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EPIGRAPH

The Red Queen shook her head. “You may call it ‘nonsense’ if you like,” she said, “but I’ve

heard nonsense, compared with which that would be as sensible as a dictionary.”

—from Through the Looking Glass by Lewis Carroll
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Effective Equidistribution in Homogeneous Dynamics
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We study the asymptotic distribution of almost-prime entries in horospherical flows on

the quotient of SL(n,R) by a lattice, where the lattice is either cocompact or SL(n,Z). In the

cocompact case, we obtain a result that implies density for almost-primes in horospherical flows

where the number of prime factors is independent of the basepoint, and in the space of lattices we

show the density of almost-primes in abelian horospherical orbits of points satisfying a certain

Diophantine condition. Along the way we give an effective equidistribution result for arbitrary

horospherical flows on the space of lattices, as well as an effective rate for the equidistribution of

arithmetic progressions in abelian horospherical flows.
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Chapter 1

Introduction

In the study of dynamical systems, one seeks to answer questions about the trajectory

of a point in some mathematical space that evolves according to a prescribed set of rules. For

example, consider a ball rolling without slipping on a billiard table in the shape of a polygon. The

ball will continue rolling in a straight line at a constant speed until it hits one of the sides of the

table, at which point it will bounce off in such a way that the angle of incidence equals the angle

of reflection. If we assume that no energy is lost, then the ball will continue bouncing around this

table forever, tracing out some potentially complicated path, or orbit. Some interesting questions

we might ask about this system include: Are there any orbits that are dense in the whole space?

Are there any that are periodic? Are there any that have fractal closure? What does a typical

orbit look like? Although the “rules” for this dynamical system seem quite simple, they lead to

surprisingly complex behavior, and many basic facts remain unknown. For example, it is still not

known whether every triangular billiard table admits a periodic orbit.

Classically, dynamical systems have been used to model natural phenomena, such as the

motion of planets or the growth and dispersal of populations. These models generally take the

form of either a discrete-time dynamical system, characterized by a Z-group (or Z+-semigroup)

action on the underlying space, or a continuous dynamical system, characterized by an R-group
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(or R+-semigroup) action. It turns out that many of the methods used to study such systems can

be generalized to study the actions of other groups with a sufficient amount of structure, and that

doing so can yield valuable insight into more theoretical areas of mathematics, such as number

theory and geometry. This point of view has been particularly fruitful in the field of homogeneous

dynamics, which studies the actions of subgroups of a Lie group G on the quotient of G by a

discrete subgroup. Examples of dynamical systems of this form include linear flows on tori and

geodesic and horocycle flows on the modular surface.

Many recent breakthroughs in a variety of areas are the result of reformulating old prob-

lems into the language of homogeneous dynamics. Foundational works such as Margulis’s proof

of the Oppenheim conjecture [Mar87] and Ratner’s classification of unipotent orbits and unipotent-

invariant measures [Rtn91; Rtn94] have led the way for others to seek rigidity phenomena in

different contexts with an abundance of useful applications. Such results include Lindenstrauss’s

proof of arithmetic quantum unique ergodicity [Lin06], Einsiedler-Katok-Lindenstrauss’s partial

result toward Littlewood’s conjecture [EKL06], Benoist-Quint’s rigidity theorems [BQ11], Eskin-

Mozes-Shah and Gorodnik-Oh’s counting results for integer and rational points on homogeneous

varieties [EMS96; GO11], and Venkatesh’s work on the subconvexity problem for L-functions

[Ven10].

Adapting the techniques of homogeneous dynamics to analogous settings has also proven

quite powerful. For example, the groundbreaking work of McMullen [McM07], Eskin-Mirzakhani

[EM13], and Eskin-Mirzakhani-Mohammadi [EMM15] classifying the invariant measures and

orbit closures for the SL2(R)-action on moduli spaces of abelian differentials was inspired largely

by results and techniques from homogeneous dynamics, such as Ratner’s classification theorems

for unipotent flows. This work has numerous applications in geometry and physics, including in

the study of billiard trajectories described above.

2



1.1 Motivation and Related Work

Equidistribution results play an important role in dynamical systems and their applications.

A subset of an orbit is said to equidistribute with respect to a given probability measure if it spends

the expected amount of time in different regions of the space, i.e., if the proportion of the subset

landing within any measurable set converges to the measure of that set. Often in applications to

number theory it is important that an equidistribution result be effective—that is, that the rate

of convergence is known. Effective results can be used to derive explicit bounds for number

theoretic questions, such as quantitative solutions to the Oppenheim conjecture [GM10; LM14],

or to obtain information about the distribution of certain “sparse” subsets of the orbit, such as

prime times or polynomial sequences (e.g. [SU15; Ven10; GT12]).

Despite their usefulness for applications in number theory and beyond, effective results

for many homogeneous systems remain elusive. For example, effective versions of Ratner’s

theorems would have far-reaching consequences and are highly sought after; however the problem

in its complete generality appears to be very challenging (although some progress has been made,

see e.g. [Str15; LM14; EMV09; EMMV]). Nonetheless, there are two contexts for which we

have strong effective results—that of nilflows, established by Green-Tao in [GT12], and that of

horospherical flows, which have a long and rich history.

Geodesic and horocycle flows on T1(H2)∼= PSL2(R) and SL2(R) (or quotients of these)

are classical objects. They are defined, respectively, by actions of the subgroups

at =

et/2 0

0 e−t/2




t∈R

ut =

1 t

0 1




t∈R

via multiplication. Observe that limt→∞ a−1
t usat = e for any s ∈ R, and moreover that the only

elements for which this holds are of the form us for some such s. We may expand this notion in

the following way: A subgroup of a Lie group G is said to be horospherical if it is contracted
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(conversely, expanded) under iteration of the adjoint action of some element g ∈ G, i.e.

U = {u ∈ G | g−nugn as n→ ∞}.

(see Section 2.2 for a more thorough discussion of horospherical subgroups). It can be shown that

any horospherical subgroup is unipotent, although not every unipotent subgroup can be realized

as the horospherical subgroup corresponding to an element of G. In general, horospherical flows

are easier to study than arbitrary unipotent flows, as the mixing action of the expanding element

can be used to provide dynamical information about a given horospherical flow.

Actions by horospherical and unipotent subgroups have been studied extensively. Hedlund

proved in [Hed36] that the horocycle flow on Γ\SL2(R) for Γ cocompact is minimal, and

Furstenberg later showed it to be uniquely ergodic [Fur73]. These results were extended in [Vee77]

and [EP78] to more general horospherical flows on compact quotients of suitable Lie groups.

For Γ non-uniform, Margulis proved that orbits of unipotent (hence horospherical) flows cannot

diverge to infinity [Mar71], which was later refined in Dani’s nondivergence theorem [Dan84;

Dan86a]. Dani also showed in [Dan78] (for the case of Γ\SL2(R) noncompact) and [Dan81;

Dan86b] (for more general noncompact homogeneous spaces) that horocyclic/horospherical

flows have nice (finite volume, homogeneous submanifold) orbit closures and that every ergodic

probability measure invariant under such a flow is the natural Lebesgue measure on some such

orbit closure. In a series of breakthrough papers culminating in [Rtn91] and summarized in

[Rtn94], Ratner resolved conjectures of Raghunathan and Dani by giving a complete description

of unipotent orbit closures and unipotent-invariant measures on homogeneous spaces. Although

similar in form to Dani’s theorems for horospherical flows, Ratner’s theorems require a very

different method of proof that cannot be easily modified to provide a rate of convergence.

Many of the above results for horospherical flows have since been effectivized, in particular

with polynomial rates (see [DM91; KM98; SU15; Bur90; FF03; Str13; Ven10]). Many authors
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have also considered the effective equidistribution of periods (that it, closed horospherical orbits)

in a variety of settings (e.g. [Sar81; Str04; KM96; LO12; DKL16], although this list is by no

means complete). In studying both periods and long pieces of generic horospherical orbits, one

can make use of the “thickening” argument developed by Margulis in his thesis [Mar04], which

uses a known rate of mixing for the semisimple flow with respect to which the given subgroup is

horospherical along with the expansion property to get a rate for the horospherical flow.

One topic that has long interested both number theorists and dynamicists is the distribution

of sparse sequences of times, especially primes. In [Bou88] Bourgain proved the remarkable

result that ergodic averages over primes converge almost-everywhere, however this is often not

sufficient for applications in number theory which require information about a specific orbit or

about every orbit for a given system. For example, Sarnak’s Möbius disjointness conjecture seeks

to formalize the heuristic that primes are essentially randomly distributed by positing that the

Möbius function

µ(n) =


0 if n is not squarefree

(−1)k if n is the product of k distinct primes

is asymptotically uncorrelated with any sequence of the form f (T nx) for x ∈ X , a compact metric

space, f ∈C(X), and T : X → X a continuous map of zero topological entropy. The conjecture

has been established in a variety of settings [Bou13; Dav80; LS15; GT12; CE19], including for

unipotent flows [BSZ13; Pec18].

In [GT12], Green and Tao prove effective Möbius disjointness for nilflows with strong

rates of convergence, which allows them to further prove an equidistribution result for prime times.

Similarly, it is conjectured that prime times in horospherical (and more generally, unipotent)

flows are equidistributed in the orbit closures containing them (see the conjecture of Margulis in

[Gor07]). However, the proofs of Möbius disjointness for unipotent flows by Bourgain-Sarnak-
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Ziegler [BSZ13] and Peckner [Pec18] rely on Ratner’s joining classification theorem, which is

not effective. As a result, these theorems cannot be used directly to prove the equidistribution of

prime times. Nonetheless, Sarnak and Ubis have shown that primes are dense in a set of positive

measure for equidistributing horocycle orbits on SL2(R)/SL2(Z) and that almost-primes (i.e.

integers having fewer than a fixed number of prime factors) are dense in the whole space [SU15].

Another example in the area of sparse equidistribution is Venkatesh’s use of effective

equidistribution of the horocycle flow to provide a partial solution to a conjecture of Shah

[Sha94] by showing that orbits along sequences of times of the form {n1+γ}n∈N equidistribute in

compact quotients of SL2(R) for small γ [Ven10]. He accomplishes this by first proving effective

equidistribution for arithmetic progressions of times in the horocycle flow. In this document,

we extend the work of Venkatesh and Sarnak-Ubis to study the distribution of sparse subsets of

horospherical orbits consisting of almost-prime entries via effective equidistribution of arithmetic

progressions. These results are significant in that they lend further support to the conjecture that

prime times in horospherical flows are generically dense and possibly equidistributed.

1.2 Main Results

We are interested in the asymptotic distribution of almost-primes in horospherical flows

on the space of lattices and on compact quotients of SLn(R). Our main results are summarized in

the following two theorems.

Theorem 1. Let Γ < SLn(R) be a cocompact lattice and u(t) be a horospherical flow on

Γ\SLn(R) of dimension d.1 Then there exists a constant M (depending only on n, d, and

Γ) such that for any x ∈ Γ\SLn(R), the set

{xu(k1,k2, · · · ,kd) | ki ∈ Z has fewer than M prime factors}
1 We have reduced the problem to a class of horospherical flows with a particular parameterization. See (4.1) and

(5.9).
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is dense in Γ\SLn(R).

In fact, the method of proof yields an effective density statement which describes how

long it takes for almost-prime times in an orbit to hit any ball of fixed radius (see the remark at

the end of Section 5.1). The constant M depends polynomially on n and d (see equation (5.8)

for an explicit formula). The dependence of M on Γ arises from the spectral gap of the action of

SLn(R) on Γ\SLn(R). Since SLn(R) has Kazhdan’s property (T) for n≥ 3, the dependence on

Γ can be removed in that setting, or in any setting where Γ varies over a family of lattices with

bounded spectral gap, such as when Γ is a congruence lattice in n = 2.

In the noncompact case, the number of prime factors allowed in our almost-primes will

depend on the rate of equidistribution for the continuous flow, which in turn depends on the

basepoint due to the existence of proper orbit closures. The following definition provides a

condition under which the basepoint has a persistently good rate of equidistribution.

Definition 2. For a horospherical flow u(t) on SLn(Z)\SLn(R), we say that x = SLn(Z)g is

strongly polynomially δ-Diophantine if there exists some sequence Ti→ ∞ as i→ ∞ such that

inf
w∈Λ j(Zn)\{0}

j=1,··· ,n−1

sup
t∈[0,Ti]d

||wgu(t)||> T δ
i

for all i ∈ N.

The definition of Λ j(Zn) and the norm are given in Section 2.8, and further motivation

for this definition is provided in Section 5.2. See also Definition 3.1 of [LMMS] and the related

discussion of its algebraic and dynamical implications.

With this definition, we have the following theorem.

Theorem 3. Let u(t) be an abelian2 horospherical flow on SLn(Z)\SLn(R) of dimension d, and

let x ∈ SLn(Z)\SLn(R) be strongly polynomially δ-Diophantine for some δ > 0. Then there exists
2For Theorem 1, we first prove the result for abelian horospherical flows and then extend the result to arbitrary

horospherical flows. However, the method we use to do this cannot be applied in the noncompact setting (see the
remark at the end of Section 5.2).
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a constant Mδ (depending on δ, n, and d) such that

{xu(k1,k2, · · · ,kd) | ki ∈ Z has fewer than Mδ prime factors}

is dense in SLn(Z)\SLn(R).

The constant Mδ depends polynomially on n and d and inversely on δ (see equation (5.14)

for an explicit formula).

A brief outline of this dissertation is as follows: In Chapter 2, we establish the basic

notation that will be used throughout this document and introduce the key facts and theorems that

we use in our analysis. In Chapter 3, we prove an effective equidistribution result for long orbits

of arbitrary horospherical flows using the “thickening” argument of Margulis, which leverages

the exponential mixing properties of the subgroup with respect to which the flow of interest is

horospherical. In Chapter 4, we use the theorem from the previous chapter to derive an effective

bound for equidistribution along multivariate arithmetic sequences in abelian horospherical flows

following the method used in Section 3 of [Ven10]. In Chapter 5, we use this bound along

arithmetic sequences as well as a combinatorial sieve theorem to obtain an upper and lower

bound on averages over almost-prime entries in horospherical flows, from which Theorems 1 and

3 follow as immideiate corollaries. Finally, in Chapter 6, we make some closing remarks and

indicate possible extensions and areas for future research.

Chapter 1, in part, has been submitted for publication of the material as it may appear in

the Journal of Modern Dynamics, 2019, McAdam, Taylor, American Institute of Mathematical

Sciences (AIMS), 2018. The dissertation author was the primary investigator and author of this

material.
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Chapter 2

Notation and Preliminaries

2.1 Some Basic Notation

Let G = SLn(R) for n≥ 2. Throughout most of this document, Γ will denote SLn(Z), but

we will also discuss the case where Γ≤ G is a cocompact lattice. We are interested in the right

multiplication actions of certain subgroups of G on the space of cosets X = Γ\G.

The Haar measure mG on G projects to a G-invariant measure mX on X . In this document,

we will always take mX and mG to be normalized so that mX is a probability measure and so that

the measure of a small set in G equals the measure of its projection in X . We will use | · | to denote

the standard Lebesgue measure on Rd and dt to denote the differential with respect to Lebesgue

measure for t ∈ Rd .

We will use gothic letters to represent the Lie algebra of a Lie group (e.g. g is the Lie

algebra of G). Fix an inner product on g. This extends to a Riemannian metric on G via left

translation, which defines a left-invariant metric dG and a left-invariant volume form, which (by

uniqueness) coincides with the Haar measure on G up to scaling. This then induces a metric dX
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on X of the form

dX(Γg1,Γg2) = inf
γ1,γ2∈Γ

dG(γ1g1,γ2g2) = inf
γ∈Γ

dG(g1,γg2).

The same construction can be used to define a left-invariant metric dH for any subgroup H ≤ G

by restricting the inner product to h⊆ g. Note, however, that in general dH 6= dG|H . Instead, we

have that dG(h1,h2)≤ dH(h1,h2) for h1,h2 ∈ H, since the infimum used to define the distance

dG is taken over a larger set than in dH . We will use the notation BH
r (h) to denote a ball of radius

r with respect to the metric dH around a point h ∈ H (this is to distinguish these balls from the

sets BT that we will define in Section 2.2). Also observe that every point has a neighborhood in

which the left-invariant metric is Lipschitz equivalent to the metric derived from any matrix norm

on Matn×n(R) (see Lemma 9.12 in [EW11] for details).

Define the adjoint representation of g ∈ G as the map Adg : g→ g given by Y 7→ gY g−1

for Y ∈ g.

In considering equidistribution questions, our space of test functions will be C∞
c (X), the

set of smooth, compactly supported (real- or complex-valued) functions on X . Define the action

of G on this space by [g · f ](x) = f (xg) for g ∈ G and f ∈C∞
c (X).

Finally, we will use the notation a� b to indicate that a is less than a fixed constant times

b and a � b to indicate that a� b and b� a. In general, the implied constants may depend

on n and on the data of the dynamical system (more specifically, on d, the dimension of the

horospherical subgroup). Any additional dependence of the constants will be indicated by a

subscript (e.g. � f indicates that the implicit constant may depend on n, d, and f ). In principle,

the constants may also depend on the lattice Γ, although since we are primarily considering

Γ = SLn(Z), we will not indicate this dependence with a subscript when Γ is understood to be

fixed in this way. We will also use the standard notation O( f (x)) to indicate a function whose

absolute value is bounded by a constant times | f (x)| as x→ ∞, where as before the constant may
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depend on n and d, and any additional dependence will be indicated with a subscript.

2.2 Horospherical Subgroups

A subgroup U of G is (expanding) horospherical with respect to an element g ∈ G if

U = {u ∈ G | g− jug j→ e as j→ ∞}, where e is the identity. In other words, elements of U are

contracted under conjugation by g−1 and expanded under conjugation by g.

Define the one-parameter subgroup {at}t∈R ∈ G by

at = exp(t diag(λ1, · · · ,λ1︸ ︷︷ ︸
m1

,λ2, · · · ,λ2︸ ︷︷ ︸
m2

, · · · ,λN , · · · ,λN︸ ︷︷ ︸
mN

)) (2.1)

where m1 + · · ·+mN = n and m1λ1 + · · ·+mNλN = 0. Without loss of generality we may also

assume that λ1 ≥ λ2 ≥ ·· · ≥ λN .

Let U denote the block-upper-triangular unipotent subgroup given by

U =





Im1

Im2

∗

. . .

0 ImN−1

ImN




(2.2)

where Im is the m×m identity matrix. Notice that U is the horospherical subgroup corresponding
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to at for t > 0. Similarly, define the contracting subgroup U− by

U− =





Im1

Im2

0

. . .

∗ ImN−1

ImN




which is horospherical with respect to at for t < 0, and define U0 to be the centralizer of at (t 6= 0),

given by

U0 =





B1

B2

0

. . .

0 BmN−1

BmN


Bi ∈ GLmi(R)

detB1 · · ·detBN = 1


.

Let d0 = ∑
N
i=1 m2

i and note that d := dimU = dimU− = 1
2

(
n2−d0

)
and dimU0 = d0− 1. All

horospherical subgroups of G = SLn(R) are conjugate to a subgroup of the form given in (2.2),

so we restrict our attention to U of this form.

Observe that U is diffeomorphic to Rd through identification t↔ u(t) of the coordinates

of Rd with the matrix entries in the upper-right corner of (2.2).1 Note, however, that U and Rd

are only isomorphic as groups in the case that U is abelian, which occurs when at has precisely

two eigenvalues.

1One could also use the more standard map u(t) = exp(ι(t)), where ι : Rd 7→ u is any identification of Rd with
the Lie algebra u of U . We have chosen to use the former embedding for the ease of certain computations and
because we will later restrict our attention to abelian horosphericals, for which the two maps coincide (up to scaling
and permutations of the coordinates). However, whichever map is used does not substantively change the results
presented here.
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The bi-invariant Haar measure mU on U is the pushforward of Lebesgue measure on Rd

under this identification, and we may normalize it so that u([0,1]d) has unit measure. Define an

expanding family of Følner sets in U by

BT = alogT u([0,1]d)a− logT

for T > 0. One may verify that the preimage of BT in Rd is given by a box where xk ∈ [0,T λi−λ j ]

for i < j if the coordinate xk is mapped to the (i, j)-block of (2.2) under our identification. Hence,

mU(BT ) = T p, where p = ∑i< j mim j(λi−λ j).

2.3 Measure Decomposition

The product map U ×U0×U−→ G given by (u,u0,u−) 7→ uu0u− is a biregular map

onto a Zariski open dense subset of G (see Proposition 2.7 in [MT94]). In particular, if we let

H =U0U−, this means that mG(G\UH) = 0 and that the product map (u,h) 7→ uh is open and

continuous. Additionally, it is not difficult to see that U ∩H = {e}. Then by virtue of the fact that

G is unimodular, we have that mG restricted to UH is proportional to the pushforward of mU×mr
H

by the product map, where mr
H is the right Haar measure on H (see, e.g., Lemma 11.31 in [EW11]

or Theorem 8.32 in [Kna96]). Note that we could equivalently use the left Haar measure on H

and multiply by the modular function4H , but for convenience of notation we will use the right

Haar measure.

2.4 Sobolev Norms

Fix a basis B for the Lie algebra g of G. Define the (right) differentiation action of g on

C∞
c (X) by

Y f (x) =
d
dt

f (xexp(tY ))|t=0

13



for Y ∈ B and f ∈C∞
c (X). Higher order derivatives of f can then be expressed as monomials in

the basis B .

For p ∈ [1,∞] and ` ∈ N, the (p, `)-Sobolev norm of f ∈C∞
c (X) simultaneously controls

the Lp-norm of all derivatives of f up to order `. More precisely, let

Sp,`( f ) = ∑
deg(D)≤`

||D f ||Lp(X)

where D ranges over all monomials in B of degree ≤ `. Observe that the Sobolev norm can be

defined similarly for C∞
c (G) and C∞

c (H) where H ≤ G, given a choice of basis for h⊆ g.2

We will only require the (2, `)- and (∞, `)-Sobolev norms. When p = 2, we will drop

the notation, letting S`( f ) = S2,`( f ). When needed, we will use a superscript S X to indicate a

Sobolev norm for functions defined on X .

Some useful properties of these norms are as follows (see [Ven10] or [KM96]):

(i) For X a probability space, f ∈C∞
c (X), p ∈ [1,∞], and k ≤ `, Sp,k( f )≤ S∞,`( f ).

(ii) For f1, f2 ∈C∞
c (X), S∞,`( f1 f2)�` S∞,`( f1)S∞,`( f2).

(iii) For f ∈C∞
c (X) and g ∈ G, S∞,`(g · f )�`

∣∣∣∣Adg−1

∣∣∣∣`S∞,`( f ), where ||·|| is the operator norm

on linear functions g→ g.

(iv) Let L⊂ G be compact. For f ∈C∞
c (X), x ∈ X ,

| f (xg)− f (x)| �L S∞,1( f )dG(g,e)

for all g ∈ L.

2The choice of the basis B is unimportant in the sense that choosing a different basis will lead to an equivalent
norm. Likewise, we could use any norm on the components ||D f ||Lp(X) (here we have used the l1-norm), but as all
such norms are equivalent, the choice is unimportant.
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(v) Let X and Y be Riemannian manifolds. For f1 ∈C∞
c (X) and f2 ∈C∞

c (Y ),

S X×Y
` ( f1 · f2)�X ,Y S X

` ( f1)SY
` ( f2).

2.5 Approximation to the Identity

At times we will want to use smooth bump functions with small support as approximations

to the identity, but we will need to know that the Sobolev norm of such functions can be controlled.

For this we have the following lemma, which can be found in [KM96].

Lemma 4 ([KM96, Lemma 2.4.7 (b)]). Let Y be a Riemannian manifold of dimension k. Then

for any 0 < r < 1 and y ∈ Y , there exists a function θ ∈C∞
c (Y ) such that:

(i) θ≥ 0

(ii) supp (θ)⊆ BY
r (y)

(iii)
∫

Y θ = 1

(iv) SY
` (θ)�Y,y r−(`+k/2).

2.6 The Space of Unimodular Lattices

For Γ = SLn(Z), X is noncompact and can be understood as the space of unimodular

lattices (that is, lattices of covolume one) in Rn under the identification Γg↔ Zng.

For 0 < ε≤ 1, define Lε to be the set of lattices in X = SLn(Z)\SLn(R) with no nonzero
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vectors shorter than ε. That is, let

Lε = {Γg ∈ X | ||vg|| ≥ ε for all v ∈ Zn \{0}}

where the norm above can be taken to be any norm on Rn, but for convenience we will use the

max norm. By Mahler’s Compactness Criterion, Lε is a compact set (for details and a proof, see

[Rag72] Corollary 10.9, [BM00] Theorem 5.3.2, or [EW11] Theorem 11.33).

2.7 Radius of Injection

Given small ε > 0, we want to find a radius r > 0 (depending on ε) such that projection at

x, given by

πx : BG
r (e)→ BX

r (x)

g 7→ xg

is injective for all x ∈ Lε (in fact, it is not difficult to see from the definition of the metric on X

that this will be an isometry). For this, we have the following lemma, which is proved in a much

more general setting in [BO12] (see the proof of Lemma 11.2). A proof of the lemma as it is

stated here can be found in Appendix A.

Lemma 5. There exist constants c1,c2 > 0 (depending only on n) such that for any 0 < ε < c1,

the projection map πx : BG
r (e)→ BX

r (x) is injective for all x ∈ Lε, where r = c2εn.

2.8 Quantitative Nondivergence

Let {e1, · · · ,en} be the standard basis on Rn. Let eI = ei1 ∧ ·· · ∧ ei j for a multi-index

I = (i1, · · · , i j), where 1 ≤ i1 < · · · < i j ≤ n. Then {eI} is a basis for Λ j(Rn), the jth exterior
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power of Rn. Define the norm of w = ∑I wIeI ∈Λ j(Rn) to be ||w||= maxI |wI|. Denote by Λ j(Zn)

the discrete subset of Λ j(Rn) composed of linear combinations of basis vectors with integer

coefficients. Notice that g ∈ GLn(R) acts on Λ j(Rn) on the right by

(ei1 ∧·· ·∧ ei j)g = (ei1g)∧·· ·∧ (ei jg)

where the action extends to all of Λ j(Rn) via linearity. A vector in Λ j(Zn) is called primitive if it

is not a multiple of any other vector in Λ j(Zn).

The following theorem quantitatively describes how often certain polynomial maps from

Rd to X land inside a compact set Lε. This is a special case of Theorem 5.2 in [KM98], which

itself extends results of [Dan86a] and [Mar75]. The original theorem is stated for much more

general (C,α)-good functions, but we will only need the version below, which can be found as

Theorem 3.1 in [KM12].

In fact, this can be improved due to an old result called the Remez inequality (see [Rem36;

BG73]), so that the bound becomes (ε/ρ)1/(n−1)|B|. We have decided to use the following less

sharp bound in our treatment because we feel it may be more familiar to the reader and because it

would take some time reformulate the Remez inequality for application to the space of lattices,

which is not a primary concern of this document.

Theorem 6 ([KM98, Theorem 5.2]). Let d,n ∈ N and 0 < ρ ≤ 1. Let B ⊂ Rd be a ball and

suppose that ξ : B→ GLn(R) satisfies:

(i) all matrix entries of ξ(t) are degree 1 polynomials in the coordinates of t,

(ii) sup
t∈B
||wξ(t)|| ≥ ρ for all primitive w ∈ Λ j(Zn)\{0} and j ∈ {1, · · · ,n−1}.

Then for any 0 < ε≤ ρ,

|{t ∈ B |Γξ(t) /∈ Lε}| �d,n (ε/ρ)1/d(n−1) |B|.
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From this theorem we may derive the following corollary, which we will use in the proof

of Theorem 11 to say that the orbit of a point satisfying a certain Diophantine condition spends a

relatively large proportion of time in Lε when pushed by the flow at .

Corollary 7. Let T,R > 1 and x0 = Γg0 ∈ X. Then suppose R0 > 0 is such that

sup
t∈[0,1]d

∣∣∣∣wg0alogT u(t)a− logT
∣∣∣∣≥ R0

for all primitive w ∈ Λ j(Zd)\{0} and j ∈ {1, · · · ,n− 1} and define ρ = min(1,R0/Rq) where

q = ∑λi<0−miλi from (2.1). Then for any 0 < ε < ρ,

∣∣∣{t ∈ [0,1]d | x0alogT u(t)a− logT alogR /∈ Lε}
∣∣∣� (ε/ρ)1/d(n−1).

Proof. Let ξ(t) = g0alogT u(t)a− logT alogR. We want to demonstrate that conditions (i) and (ii)

hold in Theorem 6 for ρ = min(1,R0/Rq) and B = [0,1]d .

Recall that our identification u(t) places one coordinate of t in each matrix entry in the

upper-right corner of (2.2). Then since multiplication by at on either the left or the right only

changes matrix entries by scaling, each entry in the upper-right corner of alogT u(t)a− logT alogR

only depends linearly on a single coordinate of t. This means that for any matrix g0, all entries of

ξ(t) = g0alogT u(t)a− logT alogR will be affine, satisfying condition (i).

Notice that ekalogR = Rλiek if λi is kth eigenvalue in the definition of at in (2.1). Then

the right action of alogR scales ei1 ∧·· ·∧ ei j ∈ Λ j(Rd) by the product of all such corresponding

factors. Since R > 1, the most alogR can therefore contract any basis element is by the product

of all scaling factors corresponding to negative eigenvalues of (2.1), that is, by R−q, where

q = ∑λi<0−miλi. It then follows from the definition of the norm that

∣∣∣∣walogR
∣∣∣∣≥ R−q ||w|| (2.3)
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for any w∈Λ j(Rd)\{0} and j ∈ {1, · · · ,n−1}. Then for ρ = min(1,R0/Rq), we have 0 < ρ≤ 1

and also

sup
t∈[0,1]d

||wξ(t)||= sup
t∈[0,1]d

∣∣∣∣wg0alogT u(t)a− logT alogR
∣∣∣∣

≥ R−q sup
t∈[0,1]d

∣∣∣∣wg0alogT u(t)a− logT
∣∣∣∣

≥ R0/Rq

≥ ρ

for j ∈ {1, · · · ,n−1} and primitive w ∈ Λ j(Zn)\{0}, satisfying condition (ii).

Hence, by Theorem 6, we have

∣∣∣{t ∈ [0,1]d |Γξ(t) /∈ Lε}
∣∣∣� (ε/ρ)1/d(n−1).

2.9 Decay of Matrix Coefficients

In order to obtain effective rates of equidistribution in Chapters 3 and 4, we will need to

use results on the effective decay of matrix coefficients.

Estimates of this type have a long and rich history, including Selbrerg’s celebrated 3/16

theorem for congruence quotients of SL2(Z), Kazhdan’s property (T), and works of Harish-

Chandra, Cowling, Haagerup, Howe, and Oh. Far reaching extensions of Selberg’s work are also

in place thanks to works of Jacques-Langlands, Burger-Sarnak, and Clozel. Our formulation here

is taken from [KM96] (see [KM96; KS94; GMO08; EMMV] for a more comprehensive history

and discussion). In [Oh02], Oh gives optimal bounds for SLn(R), n≥ 3.

Theorem 8 ([KM96, Corollary 2.4.4]). Let G = SLn(R) and X = Γ/G for a lattice Γ. There
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exists a constant 0 < β̃ < 1 such that for f1, f2 ∈C∞
c (X) and g ∈ G,

∣∣∣∣〈g · f1, f2〉L2(X)−
∫

X
f1dmX

∫
X

f 2dmX

∣∣∣∣� e−β̃dG(e,g)S`( f1)S`( f2)

where ` is the dimension of maximal compact subgroup of G. When n ≥ 3, the constant β̃ is

independent of the lattice Γ, and when n = 2 it is independent of the lattice if Γ is a congruence

lattice.

For our specific applications, we have the following corollaries.

Corollary 9. Let the setting be as above. There exist β1,β2 > 0 such that

(i) For f1, f2 ∈C∞
c (X) and t ≥ 0, we have

∣∣∣∣∫X
f1(xat) f2(x)dmX(x)−

∫
X

f1dmX

∫
X

f 2dmX

∣∣∣∣� e−β1tS`( f1)S`( f2)

(ii) For f ∈C∞
c (X) and t ∈ Rd ,

∣∣∣∣∣〈u(t) f , f 〉L2(X)−
∣∣∣∣∫X

f dmX

∣∣∣∣2
∣∣∣∣∣�max(1, |t|)−β2S`( f )2

Chapter 2, in part, has been submitted for publication of the material as it may appear in

the Journal of Modern Dynamics, 2019, McAdam, Taylor, American Institute of Mathematical

Sciences (AIMS), 2018. The dissertation author was the primary investigator and author of this

material.
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Chapter 3

Effective Equidistribution of

Horospherical Flows

3.1 The Space of Lattices

Let G = SLn(R), Γ = SLn(Z), X = Γ\G, and U < G a horospherical subgroup of dimen-

sion d.

The following qualitative equidistribution statement is well known and follows from

Ratner’s Theorems, although in this case simpler proofs may be used. As mentioned in the

introduction, Dani proved a density result in this setting, and equidistribution results were proved

in some special cases prior to Ratner’s work [Dan78; FF03; Str13]. The method of proof for this

general qualitative result is the same as for these special cases, however we were unable to locate

an explicit reference for a result of this form which avoids the use of Ratner’s theorem.

Theorem 10. For every x0 = Γg0 ∈ X, either

1
mU(BT )

∫
BT

f (x0u)dmU(u)−−−→
T→∞

∫
X

f dmX ∀ f ∈C∞
c (X) (3.1a)
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or

∃ j ∈ {1, · · · ,n−1} and primitive w ∈ Λ
j(Zn)\{0}

such that wg0u = wg0 ∀u ∈U.

(3.1b)

The subgroup L = Stab(wg0) is the well-known intermediate subgroup U ≤ L≤ G such

that x0U ⊂ x0L with x0L supporting an L-invariant probability measure. We will call a point

x0 ∈ X generic if it satisfies (3.1a). By ergodicity of the horospherical flow, the set of generic

points has full measure in X .

Our main objective in this chapter is to prove the following quantitative refinement of this

theorem.

Theorem 11. There exist constants γ,C > 0 (depending1 only on n, d, and β1) such that for every

x0 = Γg0 ∈ X and T > R >C, either

∣∣∣∣ 1
mU(BT )

∫
BT

f (x0u)dmU(u)−
∫

X
f dmX

∣∣∣∣� R−γS∞,`( f ) ∀ f ∈C∞
c (X) (3.2a)

or

∃ j ∈ {1, · · · ,n−1} and primitive w ∈ Λ
j(Zn)\{0}

such that ||wg0u||< Rq ∀u ∈ BT

(3.2b)

where q = ∑λi<0−miλi and `= n(n−1)/2 is the dimension of maximal compact subgroup of G.

Intuitively, this theorem says that either the U-orbit of x0 equidistributes in X with a fast

rate, or x0 is close to a proper subspace of X that is fixed by the action of U , where our notions of

“fast” and “close” are quantitatively related.

1 Specifically, γ = 2β1/(nd(3n+ 1)(n− 1)2 + 2), where β1 is the constant from Corollary 9. If the Remez
inequality is used instead of Theorem 6, then γ depends only on n, with γ = 2β1/(n(3n+1)(n−1)2 +2).
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Remark. Observe that for fixed R, any generic point x0 will fail (3.2b) for large enough T .

This is because there are only finitely many w ∈ Λ j(Zn)\{0} with j ∈ {1, · · · ,n−1} such that

||wg0||< Rq to begin with, so for (3.2b) to hold for all large times T it must be the case that there

is a single w satisfying ||wg0u||< Rq for all u ∈U . Moreover, ||wg0u|| is the maximum of several

polynomials in the coordinates of U . Hence, in order to be bounded for all time, it must in fact be

constant. This implies wg0 is fixed by U , which recovers the qualitative result of Theorem 10.

Remark. It is worth noting that this theorem says something even in the case that the basepoint is

not generic. Consider the following finitary version of genericity: x0 ∈ X is said to be R-generic

if it satisfies (3.2a) for all sufficiently large T . If x0 is R-generic for all R > 0, then it is generic.

On the other hand, suppose that x0 = Γg0 is not generic, so that there exists w ∈ Λ j(Zn)\{0}

with j ∈ {1, · · · ,n−1} such that wg0 is fixed by U . If additionally ||wg0||> Rq for large enough

R, then the theorem tells us that (3.2a) holds for all T > R and thus x0 is R-generic. In fact, if R is

quite large, then the orbit of x0 will be very nearly equidistributed, even though it is not generic.

This relates to the equidistribution of proper orbit closures as their volume goes toward infinity

(see, e.g. [Sar81; Str04; KM96]).

Remark. The condition that w in (3.2b) be primitive is conceptually useful but technically

unnecessary, in that if there exists any w ∈ Λ j(Zn)\{0} satisfying (3.2b), then there will also

exist a primitive vector that does so. Moreover, although the theorem is stated for Følner

sets of the form BT = alogT u([0,1]d)a− logT , it should hold equally well for sets of the form

BT = alogT u(B)a− logT for any ball B⊂ Rd .

Remark. The “either/or” in the theorem statement is not meant to imply an exclusive or. The

structure of the proof will be to show that for x0, T , and R as in the theorem, not (3.2b) implies

(3.2a). This leads us to define the following (T,R)-Diophantine basepoint condition for x0 =
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Γg0 ∈ X , which is simply the negation of condition (3.2b):

∀ j ∈ {1, · · · ,n−1} and w ∈ Λ
j(Zn)\{0}, ∃ u ∈ BT s.t. ||wg0u|| ≥ Rq. (3.2c)

Proof. Let x0 = Γg0 ∈ X satisfy the basepoint condition in (3.2c) for some T > R. Then consider

f ∈C∞
c (X) and write, via a change of variables,

I0 :=
1

mU(BT )

∫
BT

f (x0u)dmU(u)

=
1

mU(BT/R)

∫
BT/R

f (x0alogRua− logR)dmU(u)

=
1

mU(BT/R)

∫
U

1BT/R(u) f (x0alogRua− logR)dmU(u). (3.3)

We want to show that this quantity is close to
∫

f dmX , and from (3.3) it almost looks as if we

could apply the exponential mixing result of Corollary 9 (i) to achieve this, however there are

several significant barriers to doing so. Most obviously, the integral in (3.3) is over U instead of

X . Furthermore, the “basepoint” x0alogRu varies with u, and will eventually spend time outside of

any fixed compact subset of X for u coming from a large enough set. Finally, the function 1BT/R

is not smooth.

We will first address the issue of smoothness by convolving the indicator function with a

smooth approximation to the identity (Step 1). We will then apply the “thickening” argument of

Margulis to obtain an integral over X from our integral over U (Step 2). Finally, we will deal with

the moving basepoint by demonstrating that for most u ∈ BT/R we have a uniformly good rate of

equidistribution and that the size of the set on which this does not occur can be quantitatively

controlled (Step 3). This last step is where we will use the nondivergence result of Section 2.8.

Step 1. Let r be a small, positive number (to be determined) and let θ ∈C∞
c (U) be a nonnegative

bump function supported on BU
r (e) satisfying the approximate identity properties of Lemma 4.
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Then the convolution
∫

U θ(u′)1BT/R(u(u
′)−1)dmU(u′) is a smooth function approximating our

original indicator function. If we substitute this function for 1BT/R in (3.3) and use the invariance

property of the Haar measure, we get the integral

Ismth :=
1

mU(BT/R)

∫
U

∫
U

θ(u′)1BT/R(u(u
′)−1)dmU(u′) f (x0alogRua− logR)dmU(u)

=
1

mU(BT/R)

∫
U

∫
U

θ(u′)1BT/R(u) f (x0alogRuu′a− logR)dmU(u)dmU(u′). (3.4)

Now observe that since
∫

θ = 1, we may again use the invariance of the Haar measure to rewrite

(3.3) as

I0 =
1

mU(BT/R)

∫
U

1BT/R(uu′) f (x0alogRuu′a− logR)dmU(u)
∫

U
θ(u′)dmU(u′)

=
1

mU(BT/R)

∫
U

∫
U

θ(u′)1BT/R(uu′) f (x0alogRuu′a− logR)dmU(u)dmU(u′). (3.5)

From (3.4) and (3.5), we can see that

|I0− Ismth|

≤ 1
mU(BT/R)

∫
U

θ(u′)S∞,0( f )
(∫

U

∣∣∣1BT/R(uu′)−1BT/R(u)
∣∣∣dmU(u)

)
dmU(u′)

=
S∞,0( f )

mU(BT/R)

∫
θ(u′)mU(BT/R4BT/R(u

′)−1)dmU(u′). (3.6)

But notice that since supp θ⊆ BU
r (e), we know that u′ is close to the identity, so u in this region

can only shift BT/R by a small amount. In fact, by pulling the measure back to Rn, one may

compute directly that the size of the symmetric difference is bounded by

mU(BT/R4BT/R(u
′)−1)� (T/R)p−p0r (3.7)

for any u′ ∈ BU
r (e), where p0 = mini< j(λi−λ j). Combining this with (3.6) above and again
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using the fact that θ integrates to 1, we see that

|I0− Ismth| �
(T/R)p−p0

mU(BT/R)
rS∞,0( f ) = (R/T )p0rS∞,0( f )≤ rS∞,0( f ) (3.8)

since mU(BT/R) = (T/R)p and T ≥ R.

Now that we know I0 and Ismth can be made close, we want to know that Ismth is not too

far from
∫

f dmX . Using Fubini’s Theorem, we can say

Ismth =
1

mU(BT/R)

∫
BT/R

∫
U

θ(u′) f (x0alogRuu′a− logR)dmU(u′)dmU(u)

and we may also write

∫
X

f dmX =
1

mU(BT/R)

∫
BT/R

(∫
X

f dmX

)
dmU(u).

Hence,

∣∣∣∣Ismth−
∫

X
f dmX

∣∣∣∣
≤ 1

mU(BT/R)

∫
BT/R

∣∣∣∣∫U
θ(u′) f (x0alogRuu′a− logR)dmU(u′)−

∫
X

f dmX

∣∣∣∣dmU(u). (3.9)

Step 2. Now the expression inside the absolute value looks more similar to the mixing result of

Corollary 9 (i), but we are still integrating with respect to the wrong measure. We want an integral

with respect to mX , and although functions on X integrate locally like their pullback by projection

over G, the integral with which we are concerned is over the lower-dimensional (“thin”) subspace

U .

26



Define

IU(u) :=
∫

U
θ(u′) f (x0alogRuu′a− logR)dmU(u′). (3.10)

to be the integral from inside (3.9) above. In order to apply Corollary 9 (i), we will need to

“thicken” this integral over U to an integral over a neighborhood of the orbit in G and then project

to X .

Recall from Section 2.3 that mG = mU ×mr
H , where mr

H is the right Haar measure on

H =U0U−. Then let ψ ∈C∞
c (H) be an approximate identity supported on BH

r (e) as described in

Lemma 4. Since
∫

ψ = 1, we may rewrite (3.10) as

IU(u) =
∫

H

∫
U

θ(u′)ψ(h) f (x0alogRuu′a− logR)dmU(u′)dmr
H(h). (3.11)

Now define

IX(u) :=
∫

H

∫
U

θ(u′)ψ(h) f (x0alogRuu′ha− logR)dmU(u′)dmr
H(h) (3.12)

which differs from IU(u) only by the presence of the variable h inside f . To see that IU(u) and

IX(u) are close, observe that

|IU(u)− IX(u)| ≤
∫

H

∫
U

θ(u′)ψ(h)
∣∣ f (x̃)− f (x̃alogRha− logR)

∣∣dmU(u′)dmr
H(h) (3.13)

where x̃ = x0alogRuu′a− logR. But since f has bounded derivative,

∣∣ f (x̃)− f (x̃alogRha− logR)
∣∣� S∞,1( f )dG(e,alogRha− logR) (3.14)

by Sobolev property (iv). Furthermore, since conjugation by at is non-expanding on the subgroup
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H (recall that it fixes U0 and contracts U−), we may see that2

dG(e,alogRha− logR)≤ dG(e,h)� dH(e,h)≤ r (3.15)

for h ∈ supp ψ⊆ BH
r (e).

Then from (3.13), (3.14), and (3.15) and the fact that both θ and ψ integrate to 1, we have

|IU(u)− IX(u)| � S∞,1( f )r. (3.16)

Now we want to verify that IX(u) is not far from
∫

f dmX . By our measure decomposition,

we can see (3.12) as an integral over G:

IX(u) =
∫

G
φ(g) f (x0alogRuga− logR)dmG(g) (3.17)

where the function φ(uh) = θ(u)ψ(h) is defined for all g ∈ UH, hence it is defined almost-

everywhere. In order to apply mixing, we want to further interpret IX(u) as an integral over

X . To do this, let y = x0alogRu, keeping in mind that y depends on u. Then define φy ∈C∞
c (X)

by φy = φ ◦ π−1
y where πy : G→ X is natural projection at y. Note, however, that φy is only

well-defined if πy is injective on supp φ = supp θ supp ψ⊆ BU
r (e)B

H
r (e). In a neighborhood of

the identity, BU
r (e)B

H
r (e)⊆ BG

cr(e) for a positive constant c, since

dG(uh,e)≤ dG(uh,u)+dG(u,e) = dG(h,e)+dG(u,e)� dH(h,e)+dU(u,e)≤ 2r.

Therefore, if πy is injective on BG
cr(e) for y = x0alogRu (an assumption we will reutrn to later) we

2There is a slight subtlety here because we used the right Haar measure on H, so the corresponding metric dH is
right-invariant, while dG is left-invariant. In general, dG restricted to H will be less than or equal to the corresponding
left-invariant metric on H. However, any left-invariant metric is Lipschitz equivalent to any right-invariant metric in
a suitable neighborhood of the identity, so the above series of inequalities goes through for r small enough.
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can say from (3.17) that

IX(u) =
∫

G
φ(g) f (yga− logR)dmG(g)

=
∫

G
φy(yg) f (yga− logR)dmG(g)

=
∫

X
φy(x) f (xa− logR)dmX(x).

Since
∫

φydmX =
∫

φdmG =
∫

θdmU
∫

ψdmr
H = 1, we can now apply the effective mixing result

from Section 2.9 to obtain

∣∣∣∣IX(u)−
∫

X
f dmX

∣∣∣∣= ∣∣∣∣∫X
φy(x) f (xa− logR)dmX(x)−

∫
X

φydmX

∫
X

f dmX

∣∣∣∣
� R−β1S`(φy)S`( f ).

Then from property (v) in Section 2.4 and our bound on the Sobolev norm of an approximate

identity (property (iv) in Section 2.5), we can say

S X
` (φy) = S G

` (φ)� SU
` (θ)S H

` (ψ)� r−(`+d/2)r−(`+d̃/2) = r−2`−(n2−1)/2

where d̃ = dimH. Thus if πy is injective on BG
cr(e), then

∣∣∣∣IX(u)−
∫

X
f dmX

∣∣∣∣� R−β1r−p1S`( f ) (3.18)

where p1 = 2`+(n2−1)/2.

Step 3. However, as we have noted, y = x0alogRu depends on u, which varies over BT/R in (3.9).

While we cannot ensure that πy is injective on BG
cr(e) for all u ∈ BT/R, we can say that the set on

which this does not occur has small measure.

Recall from Lemma 5 that πy : BG
r (e)→ BX

r (y) is injective for y ∈ Lε for r proportional
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to εn and for ε small enough. Furthermore, observe that condition (3.2c) is equivalent to the

statement that for all j ∈ {1, · · · ,n−1} and primitive w ∈ Λ j(Zd)\{0}, there exists t ∈ [0,1]d

such that
∣∣∣∣wg0alogT u(t)a− logT

∣∣∣∣≥ Rq. Then by Corollary 7 in Section 2.8, we have that

∣∣∣{t ∈ [0,1]d | x0alogT u(t)a− logT alogR /∈ Lε}
∣∣∣� ε

1/d(n−1).

From this we find that

∣∣∣{t ∈ [0,1]d | x0alogT u(t)a− logT alogR /∈ Lε}
∣∣∣

=
∣∣∣{t ∈ [0,1]d | x0alogRalogT/Ru(t)a− logT/R /∈ Lε}

∣∣∣
= mU

(
{u ∈ B1 | x0alogRalogT/Rua− logT/R /∈ Lε}

)
= mU

(
{u ∈ BT/R | x0alogRu /∈ Lε}

)
/mU(BT/R)

where the last equality can be verified using a change of variables. That is, for x0 satisfying

condition (3.2c), we have

mU
(
{u ∈ BT/R | x0alogRu /∈ Lε}

)
� ε

1/d(n−1)mU(BT/R).

In other words, if we let E := {u ∈ BT/R | x0alogRu ∈ Lε}, then (3.18) holds for all u ∈ E and
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mU(BT/R \E)� ε1/d(n−1)mU(BT/R). Thus, from (3.9), (3.16), and (3.18), we find

∣∣∣∣Ismth−
∫

X
f dmX

∣∣∣∣≤ 1
mU(BT/R)

∫
BT/R

∣∣∣∣IU(u)−∫
X

f dmX

∣∣∣∣dmU(u)

≤ 1
mU(BT/R)

∫
BT/R

|IU(u)− IX(u)|dmU(u)

+
1

mU(BT/R)

∫
BT/R

∣∣∣∣IX(u)−
∫

X
f dmX

∣∣∣∣dmU(u)

�S∞,1( f )r+
1

mU(BT/R)

∫
E

∣∣∣∣IX(u)−
∫

X
f dmX

∣∣∣∣dmU(u)

+
1

mU(BT/R)

∫
BT/R\E

∣∣∣∣IX(u)−
∫

X
f dmX

∣∣∣∣dmU(u)

�S∞,1( f )r+
mU(E)

mU(BT/R)
R−β1r−p1S`( f )

+
mU(BT/R \E)

mU(BT/R)
S∞,0( f )

�S∞,1( f )r+R−β1r−p1S`( f )+ ε
1/d(n−1)S∞,0( f ).

Finally, from this and (3.8), we have

∣∣∣∣I0−
∫

X
f dmX

∣∣∣∣≤ |I0− Ismth|+
∣∣∣∣Ismth−

∫
X

f dmX

∣∣∣∣
�
(

ε
n +R−β1ε

−p1n + ε
1/d(n−1)

)
S∞,`( f )

where we have used that r is proportional to εn, as well as Sobolev property (i).

Let p2 := 1/d(n−1). Since n > p2, the εn term above decays more quickly than other

terms and can be ignored. To optimize the rate of decay, we set

R−β1ε
−p1n = ε

p2
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which implies

ε = R−β1/(p1n+p2).

Then so long as R is chosen sufficiently large so that ε (and subsequently r) are small enough

to make Corollary 7 and Lemma 5 true (along with several other statements we made regarding

neighborhoods of the identity), then we have demonstrated (3.2a) in Theorem 11 with the rate

∣∣∣∣I0−
∫

X
f dmX

∣∣∣∣� R−γS∞,`( f )

where

γ =
β1 p2

p1n+ p2
=

2β1

nd(3n+1)(n−1)2 +2
(3.19)

where we have written p1, p2, and ` in terms of n and d.

3.2 Γ Cocompact

In the case of Γ cocompact, it follows directly from the above proof that we may remove

dependence on the basepoint from our effective equidistribution statement. That is, for X = Γ\G,

Γ≤ G a cocompact lattice, and U ≤ G a horospherical subgroup, we have that there exists γ > 0

(depending3 only on n and β1) such that for T large enough,

∣∣∣∣ 1
mU(BT )

∫
BT

f (x0u)dmU(u)−
∫

X
f dmX

∣∣∣∣�Γ T−γS∞,`( f ) (3.20)

for any f ∈C∞(X) and x0 ∈ X . This is because we only make use of the basepoint condition

in Step 3, where we need it to deal with the moving basepoint and the fact that the radius of

3 In this case we have γ = 2β1/((3n+1)(n−1)+2).
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injection depends on where we are in X . However, in the compact setting, we have a uniform

injectivity radius, so we may avoid this step altogether.

Morally speaking, uniformity in the basepoint is due to the fact that in the compact setting

the dynamics are minimal, so there are no proper invariant subspaces near which an orbit can

become trapped for long periods of time.

Chapter 3, in part, has been submitted for publication of the material as it may appear in

the Journal of Modern Dynamics, 2019, McAdam, Taylor, American Institute of Mathematical

Sciences (AIMS), 2018. The dissertation author was the primary investigator and author of this

material.
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Chapter 4

Equidistribution for Arithmetic Sequences

In Abelian Horospherical Flows

4.1 The Space of Lattices

Let G = SLn(R), Γ = SLn(Z), and X = Γ\G. Let U be an upper triangular unipotent

subgroup of the form

U =


Im ∗

0 In−m


 (4.1)

for m < n. Note that U ∼=Rd as groups for d = m(n−m) under the identification u(t) which maps

the coordinates of t ∈ Rd to the matrix entries in the upper-right block of (4.1). Recall that the

Haar measure on U is the Lebesgue measure on Rd under this identification, which we normalize

so that u([0,1]d) has unit measure. Observe that U is horospherical with respect to the element

at = diag(et(n−m)/n, · · · ,et(n−m)/n︸ ︷︷ ︸
m

,e−tm/n, · · · ,e−tm/n︸ ︷︷ ︸
n−m

) (4.2)
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for any t > 0 and that conjugation by at scales all entries in the upper-right block of U by

et(n−m)/netm/n = et . Hence, for this choice of at , we have BT = alogT u([0,1]d)a− logT = u([0,T ]d).

For this reason we will conflate the notation and write BT for both [0,T ]d ⊆Rd and u([0,T ]d)⊆U .

Let ψ be an additive character of U (so ψ(t) = eia·t for some a ∈ Rd). Define measure νT

and (complex) measure µT,ψ on X via duality: for f ∈C∞
c (X) let

∫
X

f dνT = νT ( f ) :=
1
|BT |

∫
BT

f (x0u(t))dt

and

∫
X

f dµT,ψ = µT,ψ( f ) :=
1
|BT |

∫
BT

ψ(t)
(

f (x0u(t))−
∫

X
f dmX

)
dt.

Our main goal in this chapter is to obtain an effective rate of equidistribution along

(multivariate) arithmetic sequences of inputs for the right action of U on X . To do this, we first

present the following lemma, the proof of which closely follows the proof of Lemma 3.1 in

[Ven10] for the case of G = SL2(R) and Γ cocompact.

Lemma 12. Let x0 = Γg0 ∈ X satisfy (3.2c) for T > R >C. Then there exists b > 0 such that for

any f ∈C∞
c (X) and additive character ψ,

∣∣µT,ψ( f )
∣∣� R−bS∞,`( f )

where ` is as in Theorem 11.

Remark. As noted in [Ven10], the significance of this lemma is that the implicit constant is

independent of choice of ψ. This can be shown for highly oscillatory ψ using integration by

parts and for almost constant ψ using equidistribution of the horospherical flow directly, thus

this lemma is most significant for ψ of moderate oscillation. The proof will use our effective

equidistribution result as well as a variety of standard analytic techniques.
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Proof. Let 1≤ H ≤ T and define a complex measure σH on U by

∫
U

gdσH = σH(g) :=
1
|BH |

∫
BH

ψ(t)g(u(t))dt

for g ∈C∞
c (U).

Let f ∗σH be the right convolution of f by σH , i.e., for x ∈ X

f ∗σH(x) =
∫

f (xu(t))dσH(t)

=
1
|BH |

∫
BH

ψ(t) f (xu(t))dt.

Notice that by switching the order of integration (one may verify that the conditions of Fubini’s

theorem are satisfied) and using invariance of the measure mX , we have

∫
X

f ∗σHdmX =
∫

X

1
|BH |

∫
BH

ψ(t) f (xu(t))dt dmX(x)

=
1
|BH |

∫
BH

ψ(t)
(∫

X
f (xu(t))dmX(x)

)
dt

=
1
|BH |

∫
BH

ψ(t)
(∫

X
f dmX

)
dt.

Hence,

µT,ψ( f ∗σH) =
1
|BT |

∫
BT

ψ(t)
(

f ∗σH(x0u(t))−
∫

X
f ∗σHdmX

)
dt

=
1
|BT |

∫
BT

ψ(t)
1
|BH |

∫
BH

ψ(s)
(

f (x0u(t)u(s))−
∫

X
f dmX

)
dsdt

=
1

|BT ||BH |

∫
BT

∫
BH

ψ(t+ s)
(

f (x0u(t+ s))−
∫

X
f dmX

)
dsdt

since U ∼= Rd . Now by switching the order of integration and applying a change of variables, we
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get

µT,ψ( f ∗σH) =
1

|BT ||BH |

∫
BH

∫
BT+s

ψ(t)
(

f (x0u(t))−
∫

X
f dmX

)
dtds.

But we may also write

µT,ψ( f ) =
1
|BT |

∫
BT

ψ(t)
(

f (x0u(t))−
∫

X
f dmX

)
dt

=
1

|BT ||BH |

∫
BH

∫
BT

ψ(t)
(

f (x0u(t))−
∫

X
f dmX

)
dtds.

Thus

|µT,ψ( f )−µT,ψ( f ∗σH)| ≤
1

|BT ||BH |

∫
BH

∫
BT4(BT+s)

∣∣∣∣ f (x0u(t))−
∫

X
f dmX

∣∣∣∣dtds

� 1
|BT ||BH |

∫
BH

|BT4(BT + s)|S∞,0( f )ds.

But notice that BT4(BT +s) is simply the symmetric difference of two shifted cubes, the measure

of which will be maximized when s = (H, · · · ,H) (see Figure 4.1). Hence,

|BT4(BT + s)| ≤ 2(T d− (T −H)d)

= 2(dT d−1H−·· ·±dT Hd−1∓Hd)

� T d−1H.

since H ≤ T implies that the leading term dominates. It follows that

∫
BH

|BT4(BT + s)|ds� T d−1Hd+1.
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T

T

H

H

T −H

T −H

Figure 4.1: The symmetric difference between BT and BT +(H, · · · ,H). The sets BT form a
family of Følner sets in U as T → ∞.

Thus,

|µT,ψ( f )−µT,ψ( f ∗σH)| �
T d−1Hd+1

|BT ||BH |
S∞,0( f ) =

H
T

S∞,0( f ). (4.3)

Now consider the squared quantity

|µT,ψ( f ∗σH)|2 =
∣∣∣∣ 1
|BT |

∫
BT

ψ(t)
(

f ∗σH(x0u(t))−
∫

X
f ∗σHdmX

)
dt
∣∣∣∣2

≤ 1
|BT |2

(∫
BT

∣∣∣∣ f ∗σH(x0u(t))−
∫

X
f ∗σHdmX

∣∣∣∣dt
)2

=
1
|BT |2

〈
1,
∣∣∣∣ f ∗σH(x0u(·))−

∫
X

f ∗σHdmX

∣∣∣∣〉2

L2(BT )

.

By Cauchy-Schwarz, we know that

|µT,ψ( f ∗σH)|2 ≤
1
|BT |2

||1||2L2(BT )

∣∣∣∣∣∣∣∣ f ∗σH(x0u(·))−
∫

X
f ∗σHdmX

∣∣∣∣∣∣∣∣2
L2(BT )

.
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Now, ||1||2L2(BT )
=

∫
BT

12dt = |BT |, and

∣∣∣∣∣∣∣∣ f ∗σH(x0u(·))−
∫

X
f ∗σHdmX

∣∣∣∣∣∣∣∣2
L2(BT )

=
∫

BT

∣∣∣∣ f ∗σH(x0u(t))−
∫

X
f ∗σHdmX

∣∣∣∣2 dt

= |BT |νT

(∣∣∣∣ f ∗σH−
∫

X
f ∗σHdmX

∣∣∣∣2
)

which shows that

|µT,ψ( f ∗σH)|2 ≤ νT

(∣∣∣∣ f ∗σH−
∫

X
f ∗σHdmX

∣∣∣∣2
)
. (4.4)

Hence, by (4.3) and (4.4), we have

|µT,ψ( f )| ≤ |µT,ψ( f )−µT,ψ( f ∗σH)|+ |µT,ψ( f ∗σH)|

� H
T

S∞,0( f )+νT

(∣∣∣∣ f ∗σH−
∫

X
f ∗σHdmX

∣∣∣∣2
)1/2

. (4.5)

To estimate νT

(
| f ∗σH−

∫
X f ∗σHdmX |2

)
, observe that

∣∣∣∣ f ∗σH(x)−
∫

X
f ∗σHdmX

∣∣∣∣2
=

∣∣∣∣ 1
|BH |

∫
BH

ψ(s)
(
[u(s) f ](x)−

∫
X

f dmX

)
ds
∣∣∣∣2

=
1
|BH |2

(∫
BH

ψ(s1)

(
[u(s1) f ](x)−

∫
X

f dmX

)
ds1

)
·
(∫

BH

ψ(s2)

(
[u(s2) f ](x)−

∫
X

f dmX

)
ds2

)
=

1
|BH |2

∫∫
BH×BH

ψ(s1− s2)

(
[u(s1) f ](x)−

∫
X

f dmX

)(
[u(s2) f ](x)−

∫
X

f dmX

)
ds1ds2.

When we apply νT to this, we can change the order of integration so that the innermost integral

is over BT , with the character ψ(s1− s2) outside this integral. We may then integrate separately
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over the four terms we get by expanding the bracketed product above. That is,

νT

(∣∣∣∣ f ∗σH−
∫

X
f ∗σHdmX

∣∣∣∣2
)

=
1
|BH |2

∫∫
BH×BH

ψ(s1− s2)νT

((
u(s1) f−

∫
X

f dmX

)(
u(s2) f−

∫
X

f dmX

))
ds1ds2

=
1
|BH |2

∫∫
BH×BH

ψ(s1− s2)F(s1,s2)ds1ds2 (4.6)

where

F(s1,s2) = νT (u(s1) f ·u(s2) f )

−νT (u(s1) f )
∫

X
f dmX

−νT (u(s2) f )
∫

X
f dmX

+

∣∣∣∣∫X
f dmX

∣∣∣∣2 .
(4.7)

Now from Theorem 11 we know that for arbitrary f̃ ∈ C∞
c (X) and x0 satisfying the

Diophantine basepoint condition (3.2c) with T > R >C, we have

∣∣∣∣νT ( f̃ )−
∫

X
f̃ dmX

∣∣∣∣= ∣∣∣∣ 1
|BT |

∫
BT

f̃ (x0u(t))dt−
∫

X
f̃ dmX

∣∣∣∣� R−γS∞,`( f̃ ),

that is,

νT ( f̃ ) =
∫

X
f̃ dmX +O(R−γS∞,`( f̃ )). (4.8)

Applying this to the function f̃ = u(s1) f , we find that

νT (u(s1) f ) =
∫

X
u(s1) f dmX +O(R−γS∞,`(u(s1) f )).
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But by invariance of mX , we have

∫
X

u(s1) f dmX =
∫

X
f (xu(s1))dmX(x) =

∫
X

f dmX .

Thus

νT (u(s1) f )
∫

X
f dmX =

∣∣∣∣∫X
f dmX

∣∣∣∣2 +O
(

R−γS∞,`(u(s1) f )
∣∣∣∣∫X

f dmX

∣∣∣∣) .

Furthermore, from Sobolev norm property (iii), we know that for f ∈ C∞
c (X) and h ∈ G, we

have S∞,`(h f )�` ||h||`S∞,`( f ), where ||h|| is the operator norm of Adh−1 . Since the entries of

u(s) are bounded by max(1, |s|), we have ||u(s)|| �max(1, |s|)2. Thus for s1 ∈ [0,H] with H ≥ 1,

S∞,`(u(s1) f )�H2`S∞,`( f ). Combining this with the bound
∣∣∫ f dmX

∣∣� S∞,0( f )� S∞,`( f ), we

find that

νT (u(s1) f )
∫

X
f dmX =

∣∣∣∣∫X
f dmX

∣∣∣∣2 +O(R−γH2`S∞,`( f )2).

Likewise,

νT (u(s2) f )
∫

X
f dmX =

∣∣∣∣∫X
f dmX

∣∣∣∣2 +O(R−γH2`S∞,`( f )2).

Therefore, (4.7) becomes simply

F(s1,s2) = νT (u(s1) f ·u(s2) f )−
∣∣∣∣∫X

f dmX

∣∣∣∣2 +O(T−αγH2`S∞,`( f )2).
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Substituting this back into (4.6), we conclude that

νT

(∣∣∣∣ f ∗σH(x)−
∫

X
f ∗σHdmX

∣∣∣∣2
)

� 1
|BH |2

∫∫
BH×BH

∣∣∣∣∣νT (u(s1) f ·u(s2) f )−
∣∣∣∣∫X

f dmX

∣∣∣∣2
∣∣∣∣∣ds1ds2 +R−γH2`S∞,`( f )2. (4.9)

But now notice that

∫
X

u(s1) f ·u(s2) f dmX = 〈u(s1) f ,u(s2) f 〉L2(X) = 〈u(s1− s2) f , f 〉L2(X)

so by the triangle inequality, we can estimate

∣∣∣∣∣νT (u(s1) f ·u(s2) f )−
∣∣∣∣∫X

f dmX

∣∣∣∣2
∣∣∣∣∣

≤
∣∣∣∣νT (u(s1) f ·u(s2) f )−

∫
X

u(s1) f ·u(s2) f dmX

∣∣∣∣
+

∣∣∣∣∣〈u(s1− s2) f , f 〉L2(X)−
∣∣∣∣∫X

f dmX

∣∣∣∣2
∣∣∣∣∣ . (4.10)

Again, by our equidistribution result in (4.8), we know that

∣∣∣∣νT (u(s1) f ·u(s2) f )−
∫

X
u(s1) f ·u(s2) f dmX

∣∣∣∣� R−γS∞,`(u(s1) f ·u(s2) f ) (4.11)

and by properties (ii) and (iii) of Sobolev norms, we have

S∞,`(u(s1) f ·u(s2) f )� S∞,`(u(s1) f )S∞,`(u(s2) f )� H4`S∞,`( f )2 (4.12)
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for s1,s2 ∈ [0,H]. Thus, from (4.12), (4.11), and (4.10), equation (4.9) becomes

νT

(∣∣∣∣ f ∗σH(x)−
∫

X
f ∗σHdmX

∣∣∣∣2
)

� 1
|BH |2

∫∫
BH×BH

∣∣∣∣∣〈u(s1− s2) f , f 〉L2(X)−
∣∣∣∣∫X

f dmX

∣∣∣∣2
∣∣∣∣∣ds1ds2 +R−γH4`S∞,`( f )2. (4.13)

Now from Corollary 9 (ii), we know there exists β2 > 0 such that for any s ∈ Rd ,

∣∣∣∣∣〈u(s) f , f 〉L2(X)−
∣∣∣∣∫X

f dmX

∣∣∣∣2
∣∣∣∣∣�max(1, |s|)−β2S∞,`( f )2. (4.14)

Then for s = s1− s2, we have the following problem: We want to bound the integral in (4.13)

by a power of H, but for (s1,s2) close to the diagonal in BH ×BH we cannot do better than a

constant times the Sobolev norm of f in (4.14). We will address this by integrating separately

over a neighborhood of the diagonal that has small measure (depending on H) and away from the

diagonal where max(1, |s1− s2|) is dominated by H.

To make this precise, let D := {(s1,s2) ∈ BH×BH | s1 = s2} be the diagonal of BH×BH

and define Dε := {(s1,s2) ∈ BH×BH | |s1− s2|< ε}. Notice that D is a d-dimensional subset of

R2d with diameter
√

2dH. Furthermore, any point satisfying |s1− s2|= ε is distance ε/
√

2 from

the diagonal, so Dε is an (ε/
√

2)-neighborhood of D sitting inside [0,H]2d . Thus Dε is contained

within a box in R2d with d side-lengths of
√

2dH and d side-lengths of 2ε/
√

2, so

|Dε| � Hd
ε

d

(see Figure 4.2). In particular, if ε = Hζ (for 0 < ζ < 1 to be determined), then

∣∣∣{(s1,s2) ∈ BH×BH | |s1− s2|< Hζ}
∣∣∣� Hd(1+ζ).
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√
2dH

H

H

ε/
√

2

s2

s2

s1ε

Dε

D

Figure 4.2: The measure of the set where |s1− s2| < ε has measure bounded by Hdεd in
BH ×BH (shown here for one dimensional U).

In this region, the integrand is dominated by 1, so when we integrate over this region and divide

by |BH |2 = H2d (as we are doing in equation (4.13)), we get a term of order Hd(ζ−1)S∞,`( f )2.

On the other hand, for |s1− s2| ≥ Hζ, we can say that

∣∣∣∣∣〈u(s1− s2) f , f 〉L2(X)−
∣∣∣∣∫X

f dmX

∣∣∣∣2
∣∣∣∣∣�max(1, |s1− s2|)−β2S∞,`( f )2

≤ H−ζβ2S∞,`( f )2.

Hence,

1
|BH |2

∫∫
BH×BH

∣∣∣∣∣〈u(s1− s2) f , f 〉L2(X)−
∣∣∣∣∫X

f dmX

∣∣∣∣2
∣∣∣∣∣ds1ds2

� (H−ζβ2 +Hd(ζ−1))S∞,`( f )2

= H−dβ2+2/(d+β2)S∞,`( f )2 (4.15)
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where we have chosen ζ = d/(d +β2) to optimize the error.

Together, the bounds in (4.13) and (4.15) imply that

νT

(∣∣∣∣ f ∗σH(x)−
∫

X
f ∗σHdmX

∣∣∣∣2
)
�
(

R−γH4`+H−dβ2/(d+β2)
)

S∞,`( f )2. (4.16)

Finally, from (4.5) and (4.16), we have

|µT,ψ( f )| �
(

T−1H +R−γ/2H2`+H−dβ2/(2d+2β2)
)

S∞,`( f ).

Since γ < 1 and R < T , the first term decays more quickly that the second, and can be ignored.

Thus the decay is optimized when

H−dβ2/(2d+2β2) = R−γ/2H2`

H = Rγ(d+β2)/(4`d+4`β2+dβ2).

This demonstrates the claim that

|µT,ψ( f )| � R−bS∞,`( f )

where

b =
dβ2γ

8d`+8`β2 +2dβ2
=

dβ1β2

(nd(3n+1)(n−1)2 +2)(2n(n−1)(d +β2)+dβ2)
(4.17)

where we have used the formula for γ in (3.19).

We will now use this lemma to establish an effective equidistribution bound along multi-

variate arithmetic sequences.
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Let K1, . . . ,Kd ≥ 1 and define K to be the diagonal matrix

K := diag(K1, · · · ,Kd) =


K1

. . .

Kd


and |K|= det(K) = K1K2 · · ·Kd .

We want to understand the behavior of

S := ∑
k∈Zd

Kk∈BT

f (x0u(Kk)). (4.18)

For equidistribution, we want this to be close to #{k ∈ Zd|Kk ∈ BT}
∫

X f dmX ≈ T d

|K|
∫

X f dmX .

For x0 satisfying a basepoint property, we have the following result.

Theorem 13. Let K = diag(K1, · · · ,Kd) with T ≥ K1, . . . ,Kd ≥ 1 and determinant |K|. Then for

all x0 ∈ X satisfying (3.2c) with T > R >CK , we have

∣∣∣∣∣∣∣ ∑
k∈Zd

Kk∈BT

f (x0u(Kk))− T d

|K|

∫
X

f dmX

∣∣∣∣∣∣∣
�
(

T dR−b/(d+1)|K|−d/(d+1)+
T d−1 maxi Ki

|K|

)
S∞,`( f )

where CK := max(C,(2/minKi)
(d+1)/b|K|1/b) with C and ` as in Theorem 11.

Proof. Let δ > 0 be small (to be determined) and define the single-variable hat function

gδ(t) := max(δ−2(δ−|t|),0)
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t

gδ(t)

1/δ

−δ δ

Figure 4.3: The single-variable hat function gδ(t). The multivariate bump function we use is
the product of functions of this form in each coordinate.

for t ∈ R and (through slight abuse of notation) the multivariable function

gδ(t) := gδ(t1) · · ·gδ(td)

for t = (t1, · · · , td) ∈ Rd . Notice that
∫
Rd gδ(t)dt = 1 and supp (gδ)⊆ [−δ,δ]d .

Define an approximation to the sum S by

Sapprox :=
∫

BT

(
∑

k∈Zd

gδ(t−Kk)

)
f (x0u(t))dt. (4.19)

That is, instead of averaging f over the lattice points of KZd , we average over small neighborhoods

around the lattice points using the bump function gδ, since ∑k gδ(t−Kk) is supported on a disjoint

union of δ-cubes centered around the points of KZd (that is, so long as δ < mini Ki/2).

We want to show that Sapprox can be written

Sapprox =

 ∑
k∈Zd

Kk∈BT

∫
[−δ,δ]d+Kk

gδ(t−Kk) f (x0u(t))dt

+ r(T,K, f ,d) (4.20)

where r(T,K, f ,d) is an error term depending on T , K1, · · · ,Kd , f , and dimension d. To see this,
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K1

K2

δ

δ

T

T

Figure 4.4: The error r(T,K, f ,d) can be bounded by the number of δ-cubes intersecting the
boundary of BT multiplied by the supremum of f . The area shaded in solid gray indicates the
region over which we are integrating in the definition of Sapprox, whereas the area shaded with
diagonal lines represents the region over which we are integrating in our estimate of Sapprox
given in (4.20).

observe that in both (4.19) and (4.20) we are integrating f against a sum of bump functions

supported on a disjoint union of δ-cubes centered at the lattice points of KZd . However, in (4.19)

we are integrating over the region shaded in solid gray in Figure 4.4, whereas in (4.20) we are

integrating over the region shaded with diagonal lines (that is, we are only integrating against the

hat functions whose centers intersect BT ).

Thus all of the possible error comes from integrating over those δ-cubes that intersect the

boundary of BT . Consider a face of BT that is orthogonal to the ith standard basis vector. It will

intersect at most T/K j +O(1) of these cubes along an edge in the jth direction for j 6= i. Hence,
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the total number of cubes that face intersects can be bounded by

T
K1
· · · T

Ki−1
· T

Ki+1
· · · T

Kd
= T d−1 Ki

|K|
.

Since gδ integrates to one, the error that results from integrating over one of these δ-cubes is

bounded by S∞,0( f ). Then considering all the faces of BT , we see that the error satisfies

|r(T,K, f ,d)| � S∞,0( f )
d

∑
i=1

T d−1 Ki

|K|
� T d−1 maxi Ki

|K|
S∞,0( f ).

Then by a change of variables in (4.20), we have

Sapprox =

 ∑
k∈Zd

Kk∈BT

∫
[−δ,δ]d

gδ(s) f (x0u(Kk+ s))ds

+ r(T,K, f ,d). (4.21)

Also, since
∫
[−δ,δ]d gδ(s)ds = 1, we may rewrite the definition of S in (4.18) as

S = ∑
k∈Zd

Kk∈BT

∫
[−δ,δ]d

gδ(s) f (x0u(Kk))ds

and combining this with (4.21), we obtain

|Sapprox−S| ≤

 ∑
k∈Zd

Kk∈BT

∫
[−δ,δ]d

gδ(s)| f (x0u(Kk+ s))− f (x0u(Kk))|ds


+ |r(T,K, f ,d)|.

But note that from property (iv) of Sobolev norms, we have

| f (x0u(Kk+ s))− f (x0u(Kk))| � S∞,1( f )|s| � S∞,1( f )δ
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for s ∈ [−δ,δ]d. Together with our error bound, this implies that

|Sapprox−S| �

 ∑
k∈Zd

Kk∈BT

∫
[−δ,δ]d

gδ(s)ds

δS∞,1( f )+T d−1 maxi Ki

|K|
S∞,0( f )

=

(
#{k ∈ Zd|Kk ∈ BT}δ+T d−1 maxi Ki

|K|

)
S∞,1( f )

once again, because
∫
[−δ,δ]d gδ(s)ds = 1. But #{k ∈ Zd|Kk ∈ BT} ≈ T d/|K|, also with an error

of magnitude � T d−1 maxi Ki/|K| (for reasons analogous to those illustrated in Figure 4.4).

Therefore

|Sapprox−S| �
(

T d

|K|
δ+

T d−1 maxi Ki

|K|

)
S∞,1( f ). (4.22)

To show that Sapprox and T d

|K|
∫

X f dmX are close, we observe that by Poisson summation,

∑
k∈Zd

gδ(t−Kk) = ∑
k∈Zd

gδ(t+Kk)

= ∑
k∈Zd

g̃δ(K
−1t+k)

= ∑
k∈Zd

ψK−1k(t) ̂̃gδ(k) (4.23)

where ψK−1k(t) = e2πik·(K−1t)= e2πi(K−1k)·t and ̂̃gδ is the multivariate Fourier transform of g̃δ(x) =

gδ(Kx). When we substitute (4.23) into the definition of Sapprox given in (4.19), we get

Sapprox =
∫

BT

(
∑

k∈Zd

ψK−1k(t) ̂̃gδ(k)

)
f (x0u(t))dt

= ∑
k∈Zd

̂̃gδ(k)
(∫

BT

ψK−1k(t) f (x0u(t))dt
)
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where Fubini’s Theorem allows us to switch the order of the sum and the integral. Similarly,

T d

|K|

∫
X

f dmX =

(∫
BT

∑
k∈Zd

gδ(t−Kk)dt+O
(

T d−1 maxi Ki

|K|

))∫
X

f dmX

= ∑
k∈Zd

̂̃gδ(k)
(∫

BT

ψK−1k(t)
∫

X
f dmX dt

)
+O

(
T d−1 maxi Ki

|K|
S∞,0( f )

)

where we have used that |
∫

X f dmX | ≤ S∞,0( f ). Thus

∣∣∣∣Sapprox−
T d

|K|

∫
X

f dmX

∣∣∣∣=
∣∣∣∣∣ ∑
k∈Zd

̂̃gδ(k)
∫

BT

e2πik·(K−1t)
(

f (x0u(t))−
∫

X
f dmX

)
dt

∣∣∣∣∣
+O

(
T d−1 maxi Ki

|K|
S∞,0( f )

)
=

∣∣∣∣∣ ∑
k∈Zd

̂̃gδ(k)|BT |µT,ψK−1k
( f )

∣∣∣∣∣+O
(

T d−1 maxi Ki

|K|
S∞,0( f )

)
. (4.24)

Then since R >C, we can apply Lemma 12 to obtain

∣∣∣∣Sapprox−
T d

|K|

∫
X

f dmX

∣∣∣∣� f T dR−bS∞,`( f ) ∑
k∈Zd

̂̃gδ(k)+
T d−1 maxi Ki

|K|
S∞,0( f )

(by direct computation we can see that ̂̃gδ is positive). Observe how it was crucial here that the

result in Lemma 12 was uniform over characters.

Finally, again by Poisson summation, we have

∑
k∈Zd

̂̃gδ(k) = ∑
k∈Zd

g̃δ(k)

= ∑
k∈Zd

gδ(Kk)

= gδ(0, . . . ,0) = δ
−d

since supp (gδ)⊆ [−δ,δ]d and δ < mini Ki/2 implies that gδ(Kk) = 0 for k 6= (0, . . . ,0). Substi-
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tuting this into equation (4.24), combining it with (4.22), and using property (i) of Sobolev norms,

we get

∣∣∣∣S− T d

|K|

∫
X

f dmX

∣∣∣∣� (T dR−b
δ
−d +

T d

|K|
δ+

T d−1 maxi Ki

|K|

)
S∞,`( f ).

We can optimize the first two terms by choosing δ = (|K|/Rb)1/(d+1). Observe that our only

restriction on δ was that δ < mini Ki/2. This will be achieved with our choice of δ so long as

R > (2/minKi)
(d+1)/b|K|1/b. Thus, under these conditions,

∣∣∣∣S− T d

|K|

∫
X

f dmX

∣∣∣∣� (T dR−b/(d+1)|K|−d/(d+1)+
T d−1 maxi Ki

|K|

)
S∞,`( f ).

If K has all diagonal entries of equal weight (in abuse of notation, say all of weight K)

then we get the following corollary which will be of use to us in the next chapter.

Corollary 14. Let T ≥ K ≥ 1. There exists a constant C̃ > 0 (depending only on n and d) such

that for all x0 ∈ X satisfying (3.2c) with T > R > C̃, we have

∣∣∣∣∣∣∣ ∑
k∈Zd

Kk∈BT

f (x0u(Kk))− T d

Kd

∫
X

f dmX

∣∣∣∣∣∣∣� T dR−b/(d+1)K−d2/(d+1)S∞,`( f ).

Proof. This is a straightforward application of the previous theorem, observing that in this case

(2/minKi)
(d+1)/b|K|1/b = (2d+1/K)1/b ≤ 2(d+1)/b since K ≥ 1. Thus the theorem holds with

C̃ = max(C,2(d+1)/b). Moreover, the second error term in Theorem 13 in this case is simply

T d−1K1−d , and since K,R < T and b < 1, this term decays more quickly than the first and can be

ignored.
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4.2 Γ Cocompact

For X =Γ\G where Γ is a cocompact lattice, we have the following basepoint-independent

versions of Lemma 12, Theorem 13, and Corollary 14, where U is still an abelian horospherical

flow as in (4.1). The proofs of these results are completely analogous to the corresponding proofs

for SLn(Z)\SLn(R), but use the basepoint-independent equidistribution result stated in (3.20)

instead of Theorem 11.

Lemma 15. There exists b > 0 (depending1 on n, d, and Γ) such that for all T large enough, we

have

∣∣µT,ψ( f )
∣∣�Γ T−bS∞,`( f )

for any f ∈C∞(X), x0 ∈ X, and additive character ψ.

Theorem 16. Let K = diag(K1, · · · ,Kd) with T ≥ K1, . . . ,Kd ≥ 1 and determinant |K|. Then for

all T large enough, we have

∣∣∣∣∣∣∣ ∑
k∈Zd

Kk∈BT

f (x0u(Kk))− T d

|K|

∫
X

f dmX

∣∣∣∣∣∣∣
�Γ

(
T d−b/(d+1)|K|−d/(d+1)+

T d−1 maxi Ki

|K|

)
S∞,`( f )

for all f ∈C∞(X) and x0 ∈ X.
1 In this case, b = dβ1β2/((3n+1)(n−1)+2)(2n(n−1)(d+β2)+dβ2). Since β1 and β2 depend on the spectral

gap for the action of SLn(R) on X we may remove dependence on Γ for n ≥ 3 or for n = 2 if Γ is a congruence
lattice.

53



Corollary 17. Let T ≥ K ≥ 1. Then for all T large enough, we have

∣∣∣∣∣∣∣ ∑
k∈Zd

Kk∈BT

f (x0u(Kk))− T d

Kd

∫
X

f dmX

∣∣∣∣∣∣∣�Γ T d−b/(d+1)K−d2/(d+1)S∞,`( f )

for all f ∈C∞(X) and x0 ∈ X.

Chapter 4, in part, has been submitted for publication of the material as it may appear in

the Journal of Modern Dynamics, 2019, McAdam, Taylor, American Institute of Mathematical

Sciences (AIMS), 2018. The dissertation author was the primary investigator and author of this

material.
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Chapter 5

Sieving and Orbits Along Almost-Primes

5.1 Γ Cocompact

Let Γ be a cocompact lattice in G = SLn(R) and let u(t) be an abelian horospherical flow

on X = Γ\G, as in Chapter 4. We know that the orbit of u(t) equidistributes with a uniform

rate for all x0 ∈ X , and that as a consequence we have a uniform rate of equidistribution along

multivariable arithmetic sequences of the form given in Corollary 17. Here and throughout this

chapter, assume k = (k1, · · · ,kd) ∈ Zd .

We want to understand the behavior of orbits at almost-prime entries of u(t). More

precisely, we want to understand averages of positive f ∈ C∞
c (X) over points in BT that have

entries with fewer than a certain fixed number of primes in their prime factorization.

To investigate this question, we will use the following combinatorial sieve theorem (see

[HR74] Theorem 7.4, [IK04] Sections 6.1-6.4, or [NS10] for a form more similar to that stated

here).

Theorem 18 ([HR74, Theorem 7.4]). Let A = {an} be a sequence of nonnegative numbers and
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let P = P(z) = ∏
p<z

p be the product of primes less than z. Define

S(A,P) = ∑
(n,P)=1

an and SK(A) = ∑
n≡0 mod K

an.

Then suppose

(i) There exists a multiplicative function g(K) on K squarefree such that

SK(A) = g(K)X + rK(A)

and for some c1 > 1, we have 0≤ g(p)< 1− 1
c1

for all primes p.

(ii) A has level distribution D(X ), i.e. there is ε > 0 such that

∑
K<D

squarefree

|rK(A)| ≤CεX 1−ε.

(iii) A has sieve dimension r, i.e. there exists a constant c2 > 0 such that for all 2≤ w≤ z, we

have

−c2 ≤ ∑
w≤p≤z

g(p) log p− r log
z
w
≤ c2.

Then for s > 9r, z = D1/s, and X large enough (depending on ε, Cε, and r), we have

S(A,P)�c1,c2,r
X

(logX )r .

56



In the context of our problem, we want to define

S(A,P) := ∑
k∈BT

gcd(k1···kd ,P)=1

f (x0u(k))

where f ∈C∞
c (X), f ≥ 0, and P is the product of primes less than z (to be determined). That is,

we are summing over integer points in BT with entries containing no primes smaller than z in

their prime factorizations. Then let

A = {an} :=

 ∑
k∈BT

k1···kd=n

f (x0u(k))


and observe that

SK(A) := ∑
n≡0 mod K

∑
k∈BT

k1···kd=n

f (x0u(k)) = ∑
k∈B̃T

K|k1k2···kd

f (x0u(k))

where B̃T = (0,T ]d (since the index n starts at 1 we want to avoid counting terms of the form K

divides 0).

Notice that K|k1 · · ·kd if and only if K|k1 · · ·(ki +K) · · ·kd , that is, the collection of points

that we are summing over is periodic with period K in each coordinate. Thus we can rewrite

SK(A) as a sum over cubic grids of side length K based at each point in the first box BK:

∑
k∈B̃T

K|k1···kd

f (x0u(k)) = ∑
k̃∈B̃K

K|k̃1···k̃d

(
∑

Kk∈BT

f (x0u(k̃)u(Kk))+O(T d−1K1−dS∞,0( f ))

)
(5.1)

where the error arises from the fact that a point k̃+Kk for Kk ∈ BT may, in fact, fall outside of

BT (see Figure 5.1).
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K 2K 3K T

K

2K

3K

T

k̃

Figure 5.1: In SK(A) we are summing over the integer points in B̃T such that K|k1 · · ·k2 (filled
in black). We may do this by summing over shifted grids based at each of the points in the first
box B̃K (filled in gray). However, this introduces an error determined by S∞,0( f ) and the number
of points in each of these shifted grids falling outside BT (filled in white). The number of such
points can be bounded by T d−1K1−d , as we have seen before.
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From Corollary 17, we know that at each basepoint xk̃ = x0u(k̃), we have

∑
Kk∈BT

f (xk̃u(Kk)) =
T d

Kd

∫
f dmX +O

(
T d−b/(d+1)K−d2/(d+1)S∞,`( f )

)
. (5.2)

If we let

Gd(K) := #{k ∈ B̃K|k1 · · ·kd ≡ 0 mod K} (5.3)

then (5.1) together with (5.2) says that

SK(A) = ∑
k∈B̃T

K|k1k2···kd

f (x0u(k)) =
Gd(K)

Kd X + r( f ,K,T )

where X = T d ∫ f dmX and

|r( f ,K,T )| �Γ Gd(K)T d−b/(d+1)K−d2/(d+1)S∞,`( f ).

This suggests that our function g(K) in Theorem 18 should be Gd(K)/Kd . It remains

to show that this function satisfies the sieve axioms (i) and (iii) and that the corresponding

remainders satisfy axiom (ii) for appropriately chosen D(X ) = D(T ). Verifying these conditions

gives us the following theorem.

Theorem 19. Let u be a d-dimensional abelian horospherical flow on X = Γ\SLn(R) for Γ

cocompact, and let P be the product of primes less than T α for α < b/9d2, where b is the constant

from Lemma 15. Then for any x0 ∈ X, positive f ∈C∞(X), and T large enough (depending on α,

n, d, Γ, and f ), we have

∑
k∈BT

gcd(k1···kd ,P)=1

f (x0u(k))�
(

T
logT

)d ∫
f dmX .
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Remark. The implicit constants in the conclusion of this theorem depend only d, however b

depends on n, d, and Γ, where dependence on Γ may be removed if n≥ 3 or if Γ is a congruence

lattice.

Remark. Let φ(x,y) be the number of positive integers ≤ x not divisible by any prime ≤ y for

x≥ y≥ 2. It is known that

φ(x,y) =
xω(logx/ logy)− y

logy
+O

(
x

(logy)2

)

where ω : [1,∞)→ [1/2,1] is the Buchstab function. Thus, the number of integers in [0,T ] not

divisible by any prime less than T α for α < 1 is given by

φ(T,T α) =
ω(1/α)T
α logT

− T α

α logT
+O

(
T

(α logT )2

)
.

Thus the number of points k ∈ BT such that gcd(k1 · · ·kd,P) = 1 where P is the product of primes

less than T α is φ(T,T α)d , which grows asymptotically like (T/ logT )d as T → ∞. Although our

result above only states that there is an upper and lower bound with respect to this quantity, it

hints that there may be underlying equidistribution behavior.

Remark. Notice that G2(K) = ∑
K
j=1 gcd(K, j) is Pillai’s arithmetical function,1 a multiplicative

function first considered by Cesàro and rediscovered by Pillai in [Pil33] which counts the number

of non-congruent solutions to the equation k1k2 ≡ 0 mod K. From the definition of Gd in (5.3),

we can see that Gd(K) counts the number of non-congruent solutions to k1k2 · · ·kd ≡ 0 mod K,

1This is a classical function that has been well studied. In terms of Dirichlet convolution, we have the useful
identities G2 = Id ∗φ and G2 = µ ∗ (Id · τ), where φ is Euler’s totient function, µ is the Möbius function, and τ is
the divisor function. In [Bro01], Broughan used this to derive a closed form for the Dirichlet series in terms of the
Riemann zeta function, as well as an asymptotic formula for the partial sums of the Dirichlet series. The asymptotics
for partial sums of the Dirichlet series were later refined by [Bor07a], [Bro07], and [TZ08]. The values of G2(K) for
K = 1,2,3, . . . are given as sequence A018804 in the OEIS [OEIS].
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so it can be considered a generalization of Pillai’s arithmetical function.2 The generalized Pillai’s

functions Gd have several interesting properties and interpretations that are not necessary for the

proof of Theorem 19 which we have included in Appendix B for those interested.

Proof. We need to show that sieve axioms (i), (ii), and (iii) are satisfied for

SK(A) := ∑
k∈B̃T

K|k1···kd

f (x0u(k)) = g(K)X + r( f ,K,T )

where g(K) = Gd(K)/Kd , X = T d ∫ f dmX , and

|r( f ,K,T )| �Γ Gd(K)T d−b/(d+1)K−d2/(d+1)S∞,`( f ).

For K1 and K2 coprime, the Chinese Remainder Theorem implies that there is a bijec-

tion between (k1, · · · ,kd) ∈ B̃K1K2 such that k1 · · ·kd ≡ 0 mod K1K2 and (`1, · · · , `d, `
′
1, · · · , `′d) ∈

B̃K1× B̃K2 such that `1 · · ·`d ≡ 0 mod K1 and `′1 · · ·`′d ≡ 0 mod K2, where ki is the unique integer

in {1, · · · ,d} such that ki ≡ `i mod K1 and ki ≡ `′i mod K2. By counting the number of solutions

in both settings, we have that Gd(K1K2) = Gd(K1)Gd(K2), which shows that Gd (and hence g) is

multiplicative.

For p prime and k ∈ B̃p, k1 · · ·kd ≡ 0 mod p implies that ki = p for some i. Then

the number of such solutions Gd(p) will be the total number of k ∈ B̃p except for those with

ki ∈ {1, · · · , p−1} for all i ∈ {1, · · · ,d}. Thus for p prime, we have

Gd(p) = pd− (p−1)d.

2 Other generalizations of Pillai’s arithmetical function have been studied. Examples include [CSR85], [Tót98],
[Bor07b], [Hau08], and [Tót10], however none of these include the generalization given here. In [Tót13], Tòth
considers a generalization that is very similar to ours, and in the notation of that paper, Gd(K) = Ad−1(K)Kd−1. Sieve
axioms (i) and (iii) can thus be considered corollaries of results proved in [Tót13], but we prove them independently
in order to keep this document self-contained. Tòth also gives a formula for the Dirichlet series of this generalization
in terms of the Dirichlet series of a related arithmetic function, however we will need an explicit estimate for the
partial sums of the Dirichlet series where it does not converge in order to verify sieve axiom (ii).
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Therefore

0 < g(p) =
pd− (p−1)d

pd

= 1−
(

p−1
p

)d

≤ 1−
(

2−1
2

)d

= 1− 1
2d

since p≥ 2. So sieve axiom (i) is satisfied with, e.g., c1 = 2d+1.

For prime p, we have the bound Gd(p) = pd− (p−1)d < d pd−1. By the multiplicativity

of Gd , this implies that for arbitrary squarefree K, we have Gd(K)< dω(K)Kd−1, where ω(K) =

Ω(K) is the number of (distinct) prime factors of K. Then

∑
K<D

squarefree

|r( f ,K,T )| �Γ S∞,`( f )T d−b/(d+1)
∑

K<D
squarefree

Gd(K)K−d2/(d+1)

�Γ S∞,`( f )T d−b/(d+1)
∑

K<D
dω(K)K−1/(d+1).

Now observe that for any ε1 > 0, ω(K)< ε1 log(K) for all but a finite number of squarefree K, so

by appropriately adjusting the implicit constant (depending on ε1) we may write

∑
K<D
|r( f ,K,T )| �Γ,ε1 S∞,`( f )T d−b/(d+1)

∑
K<D

K−1/(d+1)+ε1

�Γ,ε1 S∞,`( f )T d−b/(d+1)Dd/(d+1)+ε1.

Now if we let D = T η for any η < b/d, say η = b/d−2(d +1)ε for ε > 0, and set ε1 = d2ε/b,

we get that

∑
K<D
|r( f ,K,T )| �Γ,ε S∞,`( f )T d(1−ε)�Γ, f ,ε X 1−ε (5.4)
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which demonstrates sieve axiom (ii).

Finally, to verify sieve axiom (iii), notice that (by the binomial theorem)

g(p) =
pd− (p−1)d

pd =
d
p
−

d

∑
i=2

ai

pi (5.5)

where ai = (−1)i(d
i

)
. Since ∑

∞
j=1 log( j)/ ji converges for any i > 1, we have that

∣∣∣∣∣ ∑
w≤p≤z

d

∑
i=2

ai log p
pi

∣∣∣∣∣≤ d

∑
i=2
|ai|

∞

∑
j=1

log j
ji =C2 (5.6)

and by a corollary of the Prime Number Theorem, we know that

∑
p≤x

log p
p

= log(x)+O(1).

Hence,

∑
p≤z

log p
p
− ∑

p<w

log p
p

= log(z)− log(w)+O(1)

∑
w≤p≤z

log p
p

= log
z
w
+O(1)

i.e., there exists C′2 such that

∣∣∣∣∣ ∑
w≤p≤z

log p
p
− log

z
w

∣∣∣∣∣≤C′2 (5.7)

for all 2≤ w≤ z. Putting (5.5), (5.6), and (5.7) together, we see that

∣∣∣∣∣ ∑
w≤p≤z

g(p) log p−d log
z
w

∣∣∣∣∣≤ d

∣∣∣∣∣ ∑
w≤p≤z

log p
p
− log

z
w

∣∣∣∣∣+
∣∣∣∣∣ ∑
w≤p≤z

d

∑
i=2

ai log p
pi

∣∣∣∣∣
≤ dC′2 +C2
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which shows that axiom (iii) is satisfied with sieve dimension r = d and c2 = dC′2 +C2.

Since we have demonstrated that sieve axioms (i), (ii), and (iii) hold, we have the conclu-

sion of Theorem 18. This, along with the various dependencies of the constants in that theorem

on n, d, f , and Γ, implies our result.

From this theorem we may easily deduce the density of almost-prime times in arbitrary

horospherical flows.

Theorem 1. Let u(t) be a horospherical flow of dimension d on X = Γ\SLn(R) for Γ cocompact.

Then there exists a constant M (depending only on n, d, and Γ) such that for any x0 ∈ X, the set

{x0u(k1,k2, · · · ,kd) | ki ∈ Z has fewer than M prime factors}

is dense in X.

Remark. Explicitly, we may take M to be any integer satisfying

M >
9d((3n+1)(n−1)+2)(2n(n−1)(d +β2)+dβ2)

β1β2
(5.8)

where β1, β2 are as in Corollary 9 for the element at is as in (4.2). For example, considering

an abelian horospherical flow in SL3(R) (n = 3, d = 2, β1 = 1/2+ ε, β2 = 1− ε) we may take

M = 30097. In general, M is O(n4d2), and since n−1≤ d ≤ n(n−1), we have that M is O(n6)

in the minimal case and O(n8) in the maximal case.

Proof. First consider u(t) abelian. If an integer k < T has no prime factors less than T α, then

it must have fewer than 1/α prime factors total. Hence, if we take f to be a positive function

supported on any small neighborhood, Theorem 19 tells us that we can take T large enough so

that averaging f over integer points in BT with no prime factors less than T α has a positive lower

bound. This means that the set of almost-prime times with fewer than M prime factors hitting
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any neighborhood is nonempty, where M = 1/α. From Theorem 19, we have α < b/9d2, then

substituting for b gives us the formula in (5.8).

To move from abelian to arbitrary horospherical flows, observe that any horospherical

flow can be written as the product of a unipotent flow (not necessarily horospherical) and an

abelian horospherical flow. Explicitly, an element of U given by



Im1 ai j

0

...

0

Im2 bi j

. . .

0
ImN


can be expressed in the form



Im1 0 · · · 0

0

...

0

Im2 bi j

. . .

0
ImN





Im1 ai j

0

...

0

Im2 0

. . .

0
ImN


.

Let d̃ = m1(n−m1), and let ũ(t1, · · · , td̃) represent the abelian horospherical flow on the right and

v(td̃+1, · · · , td) represent the unipotent flow on the left, so that

u(t1, · · · , td) = v(td̃+1, · · · , td)ũ(t1, · · · , td̃) (5.9)
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for any t1, · · · , td ∈ Rd . Then from the density result in the abelian case, we know that the set

{x̃ũ(k1,k2, · · · ,kd̃) | ki ∈ Z has fewer than M prime factors}

is dense for appropriately chosen3 M and x̃ = x0v(kd̃+1, · · · ,kd), where {kd̃+1, · · · ,kd} are any

fixed almost-primes of order M. This is a subset of the almost-prime times in the larger horo-

spherical flow, so the result follows.

Remark. In fact, we can make Theorem 1 effective by examining the proof of Theorem 19. We

will get a positive lower bound from the sieve in Theorem 18 so long as the main term surpasses

the error term from sieve axiom (ii), i.e. so long as

CεX 1−ε� X
(logX )r .

From (5.4) we see that this means that for fixed ε (suppressing dependence on Γ) we require

S∞,`( f )T d(1−ε)�ε

T d ∫ f dmX

(d logT + log
∫

f dmX)d .

For any small ball of radius r > 0, choose f as in Lemma 4 supported on that ball. For such an f ,

we get a positive lower bound in Theorem 19 if

r−(`+(n2−1)/2)�ε

T dε

(logT )d .

Recall that `= n(n−1)/2. It is sufficient to require that

r−(2n2−n−1)/2�ε T dε/2

T−dε/(2n2−n−1)�ε r.

3The dimension of the relevant abelian subgroup is m1(n−m1), but we can always bound this in terms of d if
desired.
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This gives us the following effective density statement: For any x0 ∈ X , the subset of its

U-orbit consisting of integer times of norm less than T with fewer than M prime factors is

Oε(T−dε/(2n2−n−1))-dense4 in X , where M = 9d2/(b−2d(d +1)ε).

5.2 The Space of Lattices

Now consider X = Γ\G for the non-cocompact lattice Γ = SLn(Z). Since we no longer

have a uniform rate of equidistribution for our abelian horospherical flow u(s), we will consider a

basepoint x0 = Γg0 ∈ X satisfying a Diophantine condition of the following form.

Definition 2. We say that x= Γg is strongly polynomially δ-Diophantine if there exists a sequence

Ti→ ∞ as i→ ∞ such that

inf
w∈Λ j(Zn)\{0}

j=1,··· ,n−1

sup
t∈[0,Ti]d

||wgu(t)||> T δ
i

for all i ∈ N.

The motivation for this definition is that, as in the compact setting, we will want to apply

sieving to learn about integer points having few prime factors. However, unlike in the compact

case, we do not have a uniform rate of equidistribution, so we must consider the effect of the

basepoint. For a given time-scale T , to obtain information about almost-primes of a certain order,

we would want R in the basepoint condition (3.2c) to look like a small power of T (say T δ).

However, a theorem like that of Theorem 19 will require T be “large enough,” which depends on

the function f , and so any fixed time-scale T is insufficient. Moreover, the constant δ we are able

to take at one time-scale may not work for a different time-scale, which affects the number of

prime factors we allow for our almost-prime points. The condition given in Definition 2 ensures

that for any function (hence any neighborhood in X) we will be able to find a time-scale large

4 Recall that a subset is δ-dense if any ball of radius δ contains a point in the subset.
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enough so that our sieving provides positive information about almost-primes of the same, fixed

order.

Before moving on to the main theorem of this section, we briefly remark that this definition

is a meaningful one. In view of results in [KM99], we see that not only do such points exist, but

any generic point for the flow u will satisfy this definition for some positive δ.

Theorem 20. Let u be a d-dimensional abelian horospherical flow on X = SLn(Z)\SLn(R) and

let x0 ∈ X be strongly polynomially δ-Diophantine. Let P be the product of primes less than T α

for α < δbn/9d(d2 +bnκ), where b is the constant from Lemma 12 and κ = min(m,n−m) for m

as in (4.1). Then for any positive f ∈C∞
c (X) there exists a sequence Ti→ ∞ as i→ ∞ where

∑
k∈BTi

gcd(k1···kd ,P)=1

f (x0u(k))�
(

Ti

logTi

)d ∫
f dmX .

Proof. Let f ∈ C∞
c (X), f ≥ 0, and let u be an abelian horospherical flow as given in (4.1) of

Chapter 4. As in the compact setting, we want to use our equidistribution theorem for arithmetic

sequences to say that

SK(A) : = ∑
k∈BTi

K|k1···kd

f (x0u(k))

= ∑
k̃∈B̃K

K|k̃1···k̃d

 ∑
Kk∈BTi

f (x0u(k̃)u(Kk))+O(T d−1
i K1−d)

 (5.10)

= g(K)X + r( f ,K,Ti)

where g(K) = Gd(K)/Kd , X = T d
i
∫

f dmX , and the error terms can be suitably controlled. Unfor-

tunately, we cannot apply the same equidistribution result to the shifted basepoints x0u(k̃) since

they will not necessarily satisfy the same Diophantine condition. However, since K is understood

to be small in comparison to the Ti, all of the points in BK lie comparatively close to x0. Then
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since the Diophantine property varies continuously, we expect the points in this region to satisfy a

Diophantine condition not much worse than that of x0, and in fact we can make this quantitative.

Observe that if x0 is strongly polynomially δ-Diophantine, it means that condition (3.2c)

holds for the sequence of parameters T = Ti and R = T δ/q
i , where q = ∑λi<0−miλi = d/n for

abelian u of this form. That is, for all j ∈ {1, · · · ,n−1} and w ∈ Λ j(Zn)\{0}, we have

∃ t ∈ [0,Ti]
d s.t. ||wg0u(t)||=

∣∣∣∣wg0u(k̃)u(t)u(−k̃)
∣∣∣∣≥ T δ

i . (5.11)

Recall that any w∈Λ j(Rn) can be written as a sum w = ∑I wIeI over multi-indices I = (i1, · · · , i j)

with 0 < i j < · · · < i1 < n, coefficients wI ∈ R, and basis elements eI = ei1 ∧ ·· · ∧ ei j where

{ei}1≤i≤n is the standard basis on Rn. Recall also that the norm above is defined by

||w||= max
I
|wI|

and that G acts linearly on Λ j(Rn) by sending a basis vector ei1 ∧·· ·∧ ei j to

(ei1 ∧·· ·∧ ei j)g = (ei1g)∧·· ·∧ (ei jg).

Since our abelian horospherical subgroup has the form given in (4.1), we can write an

arbitrary u ∈ B−1
K = u([−K,0]d) as

u =



a1(m+1) · · · a1n

Im
...

...

am(m+1) · · · amn

0 In−m


(5.12)
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where ai j ∈ [−K,0] for all 1≤ i≤ m and m+1≤ j ≤ n. One may verify that

eiu = ei +ai(m+1)em+1 + · · ·+ainen

for 1≤ i≤ m, and

eiu = ei

for m+ 1 ≤ i ≤ n. Hence, when we take wedge products (ei1u)∧ ·· · ∧ (ei ju), we cannot get

a coefficient of order greater than Km, since only the first m transformed basis vectors have

nontrivial coefficients and none of these coefficients have magnitude greater than K. On the other

hand, we cannot get a coefficient of order larger than Kn−m, since only the basis vectors em+1

through en carry nontrivial coefficients. Thus if we let κ := min{m,n−m}, we find that

∣∣∣∣(ei1u)∧·· ·∧ (ei ju)
∣∣∣∣� Kκ.

Then for general w ∈ Λ j(Rn) and u ∈ BK , we have

||wu|| � Kκ ||w|| .

Thus from (5.11), we can say that for any w ∈ Λ j(Zn) \ {0}, j ∈ {1, · · · ,n− 1}, there exists

t ∈ [0,Ti]
d such that

Kκ
∣∣∣∣wg0u(k̃)u(t)

∣∣∣∣� ∣∣∣∣wg0u(k̃)u(t)u(−k̃)
∣∣∣∣≥ T δ

i

so

∣∣∣∣wg0u(k̃)u(t)
∣∣∣∣� T δ

i /Kκ
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That is, for any u(k̃) ∈ BK , the shifted basepoint x0u(k̃) satisfies a Diophantine condition of the

form (3.2c) with new parameter proportional to (T δ
i /Kκ)1/q = (T δ

i /Kκ)n/d . From Corollary 14,

this implies that for Ti large enough (i.e. for i large enough), we have equidistribution with

∑
Kk∈BTi

f (x0u(Kk)) =
T d

i
Kd

∫
X

f dmX +O f (T d
i (T

δ
i /Kκ)−nb/d(d+1)K−d2/(d+1)) (5.13)

for any k ∈ BK . Using this in (5.10), we find that

SK(A) = g(K)X + r( f ,K,Ti)

where

|r( f ,K,Ti)| � Gd(K)T d−δnb/d(d+1)
i K(κnb−d3)/d(d+1)S∞,`( f ).

Since we have already shown that the function g(K) = Gd(K)/Kd satisfies sieve axioms (i) and

(iii) with sieve dimension d, it remains to verify sieve axiom (ii). As before, we know that for any

ε1 > 0,

∑
K<D
|r( f ,K,Ti)| � f T d−δnb/d(d+1)

i ∑
K<D

Gd(K)/K(d3−κnb)/d(d+1)

� f ,ε1 T d−δnb/d(d+1)
i D(d2+κnb)/d(d+1)+ε1.

Now let D = T η

i for η < δbn/(d2 +κbn), say, e.g.,

η = δbn/(d2 +κbn)−2εd2(d +1)/(d2 +κbn)

for ε > 0, and set ε1 = (d2 +κbn)ε/δbn. Then

∑
K<D
|r( f ,K,Ti)| � f ,ε T d(1−ε)

i � f X 1−ε.
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Thus for given f , the conclusion of Theorem 18 holds for all i large enough, which gives us

Theorem 20.

As before, if we consider positive f supported on a neighborhood of X , the above theorem

tells us that we may take i large enough so that we have a positive lower bound on averages over

almost-prime points with fewer than 1/α > 9d(d2 +κnb)/δbn prime factors, hence such points

are dense in X . This gives us the theorem for the space of lattices from the introduction.

Theorem 3. Let u(t) be an abelian horospherical flow of dimension d on X = SLn(Z)\SLn(R)

and let x0 ∈ X be strongly polynomially δ-Diophantine for some δ > 0. Then there exists a

constant Mδ (depending5 on δ, n, and d) such that

{x0u(k1,k2, · · · ,kd) | ki ∈ Z has fewer than Mδ prime factors}

is dense in X.

Remark. Explicitly, we have

Mδ >
9d
(
d ·
(
nd(3n+1)(n−1)2 +2

)
· (2n(n−1)(d +β2)+dβ2)+nκβ1β2

)
δnβ1β2

. (5.14)

For an abelian horospherical flow in SL3(R) (n = 3, d = 2, β1 = 1/2− ε, β2 = 1− ε, κ = 1)

we may take Mδ = 220723δ−1. In general, we have Mδ = O(n5d4δ−1), so it is O(n9δ−1) in the

minimal case and O(n13δ−1) in the maximal case.6

Remark. Unfortunately, we cannot easily generalize from abelian to arbitrary flows as we did in

the compact setting. As before, we may write an arbitrary horospherical flow as

u(t1, · · · , td) = v(td̃+1, · · · , td)ũ(t1, · · · , td̃)
5 Strictly speaking, Mδ also depends on κ, however κ≤ n/2. Additionally, the constants β1 and β2 depend solely

on n (for the at and u(t) we fixed at the beginning of Chapter 4) and are O(1) in any case.
6If we use the Remez inequality instead of Theorem 6, we have Mδ = O(n5d3δ−1), and for the example of an

abelian flow in SL3(R), we may take Mδ = 111283δ−1.
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where v is unipotent, ũ is abelian horospherical, and d̃ = m1(n−m1). However, it is not clear

how the Diophantine condition for the flow u at the point x0 relates to any sort of Diophantine

condition for the flow ũ at the point x0v(kd̃+1, · · · ,kd) where {kd̃+1, · · · ,kd} are almost-prime.

Note that we do not consider 0 to be almost-prime, so the set of points of the form x0ũ(k1, · · · ,kd̃)

is not a subset of the larger flow. Moreover, the Diophantine condition depends on the flow

under consideration, and it is possible to be Diophantine for a horospherical flow but not for a

horospherical subset of that flow.

Remark. As in the compact setting , it is possible to extract an effective density statement from

the proof of Theorem 20 of the form: For any strongly polynomially δ-Diophantine x0 ∈ X , there

exists a sequence of times Ti→ ∞ as i→ ∞ such that the subset of its orbit consisting of integer

times of norm less than Ti with fewer than Mδ prime factors is O(T−?i )-dense in LT−?i
(recall from

Section 2.6 that Lε is the compact subset of X consisting of lattices with no nonzero vectors of

norm less than ε).

Chapter 5, in part, has been submitted for publication of the material as it may appear in

the Journal of Modern Dynamics, 2019, McAdam, Taylor, American Institute of Mathematical

Sciences (AIMS), 2018. The dissertation author was the primary investigator and author of this

material.
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Chapter 6

Conclusion

6.1 Directions for Future Work

There are numerous improvements and generalizations of this work that can be readily

imagined, some of which are currently underway.

It seems likely that the methods used here can be generalized to quotients of connected,

semisimple Lie groups by lattices. Moreover, the methods of Chapter 4 can be applied along

a single (central) direction in such a way that in the other flow directions we may select any

discrete set satisfying mild conditions, which in particular are satisfied for primes. For example,

if U < SL3(R) is the Heisenberg group,

U =

u(t1, t2, t3) =


1 t1 t3

0 1 t2

0 0 1

 t1, t2, t3 ∈ R


then the center of U is given by {u(0,0, t3)}t3∈R, and we can show that there is an integer

` such that the set {xu(k1,k2,k3) | k1,k2 prime; k3 has fewer than ` prime factors} is dense in

X = Γ\SL3(R) for any x ∈ X (for Γ cocompact) or for x satisfying a Diophantine condition (for
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Γ non-uniform). This work is currently being prepared for publication with a collaborator.

One may also wish to remove dependence on the basepoint for the number of prime

factors allowed in the almost-prime times when the lattice is non-uniform. Currently, dependence

on the basepoint results from the fact that the number of prime factors depends on the rate of

equidistribution for the continuous flow, which itself varies depending on the basepoint. In the

noncompact setting, it is not possible to obtain a uniform rate of equidistribution for the full

flow, since the rate becomes arbitrarily bad for points near a proper orbit closure. Nonetheless,

Sarnak-Ubis are able to show in [SU15] that almost-prime times of a fixed order are dense in

SL2(Z)\SL2(R) for any nonperiodic horocycle orbit, independent of basepoint. It seems likely

that the core ideas they use can be transported to a higher-dimensional setting. Namely, the

“linearization” technique of Dani-Margulis [MD93] may be used to show that if a basepoint

equidistributes too slowly, then it must spend a significant proportion of time near a proper orbit

closure which is itself a lower-dimensional homogeneous space, such that the almost-prime

times in the orbit we are considering are quantitatively close to the almost-prime times of a

basepoint within this proper subspace. We hope to use an induction-type argument to show that

the almost-prime times in this nearby orbit are dense in the proper subspace, and then use known

results regarding the equidistribution of such proper subspaces within the whole space to complete

the proof.

Some of the methods used in this work may be generalized or modified to study other

interesting sequences in addition to almost-primes. For example, Venkatesh uses effective

equidistribution for arithmetic sequences in the horocycle flow on compact quotients of SL2(R)

to obtain equidistribution for sequences comprised of integer points raised to a small power

[Ven10]. He does this using a Taylor series approximation, which suggests that the approach

could be replicated for other sequences that can be similarly approximated. Additionally, the sieve

methods used Chapter 5 can be modified to learn about averages over points (k1, · · · ,kd) ∈ Rd

satisfying gcd(P (k1, · · · ,kd),P) = 1, where P is a suitably nice irreducible polynomial (note that
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we considered the case where P (k1, · · · ,kd) = k1k2 · · ·kd). Such a result would yield a statement

about integer points in horospherical flows which are not necessarily almost-prime, but which

have other interesting arithmetic properties. More generally, one might hope to axiomatize the

types of sets these methods work for, i.e. provide explicit conditions that guarantee density for a

broad class of discrete subsets of orbits.

Another interesting extension of this work would be to try to find an analogous result

for horospherical flows on the quotient of a semisimple Lie group by a discrete, geometrically

finite, Zariski dense subgroup of infinite covolume, i.e. a thin group. Such spaces can be found

throughout geometry and number theory and are an exciting area of current research. For example,

the curvatures of circles in an Apollonian circle packing are described by the orbit of a thin group

in the orthogonal group preserving a particular quadratic form, and any geometrically finite,

infinite volume hyperbolic 3-manifold can be represented as the quotient of Isom+(H3) by a thin

Kleinian group. For these spaces, we may still define natural geometric flows such as geodesic

and horospherical flows, but many basic dynamical tools break down in the infinite volume setting.

In fact, in this setting neither the geodesic nor horospherical flows will even be recurrent (not to

mention ergodic) with respect to the Haar measure, as most trajectories will disappear toward

infinity. Nonetheless, it is possible to define a subset of the space and certain special measures

supported on this subset with respect to which some of the previous dynamical methods can be

applied (see, e.g., recent works of Kontorovich-Oh [KO11], Oh-Shah [OS13], Mohammadi-Oh

[MO15; MO16], and McMullen-Mohammadi-Oh [MMO16; MMO17; MMO18]).

For example, let G = SO(2,1) ∼= Isom(H2), let Γ < G be a discrete, finitely generated,

Zariski-dense subgroup of infinite covolume, and let A = {at} and U = {ut} be the usual geodesic

and horocycle flows. Define the convex core to be the quotient by Γ of the smallest convex

set in G containing all geodesics connecting points in the limit set corresponding to Γ. Using

Patterson-Sullivan conformal densities developed in [Pat76] and [Sul79], one can define the

Bowen-Margulis-Sullivan measure mBMS and the Burger-Roblin measure mBR on Γ\G. For the
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above setting, mBMS is a finite measure with support in the convex core of Γ that is invariant

and mixing for the A-action. On the other hand, mBR is an infinite measure which is the only

locally-finite U-invariant ergodic measure on Γ\G that is not supported on a closed U-orbit. We

may now ask questions of the form: For any U-orbit that is recurrent to the convex core of Γ\G,

will prime times return to the convex core infinitely often? Will they be dense in the convex

core? To the author’s knowledge, no attempt has yet been made to study these sorts of sparse

equidistribution questions in the infinite volume setting.

6.2 Concluding Remarks

We gave an effective equidistribution result for horospherical flows on the space of lattices

and an effective rate of equidistribution for arithmetic sequences of entries in abelian horospherical

flows on both the space of lattices and compact quotients of SLn(R). We then use sieve methods to

derive an upper and lower bound for averages over almost-prime entries in abelian horospherical

flows. In the compact setting, we have as a result the density of almost-prime times in arbitrary

horospherical orbits, where the number of prime factors depends only on the dynamical system

and not on the basepoint. In the space of lattices, we consider the orbits of points satisfying a

Diophantine condition with parameter δ and we prove the density of almost-prime times where

the number of prime factors depends on the system and on δ.

Of course, the more natural question is not what happens at almost-prime times, but what

happens at prime times. It does not seem possible at present to use these methods to establish

results about true primes, and additional ingredients or a wholly different approach may be

required. However, the results presented here are significant in that they continue to lend support

to the conjecture, already suggested by [SU15], that prime times in horospherical orbits are dense

and possibly equidistributed.
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Chapter 6, in part, has been submitted for publication of the material as it may appear in

the Journal of Modern Dynamics, 2019, McAdam, Taylor, American Institute of Mathematical

Sciences (AIMS), 2018. The dissertation author was the primary investigator and author of

this material. Chapter 6, in part, is currently being prepared for submission for publication of

the material. Luethi, Manuel; McAdam, Taylor. The dissertation author is one of the primary

investigators and authors of this material.
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Appendix A

Radius of Injection

Let G = SLn(R), Γ = SLn(Z), and X = Γ\G be the space of lattices. We want to prove

the following lemma for the radius of injection.

Lemma 5. There exist constants c1,c2 > 0 (depending only on n) such that for any 0 < ε < c1,

the projection map

πx : BG
r (e)→ BX

r (x)

g 7→ xg

is injective for all x ∈ Lε, where r = c2εn.

To do this, we will first need some background on Siegel sets for the action of SLn(Z) on

SLn(R).

A.1 Siegel Sets

Let K = SO(n), let A be the positive diagonal subgroup, and let N be the subgroup of

upper triangular unipotents. The Iwasawa decomposition of G is given by G = NAK. One can
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S

−1/2 1/2

Figure A.1: The Siegel set S = Σ1/2,2/
√

3 and the fundamental domain when n = 2, represented
in the Poincaré upper half plane.

use reduction theory for arithmetic groups to find a convenient way of writing x ∈ X in terms of

particular subsets of these subgroups.

Given ε > 0, define

Aε =

{
diag(a1, · · · ,an) ∈ A

ai+1

ai
≤ ε

}
Nε =

{
u ∈ N |ui, j| ≤ ε ∀i < j

}
.

A Siegel set for G is a set of the form Σs,t := NsAtK for some s, t > 0.

Siegel sets can be thought of as a nice way of approximating a fundamental domain for

the action of Γ = SLn(Z) on G (see Figure A.1). This approximation can be optimized in the

following sense: For any s≥ 1/2 and t ≥ 2/
√

3, G = SLn(R) can be written as

G = ΓΣs,t

(for details and a proof, see [Rag72] Theorem 10.4 or [BM00] Theorem 5.1.7).
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A.2 Proof of Radius of Injection

We start with the following well-known computation.

Lemma 21. Let g ∈ Σ 1
2 ,

2√
3

satisfy Γg ∈ Lε. Then the operator norm of Adg : Matn×n(R)→

Matn×n(R) satisfies

∣∣∣∣Adg
∣∣∣∣� ε

−n

where the implicit constant depends only on dimension n.

Proof. Let g = uak where u ∈U1/2, a = diag(a1, · · · ,an) ∈ A2/
√

3, and k ∈ SO(n). Let {ei}1≤i≤n

be the standard basis on Rn and fix ||·|| to be the max matrix norm on Matn×n(R) (any other norm

will work equally well).

Notice that enu = en for any u ∈U and that ena = anen for a ∈ A. Furthermore, since k

is an orthogonal matrix, we have that ||vk|| ≤
√

n ||v|| for any v ∈ Rn. Then, since Γuak ∈ Lε, we

know that ||vuak|| ≥ ε for all v ∈ Zn \{0}. In particular,

ε≤ ||enuak|| ≤
√

n ||enua||=
√

n ||ena||=
√

nan ||en||=
√

nan.

But since a ∈ A2/
√

3, we can also say

ε/
√

n≤ an ≤ (2/
√

3)an−1 ≤ (2/
√

3)2an−2 ≤ ·· · ≤ (2/
√

3)n−1a1

which means that ai ≥Cε for all 1≤ i≤ n, where C = (
√

3/2)n−1/
√

n. Moreover, since deta =

a1a2 · · ·an = 1, we have that

ai =
1

a1 · · ·ai−1ai+1 · · ·an
≤ 1

Cn−1εn−1
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for any 1≤ i≤ n. This implies that for any 1≤ i, j ≤ n, the ratio ai/a j can be bounded by

ai

a j
≤ 1

Cnεn .

But notice that for an arbitrary matrix m ∈Matn×n(R),

|(ama−1)i j|=
ai

a j
|mi j| ≤C−n

ε
−n|mi j|.

Thus for a ∈ A2/
√

3, under the max norm on matrices, we have

∣∣∣∣ama−1∣∣∣∣≤C−n
ε
−n ||m|| .

Furthermore, since u ∈U1/2, the magnitudes of all entries of u are bounded by 1. It is therefore

relatively straightforward to see (via matrix multiplication) that |(umu−1)i j| ≤ n2 maxi, j |mi j|,

hence
∣∣∣∣umu−1

∣∣∣∣≤ n2 ||m||, and the same follows for k ∈ K. Thus for arbitrary m ∈Matn×n(Rn),

∣∣∣∣gmg−1∣∣∣∣= ∣∣∣∣uakmk−1a−1u−1∣∣∣∣
�
∣∣∣∣akmk−1a−1∣∣∣∣

� ε
−n ∣∣∣∣kmk−1∣∣∣∣

� ε
−n ||m||

where all of the above constants depend solely on n. This implies that

||Ad(g)|| � ε
−n

as claimed.

We may now prove our original lemma for the radius of injection.
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Proof of Lemma 5. Let x ∈ Lε. By Section A.1, we can write x = Γg, for some g ∈ Σ1/2,2/
√

3.

Suppose g1,g2 ∈ BG
r (e) and πx(g1) = πx(g2), i.e. Γgg1 = Γgg2. Then there exists γ ∈ Γ such that

gg1 = γgg2, i.e. g1 = g−1γgg2. From this and left-invariance of the metric, we have that

dG(e,g−1
γg)≤ dG(e,g1)+dG(g1,g−1

γg)

≤ r+dG(gγ
−1g−1g1,e)

≤ r+dG(gγ
−1g−1g1,g2)+dG(g2,e)

≤ r+dG(g1,g−1
γgg2)+ r

= 2r.

But recall that around every point in G there is a neighborhood on which the metric dG

and the metric derived from any matrix norm are Lipschitz equivalent. Hence, around the identity,

for r less than some fixed value depending only on n, we have

∣∣∣∣e−g−1
γg
∣∣∣∣� dG(e,g−1

γg)� r

where ||·|| is the max norm. Finally, by Lemma 21,

||e− γ||=
∣∣∣∣gg−1(e− γ)gg−1∣∣∣∣� ε

−n ∣∣∣∣g−1(e− γ)g
∣∣∣∣= ε

−n ∣∣∣∣e−g−1
γg
∣∣∣∣� r/ε

n.

Thus for a correctly chosen constant c2, r = c2εn implies that

||e− γ||< 1.

But since γ∈ Γ = SLn(Z) has integer entries, this can only happen if γ = e, which implies g1 = g2,

so πx is injective on BG
r (e).
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Appendix A, in part, has been submitted for publication of the material as it may appear

in the Journal of Modern Dynamics, 2019, McAdam, Taylor, American Institute of Mathematical

Sciences (AIMS), 2018. The dissertation author was the primary investigator and author of this

material.
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Appendix B

Properties of the Function Gd

Recall that we defined the generalized Pillai’s function Gd : N→ N by

Gd(K) := #{k ∈ B̃K | k1 · · ·kd ≡ 0 mod K}.

We want to prove the following properties of this function.

Lemma 22. For d ≥ 1, the following hold:

(i) Gd is multiplicative.

(ii) (Behavior at primes) Let p be a prime. Then

Gd(p) = pd− (p−1)d.

(iii) (Squarefree bound) For K squarefree,

Gd(K)< dω(K)Kd−1.
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(iv) (Iterated sum formula)

Gd(K) =
K

∑
kd−1=1

· · ·
K

∑
k1=1

gcd(K,k1 · · ·kd−1).

(v) (Recursive formula) Let Idd(K) = Kd . Then

Gd+1 = Idd ∗ (φ ·Gd).

(vi) (Dirichlet series bound)1 For real x > e and s < d,

∑
K≤x

Gd(K)

Ks �s,d xd−s(logx)d−1.

To do this, let us first recall a few basic facts from number theory. For any function

f : N→ R, we have

K

∑
i=1

f (gcd(K, i)) = ∑
j|K

f ( j)φ(K/ j) (B.1)

where φ is Euler’s totient function, i.e. φ(n) is the number of positive integers less than n that are

relatively prime with n. This formula dates back to the work of Cesàro and is sometimes referred

to as Cesàro’s formula (cf. [Ces85] or [Dic19]).

Recall also the definition of Dirichlet convolution: If f and g are functions on the natural

numbers, then their convolution is defined by

( f ∗g)(K) := ∑
j|K

f ( j)g(K/ j).

So, for example, (B.1) says that ∑
K
i=1 f (gcd(K, i)) = ( f ∗φ)(K). Recall that the convolution of

1This property can be used as an alternative way to verify sieve axiom (ii) in the proofs of Theorems 19 and 20.
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two multiplicative arithmetic functions is again multiplicative. We now have everything we need

to complete the proof.

Proof. Properties (i)-(iii) were proved as part of the proof of Theorem 19. Observe that the

multiplicatvity of Gd also follows directly from the recursive formula in (v) and the fact that the

convolution of multiplicative functions is again multiplicative. Property (ii) can also be easily

proved by induction using the iterated sum formula in (iv).

(iv) Notice that to specify a point k ∈ B̃K such that k1 · · ·kd ≡ 0 mod K, we can choose k1

through kd−1 independently to be any integers between 1 and K, but then the remaining coordinate

kd must be a multiple of K/gcd(K,k1 · · ·kd−1), that is, the last coordinate must contain all primes

in K not contained in any of the previous coordinates. Since there are gcd(K,k1 · · ·kd−1) multiples

of K/gcd(K,k1 · · ·kd−1) less than or equal to K, the total number of points counted in this way is

given by

Gd(K) =
K

∑
kd−1=1

· · ·
K

∑
k1=1

gcd(K,k1 · · ·kd−1).

(v) We will proceed by induction on d. For the base case, we have G2(K) = Id ∗ φ =

Id∗ (φ ·1) = Id∗ (φ ·G1), which is a well-known formula for Pillai’s arithmetical function. Then

suppose Gd = Idd−1 ∗ (φ ·Gd−1) for d ≥ 2 and consider Gd+1.

Notice that for any integers k, n, and m, we can write gcd(k,nm) = gcd(k,ngcd(k,m)),

that is, we can throw out all the primes in m that are not in k. Furthermore, since gcd(k,m)|k, we

can write

gcd(k,ngcd(k,m)) = gcd(k,m)gcd(k/gcd(k,m),n).
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Hence, Gd+1 may be written

Gd+1(K) =
K

∑
kd=1
· · ·

K

∑
k1=1

gcd(K,k1 · · ·kd)

=
K

∑
kd=1
· · ·

K

∑
k1=1

gcd(K,kd)gcd(K/gcd(K,kd),k1 · · ·kd−1)

=
K

∑
kd=1

gcd(K,kd)

(
K

∑
kd−1=1

· · ·
K

∑
k1=1

gcd(K/gcd(K,kd),k1 · · ·kd−1)

)

But now notice that the function gcd(K/gcd(K,kd),k1 · · ·kd−1) is periodic with period

K/gcd(K,kd) in each coordinate ki for i = 1, · · · ,d−1. Thus

K

∑
ki=1

gcd(K/gcd(K,kd),k1 · · ·kd−1) = gcd(K,kd)
K/gcd(K,kd)

∑
ki=1

gcd(K/gcd(K,kd),k1 · · ·kd−1)

for i = 1, · · · ,d−1. Therefore,

Gd+1(K) =
K

∑
kd=1

gcd(K,kd)
d

(
K/gcd(K,kd)

∑
kd−1=1

· · ·
K/gcd(K,kd)

∑
k1=1

gcd(K/gcd(K,kd),k1 · · ·kd−1)

)

=
K

∑
kd=1

gcd(K,kd)
dGd(K/gcd(K,kd)).

But by Cesàro’s formula, this is simply

Gd+1(K) = ∑
j|K

jd
φ(K/ j)Gd(K/ j)

Finally, we can express this in terms of Dirichlet convolution as

Gd+1(K) = (Idd ∗ (φ ·Gd))(K)

which completes our proof by induction.
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(vi) Once again, we proceed by induction on d. Observe that for d = 1, we have

∑
K≤x

G1(K)

Ks = ∑
K≤x

1
Ks .

When 0≤ s < 1, we have that 1/Ks is decreasing, and ∑K≤x 1/Ks ≤ 1+
∫ x

1 1/tsdt. On the other

hand, when s < 0, we have that 1/Ks is increasing, and ∑K≤x 1/Ks ≤
∫ x+1

1 1/tsdt. In either case,

we have

∑
K≤x

G1(K)

Ks �s x1−s

which is the desired bound for d = 1.

Now suppose that for d ≥ 1 we have ∑K≤x Gd(K)/Ks�s,d xd−s(logx)d−1 for all x > e

and s < d. By the complete multiplicativity of Id−s and the recursive formula for Gd , we can

write

Gd+1(K)/Ks = (Idd−s ∗ (Id−s ·φ ·Gd))(K).

Also note that a Dirichlet product ( f ∗g)(K) = ∑ j|K f ( j)g(K/ j) can be seen as a sum over pairs

of positive integers (n,m) whose product is K, i.e.

( f ∗g)(K) = ∑
n,m

nm=K

f (n)g(m).

Hence, the sum

∑
K≤x

( f ∗g)(K) = ∑
n,m

nm≤x

f (n)g(m) = ∑
n≤x

f (n) ∑
m≤x/n

g(m)

is a sum over pairs of integers whose product is no greater than x. Also notice that φ(n)< n for
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any positive integer n. Thus for any s < d +1 and x > e, we may write

∑
K≤x

Gd+1(K)

Ks = ∑
K≤x

(Idd−s ∗ (Id−s ·φ ·Gd))(K)

= ∑
n≤x

1
ns−d ∑

m≤x/n

φ(m)Gd(m)

ms

< ∑
n≤x

1
ns−d ∑

m≤x/n

Gd(m)

ms−1 .

Then since s < d +1, we have s−1 < d. Also, notice that for n < x/e, we have x/n > e, so the

induction hypothesis applies to sums over m≤ x/n for n in this region. On the other hand, for

n≥ x/e, we have x/n≤ e, so a sum over m≤ x/n is only a sum over the first two terms, m = 1

and m = 2, and can thus be bounded by a constant (depending on s and d). Hence, we may write

∑
K≤x

Gd+1(K)

Ks < ∑
n≤x

1
ns−d ∑

m≤x/n

Gd(m)

ms−1

= ∑
n<x/e

1
ns−d ∑

m≤x/n

Gd(m)

ms−1 + ∑
x/e≤n≤x

1
ns−d ∑

m≤x/n

Gd(m)

ms−1

�s,d ∑
n<x/e

1
ns−d (x/n)d+1−s log(x/n)d−1 + ∑

x/e≤n≤x

1
ns−d

�s,d xd+1−s
∑

n<x/e

log(x/n)d−1

n
+ ∑

x/e≤n≤x

1
ns−d .

Observe that ∑x/e≤n≤x
1

ns−d �s,d xd+1−s (this can be seen with a calculation similar to that of the

base case). On the other hand, the function log(x/t)d−1/t is positive and decreasing in the region

(1,x/e), so we may bound the sum by the first term plus the corresponding integral:

∑
n<x/e

log(x/n)d−1

n
≤ (logx)d−1 +

∫ x/e

1

log(x/t)d−1

t
dt.
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With the substitution u = log(x/t), we find that

∫ x/e

1

log(x/t)d−1

t
dt =

∫ logx

1
ud−1du =

(logx)d−1
d

.

In total, we have that

∑
K≤x

Gd+1(K)

Ks �s,d xd+1−s
(

1+(logx)d−1 +(logx)d
)

� xd+1−s(logx)d

since x > e, and this completes the proof.

Appendix B, in part, has been submitted for publication of the material as it may appear

in the Journal of Modern Dynamics, 2019, McAdam, Taylor, American Institute of Mathematical

Sciences (AIMS), 2018. The dissertation author was the primary investigator and author of this

material.
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Birkhäuser, Boston, MA, 1996.

95



[KO11] A. Kontorovich and H. Oh. “Apollonian circle packings and closed horospheres on
hyperbolic 3 manifolds”. In: J. Amer. Math. Soc. 24.3 (2011), pp. 603–648.

[LO12] M. Lee and H. Oh. “Effective equidistribution of closed horocycles for geometrically
finite surfaces”. Preprint at arXiv:1202.0848. 2012.

[Lin06] E. Lindenstrauss. “Invariant measures and arithmetic quantum unique ergodicity”.
In: Ann. of Math. (2) 163.1 (2006), pp. 165–219.

[LM14] E. Lindenstrauss and G. A. Margulis. “Effective estimates on indefinite ternary
forms”. In: Israel J. Math. 203.1 (2014), pp. 455–499.

[LMMS] E. Lindenstrauss, G. A. Margulis, A. Mohammadi, and N. Shah. “Quantitative
behavior of unipotent flows and an effective avoidance principle”. Preprint at
arXiv:1904.00290. 2019.
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[Str13] A. Strömbergsson. “On the deviation of ergodic averages for horocycle flows”. In: J.
Mod. Dyn. 7.2 (2013), pp. 291–328.
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