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Department of Psychology

University of California, Berkeley

Abstract

Intervention selection is at once crucial in causal learning and
challenging for causal learners. While the optimal strategy is
maximizing the expected information gain (EIG), both chil-
dren and adults often combine it with suboptimal ones such
as the positive test strategy (PTS). In the current study, we
sought to facilitate causal learning from intervention by asking
5- to 7-year-olds to explain why they chose a certain interven-
tion to identify the true structure of a three-node causal sys-
tem that might work in one of two ways. Our findings suggest
that while engaging in self-explaining did not help children se-
lect more informative interventions, asking them to think about
their intervention choices (explaining or reporting) might help
them better utilize interventional data to infer causal structures.
Keywords: causal learning; intervention; explanation; learn-
ing by thinking

Once upon a time in China, two men were accused of a
murder yet no evidence could be found. The judge gave each
of them a “magical” straw that was said to grow longer in the
hands of the guilty. As the story goes, the man showing up
with a shorter straw next day was put in jail. As you might
have guessed, straws don’t grow; the real magic is that the
judge chose the most informative intervention centuries be-
fore informative theory came into being. He could not foresee
which man would cut his straw in fear but whoever did it must
be the murderer. This strategy allowed him to maximally re-
duce his uncertainty averaged across potential outcomes, or in
other words, maximize his expected information gain (EIG)

EIG is widely regarded as a normative model for inquiry
selection (Coenen, Nelson, & Gureckis, 2018; Nelson, 2005)
but it only partially captures people’s actual interventions.
Both adults (Bramley, Lagnado, & Speekenbrink, 2014) and
children (McCormack, Bramley, Frosch, Patrick, & Lagnado,
2016) outperform models that intervene randomly but fall
short of pure EIG maximization. On the computational level,
a possible explanation is that adults (Coenen, Rehder, &
Gureckis, 2015) and children (Meng, Bramley, & Xu, 2018)
combine EIG maximization with a suboptimal strategy akin
to the positive test strategy (PTS) in the rule learning litera-
ture (Klayman & Ha, 1989; Wason, 1960). In causal learning,
Coenen et al. (2015) defined PTS as a tendency to generate
the most expected effects under your current causal hypothe-
sis. A minimal example of PTS is intervening on X when you
try to discriminate between your hypothesis, X —Y — Z, and
an alternative one, Y <— X — Z. If the outcome (e.g., only X
and Y are activated) happens to falsify your hypothesis, you
get to rule it out; otherwise, both could still be true so you
remain uncertain. By contrast, a high-EIG intervention (Y)
reduces your hypothesis space (in this case, to 1) regardless
of the outcome (all variables are activated or only Y and Z).
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To ensure successful causal learning from intervention,
learners should use an optimal strategy (e.g., EIG) to select
interventions and make accurate inferences from interven-
tional data. In the current study, we sought to facilitate both
the intervention selection and the belief updating processes
by prompting learners to explain why they choose a certain
intervention to learn about an unknown causal system.

Explanation and intervention

Explaining requires no extra data or instructions; yet, it has
profound downstream consequences for learning and infer-
ence in various domains (see Fonseca & Chi, 2011; Lom-
brozo, 2016, for reviews). Typically, learners achieve better
learning outcomes simply by engaging in explanation (e.g.,
how a system works, why an effect occurred, etc.) even with-
out feedback or generating accurate explanations (e.g., Chi,
Bassok, Lewis, Reimann, & Glaser, 1989; Chi, De Leeuw,
Chiu, & LaVancher, 1994; Walker, Lombrozo, Legare, &
Gopnik, 2014; Walker, Lombrozo, Williams, Rafferty, &
Gopnik, 2017). Many theories are proposed to explain why
explaining facilitates learning, such as that it helps learners
fill gaps in their knowledge, repair erroneous mental models,
recruit criteria for “good” explanations (simplicity, breadth,
or other “explanatory virtues”) to constrain reasoning, etc..
How do you explain an intervention? From an EIG per-
spective, to explain intervention selection, you must consider
belief updating (Coenen & Gureckis, 2015): You choose an
intervention because on average, it reduces the most uncer-
tainty. Engaging in explanation may benefit both processes.
Explaining may facilitate intervention selection by promot-
ing comparison and abstraction. A recent study (Edwards,
Williams, Gentner, & Lombrozo, 2019) suggested that ask-
ing learners to explain exemplars’ category membership (e.g.,
“Why is this robot a Glorp/Drent?””) increased their compar-
ison within and between categories. Should explainers com-
pare more across different interventions and the outcomes of
each intervention, they might be in a better place to select
high-EIG interventions. Moreover, effective learners may re-
alize that on an abstract level, informative interventions are
ones that yield distinct outcomes under different hypotheses.
Walker and Lombrozo (2017) found that explaining the out-
come of a story (e.g., why a character is sad) helped chil-
dren extract its underlying moral and go beyond the specifics.
Should explaining help causal learners achieve such abstrac-
tion, it could largely reduce the cost of intervention selection.
Explaining may also facilitate belief updating by encourag-
ing learners to apply their prior knowledge when interpreting
interventional data (Williams & Lombrozo, 2013).
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Figure 1: Light bulb puzzles used in the experiment.

Current study

In the current study, we investigated whether self-explaining
could facilitate causal learning from intervention. We chose
to test 5- to 7-year-olds because previous studies (McCor-
mack et al., 2016; Meng et al., 2018) suggested that they were
not yet able to reliably select informative interventions, leav-
ing substantial room for improvement. This also allows us to
compare our results directly to that in Meng et al. (2018).

Overview of experiments Our causal learning task was
adapted from Meng et al. (2018). Children were tested on six
unknown causal systems consisted of three light bulbs, some
of which could turn on others if activated. Each system could
work in one of two ways and children were allowed to turn
on one light bulb to identify its correct structure. All causal
connections were deterministic with no background noise.

In the first experiment (Experiment 1A), children were
asked to explain their intervention choice (“Why did you turn
on that light bulb?”) after carrying it out. However, since
those children observed the outcome before explaining, their
explanation might be a post hoc justification of their choice
(“Because it helped me solve the puzzle.”) rather than the ac-
tual reason. To address this concern, we conducted a second
experiment (Experiment 1B) where children pointed to the in-
tervention they wanted to perform and were asked to explain
their choice (“Why do you want to turn on that light bulb?”’)
before carrying it out. In the respective control conditions,
children were asked to report which intervention they carried
out (Experiment 1A) or planned to choose (Experiment 1B).

Modeling intervention strategies To compare intervention
strategies across conditions, we took a hierarchical Bayesian
approach used by Coenen et al. (2015) and Meng et al. (2018).
We compared models of three single strategies (EIG, PTS,
and random selection) and a linear combination of EIG and
PTS. Below is an overview of the four models.

Learners all begin with a set of causal hypotheses, each of
which can be represented as a directed acyclic graph g € G (G
is the space of possible graphs), or a causal Bayesian network
(Pearl, 2000). In each graph, causal variables are presented as
nodes and causal relationships as edges.

1. Expected information gain (EIG)

The information gain (IG) after intervening on the node
n € N is the difference between the initial entropy, H(G),
and the entropy conditioned on the outcome o, H(G|n,0):

IG(n,0) = H(G) — H(G|n,0). (1)
Since o is unknown, the expected information gain (EIG)
over all possible outcomes O is used to estimate IG:

ZP o|ln)H

0€0
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Applying Shannon’s entropy equation, we have
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The prior probability P(g) of each graph g is assumed to

be equal and the posterior probability P(g|n,0) is given by
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Bayes’ rule

2. Positive test strategy (PTS)

PTS manifests as the tendency to intervene the node n € N
with the most of direct or indirect descendant links (nor-
malize by the total number of links in each graph g € G):

DescendantLinks, q

PTS(n) = max|

5
g TotalLinks, )

3. Random selection

Random selection is equivalent to indiscriminately assign-
ing the same value (e.g., 1) to all possible interventions.

4. Linear combination of EIG and PTS

Rather than sticking to one strategy, learners may use mul-
tiple strategies such as EIG and PTS to select interventions.
The value of each possible intervention is a linear combi-
nation of its EIG and PTS values (the weight of EIG is 0).

Under one strategy or another, each possible intervention is
assigned a value V(n). An ideal learner should always select
the intervention with the highest value but due to noise T in the
decision process, an actual learner often does so probabilisti-
cally. According to the softmax choice rule (Luce, 1959), the
probability that an intervention gets chosen, P(n), is a func-
tion of its value V (n) and the learner’s decision noise T:

exp(V(n)/7)
Y exp(V(n)/7)

neN

P(n) = (6)
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When 7 is 0, the learner selects interventions with the high-
est values; when T approaches oo, they select randomly.

Experiments
Participants

Seventy-four 6- to 7-year-olds participated in Experiment 1A,
37 of whom were assigned to the Explanation condition (M =
85 months, range = 74—101 months, SD = 9 months) and 37 to
the Report condition (M = 84 months, range = 64—96 months,
SD = 8 months). Another forty-three 5- to 7-year-olds par-
ticipated in Experiment 1B, 22 of whom were assigned to
the Explanation condition (M = 77 months, range = 62-90
months, SD = 8 months) and 21 to the Report condition (M =
75 months, range = 50-101 months, SD = 14 months).

Equipment

Three light bulbs (yellow, green, and red) were presented
on a laptop screen and controlled by three buttons of corre-
sponding colors located on a response board. During practice,
red arrows indicated the causal relationships among the light
bulbs. During the test, the arrows were hidden but two possi-
ble structures were shown on two cards placed side by side.

Procedure

Both experiments included a familiarization phase, a prac-
tice phase, and a test phase. During familiarization, children
were taught to use buttons on a response board to control
light bulbs of corresponding colors on the computer. Dur-
ing practice, they saw four basic types of structures: Common
Cause (Yellow < Green — Red), Common Effect (Yellow —
Red < Green), Causal Chain (Green — Red — Yellow), and
One Link (Yellow — Red). In Experiment 1A, the presenta-
tion order was randomized. For each structure, children de-
cided when to turn on which light bulb and were asked to
describe the outcome of each action. In Experiment 1B, each
structure was one change apart from the previous one. The
simplest structure, One Link, was presented first, which was
followed by Causal Chain, Common Cause, and Common Ef-
fect. For each structure, children turned on the light bulbs in
a designated order (Yellow—Red—Green in the first two trials
and Green—Red—Yellow in the last two) and were asked to
predict and then describe each action’s outcome.

On each of the six test trials, children were shown two ways
in which the three light bulbs might work and were told that
they could only turn on one light bulb to find out the true
structure. In Experiment 1A, children were asked to explain
(“Why did you turn on that light bulb?””) or report (“Which
light bulb did you turn on?”) the intervention that they had
just carried out. In Experiment 1B, children were asked to
first point to the light bulb they planned to turn on, then ex-
plain (“Why do you want to turn on that light bulb?”) or
report (“Which light bulb do you want to turn on?”) their
choice, and finally perform the intervention'. At the end of

UIn the rare event that children’s actual intervention differed from
what they planned, we used the former for all our analyses.
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Figure 2: The proportion of causal structures that children
correctly identified in each condition.

both experiments, children were asked to put a smiley face
sticker on the correct causal structure. In order to avoid poten-
tial discouragement that we observed during piloting, feed-
back was only provided after the entire experiment.

Results

Our initial analysis revealed no differences between the re-
sults of Experiments 1A and 2B, so data from these two ex-
periments were pooled together in all subsequent analyses.
To test whether explaining and reporting one’s intervention
choices could both influence causal learning, we used chil-
dren in Meng et al. (2018) as our baseline. Apart from the ad-
ditional explanation/report prompts, our procedure, stimuli,
and population were identical to those in the previous study.

Inference accuracy To begin, we first looked at whether
children were able to identify the correct causal structures in
the end. As shown in Figure 2, those in the Baseline condi-
tion chose the correct structures 54% (SD = 22%) of the time,
which was not distinguishable from chance (50%), #(38) =
1.02, p = .31, Cohen’s d = .16. However, children performed
above chance in both the Explanation (M = 67%, SD = 25%)
and the Report (M = 61%, SD = 23%) conditions, #(58) =
5.13, p < .001, Cohen’s d = .67 and ¢(57) = 3.77, p < .001,
Cohen’s d = .50, respectively. The only significant difference
between conditions was that explainers were more accurate
than the baseline, #(88.53) = 2.73, p =.007, Cohen’s d = .55.

Intervention choices Before fitting models of intervention
strategies, we examined children’s interventions choices to
see if they were random or biased towards EIG or PTS.

We compared the mean EIG and the mean PTS value of
children’s chosen interventions against the respective chance
levels (.33 for EIG? and .55 for PTS?) of the two metrics. In
the Baseline condition, only the mean PTS value (M = .74,
SD = .22) was above chance, #(38) = 5.37, p < .001, Cohen’s
d = .86, but not the mean EIG value (M = .39, SD = .28),
1(38) =1.23, p=.23, Cohen’s d = .20. Similarly in the Report
condition, the mean PTS value (M = .74, SD = .20) was above

2 Among all three possible interventions in each puzzle, only one
was informative, i.e., having an EIG value of 1.

3This was the average PTS value across all interventions.
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Figure 3: Figures on the left show the proportion of children intervening on each node (1, ny, and n3) in each type of puzzles:
(a) Causal Chain vs. Common Cause, (b) Causal Chain vs. One Link, and (c) Common Effect vs. One Link. Figures on the
right show the probability of children intervening on each node in each type of puzzles predicted by EIG and PTS.
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Figure 4: Hierarchical Bayesian models of single (left) and combined (right) strategies. In each puzzle j, each participant i
chooses one node n;; to intervene on. V;, EIG;, and PTS; store the values of three possible interventions in each puzzle. p;;
stores probabilities of each participant choosing each intervention in each puzzle. T; and 0; capture each participant’s decision
noise and weight of EIG. o and B are population-level hyper-parameters that generate T;; 4 and K generate 6;.

chance, 1(57) =7.17, p < .001, Cohen’s d = .94, but not the
mean EIG value (M = .39, SD = .25), t(57) = 1.63, p = .11,
Cohen’s d = .21. In the Explanation condition, however, both
the mean EIG (M = .44, SD = .32) and the mean PTS (M =
.75, SD = .18) value were above chance , 7(58) = 2.52, p =
.014, Cohen’s d = .33 and ¢(58) = 8.4, p < .001, Cohen’s d
= 1.09, respectively. Neither the mean EIG or the mean PTS
value differed significantly across conditions.

We also compared the proportion of children intervening
on each node in each puzzle against what EIG and PT would
predict. Since the mapping between node positions and light
bulb colors is arbitrary, we re-coded Puzzles 1 and 2 as
ny — ny — n3 (Chain) vs. ny < ny — n3 (Common Cause),
Puzzles 3 and 4 as n; — np, — n3 (Chain) vs. n, — n3 (One
Link), and Puzzles 5 and 6 as ny — n; < n3 (Common Ef-
fect) vs. n3 — n; (One Link). As Figure 3 shows, children
deviated the most from EIG predictions in “Chain vs. Com-
mon Cause”. In the other two types of puzzles, children’s
choices were split between EIG and PTS predictions. A small
but non-negligible proportion of interventions were on nodes
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whose EIG and PTS values were both 0, suggesting that chil-
dren occasionally chose interventions randomly.

Intervention strategies We used two hierarchical Bayesian
models to capture children’s intervention strategies (Figure
4). The single-strategy model draws from a single source to
evaluate interventions—be it EIG, PTS, or always “1” in the
case of random selection. The combined-strategy model as-
signs a weighted mean of EIG and PTS (the weight of EIG is
0) to each intervention. In both models, each child’s decision
noise T; is sampled from a population-level gamma distribu-
tion with two hyper-parameters o (shape) and P (rate). In
the combined-strategy model, each child’s weight of EIG 6;
is sampled from a population-level beta distribution with two
hyper-parameters u (mean) and x (standard deviation. Un-
informative priors are chosen for all hyper-parameters: o =
.001, B =.001, u ~ Beta(.5, .5), kK ~ Gamma(.001, .001). The
probability of selecting a given intervention is a function of
its value V' (n) as well as the child’s decision noise t. Actual
interventions are sampled from a categorical distribution of
these probabilities. Parameter values were estimated using



Table 1: The deviance information criteria (DIC) of each
model and the weight of EIG 6 in three conditions.

Baseline Explanation Report
Model DIC 0 DIC 0 DIC o
Random 51415 - 777.82 - 764.64 -
EIG 48198 - 727.00 - 769.45 -
PTS 469.62 - 706.87 - 70693 -
EIG+PTS 45495 24 63443 31 74625 .19
3
=y Condition
22 0 Baseline.
) Explanation
(m) Report
1
0
0.00 0.25 0.50 0.75 1.00
Mean of 6
Figure 5: The distributions of the group-level hyper-

parameter u (the mean of 0) under the three conditions.

Markov chain Monte Carlo (MCMC) samples generated by
the JAGS program* (Plummer, 2003). The deviance informa-
tion criterion (DIC, Spiegelhalter et al., 2002) was used for
model comparison. Models that fit data better (smaller poste-
rior mean of the deviance D) or are simpler (smaller effective
number of parameters pp) have lower DIC (= D + pp). As a
common practice, a difference over 10 is substantial.

As shown in Table 1, the combined-strategy model (EIG +
PTS) best captured children’s intervention strategy in both the
Baseline and the Explanation conditions. However, the PTS-
only model turned out to be the best fit in the Report condi-
tion. Children in all three conditions relied more on PTS than
EIG, with the mean weight of EIG being .24, .31, and .19,
respectively. Figure 5 illustrates the distributions of u—the
population-level hyper-parameter that captures the mean of
0—in all three conditions. To see whether u differed across
conditions, we sampled 10,000 estimates of u in each condi-
tion. For each contrast between conditions (Explanation vs.
Report, Explanation vs. Baseline, Report vs. Baseline), we
paired the estimates randomly and calculated the differences.
Since the 95% Highest Density Interval (HDI) of all three
difference distributions contained 0, we couldn’t claim with
confidence that u differed across three conditions.

“4In keeping with Meng et al. (2018), we ran MCMC for 100,000
iterations, discarding the first 1,000 samples and drawing one sample
every 10 iterations. To ensure that samples were from a stationary
distribution, we repeated this process 30 times with different ini-
tial parameter values and results from each sequence of samples (or
chain) successfully converged since Gelman and Rubin’s diagnostic

R (Gelman & Rubin, 1992) of all parameters was smaller than 1.05.
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Intervention and inference Lastly, we looked at whether
children’s intervention choices and strategies predicted if they
could accurately identify the true causal structures.

First, for each puzzle, we performed a logistic regression
using the EIG value (0 or 1) of children’s chosen intervention
to predict whether they identified the correct structure later. In
the Baseline condition, EIG values did not predict inference
accuracy in any puzzles. However, in the Explanation condi-
tion, high-EIG interventions strongly predicted successes at
identifying the correct structures in all six puzzles. In the
Report condition, EIG values predicted inference accuracy in
four of the six puzzles (except Puzzles 2 and 6).

We examined the correlation between the weight of EIG 6
and children’s average accuracy across all puzzles. 6 and av-
erage accuracy were uncorrelated in the Baseline condition,
F(1,37) = 1.14, p = .29, R? = .0038, but positively corre-
lated in the Explanation and the Report conditions, F(1,57)
=30.73, p < .001, R? = .34 and F(1,56) = 25.27, p < .001,
R? = 30, respectively. Correlations in the Explanation and the
Report conditions were both stronger than that in the Baseline
condition, z=2.31, p=.02 and z = 2.08, p = .04, respectively.

Discussion

In the current study, we investigated whether asking children
to explain their intervention choices facilitated causal learn-
ing from intervention. Specifically, we looked at 1) whether
explainers were better able to select informative interventions
and 2) make accurate inferences based on interventional data.
Our first hypothesis was not supported by the results. Nei-
ther children’s weight of EIG 6 nor the group-level hyper-
parameter u that captures the mean of 6 differed significantly
across the Baseline, the Explanation, and the Report condi-
tions; this suggests that children used similar strategies to
select interventions across three conditions. Curiously, ask-
ing children to report their intervention choices might have
slightly “backfired”: While a linear combination of EIG
and PTS best captured children’s intervention strategy in the
Baseline and the Explanation conditions, the PTS-only model
turned out to best characterize the strategy used in the Report
condition. Moreover, unlike in the other two conditions, the
distribution of u was right skewed in the Report condition, in-
dicating heavier reliance on PTS. However, since differences
in u were not statistically significant, further investigation is
needed to examine whether this finding was due to random
noise or potential drawbacks of the report prompts.
Compared to the chance performance in the Baseline con-
dition, children in both the Explanation and the Report con-
ditions were more accurate at identifying the correct causal
structures after performing interventions. Since children in
the latter two conditions did not choose more informative
interventions, a possible explanation is that when prompted
to think about their intervention choices, children were bet-
ter able to utilize interventional data that were already avail-
able. This explanation was supported by our findings: In the
Explanation and the Report conditions, children’s interven-
tion choices (EIG value = 0 or 1) and interventions strategies



(weight of EIG 0) predicted their inference accuracy, which
was not the case in the Baseline condition.

General Discussion

In the current study, we looked at whether asking children
to think about their intervention choices might facilitate their
causal learning from intervention. In Experiments 1A and
1B, 117 5- to 7-year-olds solved six puzzles where they per-
formed one intervention to identify the true structure of three
light bulbs that might be connected in one of two ways. Those
in the Explanation condition were asked to explain why they
chose certain interventions whereas those in the Report con-
dition were simply asked to report their choices. Meng et al.’s
(2018) previous study served as our Baseline condition where
children solved the same puzzles without being prompted.
Using hierarchical Bayesian models developed by Coenen
et al. (2015), we captured children’s intervention strategy
mainly in terms of how much they relied on the normative
strategy, which is maximizing the expected information gain
(EIG) of their chosen interventions, and the suboptimal posi-
tive test strategy (PTS). Children in all conditions relied more
on PTS than EIG; there was no difference across conditions.
However, compared to those in the Baseline condition who
performed at chance, children in both the Explanation and the
Report conditions were more accurate at identifying the cor-
rect structures after interventions. Crucially, children’s inter-
vention choices and strategies only predicted their accuracy
at inferring the true causal structures in the Explanation and
the Report conditions but not in the Baseline condition.

Taken together, our findings suggest that while engaging in
self-explaining did not help children select more informative
interventions, asking them to think about their intervention
choices (explaining or reporting) might help them better uti-
lize interventional data that were already generated.

Revisiting the self-explaining effect

The major motivation behind this study was the plethora of
self-explaining effects in education (Fonseca & Chi, 2011)
and cognitive development (Lombrozo, 2016). Given what
we found, two questions stood out: Why did self-explaining
have no effect on intervention selection? Why was the im-
provement on causal inferences not unique in explainers?
Further investigation is needed to provide precise answers.
Here we offer some speculations. Explaining an intervention
is not an easy feat: Not only do you need to contrast the value
of your intervention with that of other interventions, but more
fundamentally, you need to contrast your strategy of evalu-
ating interventions with other strategies. The cognitive pro-
cess of generating a good explanation may be too challenging
for 5- to 7-year-olds given their limited working memory ca-
pacity, knowledge about causal systems and experiments, and
metacognitive skills (Horne, Muradoglu, & Cimpian, 2019).
A recent study (Ruggeri, Xu, & Lombrozo, in press) sug-
gested that the quality of explanations might matter after all.
In their study, 4- to 7-year-olds were asked to explain phe-
nomena in a domain before playing Twenty Questions in that
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domain; the accuracy of explanations was correlated with the
efficiency of question-asking. Since reasonable explanations
may be more difficult to generate in our study than in past
studies (Walker et al., 2014, 2017), it might limit the benefit
children can reap from self-explaining. Regarding the second
question, it might be that when asked to reflect on (i.e., ex-
plaining or reporting) their intervention choices, children be-
came aware that their interventions played an important role
for solving puzzles later and therefore paid closer attention to
the intervention outcomes when making causal inferences.

Future directions

Given the importance of intervention selection in causal
learning, we seek to explore more effective scaffolding meth-
ods in the future. To begin, we can provide feedback after
each intervention. A recent study (Liquin & Lombrozo, 2017)
found that explaining had greater effects when evidence con-
tradicted what learners’ beliefs. Another way to strengthen
the scaffolding may be asking children to explain why each
possible intervention may or may not be useful, rather than
just their chosen intervention. Since belief updating is inher-
ently linked to intervention selection (Coenen & Gureckis,
2015), we may help children choose more informative inter-
ventions by correcting errors in their belief updating process.

Conclusion

Rather than passively absorbing correlations and crunching
numbers, active learners generate explanations and design
interventions to learn about causality. Our study is among
the first to bridge “thinking” and “doing” in causal learn-
ing. While self-explaining did not show benefits of improving
children’s intervention strategy, prompting children to think
about their intervention choices in some way (explaining or
reporting) may help them better utilize interventional data
generated by themselves to infer unknown causal structures.
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