value [14]. The reduced system, consisting of the inner equation with fixed v, is often
referred to as the Nagumo equation [33].

1.3. Threshold solutions. Thresholds that separate two stable states are usually associ-
ated with saddle solutions. The unstable manifold of the saddle solution forms heteroclinic
connections with the two stable states, and the stable manifold of the saddle solution forms
the boundary (separatrix) between the basins of attraction of the two states. Thus, the stable
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350 E. N. CYTRYNBAUM AND T. J. LEWIS

manifold of the saddle solution acts as a threshold surface between the states. We refer to the
stable manifold of the saddle solution as the “threshold” and the saddle solution itself as the
“threshold solution.”

a

b
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Figure 1. The speeds of slow (dashed) and fast (solid) pulses plotted as functions of ε, calculated numerically
for the ML system (see the appendix and Table 1). A saddle-node bifurcation of the fast and slow pulses occurs
near ε = 0.43. Examples of slow (a) and fast (b) pulses for ε = 0.26 are plotted as functions of x and in the
phase plane as curves parametrized by x (inset).

For the FHN system, it is generally assumed that the slow pulse is the threshold solution
between the rest state and the fast pulse. This should indeed be the case for values of ε close
to the saddle-node bifurcation at εSNB. For ε > εSNB, the rest state is globally attracting,
whereas for ε < εSNB, both the rest state and the fast pulse are presumably stable. Consistent
with the structure of a saddle-node bifurcation, we infer that the slow pulse is a saddle solution
with one unstable mode for values of ε near εSNB. The one-dimensional (1D) unstable manifold
of the slow pulse is comprised of heteroclinic connections between the slow pulse and the stable
rest state and between the slow pulse and the fast pulse. The stable manifold of the slow pulse
in turn acts as a threshold surface between the uniform rest state and the fast pulse. Thus,
the slow pulse is the threshold solution. Based on the symmetry of the system, the entire
structure described above actually appears twice in the phase space, corresponding to both
left and right directions of travel.

For small ε, there seems to be a fundamentally different scenario. The standing pulse of
the Nagumo equation, which is the asymptotic limit of the slow pulse in the singular limit
ε → 0, is known to have a saddle structure with one unstable mode [13]; the stable manifold
of the standing pulse is the threshold surface between the stable rest state and the excited
state [13, 31, 34]. Furthermore, for ε small, the slow pulse for the FHN equations also has
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A 1D SPIRAL WAVE IN EXCITABLE MEDIA 351

a saddle structure with one unstable mode [14]. However, this does not imply that the slow
pulse lies on the threshold surface between rest and the corresponding fast pulse. Small
excitatory perturbations of the standing pulse in the Nagumo equation evolve into not one
wavefront but two counterpropagating wavefronts [10]. When incorporated into a matched
asymptotic analysis, this implies that, for ε small, perturbations to the slow pulse should lead
either directly to the rest state or to two counterpropagating fast pulses rather than a single
fast pulse. On a ring, the two counterpropagating fast pulses would eventually collide and
annihilate one another, leading the solution to the rest state. As there is only one unstable
mode for ε small [14], this observation indicates that the slow pulse is not on the threshold
surface between the rest state and the fast pulse but instead lies completely within the basin
of attraction of the rest state. On an infinite domain, the slow pulse appears to lie on the
threshold between the rest state and the composite solution of two fast pulses propagating
indefinitely in opposite directions.

To summarize, although one half of the unstable manifold of the slow pulse always leads
to some form of propagated excitation, the details of the long-term behavior appear to be
fundamentally different at opposite ends of the ε interval for which traveling pulses exist.
Near the saddle-node bifurcation, small perturbations to a slow pulse lead either to rest or to
a single fast pulse, and the slow pulse is the threshold solution. For small ε, small perturbations
to a slow pulse lead either to rest or to two counterpropagating pulses and ultimately to rest
for the case of a periodic domain. Thus, for ε below a critical value, the threshold solution
must be something other than the slow pulse. This critical value is the point at which the
global bifurcation, which is the main focus of this paper, occurs.

1.4. Outline. Here, we carry out a series of numerical experiments to examine the changes
in threshold structure of the FHN system. First, we use a shooting method to explore
the long-term behavior of the slow pulse (i.e., dynamics along its unstable manifold). As
predicted, there is a fundamental change in this behavior at a critical value ε = ε∗. For
ε > ε∗, suprathreshold perturbations to the slow pulse lead to a single fast pulse; for ε < ε∗,
suprathreshold perturbations to the slow pulse lead to two counterpropagating fast pulses.
Next, we use a second shooting method to directly examine the threshold between the rest
state and the fast pulse for the periodic domain. Consistent with the first study, within the
numerical accuracy of the technique, we find that for ε > ε∗, the threshold solution is indeed
the slow pulse. However, for ε < ε∗, the threshold between rest and the fast pulse is not the
slow pulse but is instead an unstable solution akin to a 1D transect of a spiral wave, which
has been referred to as a 1D spiral wave [26, 9, 28]. Finally, we describe the global bifurcation
through which the unstable manifold of the slow pulse redirects itself from single fast pulse
to double fast pulse and, simultaneously (or nearly so), through which the 1D spiral wave
appears.

2. Technical details. The calculations presented throughout this paper are carried out
using ML local dynamics on a periodic domain (see the appendix; parameters are as given in
Table 1). As the domain is much larger than the space scale associated with individual pulses,
we assume the observed dynamics are representative of those of the infinite domain case as
well, with the sole exception of pulse collisions due to the periodicity of the domain. With this
in mind, we use leftward and rightward propagation to refer to clockwise and counterclockwise
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352 E. N. CYTRYNBAUM AND T. J. LEWIS

propagation, respectively.
To aid in the description of activity composed of multiple pulses, we introduce the following

notation. A rightward propagating fast pulse is denoted as F and a leftward propagating fast
pulse as f . Similarly, rightward and leftward propagating slow pulses are referred to as S and
s, respectively. The uniform rest state is denoted by R.

Multipulse activity composed of several pulses can be described by sequences of these
letters that list the pulses in the order of their appearance along the spatial domain. For
example, on the infinite domain, fFF would denote, listing from x = −∞ to x = ∞, one fast
pulse moving leftward and two fast pulses moving rightward. Although such a solution is not
a steady-state-traveling solution because the distances between pulses are time-dependent,
it is nonetheless a steady behavior in the more general sense that all three pulses continue
to propagate for all time with preserved sequence fFF . In contrast, a sequence of pulses
FfF is not steady and converges to F after the collision of the f and leftmost F . On a
periodic domain, any sequence of pulses eventually converges to Fn, fn, or the rest solution
as determined by the winding number of the initial condition in the phase plane [24, 23]. Note
that the maximum power n is determined by the size of the ring and the dispersion curve for
the fast pulse (see [22] for a discussion of dispersion curves for FHN). We make the further
assumption that convergence properties of single pulses are preserved in the presence of other
pulses. For example, if a perturbation to s drives it to f , then an analogous perturbation to
sF drives it to fF .

As we are interested in threshold behavior, we define the following terminology which will
be useful throughout the rest of this paper:

• R/E threshold: The set of initial conditions which lie on the boundary between initial
conditions that converge to rest without any form of propagated excitation and initial
conditions that lead to some form of propagated excitation (possibly transient due to
collision on a periodic domain).

• R/E-threshold solution: The solution to which initial conditions on the R/E threshold
converge.

• R/F threshold: The set of initial conditions which lie on the boundary between ini-
tial conditions that ultimately converge to rest and initial conditions that ultimately
converge to the single fast pulse solution.

• R/F -threshold solution: The solution to which initial conditions on the R/F threshold
converge.

3. Threshold and the long-term behavior of the slow pulse. In this section, we describe
a numerical shooting method used to examine the R/E threshold, i.e., the threshold between
the rest state R and any significant suprathreshold activity. We are concerned with any
suprathreshold activity, whether sustained or transient; so, for example, an fF solution on a
periodic domain would count as suprathreshold despite its ultimate convergence to rest.

The shooting method involves a search through a one-parameter family of initial conditions
and is designed to converge to initial conditions that lie on the R/E threshold surface. At
advanced stages of the shooting method, we are thus able to observe (i) the approach to the
threshold solution along its stable manifold, (ii) the divergence from the threshold solution
along its unstable manifold, and (iii) the subsequent long-term evolution to the rest state R
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or to suprathreshold activity. As expected, the slow pulse S appears to be the R/E-threshold
solution for all values of ε < εSNB. However, the long-term behavior of the unstable manifold
of the slow pulse depends on the value of ε, with a qualitative change at a critical value of ε
which we define as ε∗.

3.1. The R/E-threshold shooting method. The shooting method consists of a series
of simulations of the FHN equations (1), using “square pulse” initial conditions u(x, 0) =
AP (x, x1, x2) and v(x, 0) = v0P (x, x3, x4), where x3 < x1 < x4 < x2 and P is a plateau
function defined in terms of Heaviside functions P (y, y1, y2) = H(y−y1)H(y2 −y) (see Figure
2, panel B0). The parameter v0 and x1, x2, x3, x4 are set appropriately so that initial leftward
propagation is prevented. For sufficiently large A, a single rightward propagating fast pulse
F is generated. On the other hand, when A = 0, the solution converges to rest R. Thus, a
shooting method that systematically varies the parameter A can be used to approach initial
conditions that lie on the threshold surface between the rest state R and suprathreshold
propagated activity.

From iteration to iteration of the shooting method, the value of A is changed as follows.
Initially, Amin and Amax are chosen so that the solution converges to a rightward fast pulse
(F ) for A = Amax and the solution converges to rest (R) for A = Amin. Simulations are then
run with an intermediate value of A = (Amin + Amax)/2. If, at any time, maxx u(x, t) drops
below a value just above the resting value of u, the simulation is halted, and Amin is reset to
the current value of A. On the other hand, if maxx u(x, t) rises above a value just below the
peak u value in the fast pulse, the simulation is halted, and Amax is reset to the current value
of A. A new intermediate value of A is then used in the initial condition for the subsequent
simulation. This procedure is iterated until Amin and Amax are indistinguishable in double
precision. This final value of A is used as an approximation of ARE , the critical value of A for
which the initial conditions lie on the R/E-threshold surface. The shooting method is carried
out for a sequence of ε values ranging from 0.04 to 0.40 in increments of 0.02; this provides a
broad perspective on near-critical behavior (see Figure 2). Additional simulations are carried
out for ε between 0.28 and 0.29 in increments of 0.001 to narrow down the bounds on the
value of ε∗.

To determine when solutions approach traveling pulses, the discrete version of the following
function is calculated throughout the simulations:

dtp(t) = min
x0

(||u(x, t) − u(x − x0, t − τ)|| + ||v(x, t) − v(x − x0, t − τ)||) + ||u(x, t)||.

This is a measure of how close the solution u(x, t) is to an optimal shift in space of u(x, t− τ),
where τ is a fixed time delay. Note that xmin

0 /τ provides an estimate of the traveling speed.
When the ||u(x, t)|| term is omitted, dtp(t) should approach zero for a solution converging to
any traveling pulse or the uniform rest state. This additional term is introduced to distinguish
between convergence to the fast pulse, the slow pulse, and the uniform rest state.

3.2. Results: A change in long-term slow-pulse behavior at ε∗. Figure 2 shows intensity
plots of u(x, t) at four different values of A during the shooting method, for each of four values
of ε. The panels within this figure are described throughout the rest of this section.

At all values of ε, for 0 ≤ A < ARE(ε), only subthreshold responses are elicited, and the
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Figure 2. The results of the shooting method used to find the R/E-threshold solution at four values of ε are
shown as intensity images (u(x, t) only). A schematic of the initial condition used in all simulations is shown
in panel B0 (top). All parameters are given in Table 1 except for ε and A, the amplitude of u in the initial
condition, which are specified in the figure for each column and panel, respectively. Panels A1–D1 show direct
convergence to the fast pulse for A sufficiently large. Panels A4–D4 show convergence directly to rest for a
sufficiently low value of A. Panels A2–D2 and A3–D3 show transient convergence to the slow pulse followed by
excitation and convergence to rest, respectively. For ε < ε∗ (A2 and B2), excitation consists of two fast pulses
but for ε > ε∗ (C2 and D2) only one fast pulse emerges. Approaching ε∗ from below (A2→B2), note that the
retrograde fast pulse is gradually pinched down until it finally fails to propagate above ε∗ (C2). Panels A5–D5
show dtp(t) for each simulation portrayed in the upper panels. Three or four flat regions are evident in each
simulation corresponding to the rest state R, the slow pulse S, the fast pulse F , and, when present, the double
fast pulse fF .

system relaxes to the rest state R (panels A3–D3, A4–D4). Furthermore, values of A slightly
below ARE(ε) lead to transient slow pulses S that eventually collapse to rest R (panels A3–D3).

For values of ε ≥ 0.288, values of A > ARE(ε) produce responses that develop into single
fast pulses F (panels C1, C2, D1, D2). For values of A only slightly above the critical value
ARE(ε), there are relatively long transients, during which the solution appears to approach
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the slow pulse S before eventually converging to the single fast pulse F (panels C2, D2).
At values of ε ≤ 0.287 and A well above ARE(ε), as seen at larger values of ε, a single

fast pulse F quickly emerges from the initial condition (panels A1, B1). However, for A only
slightly above ARE(ε), the slow pulse S again makes a transient appearance, but, in this
range of ε, excitation does not lead to a single fast pulse but instead to a composite solution
consisting of two counterpropagating fast pulses fF (panels A2, B2).

The above results indicate that there is a fundamental change in the threshold behavior
at a critical value ε = ε∗, where 0.287 < ε∗ < 0.288. For ε > ε∗, the slow pulse S is both
the R/E-threshold solution and the R/F -threshold solution. For ε < ε∗, the slow pulse S
is the R/E-threshold solution, but it is not the R/F -threshold solution; instead, it is the
R/fF -threshold solution. This is a particularly important distinction in the case of a periodic
domain, where the two fast pulses fF would eventually collide and annihilate one another, with
the solution eventually converging to rest. That is, for a periodic domain, both components
of the unstable manifold of the slow pulse S are entirely contained within the domain of
attraction of the rest state R.

The overall trend in the suprathreshold behavior of the slow pulse for increasing values
of ε is well illustrated in panels A2–D2. At low values of ε, the slow pulse S can blow up
into a retrograde and anterograde fast pulse fF . As the value of ε approaches ε∗, retrograde
propagation is gradually inhibited (panel B2) until it is finally cut off altogether above ε∗

(panel C2). Although we did not verify it numerically, we postulate that at ε∗, the slow
pulse S grows into a retrograde slow pulse and anterograde fast pulse sF . Of course, this
could happen only on the infinite domain. On a periodic domain, a slow and fast pulse would
eventually “collide,” leading to some other long-term behavior.

To verify that the intensity plots actually correspond to the composite solutions described
here in terms of the fast and slow pulses, dtp(t) for each simulation is plotted in panels
A5–D5. Initial transients are followed by an approach (i) to rest (labeled A4–D4), (ii) to a
transient low level (labeled A3–D3) corresponding to the slow pulse S, (iii) to an intermediate
level corresponding to the fast pulse F (labeled A1–D1), or (iv) to a transient high level
corresponding to a pair of counterpropagating fast pulses (labeled A2, B2). As described
above in the definition of dtp(t), these flat regions indicate that it is in fact meaningful to
describe these solutions in terms of the known traveling pulses.

3.3. A qualitative interpretation of the transition at ε∗: Phase plane and refractory
dynamics. This transition in behavior at ε∗ can be understood in terms of the effect that
the slow pulse has on the refractory variable (v). For low values of ε, the slow pulse has a
relatively small amplitude in u and has an almost negligible effect on the refractory variable as
it propagates through a region. Thus, the “back” of the slow pulse in this regime lies relatively
low in the v versus u phase plane as depicted in the left panel of Figure 3. Consequently,
as the solution diverges from the slow pulse toward excitation, the refractory barrier behind
the slow pulse does not form a strong barrier to retrograde propagation. Therefore, both the
“front” and the “back” of the slow pulse grow into true fronts (see [44] for a detailed discussion
of front propagation) and develop into two counterpropagating fast pulses. For larger values
of ε, i.e., closer to the saddle node, the slow pulse has a larger amplitude in u and has a
more pronounced effect on v (see the right panel of Figure 3). In this case, as the solution
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Figure 3. Comparison of slow-pulse excitation above and below the critical value of ε∗. Solutions
u(x, t), v(x, t) are plotted as functions of x (top) and parametrized by x in the u − v phase plane (bottom)
at two different points in time, when the solutions are close to the slow pulse (A, C) and during subsequent
excitation (B, D). For ε < ε∗ (left panel), the “back” of the slow pulse is low in the phase plane and grows into
a true front leading to two counter-propagating fast pulses. We use ε = 0.26 to illustrate this case. For ε > ε∗

(right panel, illustrated with ε = 0.38), the “back” of the slow pulse is higher in the phase plane and grows into
a true back leading to a single fast pulse.

diverges from the slow pulse toward excitation, retrograde propagation is no longer possible;
the “front” of the slow pulse evolves into a true front, the “back” evolves into a true back,
and only a single anterograde fast pulse emerges.

4. Threshold solutions: Slow pulses and 1D spiral waves. The numerical experiments
in the previous section indicate that the R/F solution on the periodic domain is the slow
pulse for ε∗ < ε < εSNB. However, for 0 < ε < ε∗, the unstable manifold of the slow pulse is
embedded in the basin of attraction of the rest state. In order to identify the R/F -threshold
solution that replaces the slow pulse for ε < ε∗, we implement a second shooting method. We
stress that this shooting method is designed to identify the threshold between the rest state
R and the sustained single fast pulse F (i.e., the R/F -threshold solution) specifically and not
the threshold between the rest state R and any transient suprathreshold activity (i.e., the
R/E-threshold solution) as in the previous section.

4.1. The R/F -threshold shooting method. To identify the R/F -threshold solution, sim-
ulations are performed starting with square-pulse initial conditions as described in the previous
section. However, the value of the shooting parameter A is updated differently. Initially, we
set Amin = 0 and Amax to be sufficiently large so that the solution with A = Amax converges
to a single rightward propagating fast pulse F . A simulation with an intermediate value of
A = (3

4Amin + 1
4Amax) is then performed (the asymmetric update accelerates convergence

due to asymmetric computation times). At every time step, the solution is compared to both
the rest state R and the single fast pulse F . As soon as the l2 distance between the solution
and either of these two steady solutions falls below a small tolerance value, the simulation is
terminated and the values of Amax or Amin are updated appropriately. In the case of con-
vergence to rest R, the value of Amin is updated to A; for convergence to the fast pulse F ,
the value of Amax is updated to A. The new value of A for the next iteration is taken to

D
ow

nl
oa

de
d 

03
/1

5/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A 1D SPIRAL WAVE IN EXCITABLE MEDIA 357

be the weighted average of Amax and Amin as defined above. This process is repeated until
Amax and Amin are indistinguishable in double precision. This final value of A is used as
an approximation of ARF , the critical value of A for which the initial condition lies on the
R/F -threshold surface. The shooting method is carried out for the same sequence of ε values
as was used in the numerical experiments described in section 3.

4.2. Results: A 1D spiral wave replaces the slow pulse as the R/F -threshold solution
below the critical value ε∗. For ε∗ < ε < εSNB, the results for this second shooting method
are identical to those obtained with the shooting method from the previous section; i.e., the
R/F -threshold solution is the slow pulse.

The sequence of images in Figure 4a shows the results of the shooting method for ε =
0.18. These results are characteristic for ε < ε∗. Simulations with small values of A (e.g.,
A = 50, bottom panel) approach the rest state R, and those with sufficiently large values
of A (e.g., A = 62.5, top panel) initiate single fast pulses F . After several iterations of
the shooting method (e.g., A = 53.69, first panel above ARE), two counterpropagating fast
pulses fF transiently arise before the system ultimately returns to the rest state R through
pulse collision on the periodic domain. This is the same behavior described in the previous
section. However, curious transient spatiotemporal behavior emerges with further iteration of
the shooting method. At A = 54.008923 (third panel from top), the initial condition elicits
a forward-propagating fast pulse and then a retrograde-propagating fast pulse, and then,
surprisingly, a new forward-propagating fast pulse arises in its refractory wake. This results
in a transient fFF , which eventually evolves into a single rotating fast pulse. As the shooting
method progresses further, converging toward A = ARF and the corresponding solution on the
R/F -threshold surface, more and more new pulses appear: retrograde fast pulses produce new
anterograde pulses in their wakes, and the new anterograde pulses produce new retrograde
pulses in their wakes. In each case, the process repeats until the activity completely dies
out or a single fast pulse F is left. When the total number of pulses generated is even (e.g.,
ffFF ), the system ultimately goes to the rest state R; i.e., all activity circulating around
the periodic domain is eventually eliminated due to the pairwise collisions and annihilation of
pulses. On the other hand, when the total number of pulses generated is odd (e.g., ffFFF ),
the system evolves into a state with a single rightward-propagating fast pulse F .

Despite these peculiar dynamics, there still appears to be a distinct threshold value A =
ARF below which the system evolves to rest R and above which the system evolves to a
single rightward-propagating fast pulse F . As A approaches ARF , the total number of pulses
increases in a distinctive order. When A is increased toward ARF from below, the number
of pulses appears to run through a sequence of even integers {0, 2, 4, 6, . . . , 2n, . . . }. When
A is decreased toward ARF from above, the number of new pulses appears to run through a
sequence of odd integers {1, 3, 5, 7, . . . , 2n + 1, . . .}. A = ARF , which yields initial conditions
exactly on the boundary between the basins of attraction of the rightward-propagating fast
pulse F and the rest state R (i.e., the R/F -threshold surface), appears to be an accumulation
point for which infinitely many pulses are generated.

In summary, as A increases, we infer that the full sequence of transient pulse trains
generated is

(2) R, fF, ffFF, . . . , fnFn, . . . , f∞F∞, . . . , fnFn+1, . . . , fFF, F.
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a

c

b

A
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A
RE

Figure 4. Results of the shooting method used to find the R/F threshold for ε = 0.18 (typical of ε < ε∗).
(a) Space-time plots for a range of values of A used during the shooting method (increasing A from bottom to
top, vertical increments not to scale). Below ARE, convergence is directly to rest. Between ARE and ARF ,
the number of generated pulses increases in pairs giving an even sequence. Notice that in the third image from
the bottom excitation of the retrograde pulse is slow enough that a second anterograde fast pulse almost appears
(looking briefly like a slow pulse and then dying out). In the fourth image from the bottom, this anterograde
excitation succeeds in forming a fast pulse, but because ε < ε∗ and the transient is close to a slow pulse, a
pair of counterpropagating pulses emerges. This is repeated in each pair-adding stage of the sequence. Above
ARF the number of generated pulses decreases in pairs through an odd sequence. Magnified versions of the two
solutions closest to and on either side of the R/F threshold are shown in (b) (above the R/F threshold) and
(c) (below the R/F threshold).

On a periodic domain, counterpropagating pulses eventually collide so that even sequences
settle down to rest and odd sequences converge to the fast pulse F . The R/F -threshold
solution itself, corresponding to f∞F∞, appears to be an oscillation consisting of a sequence
of n, n + 1, n + 2, and n fast pulses in succession as retrograde and anterograde fast pulses
appear one at a time and then a pair of pulses collide on the far side of the domain. The
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number n is determined by the frequency of the pulse generation, the size of the domain, and
the dispersion curve for the fast pulse.

On the infinite domain, the solution corresponding to f∞F∞ cannot properly be inter-
preted as the R/F -threshold solution because, in this regime, there are an infinite number of
intervening steady solutions between the basins, i.e., the sequence listed above. This arises
from the lack of collisions that occur on the periodic domain.

The above observations suggest that, for ε < ε∗, the R/F -threshold solution is an unstable
periodic solution consisting of a pulse-generating region that alternately sheds retrograde
and anterograde pulses. Furthermore, this periodic orbit must be a saddle structure with a
single unstable mode because it can be found using a single-parameter shooting method. As
mentioned above, initial conditions exactly on its stable manifold (i.e., the R/F -threshold
surface) would produce sustained periodic activity. As the initial conditions get closer to the
threshold surface, more and more cycles are seen as the solution winds away from the unstable
periodic solution, generating the sequence of pulses before ultimately approaching either the
single fast pulse or the uniform rest state.

This type of periodic solution is reminiscent of spiral waves in two spatial dimensions,
and thus it has been referred to as a 1D spiral wave [26, 8, 9, 28]. The same sequence of
transient behavior described above has been observed in 1D excitable media with a local
inhomogeneity [9, 28], and a 1D spiral wave was postulated to be the underlying mechanism.
In fact, Ermentrout and Rinzel [9] conjectured that such a 1D spiral structure could exist in
homogeneous excitable media and numerically demonstrated its existence in a linear array of
six “cells.” To our knowledge, our work is the first direct evidence for the existence of the 1D
spiral wave in the full homogeneous PDE model.

4.3. Transition at ε∗ and the link between the slow pulse and the 1D spiral wave.
Figure 5 provides a summary of the results of the search for the R/F -threshold solution along
with the excitation (R/E) threshold results from section 3. The black dashed curve ARE(ε)
lies along the set of initial conditions that converge to the slow pulse. The red curve ARF (ε)
represents the set of initial conditions that converge to the R/F -threshold solution. At and
above ε = 0.29, these two curves are indistinguishable. We note that, for ε = 0.288 and
ε = 0.289, the nature of the threshold solution found using the shooting method could not
be clearly distinguished due to numerical limitations. This ambiguous regime just above ε∗ is
addressed in greater detail in the appendix. Below ε∗, the R/F -threshold solution appears to
be a 1D spiral wave.

These results clarify that there are two qualitatively different threshold solutions on either
side of ε∗, which raises the issue of the nature of the transition at ε∗. As ε approaches ε∗

from below, the period of the unstable 1D spiral appears to increase as longer delays are seen
between successive fast pulse initiations. This can be seen in the first five panels of Figure 6a
and is shown graphically in Figure 6f, which shows the times between successive right moving
fast pulses in the 1D spiral as a function of ε. Also, fewer fast pulses were seen numerically
at the end of the shooting method. This is likely to be due to the fact that the period of
the unstable 1D spiral wave becomes long compared to the time scale at which the solution
diverges from the 1D spiral and the R/F -threshold surface.

Interestingly, just below ε∗, the activity during the delays between the appearance of
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Figure 5. A parameter/initial condition diagram depicting basins of attraction and their boundaries in the
ε − A plane. The thick black dashed curve represents initial conditions (ICs) that converge to the slow pulse
(ARE(ε)). The solid red curve represents the boundary between convergence to rest and convergence to the
fast pulse (ARF (ε)). To the accuracy of our calculations, above ε∗, ARE(ε) and ARF (ε) are indistinguishable.
Below ε∗, ARE(ε) and ARF (ε) differ, with ARE(ε) corresponding to the slow pulse and ARF (ε) corresponding
to the 1D spiral wave. ICs below ARE(ε) converge directly to rest. ICs above ARE(ε) but below ARF (ε) undergo
transient excitation before ultimately converging to rest (on a periodic domain). ICs above ARF (ε) converge to
the fast pulse. Example simulations are shown for ε = 0.18 and ε = 0.35 (vertical thin dashed curves). The
ε = 0.18 sequence, also shown in more detail in Figure 4, shows the even and odd sequences described in the
text; note that the entire even cascade for n > 2 exists in a narrow interval near ARF (54.008 ± 0.001). The
ε = 0.35 sequence appears in Figure 2 panels D1–D4 and is repeated here for context. Simulations from Figure
2 panels A2–D2 and A3–D3 are represented as green dots.

successive fast pulses in the 1D spiral resembles the slow pulse. To determine whether the
solution is indeed close to the slow pulse, we define the following function that provides a
measure of the distance from the slow pulse:

dsp(t) = min
x0

(||usp(x, t) − u(x − x0, t)||w + ||vsp(x, t) − v(x − x0, t)||w).

The “windowed norm” || · ||w used to define dsp is the standard l2 norm but with the integral
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Figure 6. (a) Simulations corresponding to ICs just below ARF (ε) for a selection of ε values. Magnifications
for ε = 0.18, 0.287, and 0.35 are shown in (b), (c), and (d), respectively. (e) The windowed distance from the
slow pulse, dsp(t), for each of the highlighted values of ε. For ε = 0.18 (b, solid blue), a region of the solution
periodically approaches the slow pulse (four distinct minima in dsp(t)). For ε = 0.287 (c, dash-dot red), the
solution locally approaches the slow pulse to a greater degree and the period is larger (two minima marked with
asterisks corresponding to the two apparent slow pulses also marked with asterisks in (c)). For ε = 0.35 > ε∗ (d,
dashed black), the approach to the slow pulse is apparently complete and no periodicity is seen. (f) Estimated
period of the 1D spiral as a function of ε. Data points are obtained from simulations shown in the first five
panels of (a). Note that the period increases with increasing ε.

restricted to the range of x in which the u component of the slow pulse usp is more than 10%
of the maximum amplitude away from its resting value. That is, the integral is taken in a
window around the nonresting portion of the slow pulse. Thus, if dsp(t) is close to zero, then
on some interval in x, the solution must be close to the slow pulse even if elsewhere on the
domain there are large deviations from the slow pulse. The dsp(t) curve calculated for three
values of ε are plotted in Figure 6e along with space-time intensity plots of the u component
of the solution in 6b, c, and d.

For ε = 0.18 (b), the periodic dips in dsp(t) indicate that there is an interval on which
the solution periodically approaches the slow pulse, although the approach is incomplete. For
ε = 0.287 (c), the solution approaches the slow pulse to a greater degree, which leads to

D
ow

nl
oa

de
d 

03
/1

5/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

362 E. N. CYTRYNBAUM AND T. J. LEWIS

S

F

sF

fF

fSF

ffFF

fsFF

fFF

R

ffSFF

S

F

sF

fF

fSF

ffFF

fsFF

fFF

R

ffSFF

S

F

sF

fF

fSF

ffFF

fsFF

fFF

R

ffSFF

a b c d

S

F

sF

fF

fSF

ffFF

fsFF

fFF

R

ffSFF

<    *>    *>    * =    *

Figure 7. A sequence of cartoon phase portraits illustrating the proposed heteroclinic bifurcation on the
infinite domain. Steady traveling pulse solutions and composites solutions are denoted by circles, triangles,
and squares. The top circle is the rest state. Solid shapes denote stable solutions, and empty shapes denote
unstable solutions. Red arrows represent the 1D unstable manifolds of the slow pulse and composite solutions
involving slow pulses. Blue dashed curves represent codimension one stable manifolds. The thick black zig-zag
solution in (d) converges to the 1D spiral wave. ε decreases from left to right. In (a) and (b), the slow pulse
is the R/F -threshold solution, and its stable manifold is the threshold surface. The dynamics at the proposed
bifurcation point are illustrated in (c). For ε < ε∗ (d), the R/F -threshold consists of the entire region between
the stable manifolds of S and sF . On a finite periodic domain, all solutions to the left of the thick black zig-zag
curve, other than the dashed blue curves, converge to rest and the dashed blue curves converge to the slow pulse
S. All solutions to the right of the thick black zig-zag curve, other than the dashed blue curves, converge to the
fast pulse F . The long-term behavior of the dashed blue curves to the right of the zig-zag curve (on a periodic
domain) remains an open problem.

fewer periods of the oscillation being revealed before the shooting method terminates at the
double-precision limit. At ε = 0.35 (d), the approach appears to be “complete,” as illustrated
by the dsp(t) plot. In other words, at this value of ε, the boundary solution is actually the
slow pulse rather than a solution that periodically comes close to the slow pulse.

5. A conjectured global bifurcation of heteroclinic orbits. The observations discussed
in previous sections and summarized below strongly suggest that the appearance of the 1D
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spiral wave at ε∗ is fundamentally linked to the change in long-term behavior of the slow pulse:
1. The redirection of the unstable manifold of the slow pulse and the appearance of the

1D spiral wave are apparently coincident with regard to the value of ε. As ε approaches
ε∗, the initial conditions that lead to the slow pulse (ARE(ε∗)) and the 1D spiral wave
(ARF (ε∗)) appear to approach each other.

2. The local stability of the slow pulse is not altered at ε∗. The stable manifold of the
slow pulse appears to remain codimension one, as reflected in the fact that our one-
parameter shooting method still converges to it. This rules out the possibility that
the 1D spiral wave appears through a local bifurcation of the slow pulse.

3. The period of the 1D spiral wave increases as ε approaches the critical value ε∗.
4. The long-term slow-pulse dynamics appears to progress through the following three

stages as ε increases: (i) for ε < ε∗, S → fF , (ii) for ε = ε∗, S → sF , and (iii) for
ε > ε∗, S → F . As ε approaches ε∗, the 1D spiral wave is characterized by a core
that cycles alternately between S → sF and s → fS, which is precisely the critical
slow-pulse behavior at ε∗.

These observations indicate that the 1D spiral wave appears through a global bifurcation
that involves a rearrangement of heteroclinic connections of the unstable manifold of the slow
pulse.

To describe the nature of the conjectured bifurcation in more detail, it is convenient
to consider the infinite domain rather than the periodic domain. For the infinite domain,
counterpropagating pulses do not collide and annihilate one another. Instead, the sets of fast
counterpropagating pulses (e.g., fF , fFF , etc.) are attracting invariant solutions, each with
its own distinct basin of attraction. The boundaries between these basins consist of the stable
manifold of composite solutions that include a slow pulse; e.g., the stable manifold of fSF
forms the boundary between fF and fFF .

The full conjectured bifurcation is schematically represented in Figure 7. The stable
invariant solutions involving only fast pulses and the rest state are represented by filled black
circles and squares. The unstable invariant solutions that include a slow pulse are indicated as
open triangles. The unstable manifolds of the unstable solutions are red curves, and the dashed
blue curves represent the stable manifolds, which act as threshold surfaces. The solid green
line near the top of each figure represents the family of rightward pulse-like initial conditions;
the green shading represents the corresponding family of trajectories evolving from the initial
conditions on the solid green line. Note that the diagram shows only activity that begins
with a rightward moving pulse. There is a corresponding set of solutions that begin with
leftward moving pulses and solutions involving multiple slow pulses, but these are not shown
in the diagram. Also note that, although this discussion focuses on the case of an infinite
domain, a similar diagram would hold for the periodic domain with the modification that
any solution converging to an even number of pulses (black circles) in this diagram would
eventually converge to the rest solution R on a periodic domain. Similarly, the basins of
attraction of odd numbers of pulses (black squares) would eventually converge to a single fast
pulse F .

For ε near the saddle-node bifurcation at εSNB (Figure 7a), all initial conditions on the
solid green line evolve to either the rest state R or the single fast pulse F . The stable manifold
of the slow pulse acts as the R/F -threshold surface. Although the invariant composite solu-
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tions exist, the family of rightward pulse-like initial conditions does not fall into their basins
of attraction.

As ε gets closer to ε∗ (Figure 7b), the unstable manifold of S and the stable manifold
of Fs (and other pairs of sequentially adjacent unstable solutions) deform and approach one
another. This is reflected in Figure 2, panel C2, in which transient retrograde activity appears
but quickly dies out. However, the solution space is qualitatively unchanged from Figure 7a.

At ε∗ (Figure 7c), these manifolds coalesce and form an infinite chain of heteroclinic con-
nections, S → sF → fSF → fsFF → · · · ; i.e., each slow pulse blows up into an anterograde
fast pulse and a retrograde slow pulse.

Below ε∗ (Figure 7d), the heteroclinic connections have completed their rearrangement,
creating fundamental changes in the basins of attractions of the stable solutions. The unsta-
ble manifold of the slow pulse S now connects to the solution fF , two counterpropagating
pulses, and consequently, the stable manifold acts as the threshold between the rest state R
and fF . Similarly, the stable manifolds of all composite solutions with a slow pulse in the
middle (e.g., fSF ) now act as the threshold surfaces for corresponding stable solutions with
approximate slow pulses dying out (e.g., fF ) or blowing up into two counterpropagating fast
pulses (e.g., ffFF ). Consequently, the stable manifolds of these unstable invariant solutions
are interleaved and divide the family of initial conditions into segments that evolve to all
of the different sequences of pulses. Due to the topological constraints of the infinite set of
heteroclinic crossings (Figure 7c), a solution consisting of the formation of an infinite number
of pulses must exist through the middle of this region (thick black curve in Figure 7d). This
solution converges to the 1D spiral. In a more general context, pulse-generating solutions of
this type are called “sources” [40].

It is possible that these heteroclinic connections do not form simultaneously at a single
value of ε but instead occur one by one, most likely from the top down or from the bottom up.
The latter case might provide an explanation for the ambiguous interval near ε∗ mentioned
earlier and discussed in the appendix. Provided all connections eventually occur for some
positive ε, this does not cause fundamental problems for the bifurcation scenario proposed
here but simply spreads the transition across an interval of ε values. Due to the minimal
interaction between successive pulses along the domain (particularly between a central slow
pulse and outward propagating fast pulses), the appearances of these heteroclinic connections
are expected to be concentrated in a fairly narrow interval around ε∗; recall that we defined
ε∗ to be the value of ε at which a heteroclinic connection between S and sF exists. If this is
true, only a minimal change in Figure 7 would be necessary.

For the case of a finite periodic domain, the preceding description must be modified in
light of the fact that pairs of fast pulses eventually collide with each other on the far side of the
domain, thereby forming a pulse “sink” [40]. Using the f, s, S, F notation, one analogue of the
1D spiral on a periodic domain, for ε close to ε∗, would cycle through the temporal sequence
S, sF, fSF, S, . . . , where the first two transitions correspond to movement close to the unstable
manifold of S and sF , respectively, while the third corresponds to collision of the f and F
pulses. This would be the case on a relatively small domain. On a larger periodic domain,
the activity associated with the 1D spiral becomes fnSFn, fnsFn+1, fn+1SFn+1, fnSFn, . . ..
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6. Implications of the existence of the 1D spiral wave: Reflection and annihilation.
Using a set of numerical experiments, we have explored the threshold between the rest state
and the traveling fast pulse in a FHN-type model. We find that there is a critical value ε∗

that separates different types of threshold behavior. For ε > ε∗ (lower excitability), the stable
manifold of the slow pulse forms the R/E- and the R/F -threshold surfaces. For ε < ε∗ (higher
excitability), the slow pulse still acts as the R/E-threshold solution. However, between the
basins of attraction of the rest state and the single fast pulse, there is a series of regions of
initial conditions that lead to solutions consisting of sequences of counterpropagating pulses
[9, 28]. At the heart of this series of regions, there is an unstable periodic solution consisting
of an infinite sequence of counterpropagating pulses, i.e., the 1D spiral wave [26, 9]. On a
periodic domain, the multiple-pulse behavior is transient, and the 1D spiral wave acts as the
threshold solution between the rest state and a circulating fast pulse, i.e., the R/F -threshold
solution.

In our numerical experiments, initial conditions were chosen in a physically unrealistic
manner. However, the same dynamics described in this manuscript can arise in physically
realistic situations. Structural heterogeneities such as an abrupt increase in cable diameter [9]
or a spatially localized decrease in excitability [28] have been shown to uncover the 1D spiral
wave. Similarly, the behavior can be uncovered by transient “functional” heterogeneities.
Below, we demonstrate this by examining the effects of (i) transient localized increases in
refractoriness in front of a fast pulse and (ii) transient localized stimulation in the wake of a
fast pulse. The underlying idea is simply that considering a one-parameter family of either
stimulus amplitudes or amplitudes of refractory bumps is analogous to considering a one-
parameter family of initial conditions as studied in previous sections.

Consider a pulse traveling toward a spatially localized region with an elevated refractory
level, e.g., resulting from localized “ectopic” activity. In simulations, we have implemented
this region by initially setting the recovery variable, v, to have an approximately Gaussian
profile with amplitude B and fixed width σ (see Figure 8a). As the pulse approaches the
refractory region, the region begins to recover. If the pulse runs into the region when it has
significantly recovered, then the pulse successfully propagates through the region (Figure 8b).
If the pulse runs into the region when refractoriness is still high, the pulse dies out and the
system goes to rest (Figure 8e). When ε > ε∗, there is a sharp boundary in the refractory level
set by B between these two behaviors (not shown). However, when ε < ε∗ and the 1D spiral
wave exists, as the level of refractoriness is altered by changing B, the system exhibits all of the
behavior associated with the existence of the 1D spiral (see sequence (2) and Figure 8c). The
most robust of this behavior is the successful propagation of the pulse through the refractory
region and the generation of a single retrograde or “reflected” pulse (Ff) (Figure 8d). This
type of reflected activity has been seen in numerical simulations of models of excitable media
[4, 16, 19, 48] and physiological experiments in both cardiac [1, 20, 39] and neural tissue [2, 36],
and it has been suggested to underlie the induction of life-threatening cardiac arrhythmias.
Analogous behavior in two and three spatial dimensions has been linked to the onset of spiral
and scroll waves [28].

As a second example of how the behavior can arise in a physically realistic setting, we
consider the effects of a spatially and temporally localized stimulus delivered in the wake of a
fast pulse circulating on a periodic domain. This scenario has been studied in the context of
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b c d e
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Figure 8. The effects of propagation through a transient refractory region. A refractory bump, in the form
of the addition of a Gaussian (B exp(−(x − x0)

2/σ2)) to the recovery variable v, is placed ahead of the fast
pulse. This is illustrated in (a) (black arrow) and visible as a slightly darker blue region just in front of the fast
pulse in all four images (white arrow in (b)–(e)). (b)–(e) show the effect of changing the amplitude B with x0

fixed and σ = 0.01 and ε = 0.18 < ε∗. (b) For sufficiently small B (B = 0.1838), the fast pulse successfully
crosses the refractory region. (c) By using a shooting method on B, all of the transient behavior associated with
the existence of the 1D spiral can be observed (B = 0.1838374797093847851092718). (d) For B = 0.1839, the
fast pulse successfully crosses the refractory region with a delay, and a retrograde fast pulse is produced. (e)
For sufficiently large B (B = 0.1840), the fast pulse hits the refractory region and dies out.

both the termination [15] and the onset [46, 42] of cardiac reentrant arrhythmias. We take the
stimulus to be a square wave with amplitude C and fixed small spatial and temporal widths
(see Figure 9a). When an appropriately timed stimulus is delivered in the wake of the pulse, a
stimulus of sufficiently large amplitude induces a single retrograde pulse (Figure 9e) [15]. The
forward-propagating pulse and the new retrograde pulse eventually collide and all activity
is annihilated. On the other hand, when the stimulus has a sufficiently small amplitude,
the rotating fast pulse is phase-reset but survives (Figure 9b). As before, when ε > ε∗, a
sharp threshold is found between the two behaviors as the amplitude C is increased from
zero (not shown), whereas, when ε < ε∗, the system exhibits all of the behavior associated
with the existence of the 1D spiral (see sequence (2) and Figure 9c). Thus, stimuli can elicit
new suprathreshold activity without necessarily annihilating all activity. Only when an odd
number of new traveling pulses is generated is the activity annihilated; this occurs when
stimulus amplitudes are greater than the one that produces the 1D spiral wave (see Figure
9d).

In all of the simulations presented in this manuscript, we use the ML model with all
parameters fixed except ε (see Table 1). However, we found the same qualitative behavior for
the ML model with other parameter sets and for the standard cubic FHN model. Therefore,
we expect that the behavior described here is generic for FHN-type models. More work is
needed to uncover the details of how parameters affect ε∗ and the existence of the 1D spiral
wave. Furthermore, because of the link between the existence of 1D spiral waves and the
induction of cardiac arrhythmias, it is crucial to identify conditions for the existence of a 1D
spiral wave and the robustness of its associated transient behavior in physiologically realistic
models (for example, [3, 29]).
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b c d e

u
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Figure 9. The effects of stimuli in the wake of a fast pulse rotating on a 1D excitable medium. A square-wave
stimulus is delivered in the wake of the fast pulse. The stimulus has amplitude C, temporal width Δt = 0.03,
and spatial width Δx = 0.2, and ε = 0.18 is in the sub-ε∗ range. (b) For sufficiently small C (C = 1200),
the stimulus has only a subthreshold effect. (c) By adjusting C, all of the transient behavior associated with
the existence of the 1D spiral can be observed (image corresponds to C = 1369.42006681669181). (d) For
C = 1369.421, the stimulus elicits a retrograde fast pulse, an anterograde fast pulse, and subsequently another
retrograde fast pulse with the final result of convergence to rest. (e) For sufficiently large C (C = 1406.2), the
stimulus elicits only a new retrograde fast pulse, eventually eliminating all activity.

Appendix. Morris–Lecar model and parameters.
The Morris–Lecar (ML) system was first introduced as a physiologically detailed model

for barnacle muscle [32]. However, as a model with only two variables, it provides a useful
tool for numerical studies of excitable media in general. For such generic studies, it is more
common to use the simpler functional forms associated with the proper FHN system which
provide analytical tractability. However, the study presented here is a numerical exploration
of solutions that lie on boundary of the basins of attraction of two stable solutions and is
therefore concerned with solutions that have a saddle structure to them (unstable and stable
manifolds). The optimal context for such a study is one in which the positive eigenvalue of the
saddle solution is as small as possible, thereby ensuring that it can be approached numerically
using a shooting technique. Because the saddle solutions (i.e., slow-pulse and 1D spiral)
necessarily traverse the central region of the phase plane, we conjecture that a parameter
range in which this central region has slow dynamics is a convenient one for this study in
the sense that the slow pulse is easier to find numerically. In fact, it is unclear whether this
conjecture holds up to scrutiny, but we use ML dynamics throughout, nonetheless, due to the
parametric flexibility it provides in terms of the central region of the phase plane. A more
careful study of this conjecture might prove useful in overcoming certain numerical limitations
encountered.

The ML system is defined by the following choice of f and g:

f(u, v) = −gCam∞(u)(u − ECa) − gKv(u − EK) − gl(u − El),

g(u, v) =
v∞(u) − v

τ(u)
,

where m∞(u) = 0.5(1+tanh(u−u1
u2

)), v∞(u) = 0.5(1+tanh(u−u3
u4

)), and τ(u) = 1/ cosh(u−u3
2u4

).
Parameter values are given in Table 1. For the spatial domain, we consider primarily the
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case of periodic boundary conditions. The domain size is taken to be unity, and we choose
a nondimensional diffusion coefficient sufficiently small to ensure that the domain is not a
limiting factor in the propagation of excitation.

Table 1
Table of parameters used in simulations.

Name Value Name Value

gl 2 leak conductance D 0.001 diffusion coefficient
gK 8.0 K+ conductance x1 0.16 slow pulse u IC parameter
gCa 4.4 Ca2+ conductance x2 0.2 slow pulse u IC parameter
u1 −1.2 m∞(u) parameter x3 0.13 slow pulse v IC parameter
u2 18 m∞(u) parameter x4 0.17 slow pulse v IC parameter
u3 2 v∞(u), τ (u) parameter x0 0.4 stimulus center
u4 10 v∞(u), τ (u) parameter 2w 0.2 stimulus width
El −60 leak reversal potential tstim 0.03 stimulus duration
EK −84 K+ reversal potential τ 0.3 convergence measure delay
ECa 120 Ca2+ reversal potential dx 0.001 numerical space step

I 10 constant current dt 0.03 numerical time step

A.1. The ambiguous interval near ε∗. It is worth noting that the R/F threshold appears
to have a discontinuity at ε∗ when represented in the ε − A plane (see red curve in Figure
5). One explanation for this phenomenon is that the red curve should actually contain an S-
shaped portion connecting either side of the discontinuity. This would indicate the existence
of a small interval of ε between 0.287 and ∼ 0.29 in which the family of initial conditions
crosses the R/F threshold more than once. The initial conditions at two of these crossings
would converge to a 1D spiral, and the initial condition at the third crossing would converge
to the slow pulse. If this is true, there is a narrow interval in ε in which both the slow pulse
and the 1D spiral coexist on the codimension one separatrix between basins of attractions. On
the other hand, the apparent discontinuity in the R/F threshold could also be an artifact of
the numerical shooting approach used here. A complete understanding of this region requires
a more comprehensive numerical continuation approach.
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