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Research indicates that after advanced age, the major risk factor for late-onset
Alzheimer’s disease (AD) is female sex. Out of every three AD patients, two are females
with postmenopausal women contributing to over 60% of all those affected. Sex- and
gender-related differences in AD have been widely researched and several emerging
lines of evidence point to different vulnerabilities that contribute to dementia risk. Among
those being considered, it is becoming widely accepted that gonadal steroids contribute
to the gender disparity in AD, as evidenced by the “estrogen hypothesis.” This posits
that sex hormones, 17β-estradiol in particular, exert a neuroprotective effect by shielding
females’ brains from disease development. This theory is further supported by recent
findings that the onset of menopause is associated with the emergence of AD-related
brain changes in women in contrast to men of the same age. In this review, we discuss
genetic, medical, societal, and lifestyle risk factors known to increase AD risk differently
between the genders, with a focus on the role of hormonal changes, particularly declines
in 17β-estradiol during the menopause transition (MT) as key underlying mechanisms.

Keywords: Alzheimer’s disease, estrogen hypothesis, sex differences, gender differences, menopause transition,
risk factors

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease marked by impairments in memory,
attention, language, and daily living activities (Alzheimer’s Association, 2017). While AD currently
impacts 5.7 million Americans regardless of ethnic and cultural backgrounds (Alzheimer’s
Association, 2017), the prevalence is expected to triple by 2050, with nearly 14 million patients
affected. Similar trends have been reported worldwide with a projected 130 million patients in
the next 30 years.

Alzheimer’s disease is an extremely debilitating condition currently falling within the top 10
causes of death across the world. This causes a severe fiscal burden on health services since AD is
an extremely financially costly neurological disease to manage (Nichols et al., 2019). Addressing the
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economic and social costs of AD is increasing in urgency as
the Baby Boomer generation ages and life expectancy increases.
Recent studies estimate that, from 2010 to 2050, annual costs will
increase from $307 billion to $1.5 trillion in the United States
alone (Zissimopoulos et al., 2015). Medical advances that
delay disease onset for 5 years or longer would result in a
41% lower prevalence and 40% lower cost of AD in 2050
(Zissimopoulos et al., 2015).

To date, there has been a lack of therapeutics to prevent,
delay, or reverse late-onset AD, resulting in a host of
unsuccessful clinical trials. Research efforts over the past
decade have prioritized therapeutic strategies that aim to
remove beta-amyloid (Aβ) and tau pathology or prevent their
accumulation, with limited success (Andrieu et al., 2015).
Therefore, there exists an urgent and unmet need to develop
novel strategies to prevent dementia, or at the very least delay its
onset, or slow down progression. Several reasons underlie these
past failures; among the most far-reaching are the stage at which
therapeutic interventions are initiated, and the sex differences in
the underlying mechanisms leading to AD.

It has become widely accepted that the pathophysiological
mechanisms of AD begin decades before the emergence of
clinically detectable symptoms and contribute to a 15–20 year’s
prodromal or “preclinical” disease stage starting in midlife
(Sperling et al., 2014). Failure to develop successful disease-
modifying therapies may be because the majority of interventions
have been tested in cohorts with clinically manifest disease
and thus substantial synaptic and neuronal damage. Initiating
therapies during the preclinical phase of AD will likely yield
greater chances of success, a recognition that has effectively
paved the way for primary and secondary AD prevention trials
(Andrieu et al., 2015).

There is also emerging evidence that several medical,
environmental, and lifestyle risk factors that lead to AD
development are modifiable (Livingston et al., 2017). At
least one out of three AD dementia cases can be linked to
medical factors such as cardiovascular conditions, obesity,
diabetes, and lifestyle factors such as physical activity, diet,
social engagement, and educational attainment (Norton
et al., 2014). Until disease-modifying treatment becomes
available, risk reduction interventions could still drastically
reduce the future burden of AD at the population level
(Isaacson et al., 2018).

In this context, it is being widely accepted that many of
the above AD risk factors show gender effects, with female
sex being more severely impacted (Ferretti et al., 2018; Nebel
et al., 2018; Scheyer et al., 2018). It has long been known
that, after advanced age, female sex is the major risk factor
for AD (Farrer et al., 1997). Currently, two-thirds of AD
patients are females. Postmenopausal women comprise over 60%
of those patients (Brookmeyer et al., 1998). Increasing effort
has thus been devoted to identifying sex-specific differences
in disease etiology, manifestation, and progression as a crucial
step toward gender-based disease prevention. Among putative
biological mechanisms, it is becoming widely accepted that
gonadal steroids contribute to the gender disparity in AD,
as evidenced by the “estrogen hypothesis” presented herein.

This posits that female sex hormones, 17β-estradiol in particular,
exert a neuroprotective effect by buffering females’ brains against
disease development. Hormonal changes in the years leading up
to and after menopause are linked to the emergence of AD-related
brain changes in females in contrast to males of the same age.
In this review, we provide a comprehensive review of genetic,
medical, societal, and lifestyle risk factors known to increase AD
risk differently between the genders, with a focus on the role of
gonadal hormones as key underlying mechanisms.

THE ESTROGEN HYPOTHESIS

It is has long been proposed that gonadal steroids contribute
to gender differences in AD. Several reproductive hormones
and their interactions may be implicated, including estrogen,
progesterone, luteinizing hormone, and follicle stimulating
hormones. All these so-called female hormones naturally
fluctuate over endogenous hormonal cycles. Nonetheless, this
review will focus primarily on estrogen since considerable
evidence from molecular, animal, and clinical studies indicates
that, of all gonadal hormones, estrogen may be particularly
involved in the pathophysiology of AD-dementia in women. The
“estrogen hypothesis” postulates that estrogen plays a protective
role against AD-dementia, while that estrogen dysfunction seems
to exacerbate, or perhaps precipitate the AD process in women.

Even though it is present in both sexes, estrogen is often
considered the primary female sex hormone. Reference to
estrogen broadly refers to numerous compounds such as estrone
(E1), estradiol (E2), and estriol (E3). The primary circulating
estrogen during a woman’s reproductive years is 17β-estradiol,
which is also the strongest form. For the purposes of this
review, estrogen refers to 17β-estradiol, the endogenous form.
17β-estradiol plays a role in the formation of secondary sex
characteristics in females and reproduction in males, and has
peripheral effects in the liver and bone in both sexes (Cui et al.,
2013). While it is primarily central to the ovaries for menstrual
cycle coordination in women, it is also made by non-endocrine
tissues, such as fat, breasts, and the brain (McEwen et al., 1997).

Estrogen affects several areas of the brain, thereby influencing
cognitive function, affect, and behavior (Fink et al., 1996;
Dumitriu et al., 2010; Brinton et al., 2015). Several lines of
research have demonstrated that estrogen is a vital signaling
molecule within the brain (Brinton, 2008; Rettberg et al., 2014).
It can not only go through the blood–brain barrier but the
brain also produces estrogen endogenously from cholesterol
(Balthazart and Ball, 2006; Rettberg et al., 2014). Estrogen utilizes
a network of receptors and signaling pathways to initiate and
regulate molecular and genomic responses required for survival
at the level of the cells, genes, organs, and ultimately, the whole
body (Figure 1; Rettberg et al., 2014). Estrogen receptors (ERs)
are expressed by both sexes and are found on both neurons and
glial cells throughout the brain (Rettberg et al., 2014). These
receptors are conserved evolutionarily, with homologs present
in all vertebrates. There are three types of ERs that have been
discovered, to date: estrogen receptor 1 (ESR1 or ERα), estrogen
receptor 2 (ESR2 or ERβ), and G-protein coupled estrogen
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FIGURE 1 | Brain 17β-estradiol receptor network and anatomical distribution (Adapted with permission from Brinton et al., 2015). Right: 17β-estradiol receptor
network in the brain includes different pathways. The binding of estrogen and consequent activation of the membrane and trans-membrane receptors, mER-α,
mER-β, and GPER, contributes to initiation of signaling networks that mediate early and intermediate gene expression response. Binding of estrogen to ER-α and
ER-β, the nuclear estrogen receptors, leads to initiation of transcriptional pathways that also regulate late response gene expression. Activation and translocation of
ER-β to the mitochondria has been implicated in expression of mitochondrial genes. Furthermore, estrogen can modulate transcriptional gene expression via
epigenetic regulation. This integrated network of receptors enables coordination of a broad spectrum of cellular elements, which ultimately results in generation of
energy to fuel neurological function. ER, estrogen receptor; GPER, G-protein coupled estrogen receptor 1; mER, membrane estrogen receptor; mtER, mitochondrial
estrogen receptor. Left: Anatomical basis for the neurological symptoms that can emerge during the menopause transition. Nuclear, membrane-associated, and
mitochondrial estrogen receptors are distributed within each of the neural circuits depicted and can be present in both neurons and glial cells. Dysregulation of
estrogen signaling and transcriptional pathways, either through changes in estrogen concentration or through modifications of estrogen receptor activity, impacts
neurological function in those areas. AMY, amygdala; FORE, basal forebrain; HIP, hippocampus; HYPO, hypothalamus; LC, locus coeruleus; PCC, posterior
cingulate cortex; PFC, prefrontal cortex; RN, raphe nucleus; THAL, thalamus.

receptor 1 (GPER) (Brinton et al., 2015). Binding of estrogen
to these receptors activates several signaling pathways and
cellular processes via both genomic and non-genomic processes
(Brinton et al., 2015).

Of importance to the brain aging process, estrogen has known
neuroprotective properties through its effects on spinogenesis,
protecting the brain from age-related and toxic insults. Research
using female rats in the early 1990s demonstrated that the
density of dendritic spines on the CA1 region neurons of the
hippocampus shifts over the ovarian cycle period (Gould et al.,
1990) and that surgical oophorectomy, the removal of one or
both ovaries, contributes to a 30% loss in spine density that
can be recovered neurons by estrogen replacement (Woolley
et al., 1990). This estrogen-led spinogenesis is followed by
an equal increase in synapses (Woolley and McEwen, 1992)
pointing to potential integration of the new spines into the
hippocampal network.

Estrogen is also fundamental in metabolic regulation of the
brain and body (Brinton et al., 2015). For instance, it regulates
glucose transport, aerobic glycolysis, and mitochondrial function
to generate ATP in the brain (Rettberg et al., 2014). In animal
models, oophorectomy causes a significant reduction in multiple
brain glucose transporters, including GLUT-1, GLUT-3, and
GLUT-4 (Brinton, 2009). Loss of ovarian hormones with

reproductive aging leads to a significant reduction in brain
glucose activity, which could be attributed to decreased
neuronal glucose transporter expression, compromised
hexokinase activity, inactivation of the pyruvate dehydrogenase
complex (PDC), and eventually a functionally significant
decrease in mitochondrial bioenergetic function (Ding
et al., 2013; Rettberg et al., 2014). In addition to facilitating
glucose transport, estrogen also promotes neuronal aerobic
glycolysis and potentiates mitochondrial bioenergetics
through its positive effects on pyruvate dehydrogenase
(PDH), aconitase, and ATP synthase (Nilsen et al., 2007;
Rettberg et al., 2014).

Estrogen has also been shown to protect DNA against damage
induced by hydrogen peroxide (H2O2) and arachidonic acid by
increasing expression of a multitude of antioxidant enzymes, such
as glutaredoxin, peroxiredoxin 5, and MnSOD (Nilsen et al.,
2007; Rettberg et al., 2014). This estrogen-induced increase in
antioxidants subsequently leads to a decrease in free radicals
and oxidative damage to mitochondrial DNA and is potentially
thought to contribute to the longer life span of women compared
to men (Vina et al., 2006).

Overall, these studies highlight the role of estrogen in brain
aging and neurodegenerative diseases such as AD. More research
is warranted to understand the effect of aging on brain estrogen

Frontiers in Aging Neuroscience | www.frontiersin.org 3 November 2019 | Volume 11 | Article 315

https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-11-00315 November 13, 2019 Time: 16:46 # 4

Rahman et al. Alzheimer’s Disease and Estrogen Hypothesis

activity, especially in the context of ERα and ERβ expression
and signaling. So far, data suggest that in different parts of
the brain, decreased ERα responsiveness may mediate cognitive
decline and dementia risk (Yaffe et al., 2009). Although ERβ

is at least partially receptive to E2 during aging, it may be
unable to compensate for the lack of ERα (Foster, 2012). With
aging, there is also an increase in particular ERα splice variants
in some parts of the brain, especially the hippocampus, that
cause most of the available ERα to be non-functional (Ishunina
et al., 2007). Interestingly, research has shown that elderly
women are more likely to have greater expression of ERα

splice variants than elderly men (Foster, 2012; Rettberg et al.,
2014). In addition to splice variants, there are numerous ERα

polymorphisms that increase AD risk specifically in women,
particularly when linked to the APOE ε4 allele (Ryan et al.,
2014; Brinton, 2017) which is a major AD genetic risk factor
(discussed below).

Further evidence for the “estrogen hypothesis” comes from
studies that have implicated the menopause transition (MT)
with the emergence of AD-related brain changes in women
at risk for developing AD (Brinton et al., 2015). The MT is
associated with neurological symptoms such as disturbances of
estrogen-regulated thermoregulation, sleep, onset of depression,
and cognitive changes and ultimately results in reproductive
senescence (Brinton et al., 2015; Figure 1). In the brain,
ERs are widely found in the hypothalamic preoptic nucleus
which serves as the primary thermoregulatory center; the
suprachiasmatic nucleus of the hypothalamus which plays a
central role in sleep and circadian rhythms regulation; the
5-hydroxy-tryptaminergic neurons of the raphe nucleus involved
in affect and mood; and neurons in the locus coeruleus
responsible for arousal and anxiety (McEwen et al., 1997;
Brinton, 2017). In brain regions that are important for thinking,
learning, and memory, ERs are present in the prefrontal
cortex, medial temporal regions such as hippocampus and
amygdala, and in the posterior cingulate and retrosplenial cortex
(Shughrue et al., 1997; McEwen et al., 2012). It has been
proposed that during menopause, decline in circulating estrogen
is coincident with decline in brain bioenergetics and shift toward
a metabolically compromised phenotype in these brain regions
(Rettberg et al., 2014). Inadequate or absent compensatory
bioenergetic adaptations to lack of estrogenic activation would
then trigger not only the signature symptoms of menopause
(hot flashes, night sweats), insomnia, and depressive mood
symptoms, but also cognitive changes, thereby increasing risk
of late-onset AD in postmenopausal women (Zhao et al., 2016;
Bacon et al., 2019).

As later described in more detail, epidemiological data found
an increased risk of dementia in women who underwent
either unilateral or bilateral oophorectomy (surgical removal
of the ovaries) before the onset of natural menopause
(Rocca et al., 2007). These findings have been confirmed
and extended to include hysterectomy with and without
oophorectomy (Phung et al., 2010). Additionally, brain imaging
studies of women undergoing natural menopause provided
evidence that the MT is related to a greater risk for
AD-brain changes in middle-aged peri- and postmenopausal

women compared to men of similar age (Mosconi et al.,
2017b, 2018). Further, the MT leads to an increased risk
of depression, cardiovascular disease (CVD), type 2 diabetes
mellitus (T2DM), and metabolic syndrome (MetS) in women
(Pucci et al., 2017), as well as a compromised response
to head injuries – all of which serve as AD risk factors
(Biessels et al., 2006; Livingston et al., 2017). Women exhibit
increased vulnerability to a variety of environmental and lifestyle
AD risk factors like physical inactivity, an imbalanced diet,
disrupted sleep, and chronic stress. These findings highlight the
higher susceptibility of women to AD and propose a potential
window of opportunity for the implementation of AD risk
reduction strategies.

In the end, several lines of research provide support to the
hypothesis that repeated hormone influxes in women confer
protection against brain aging, while the onset of menopause
may exacerbate an existing AD predisposition (Paganini-Hill and
Henderson, 1994; Rocca et al., 2007, 2014; Fisher et al., 2018). An
increasing number of studies have investigated estrogen therapy
to potentially treat AD, as well as for CVD risk reduction in
women (Mulnard et al., 2000; Resnick and Henderson, 2002;
Maki, 2013). As reviewed below, earlier studies generally showed
lack of benefits and even a potential harmful effect, whereas
recent re-examinations indicate that the efficacy of estrogen in
sustaining neurological health and function depends on several
key factors, such as the time of initiation of estrogen therapy,
the functioning of the brain at the time of therapy initiation, and
the forms of hormones used (Brinton, 2004). Additionally, both
pharmacological and non-pharmacological therapies aimed at
supporting hormonal levels in aging women may help attenuate
the impact of modifiable AD risk factors on the brain.

The aim of this review is to offer an updated review of the
literature with respect to female-specific risk factors for AD
(summarized in Table 1), and to put forth the estrogen hypothesis
as a unifying mechanism of estrogen action on pre-existing
and environmental risk. As previously discussed by Nebel et al.
(2018), sex points to differences in biology such as chromosomal
or hormonal factors, whereas gender refers to differences in the
impact of psychosocial, cultural, and environmental influences
on biological factors between men and women. Both sex- and
gender-related risk factors are included below.

Female Sex
As mentioned above, female sex is a major risk factor for
late-onset AD (Farrer et al., 1997). Approximately two-thirds
of the more than 5 million Americans affected with AD are
women and two-thirds of the more than 15 million Americans
caring for someone with AD are women. As such, women find
themselves at the epicenter of the impending AD epidemic. As
grave a concern as breast cancer is to women’s health, women
in their 1960s are almost two times more likely to develop
AD over the rest of their lives as they are to develop breast
cancer (Alzheimer’s Association, 2017). A woman in her 1960s
has an estimated lifetime risk of one in six for developing
Alzheimer’s whereas the risk is 1 in 11 for a man of the same age
(Alzheimer’s Association, 2017).
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TABLE 1 | Sex- and gender-related AD risk factors.

Risk factor Effect on AD risk

Sex differences Genetic risks APOE epsilon 4 allele F > M

Race (black, hispanic) F > M

Medical risks Cardiovascular disease: Microvascular pathology (e.g., coronary
microvascular obstruction and endothelial inflammation) Myocardial
infarction Stroke (aneurysms)

F > M F > M after menopause
F > M after menopause

Type 2 diabetes; insulin resistance; prediabetes F > M after menopause

Depression F > M after menopause

Traumatic brain injury; concussions F > M

Chronic inflammation F > M

Systemic infection F > M

Female sex-specific Hormonal risks Female sex F only

Thyroid disease (hyperthyroidism; hypothyroidism) F > M

Pregnancy (preeclampsia, gestational diabetes, post-partum depression) F only

Menopause (natural menopause; surgically induced menopause) F only

Gender differences Lifestyle risks Educational attainment May affect F > M

Occupation May affect F > M

Intellectual activity May affect F > M

Physical activity F > M

Diet May affect F > M

Sleep F > M after menopause

Stress F > M after menopause

Caregiver burden F > M

Marital status M > F

F, female, M, male.

The prevailing view holds women’s greater longevity relative
to men, which makes women more likely to reach the ages of
greater risk, as the main reason for the increased AD prevalence
(Seshadri et al., 1997; Hebert et al., 2001). Studies in support
of the increased longevity view have focused on estimates of
incidence as well as prevalence. While it is well established that
the prevalence of AD (i.e., the number of affected patients) is
higher in females than in males, it is still not known whether
incidence, i.e., the number of people who develop AD during a
particular time period, also differs. The few studies investigating
this issue found that in Europe and other areas, women also
develop AD at a higher rate than men, especially at older ages
(Fratiglioni et al., 1997; Ott et al., 1998; Ruitenberg et al., 2001;
Prince et al., 2016). However, in the United States, the incidence
seems to be similar across both genders (Edland et al., 2002;
Miech et al., 2002; Chêne et al., 2015). It is important to recognize
that if men and women are developing AD at the same rate,
but prevalence is ultimately higher in women, then the higher
disease prevalence in women might indeed be attributed to their
longer survival rates.

Research on prevalence and incidence rates of mild cognitive
impairment (MCI), an intermediary stage between cognitive
changes associated with normal aging and dementia, has
provided mixed results (Mielke et al., 2014). Some studies report
that men have a higher prevalence of MCI (Koivisto et al., 1995;
Ganguli et al., 2004) whereas others indicate greater prevalence
in women (Larrieu et al., 2002; Di Carlo et al., 2007). In terms
of incidence, women tend to show an increased MCI incidence
at older ages (Mielke et al., 2014), while men consistently exhibit

a higher incidence of the non-amnestic MCI, which is believed
to be prodromal for other dementias, such as vascular dementia
(Caracciolo et al., 2008; Roberts et al., 2012).

While longevity is an important issue to consider, emerging
evidence suggests that there are unique biological reasons for
the increased AD prevalence in women beyond longevity alone.
These biological, as well as social and lifestyle underpinnings
contribute to differences in brain changes, progression, and
symptom manifestation in AD between the genders (Mielke et al.,
2014; Ferretti et al., 2018; Scheyer et al., 2018).

In fact, the longevity hypothesis does not take into account
some important facts. First, the average life expectancy in the
United States is currently 82 years for females and a little over
77 years for males, a difference of less than 5 years (Riedel
et al., 2016). As male survival rates have been steadily increasing,
studies in Europe anticipate the longevity gap to be less than
2 years by 2030 (Bennett et al., 2015). Second, statistical models
have shown that women exhibit a twofold higher incidence and
lifetime AD risk even after accounting for gender-dependent
mortality rates, age at death, and differences in lifespan (Vina and
Lloret, 2010; Carter et al., 2012).

Further, there are well-documented differences in brain
anatomy, function, and age-related brain changes between men
and women (Carter et al., 2012). Recent studies found that
women tend to accumulate greater tangle burden than do men
with the same brain Aβ levels, but with no difference in lifetime
AD risk (Buckley et al., 2018), suggesting an earlier onset of
AD pathophysiology. These observations are consistent with
brain imaging findings of earlier emergence of AD-related brain
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changes in middle-aged women compared to age-matched men
(Mosconi et al., 2017b, 2018). Women also exhibit greater rates
of neuropathological decline after an AD diagnosis, as evidenced
by increased hippocampal atrophy and neurofibrillary tangles
compared to men (Barnes et al., 2005). In keeping with this,
while women score generally higher on cognitive performance
tests than men (Rentz et al., 2017), female AD patients exhibit
a faster rate of cognitive decline and loss of independence in
comparison to male patients at the same level of dementia
severity (Mielke et al., 2014). Collectively, these data suggest
an earlier start of AD pathogenesis in women, which might
be masked by the female advantage in cognitive performance,
resulting in females being diagnosed at a later stage than their
male counterparts. Additionally, it highlights the importance
of considering gender specific cut-offs in neuropsychological
measures designed to detect AD-related cognitive impairments.
Sex-adjusted cutoffs in the interpretation of verbal memory test
results have led to improved diagnostic accuracy for both women
and men (Sundermann et al., 2017a).

Furthermore, female sex may be associated with AD pathology
seen in other conditions, like dementia with Lewy bodies, in
which AD pathology occurs in a subset of patients. In one large
study, while a composite AD biomarker profile was detected in
25% of all subjects, it was more frequent in women and was
associated with worse cognitive performance (Van Steenoven
et al., 2016). Given all these differences, further work into
understanding sex differences in AD is an important step toward
gender-based disease prevention.

GENETIC RISK FACTORS

APOE Genotype
The APOE gene is currently the strongest genetic risk factor
for late-onset AD (Harold et al., 2009). APOE codes for the
Apolipoprotein E protein, an important cholesterol carrier that
primarily coordinates transport of lipids in the brain. It consists
of three major alleles: ε2, ε3, and ε4. APOE isoforms coordinate
Aβ accumulation and removal in the brain, and play distinct roles
in glucose metabolism, neuronal signaling, neuro inflammation,
and mitochondrial function (Liu et al., 2013).

Individuals with the ε4 allele are at a higher AD risk compared
to those with the more common ε3 allele, whereas the ε2 allele
has been associated with decreased risk (Farrer et al., 1997). The
ε4 allele is also associated with an earlier age onset in a gene dose-
dependent manner (Corder et al., 1993). The frequency of AD
and mean age at clinical onset for the different isoforms are as
follows: 91% and 68 years of age in ε4 homozygotes, 47% and
76 years of age in ε4 heterozygotes, and 20% and 84 years in ε4
non-carriers (Corder et al., 1993). The ε4 allele is also related to
an increased risk for cerebral amyloid angiopathy and age-related
cognitive decline during normal aging (Liu et al., 2013).

Sex differences in the effects of the ε4 allele have been well
documented, with female carriers being more likely than male
carriers to develop AD (Farrer et al., 1997; Kim et al., 2009;
Altmann et al., 2014; Ungar et al., 2014). AD risk increases nearly
4- and 10-fold in women with one and two ε4 alleles, whereas

men exhibit essentially no increased risk with one ε4 allele and
a fourfold increased risk with two ε4 alleles (Farrer et al., 1997;
Kim et al., 2009). A recent longitudinal study demonstrated that
the conversion risk from normal aging to MCI or AD and from
MCI to AD conferred by the ε4 allele is also significantly greater
in women compared to men (Altmann et al., 2014). However, a
recent meta-analysis examining the relationship between APOE
genotype and AD-dementia risk between men and women found
no significant sex differences, except for a slightly increased risk
for ε3/ε4 female carriers compared to male carriers within the
ages of 65 and 75 (Neu et al., 2017).

Clearer evidence for negative associations of APOE ε4
genotype with female sex comes from biomarker studies
showing that, among MCI patients, female ε4 carriers had
significantly greater levels of CSF tau protein than male ε4
carriers (Altmann et al., 2014; Hohman et al., 2018). Among
dementia-free individuals, female carriers exhibited greater brain
hypometabolism, hippocampal volume reduction, and cortical
thinning compared to male carriers (Altmann et al., 2014;
Sampedro et al., 2015) Even in the absence of dementia, APOE
ε4 significantly increases brain Aβ deposition and atrophy, and
decreases brain connectivity in the default mode network much
more effectively in women than in men (Fleisher et al., 2005;
Damoiseaux et al., 2012; Mosconi et al., 2017b).

Given these findings, a greater comprehension of the APOE
ε4 allele’s interaction with sex can have potential implications
for AD treatment. To date, the few studies examining this issue
have provided conflicting information (Berkowitz et al., 2018).
A research study investigating the efficacy of Tacrine, an FDA-
approved cholinesterase inhibitor for AD treatment, found that
female ε2/ε3 carriers showed greater improvements compared
to female ε4 carriers (Farlow et al., 1998). In contrast, men
did not differ in their treatment responses based on APOE
genotype (Farlow et al., 1998). Another study assessing the
efficacy of anticholinesterase therapy showed that female ε4
carriers derived the greatest cognitive benefit compared to non-
carriers (Macgowan et al., 1998). A study examining the efficacy
of intranasal insulin on cognitive function found that ε4 negative
males demonstrated improvements but female non-carriers did
not derive any benefits (Claxton et al., 2013). Recent clinical trials
of Aβ immunotherapy demonstrate that treatment was more
effective in individuals with the ε4 genotype compared to non-
carriers (Salloway et al., 2014), though the data were not broken
down by sex. More work is needed to systematically examine
the differential response to pharmacological interventions by sex
and APOE genotype.

It is unclear why the APOE gene confers different risk
in women, but some research suggests that it could be due
to its interaction with estrogen (Yaffe et al., 2000; Kang and
Grodstein, 2012). Studies in mice exhibited that APOE expression
in different brain regions varied with the female reproductive
cycle stages (Struble et al., 2003), consistent with the hypothesis
that estradiol might induce APOE expression in the brain, as had
already been demonstrated for APOE in blood (Srivastava et al.,
1997). Moreover, trophic effects of estradiol on neurite growth
in cultured mouse cerebral cortical neurons are reported to be
highly dependent on APOE expression (Horsburgh et al., 2002).
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Responses to estradiol are also in part dependent on APOE
status: whereas estradiol is neurotrophic in the presence of
human APOE ε2 or ε3, the ε4 variant does not support
this response (Nathan et al., 2004). In keeping with these
findings, several lines of evidence indicate differential effects
of estrogen replacement therapy dependent on APOE status,
with ε4 positive women exhibiting worse rates of cognitive
decline compared to non-carriers (Yaffe et al., 2000; Kang
and Grodstein, 2012). Interestingly, a recent study found that
transdermal estrogen therapy was associated with reduced
Aβ deposition in postmenopausal women, particularly in ε4
carriers (Kantarci et al., 2016). In contrast, oral doses of
conjugated equine estrogens (CEEs) was not associated with
lower Aβ deposition. These results highlight the interaction of
the APOE ε4 allele with estrogen and provide support for a
biologically medicated relationship between APOE, estrogen use,
and cognitive impairments.

Race
In general, older Hispanics and African Americans are at a higher
AD risk in comparison to older whites (Alzheimer’s Association,
2017). Differences in various health, lifestyle, and socioeconomic
factors likely contribute to their higher AD risk (Alzheimer’s
Association, 2017). These include a greater prevalence of CVD,
T2DM, hypertension, and early life adversity (Lines et al.,
2014), as well as lower rates of education and physical activity
(Glymour and Manly, 2008).

African American women in particular are twice more likely
as white women to develop AD, strokes, and other forms
of dementia (Alzheimer’s Association, 2002). Likewise, women
of Hispanic origin have a one and a half times greater risk
for developing dementia, as well as CVD and T2DM than
those who are white (Alzheimer’s Association, 2017). This is
of particular concern because in addition to a rapidly growing
aging population, the United States is also becoming increasingly
diverse. African Americans currently comprise 14.6% of the
United States population and it is estimated that, by the year
2060, Hispanics who are currently the largest minority group will
comprise over 28% of the United States population.

Additionally, the caregiving burden among women within
these communities is especially high (Nebel et al., 2018).
For instance, in some studies, Hispanic and African-American
caregivers were more depressed and reported worse physical
health than their white counterparts (Napoles et al., 2010). While
data on minority groups remain limited, there is an ongoing
effort to produce high-quality data on large numbers of racial
and ethnic minorities to better understand and treat possible
AD-related risk factors.

MEDICAL RISK FACTORS

Cardiovascular Disease
Cardiovascular disease, including coronary heart disease, stroke,
atrial fibrillation, and heart failure, is the leading cause of death
worldwide and a major risk factor for AD (Hall et al., 2013;
de Bruijn and Ikram, 2014). The association between CVD and

AD has been attributed to shared modifiable risk factors such
as hypertension, obesity, diabetes mellitus, high cholesterol, and
smoking (de Bruijn and Ikram, 2014). Several studies point to
alterations in brain gray matter volume, increases in white matter
lesions, and subcortical damage related to CVD as factors that
could potentially increase AD-related neurodegeneration risk
(Hajjar et al., 2011).

Historically, CVD has been viewed as a typically “male”
disease. The Framingham Heart study found that CVD related
mortality and morbidity was two times higher in men than in
women aged 50 and younger (Kannel et al., 1976). However,
even though CVD risk increases with age in both genders, it
shows a steeper increase in risk in women after the age of 50
coinciding with the loss of estrogens occurring during and after
menopause (Möller-Leimkühler, 2007). Furthermore, coronary
artery disease (CAD) is more prevalent in young females who
underwent oophorectomy compared to those with intact ovaries
(Parker et al., 2009).

Several studies have documented the protective role of
estrogen in CVD via its role in regulating LDL-cholesterol levels
(Mendelsohn and Karas, 1999; Iorga et al., 2017; Lagranha et al.,
2018). During menopause, both natural and surgically induced,
women experience an increase in LDL cholesterol levels. After age
50, LDL levels tend to increase at an average rate of 0.05 mmol/L
per year in women aged 40–60 whereas they generally plateau in
men (Johnson et al., 1993). This postmenopause induced increase
in LDL levels could be explained by declining estradiol levels that
result in a downregulation of the activity of LDL receptors in
the liver. This, in turn, leads to a reduction in the clearance of
LDL from blood serum levels (Pilote et al., 2007). Furthermore,
estradiol’s interaction with ERα, ERβ, and GPER present in adult
cardiomyocytes (Grohé et al., 1997; Ropero et al., 2006) exerts
a protective role by increasing angiogenesis (new blood vessels
formation from older vessels), improving mitochondrial activity
and reducing oxidative stress and fibrosis (Iorga et al., 2017).

Sex differences in terms of CVD risk and underlying pathology
have also begun to emerge.

Hypertension, a major risk factor for cognitive decline and
a leading cause of cardiovascular morbidity, also increases
significantly in women after menopause (Blacher et al., 2019).
A meta-analysis found that for every 10 mmHg increase in
systolic blood pressure, there was a 25% and 15% increase
in CVD risk for women and men, respectively (Wei et al.,
2017). Sex differences in terms of CVD treatment have also
been documented. For example, statins may be less effective at
lowering cholesterol in women compared to men (Assmann et al.,
2006; Santos et al., 2009), although the complex relationship
between statin exposure and sex-dependent risk reduction is
complex and still remains to be understood (Zissimopoulos et al.,
2017). Additionally, some clinical trials found that angiotensin
receptor blockers improve survival rates in men, but not in
women with hypertension or CVD (Fletcher et al., 1988; Rabi
et al., 2008). The renin–angiotensin system is no an intense
focus of research, given its potential association with risk of
Alzheimer’s (Kehoe, 2018) and interaction of estrogen with
this system (O’Hagan et al., 2012). Overall, hypertension seems
to develop differently in women and men, and to respond
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differently to medications. The new guidelines by the American
Heart Association for hypertension treatment will hopefully
lead to better management of this risk factor in the future
(Brook and Rajagopalan, 2018).

Stroke has also been associated with an increased AD risk
and earlier age of onset for dementia (Honig et al., 2003). Sex
differences in terms of the underlying causes of stroke have
been documented. The two major types of strokes are ischemic
(caused by a blood clot that blocks a vessel in the brain) and
hemorrhagic (caused either by a brain aneurysm burst or a
weakened blood vessel leak). Hemorrhagic stroke is the lesser
common of the two but often results in death. Aneurysmal
subarachnoid hemorrhage (aSAH) is higher in women than
in men (De Marchis et al., 2017), possibly as the result of
female specific factors such as repeated childbirths and hormonal
changes. Pregnancy-induced hypertension and vascular tension
during delivery may lead to the formation of aneurysms. Several
studies have shown that the increased aSAH prevalence in women
occurs after the age of 50, coinciding with postmenopausal-
related estrogen declines (Kongable et al., 1996; Hamdan et al.,
2014). However, a systematic review found that the role of
hormone replacement therapy on the manifestation of aSAH is
currently unclear (Feigin et al., 2005).

Finally, although sex differences in CAD have not been
investigated adequately, there is some research indicating that
women may be more prone to cardiac ischemia due to
coronary microvascular obstruction than men (Jones et al., 2012).
Women are also more affected by microvascular endothelial
inflammation, a condition that contributes to heart failure (Jones
et al., 2012). Compared to men, women who have experienced
a myocardial infarction have a higher death rate, particularly
evident in postmenopausal women, and experience more
complications post-MRI such as stroke, congestive heart failure,
cardiogenic shock, and depression (Shirato and Swan, 2010).

Diabetes
Diabetes mellitus, a common condition characterized by
dysregulation of insulin and glucose levels, increases risk for
incident AD, MCI, and cognitive impairment (Biessels et al.,
2006; Li et al., 2016) that posits a greater risk in women
than men (Den Ruijter et al., 2015). For instance, women
with type 1 diabetes mellitus (T1DM) exhibit a two times
higher risk of cardiovascular events compared to men with
T1DM (Huxley et al., 2015). This increased CVD risk has
been associated with significantly worse cardiac risk profiles,
poorer diabetes management, and treatment options in women
(Humphries et al., 2017).

Type 2 diabetes mellitus is also linked to an increased CVD
(Juutilainen et al., 2004) and AD risk in women, especially after
menopause. The prevalence of T2DM increases with age in a
sex-specific manner (Wild et al., 2004). The Study of Women’s
Health Across the Nation (SWAN) found that declining estrogen
levels resulted in a 47% greater T2DM risk during the MT (Park
et al., 2017). The length of the reproductive lifetime, defined
by age at last period and at menarche, has also been linked to
women’s increased T2DM risk. The Women’s Health Initiative
(WHI) showed that women with a reproductive lifetime of less

than 30 years exhibited a nearly 40% increased T2DM risk
than women with a lifetime reproductive span of 36–40 years
(LeBlanc et al., 2017).

This menopausal-related increase in T2DM risk could be
explained by biochemical and metabolic changes that take place
during the MT (Slopien et al., 2018). For instance, it is linked
to an increase in fat deposition (especially in the abdominal
region), reduction in lean body mass, and decline in overall
energy expenditure (Lovejoy et al., 2008; Leeners et al., 2017).
The increased visceral fat accumulation leads to the development
of insulin resistance (IR) and the MetS, which play a major role
in the development of T2DM (Westphal, 2008). This finding
is in accordance with previous data from experimental studies
showing that reduced estrogen levels and decreased ERα activity
is associated with IR development (Bryzgalova et al., 2006;
Riant et al., 2009). Furthermore, T2DM and IR have been
associated with atrophy of medial temporal regions such as the
hippocampus and amygdala, which are particularly rich in ERs
(den Heijer et al., 2003; Convit, 2005; Brinton et al., 2015). These
results provide further support to T2DM as a risk factor for AD
via dysfunction of insulin signaling.

Depression
Depression falls among the most common mental disorders in
the elderly and is strongly linked to a higher risk for cognitive
decline in both genders (Yaffe et al., 1999; Wilson et al., 2002;
Barnes et al., 2006; Verdelho et al., 2013). However, women
are two times more likely than men to experience depression
(Albert, 2015). Studies have shown a rapid increase in depression
rates starting at puberty and continuing through adulthood in
women (Piccinelli and Wilkinson, 2000). Vulnerabilities to mood
disorders in women tend to coincide with hormonal fluctuations
experienced during and after pregnancy, as well as at the MT,
suggesting a link between sex hormones and depression (Steiner
et al., 2003). For instance, women undergoing the MT experience
a two- to threefold increase in major depressive disorder rates
(Gordon et al., 2015). It has been well documented that during
the perimenopause period, women are two to three times more
likely than men to experience a first episode of depression
(Nemeroff, 2007).

The association among sex, depression, and AD risk needs to
be more carefully considered. The data in terms of depressive
symptoms and cognition stratified by sex have been mixed.
Some studies demonstrate a stronger inverse relationship among
depression and cognitive function in women, whereas other
studies exhibit a stronger association in men (Sundermann
et al., 2017b). Furthermore, men with mild depressive symptoms
exhibit an increased risk of amnestic MCI, while women
with moderate or severe symptoms exhibit a higher AD risk
(Sundermann et al., 2017b). This suggests that symptoms might
have to meet a higher severity threshold to increase clinical risk
conversion in women compared to men.

Traumatic Brain Injury
Several studies suggest a link between traumatic brain injury
(TBI) and an increased AD risk (Mortimer et al., 1991; Fleminger
et al., 2003). Emerging evidence indicates that even mild TBI is
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linked to cortical thinning in AD-sensitive areas and reduced
memory performance in patients at risk for AD (Hayes et al.,
2017). Moreover, a history of TBI has been associated with AD
neuropathology as evidenced by increased accumulation of Aβ

and tau protein in patients with a history of TBI (Uryu et al.,
2007). TBI is also associated with chronic brain inflammation
which has been shown to further accelerate AD disease
progression (Perry et al., 2007; Podcasy and Epperson, 2016).

Some studies have highlighted sex-based differences in the
context of recovery from TBI from sports-related head injuries.
Female athletes are at a significantly higher risk of poorer
outcomes, greater symptom severity, and lower recovery rate
following mild TBI and concussions compared to their male
counterparts (Broshek et al., 2005; Bazarian et al., 2010).
A recent MRI study focused on soccer related heading impacts
found a sex-based association between heading and brain
microstructure (Rubin et al., 2018). In response to similar levels
of heading, females had a fivefold greater volume of affected
white matter than men, demonstrating a higher burden of
microstructural consequences.

The neuroprotective effects of estrogen in the context of
recovery from TBI have been demonstrated in preclinical studies
(Brotfain et al., 2016). Estrogen administration pre- and post-
TBI is associated with increased neuronal survival, significant
reductions in apoptosis, and improvements in functional
outcomes (Soustiel et al., 2005; Day et al., 2013; Naderi et al.,
2015). Estrogen is believed to be neuroprotective by increasing
blood flow to ischemic regions after brain injuries, promoting
antioxidant activity, and boosting the activity of astrocytes and
microglia which provide neurons with metabolic support and
elevate the immune response, respectively (Brotfain et al., 2016).
Data from human studies show that mild TBI can potentially
damage the anterior pituitary gland (Kelly et al., 2006; Klose
et al., 2007), which is responsible for producing FSH and LH.
This reduction could significantly disrupt the production and
circulation of endogenous estrogen levels (Davis et al., 2006). The
decline of estrogen associated with menopause could potentially
explain the poorer outcomes exhibited by females post-TBI
compared to males.

Infections and Chronic Inflammation
Systemic infections and related inflammation may potentially
lead to a worsening of AD symptoms and increase the
progression of AD-related neurodegeneration (Perry et al., 2007).
A retrospective study found that the occurrence of two or more
infections within a 4-year time period was linked to an almost
twofold greater risk of developing AD in men and women (Dunn
et al., 2005). Following infections and injury, there is a heightened
response of microglia and macrophages that lead to an increased
inflammatory response.

Emerging evidence suggests that chronic inflammation in
the brain may be central to AD pathogenesis and that
this may be triggered through Aβ accumulation (Wyss-
Coray, 2006). Postmortem brains examination of people with
AD show increased expression of inflammatory mediators
and complement factors, clusters of activated microglia, and
cytokines in and near Aβ plaques (Hashioka et al., 2008;

Minett et al., 2016). Although there is limited evidence that
inflammation is a possible cause of late-onset AD, research
on mouse models suggests that activation of inflammatory
pathways is potent drivers of the disease (Wyss-Coray and
Mucke, 2002). For instance, specific receptors on microglia and
monocyte/macrophages are involved in determining whether Aβ

clearance is carried out through non-inflammatory phagocytosis
or via pro-inflammatory cytokine generation (Heneka et al.,
2015). Further, gene expression related to inflammation in brain
is increased in aging, and this effect is heightened in patients
with AD (Villegas-Llerena et al., 2016). Some epidemiological
studies also link anti-inflammatory drugs usage with reduced
risk for the disorder, although results are not always consistent
(Wyss-Coray, 2006).

Sex differences in terms of response and prevalence
to infections and inflammation have been documented,
with females experiencing greater disease severity and
worse outcomes than males, especially in the presence of
reduced estradiol levels (Klein et al., 2010). For instance,
women are at a greater risk for chronic inflammatory
conditions such as lupus, rheumatic arthritis, and multiple
sclerosis, especially after menopause (Straub and Schradin,
2016). Additionally, preclinical studies demonstrate that
the presence of influenza infection was associated with
reduced reproductive functions in females (Robinson
et al., 2011). Furthermore, females treated with estradiol
or an ERα receptor agonist had improved survival rates
compared to females with either low levels or no estradiol
(Robinson et al., 2011).

Overall, these findings suggest that sex differences in microglia
activity in response to fluctuating hormone levels may lead to
increased inflammatory responses, which may in turn increase
women’s vulnerability to AD related neurodegeneration in later
life stages (Peterson et al., 2015; Hanamsagar and Bilbo, 2016).

HORMONAL RISK FACTORS

Thyroid Disease
Thyroid function is routinely screened for in the clinical
assessment of AD because thyroid dysfunction can cause
symptoms that mimic those of dementia (Tan and Vasan,
2009). Thyroid complications arise from an imbalance of
triiodothyronine (T3) and thyroxine (T4) hormones, which
regulate metabolism and vital functions. Hypothyroidism and
hyperthyroidism result from an under and over production of
T3 and T4 hormones, respectively. Among other potential
causes, Graves’ disease and Hashimoto’s disease (two
autoimmune conditions) are the most common causes of
hyper- and hypothyroidism.

It is widely reported that women are more likely to
experience thyroid problems than men (del Ghianda et al.,
2014). One in eight women is expected to be affected by
thyroid problems throughout their lifetimes. Some evidence
shows that thyroid hormones can interfere with menstrual cycles
and cause problems during pregnancy (discussed below) by
reducing the clearance of estradiol and acting synergistically with
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FSH to increase the production of progesterone (Yen, 1986;
Cecconi et al., 1999).

Pregnancy
Pregnancy and childbirth are characterized by obvious
fluctuations in hormonal regulation that causes wide-ranged
metabolic changes. Sometimes these can lead to a higher
occurrence of IR and dyslipidemia, with a greater risk of
future diabetes and obesity, all of which could potentially
exacerbate AD risk later in life (Cohen et al., 2006). There
are mixed results on whether pregnancy increases AD risk
later in life. Some studies report that a higher number of
pregnancies are indeed linked to a higher risk and an earlier
age of AD onset (Sobów and Kloszewska, 2003; Colucci
et al., 2006). For instance, one study estimated that women
who had at least three pregnancies had a threefold greater
risk of developing AD (Colucci et al., 2006). The number of
children born is also linked to increased neuropathological
lesions of AD in women (Beeri et al., 2009). However, a
recent study reported the opposite trend, with a higher
number of pregnancies linked to a lower AD risk in later life
(Fox et al., 2018).

Even though the data on pregnancy have been mixed,
pregnancy-related conditions such as gestational diabetes and
preeclampsia (pregnancy-related hypertension) can worsen CVD
risk, and therefore risk of dementia (Garovic et al., 2010). Further,
hypertension due to pregnancy and vascular tension during
delivery can potentially lead to aneurysms formation, which can
contribute to an increased risk of stroke later in life.

Menopause
As mentioned throughout the article, the MT is the only
known female-specific risk factor for AD to date (Brinton et al.,
2015). The effects of MT on AD risk have been highlighted
by neuroimaging studies demonstrating a link between
menopausal changes and emergence of AD pathology in midlife
(Mosconi et al., 2017a, 2018; Scheyer et al., 2018; Figure 2).
Among cognitively intact participants, postmenopausal and
perimenopausal women exhibit higher AD-burden, as reflected
by reduced glucose metabolism, increased Aβ deposition, gray
matter volume loss (atrophy), and white matter volume loss than
premenopausal women and age-matched men (Mosconi et al.,
2017b). Furthermore, a 3-year longitudinal study demonstrated
that postmenopausal and perimenopausal women exhibited
higher rates of AD biomarker progression, as evidenced by
greater rates of metabolic declines and Aβ accumulation
(Mosconi et al., 2018). These data point to the MT overlapping
with the time course of preclinical AD. This is also supported by
studies showing that estrogen depletion following oophorectomy
is linked to an increased AD risk by up to 70% (Rocca et al., 2007,
2014; Phung et al., 2010).

Altogether, research provides support to the idea of the MT
as an “optimal window of opportunity” for AD preventative
interventions in women. The “critical window hypothesis,”
also known as “the timing hypothesis” or “the critical period
hypothesis,” says that the impact of hormonal replacement
therapy (HRT) depends on the timing of treatment onset with

respect to age and/or menopause onset, with benefits pertaining
to early initiation (Maki, 2013).

This is in stark contrast with the historical blanket use
of high-dose HRT for treatment of menopause symptoms in
postmenopausal women, which was common practice from the
1960s through 2003. In 2003, the primary results from the
WHI study, a pivotal study investigating the effect of HRT
on women’s health, were published. The WHI had two arms,
one for hysterectomized women where the active treatment was
estrogen-alone therapy (ET), and the other for postmenopausal
women with a uterus where the active treatment was estrogen-
plus-progestin therapy (EPT). Both trials were interrupted as
early results showed a higher risk of CAD, stroke, and blood clots,
with the EPT arm of the study also showing an increased risk of
cancer (Rossouw et al., 2002; Anderson et al., 2004).

Further, the WHI included an additional arm, the WHI
Memory Study (WHIMS), which investigated the outcome of
HRT on dementia risk (Shumaker et al., 2003). In order to test
whether HRT was effective in dementia prevention, the trial
focused on postmenopausal women who were aged 65 or older
at the time of enrollment. From a public health standpoint, it
was thought that those women had the most to gain from the
intervention since they were the most vulnerable to developing
AD, as well as other conditions like CVD that could further
increase AD risk. In the EPT arm, with a sample size of 4,532
women, there was a doubling of the risk of all-cause dementia
with active treatment compared to placebo after an average
follow-up of 4 years (Shumaker et al., 2003). The ET arm, with
a sample size of 2,947 hysterectomized women followed over
an average of 5 years, reported no significant impact of ET on
dementia risk (Marder and Sano, 2000). These findings were in
striking contrast to previous observational studies reporting a
reduced risk of AD among women who had used HRT compared
to those who had not (Zandi et al., 2002) as well as with smaller
clinical trials showing no effects of HRT in AD patients (Mulnard
et al., 2000; Wang et al., 2000).

It is important to note several limitations pertaining to the
WHI trials. First, the treatment administered was in the form
of CEE tablets rather than 17 beta estradiol, with or without
continuous medroxyprogesterone acetate, depending on the
subject’s hysterectomy status (Rossouw et al., 2002). This might
not have produced the same effects as oral or transdermal
administration of estrogen or progesterone. Additionally,
participants were already postmenopausal, generally older
than 65 at the time of enrollment (therefore several years
into menopause), possibly with pre-existing cardiovascular
conditions. This raises the question of whether the results
are applicable to younger post or peri-menopausal women.
More work is needed to better examine effects of HRT dose,
formulation, and mode of delivery on women’s brain health,
especially for younger women without pre-existing conditions.

Recent re-examination of results from the WHIMS indicates
that treatment risks and benefits associated with HRT largely
depend on three main factors: the patient’s chronological age,
endocrine age (years to/from menopause), and hysterectomy
status. Re-examination of the WHI data 18 years after they
were interrupted reported that women who initiated HRT
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FIGURE 2 | Multi-modality brain imaging of the menopausal transition. From left to right: 3D statistical parametric maps (SPMs) depicting areas of brain
hypometabolism, increased amyloid-beta deposition, and white matter loss in peri- and postmenopausal women relative to age-matched men. Corresponding Z
scores are displayed using a color coded scale at p < 0.001.

before the age of 60 or within 10 years after menopause had
a lower mortality rate than placebo (Salpeter et al., 2004;
Manson et al., 2017). Further, the Early versus Late Intervention
Trial with Estradiol (ELITE) conducted with more than 600
postmenopausal women provided evidence that HRT reduced
the progression of subclinical atherosclerosis when therapy was
initiated right after menopause onset (Hodis et al., 2016), which
has been associated with a 30% reduced number of heart attacks
and cardiac deaths (Salpeter et al., 2009).

It is possible that early initiation of estrogen therapy may
also provide protection against dementia later in life. Results
on this topic have been mixed. On the one hand, meta-analysis
of 18 studies demonstrated that among younger, 50–59-year-old
women, those who used HRT had a 30–44% reduction in AD risk
compared to those who did not use HRT (LeBlanc et al., 2001;
Maki, 2013), although these data need to be verified in formal
clinical trials. In contrast, two recent randomized clinical trials –
the ELITE study mentioned above and the Kronos Early Estrogen
Prevention Study (KEEPS) – showed no cognitive improvements
in women who started HRT within 6 years of menopause, but
also no adverse effects of HRT (Gleason et al., 2015; Henderson
et al., 2016; Miller et al., 2019). As both trials focused on women
who were several years past menopause, more work is needed to
systematically look at HRT effects in younger women, especially
those of perimenopausal age.

More persuasive evidence that HRT has value for dementia
prevention comes from studies of hysterectomized women,
particularly those who had their ovaries removed (Rocca et al.,
2007). A recent epidemiological study of 1,884 women showed
that those who initiated ET within 5 years of surgery and

continued until the natural age at menopause had a lower
AD risk compared to those who did not take the drug (Bove
et al., 2014). Additionally, randomized clinical trials of younger
hysterectomized women showed that ET therapy had general
beneficial effects on memory performance (Maki, 2013).

Taken together, the majority of studies suggest that, for women
with a uterus, EPT therapy initiated within 5 years of menopause
onset or in the perimenopausal period may lower AD risk,
whereas initiating therapy more than 5 years postmenopause may
have the opposite effect. For women without a uterus, ET therapy
started as close as possible after surgery and continuing until the
natural age of menopause may offset the negative effects of the
surgeries and also reduce AD risk (Rocca et al., 2012). The value
of initiating ET after the natural age at menopause is unclear.

LIFESTYLE FACTORS

As previously discussed by Nebel et al. (2018), in medical
research, the term “sex” refers to biological differences such
as chromosomal or hormonal factors, whereas “gender” refers
to differences in the impact of psychosocial, cultural, and
environmental influences on biological factors between men and
women. Gender-related risk factors for AD are discussed below.

Educational Attainment, Occupation, and
Intellectual Activity
Low levels of educational achievement and occupation are
associated with an increased AD risk in both genders (Katzman,
1993; Stern et al., 1994; Karp et al., 2004). A possible explanation
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for this relationship lies in the idea of “cognitive reserve,”
the brain’s ability to effectively utilize cognitive networks to
allow individuals to normally perform cognitive activities despite
sustaining pathological brain abnormalities such as increases
in Aβ and tau levels (Stern, 2012). Higher education levels
and cognitively stimulating occupations build more cognitive
reserve. Likewise, several systematic reviews demonstrate that
participation in cognitively stimulating activities is linked to a
lower dementia risk (Stern and Munn, 2010; Wang et al., 2012;
Fallahpour et al., 2016).

Historically, women had limited access to educational
opportunities compared to men, which may have put them at a
disadvantage in terms of their cognitive reserve build-up. This
is especially relevant for people currently aged 70 years or older,
who are at the greatest risk for AD. These findings suggest that
lower educational achievement in women compared to men born
early on in the 20th century could potentially play a role in
women’s increased AD prevalence. However, according to the
recent census, women had a higher educational attainment in the
United States compared to men (Ryan and Siebens, 2012). There
has been a significant change in occupational engagement with
women taking on higher level positions and other roles that used
to be men’s prerogatives. Hopefully these changing trends may
help reduce the prevalence of Alzheimer’s in women in the future.

Although studies that examined gender differences between
cognitively engaging tasks and dementia risk are scarce, a recent
study demonstrated that higher engagement in intellectual-
cultural activities such as reading, radio and TV, and partaking
in social and cultural activities were associated with improved
verbal abilities in women, whereas higher engagement in self-
improvement activities (playing sports, clubs and organizations,
studies, outdoor activities) were associated with improved
cognitive function in men (Hassing, 2017). Despite the fact
that women generally partake in more cognitive activities such
as reading, arts and crafts, and social activities, the effect of
these activities on cognitive reserve may be weaker than that
of educational and occupational attainment (Mielke et al., 2014;
Vemuri and Lesnick, in press).

Physical Activity
Low levels of physical activity are associated with a higher
risk of dementia and greater cognitive decline among older
adults (Groot et al., 2016; Tan et al., 2016; Willey et al., 2016).
Physical activity can improve cognition through indirect effects
on modifiable risk factors such as hypertension, obesity, IR, or via
direct effects on neuronal activity (Van Praag, 2009; Livingston
et al., 2017). Increased physical activity has been shown to
promote the formation, survival, and synaptic plasticity of new
neurons in the hippocampus (Van Praag et al., 1999; Farmer
et al., 2004; Van Praag, 2008), and increase the production
of brain-derived neurotrophic factor (BDNF) which play an
important role in the formation, growth, and plasticity of neurons
(Mulnard et al., 2000).

Neuroimaging studies have also shown the beneficial effects
of physical activity on brain structure and function (Hillman
et al., 2008). Individuals in a 3-month fitness training program
showed increases in blood flow to the hippocampus, which

was linked to improvements on memory and verbal learning
tasks (Pereira et al., 2007). Cross-sectional MRI studies report
that increased fitness activity was related to larger anterior
matter, prefrontal and temporal gray matter volumes (Colcombe
et al., 2004, 2006; Marks et al., 2007; Gordon et al., 2008).
An fMRI study showed that individuals who underwent an
aerobic fitness training program exhibited increased activity in
the middle frontal gyrus, superior parietal cortex, and significant
improvements in cognitive performance (Colcombe et al., 2004).

Despite the well-known link between exercise and improved
brain function, a gender gap exists in terms of physical activity
engagement. For instance, women tend to engage in less
physical activities than men (Troiano et al., 2008; Edwards and
Sackett, 2016). Research suggests that women’s societal roles
can play a role, as parenthood and marital status may hinder
women’s participation in physical activities (Verhoef et al., 1993).
The prevalence of higher physical inactivity among women is
concerning due to its association with T2DM, CVD, obesity, and
hypertension (Barnes et al., 2005).

However, the relationship between long-term exercise and
reduced cognitive impairment and AD dementia risk is more
pronounced in women than men (Laurin et al., 2001). For
example, a meta-analysis examining the relationship between
fitness training levels and cognition in older adults showed
that fitness-related benefits on cognition were greater in women
compared to men (Colcombe and Kramer, 2003). A study
conducted with over 9,000 women found that, although
exercising in the teenage years was particularly brain-protective
in the long term, being physically active reduced risk of cognitive
impairment no matter their age (Middleton et al., 2010). Elderly
women with greater physical activity exhibit a reduced risk
for AD dementia and are less likely to experience cognitive
decline compared to women with lower physical activity levels
(Yaffe et al., 2001). Importantly, exercise has been shown to
ameliorate cognitive deficits even in women with a diagnosis
of cognitive impairment and dementia (Eggermont et al., 2006;
Hogervorst et al., 2012).

Diet
Specific dietary patterns like the Mediterranean (MeDi) diet and
the Mediterranean-DASH Intervention for Neurodegenerative
Delay (MIND) diet have been associated with a reduced risk of
dementia in both genders (Scarmeas et al., 2006, 2018; Mosconi
et al., 2014; Morris et al., 2015). Further, higher MeDi adherence
is associated with a lower risk of AD biomarker abnormalities
such as hypometabolism and Aβ deposition in AD-sensitive brain
regions already in midlife (Mosconi et al., 2014; Berti et al., 2018).

Both these dietary patterns focus on consumption of
vegetables, fruit, whole grains, and legumes, with moderate
amounts of fish and poultry, and limited amounts of dairy, red
meat, and alcohol. Although results are not always consistent,
several observational studies have shown that a MeDi-style diet
is particularly protective for women, conferring a lower risk
of AD, CVD, and diabetes (Gu et al., 2010; Gu and Scarmeas,
2011; Kaczmarczyk et al., 2012). A study conducted exclusively
in elderly women showed that higher MeDi adherence was
also moderately related to better cognition and verbal memory
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(Samieri et al., 2013; Berendsen et al., 2018). A recent study
investigating the effect of a coconut oil enriched MeDi diet in
mild to moderate AD patients found that women derived greater
cognitive benefits than men (de la Rubia Ortí et al., 2018).

Higher whole grains and legumes consumption have also
been related to reduced CVD risk, T2DM, obesity, and MetS
in women (Rietjens et al., 2017) which could be attributed to
the fact that they contain high concentrations of phytoestrogens.
Phytoestrogens are polyphenols which have similar molecular
structure to endogenous estrogen. Evidence suggests that
phytoestrogens exert their beneficial effects on female physiology
via binding to ERs, activating epigenetic mechanisms, and
increasing antioxidant activity (Kuiper et al., 1998; Casanova
et al., 1999; Jungbauer and Medjakovic, 2014; Remely et al., 2015).
Furthermore, some preclinical studies have shown beneficial
effects of phytoestrogens on cognitive function and AD (Um
et al., 2009; Giridharan et al., 2011; Hu et al., 2012; Jeong
et al., 2013). Perhaps as a result, increased intake of legumes
and fish has been associated with a delayed menopause onset,
whereas refined carbs, sugar, and processed foods resulted in
an earlier onset of menopause and reduced ovulatory fertility
(Nagel et al., 2005).

Other nutrients have also been associated with improved
health outcomes in women, especially those past menopause.
The Nurses’ Health Study conducted on over 75,000 women
showed that replacement of saturated and trans-unsaturated fat
for carbohydrates significantly reduced the risk of heart attack
and stroke later in life (Hu et al., 1997). For each 5% energy
intake increase from saturated fat, compared to the same energy
intake from carbohydrates, a 17% increase in coronary disease
risk was observed. Many other studies have shown that diets
that favor carbohydrates, especially those with low glycemic load
and high fiber content, also reduce T2DM risk (Liu et al., 2000;
Schulze et al., 2004) and breast cancer in women (Monroe et al.,
2007). Further, replacement of 5% of energy from saturated fat
with energy from unsaturated fats was estimated to reduce CVD
risk in women by 42%, while replacement of 2% of energy from
trans-fat with energy from un-hydrogenated, unsaturated fats
would reduce risk by 53% (Hu et al., 1997). These data suggest
that a similar nutritional pattern might be protective against
AD in women as well, given that higher intakes of saturated
fat and trans-fat have been linked to an almost doubled risk
of dementia, whereas higher intake of unsaturated fat has been
linked to a reduced risk (Morris et al., 2004; Okereke et al., 2012;
Morris and Tangney, 2014).

Sleep
Poor sleep quality and circadian rhythm disruptions have been
associated with an increased AD risk in the elderly (Ju et al.,
2013, 2014; Spira et al., 2014). Preclinical and human studies
have confirmed the beneficial effects of sleep via increases in
cerebral blood flow and the clearing of Aβ plaques by microglial
cells and astrocytes (Mangold et al., 1955; Xie et al., 2013). Sleep
deprivation leads to an increase in Aβ plaques accumulation
(Shokri-Kojori et al., 2018). Subjective measures such as self-
reports of sleep deterioration have also been linked to greater Aβ

burden (Sprecher et al., 2015).

When compared to men, women are generally at a greater risk
for insomnia and experience greater age-dependent sleep quality
deterioration, especially after menopause (Madrid-Valero et al.,
2017; Auer et al., 2018). Sleep apnea, a condition marked by
recurring interruption of breathing during sleep, has been linked
to cognitive decline and AD risk (Ancoli-Israel et al., 2008). Even
though sleep apnea affects more men than women, its incidence
significantly increases after menopause in women (Bixler et al.,
1998). Declining levels of estrogen and progesterone are thought
to contribute to these findings. The Nurses’ Health Study
II showed that women who underwent surgical menopause,
which results in a shorter lifetime exposure to estrogen, had a
26% higher risk of experiencing obstructive sleep apnea (OSA)
(Huang et al., 2018). Even though the exact underlying biological
mechanisms remain unclear, few studies have suggested that
estrogen contributes to OSA risk by acting on upper airway
dilatory pathways to coordinate ventilation (Popovic and White,
1998; Pillar et al., 2000). This sex-specific increase is concerning
because women experiencing sleep disturbances are more prone
to metabolic and cardiovascular dysfunction and mood disorders
such as depression, previously established AD risk factors
(Mong et al., 2011).

Historically, women have been widely underrepresented in
sleep studies which means that our current understanding of
sleep-related disorders mostly comes from research conducted
in men (Mong et al., 2011). This imbalance has significant
implications for the efficacy of treatment interventions
since strategies catered to men might not be effective or
applicable to women.

Stress
Cortisol dysregulation associated with repeated activation of the
hypothalamic pituitary adrenal (HPA) axis in response to chronic
stress is commonly found in patients with AD (Giubilei et al.,
2001). It has been linked to memory impairments, cognitive
decline, as well as brain atrophy (Huang et al., 2009; Rothman
and Mattson, 2010; Brureau et al., 2013).

Sex-related differences in the HPA axis reactivity to early
childhood and chronic stress have been previously reported.
In response to early childhood trauma, women exhibit a
significantly lower cortisol response compared to men later
on in life (DeSantis et al., 2011). Moreover, this blunted
HPA axis response occurs in a dose-dependent manner. The
gender differences with regard to chronic stress could potentially
be explained by the activity of gonadal hormones (Stephens
et al., 2016). An fMRI study demonstrated that brain circuitry
activation patterns in response to stress in menis more similar to
women in the early follicular phase of the menstrual cycle, during
which estrogen and progesterone are low, compared to women
in the late follicular/midcycle phase, during which estrogen is
high and progesterone is still relatively low (Goldstein et al.,
2010). Women demonstrated lower stress response circuitry
activation compared to men, with differences being particularly
evident as they progressed through their menstrual cycles. This
finding implies that hormonal changes specifically estrogen
or progesterone could potentially account for these activation
differences. Additionally, it raises the question of whether stress
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impacts brain aging and neurodegeneration differently in women
and men. A recent imaging study conducted in cognitively
normal middle-aged adults demonstrated that increased cortisol
levels were linked to brain volume reductions and impaired
memory, with the brain shrinkage being only evident in women
(Echouffo-Tcheugui et al., 2018), which further highlights the link
between hormonal changes and stress reactivity in sex differences
(Goldstein et al., 2010; Bale and Epperson, 2015).

Caregiver Burden
Research indicates that caregiving demands can severely tax
the caregivers’ health and physical abilities, while compromising
their immune response to stress, a condition known as “caregiver
burden.” Caregiver burden has been associated with increased
stress, sleep disturbances, depression, difficulties in social
functioning, and declines in cognitive function (Alzheimer’s
Association, 2017). At the same time, the stress associated
with caregiving can worsen existing chronic health conditions
(Navaie-Waliser et al., 2002), with higher rates of cholesterol,
blood pressure, and obesity (Anderson et al., 2010). This
has been associated with a greater risk of heart disease,
stroke, and premature mortality, particularly under conditions
of high strain (Schulz and Beach, 1999). Moreover, perhaps
due to all the reasons above, caregivers are at a greater
risk for developing AD themselves (Dassel et al., 2017).
Approximately two-thirds of caregivers for AD dementia are
women (Alzheimer’s Association, 2017).

In keeping with the notion that women’s reaction to stress
is stronger than men’s, female caregivers report twice as
more caregiver burden than their male counterparts. A study
examining biological and emotional responses among spousal
caregivers of patients with AD found that men reported
significantly lower levels of stress, depression, subjective caregiver
burden, and anxiety than women (Thompson et al., 2004).
Additionally, men reported higher levels of mental health
functioning, sense of coherence, and social and physical well-
being. The gender differences could be partly due to the fact that
women tend to devote longer hours and perform a higher number
of caregiving tasks than men (Pinquart and Sörensen, 2003).

Marital Status
Longitudinal studies have demonstrated that unmarried or single
individuals are at an increased risk for cognitive decline, MCI,
and AD (Helmer et al., 1999; Sundström et al., 2014). Currently,
marital status is the only AD risk factor that affects men
more than women. While single people tend to have twice the
risk of developing AD versus people with partners (Håkansson
et al., 2009), non-cohabiting men are at a greater risk of
experiencing cognitive impairment later in life compared with
non-cohabitating women (Håkansson et al., 2009). Divorced
men also exhibit a higher AD risk compared to divorced
women (Sundström et al., 2014). Interestingly, this difference was
reduced after adjusting for socioeconomic (e.g., education and
income) and demographic characteristics (e.g., age) suggesting
that these factors could reduce risk in both genders. For
instance, it has been shown that widowed women have a
greater tendency be more socially active compared to widowed

men which might reduce the negative effects of widowhood
(Dykstra and de Jong Gierveld, 2004).

CONCLUSION

In conclusion, AD is a neurodegenerative disorder that has
shown strong sex and gender differences in several aspects of
the disease, including a faster onset of AD pathology and disease
progression after diagnosis, and different risk factors that may
account for the increased female prevalence of AD. This review
article focused on the research dedicated to understanding the
effects of estradiol in terms of gender and sex differences in
AD, and the negative effects of MT as a tipping point for
middle-aged women. The research findings presented range
from studies on molecular mechanisms and preclinical models
that clearly highlight estradiol’s interactions with a number of
signaling and transcriptional pathways involved in cognition
and memory, to neuroimaging studies that visualized AD-
related brain changes during the MT. Recent clinical trials and
re-examinations of existing data lend support to the use of
HRT as a possible risk reduction intervention in women at
risk for AD, though more work is needed to examine this.
Future research studies examining the underlying mechanism of
estradiol’s neuroprotective action in AD are warranted.

In order to address the growing AD epidemic, the field
is shifting toward early detection and primary and secondary
prevention efforts (Isaacson et al., 2018). It is crucial that
these prevention and clinical trials take into account sex
differences in AD biomarkers, disease progression, and gender
differences with respect to modifiable risk factors to aid in
the development of therapeutics for both men and women.
Historically, women have been underrepresented in studies
elucidating the underlying mechanisms of AD which has
significantly impeded our understanding of gender differences
(Mazure and Jones, 2015). Women still remain underrepresented
in clinical trials of CVD, a known AD risk factor (Shen
and Melloni, 2014). Future AD research studies should
actively aim to increase women’s overall participation and
analyze the influence of sex or gender on health outcomes.
A better understanding of sex and gender differences is crucial
toward the development of individualized AD risk reduction
strategies and treatments.
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