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Abstract

Photoplethysmography (PPG) is a noninvasive way to monitor various aspects of the circulatory 

system, and is becoming more and more widespread in biomedical processing. Recently, deep 

learning methods for analyzing PPG have also become prevalent, achieving state of the art results 

on heart rate estimation, atrial fibrillation detection, and motion artifact identification. 

Consequently, a need for interpretable deep learning has arisen within the field of biomedical 

signal processing. In this paper, we pioneer novel explanatory metrics which leverage domain-

expert knowledge to validate a deep learning model. We visualize model attention over a whole 

testset using saliency methods and compare it to human expert annotations. Congruence, our first 

metric, measures the proportion of model attention within expert-annotated regions. Our second 

metric, Annotation Classification, measures how much of the expert annotations our deep learning 

model pays attention to. Finally, we apply our metrics to compare between a signal based model 

and an image based model for PPG signal quality classification. Both models are deep 

convolutional networks based on the ResNet architectures. We show that our signal-based one 

dimensional model acts in a more explainable manner than our image based model; on average 

50.78% of the one dimensional model’s attention are within expert annotations, whereas 36.03% 
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of the two dimensional model’s attention are within expert annotations. Similarly, when 

thresholding the one dimensional model attention, one can more accurately predict if each pixel of 

the PPG is annotated as artifactual by an expert. Through this testcase, we demonstrate how our 

metrics can provide a quantitative and dataset-wide analysis of how explainable the model is.

Keywords

Deep neural network; PPG signal quality; biomedical informatics

I. INTRODUCTION

Photoplethysmography (PPG) utilizes optoelectronic technology to detect changes in the 

blood volume of tissues, from which it can infer physiological signals and characteristics of 

the human body. It is used to monitor cardiac function, detect arrhythmia, and measure the 

blood-oxygen saturation level, heart rate, and heart rate variability [1]. Conventionally, this 

analysis has been done by traditional machine learning approaches [2]–[4]. However, in 

more recent years, deep learning models for PPG signal are becoming more and more 

prevalent [5]–[9]. With this shift in methodology in both processing PPG and doing artifact 

detection, a need for the interpretability of these deep learning models has arisen. Because of 

their complexity, deep learning models have become so-called “black boxes,” often 

achieving great performance without revealing how these decisions are being made. 

Moreover, deep learning models do not always act in a reasonable manner; they can suffer 

from problems like biased training sets [10] or simply poor decision-making logic [11]. In 

high stakes situations like healthcare one erroneous algorithm, without human oversight, 

could lead to terrible outcomes. Therefore, to catch these mistakes as well as to enable 

healthcare practitioners to more widely adopt these deep learning models, more and more 

research is being done into understanding the decision making process of these deep 

learning models [12]–[14]. Finally, explaining these deep learning models is especially 

important in PPG quality assessment. There are a set of tasks, such as artifact localization, 

estimating signal and artifact proportions, or artifact segmentation, which may be solved 

using deep learning models’ explanations. In sum, explainable models for PPG quality 

assessment have robust performance and can be useful in solving auxiliary tasks.

Currently, in the literature, there exists a variety of different methods to understand deep 

learning algorithms, some of which can be applied to signal processing and some of which 

cannot. One popular class of methods for visualizing neural network attention are saliency 

based methods such as Deconvolutional Saliency [15], Guided Saliency [16], and Integrated 

Gradients [17], among others [18], [19]. Such methods produce a heatmap quantifying the 

importance of different parts of the image or signal. However, these methods are local, only 

explaining the behavior of a deep learning model on a single image. They are also qualitative 

and difficult to use in rigorous comparison of different deep learning models. There exist 

other techniques, like Decision Tree Regularization or Activation Maximization, which do 

explain the model’s global behavior [18], [20]–[22]. Yet, each of these techniques are not 

readily applicable to models for processing signals. Decision Tree Regularization has 
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difficulty dealing with high dimensional signal or image data, whereas Activation 

Maximization is qualitative and does not provide a rigorous way to compare models.

In this paper, our contributions are as follows. First, we provide novel explainability metrics 

which leverage domain-based expert knowledge to validate the reasoning behind a given 

deep learning model’s predictions. Our approach compares the neural networks’ attention to 

a human expert’s annotations and measures the difference over the whole dataset. Our first 

metric, Congruence, calculates the proportion of model attention within human annotations. 

Our second metric, Annotation Classification, thresholds the model attention to determine 

whether model attention covers all of the human annotations. The key difference between 

metrics is that Annotation Classification considers the spread of model attention, where 

Congruence does not. These metrics are general and can be easily applied to other signals 

provided the proper expert annotations. Second, we demonstrate using these metrics to 

perform comparative analysis. We train a new one-dimensional convolutional network on 

PPG artifact detection and use the explainability metrics to compare it to our previous 

model. Since the metrics are inherently numerical and are aggregated over the whole dataset, 

they provide a framework for the objective, global comparison of the explainability of 

different models. Finally, we perform experiments on our explainability metrics and find 

weak to moderate correlations (correlation coefficient around 0.3–0.4) between accuracy and 

explainability, while none of these correlations reach statistical significance after Bonferroni 

correction for multiple corrections. This reinforces the idea that more explainable models 

tend to be more reasonable and therefore accurate, but it also provides evidence that 

explainability cannot be quantified through accuracy alone. These explainability metrics, 

thus, quantify a different dimension of the model, beyond its performance.

In upcoming sections of the paper, we will adhere to the following terminologies. A model is 

considered “explainable” if it can consistently provide justifications or “explanations” for its 

decisions which agree with expert analysis. In this paper, our models are deep convolutional 

neural networks which give explanations in the form of attention maps. Additionally, a 

model is considered “reasonable” if it actually makes decisions in a similar fashion to 

experts. The saliency-based attention methods we use have strong theoretic reasons why the 

attention maps they produce mirror the model’s actual decision-making process [17], [19]. 

Thus, in our context, “explainable” models have a high chance of being “reasonable.”

II. RELATED WORK

A. PHOTOPLETHYSMOGRAPHY SIGNAL PROCESSING

We first review the relevance of deep learning in PPG signal processing before looking into 

the approaches to explaining convolutional neural networks. Deep learning has become more 

and more widespread in analysis of PPG signal. CorNET and Deep PPG are two popular 

neural network architectures for heart rate estimation based on PPG, which use the end to 

end deep neural network approach to outperform the traditional machine learning methods 

[5], [8]. PPG-based atrial fibrillation detection is another widely developed area which 

heavily uses deep neural networks [7]. For example, Kwon et al. compared the performance 

between 1D-CNN and RNN on 75 patients, concluding that 1D-CNN has the best 

performance [6]. Also, Shen et al. achieved 95% AUC on the 0.4M records dataset annotated 
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by clinicians, and the 10K records from the NSR dataset [9]. These studies tend to be done 

in ambulatory settings, creating the most similar conditions to the final application. 

Additionally, these works lean to use large datasets in order to cover all the variability of the 

population. Based on this, promising results have been achieved using deep learning models 

to detect AF from PPG signal in outpatients [9], [23]–[25]. With this rise in deep learning in 

healthcare, as Ahmad et al. notes, there has been a recent push towards explainable or 

interpretable Machine Learning [12]. Black box models are powerful tools for medical 

purposes, yet must be treated with caution [13], [14]. They are susceptible to many different 

issues from data leakage to unrepresentative datasets, which render the models 

ungeneralizable.

B. DEEP LEARNING INTERPRETABILITY

In recent years, a lot of work has been done with model interpretability. Interpretability 

techniques for machine learning can be broken up into two classes: local explanations and 

global explanations [12], [13]. Essentially, local explanations explain the model behavior on 

individual training instances, whereas global explanations explain the model behavior over 

the whole dataset. We first discuss the applications of various global methods to interpreting 

signal processing models before surveying the local explanatory methods.

1) GLOBAL EXPLANATORY METHODS—Activation Maximization is one class of 

explanatory methods which has recently gathered an increased amount of attention due to its 

ability to generate human-interpretable representations of different filter within a 

convolutional network. The first paper to apply Activation Maximization to convolutional 

networks was Simonyan et al., who used backpropagation to modify the input image to 

maximize the activation of an intermediate convolutional filter [18]. Subsequent papers have 

used techniques like center-biased regularization or generative modeling to improve the 

human interpretability of the images generated [20], [21]. Such an approach, however, might 

not be fit for explaining signal-based methods. First, signal processing is less intuitive than 

image recognition, so the images produced by Activation Maximization may be less 

understandable in the field of signal processing. Second, Activation Maximization is unable 

to do rigorous and quantitative analysis. Other global explanatory methods, including Tree 

Regularization or Network Dissection, cannot be applied to signal processing for other 

reasons [22], [26]. Tree Regularization seems unfit for general signal processing as decision 

trees become difficult to interpret in high dimensional data, and signal-processing lacks the 

highly annotated dataset which Network Dissection requires.

2) LOCAL EXPLANATORY METHODS—We now direct our attention to local 

explanatory methods. One relevant class of locally explainable models is convolutional 

networks augmented with attention [27]. In such a case, the convolutional networks are 

trained to limit their vision to specific parts of the image, using network architecture which 

purposefully removes irrelevant information. From each image, then, it is possible to reclaim 

a map of the model’s attention, which would act as the explanation of the model’s behavior. 

To establish a fair comparison between our current model and our previous model, we did 

not adopt such an approach, as it would have required architectural changes. However, it 
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should be noted that our method of comparing model attention and expert attention would 

work just as well on these attention maps.

Perhaps the most widespread class of local explanations are saliency methods. These 

methods use backpropagation or variants of backpropagation to track which areas of the 

image influence the model’s predictions the most. To our knowledge, the first such saliency 

method was deconvolutional saliency by Zeiler and Fergus, yet since then, many different 

methods have been developed based on this initial deconvolutional saliency [15]–[19]. In 

this paper, we use guided saliency, DeepSHAP, and integrated gradients. In brief, guided 

saliency involves taking the gradients of the model with respect to the input image but 

backpropagating through ReLU activations differently than deconvolutional saliency. 

Integrated gradients is done by taking the gradients on the interpolations between a reference 

image and the original image, and averaging these gradients. DeepLIFT, and later 

DeepSHAP, similarly uses a reference image, but instead of calculating derivatives, it 

calculates “difference-from-reference” values back throughout the image using a novel 

algorithm similar to backpropagation. These methods can identify model attention on a 

single image, but they are local to that single image. Such attention maps, then, may be 

unrepresentative of a wider trend. Similar to other methods, they are also not quantitative 

and therefore have trouble providing a rigorous approach to comparative analysis between 

models.

III. METHODS

We designed a method for aggregating local attention maps to find global, quantitative 

explainability metrics which can be used for rigorous comparisons between deep 

convolutional networks. Essentially, we visualize a convolutional model’s attention via 

DeepSHAP, Integrated Gradients, or Guided Saliency and compare these maps to expert 

annotations. Our two metrics are Congruence, which measures the proportion of the model’s 

attention within the expert annotations (the validity of the model attention), and Annotation 
Classification, which roughly measures the proportion of expert annotations covered by the 

model’s attention (the spread of the model attention). We reason that if the model’s attention 

highlights regions which the annotators marked as essential, then the model’s attention can 

be considered explainable. Our explainability metrics were applied to two deep learning 

models on PPG Signal Quality Index Assessment. One was a two-dimensional ResNet18, 

which used He et al.’s original architecture, and the other was a specialized one-dimensional 

ResNet34, which used Dai et al’s proposed architecture [28], [29]. There were 78278 

instances in the training set and 2683 instances in the testing set. Moreover, the onset and 

offset of artifact in each of the testing set segments were annotated, and these annotations 

were used to compute our explainability metrics. In the following subsections, we first 

describe the model architecture and training and testing procedure before examining the 

mathematics behind each explainability metric.

A. DEEP LEARNING BASED PPG SQI ASSESSMENT

1) ResNet ARCHITECTURE—ResNet, short for Residual Network, is a classic neural 

network architecture. It first appeared in 2015, winning that year’s Image Net competition, 
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and has since become widespread in a variety of different computer vision tasks [29]. The 

fundamental breakthrough of ResNet stemmed from the concept of the “residual block.” 

Each block stacks convolution layers as before, yet also adds the original input to the output 

of the convolution block. This “skip-connection” mitigates the problem of vanishing 

gradients, allowing deeper models to be trained successfully. In our study, we use Dai et al.’s 

Resnet-34 for 1D signal data and the vanilla Resnet-18 for 2D image data [28], [29]. The 

architecture and weights of the two dimensional Resnet-18 comes from our previous paper 

[30].

B. TRAINING AND VALIDATION PROCEDURE

In terms of our hardware setting, the training process of the model was run on a machine 

with Intel I9–7900K with 128GB RAM. Besides that, one Nvidia GTX 2080Ti was used for 

tensor computation. Inside of the model, GLOROT_UNIFORM is selected as the initializer 

function for each convolution kernel with the kernel size of 80. During training, we applied 

binary cross entropy as the loss function and the Adam optimizer with 1e-4 as the learning 

rate [31]. The models were trained for fifty epochs, and after each epoch, the performance 

on the validation set was calculated. In the end, the model at the end of the epoch with the 

best performance on the validation set was selected as the final model.

C. NOTATION FOR EXPLAINABILITY METRICS

We visualized the model’s attention over the testing dataset consisting of 825 artifactual 

examples. Each example is denoted (xi, zi). Here, xi is a 30-second one dimensional PPG 

signal broken up into 7201 separate data points xi,j. Each zi represents the human 

annotations and can also be broken down into 7201 data points zi,j. We have that zi,j is 1 if 

the datapoint is within the human annotations, 0 if not. Finally, the model’s attention on xi is 

denoted zi and is also indexed by j. This model attention is acquired by using one of 

DeepSHAP, Guided Saliency, or Integrated Gradients, and then taking the absolute value of 

these measurements, as discussed in section III.D. Note that for the image-based ResNet, the 

model’s attention will be two dimensional. To calculate the one dimensional model attention 

vector zi, we take the maximum attention over the columns.

D. CALCULATING MODEL ATTENTION ON A SINGLE PPG SEGMENT

To calculate the attention of a convolutional neural network on a single PPG segment, one 

should apply one of DeepSHAP, Guided Saliency, or Integrated Gradients. The absolute 

value of these saliency maps can be considered the model’s attention. This is because, as 

shown in Figure 1, both positive and negative contributions are usually within the human 

annotated regions. If any part of the example contains artifact, then the whole example is 

deemed artifactual, so an optimal predictor would ignore non-artifactual PPG. Instead, the 

model must pay careful attention to the most irregular PPG sections and determine if the 

irregular PPG is artifactual or not. Therefore, we hypothesize that the reasons deterring the 

model from classifying the PPG as artifactual will exist in the irregular sections. The 

absolute values of DeepSHAP or Integrated Gradients better quantify the model’s attention. 

Note that we need not take the absolute values of Guided Saliency because Guided Saliency 

already removes all negative contributions.
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E. CONGRUENCE

Congruence, our first explainability metric, measures the proportion of the model attention 

which is within the human annotations. It measures whether the model is looking at a 

reasonable place when making decisions and is defined on a single example as follows:

Cong zi, zi = zi ⋅ zi
∑jzi, j

= ∑jzi, j ⋅ zi, j
∑jzi, j

(1)

Note that zi,j, the human annotation, has value either zero or one. The denominator measures 

the total amount of model attention; the numerator measures the total amount of model 

attention with the human annotations. Congruence then measures the proportion of the 

model attention which is within the human annotations. To calculate congruence over a 

whole dataset, the we average the congruences of each datapoint in that dataset.

F. ANNOTATION CLASSIFICATION

Importantly, congruence does not provide information about the coverage of the model’s 

attention. Congruence may be equal to one, even if all of the model’s attention is focused on 

only one pixel within the human annotations. To measure the coverage of the model’s 

attention on the human annotations, we propose a second explainability metric, annotation 

classification. This metric measures the difference in the attention maps between the 

annotated and nonannotated regions of the signal. Each PPG segment is broken down into 

multiple smaller segments and the maximum attention on each segment is thresholded to 

predict or “classify” whether the data was annotated as essential or nonessential. The 

threshold starts at zero and iterates, in sorted order, through each segment’s maximum 

attention value. Consequentially, every change in the segment classification is recorded. At 

each given threshold, the number of true positives and false positives for this essential/

nonessential classification task can be calculated. By iterating through thresholds in 

monotonically increasing order, a full ROC curve can be constructed. The ROC curve here 

represents how much predictive power the model attention has in predicting the importance 

of the smaller data segment. Finally, the AUROC is our metric and a quantitative measure of 

the ROC. Variations of this metric can be derived from this method and differ in how each 

datapoint is broken down into smaller segments.

1) PIXEL ANNOTATION CLASSIFICATION—The first metric is named “Pixel 

Annotation Classification” and involves breaking down each data point into pixels. For each 

pixel, we threshold zi, j to classify whether each pixel is in the expert annotated zones. 

Finally, we take the AUROC to be our metric. This gives us a measure of how similar model 

attention is to human annotations on a pixel level.

2) SECTIONAL ANNOTATION CLASSIFICATION—The second classification metric 

is named “Sectional Annotation Classification.” Instead of thresholding the pixel values 

directly, we break each example into different sections, as marked out by the human 

annotations. Then we consider the maximum model attention within each section and 

threshold it to classify whether the section is annotated as artifactual or non-artifactual. 

Because artifactual and non-artifactual have different sizes on average, it is possible taking 
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the maximum model attention within each section introduces some bias. We further discuss 

the potential impact of this bias in the limitations subsection of the discussion (section VI.F).

3) INTERVAL ANNOTATION CLASSIFICATION—The final metric is named “Interval 

Annotation Classification.” We now take the maximum model attention on fixed intervals 

which remain constant over all the images. For instance, we broke our 30 second PPG 

segments into six 5-second intervals. If any portion of the interval was deemed artifactual by 

the human annotations, the whole interval was counted as artifactual. Then we thresholded 

the maximum model attention over these fixed intervals to do classification.

IV. COHORT

A. COHORT SELECTION

1) TRAINING SET—Biomedical signals were acquired from 3764 patients in the 

intensive care unit (ICU) from 3/2013 to 12/2016 [32]. The training set was composed of 

four 30-sec segments of signals which were randomly selected and extracted from each 

patients’ bedside monitors. The retrospective use of this automatically archived dataset for 

this study was approved by UCSF IRB with a waiver of patient consent (IRB approval 

number: 16–18764).

2) TEST SET—The test set comes directly from our previous work [30] where more 

details can be found. It consists of 13 stroke patients who had entered the Neurointensive 

Care Unit at UCSF from October 2016 to January 2018 [30]. To be added to the test set, 

each patient need to be diagnosed with acute ischemic stroke and give proper consent. The 

guidelines for proper consent was that each patient was at least 18 years old and capable of 

understanding the protocols to which they were consenting. For instance, all patients spoke 

English and those with significant problems related to their attention, alertness, cognitive 

function, or communication were excluded unless a legally authorized representative could 

consent on their behalf. All enrolled patients provided written consent after being informed 

of the protocols approved by UCSF’s Institutional Review Board.

In total, between three and twenty-two hours of biomedical signals were recorded per stroke 

patient. Each patient’s data was further broken down into multiple 30-second segments. 

Eight of the thirteen patients had atrial fibrillation episodes already documented by the 

clinicians at the time of admission on the Neurointensive Care Unit.

B. ANNOTATION

This section outlines the annotation process for the training and test set. The labeling and 

annotating was done and described in our previous work [33].

1) QUALITY LABELING—A subset of randomly selected PPG segments from training 

set were assigned to the labelers without overlapping. For the test set, a subset of randomly 

selected PPG segments from the cohort of stroke patients was assigned to all labelers (n = 

3). The test set consisted only of those segments that all labelers agree on, ensuring a 

congruent test set (2683 out of 3000 records). During the labeling process, the segments can 

be labeled as: Good Quality, Bad Quality or Not Sure. From our previous work, we created a 

ZHANG et al. Page 8

IEEE Access. Author manuscript; available in PMC 2021 March 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



definition for a good quality segment based on the physiological context, that need to fulfil 

the rules: 1) reflect the response of blood volume to the underlying pathophysiological 

characteristics of the cardiovascular system, irrespective of the particular shape of the pulse; 

2) show a consistent number of inflection points; 3) be artifact-free and 4) be free of 

irregular shapes that cannot be explained by ECG changes [33].

2) PERCENTAGE OF ARTIFACT—We annotated each PPG segment in the test set by 

marking the onsets and offsets of artifactual within a 30-second segment. These annotations 

were not used as class labels and did not affect the training process, but instead were used 

for validating the explainability of the deep learning model’s attention. As opposed to 

assigning labels, the annotation of artifact was done by a single person.

V. RESULTS ON REAL DATA

A. EVALUATION APPROACH

We first compared the different models’ performances on the testing set to see how well 

each model discerns artifactual from non-artifactual PPG. Then we evaluated each of the 

models’ different explainability to validate their performances. Finally, as a follow up study, 

we measured how correlated explainability and model performance is. We do not perform 

comparisons between our metrics and other explainability metrics because we were unable 

to find such metrics to do proper comparisons. This is further examined in the discussion 

section.

B. MODEL PERFORMANCE ON THE TESTING SET

After training, performance on the testing set was determined. To binarize the classification 

output into discrete categories (artifactual or artifact-free), a threshold of 0.5 was used. 

Subsequently, sensitivity, specificity, and accuracy were calculated. The one dimensional 

ResNet model maintains a higher sensitivity, whereas the two dimensional ResNet model, 

presented in the previous paper, has a higher specificity [30]. Both two dimensional and one 

dimensional models have a good accuracy (> 98%), but the one dimensional ResNet model 

also outperforms the two dimensional model.

C. MODEL EXPLAINABILITY ON THE TESTING SET

Table 2 shows the performance of our models when aggregating the attention maps 

generated by different explanatory metrics. For instance, “DeepSHAP” refers to how we 

generate the attention maps of each individual PPG segment, and “Pixel” refers to how we 

aggregate these maps. The terms Pixel, Sectional, and Interval represent Pixel-based, 

Sectional-based, and Interval-based Annotation Classification, respectively. For each metric, 

the one dimensional model has higher explainability than the two dimensional model, 

invariant of the explanatory metric. On average, the one dimensional model has 0.1475 

higher Congruence and 0.0975 higher Annotation Classification score than the two 

dimensional ResNet. Additionally, both models seem to be best at Interval Annotation 

Classification, and worst at Pixel Annotation Classification. Over both models, Interval, 

Sectional, and Pixel Classification have average Annotation Classification scores of 0.761, 

0.686, and 0.652, respectively.
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D. DETERMINING CORRELATION BETWEEN EXPLAINABILITY AND PERFORMANCE 
METRICS

To determine the consistency of our different explanatory metrics with performance metrics, 

such as accuracy, NPV, and specificity, we ran a total of 25 additional one dimensional 

ResNet models with the same hyperparameters and architecture as before. For these 25 

models, we varied the dataset size, using 5%, 10%, 20%, 40%, and 50% of the data to 

induce overfitting, so that the testing accuracy would be varied. Specifically, for each dataset 

size, we trained five separate models. Furthermore, as the explanatory metrics are only 

defined on artifactual data, and artifactual data is classified as ‘negative’ by the model, we 

considered NPV and Specificity without considering PPV and Sensitivity. We observed 

weak to moderate correlation between the different explanatory metrics and performance 

metrics, although most of them don’t reach statistical significance (p > 0.05) and none after 

adjustment for multiple comparisons (p > 0.008). Some models which were fairly accurate 

(>90%) performed poorly on the explanatory metrics, whereas other models which 

performed well on the explanatory metrics were relatively inaccurate in classifying the 

testing set. In general, however, more explainable models tended towards being more 

accurate. The Pearson correlation coefficients calculated on the entire set of models have 

been displayed in Table 3. Beyond that, Figure 2 contains a scatterplot comparing 

Congruence to Testing Accuracy. Here, the points have been colored to show how dataset 

size influences this correlation. For more details on how dataset size affects performance and 

explainability metrics, see Figure S1 and Table S1 in the supplementary materials.

VI. DISCUSSION

A. IMPORTANCE OF EXPLANABILITY METRICS

Explainability is important in any application which uses deep learning, especially in the 

healthcare domain. For high-stakes environments like healthcare, domain experts often 

require insight into the model’s decision making process. Our explainability metrics 

quantify whether a given deep learning model is explainable, or whether the explanations 

provided by visualizing the model’s attention align with expert annotations. This increases 

domain experts’ insight and therefore trust of a given deep learning model. Moreover, if one 

accepts that the explanations provided by the model are a good proxy for the model’s true 

decision-making process, then ensuring that a model is explainable also helps prevent 

unreasonable models from being deployed. Explainability metrics then enable quantitative 

comparison of different model’s reasonableness.

Explainability is especially important in PPG quality assessment for a variety of reasons. 

Beyond robustness and building trust, a model with explainable attention maps can perform 

tasks such as artifact localization, estimating signal and artifact proportions, or even artifact 

segmentation. In other words, the attention maps of a deep learning model trained to do PPG 

quality assessment have the potential to complex localization tasks. We plan to explore this 

in future works.
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B. DIFFERENCES BETWEEN CONGRUENCE AND ANNOTATION CLASSIFICATION

The key difference between Congruence and Annotation Classification is that Congruence 

does not consider the coverage of expert annotation, whereas Annotation Classification does. 

A model with high Congruence and low Annotation Classification may have most of its 

attention concentrated on a few pixels within expert annotation boundaries. Such a model 

may have high Congruence, as a large proportion of its attention is valid. However, when 

thresholding to do annotation classification, the model attention may only be used to classify 

a small proportion of the intervals or pixels properly. In this way, Annotation Classification 

rewards broad coverage of each artifactual section/interval/pixel.

C. COMPARISON OF MODELS

The attention maps of the one dimensional model are more similar to the human annotations 

than the attention maps of the two dimensional model. This is corroborated by all the 

different combinations of metrics and saliency method; in all of these fields, the one 

dimensional model performs in a more explainable manner than the two dimensional model. 

This comparison helps demonstrate how simple it is to do model comparisons with these 

explainability metrics. With our quantitative analysis, one might even be able to design an 

algorithm similar to hyperparameter tuning which runs multiple models and optimizes for a 

combination of performance and explainability. Furthermore, this analysis is not limited to 

PPG data; all the steps are repeatable on other signals such as Electrocardiogram or 

Electroencephalogram signals. The only limiting factor is expert annotations of the sections 

of the signal important for signal analysis.

D. WEAK TO MODERATE CORRELATION BETWEEN EXPLANATORY AND 
PERFORMANCE METRICS

To understand the weak to moderate correlation between the explanatory and performance 

metrics, we examine some non-intuitive models. Some models have high accuracy but low 

explainability. These models often fall into two classes. Either their attention is scattered 

uniformly on the example, or their attention is concentrated on the non-artifactual sections of 

the example. In both cases, the explainability metrics uncover the fact that deeper analysis is 

required on such models before the models are used in a real-world setting. The converse 

may happen as well; some models have high explainability but low accuracy. This can 

happen when the bias term for the model’s final feedforward layer is wrong; the model may 

predict ‘non-artifactual’ for each example regardless of the actual data. Surprisingly, some of 

these biased models actually pay attention to the artifactual data in making their predictions. 

We conclude that the model is learning valid pattern recognition, yet this is being out-

weighed by the model’s bias term. In either case, the inconsistent and non-significant 

correlations between explanatory and performance metrics indicate additional insights can 

be offered by proposed metrics on top of conventional performance metrics about the deep 

learning models.

E. LACK OF BASELINES

When introducing a new metric, it is recommended to compare the proposed metric to other 

baseline metrics. However, to our knowledge, existing metrics applicable to signal 
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processing do not offer global and quantitative analysis of model attention, so a comparison 

with other metrics is difficult. For instance, a comparison between the proposed metrics and 

saliency methods is uninformative, as the proposed methods are global, whereas saliency 

methods are local. Our metrics are not designed to replace saliency methods, but instead aim 

to provide a system for rigorous comparisons of saliency attention maps. In other words, our 

metrics are explicitly based on saliency methods. Finally, both saliency methods and 

activation maximization are qualitative, so comparison with these metrics is difficult as well. 

Instead, the proposed metrics are valuable because they are the first globally representative, 

yet quantitative metrics which can be applied to signal processing.

F. LIMITATIONS

From a biomedical perspective, our dataset may have some limitations. For one, the size of 

our testing dataset is modest, at around 2700 data points. This size may not be representative 

to all the heterogeneities of the populations. For instance, we did not include other 

arrhythmias besides atrial fibrillation. Another limitation may come from our expert 

annotations on the testing dataset of where the artifact is localized; there may be high 

variability between annotators’ thoughts on where the artifact is. As we only had a single 

annotator, our annotations may be inaccurate. Note that the inaccuracy due to the single-

annotator is expected to be moderate and tolerable, as the annotator was very experienced 

and was involved in all annotation projects. Moreover, label annotations had good agreement 

(Kappa coefficient 0.83) due to clear rules of what counts as artifact [33].

Our machine learning methods may have some limitations as well. It is possible that saliency 

methods do not truly reflect model attention, or that the model behavior cannot be quantified 

in simple heatmaps. Additionally, Sectional or Interval Annotation Classification uses the 

maximum attention over a section or interval, which may bias longer segments to be marked 

as more important. In the case of interval annotation classification, both artifactual intervals 

and non-artifactual intervals have the same length, so this is not a problem. However, the 

same cannot be said of Sectional Annotation Classification. As artifactual sections are on 

average much smaller than non-artifactual sections, this biases the non-artifactual sections to 

be marked as more important. As a result, the Sectional Annotation Classification may 

underestimate model explainability and should be used with caution when large variation in 

intervals exists across different conditions to be classified. Finally, our methods only analyze 

model attention on artifactual PPG segments, as those have the proper expert annotations. It 

is possible that if one was able to analyze model attention on the non-artifactual PPG, one 

would reach a wider understanding of the model’s behavior.

VII. CONCLUSION

In this work, we presented two metrics, Congruence and Annotation Classification, for 

quantifying the validity of model attention maps by comparing them to expert annotations. 

Congruence measures the proportion of model attention within the expert annotations, and 

Annotation Classification indirectly measures the amount of expert annotations covered by 

model attention. These explainability metrics are both quantitative and global, making them 

well suited for rigorous model comparisons. We demonstrated an application of our metrics 
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on a novel model for PPG artifact detection, and such an application is easily transferable to 

processing other signals, provided one has the right expert annotations. Finally, through 

some other experiments, we determined that model performance on PPG artifact 

classification was weakly to moderately correlated with model explainability. This provides 

evidence that these new metrics provide novel insights into the model which are not covered 

by performance metrics.
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ACKNOWLEDGMENT

The experiments and data analyses were done at UCSF when authors (OZ, CD, TP, and XH) were at UCSF, and the 
manuscript development was done at Duke University that the corresponding author XH is now affiliated. The 
authors would like to thank all colleagues who contributed to the annotation of both PPG quality and artifact 
proportion.

This work was supported in part by the NIH award R01NHLBI128679, in part by the UCSF Middle-Career 
scientist Award, and in part by the UCSF Bakar Computational Health Sciences Institute.

Biographies

OLIVER ZHANG was born in Mountain View, California, CA, USA, in 2002. He 

graduated from Proof High School, in 2020. He is currently pursuing the bachelor’s degree 

in computer science with Stanford University. In the past, he has interned at various 

companies and at UCSF, where this work was completed. His research interests include 

model explainability and applications of deep learning to the healthcare domain.

CHENG DING received the B.S. degree in computer science from Anhui University, Hefei, 

China, in 2013, the M.S. degree in software engineering from the University of Science and 

Technology of China, Hefei, in 2017, and the second M.S. degree in statistics from The 

University of Arizona, Tucson, AZ, USA. He is currently pursuing the Ph.D. degree in 

electrical and computer engineering with Duke University, Durham, USA.

Since 2018, he has been a Research Assistant with the Hu Lab, University of California at 

San Francisco. His research interests include electronic health record data management and 

ZHANG et al. Page 13

IEEE Access. Author manuscript; available in PMC 2021 March 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



developing machine learning and deep learning algorithms to detect the early stage of a 

clinical endpoint.

TANIA PEREIRA received the master’s and Ph.D. degrees in biomedical engineering from 

the University of Coimbra, Portugal, in 2009 and 2014, respectively. She then finished her 

postdoctoral training at the University of Lleida, Spain, in 2017, and the University of 

California at San Francisco, San Francisco, CA, USA, in 2019. She is currently an Assistant 

Researcher with the INESC TEC - Institute for Systems and Computer Engineering, 

Technology and Science, Portugal, where she conducts research in the fields of image and 

signal processing and the applications of machine learning in biomedical research.

RAN XIAO (Member, IEEE) received the master’s and Ph.D. degrees from the School of 

Electrical and Computer Engineering, University of Oklahoma, in 2010 and 2015, 

respectively.

He then finished his postdoctoral training at the University of Oklahoma (2016), University 

of Southern California (2017), and University of California San Francisco (2019). He is 

currently an Assistant Professor at Duke University School of Nursing, where he conducts 

research in the field of biomedical informatics and application of signal processing and 

machine learning in biomedical research. He was a recipient of the Brain-Computer 

Interface Scholarship from the BCI Society in 2013, and the winner of the Jos Willems Early 

Career Investigator Competition from the International Society for Computerized 

Electrocardiology in 2018.

KAIS GADHOUMI received the Ph.D. degree in biomedical engineering from McGill 

University, and the master’s degree in electrical engineering from the University of 

Sherbrooke. He is currently an Assistant professor at the Clinical Health Systems and 

Analytics Division, Duke School of Nursing. Before joining Duke, he was an Assistant 

Researcher and Associate Director of the Hu Lab, UCSF. His research interests are focused 

on digital health and precision medicine, specifically the application of artificial intelligence 

ZHANG et al. Page 14

IEEE Access. Author manuscript; available in PMC 2021 March 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and advanced signal processing in the development of biomedical data-driven predictive 

models. He is the Co-Founder and Ex-Head of Analytics of Stratuscent Inc., a Montreal 

based start-up developing next-generation intelligent chemical sensors and sensing 

platforms. He previously worked in telecommunication industry for eight years, where he 

held different technical positions. He is a member of numerous scientific societies in US and 

Canada and a recipient of many academic and professional awards.

KARL MEISEL is currently an Assistant Professor of Neurology with the University of 

California at San Francisco (UCSF) and provided direct supervision of residents/fellows and 

patients admitted with the neurovascular disease. Also, he has developed an automated 

online screening survey for disability and depression of stroke in clinical patients. As the 

attending physician on the neurovascular service, he teaches residents, medical students, and 

fellows. He has collaborated successfully to produce a number of publications, including the 

NIH funded POINT trial. He was the local PI of the RESPECT-ESUS and STROKE-AF 

trials. His position is the Director of the Stroke Clinic, UCSF, in which he evaluates stroke 

patients who have an embolic stroke of undetermined source (ESUS) enrolling qualifying 

patients into the NIH funded ARCADIA trial as the local PI. He is also the local PI of PFO 

closure studies by Abbott and GORE that evaluates the outcome of patients with ESUS 

treated with PFO closure. His passion is to prevent future strokes by early detection and the 

intervention of risk factors. His passion has also led to his effort to develop a PPG 

monitoring system to detect atrial fibrillation.

RANDALL J. LEE received the M.D. and Ph.D. degrees in pharmacology from the 

University of California, Los Angeles, CA, USA, in 1984. He completed his medicine 

residency at Harbor-UCLA, in 1988; concluded his Cardiology Fellowship at Stanford 

University, in 1991; and finished his clinical training in cardiac electrophysiology at the 

University of California, San Francisco, CA, USA, in 1992.

He is a Cardiologist and a Cardiac Electrophysiologist who specializes in the treatment of 

arrhythmias and prevention of stroke. In addition to the development of devices and 

techniques for the treatment of arrhythmias and embolic stroke prevention, he has an active 

cardiac tissue engineering laboratory for myocardial repair/reconstruction.

ZHANG et al. Page 15

IEEE Access. Author manuscript; available in PMC 2021 March 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



YIRAN CHEN (Fellow, IEEE) received the B.S. and M.S. degrees from Tsinghua 

University and the Ph.D. degree from Purdue University, in 2005. After five years in 

industry, he joined the University of Pittsburgh as an Assistant Professor in 2010 and then 

promoted to Associate Professor with tenure in 2014, held Bicentennial Alumni Faculty 

Fellow. He is currently a tenured Associate Professor of the Department of Electrical and 

Computer Engineering, Duke University, and is serving as the Director of NSF Industry–

University Cooperative Research Center (IUCRC) for Alternative Sustainable and Intelligent 

Computing (ASIC) and the Co-Director of the Duke Center for Evolutionary Intelligence 

(CEI), focusing on the research of new memory and storage systems, machine learning and 

neuromorphic computing, and mobile computing systems. He has published one book and 

more than 350 technical publications and has been granted 93 US patents. He received six 

best paper awards and 12 best paper nominations from international conferences. He is a 

recipient of NSF CAREER Award and ACM SIGDA Outstanding New Faculty Award. He is 

a Distinguished Member of the ACM, a Distinguished Lecturer of the IEEE CEDA, and a 

recipient of the Humboldt Research Fellowship for Experienced Researchers. He serves or 

has served the Associate Editor of several IEEE and ACM transactions/journals and has 

served on the technical and organization committees of more than 50 international 

conferences.

XIAO HU (Senior Member, IEEE) received the bachelor’s and master’s degrees in 

biomedical engineering from the University of Electronic Science and Technology, in 1996 

and 1999, respectively, and the Ph.D. degree in biomedical engineering from the University 

of California at Los Angeles (UCLA), in 2004. He is the Ann Henshaw Gardiner 

Distinguished Professor of Nursing with Duke University. He also has secondary 

appointment at the Departments of Neurology, Surgery, and Biostatistics and 

Bioinformatics, School of Medicine, and the Department of Electrical and Computer 

Engineering, Pratt School of Engineering, Duke University. He became an Independent 

Researcher at the Department of Neurosurgery, UCLA, in 2006. He has been the Principal 

Investigator of numerous NIH-funded projects. He has published more than 130 journal 

articles and held nine U.S. patents. His expertise includes biomedical signal processing, the 

mathematical modeling of cerebral hemodynamics, machine learning, database/informatics 

systems, and software development. He is the Editor-in-Chief of Physiological Measurement 
and a Standing Panel Member of the NIH/CSR Biomedical Computing and Health 

Informatics Study Section.

ZHANG et al. Page 16

IEEE Access. Author manuscript; available in PMC 2021 March 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



REFERENCES

[1]. Allen J, “Photoplethysmography and its application in clinical physiological measurement,” 
Physiol. Meas, vol. 28, no. 3, pp. R1–R39, Mar. 2007. [Online]. Available: http://stacks.iop.org/
0967-3334/28/i=3/a=R01?key=crossref.71c24bedf5376f8de1a8ea975615500b [PubMed: 
17322588] 

[2]. Bashar SS, Miah MS, Karim AHMZ, Al Mahmud MA, and Hasan Z, “A machine learning 
approach for heart rate estimation from PPG signal using random forest regression algorithm,” in 
Proc. Int. Conf. Electr., Comput. Commun. Eng. (ECCE). Cox’s Bazar, Bangladesh: IEEE, Feb. 
2019, pp. 1–5. [Online]. Available: https://ieeexplore.ieee.org/document/8679356/

[3]. Green EM, van Mourik R, Wolfus C, Heitner SB, Dur O, and Semigran MJ, “Machine learning 
detection of obstructive hypertrophic cardiomyopathy using a wearable biosensor,” NPJ Digit. 
Med, vol. 2, no. 1, p. 57, Dec. 2019. [Online]. Available: http://www.nature.com/articles/
s41746-019-0130-0 [PubMed: 31304403] 

[4]. Zhang Q, Zeng X, Hu W, and Zhou D, “A machine learning-empowered system for long-term 
motion-tolerant wearable monitoring of blood pressure and heart rate with ear-ECG/PPG,” IEEE 
Access, vol. 5, pp. 10547–10561, 2017. [Online]. Available: http://ieeexplore.ieee.org/document/
7933339/

[5]. Biswas D, Everson L, Liu M, Panwar M, Verhoef B-E, Patki S, Kim CH, Acharyya A, Van Hoof 
C, Konijnenburg M, and Van Helleputte N, “CorNET: Deep learning framework for PPG-based 
heart rate estimation and biometric identification in ambulant environment,” IEEE Trans. 
Biomed. Circuits Syst, vol. 13, no. 2, pp. 282–291, Apr. 2019. [Online]. Available: https://
ieeexplore.ieee.org/document/8607019/ [PubMed: 30629514] 

[6]. Kwon S, Hong J, Choi E-K, Lee E, Hostallero DE, Kang WJ, Lee B, Jeong E-R, Koo B-K, Oh S, 
and Yi Y, “Deep learning approaches to detect atrial fibrillation using photoplethysmographic 
signals: Algorithms development study (preprint),” JMIR mHealth uHealth, vol. 7, Nov. 2018, 
Art. no. e12770. [Online]. Available: http://preprints.jmir.org/preprint/12770

[7]. Pereira T, Tran N, Gadhoumi K, Pelter MM, Do DH, Lee RJ, Colorado R, Meisel K, and Hu X, 
“Photoplethysmography based atrial fibrillation detection: A review,” NPJ Digit. Med, vol. 3, no. 
1, p. 3, Dec. 2020. [Online]. Available: http://www.nature.com/articles/s41746-019-0207-9 
[PubMed: 31934647] 

[8]. Reiss A, Indlekofer I, Schmidt P, and Van Laerhoven K, “Deep PPG: Large-scale heart rate 
estimation with convolutional neural networks,” Sensors, vol. 19, no. 14, p. 3079, Jul. 2019. 
[Online]. Available: https://www.mdpi.com/1424-8220/19/14/3079

[9]. Shen Y, Voisin M, Aliamiri A, Avati A, Hannun A, and Ng A, “Ambulatory atrial fibrillation 
monitoring using wearable photoplethysmography with deep learning,” in Proc. 25th ACM 
SIGKDD Int. Conf. Knowl. Discovery Data Mining. Anchorage, AK, USA: ACM, Jul. 2019, pp. 
1909–1916. [Online]. Available: http://dl.acm.org/citation.cfm?doid=3292500.3330657

[10]. Caruana R, Lou Y, Gehrke J, Koch P, Sturm M, and Elhadad N, “Intelligible models for 
HealthCare: Predicting pneumonia risk and hospital 30-day readmission,” in Proc. 21th ACM 
SIGKDD Int. Conf. Knowl. Discovery Data Mining. Sydney, NSW, Australia: ACM, Aug. 2015, 
pp. 1721–1730. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2783258.2788613

[11]. Gianfrancesco MA, Tamang S, Yazdany J, and Schmajuk G, “Potential biases in machine 
learning algorithms using electronic health record data,” JAMA Internal Med, vol. 178, no. 11, p. 
1544, Nov. 2018. [PubMed: 30128552] 

[12]. Ahmad MA, Teredesai A, and Eckert C, “Interpretable machine learning in healthcare,” in Proc. 
IEEE Int. Conf. Healthcare Informat. (ICHI). New York, NY, USA: IEEE, Jun. 2018, p. 447. 
[Online]. Available: https://ieeexplore.ieee.org/document/8419428/

[13]. Carvalho DV, Pereira EM, and Cardoso JS, “Machine learning interpretability: A survey on 
methods and metrics,” Electronics, vol. 8, no. 8, p. 832, Jul. 2019. [Online]. Available: https://
www.mdpi.com/2079-9292/8/8/832

[14]. Holzinger A, Biemann C, Pattichis CS, and Kell DB, “What do we need to build explainable AI 
systems for the medical domain?” 2017, arXiv:1712.09923. [Online]. Available: http://
arxiv.org/abs/1712.09923

ZHANG et al. Page 17

IEEE Access. Author manuscript; available in PMC 2021 March 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://stacks.iop.org/0967-3334/28/i=3/a=R01?key=crossref.71c24bedf5376f8de1a8ea975615500b
http://stacks.iop.org/0967-3334/28/i=3/a=R01?key=crossref.71c24bedf5376f8de1a8ea975615500b
https://ieeexplore.ieee.org/document/8679356/
http://www.nature.com/articles/s41746-019-0130-0
http://www.nature.com/articles/s41746-019-0130-0
http://ieeexplore.ieee.org/document/7933339/
http://ieeexplore.ieee.org/document/7933339/
https://ieeexplore.ieee.org/document/8607019/
https://ieeexplore.ieee.org/document/8607019/
http://preprints.jmir.org/preprint/12770
http://www.nature.com/articles/s41746-019-0207-9
https://www.mdpi.com/1424-8220/19/14/3079
http://dl.acm.org/citation.cfm?doid=3292500.3330657
http://dl.acm.org/citation.cfm?doid=2783258.2788613
https://ieeexplore.ieee.org/document/8419428/
https://www.mdpi.com/2079-9292/8/8/832
https://www.mdpi.com/2079-9292/8/8/832
http://arxiv.org/abs/1712.09923
http://arxiv.org/abs/1712.09923


[15]. Zeiler MD and Fergus R, “Visualizing and understanding convolutional networks,” 2013, 
arXiv:1311.2901. [Online]. Available: http://arxiv.org/abs/1311.2901

[16]. Tobias Springenberg J, Dosovitskiy A, Brox T, and Riedmiller M, “Striving for simplicity: The 
all convolutional net,” 2014, arXiv:1412.6806. [Online]. Available: http://arxiv.org/abs/
1412.6806

[17]. Sundararajan M, Taly A, and Yan Q, “Axiomatic attribution for deep networks,” 2017, 
arXiv:1703.01365. [Online]. Available: http://arxiv.org/abs/1703.01365

[18]. Simonyan K, Vedaldi A, and Zisserman A, “Deep inside convolutional networks: Visualising 
image classification models and saliency maps,” 2013, arXiv:1312.6034. [Online]. Available: 
http://arxiv.org/abs/1312.6034

[19]. Lundberg SM and Lee S-I, ‘‘A unified approach to interpreting model predictions,’’ in Advances 
in Neural Information Processing Systems 30, Guyon I, Luxburg UV, Wallach H, Bengio S, 
Fergus R, Vishwanathan S, and Garnett R, Eds. Red Hook, NY, USA: Curran Associates, 2017, 
pp. 4765–4774. [Online]. Available: http://papers.nips.cc/paper/7062-a-uni_ed-approach-to-
interpreting-model-predictions.pdf

[20]. Nguyen A, Yosinski J, and Clune J, “Multifaceted feature visualization: Uncovering the different 
types of features learned by each neuron in deep neural networks,” 2016, arXiv:1602.03616. 
[Online]. Available: http://arxiv.org/abs/1602.03616

[21]. Nguyen A, Dosovitskiy A, Yosinski J, Brox T, and Clune J, “Synthesizing the preferred inputs for 
neurons in neural networks via deep generator networks,” 2016, arXiv:1605.09304. [Online]. 
Available: http://arxiv.org/abs/1605.09304

[22]. Wu M, Hughes MC, Parbhoo S, Zazzi M, Roth V, and Doshi-Velez F, “Beyond sparsity: Tree 
regularization of deep models for interpretability,” 2017, arXiv:1711.06178. [Online]. Available: 
http://arxiv.org/abs/1711.06178

[23]. Poh M-Z, Poh YC, Chan P-H, Wong C-K, Pun L, Leung WW-C, Wong Y-F, Wong MM-Y, Chu 
DW-S, and Siu C-W, “Diagnostic assessment of a deep learning system for detecting atrial 
fibrillation in pulse waveforms,” Heart, vol. 104, no. 23, pp. 1921–1928, Dec. 2018. Online]. 
Available: 10.1136/heartjnl-2018-313147 [PubMed: 29853485] 

[24]. Shashikumar SP, Shah AJ, Clifford GD, and Nemati S, “Detection of paroxysmal atrial 
fibrillation using attention-based bidirectional recurrent neural networks,” in Proc. 24th ACM 
SIGKDD Int. Conf. Knowl. Discovery Data Mining. London, U.K.: ACM, Jul. 2018, pp. 715–
723. [Online]. Available: 10.1145/3219819.3219912

[25]. Tison GH, Sanchez JM, Ballinger B, Singh A, Olgin JE, Pletcher MJ, Vittinghoff E, Lee ES, Fan 
SM, Gladstone RA, Mikell C, Sohoni N, Hsieh J, and Marcus GM, “Passive detection of atrial 
fibrillation using a commercially available smartwatch,” JAMA Cardiol, vol. 3, no. 5, p. 409, 
May 2018. [PubMed: 29562087] 

[26]. Bau D, Zhou B, Khosla A, Oliva A, and Torralba A, “Network dissection: Quantifying 
interpretability of deep visual representations,” 2017, arXiv:1704.05796. [Online]. Available: 
http://arxiv.org/abs/1704.05796

[27]. Zhang Q, Wang X, Nian Wu Y, Zhou H, and Zhu S-C, “Interpretable CNNs for object 
classification,” 2019, arXiv:1901.02413. [Online]. Available: http://arxiv.org/abs/1901.02413

[28]. Dai W, Dai C, Qu S, Li J, and Das S, “Very deep convolutional neural networks for raw 
waveforms,” 2016, arXiv:1610.00087. [Online]. Available: http://arxiv.org/abs/1610.00087

[29]. He K, Zhang X, Ren S, and Sun J, “Deep residual learning for image recognition,” in Proc. IEEE 
Conf. Comput. Vis. Pattern Recognit. (CVPR). Las Vegas, NV, USA: IEEE, Jun. 2016, pp. 770–
778. [Online]. Available: http://ieeexplore.ieee.org/document/7780459/

[30]. Pereira T, Ding C, Gadhoumi K, Tran N, Colorado RA, Meisel K, and Hu X, “Deep learning 
approaches for plethysmography signal quality assessment in the presence of atrial fibrillation,” 
Physiol. Meas, vol. 40, no. 12, Dec. 2019, Art. no. 125002. [Online]. Available: 
10.1088/1361-6579/ab5b84

[31]. Kingma DP and Ba J, “Adam: A method for stochastic optimization,” 2014, arXiv:1412.6980. 
[Online]. Available: http://arxiv.org/abs/1412.6980

[32]. Drew BJ, Harris P, Zègre-Hemsey JK, Mammone T, Schindler D, Salas-Boni R, Bai Y, Tinoco A, 
Ding Q, and Hu X, “Insights into the problem of alarm fatigue with physiologic monitor devices: 

ZHANG et al. Page 18

IEEE Access. Author manuscript; available in PMC 2021 March 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1703.01365
http://arxiv.org/abs/1312.6034
http://papers.nips.cc/paper/7062-a-uni_ed-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-uni_ed-approach-to-interpreting-model-predictions.pdf
http://arxiv.org/abs/1602.03616
http://arxiv.org/abs/1605.09304
http://arxiv.org/abs/1711.06178
http://arxiv.org/abs/1704.05796
http://arxiv.org/abs/1901.02413
http://arxiv.org/abs/1610.00087
http://ieeexplore.ieee.org/document/7780459/
http://arxiv.org/abs/1412.6980


A comprehensive observational study of consecutive intensive care unit patients,” PLoS ONE, 
vol. 9, no. 10, Oct. 2014, Art. no. e110274. [Online]. Available: 10.1371/journal.pone.0110274

[33]. Pereira T, Gadhoumi K, Ma M, Liu X, Xiao R, Colorado RA, Keenan KJ, Meisel K, and Hu X, 
“A supervised approach to robust photoplethysmography quality assessment,” IEEE J. Biomed. 
Health Inform, vol. 24, no. 3, pp. 649–657, Mar. 2020. [Online]. Available: https://
ieeexplore.ieee.org/document/8681077/ [PubMed: 30951482] 

ZHANG et al. Page 19

IEEE Access. Author manuscript; available in PMC 2021 March 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://ieeexplore.ieee.org/document/8681077/
https://ieeexplore.ieee.org/document/8681077/


FIGURE 1. 
When using DeepSHAP to visualize model attention, the model ignores all non-artifactual 

PPG data, and instead focuses on the artifactual PPG sections when assigning both positive 

and negative contributions for the training example being artifactual. Here, shaded sections 

are artifactual as annotated by experts.
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FIGURE 2. 
A scatterplot of the model’s Congruence against its Testing Accuracy. Models have been 

color coded depending on what proportion of the data they were trained on.
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TABLE 1.

The performance of the 1D and 2D models is similar.

Testing Set ResNet1d ResNet2d

Sensitivity 0.9947 0.9791

Specificity 0.9769 0.9877

Accuracy 0.9892 0.9851
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TABLE 3.

There is Weak to Moderate Correlation between Explainability and Performance Metrics.

Metric 1 Metric 2 Correlation P-Value

Congruence Testing Accuracy 0.478 0.016

Sectional Classification Testing Accuracy 0.060 0.776

Interval Classification Testing Accuracy 0.333 0.104

Pixel Classification Testing Accuracy 0.460 0.021

Pixel Classification NPV 0.130 0.536

Pixel Classification Specificity 0.103 0.626
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