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Abstract

We develop a local excited state method, based on the configuration interaction sin-

gles (CIS) wavefunction, for large atomic and molecular clusters. This method exploits

the properties of absolutely localized molecular orbitals (ALMOs), which strictly limits

the total number of excitations, and results in formal scaling with the third power of
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the system size for the computation of the full spectrum of ALMO-CIS excited states.

The derivation of the equations and design of the algorithm are discussed in detail,

with particular emphasis on the computational scaling. Clusters containing nearly 500

atoms were used in evaluating the scaling, which agrees with the theoretical predic-

tions, and the accuracy of the method is evaluated with respect to standard CIS. A

pioneering application to the size dependence of the helium cluster spectrum is also

presented for clusters ranging from 25 to 231 atoms, the largest of which results in

computation of 2310 excited states per sampled cluster geometry.

1 Introduction

Predicting the electronically excited states of large systems with reasonable accuracy is an

ongoing challenge for quantum chemistry. The competition between accuracy and efficiency

places significant limitations on the methods that are practically useful.1,2 By far the most

widely used method for computing excited states of medium-sized and larger molecules is

time-dependent Kohn-Sham density functional theory (TD-DFT).3,4 This method involves

computational effort per state which is similar to the effort required to treat the ground state

by DFT. Formally, a quadratic number of variables, akin to single excitations, are involved,

and the computational cost typically grows between the square and the cube of system size

per state. Thus calculations of roughly 5-40 states are manageable if the corresponding

ground state calculation is feasible. On the other hand, obtaining all excited states requires

computational effort that rises asymptotically with the sixth power of molecular size, which

rapidly becomes unfeasible even when the ground state calculation is tractable. The accu-

racy of TD-DFT calculations is also limited by the well-known difficulty in systematically

improving present-day density functionals. Incorrect asymptotic potentials cause errors in

the position of Rydberg excited states, while self-interaction errors yield dramatic failures

for charge transfer excited states, although to some extent this can be remedied by using

2
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modern range-separated density functionals.2,5–8

In contrast, wave-function based approaches to excited states are appealing in that they

can be straight-forwardly improved through incorporation of additional degrees of freedom,

typically in the form of higher substitutions through a configuration interaction (CI) wave

function. Due to the Brillouin Theorem, the variationally optimized mean field Hartree-

Fock wavefunction has matrix elements which are strictly zero, with all singly substituted

configurations. Thus, the simplest CI wavefunction for excited states is CI in the space of

single substitutions (CIS):3,9

|Ψ〉 =
∑

s

cs |Φs〉 (1)

CIS has half the number of degrees of freedom of TD-DFT (identical within the Tamm-

Dancoff approximation10), thus its computational cost is roughly comparable. Relative to

TD-DFT with commonly available functionals, CIS has the advantage of a correct asymptotic

potential and zero self-interaction error. However, it completly neglects dynamic electron

correlation, which leads to errors in valence excitation energies that are on the order of 1 eV

(the correlation energy for a pair of electrons).

More sophisticated wave-function methods introduce additional complexity to account

for electron correlation effects through double and higher substitutions. The simplest meth-

ods are perturbative cousins to CIS such as the non-degenerate CIS(D) correction,11 and

its quasi-degenerate variants.12 The latter relate closely to the second order coupled clus-

ter approximation (CC2),13 which is itself an approximation to full equation of motion

coupled-cluster (EOM-CC) theory (e.g. EOM-CCSD, EOM-CCSD(T)).14,15 The cost of the

additional electron correlation can be as low as fourth order in system size for scaled oppo-

site spin methods,16,17 while it is fifth order for the full perturbative methods,11 and sixth

order with complete iterative treatment of the doubles. Iterative triples methods scale with

the eighth power of system size. Such steep increases in computational cost with system

3
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size place increasingly severe restrictions on the systems that can be successfully treated.

Even so, the above methods (including TD-DFT) fail for problems where the ground state

is not well approximated by a good single configuration, and these must be addressed by

active space methods such as the complete active space self-consistent field method (CAS-

SCF) and the corresponding second order perturbative corrections,18,19 or with spin-flipping

methods.20–22

Great effort has gone into reducing the computational requirements of electronic struc-

ture theory calculations for the ground state from quadratic storage and cubic computation

towards linear scaling. As argued by Kohn,23 the 1-particle density matrix that controls the

ground state energy is intrinsically “short-sighted” and therefore in the large system limit,

only a linear number of variables are significant. While linear scaling methods for forming

the effective Hamiltonian have been widely used since the early 1990’s,24–26 linear scaling

replacements for diagonalization, though extensively developed,27 are not widely applied,

primarily because extremely large systems are needed to realize adequate sparsity in real

space,28 and the situation is even more challenging in spectral representations.

Linear scaling methods, while less throughly developed than for ground states, have also

been proposed for excited states.29 Specifically, there have been formulations of CIS and

TD-DFT which are appropriate for linear scaling,30,31 and some proof-of-concept implemen-

tations and calculations have been reported.32–35 However, these methods are not widely

used for production calculations at the moment, in part because excited states appear to

exhibit substantially greater delocalization then ground states.

Therefore if one is interested in systems significantly larger than 100 atoms, but not

large enough that rigorous linear scaling is possible, it is necessary to apply additional

approximations.36 Exploiting the intrinsic locality in certain types of chromophores has led

to the development of incremental, multi-layer and fragmentation based approaches.36–41

Biological systems often fall into this category and reports of heroic calculations with over

4
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20,000 atoms have been reported.42 However, the excited states for these systems were only

computed on fragments containing no more than 103 atoms.

Grimme recently published a simplified method based on the Tamm-Dancoff approxi-

mation to TD-DFT (sTDA), where he reported results for a 483 atom/6879 basis function

system.43,44 The two-pronged approach used a Löwdin-monople basis for the two electron

integrals and a bold truncation of the single excitations to make this feasible. This inte-

gral approximation leads to a preferential description of delocalized states and four global

parameters were introduced to reduce some of the systematic error.

Even more recently, Liu and Herbert reported a TD-DFT(MI) method applicable to

computing the excited states of large clusters.45 Conceptually nearly identical to the ALMO-

CIS method presented here, their work also focuses on computing excited states of clearly

defined chromophores, which couple weakly to surrounding solvent molecules. While in

principle their method is extensible to multiple chromophores the algorithm is optimized for

computing a relatively small number of the excited states. Helmich and Hättig proposed a

method based on truncation of the pair natural orbital (PNO) space.46,47 Although intriguing

their current implementation is still O(N4) and not practical for large systems when many

states are requested.

Nearly all current implementations of CIS and TD-DFT are optimized for computing

a handful of the low-lying excited states, and both the linear scaling and fragment-based

methods discussed above for treating larger systems continue in this approach. However,

when dealing with large homogeneous systems, such as atomic and molecular clusters, dense

manifolds of states with similar energies must be considered, and thus many states (a full

description of at least the bands of interest) are required to connect directly to experimental

results. In relation to more typical situations where only a few excited states are required,

this increases the scaling of the computational cost by at least one power of system size.

Such non-covalently bound clusters have generated significant interest as they span the

5

Page 5 of 47

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



range between the gas phase and bulk limits, and are useful for investigating fundamental

differences between bulk and surface properties.48–50

The excitation energies of rare gas clusters, have attracted great interest due to their

unique properties. Helium clusters in particular are extremely cold, superfluidic,51 and

when used as a spectroscopic medium provide a unique environment that allows rotational

resolution of dopant solutes.52–55 For the electronic spectrum of undoped clusters, the sharp

atomic lines (e.g. 2p and 3p) of the helium atom give way to broad blue-shifted peaks in

large clusters,56 which correspond to bands of excited states. The photoionization dynamics

of these clusters have also been the subject of considerable recent interest.57

Here we report the development of a local excited state method that can adequately

describe large numbers of electronic excited states (as needed to describe the bands) of large

atomic and molecular clusters at greatly reduced computational cost. In a 1000 atom cluster,

the n=2 band would require a minimum of 4000 states to describe correctly. This situation

where the number of states increases with cluster size is one that conventional molecular

excited state codes are quite unsuited to handle, and it introduces an enormous additional

pre-factor to the computational cost. At the same time, because each atom in such a cluster

is identical, there is no obvious locality to the excited states: in general they may be fully

delocalized throughout the cluster. Both of these factors make the development of a viable

computational method potentially very challenging.

There is one critically important physical advantage that we can exploit to make the

problem tractable. We have previously reported on the electronically excited states of small

helium clusters using standard configuration interaction singles (CIS).58,59 In the n = 2

manifold, we determined that the excited states could be interpreted in terms of superpo-

sitions of atomic-like excitations.58 This is perhaps not too surprising because of the very

high ionization energy of He atoms, and the fact that the electron affinity is negative. This

characteristic of the excited states suggests that the states associated with the 2p and 3p

6
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bands may be adequately described as superpositions of atomically localized excitations.

Such a model has storage requirements that grow linearly per state, and only quadratically

for all states. The computational cost then grows no worse than the cube of the number of

atoms to obtain the full spectrum of excitations.

The theory presented here is optimized for clusters consisting of identical fragments,

which may be atomic or molecular clusters (e.g. nitrogen clusters, or even water clusters,

may be reasonably well described). Previously, the ground state of a strongly localized

molecular cluster was shown to be quite accurately treated at greatly reduced computational

cost through the use of absolutely localized molecular orbitals (ALMOs).60 The ALMO

approximation is that the MO coefficient matrix is defined to be block diagonal in the

molecules comprising the cluster.61–64 Thus each MO on a given molecule is a superposition

of only AO’s centred on the same molecule. In addition to accelerating SCF calculations

for large systems,60 ALMO’s have been used for calculating the individual contributions to

intermolecular interactions.65–68 A direct result of the ALMO approximation is that ALMO’s

are non-orthogonal between fragments.

ALMOs are an ideal basis within which to define a variant of CIS in which states are

defined as superpositions of intra-fragment excitations. By allowing excitations only within

the orbital space of a given fragment, charge-transfer between fragments is prohibited and

the number of singly excited states used for the calculation grows linearly with cluster size

(for a homogeneous cluster). As a result, far larger clusters can be examined than would

otherwise be possible. In this paper we formulate the theory for this local ALMO-CIS

method, and discuss an efficient cubic scaling implementation that yields all the ALMO-

CIS states via direct diagonalization after constructing the corresponding Hamiltonian. We

present benchmarks showing the extent to which ALMO-CIS calculations are faithful to full

CIS calculations for helium clusters, with satisfactory results. Timings for the algorithm are

presented for helium clusters containing nearly 500 atoms. We also include initial results

7
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using the ALMO-CIS method to explore the size dependence of the excitation spectrum of

helium clusters with a more thorough report on these systems to appear in an subsequent

publication.

2 Theory

2.1 Notation

Tensors provide a useful notion for treating non-orthogonal functions, such as the ALMO’s.

Thus, standard tensor notation is used,69,70 where subscripts indicate functions in the co-

variant (given) basis, and superscripts indicate functions in the (biorthogonal) contravariant

space. The Einstein summation convention is also employed, where an index that occurs

once covariant and once contravariant, implies a sum.

Occupied molecular orbitals (MO’s) are denoted as i, j, k, virtual orbitals as a, b, c

and general orbitals as p, q, r. ALMOs will be represented using |ψ〉, and later it will be

necessary to form a set of projected ALMOs which will be distinguished using |φ〉 and Greek

subscripts (note that for occupied orbitals, |φι〉 = |ψi〉, but for the virtuals |φa〉 6= |ψa〉).

Atomic orbital (AO) functions are given by χµ, auxiliary basis functions (used in resolution

of the identity fitting) by χQ, and fragments are indicated I, J or FI , FJ .

Fragment-localized quantities will be made explicit through the use of connecting lines

above or below: for instance two MO’s p and q are constrained to a single fragment, FI , if

their indexes are connected as pq or pq. Throughout the discussion of the algorithms, when

discussing the scaling, capital letters will denote quantities that scale with the size of the

system and lower case letters indicate the value only depends upon the identity of a given

fragment. In particular, in our analysis of homogeneous atomic or molecular clusters we

shall consider them to contain M identical fragments, and thus the computational effort can

be evaluated as a power of M .

8
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2.2 Ground State Wavefunction with Absolutely Localized Molec-

ular Orbitals

The ground-state Hartree-Fock wavefunction is a Slater determinant of one electron func-

tions.

|Ψ0〉 = |ψ1 . . . ψiψj . . . ψn〉. (2)

For standard electronic structure calculations the ψi are canonical MO’s, which diagonalize

the Fock operator, and are typically highly delocalized. The MO’s are expanded in terms of

atom-centered basis functions (AO’s) as

|ψp〉 =
∑

µ

|χµ〉 c
µ
.p, (3)

where the AO’s, χµ, are assumed to be contracted Gaussians.

The atom-centered AO’s used in electronic structure theory calculations are naturally

partitioned according to the fragment on which they reside. Absolutely localized molecular

orbitals (ALMOs) arise by applying the constraint that the MO coefficient matrix should be

fragment blocked, such that the ALMO’s which describe an atom or molecule in a cluster

contain only contributions from the AO’s of that specific fragment.60 When using ALMOs,

each molecular orbital is tagged to a fragment FJ and expanded only in the subset of basis

set functions with centers on that fragment.

|ψp〉 =
∑

µ∈FJ

|χµ〉 c
µ
·p, p ∈ FJ . (4)

The resulting occupied ALMOs are nonorthogonal between fragments, although the occupied

ALMO’s on a single fragment can be chosen to be orthogonal. The block-diagonal structure of

the ALMO transformation leads to very high computational efficiency. It is highly desirable

to maintain this local structure for excited state evaluation, as will be discussed further in

9
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Section 3.3.

In tensor notation, the overlap of non-orthogonal orbitals, such as the ALMO’s, is defined

by the covariant overlap metric

〈ψp | ψq〉 = σpq = Spq (5)

and likewise the contravariant metric is

〈ψp | ψq〉 = σpq = σ−1
pq = S−1

pq . (6)

The biorthogonality of the covariant and contravariant subspaces implies

〈ψp | ψq〉 = δp·q. (7)

The nonorthogonality of ALMO’s between fragments has the interesting implication that

the so-called “virtual” ALMO’s, |ψa〉, are not strictly virtual, because they overlap occupied

ALMO’s on other fragments: 〈ψk | ψa〉 6= 0. To obtain well-defined virtual functions, it

is necessary to remove contamination in |ψa〉 from the occupied subspace. Projecting the

occupied ALMOs |ψk〉 from the virtual ALMOs |ψa〉 yields new (projected) virtuals |φa〉.

The |φa〉 are orthogonal to all occupied ALMO’s by construction, but remain nonorthogonal

amongst themselves.

|φa〉 =Na

Ä

|ψa〉 − P̂occ |ψa〉
ä

= Na

Ä

|ψa〉 − |ψk〉 σ
kl 〈ψl | ψa〉

ä

=Na

Ä

|ψa〉 − |ψk〉 σ
klσla

ä

= Na

Ä

|ψa〉 − |ψk〉 d
k
·a

ä

(8)

Here Na is a normalization factor to ensure 〈φa | φa〉 = 1, and dk·a = σklσla.

10
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2.3 Nonorthogonal CIS and the ALMO-CIS model

Singly substituted configurations are formed by promoting an electron from an occupied

Hartree-Fock orbital to a virtual orbital that is orthogonal to the occupied one. Note these

are the projected orbitals so that they are properly orthogonal to the occupied space.

∣

∣

∣Ψi
·a

∂

= |ψ1 . . . φaψj . . . ψn〉 (9)

The CIS excited states are superpositions of all single substitutions, with amplitudes ta·i:

|ΨCIS〉 = a†aa
i |Ψ0〉 t

a
·i =

∣

∣

∣Ψi
·a

∂

ta·i (10)

Substituting this wavefunction into the time-independent Schrödinger equation and project-

ing with each of the excited determinants according to the linear variational principle yields

equations for the CIS excitation energies.

¨

Ψb
·j

∣

∣

∣ Ĥ
∣

∣

∣Ψi
·a

∂

ta·i = ωCIS

¨

Ψb
·j

∣

∣

∣Ψi
·a

∂

ta·i (11)

where ωCIS = ECIS − E0.

The choice of the natural representation69 makes evaluation of the matrix elements iso-

morphic to the conventional orthonormal case, because biorthogonality of covariant and

contravariant functions permits similar simplifications. Recalling Eq. (7), we see that:

¨

Ψb
·j | Ψ

i
·a

∂

= δi·jδ
b
·a (12)

Carefully evaluating the matrix elements leads to the following eigenvalue equation in the nat-

ural representation (this is a generalized version of the conventional result, where biorthog-

11
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onality replaces orthogonality):

Aib
··jat

a
·i = ωCISδ

b
·aδ

i
·jt

a
·i (13)

The matrix elements of the singles-singles block of the Hamiltonian are given in the biorthog-

onal representation as:

Aib
··ja = f b

·aδ
i
·j − f

i
·jδ

b
·a +

¨

ψiφb ||φaψj

∂

(14)

These equations can be transformed to the covariant integral representation (where the

unknown amplitudes are fully contravariant, whilst the known matrix elements are fully

covariant) using metric matrices to obtain

Aibjat
ai = ωCISSabSijt

ai (15)

Aibja = fbaSij − fijSba + 〈ψiφb ||φaψj〉 (16)

Introducing the overlap matrix here and transforming to the natural representation preserves

the Hermiticity of the Hamiltonian and the variational nature of the wavefunction.

For closed shell singlet wavefunctions, the spin-restricted form, with all dimensions col-

lapsed to those of spatial orbitals rather than spin-orbitals, is:

Aibja = fbaSij − fijSba + 2 (ψiφa | φbψj)− (ψiψj | φbφa) (17)

The spatial orbital two-electron integrals are written in the “chemist’s notation” where the

first two indexes involve the coordinates of electron 1 and the last two indexes are those of

electron 2.

The non-orthogonal CIS equations, as written, convey computational advantage only

when the one and two-electron matrix elements become sufficiently sparse that the dimension

12
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of the problem can be greatly reduced. As argued in the introduction, this is very difficult to

exploit computationally except for truly enormous systems. For clusters on the order of 1000

atoms, as may be treated with this theory, there is very little effective sparsity because of

the spatially extended basis sets that are needed to treat Rydberg excited states (equivalent

to at least doubly augmented basis sets, in terms of the Dunning hierarchy or the (2+) sets

in terms of diffuse functions for Pople basis sets).

Instead, we build a physically-based model, akin to local correlation models, which re-

stricts the single substitutions to only occur within fragments. By doing so, we prohibit

charge transfer between fragments. In the limit of non-interacting fragments, such a model

is exact. As discussed in the introduction, it is also likely to be quite accurate for weakly

interacting clusters if their constituent atoms or molecules have high ionization potentials

and low (or negative) electron affinities.

We shall refer to this model where the excited states are approximated as superpositions

of intra-fragment single substitutions as ALMO-CIS. Considering homogeneous atomic or

molecular clusters containing M fragments, it is evident that the ALMO-CIS model retains

only O (M) of the original O (M2) CIS amplitudes. Since the model has included locality at

the design level, it will also be relatively easy to exploit this great reduction in the computa-

tional complexity. The ALMO-CIS equations follow from the non-orthogonal CIS equations

in the covariant integral representation by deleting all rows and columns corresponding to

single substitutions that transfer charge between fragments:

Aia,jb t
ai = ωCIS Sia,jb t

ai (18)

with

Aia,jb = Aibja and Sia,jb = SijSab. (19)
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2.4 ALMO-CIS Oscillator Strengths

The oscillator strength for a electronically excited state κ reflects the probability of a tran-

sition from the ground state into that state and is generally defined (in atomic units):

fκ =
2

3
(Eκ − E0) |〈Ψ0 |µ̂|Ψκ〉|

2 . (20)

The energy difference comes directly from the calculation of the ALMO-CIS eigenvalues, and

the dipole expectation value is given from the projected ALMOs as

〈Ψ0 |µ̂|Ψκ〉 =
∑

FJ

∑

i,a∈{ΨJ}

taiκ 〈ψi |µ̂|φa〉 . (21)

The dipole matrix elements can then readily be determined from the available AO basis

matrix elements.

〈ψi |µ̂|φa〉 = ( ψi |χ
µ) 〈χµ |µ̂|χν〉 (χ

ν | φa) = cµ·i
†µµνc

ν
·a. (22)

3 Efficient Implementation and Scaling

An efficient implementation of the ALMO-CIS method has been completed within the Q-

Chem electronic structure program.71,72 The following subsections describe the key design

aspects of the algorithm we have developed and implemented.

3.1 Direct vs Iterative Diagonalization

The first key design decision is how the truncated Hamiltonian should be diagonalized: di-

rectly by dense linear algebra, or iteratively on the basis of matrix-vector multiplies.73 While
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iterative diagonalization is greatly preferred if only a few eigenvalues are desired, direct di-

agonalization is more efficient if a significant fraction of the eigenvalues are sought. Our

first target application of ALMO-CIS is to compute the excited states of large homogeneous

clusters. These typically have many excited states within a narrow energy window, corre-

sponding to bands that broaden the discrete excitations of the spectrum of a single fragment,

and thus, a large percentage of the CIS eigenvalues are desired.

Therefore we choose direct diagonalization as the basis of this implementation. We note

that this is not a serious limitation on the size of system that can be treated via ALMO-CIS,

as the ALMO-CIS vectors are O(M) and thus construction of the ALMO-CIS Hamiltonian

requires O(M2) storage, and direct diagonalization is O(M3) for the full spectrum. By

contrast, conventional CIS involves eigenvectors of length O(M2) and therefore requires

O(M4) storage and O(M6) computational effort for direct diagonalization. The ALMO-CIS

calculation involves storage and computation that is proportional to only the square root

of that for conventional CIS. Or for equivalent computational resources, ALMO-CIS will be

able to treat a system of O(M2) size if conventional CIS can treat a system of size O(M).

3.2 Strategy for Two-Electron Integral Evaluation

Generally the most computationally demanding step in standard CIS is associated with

formation and transformation of the two-electron repulsion integrals (ERI’s). There are two

basic issues that dictate our strategy. First, is the extent to which basis function overlaps

become sparse in a large cluster. Second, is the question of how effective the resolution of

the identity (or density fitting) approach is likely to be. We shall discuss these issues in turn,

and then outline our chosen approach.

With regard to the first issue, AO-ERI calculations näıvely scale as O(M4). In large

molecules with compact basis sets, this can be reduced to quadratic cost by applying appro-

priate screening techniques, such as the Schwarz integrals, which yield a strict upper bound
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to the size of the integrals.74,75

|(µν | λσ)| ≤ (µν | µν)1/2 (λσ | λσ)1/2 (23)

The number of significant basis function pairs, with a threshold of 1 × 10−12Eh are shown

in fig. 1 as a function of cluster size for regularly spaced helium clusters using the cc-pVTZ

basis, aug-cc-pVTZ, and a customized [5s2p] basis (consisting of the 3 s functions of 6-311G

and two sets of diffuse s and diffuse p exponents, subsequently denoted 6-311(2+)G) that is

suitable for describing the n=2 Rydberg manifold.58 It is evident that effective linear scaling

is not obtained with the diffuse basis set until clusters of well over 1000 atoms as the slope

is still larger than 1 even at He1159. By contrast the compact cc-pVTZ basis reaches linear

scaling in its number of numerically significant basis function pairs much sooner, around

60 atoms. Therefore excited state calculations which depend on diffuse basis functions face

growth in the number of significant AO-ERI’s that remains close to O(M4) into regimes as

large as 1000 atoms. As a result, evaluation of the MO-ERI’s by näıve transformation of

AO-ERI’s would be at least this demanding, and therefore will not be very computationally

efficient.

The ALMO-CIS model, however, offers crucial additional computational advantages. The

ALMO occupied orbitals and the unprojected virtual orbitals are both fragment blocked, and

as a result, if we ignore the projection terms the ALMO-CIS model rigorously requires only

O(M2) AO-ERI’s. Let us begin by expanding the Coulomb-like term, (ψiφa | ψjφb), of Eq.

(17), in terms of unprojected ALMO contributions and projection corrections:

(ψiφa | ψjφb) =NaNb

{

(ψiψa | ψjψb)

−2 ( ψiψa |ψjψk)
Ä

ψk |ψb

ä

+ ( ψiψk | ψjψl)
Ä

ψk |ψa)
Ä

ψl |ψb)
™

J =N2(J1− 2 · J23 + J4) (24)
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Figure 1: Scaling of the significant basis function pairs with system size (He7 to He1159). A
linear fit to the last five points on each curve gives slopes of 1.3, 1.0 and 1.1 for the custom
6-311(2+)G (11 functions/atom), standard aug-cc-pVTZ (23 functions/atom) and cc-pVTZ
(14 functions/atom) basis sets respectively. The dashed lines are fits to the first 3 points to
illustrate the onset of basis function sparsity

.

Due to the fragment-blocking of the ALMOMO coefficient matrix, the necessary AO-ERI’s to

evaluate the unprojected contribution, (ψiψa | ψjψb) (i.e. J1), will be just the (χµχν | χλχσ)

subset.

Similarly, the exchange term, ( ψiψj |φaφb), of Eq. (17) can be written as:

( ψiψj |φaφb) =NaNb

ß

( ψiψj |ψaψb)

−2 ( ψiψj |ψaψk)
Ä

ψk |ψb) + (ψiψj | ψkψl)
Ä

ψk |ψa)
Ä

ψl |ψb)
™

K =N2(K1− 2 ·K23 +K4) (25)

Here the ( χµχν |χλχσ) AO-ERI’s are all that are needed for the unprojected ALMO contri-

butions (( ψiψa |ψjψb) or K1). This is true even if all O(M4) AO-ERI’s are non-zero.

These results suggest that we should evaluate the unprojected contributions to the ALMO-

CIS Coulomb and exchange integrals by fragment-blocked transformation of the O(M2) re-

quired AO-ERI’s, and then correct separately. The unprojected ALMO-CIS integrals will

17

Page 17 of 47

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



therefore require only O(M2) computational effort. The corrections for projection require

evaluating ALMO integrals with 3 occupied indexes, ( ψiψa |ψjψk), ( ψiψj |ψaψk), and 4 oc-

cupied indexes, (ψiψk | ψjψl). These corrections are significantly smaller in magnitude and

can be evaluated using the resolution of the identity (RI) approximation without significant

loss of accuracy.76,77 Doing these corrections via RI avoids the need for larger numbers of

4-center AO-ERI’s and permits the efficiency of dense linear algebra.

3.3 ALMO Integral Evaluation

The half-transformed integrals J ia
µν = (ψiψa | χµχν) and Kia

µν = ( ψiχµ |ψaχν) are com-

puted within Q-Chem’s AO-ERI evaluation code, which uses the PRISM algorithm for ef-

ficiency.78–80 We have added a customized ERI “digestor” that carries out first two MO

quarter-transformations on a batch of AO-ERI’s. The batch size is determined by the inte-

gral code and does not scale with the size of the system. The fully-transformed integrals are

then formed from the half-transformed integrals externally.

Only the integrals with ψi and ψa on FI , and χµ and χν on FJ are required (corresponding

to (χµχν | χλχσ) and ( χµχν |χλχσ) as discussed in the previous subsection). No additional

truncation is possible within the coulomb integrals, but for the exchange contributions,

using the Schwarz integrals, only AO-ERI’s with significant overlap need be computed. By

creating mini-lists of the required half-transformed integrals we avoid forming many of the

AO integrals.24,81

The AO integrals are efficiently transformed using customized digestor algorithms. The

coulomb digestor, is outlined in algorithm 1 and the exchange digestor, is shown in algo-

rithm 2. These algorithms are shown schematically rather than exactly as implemented in

order to avoid undue complexity. In particular, the production code is organized into loops

over different angular momentum classes for bras and kets, and then loops over the different

shell quartets corresponding to the current bra and ket angular momentum. Finally batches
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of selected shell quartets are evaluated. By contrast, the simplified schematics shown in

algorithm 1 and algorithm 2 show only loops over AO function pairs.

Algorithm 1: Coulomb digestor for integrals, Jiaλσ =
Ä

ψiψa | χλχσ

ä

for µν ∈ FI do

for λσ batches do

Make
Ä

µν | λσ
ä

for µν, λσ

for λσ ∈ batch do

FJ ← λσ

Jiaλσ +=
Ä

µν | λσ
ä

P µν
ia , ∀ ia ∈ FI

Jjbµν +=
Ä

µν | λσ
ä

P λσ
jb , ∀ jb ∈ FJ

For the coulomb integrals a batch of AO integrals are contracted with the transition

densities P µν
ia = cµi c

ν†
a . Each integral batch corresponds to a single bra, 〈χµχν |, so each of its

members can be identified with a specific ket, |χλχσ〉. Here λ and σ must belong to the same

fragment FJ . Thus, the loop over excitations jb only includes those on FJ . The digestor

loops over the elements of the batch and identifies the corresponding fragment FJ . This is

followed by gathering the relevant elements of the density matrix for the ket side belonging

to FJ , P
λσ
jb . Note that the density matrix is symmetrized and vectorized by fragment to

further increase the efficiency. Then matrix multiplication between the AO integrals and

the density matrix is performed, also accounting for the symmetry of the integrals and the

half-transformed integrals Jµνjb are incremented.

The digestor for the coulomb-like terms uses a symmetrized transition density and yields

a half-transformed matrix that is also symmetrized. By contrast, the exchange terms (algo-

rithm 2) cannot accept a symmetrized density, and result in an unsymmetric half-transformed

tensor. Thus all symmetries must be accounted for explicitly. It is also important to em-
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Algorithm 2: Exchange integrals, Kiaνλ = ( ψiχν |ψaχλ)

for µν do

for λσ exchange batches do

FI ← λ, FJ ← σ

Make ( µν |λσ) for µλ ∈ FI , νσ ∈ FJ

for λσ ∈ batch do

Kjbµλ += ( µν |λσ)P νσ
jb , ∀ jb ∈ FJ

Kjbλµ += ( µν |λσ)P σν
jb , ∀ jb ∈ FJ

Kiaνσ += ( µν |λσ)P µλ
ia , ∀ ia ∈ FI

Kiaσν += ( µν |λσ)P λµ
ia , ∀ ia ∈ FI

if FI == FJ then

for λσ ∈ batch, ia ∈ FI do

Kiaµσ += ( µν |λσ)P νλ
ia

Kiaσµ += ( µν |λσ)P λν
ia

Kiaνλ += ( µν |λσ)P µσ
ia

Kiaλν += ( µν |λσ)P σµ
ia
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phasize in addition to computational costs which only grow as O(M2) even when there

are as many as O(M4) significant AO-ERI’s, these routines are also designed to ensure at

most O(M2) storage requirements. Both the input transition densities and the output half-

transformed matrices are stored in packed format keeping only the required values. Finally,

while not shown explicitly, the final two quarter transformations are also done making use

of the ALMO locality and scale no higher than O(M2).

3.4 ALMO integral corrections

The smaller terms, which are still critical for accurate evaluation of the two electron integrals

from Eqs. (24) and (25) include J23, J4, K23 and K4. These will be evaluated using the

RI approximation, following algorithms which we describe below.

For compactness, the 3-center density-fit integrals will be denoted as vijP = (ψiψj | χP )

and viaP = (ψiψa | χP ). Similarly, the 2-center ERI’s in the auxiliary basis will be denoted

as vPQ = (χP | χQ), while elements of its inverse will be written as vPQ. In this notation,

the RI correction terms, first introduced in Eqs. (24) and (25) can be explicitly written as

follows:

J23 = viaPv
PQvjkQσ

k
b (26)

J4 = σk
avikPv

PQvjlQσ
l
b (27)

K23 = vijPv
PQvakQσ

k
b (28)

K4 = vijPv
PQvklQσ

k
aσ

l
b (29)

There are two primary steps to determine these correction terms. First the RI integrals

must be generated and then they are combined to form the final corrections. The RI inte-

grals in the AO basis are formed in batches and subsequently transformed using a customized

digestor within the AOints module of Q-Chem, shown in algorithm 3. Two types of inte-
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grals are needed, those with both indices occupied, vijP , and those with one occupied and

one virtual, viaP . The number of occupied-occupied integrals that are required will grow

linearly with respect to system size in large enough systems, since ψi and ψj are both highly

localized on their respective fragments and therefore do not have a large spatial extent. The

number of pairs of occupied-virtual integrals will be much larger as the virtual orbitals are

significantly more diffuse, however, they are still ALMOs and retain the associated advan-

tages in efficiency. Using our efficient implementation, the cost to form the transformed

3-center ERI’s does not exceed O(M3) with system size. By computing, only the significant

occupied-occupied RI integrals the final combination of the integrals to form the correction

terms can also be made to scale as O(M3) with system size or lower.

In generating the 3-center AO integrals, the auxiliary basis consisting of Naux functions

is partitioned into Nbat batches based on shell structure to avoid memory issues. Due to

this batching policy, the three-center integrals are formed in the “shell” order (i.e. sorted by

angular momentum) of the auxiliary basis. Conventionally when writing to disk the digested

(ALMO-transformed) integrals are transformed back into their “natural order” (i.e. sorted

by atoms). With this approach, considering the (ψiψa | χP ) case, only V elements can be

continuously written at a time, and thus file writing will be performed O×Naux times in total

(O = number of occupied orbitals). The low efficiency of this seek-dominated I/O procedure

eventually causes this to be the rate-determining step of the ALMO-CIS calculation for

large systems. Simply writing the full batch of digested integrals (with fixed index i) to

disk without reordering enables more data (V ×Naux) to be transferred to disk at once and

significantly reduces (by Naux/Nbat) the time spent in file writing, due to greatly reduced

numbers of seeks. The improved I/O efficiency ensures that the expected computational

scaling may be obtained. The two-center integrals vPQ should be formed in the same order

to ensure consistency of auxiliary basis ordering, which can be realized by a few simple

modifications of the existing code without additional cost.
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Algorithm 3: 3-center integrals vijP , viaP

for n = 1, Nbat do

for µν = 1, (NN) do
calculate (µν | P )
FI ← µ
for i = 1, o do

if (i | ν) > thresh then

for P = 1, Naux do
(iν | P ) += (µν | P ) · cµi

for i = 1, O do

for jν = 1, On do

if (i | j) > thresh then

for P = 1, Naux do
(ij | P ) += (iν | P ) · cνj

write (ij | P ) to disk in order i,P ,j (slow to fast) for i, ∀j(significant), P ∈ Naux

for i = 1, O do

for aν = 1, V n do

for P = 1, Naux do
(ia | P ) += (iν | P ) · cνa

write (ia | P ) to disk in order i,P ,a (slow to fast) for i, ∀a, P ∈ Naux
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Algorithm 4: RI Corrections

for ij = 1, (OO) do
for P = 1, Naux do

for Q = 1, Naux do

cPij += vPQ · vijQ

for ij = 1, (OO) do
for kl = 1, (OO) do

for P = 1, Naux do

Vijkl += cPij · vklP

for ia = 1, Ov do

for jk = 1, (OO) do
for P = 1, Naux do

Viajk += cPjk · viaP

for ia = 1, Ov do

for jk = 1, (OO) do
if (i | j) > thresh then

for P = 1, Naux do

Vijak += cPij · vakP
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The first steps of the RI integral transformation are common to both the coulomb and

exchange terms and are shown in algorithm 4. Algorithm 5 then shows the steps for com-

puting the coulomb corrections. For transparency of computational cost, all multiplications

are written as loops. Those that grow in cost linearly with the size of the system are in pur-

ple, while blue loops are over sparse indices that scale quadratically for small systems but

linearly for large systems. The exchange corrections are computed similarly (algorithm 6).

These transformations will grow asymptotically as O(M3), which is the same scaling as for

the matrix diagonalization. However, for small systems they will scale quartically as the full

benefits from using ALMOs do not appear immediately.

Algorithm 5: Coulomb RI Corrections

for ia = 1, Ov do

for jl = 1, (OO) do
for k = 1, O do

if (k | i) > thresh then

Wiajl += Vikjl · σ
k
a

for jb = 1, Ov do

for l = 1, O do

if (j | l) > thresh then

J23iajb += Viajl · σ
l
b

J4iajb += Wiajl · σ
l
b

4 Results

We employ helium clusters as test systems to explore the accuracy and computational cost

of the ALMO-CIS method. With these results in hand, we then use our method to examine

the size-dependence of electronic spectrum associated with the n = 2 Rydberg levels. As

discussed in the introduction, helium clusters appear likely to be suitable for the ALMO-
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Algorithm 6: Exchange RI Corrections

for ia = 1, Ov do

for j = 1, O do

if (i | j) > thresh then

for kl = 1, (OO) do
Wijal += Vijkl · σ

k
a

for jb = 1, Ov do

for l = 1, O do

K23ijab += Vijal · σ
l
b

K4ijab += Wijal · σ
l
b

CIS method because the high ionization potential and negative electron affinity make the

discarded charge-transfer (CT) configurations high in energy relative to the retained atomic

excitations. Therefore we expect CT effects to be secondary. Tests to explore this question

are reported in section 4.1 by comparing ALMO-CIS to standard CIS for medium sized He25

clusters. In section 4.2, a detailed analysis of the computational performance of the code is

reported, spanning clusters from 7 to 485 atoms. With these characterizations in hand, we

turn in section 4.3 to a pilot application of the ALMO-CIS method, on the size-dependence

of the excitation spectrum.

4.1 Accuracy

To determine the accuracy of ALMO-CIS it was first applied to small 25-atom clusters

which have previously been studied in depth using CIS.58,59 For the n = 2 manifold, 100

states are required to fully characterize the band, with the lowest 25 states having being

characterized primarily by superpositions of 2s-type orbitals and the remaining 75 as 2p-

type. Figure 2 shows a first comparison of the excitation spectrum calculated with full CIS

against the simplified ALMO-CIS model, at a single local minimum of He25. It is evident

that the general form of the spectrum is entirely preserved by ALMO-CIS: a clear distinction
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remains between the 25 states of 2s character, and the 75 states of 2p character. This is an

encouraging validation of the ALMO-CIS model.
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Figure 2: Excitation energy for a single geometry of He25 as a function of increasing state,
evaluated by CIS and the ALMO-CIS model, for the 100 states in the n = 2 Rydberg
manifold. A modified 6-311(2+)G basis with 11 functions per He atom was employed.58

He25 states 1-25 are predominantly of 2s character and states 26-100 are predominantly of
p character. It is evident that ALMO-CIS is nearly identical to CIS for the lowest energy 2s
and 2p states while the maximum error occurs for the states at the blue end of the excited
n = 2 band.

In slightly more detail, one sees that the low energy part of the 2s and 2p state manifolds

is systematically more accurately reproduced by ALMO-CIS than the high-energy part. The

error, of course, is entirely due to charge transfer. It is therefore quite logical that the higher

up we are in the manifold, the greater the error will be due to neglect of CT, because those

discarded ionic configurations are gradually becoming separated by smaller energy differences

from the state of interest. It is also reasonable that errors in the 2p manifold are larger than

the 2s manifold simply because this is a higher energy window, and therefore CT corrections

can contribute greater energy stabilization.

These conclusions transfer to other geometries. As can seen in fig. 3 for five sample

configurations of the He25 cluster, the ALMO-CIS errors, measured against CIS, are quali-

tatively consistent from geometry to geometry, and begin very small at the red end of both

the s− and p−manifolds and increase with increasing state number. The maximum error is
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0.4-0.5 eV (< 2.5%), which is non-negligible, but less than the standard CIS error of ≈ 1

eV. For application purposes, however, the important point is that the errors all have the

same sign, and increase gently and systematically from state to state. This suggests that a

qualitatively correct spectrum will be obtained, with highest accuracy at the red edge, and

exaggerated width of the blue tail of particularly the 2p manifold. The ALMO-CIS spectrum

can ultimately be corrected by appropriate scaling.
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Figure 3: E(ALMO−CIS) −E(CIS): This plot shows the excitation energy differences (eV) be-
tween ALMO-CIS and CIS as a function of state for 5 different He25 ground state geometries
(ie. local minima). He25 states 1-25 are s-like and states 26-100 are p-like. ALMO-CIS is
nearly identical to CIS for the lowest energy 2s and 2p states. The maximum errors occurs
for the states at the blue end of the excited 2p manifold.

The spectrum for He25 at the CIS/6-311(2+)G level of theory was previously computed58

using 100 randomized clusters with geometries optimized using Møller-Plesset perturbation

theory (MP2/6-311G). As 1s → 2s transitions are symmetry forbidden, the s states of the

cluster only contribute weakly to the optical spectrum, which is dominated by a broad peak

corresponding to the cluster p states. This peak has the atomic excitation energy as its

lower bound, and spreads over a range of nearly 2 eV. Using these same structures for the

ALMO-CIS/6-311(2+)G spectrum we obtain the results shown in fig. 4, which are compared

against the corresponding CIS spectrum.

Qualitatively, the results shown in fig. 4 are exactly as we would have anticipated based
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on inspecting the CIS and ALMO-CIS excitation energies for a single configuration in fig. 2,

or the ALMO-CIS errors for 5 different configurations shown in fig. 3. In the lowest excited

states of the 25-atom clusters (red end of the spectrum), very little error is introduced by

the ALMO-CIS approximation. On the other other hand, as discussed previously, the blue

tail of the ALMO-CIS spectrum is extended to higher energies relative to the CIS spectrum.

Interestingly, there is a second effect also, which is that we see a loss of integrated oscillator

strength in the 2p band calculated by ALMO-CIS relative to CIS. It may be directly inferred

that the neglected CT configurations do contribute non-negligibly to oscillator strength even

in the low energy part of the 2p band where they contribute very little to the excitation

energy. However, the relative intensities throughout the band are generally preserved, which

justifies qualitative comparisons.

CIS
ALMO-CIS
ALMO-CIS scaled
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Figure 4: Absorption spectra calculated for a He25 cluster at the CIS (solid blue) and ALMO-
CIS (solid pink) level of theory. The dashed gold curve shows the ALMO-CIS spectrum where
the energies have been corrected by the systematic error

Further physical insight into the origin of the deviations can be obtained from the detailed

analysis of the CIS spectrum reported previously.58 It was determined that the states at the

higher energy edge of the spectrum tend to arise from excitations of atoms in the center

of the cluster, while the low energy edge (near the atomic excitation energy) correspond to

atoms at the surface. The extended 2s and 2p Rydberg orbitals of a bulk atom overlap the
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ground state 1s orbital of their neighbors, destabilizing the cluster by Pauli repulsion. It

is reasonable to expect states dominated by these bulk contributions to be most affected

by charge-transfer, because they better overlap with those from other atoms to yield more

significant matrix elements for CT.

4.2 Timings

The main advantage of the ALMO-CIS method is that it theoretically has a very low com-

putational cost: O(M3) as a function of cluster size for the full eigenspectrum. This is in

contrast with the O(M6) computational effort associated with obtaining all eigenstates with

standard CIS. As discussed in section 3.1 the diagonalization step is straightforwardly third

order in system size. However, significant effort is required to formulate an efficient algo-

rithm for the evaluation of the matrix elements to realize O(M3) scaling in practice. The

timings reported here result from calculations using a single core on an AMD Opteron 6300

series using helium clusters ranging from He44 to He485 regularly spaced atoms (4 Å), using

the same customized 6-311(2+)G basis as the previous subsections.

Overall the method scales as desired (table 1), revealing overall growth of computational

effort just below O(M3) in the size range from He44 to He485. The results obtained for the

relative magnitude of the ALMO-CIS components can be seen in fig. 5. It is evident that

while matrix diagonalization is strictly O(M3), it has such a low prefactor that it is the least

important of the major computational steps in this size regime.

Table 1: Theoretical and actual scaling for total ALMO-CIS calculation and diagonalization

Component Scaling
Predicted Observed

Diagonalization M3 2.88

Total M3 2.71
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Figure 5: CPU timing data for ALMO-CIS. The clusters in this plot range from 44-485
atoms. The slope of the line corresponding to the total ALMO-CIS time is 2.71, indicating
that the scaling is overall O(M3) in computational effort, as a function of the number of
atoms, M .

31

Page 31 of 47

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Table 2: Theoretical and actual scaling for the formation of J1 and K1. Capital letters scale
with the size of the system, lowercase letters are constant and based on the identity of the
fragments, N , O, V and M are the number of basis functions, occupied orbitals, virtual
orbital and system size respectively. Parentheses indicate sparse matrix scaling: these scale
quadratically for small systems and linearly otherwise.

Component Memory Scaling
doubles Predicted Observed

(φiψa | χµχν) NOnv NOn3 2.16

(φiψa | φjχν) O2nv O2n2v 1.99

(φiψa | φjψb) O2v2 O2nv2 1.91

J1 Total M2 M2 2.19

( φiχµ |ψaχν) (NO)nv (NN)n2o 2.89

( φiφj |ψaχν) (OO)nv (OO)n2v 1.96

( φiχµ |ψaχν) (OO)v2 (OO)nv2 2.00

K1 Total (MM) (MM) 2.88
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The costs of the formation of J1 and K1 (the unprojected direct and exchange integrals

defined in eqs. (24) and (25)) are summarized in table 2. None of these steps should scale

worse than O(M2) with the system size, as we have designed our implementation to sat-

isfy this criterion. J1 is most efficient because selection of significant ERI’s can be done

immediately at the shell pair level, and, relative to K1, only one quarter as many floating

point operations are required per significant ERI. On the other hand, K1 technically has

(NN) sparsity meaning that only a linear number significant matrix elements are required

for large enough systems. However, our present shell quartet selection algorithm is based on

all fragment pairs and does not include screening based on fragment pairs that give vanishing

K1 contributions, thus it scales as O(M2).

The costs associated with forming the RI integrals and subsequently assembling the cor-

rection terms are given in table 3. These are unavoidably third order steps, and implemented

this way, as observed in the timings. The most costly O(M3) steps are the formation of the

RI integral terms vijP and viaP as is clear from fig. 5. Their cost could still be reduced by

approximately a factor of two, by reusing the (χµχν | χP ) terms, and there may be addi-

tional pre-factor reductions that are possible. These optimizations will not affect the overall

scaling. Thus, we successfully created an algorithm for computing excited states of clusters,

which scales O(M3). We have applied this code for timing purposes in calculations on as

many as 485 atoms and 5335 basis functions, to obtain 4850 excited states. We believe that

excited state calculations of this scale have not hitherto been reported.

4.3 Size-dependence of the excitation spectrum of helium clusters

In the ground state, the superfluidic phase can be distinguished for clusters with greater than

or equal to about 60 atoms.51 Additionally, it is predicted that clusters in the regime of ≈ 500

atoms begin displaying bulk-like properties.82 Thus, clusters containing 102− 103 atoms are

particularly interesting as they span this boundary region where observable properties are
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Table 3: Theoretical and actual scaling for RI integrals and formation of correction terms
J23, J4, K23, K4. Notation as in table 2, with the addition of X for the number of auxiliary
functions. Where multiple steps are involved the most costly step is indicated.

Component Rate Memory Scaling
limiting step doubles Predicted Observed

Ä

χQ | χP
ä

matrix inversion X2 X3 2.82

(φiφj | χP ) (χµχν | χP ) (OO)X* (NN)X 2.55

(φiψa | χP ) (χµχν | χP ) OVX* (NN)X 2.66

cPkl vPQvklQ (OO)X (OO)X2 3.06

Vijkl cPijvklP (OO)2 (OO)2X 3.25

Viajk viaP c
P
jk Ov(OO) Ov(OO)X 3.10

Vijak cPijvakP OvO2 Ov(OO)X 3.14

J23 Viajk · σ
k
b O2v2 Ov(OO)v 1.88

J4 σk
a · Vikjl · σ

l
b O2v2 (OO)2v 2.29

K23 Vijak · σ
k
b O2v2 (OO)Ov2 2.06

K4 σk
a · Vijkl · σ

l
b O2v2 (OO)2v 2.94

* In practice, the full set of 3-center integrals never exist in memory at one time,
because they are computed in batches. The numbers demonstrated here are
actually the space required for disk saving.
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likely to be changing. Previous theoretical studies of excited states of helium were only able

to utilize clusters with ≤ 25 atoms due to the computational cost of calculating the large

number of excited states required.58,59,83

The size-dependence of the helium cluster excitation spectrum is an ideal pilot application

for ALMO-CIS. Earlier work on the spectra of He7 and He25 clusters produced results that

compared very favorably with previous experiments, when the geometries of the ground state

clusters are optimized with MP2/6-311G.58 In larger clusters nuclear quantum effects become

increasingly important and not accounting for them results in over-structured clusters. Here

we consider clusters an order of magnitude larger (e.g. He231) where MP2 optimizations are

impractical, thus, as the ground state structures are not critical to demonstrate the utility

of ALMO-CIS, the cluster sampling was done with classical dynamics. For this paper,

all geometries were obtained using the Optimize program in Tinker84 after randomly

perturbing an initial structure with atoms regularly spaced 4 Å apart. A He-He Lennard-

Jones potential with r0 = 3.6 Å and ǫ0 = 0.05 K was used for cluster optimization, with

parameters adjusted to give reasonable spacing (bulk interatomic spacing in helium clusters

is 3.6 Å). Since a tight optimization without zero point energy will give a highly ordered

cluster (due to neglect of zero point motion), we used a loose convergence criterion to obtain

randomized structures with spacing similar to the known He-He separations in solids and

clusters. This should be sufficient for the qualitative study of size-dependent effects; further

studies on the states of very large helium clusters are in progress, which account for nuclear

effects.

The calculated spectra are shown in fig. 6. It is immediately evident that there are

indeed strong size-dependent effects on the absorption spectra. The first effect is an increase

in oscillator strength contained in the band, which is simply a reflection of the number of

states in the manifold and increases linearly with size of the cluster. The second effect, also

related to the oscillator strength, is the emergence of intensity borrowing in the 2s manifold
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states on the interior of the cluster.

We recall from section 4.1, that the main ALMO-CIS error is the exaggerated bandwidth

of the manifold, with states on the blue edge increasingly overestimated. It is also possible

that this effect increases with the size of the cluster, but since standard CIS cannot be

reasonably run on the large clusters with enough states to explore the blue edge, we must

leave this issue as an open question. The other result from our tests of ALMO-CIS vs CIS

reported in section 4.1 was that neglect of the short-range charge transfer terms certainly

leads to an overall underestimate of oscillator strength, which likely becomes more important

towards the blue edge as CT contributions become less negligible (though most likely still

small).

5 Conclusions

In computations on homogenous atomic and molecular clusters, large numbers of excited

states are required to describe the broadening of atomic or molecular excitations into the

bands associated with cluster, which gradually evolve towards the bulk limit. This need for

many states makes conventional excited state methods particularly costly for such applica-

tions. To address this problem, we have developed a physically motivated local variant of

configuration interaction with single substitutions (CIS), which retains only intra-fragment

single excitations. All inter-fragment singles are discarded. We use the absolutely localized

molecular orbitals (ALMO’s) to describe occupied and virtual levels of the cluster, and thus

term our fragment-localized method as ALMO-CIS. ALMO-CIS is physically appropriate

for homogeneous clusters composed of atoms or molecules with high ionization potentials

and low or negative electron affinities, as this combination minimizes the importance of the

neglected charge-transfer terms.

The main conclusions of our work developing, implementing, testing and applying the
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ALMO-CIS model are as follows.

1. Formal scaling. Complete construction and diagonalization of the ALMO-CIS Hamil-

tonian for all eigenvalues and eigenstates scales no worse than O(M3) with the number

of atoms or molecules, M , in the cluster. By contrast, conventional CIS for all states

scales as O(M6).

2. Accuracy for helium cluster absorption spectra. Testing against full CIS for He25

absorption spectra shows good qualitative agreement for the full spectrum, and excel-

lent quantitative agreement at the red edge of the 2s and 2p manifolds. ALMO-CIS

systematically overestimates the excitation energies, with the error gradually increas-

ing to its largest values at the blue edge of the 2p manifold, which can be corrected for

when needed. When comparing ALMO-CIS to standard CIS there is a clear decrease

in total oscillator strength, however, the relative strength across the band is reasonably

conserved, and the trend with increasing the cluster size is consistent.

3. Numerical performance. We have successfully formulated and implemented an

algorithm that is operationally O(M3) up to the largest cluster tested (485 atoms),

and permits these calculations with 4850 excited states and 5335 basis functions on

workstation class computers.

4. Application to helium cluster absorption spectra. As a pilot application we

evaluated the size-dependence of absorption spectra of helium clusters, and observed a

variety of interesting effects that are qualitatively similar to trends seen experimentally.

These include an increase in the intensity of the region corresponding to bulk-like states

relative to the surface states, and a broadening of the peak.

5. Further possibilities. The ALMO-CIS model could benefit from a variety of im-

provements. Most important is some type of diagnostic or correction for the role of
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the neglected charge transfer configurations. Such differences also potentially yield

physical insight into the role of CT in excited states. Dynamic correlation is missing,

and might be reincorporated either by extending the model to time-dependent density

functional theory, or incorporating wave-function based correlation.
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(74) Häser, M.; Ahlrichs, R. J. Comput. Chem. 1989, 10, 104–111.

(75) Kussmann, J.; Ochsenfeld, C. J. Chem. Phys. 2013, 138, 134114.
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