
UCLA
UCLA Previously Published Works

Title
OnlineStats.jl: A Julia package for statistics on data streams

Permalink
https://escholarship.org/uc/item/28b378gm

Journal
The Journal of Open Source Software, 5(46)

ISSN
2475-9066

Authors
Day, Josh
Zhou, Hua

Publication Date
2020

DOI
10.21105/joss.01816

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/28b378gm
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

OnlineStats.jl: A Julia package for statistics on data streams

Josh Day1, Hua Zhou2

1Loon Analytics, LLC

2UCLA Biostatistics

Summary

The growing prevalence of big and streaming data requires a new generation of tools. Data often

has infinite size in the sense that new observations are continually arriving daily, hourly, etc. In

recent years, several new technologies such as Kafka (Apache Software Foundation, n.d.-a) and

Spark Streaming (Apache Software Foundation, n.d.-b) have been introduced for processing

streaming data. Statistical tools for data streams, however, are under-developed and offer only

basic functionality. The majority of statistical software can only operate on finite batches and

require re-loading possibly large datasets for seemingly simple tasks such as incorporating a few

more observations into an analysis.

OnlineStats is a Julia (Bezanson, Edelman, Karpinski, & Shah, 2017) package for high-

performance online algorithms. The OnlineStats framework is easily extensible, includes a large

catalog of algorithms, provides primitives for parallel computing, and offers a weighting

mechanism that allows new observations have a higher relative influence over the value of the

statistic/model/visualization.

Interface

Each algorithm is associated with its own type (e.g. Mean, Variance, etc.). The OnlineStats

interface is built on several key functions from the OnlineStatsBase package. A new type

must provide implementations of these functions in order to use the rest of the OnlineStats

framework.

Updating

OnlineStatsBase._fit!(stat, y)

The _fit! method determines how the statistic stat is updated with a single observation y.

Each OnlineStat is a concrete subtype of OnlineStat{T}, where T is the type of a single

observation. The fit!(stat::OnlineStat{T}, y::T) method simply calls _fit!. When fit!

(stat::OnlineStat{T}, y::S) is called (where S is not a subtype of T), y is iterated through and

fit! is called on each element.

Update Weights—Many OnlineStats incorporate a weight function that determines the

influence of the next observation. For example, the online update for a mean μ(t) given its

current state μ(t−1) and new observation yt is

HHS Public Access
Author manuscript
J Open Source Softw. Author manuscript; available in PMC 2020 June 10.

Published in final edited form as:
J Open Source Softw. 2020 ; 5(46): . doi:10.21105/joss.01816.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

μ(t) = 1 − t−1 μ(t − 1) + t−1yt .

OnlineStats generalizes this update to use weights that are a function of t:

μ(t) = [1 − w(t)]μ(t − 1) + w(t)yt .

Therefore, for example, w(t) = t−1 returns the analytical mean and w(t) = λ (0 < λ < 1)

returns an exponentially weighted mean.

Merging

OnlineStatsBase._merge!(stat1, stat2)

The _merge! function merges the state of stat2 into stat1 and facilitates parallel computation.

This function is optional to implement, as merging is not guaranteed to be well-defined for a

given statistic/algorithm. The default definition prints out a warning that no merging

occurred.

Returning the State

OnlineStatsBase.value(stat, args...; kw...)

The value function returns the value of the estimator (optionally determined by positional

arguments args and keyword arguments kw). Depending on the type, this may need to be

calculated from its state. By default, this returns the first field of the type.

OnlineStatsBase.nobs(stat)

The nobs function returns the number of observations that the statistic has seen. By default

this returns the n field from the algorithm’s type (stat.n).

Example

The Mean type provides an easy-to-understand full example of how to implement a new

algorithm. The update formula, as previously stated, is:

μ(t) = [1 − w(t)]μ(t − 1) + w(t)yt .

The merge formula for two means, μ1
(t) and μ2

(s), generalizes the above equation to:

μmerged
(t + s) = [1 − s/(t + s)]μ1

(t) + [s/(t + s)]μ2
(s) .

Day and Zhou Page 2

J Open Source Softw. Author manuscript; available in PMC 2020 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Converting these formulas into Julia code, we get the following implementation. Note that

Mean is parameterized by the data type that stores the mean value so that non-standard types

such as complex numbers can be used.

mutable struct Mean{T,W} <: OnlineStat{Number}

 : :T

 weight: :W

 n: :Int

end

function Mean(T: :Type{<:Number} = Float64; weight = inv)

 Mean(zero(T), weight, 0)

end

function _fit!(o: :Mean{T}, x) where {T}

 o.n += 1

 w = T(o.weight(o.n))

 o. += w * (x - o.)

end

function _merge!(o: :Mean, o2: :Mean)

 o.n += o2.n

 o. += (o2.n / o.n) * (o2. - o.)

end

References

Apache Software Foundation. (n.d.-a). Kafka. Retrieved from https://kafka.apache.org

Apache Software Foundation. (n.d.-b). Spark streaming. Retrieved from https://spark.apache.org/
streaming/

Bezanson J, Edelman A, Karpinski S, & Shah VB (2017). Julia: A fresh approach to numerical
computing. SIAM Review, 59(1), 65–98. doi:10.1137/141000671

Day and Zhou Page 3

J Open Source Softw. Author manuscript; available in PMC 2020 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://kafka.apache.org
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/

	Summary
	Interface
	Updating
	Update Weights

	Merging
	Returning the State

	Example
	References

