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Complex systems are found at the heart of the most pressing intellectual challenges

of the 21st century. Weather and climate, ecological and neurobiological networks, many

body quantum systems, and even the operation of human societies can be described as the

interaction of simple components from which collectively emerge distinct phenomena. In

this thesis, key concepts from dynamical systems theory and machine learning are employed

to analyze complex systems in both neurobiological contexts and weather prediction. The

first of these concepts is synchronization, from which data assimilation is derived in order

to describe the optimal interpolation between an imperfect physical model and sparse/noisy

data. Data assimilation is applied to biophysical problems such as the design of VLSI

xxiv



circuits for neuromorphic computing, as well as the estimation of a biological neuron’s

physical characteristics from voltage and calcium fluorescence measurements. Generalized

synchronization is then deployed as the framework to examine the operation of recurrent

neural networks, particularly the reservoir computing (RC) architecture. RC operates

through the synchronization of a high dimensional artificial network together with chaotic

input data, and is able to produce state of the art forecasting performance on a number

of benchmark systems in numerical weather prediction. Invariant quantities such as the

Lyapunov exponent spectrum and the fractal dimension of the RC are calculated and

shown to be directly related to the input dynamics of the data. The concluding remarks

unify both RC and data assimilation together into a machine learning forecasting cycle

that produces forecasts from sparse and noisy data with no physical model.
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Chapter 1

1.1 Introduction

According to Isaac Asimov, the birth of modern physics occurred on the 28 May

585 BC when Thales of Miletus successfully predicted a solar eclipse—interrupting a

battle between the Lydians and the Medes [11]. The two opposing sides, paralyzed by

the perilous portent, rapidly agreed to a rapprochement. The interacting Sun, planets

and moons whose motion resulted in the eclipse of 585 BC are one of the more familiar

examples of a broad category of “complex systems” [12] which include the human brain,

global weather and climate, human and animal ecosystems, chemical reactions and many

other examples [13]. Simply put, a complex system is one composed of many, often simple,

components that interact together in a way that often makes them extraordinarily difficult

to predict [13].

Phenomena associated with complex systems include emergence, phase transitions,

spontaneous symmetry breaking and deterministic chaos. Mathematically, most complex

systems can be described by the formalism of dynamical systems theory. A dynamical

system is one that obeys a set of differential equations

dxi(t)
dt = fi(x(t), t) ; i ∈ [1, . . . , D] (1.1)
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with x giving the state of the system x = [x1, . . . , xD], f = [f1, . . . , fD] the equations

of motion, D the dimension, and t the time. Equation (1.1) describes how the state

of the system x changes with time. A nonlinear dynamical system is one in which the

vector field f(x) is a nonlinear function of the components of x; formally f(c1x1 + c2x2) ̸=

c1f(x1) + c2f(x2) if f is nonlinear.

The almost paradoxical concept of deterministic chaos can be characteristic of even

surprisingly simple nonlinear dynamical systems; for example, the motion of three massive

bodies interacting under gravity is often chaotic. Chaotic systems are distinguished by

extreme sensitivity to initial conditions, to the extent that even floating point inaccuracy

in numerical solvers or the software used in the integration impose a finite forecasting

horizon [14]. Even under the best of circumstances—abundant data and a correct physical

model—chaotic systems would be difficult to forecast. Outside of laboratory settings the

circumstances are seldom ideal with sparse/noisy data combining with imperfect knowledge

of the physics to make prediction extremely challenging. The applications, however, are

manifold and compelling—including in numerical weather prediction [15], chemical mixing

[16, 17], optics [18], robotics [19] and many other fields—and it is thus incumbent upon us

to find forecasting methods.

To understand the scale of the challenge involved in forecasting these systems

we can examine the case of weather prediction. Operational weather prediction systems

involve the integration of models with upwards of 1010 degrees of freedom that must

be constrained with only ∼ 107 or so measurements [20]. The transfer of information

from the data to the model, particularly to the unobserved states in the model, is of the

utmost importance and is conducted through a method of Bayesian inference called data

assimilation (DA) [15]. The models have errors and the data is sparse yet it is still possible

to achieve incredible accuracy in weather forecasting.

This thesis describes developments in the application of dynamical systems theory

to the prediction of (possibly chaotic) dynamics. We will start in chapter 1 with an
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introduction to some of the more useful dynamical systems and data assimilation concepts,

and then proceed directly in chapter 2 with the application of data assimilation and

Bayesian inference for state and parameter estimation problems in neurobiology. Following

that discussion, in chapters 3/4 a form of machine learning denoted reservoir computing

(RC) will be investigated. Machine learning allows the forecasting of complex systems from

data alone—without the development of a physical model—and thus is extremely useful

when the physics is unknown or integrating the equations of motion is computationally

intensive. RC is shown to operate through the theory of generalized synchronization,

from which many interesting and useful properties follow. Concluding the thesis will be a

discussion of the unification of data assimilation and machine learning.

1.1.1 A Simple Example

To make equation (1.1) more concrete and to introduce some fundamental quantities

we will take as an illustrative example the undamped pendulum—see Fig.(1.1). The

derivation of the equations of motion come from solving Newton’s equation in the rotational

frame of the pendulum τ = Iα; τ is the torque, I the moment of inertia, and α the angular

acceleration. Making m the mass of the bob and ℓ the length of the rod, τ = −mgℓ sin θ,

I = mℓ2 and α = θ̈. · denotes a single total derivative with respect to time d
dt and double

dot d2

dt2 . The equation of motion is therefore

θ̈ = −g

ℓ
sin θ. (1.2)

It’s possible to put this into the standard form of (1.1) by setting x1 = θ and x2 = θ̇. This

gives us

ẋ1 = x2 (1.3)

ẋ2 = −g

ℓ
sin x1
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Figure 1.1. Illustration of a simple pendulum operating under gravity. The angle θ and
angular velocity θ̇ compose the state of the dynamical system.
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which is a nonlinear dynamical system because f =
[
x2,−g

ℓ
sin x1

]
contains a nonlinear

function sine. The nonlinearity means that—even for this most simple of systems—there

is no closed form analytic solution in the general case. For small θ → sin θ ∼ θ equation

(1.2) reduces to a simple harmonic oscillator which does have an closed form solution.
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Figure 1.2. The vector field of the pendulum plotted in phase space with two particular
trajectories shown in white. Dynamical systems are initial value problems and so depend
on the initial conditions. For the pendulum, we see that certain initial conditions are
librations with the pendulum simply swinging back and forth. For larger energy states H,
specifically for H > g

ℓ
, we see that the solution involves rotations. The line of separation

between these two kinds of solutions is called a separatrix.

The combined space of x1 and x2—here the angle θ and angular velocity θ̇—is

called the phase space. It is in this space that most dynamical systems analysis will take

place. Fixed points (equilibrium positions) are those for which θ̇ = 0—no velocity implies

that the system is stationary. These can be stable or unstable. The plot for the phase

space of the pendulum is given in Fig.(1.2) along with two example trajectories. The

trajectory forming an ellipse corresponds to the motion of the pendulum swinging back
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and forth (libration) while the trajectory moving across the phase space corresponds to

the pendulum in rotation. Already it is apparent that there are certain geometrical shapes

forming in the phase space portrait, these will be important in the characterization of

such systems.

The following sections will give a brief overview of the dynamical systems theory

concepts that will underlie the forecasting methods used in the rest of this thesis.

1.1.2 Fixed Points and Stability

Fixed points x⋆ are those for which ẋ = 0. For the pendulum Eq.(1.3) this occurs

in two places; x⋆2 = θ̇ = 0 and x⋆1 = θ = 0, π. To evaluate whether these points are linearly

stable/unstable we need to see how perturbations to the fixed points evolve with time.

If the perturbed system stays in the neighborhood of the fixed point then it is stable.

Conversely, if the system moves rapidly away from the fixed point after perturbation then

it is unstable.

For the pendulum system, the fixed point at θ = 0—corresponding to the bob

hanging down—is stable because a perturbation will cause small amplitude oscillatory

motion around the equilibrium position. The fixed point at θ = π with the bob facing the

sky is unstable because an infinitesimal disturbance will result in a large response.

We derive the variational equations, which describe the evolution of the tangent

vectors/perturbations from t → t′, by taking ∂
∂xj(t′) on both sides of eq (1.1). Applying

the chain rule we find
d
dt
∂xi(t)
∂xj(t′)

= ∂fi(x(t), t)
∂xk(t)

∂xk(t)
∂xj(t′)

which we rewrite as

ϕ̇(t′, t) = J(x) · ϕ(t′, t) (1.4)

with ϕ(t′, t) = ∂xi(t)
∂xj(t′) being the N ×N variational matrix and J(x(t)) = J(t) = ∂fi(x(t),t)

∂xk(t)

being the Jacobian. This procedure is also known as “linearization” because f(x + δx) ∼
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f(x) + δxJ(x) + O(δx2) and therefore ˙δx = J(x)δx giving a linearized evolution of the

perturbations.

The Jacobian in matrix form is

J(x) =


∂f1
∂x1

. . . ∂f1
∂xD

... . . . ...
∂fD

∂x1
. . . ∂fD

∂xD

.

For this analysis we add a small damping term κ to the pendulum equation so that

Eq.(1.2) becomes θ̈ = −κθ̇ − g
ℓ

sin θ → f(x) =
[
x2,−κx2 − g

ℓ
sin x1

]
. The fixed points are

unchanged and the Jacobian is

J(x) =

 0 1

−g
ℓ

cosx1 −κ

.

Around the fixed points, the question of interest is whether the perturbations in a particular

direction are growing or shrinking. The answer is given by the eigenvalues and eigenvectors

of the Jacobian. If the eigenvalues all have negative real parts then the fixed point is

stable.

For the damped pendulum with g/ℓ = 1 and κ = 1 we find that the eigenvalues of

the Jacobian λ around x⋆ = [0, 0] are

λ =
[

−1−i
√

3
2 , −1+i

√
3

2

]
.

We see both eigenvalues have a negative real part as well as an imaginary part. This

corresponds to an inward spiral towards the fixed point in the phase space of the dynamical

system—see Fig.(1.3). Due to the fact that nearby trajectories all converge to this fixed

point, it is called an attractor with an associated basin of attraction. For x⋆ = [0, π] we
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Figure 1.3. Trajectory in the phase space of the damped pendulum for initial conditions
perturbed slightly from the unstable fixed point. The trajectory is immediately attracted
to the stable fixed point at x⋆ = [0, 0] and converges as an inward spiral. The fixed point
at [0, 0] is thus called an attractor because it attracts nearby trajectories. The region
surrounding an attractor for which all trajectories converge towards it is called the basin
of attraction.
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find

λ =
[

−1−
√

5
2

−1+
√

5
2

]

which has one real positive and one real negative eigenvalue. It is thus an unstable saddle

point.

1.2 Lorenz Attractor

Forecasting a simple pendulum is not, in general, a difficult problem. The solution

for a particular set of initial conditions/parameters can be written out as an integral

evaluation and from there it is not hard to predict the trajectory for the rest of time.

In contrast to the pendulum, one of the main difficulties in forecasting the dynamics of

complex systems is that many of them are chaotic.

Chaotic nonlinear dynamical systems are deterministic, but have the property that

even small uncertainties in initial conditions lead to exponentially growing errors that limit

long term forecasts. A typical linear systems analysis (e.g., a fourier transform) of such

signals would conclude that the signal is noise, thus missing an essential feature of chaos.

An illustrative example of this is the error made by Edwin Colpitts [21] in 1918—who

designed and built a nonlinear variable frequency circuit—in identifying the irregularity in

the output of his circuit as “noise.” 76 years later Michael Kennedy [22] recognized this

feature to be deterministic chaos.

The original identification of chaotic motion in nonlinear systems was made by

Poincare in the 19th century while analyzing the three body problem of classical mechanics.

The present era of understanding and insight into the properties of such systems was

initiated by Edward Lorenz in 1963 [23]. Lorenz’s simplification of convection in the

Earth’s lower atmosphere introduced the idea of deterministic, nonperiodic behavior. This

system is now known as the “Lorenz system.”

The following follows the derivation in Hilborn [24]
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The Lorenz system is an example of Rayleigh-Benard convection in an incompressible

fluid. The setup is of a box of height h in the z direction and of infinite extent in x/y—

Fig.(1.4). The box is heated from the bottom and cooled from the top such that the

boundaries are kept at constant temperatures TH and TC with differential δT . We assume

δT is not too large such that a constant temperature gradient ∂T
∂z

= δT/h forms in the z

direction.

To analyze when convection will occur we take a infinitesimal volume of fluid in

the box and perturb it in the z direction. Since the fluid moving upwards is now warmer

than its surroundings it will be less dense, causing it to experience a net upward force. It

will also, of course, be losing heat to its surroundings. Loosely, if the movement of the

fluid upward due to the buoyancy forces is faster than the drop in temperature, then the

perturbation becomes self sustaining and the fluid starts convecting.

To put this intuition into equations, we need to find expressions for 1) the thermal

relation time τT and 2) the displacement time τD. Starting with the τT , when our small

volume of fluid moves a distance dz the temperature will increase by dT = δT
h
dz. This

increase will be counteracted by thermal diffusion ∂T
∂t

= DT∇2T , where ∇2T can be

approximated by δT
h2

dz
h

and DT is the thermal diffusion constant. Defining τT as the time

it takes for a temperature difference dT to dissipate dT = τT
∂T
∂t

we can put the equations

together to find that

τT
∂T

∂t
= δT

h
dz = τTDT

h3 dzδT

and solving for τT our final expression is

τT = h2

DT

. (1.5)

Now we have to compare this relaxation time to the movement of the fluid. The

fluid density ρ(T ) changes as a function of temperature. We can expand ρ(T ) around
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ρ(TH) = ρ0 as

ρ(TH + (T − TH)) = ρ0 + dρ
dT

(
T − TH

)
+ . . . ,

with TH being the temperature at the bottom of the box. Defining the the thermal

expansion coefficient α = − 1
ρ0

dρ
dT and plugging in for dT we can write

ρ(TH + dT ) = (1 − αdT )ρ0 = (1 − α
δT

h
dz)ρ0. (1.6)

!!

!"

"!
&

' ℎ Convection

Physical Geometry of the Lorenz System

Figure 1.4. Geometry of the physical Lorenz system that roughly corresponds to
atmospheric convection.

Plugging eq.(1.6) into the expression for the increased buoyancy force per unit

volume as the fluid moves up the column we find

∆FB = −ρ(dT )g = αρ0g
δT

h
dz

with g the acceleration due to gravity. Making the assumption that the fluid is moving at a

constant upward velocity vz— implying that the net force on the fluid is 0—the buoyancy

force must be balanced by the viscous drag

Fv = µ∇2vz ∼ µ
vz
h2

11



with µ being the viscosity. Equating the two forces and solving for vz we find

vz = αρ0ghδT

µ
dz.

The displacement time—the time the fluid takes to move a distance dz—is thus

τD = dz

vz
= µ

αρ0ghδT
. (1.7)

Clearly the ratio of τT eq.(1.5) to τD eq.(1.7) is the critical value

R = τT
τD

= αρ0gh
3δT

DTµ
(1.8)

where R is called the Rayleigh number. When constructing a system, R is the parameter

that most controls how the system will behave. Only certain values of R cause the flow to

be chaotic.

The full derivation of the Lorenz equations requires obtaining a solution to the

Navier-Stokes equations for this particular geometry. After some of approximations and

the nondimensionalization of the variables we end up with equations for the state variables

X, Y and Z. X ∝ ψ is related to convection where ψ is the the stream function of the

fluid; vx = −∂ψ
∂z

and vz = ∂ψ
∂x

. Y is related to the horizontal temperature variation and Z

to the vertical temperature variation. The final equations are

Ẋ = σ(Y −X)

Ẏ = rX −XZ − Y

Ż = XY − βZ

with σ = µ
DT ρ0

the Prandtl number, r = 4
27π4R is the reduced Rayleigh number and

β = 8/3. Changing r leads to different kinds of behavior including, for some values of r,
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chaos. Notice that the only nonlinearity in the equations comes from the XZ/XY terms.

Figure 1.5. Plot of Z vs. X for the famous Lorenz attractor. The Lorenz system is a
simplified model for convection in the atmosphere with X representing the convection and
Z the vertical temperature variation.

We see in Fig.(1.5) that the Lorenz system traces out a particular shape/object

in phase space. This is called a strange attractor. Like the fixed points we saw for the

pendulum, this object attracts trajectories that start off of it so that all motion will

converge asymptotically to the attractor. Unlike the pendulum example this attractor is

not a fixed point but rather a lower dimensional surface in the phase space of the system.

This kind of low dimensional surface on which the motion occurs is typical for these kind

of systems, with even very high dimensional dynamical systems often having motion that

occurs in a small subset of the phase space. These are the effective degrees of freedom and

is sometimes described as self organization.

1.2.1 Lyapunov Exponents

How can we characterize the behavior of a chaotic dynamical system? We can

do so by computing quantities called the Lyapunov exponents (LEs). The Lyapunov
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Figure 1.6. The Lyapunov exponents describe the exponential growth of perturbations
due to error in the initial conditions of a dynamical system. Positive LEs are a hallmark
of chaos and guarantee a finite forecasting horizon.

spectrum, composed of a system’s LEs, characterizes a dynamical system [25, 26] by given

a quantitative measure of how a volume of phase space stretches/shrinks over time. The

LEs are an extremely useful quantity; for example, one definition of a chaotic system is

that there is at least one positive LE [27]. LEs can also be used to estimate the rate of

entropy production (Kolmogorov-Sinai Entropy) and the fractal or information dimension

[27].

The LEs describe how two points x1 and x2, separated initially by a distance

δx0 = |x1 − x2|, evolve in time with respect to one another. More specifically,

δx(t) ≈ δx0e
λ1t

with λ1 being the largest LE1. Therefore if λ1 is positive, over time the two initial conditions

that at first only differ by a small amount will diverge away from one another exponentially

fast in the linearized regime—the definition of chaos.
1it is important to note that the error only actually grows exponentially as λ1 when δx lies exactly

along the direction λ1, however for large t the largest exponent will dominate.
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Starting from the variational equation eq.(1.4)

ϕ̇(t′, t) = J(x(t)) · ϕ(t′, t) (1.9)

the general solution involves the matrix exponential

ϕ(t′, t) = T+ exp
{∫ t′

t
J(x(t))dt

}
ϕ(t, t)

with ϕ(t, t) = I and T+ being the time ordering operator [28] for two operators (here

matrices) A(t) and B(t′) that are not commutative,

T+A(t)B(t′) =


A(t)B(t′) if t > t′

B(t′)A(t) if t < t′
.

T+ is important because the Jacobian matrices are not commutative i.e.,
[
J(t),J(t′)

]
≠ 0.

The variational equation is much easier to work with in discrete time t = t0 +

n∆t; t′ = t0 + n′∆t where it appears as

ϕ(n′, n) = DF(n)ϕ(n′ − 1, n),

and ϕ(n, n) = I.

Then the solution for ϕ(n+ L, n) is the product of Jacobians

ϕ(n+ L, n) = DF(n+ L) · ϕ(n+ L− 1, n)

= DF(n+ L) · DF(n+ L− 1) · ϕ(n+ L− 2)

= DF(n+ L) · DF(n+ L− 1) · . . .DF(n). (1.10)

The matrix ϕ(t′, t) describes how small perturbations to a state x(t) propagate to
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the state at x(t′). Given equations (1.1) and (1.9) one can solve them concurrently to find

Oseledec’s matrix Φ = ϕ(t′, t)ϕ(t′, t)T .

The eigenvalues of the log of Φ(t′, t) for large times

lim
t′→∞

1
2t′ logϕ(t′, t)ϕ(t′, t)T (1.11)

are the global Lyapunov Exponents; the N eigenvalues are by definition real and the

eigenvectors orthogonal since Φ is a symmetric N × N matrix. We order the LEs

λ1 > λ2 > . . . > λN . The matrix Φ is ill-conditioned, so accurately evaluating all of its

eigenvalues requires a stable algorithm, for example as provided by [26, 27].

Oseledec’s multiplicative ergodic theorem [29] states that all N LEs of a dynamical

system (a) exist, (b) are independent of the initial starting point x(t), and (c) are invariant

under smooth coordinate transformations 2. The finite time Lyapunov exponents (FTLE)

[30], Eq.(1.11) evaluated for finite t′, are not independent of x(t) nor are they invariant

under a smooth coordinate transformation. Furthermore, for a continuous time dynamical

system one of the LEs must be 0, and ∑N
i=1 λi ≤ 0. In Hamiltonian systems the spectrum

of LEs is symmetric around 0 and thus ∑N
i=1 λi = 0, a natural statement of phase space

volume conservation guaranteed by Liouville’s theorem.

Doing such a calculation for the Lorenz system we find that the LEs are λ =

[0.9, 0.0,−14.3]. We can see therefore that phase space volumes tend to shrink ∑
i λi < 0

so this is a dissipative system; in one direction, however, the LE is positive so there is

chaos because nearby trajectories tend to diverge.

1.2.2 Fractal Dimensions

The geometrical surface in phase space that the trajectories of the Lorenz system

occupy is called a “strange attractor” due to the sensitivity to initial conditions that
2The statement of invariance under coordinate transformation is important when attempting to recover

the LEs from a time delay embedding.
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trajectories on the surface exhibit. This attractor has infinite surface area but 0 volume (by

definition phase space volumes in dissipative systems shrink to 0) and is thus an example

of a fractal set. There are a number of methods for characterizing the attractor, not least

its natural invariant density ρ which gives a notion of how often a trajectory will visit a

particular point on the attractor [31]. Functions integrated with the density
∫
dDxρ(x)g(x)

are conserved. A useful quantity for characterizing the attractor is its dimension. An

intuitive definition of the dimension is often given as

dimension = log µ(M)
log 1

2∥xmin − xmax∥2

where ∥xmin − xmax∥ gives the diameter of the set [31] and µ(M) =
∫
M ρ(x)dx is the

invariant measure over the available state space M . This definition corresponds to the

physically intuitive idea that Volume = rdimension where r is the radius and the volume here

corresponds to the notion of volume given by the measure. While intuitive, this definition

can often be difficult to calculate in practice.

The Kaplan-Yorke (KY) dimension [32, 33] or Lyapunov dimension gives an upper

bound on the dimension a strange attractor through the Lyapunov exponents of that

system. By definition, to calculate the KY dimension, arrange the Lyapunov exponents

from largest to smallest λ1 ≥ λ2 ≥ ... ≥ λD, where D here is the dimension of the system

or reservoir.

Let α be the index for which

α∑
i=1

λi ≥ 0

and
α+1∑
i=1

λi < 0
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Thus the Lyapunov/KY or information dimension of the system is [34]

Dimension = α +
∑α
i=1 λi

|λα+1|
. (1.12)

For the Lorenz system we find that the fractal dimension of the attractor is 2.06.

Thus it is clear that the motion of the system is taking place on a low dimensional surface

and that surface has a non-integer dimension. The fractal and chaotic nature of the

dynamical system, even for such a simple set of equations, makes forecasting incredibly

difficult. Small errors exponentially increase and the nonlinearity makes any optimization

procedure nonconvex, meaning there is no efficient method to find a global minimum. The

field of data assimilation (DA) is dedicated to finding the optimal method of integrating

measurements of complex system into a model to produce forecasts.

1.3 Data Assimilation

Given measurements of a system we must transfer that information to a model in

such a way that the model generalizes to a time period beyond the measurement window.

This generalization step is called prediction or forecasting. The underlying system that

generates the states is given by Eq.(1.1)

dxi(t)
dt = fi(x(t), t) ; i ∈ [1, . . . , D].

Our measurements are given at the discrete times t = [t0, t1, . . . , tM−1, tM ], where at each

of those times we observe the state u = H(x) + ϵH ∈ RL, where H is the observation

operator with L ≤ D and noise ϵH . In general we do not know f exactly and therefore we

must parameterize our system as

dxi(t)
dt = f̃i(x(t), t, θ) ; i ∈ [1, . . . , D].
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where θ are some parameters to be estimated and f̃ is an approximation to our true system

f . This model may have errors in it and the measurements could be sparse L << D and

noisy. The algorithms that have been designed over the years to solve this problem fall

under the umbrella of data assimilation (DA).

1.3.1 Kalman Filter

The simplest solution to this problem goes back to Kalman in 1960[35] with his

solution to the linear filtering problem. A filtering problem specifically refers to the

sequential processing of the data such that we would like to estimate the future state given

the previous state and our measurements. The Kalman filter solves the optimal linear

interpolation problem between two estimations with known variance. As an example let

us say we are measuring some property of a dynamical system, say true temperature Tt,

with measurement Tu which is measured with error σu and a model prediction Tx which

has a precision σx. The combined estimate of the system T will be the interpolation

T̂ = αTu + βTx where α + β = 1. Assuming the estimate is unbiased i.e., ⟨T̂ ⟩ = ⟨Tt⟩, the

error on the interpolation σ̂2 = ⟨[α(Tu − T ) + (1 − α)(Tx − T )]2⟩ can be minimized with

respect to α. Setting ∂σ̂2

∂α
= 0 we find

α = σ2
x

σ2
u+σ2

x
β = σ2

u

σ2
u+σ2

x

which shows that the optimal interpolation of the two values is a function of their variances.

Furthermore the total error

σ̂2 = σ2
uσ

2
x

σ2
u + σ2

x

is less than that of the individual measurements σ2
x, σ

2
u showing that we have indeed used

our measurements to reduce the error on the total T̂ estimate. The form often used in the

Kalman filter is

T̂ = Tx +K(Tu − Tx)
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where in this case K = σ2
x

σ2
u+σ2

x
is the gain matrix which is correcting the model estimate Tx

with the measurement Tu.

Expanding our analysis to a larger system than just one variable, the assumptions for

the Kalman filter are that we have a linear system ẋ = Fx+ϵF , a linear observation operator

u = Hx + ϵH and gaussian noise: ϵH ∼ NL(0,ΣH), ϵF ∼ ND(0,ΣF ) with Nk(⟨x⟩ ,Σ) =
1√

(2π)kΣ
exp

[
1
2(x − ⟨x⟩)TΣ−1(x − ⟨x⟩)

]
the k dimensional multivariate Gaussian. Therefore

the markov update of the model giving the probability of the next state given the previous

one is

P (xi+1|xi) ∼ N (Fx,ΣF )

and the probability of the measurement given the model is

P (ui|xi) ∼ N (Hx,ΣH).

Now given these assumptions we can find our solution for maximum of the probability

of the nth state xn given all the previous measurements [un, . . . , u1]. P (xn|un, . . . , u1) =

N (⟨xn⟩ ,Σn) with

⟨xn⟩ = F ⟨xn−1⟩ +K(un − HFxn−1)

Σn = (I −KH)Σ−
n

where ⟨xn−1⟩ = ⟨P (xn−1|un−1, . . . , u1)⟩ and Σ−
n = Fn−1Σn−1FT

n−1 +ΣF . Looking at ⟨xn⟩ we

see that the matrix K is interpolating between the model update Fxn−1 and the difference

in the measurements and the model un − HFxn−1. The matrix K is the Kalman gain and

is given by

K = Σ−
nH

T [HΣ−
nH

T + ΣH ]−1
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which is the weighting between the model error and the measurement error. This scheme

gives an iterative update formula where we forecast from an initial time and update

the state estimates as measurements come in. The solution is exact but only when the

assumptions of linearity and gaussian noise hold. For complex system these are not the

case and extensions and approximation must be made.

We proceed with a fully nonlinear formulation of data assimilation and its appli-

cation to various problems in neurobiology. Following that, we will look at purely data

driven methods of forecasting, this requires dispensing with the physically derived model

and using a more flexible approach.
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Chapter 2

Data Assimilation in Biological and
Neuromorphic Networks

Parts of this chapter are adapted from [1] previously published by Frontiers.

The human brain is one of the great unexplored frontiers, in the sense that the

measurements we have of its function do not come close to explaining the emergent

property that is human behavior. Much of our incomprehension is the result of the utter

inadequacy of our measurement techniques when faced with 1011 neurons and up to 1015

synaptic connections [36]. The experimentalist’s tools are often limited to

1. detailed electro-physiological recordings of a handful neurons, these can be cell-

attached to explore single ion channels or whole cell recordings

2. extracellular recordings (spiking) of a few tens of neurons

3. fluorescence imaging techniques (e.g., calcium fluorescence)

4. whole brain imaging such as large scale MRI recordings

5. pharmacological blockers to block certain neurotransmitters and ion channels

with each technique having its own drawbacks [37]. For instance the electrophysiological

recordings are generally the only method with enough information to fit a biophysical

model, but patch clamp experiments are limited to a mere fraction of available neurons.
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The other techniques can generally show aggregate behaviors, but not in the level of detail

needed to determine the exact equations. Functional networks, arising from graph theory

and determined through Ca imaging, have been used to gain insight into correlations

between neurons but aggregate activity over time, removing information on causality

within the network so crucial to the dynamics.

Nonlinear dynamics has been a powerful tool in neuroscience, applied to networks

it describes activity such as sequential switching between populations of neurons. An

interesting biological network whose operation can be described through a dynamical

systems framework is the insect olfactory system. This system is composed of receptor

neurons that react to chemical input, the antennal lobe which processes the input, and the

mushroom body that classifies the various inputs. More detail can be found in Fig.(2.1).

When stimulated by distinct current inputs from a sensory network of olfactory

receptor neurons, the antennal lobe—the equivalent of the olfactory bulb in insects—

produces trajectories in the network phase space following distinct heteroclinic sequences

among unstable regions. These trajectories move from unstable regions to other unstable

regions, and continue to do so as long as the stimulus persists. When the stimulus ends,

the trajectory retreats to a stable fixed point region where it responds to environmental

noise [45–47]. These observed properties led to a suggestion of an AL network structure [48–

50] called winnerless competition networks (WLC).

The idea of the AL as a WLC network was examined in experiments on locust

olfactory networks by Mazor and Laurent [51]. They found that the AL responses to

stimulating odors of varying duration were described by: (1) an “on-transient”, when the

stimulus is first received, (2) an “off-transient” as the stimulus recedes and the neural

activity returns to its stable base state, and (3) movement around a ‘fixed point’ or stable

region in AL neuron phase space. They noted that “optimal stimulus separation occurred

during the transients. . . ”, suggesting that the biological AL acts as a WLC network with

added longer time scale activity and odor specific dynamics.
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Figure 2.1. The biological neural circuits that perform the identification and classification
of components in odors. The initial stage is composed of olfactory receptor neurons (ORN)
that are activated by a particular chemical component of the odor. The representation
of odors in ORNs is generally a complicated nonlinear function of the inputs [38, 39].
Responses of ORNs to mixtures of odors, in particular, are characterized by a large variety
of receptor modulation mechanisms [40]; the form of the input greatly influences the
subsequent learning process. The ORNs project to the Antennal Lobe (AL), within which
are excitatory projection neurons (PNs) and inhibitory interneurons (LNs); in locusts
there are approximately 850 PNs and 300 LNs. The PNs carry AL activity forward to
the next stage of olfactory recognition called the mushroom body (MB) [41], which is
suggested to act as a support vector machine in the biological olfactory network [42]. The
AL and MB act to process the encoding given by the ORNs, first in the AL through
a dense spatio-temporal encoding and then in the MB as a sparse, high dimensional
representation [43, 44].
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Once the WLC structure is established, the precise trajectory of the network

response in network state space and time is determined by the specific stimulus. Each

distinct stimulus defines a specific direction in the high dimensional space of the WLC

network. As the network state space is composed of multiple regions of nonlinear, unstable

behavior, the phase space trajectory is seen to be quite sensitive to the selected current

stimulus. This sensitivity suggests that a WLC network could distinguish among many

‘nearby’ stimuli. Indeed, there is an estimation of the capacity of e(N − 1)! for a WLC

network of N neurons [49].

Chapter 3 and 4 will delve into the dynamical operations of networks of artificial

neurons as applied to forecasting problems, there are many parallels between these networks

and the WLC network described above. In the rest of chapter 2 we look into the application

of nonlinear dynamics in the analysis of single neuron models. Single neurons are the

components of networks and are vitally important for building up networks with true

biophysical components. Unfortunately, even the process of building the model and

estimating its parameters is fraught with difficulties [52, 53]. The neuron models are highly

nonlinear, the experiments difficult, and the variation in model complexity wide even for

neurons spatially close to one another. We explore here a number of problem formulations,

based on Bayesian inference, that allow us to solve these problems. After formulating the

problem we apply the technique to estimating the parameters of neurons (both biological

and instantiated on physical circuits) from experimental data.

2.1 Statistical Data Assimilation

Instead of the sequential filtering problem—such as in the Kalman filter described

in chapter 1—for problems in neurobiology we are attempting to jointly estimate the state

and parameters of a highly nonlinear model over an observation window. The objective is

the correct estimation of the parameters in the physical model, with the forecast simply
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to check the result. Therefore the quantity we are attempting to estimate is the joint

probability distribution P (X|U) over all the states and parameters X = [xn, . . . ,x0], given

the measurements U = [un, . . . ,u0,ub] and the prior over the initial condition ub—also

known as the background.

From Bayes rule we can rewrite

P (X|U) = P (U |X)P (X)
P (U) . (2.1)

The denominator does not depend on X so we can ignore it in when searching for the

optimal X. We assume that the measurements are only dependent on the present state of

the system P (U |X) = P (ub|x0)
∏n
i=0 P (ui|xi) so that Eq.(2.1) becomes

P (X|U) = P (X)P (ub|x0)
n∏
i=0

P (ui|xi).

Now we assume that the differential equation follows a Markov process so that the next

state only depends on the previous state P (xj|xj−1, . . . ,x0) = P (xj|xj−1) so that our final

expression is

P (X|U) = P (ub|x0)P (x0)
n∏
i=0

P (ui|xi)
n∏
j=1

P (xj|xj−1). (2.2)

Expressing the solution to Eq.(2.2) as

P (X|U) ∝ exp[−A(X|U)]

we find

A(X|U) = −
n−1∑
j=0

logP (xj+1|xj) −
n∑
i=0

logP (ui|xi) − logP (ub|x0)P (x0)

with A called the “Action.” We solve for the conditional expected values for functions

26



along the path of the state X as

E[G(X)|U ] =
∫
dXG(X) exp[−A(X|U)]∫
dX exp[−A(X|U)] .

When observations U are related to their model counterparts via covariance matrix ΣH ,

and model errors are associated with ΣF then the action assumes the form

A(X|U) =1
2

n∑
t=1

(x(t) − f [x(t− 1)])TΣ−1
F (x(t) − f [x(t− 1)])+

1
2

n∑
t=0

(u(t) −H[x(t)])TΣ−1
H (u(t) −H[x(t)])+

1
2(x0 − ub)TΣ−1

B (x0 − ub) (2.3)

where the matrix ΣB represents the error on the prior belief (or background) estimate of

the system; in the following case this term will be taken to be 0. This cost function is called

the weak 4D-var formulation of data assimilation in the meterological community[54–56],

with the background estimate usually given by the previous forecast cycle Fig.(2.2).

To locate the minima of the action A(X) = − log[P (X|U)] we must seek paths

Xj; j = 0, 1, . . . such that ∂A(X)
∂Xj

= 0, and then check that the second derivative at Xj,

the Hessian, is a positive definite matrix. The vanishing of the derivative is a necessary

condition. Laplace’s method [57–59] expands the action around the Xj seeking the path X0

with the smallest value of A(X). The contribution of X0 to the integral is approximately

exp[A(X1) − A(X0)] bigger than that of the path with the next smallest action.
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Figure 2.2. Illustration of how 4D-var combines a model, measurements and prior into
a best guess estimate of the corrected forecast. Since the measurements are sparse and
noisy, a physical model is needed in order to transfer information from the observed states
to the unobserved states. The corrected solution is the state X that minimizes Eq.(2.3).

2.2 Euler-Lagrange Formulation

The continuous time version of the action with no prior/background is

A[x(t)] = 1
2

∫ tf

t0
dt[(ẋ(t) − f [x(t)])TΣ−1

F (ẋ(t) − f [x(t)])+

(u(t) −H[x(t)])TΣ−1
H (u(t) −H[x(t)])] (2.4)

where f is now the continuous time model rather than a map with u and x continuous

variables and the action A is a functional over the functions x(t) rather than variables

X. The derivation of the continuous time action is given in detail in [60] using stochastic

path integrals analagous to those in quantum field theory [61]. The correct equation is

not, in fact, a direct application of the limit ∆t → 0 as in Eq.(2.4). On application of

Ito’s lemma [62] to find the integral expression for the action, the term 1
2

∫
∇ · f [x(t)]dt

must be added. We ignore this term in the subsequent analysis because we are making a

suggestive rather than quantitative argument, but a direct application of the continuous
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action will require this extra divergence term in the equations of motion.

Eq.(2.4) has an associated Lagrangian A =
∫

L(x, ẋ, t)dt such that

L(x, ẋ, t) = 1
2[(ẋ(t)− f [x(t)])TΣ−1

F (ẋ(t)− f [x(t)])+(u(t)−H[x(t)])TΣ−1
H (u(t)−H[x(t)])].

The extremum of this action is given by the Euler-Lagrange equations for the variational

problem [63]
∂L
∂x

= d
dt
∂L
∂ẋ

with the boundary conditions [60]
∂L
∂ẋ

= 0.

Plugging in for our Lagrangian and after some manipulation we end with the Euler-

Lagrange equations for the action Eq.(2.4) [64]

[
δij

d
dt + ∂fj(x)

∂xi

][
ẋj − fi(x)

]
= ΣF

ΣH

δik(uk −H[xk]).

The right hand side of this equation is suggestive of a particular interpretation of the

equations of motion. Namely, the equations of the system—which are solving a two point

boundary value problem—are being forced at the measurement locations [64]. This forcing

is reminiscent of the synchronization of a dynamical system through the introduction of a

forcing term k(u−H[x])—synchronizing the dynamical system to the measurements with

a coupling constant k.

With this suggestion in mind we rewrite the equations of motion as

ẋ(t) = f(x) + k(t)(u −H[x]) (2.5)

where k is a time dependent parameter expressing the forcing of the model equations

by the measurements. This is sometimes called nudging [65] and gives the equations of
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motion for the DA problem. This form will be used directly to find the optimal state and

parameter estimate for the system.

2.3 Nudging

The minimization of A(X|U) is in general a non-convex, NP complete problem with

large numbers of local minima. We can, however, make use of the nudging formulation [66]

to pose the minimization of A(X|U) a generalized synchronization problem. We introduce

the non-physical time dependent parameter k(t) into the dynamical system in order to

synchronize the model with the observations [67]. The minimization of the action of

Eq.(2.3) is rewritten as a constrained optimization problem with minimization over the

measurements with the constraints being the DA equations of motion Eq.(2.5). The

minimization problem is

min
X,k

. Anudge(X|U)

subject to ẋ = f(x(t)) + k(t)(H[x(t)] − u(t))
(2.6)

with our modified action as

Anudge =
n∑
t=0

∥H[x(t)] − u(t)∥2 + ∥k(t)∥2 (2.7)

and k(t) = 0 when we have no observation, we can now solve this problem with an interior

point optimization routine [68]. While the problem is not convex in general, we are

guaranteed convexity in the limit as k → ∞ as long as the measurement operator is linear.

To see this we can take the limit and see that the optimization problem becomes

min
X,k

.
∑n
t=0 ∥k(t)∥2

subject to ẋ = k(t)(Hx(t) − u(t))
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which is a convex problem with a solution at k = 0 and Hx = u.

To provide some intuition into the nudging operation we can start by analyzing

Eqs.(2.6, 2.7) at the initialization of the optimization routine when the euclidean distance

between the measurements and the model ∥H[x(t)] − u(t)∥2 is large and the coupling

constant k ∼ 0. Since the initial distance between u and H[x] is large, the initial iterations

of the routine will minimize the cost function by increasing the coupling constant k, driving

the model towards the measurements and finding the solution to the convex version of the

problem. Once ∥H[x(t)] − u(t)∥2 ∼ 0 the subsequent minimization routine will minimize

k2 thus returning the solution to the original minimization problem, but with H[x] still

close to u and with k ∼ 0. Thus we have recovered the solution to the DA problem with

the non-physical synchronization term k small and our parameters estimated. While not

guaranteed to converge to the optimum, in practice this technique has been found to give

good estimates of the parameters for small systems [69].

2.4 Hodgkin-Huxley Model

The Hodgkin-Huxley equations (HH) [70] describe the non-linear dynamical system

governing the action potential of an neuron with sodium (Na) and potassium (K) ion

channels, as well as some leakage. Dynamics are governed by the voltage and three

parameters m, h and n which are the sodium current activation, inactivation and potassium

current activation respectively. The HH equations have been held up to be one of the

great triumphs of biophysics since they predicted the existence and use of ion channels in

the neural system from extensive voltage experiments on the giant squid axon. At the

time it was not feasible to look for the movement of ions directly so their existence had

to be inferred. The HH equations can also be extended by adding extra ion channels

into the equations of motion, making the extended HH model the bread and butter of

computational neuroscience.
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The Hodgkin-Huxley equations are given by

CmV̇ (t) = ḡNam
3h(ENa − V ) + ḡKn

4(Ek − V ) + gL(EL − V ) + Iinj(t) (2.8)

q̇(t) = q∞(V ) − q

τq(V ) ; q ∈ [m,h, n] (2.9)

(2.10)

where

q∞(V ) = 1
2(1 + tanh[V − σq

∆q

])

τq(V ) = t0q + t1q(1 − tanh2[V − σq
∆q

]).

The model has 16 − 19 configurable parameters (depending on the exact formulation) and

is fundamentally a relaxation oscillator in that the motion can be described as a spike,

followed by a period of quiescence and then often continued by a new spike.

Physically, a (simplified) neuron is composed of the

1. soma, the body of the neuron containing the nucleus and the other accoutrements of

a typical cell

2. dendrites, receptor branches for the input chemical signals into the neuron

3. axon, the single—often extremely long—branch from the soma connecting to other

neurons.

The HH equations describe the reaction of the voltage across the cell membrane to an

external stimulus. In biological settings the stimulus is given by the interaction of synaptic

receptors in the dendrites to inbound chemical stimulus such as the neurotransmitters

GABA, acetocholine, dopenmine, etc. In patch clamp experiments the input stimulus is a

direct current injection directly into the neuron.

32



2.5 NeuroDyn

An ambitious effort in neuroscience is the creation of low power consumption analog

neural-emulating very large-scale integration (VLSI) circuitry [71]. The goals for this effort

are the development of fast, reconfigurable circuitry on which to incorporate information

revealed in biological experiments for use in

1. spiking neural networks for “edge computation” applications where low power con-

sumption is key [72]

2. hardware for brain-computer interfaces which can interact with the nervous system

on both synaptic and network scales.[73]

One of the roadblocks in achieving critical steps towards these goals is the error

prone nature of the manufactured circuitry. Given the sensitivity of the models being

instantiated on these VLSI chips, the tolerances on the components are too high to

guarantee reasonable behavior. To overcome this barrier in using the VLSI devices in

networks, one can specify an algorithmic tool to determine the factory components without

having to manually measure the constituent parts. As each chip is an electronic device

built on a model design, and the flaws in manufacturing are imperfections in the realization

of design parameters, the data from the physical chip and data assimilation can be used

to estimate the parameter offsets on the chip.

If we present to the chip input signals, we can measure everything about each output

from the chip and use DA to estimate the actual parameters produced in manufacturing.

Of course, we do not know those parameters a priori so after estimating the parameters,

thus “calibrating” the chip, we must use those estimated parameters to predict the response

of the chip to a new stimulating currents. That will validate the completion of the model

of the actual circuitry on the chip and permit confidence in using it in building interesting

networks.
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The NeuroDyn chip [74, 75] simulates the behavior of a HH Neuron on an integrated

circuit. While the behavior of NeuroDyn is similar to a neuron, the model and the

parameters of a physical neuron are translated into various currents and constants on the

chip itself. The dynamics in the model are given by a Na ion current, a K current and a

leak current

Cmem
dV

dt
= Iinj − INa − IK − IL

INa = k

VT
I1(V − ENa)

IK = k

VT
I2(V − EK)

IL = k

VT
I3(V − EL)

where the currents I are functions of the gating variables n, m and h.

As an example we can take I1:

I1 = IgNa
( Im
Iref

)3 Ih
Iref

where IgNa
= Imaster

gNa

1024 . We can think of this equation as matching the usual INa =

gNam
3h. Iref , gNa and Imaster are all configurable constants with gNa an integer between 0

and 1023.

The gating variables are Im/Iref , In/Iref , Ih/Iref . Making q = Iq/Iref we can write

the differential equation
dq

dt
= α(1 − q) − βq

α and β are summations over sigmoid functions.

α = 1
CTVT

7∑
j=1

Imasterαj/1024
1 + exp{(sign ∗ k(Vbj − V )/VT})
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where αj is a constant between 0-1023.

Vbj is defined recursively as follows:

Vbn = Vb(n−1) + Ifactor ∗ 100e3

where Vb1 = Vlow + Ifactor ∗ 50e3 and Ifactor = Vhigh−VLow

700e−3 .

Summary of Configurable Parameters

Parameter Description Range

gx Conductance 0-1024

αj Gating Variables 0-1024

βj Gating Variables 0-1024

ex Reversal Potential 0-1024

Vref Constant Reference Voltage ∼1V

R Resistance ∼1.63e6 Ω

IV oltage current constant ∼270nA

Imaster master current ∼200nA

Iref Reference current ∼100nA

Summary Constants

Constant Description Approx Value

Cmem Membrane Capacitance 4pf

CT Gating Capacitance 5pf

VT Gating voltage 26mV

k Sigmoid Parameter ∼0.7

Vhigh Highest Voltage ∼1.1V

Vlow Lowest Voltage ∼0.65V
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2.5.1 Designing a Current

A HH neuron is a driven dynamical system that tends to a fixed point with no

input and a limit cycle for a constant input. The value and design of the input current is

therefore important in determining the identifiability of the parameters in the model. If

there was a constant stimulus into the neuron it would be impossible to characterize it

well because the measurements only cover a limited subsection of the total behaviors of

the neuron.

To maximize the information gained from the experiment the neuron should be

stimulated across a wide number of its possible behaviors including both subthreshold

and spiking operating regions. In other words, we must well sample all feasible states in

the phase space of the dynamical system. A high amplitude current was chosen in the

experimental procedure, driving the “neuron” throughout its different operating modes

and maximizing the number of spikes. A large number of spikes increases the amount

of information available on the kinetic parameters that govern the shape and timing of

the spikes. Additionally the current was chaotic and thus contained a broad frequency

spectrum, enabling it to stimulate the neuron across multiple time scales.

In addition to the amplitude of the injected current, the frequency spectrum is

also of the utmost importance. The membrane of a neuron acts as a low pass filter with

a cutoff time constant—using standard values of C = 1µF/cm2 and R = 10, 000Ωcm2—

on the order 10ms. Thus any signal over 100Hz is filtered out by the cell membrane.

Accordingly, the power spectrum of the input should be mostly below 100Hz.

2.5.2 NeuroDyn Results

We estimate the parameters for a NeuroDyn chip using the nudging method and

measuring V , m, h and n—this builds on the results of [75] which has similar results

using a different DA procedure. In a biophysical neuron only the voltage can be measured,
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Figure 2.3. This is a sample chaotic current for parameter estimation in neural systems
along with its fourier transform; the low pass cutoff frequency for a neuron is shown at
100 Hz. It is important to choose a current that excites the neuron throughout its entire
dynamical range and contains the maximum amount of information. Most of the power of
the frequency spectrum should thus be below 100 Hz.

but on the chip all four state variables are physical currents and can thus be measured.

The parameters were fit to the model during the observation window and the model was

validated during the prediction period. As shown in Fig.(2.4) the parameters estimated

give almost perfect predictions, thus validating the model. The results show that DA

can be a powerful tool to identify the parameter offsets due to manufacturing defects

in NeuroDyn thus allowing the correct programming for a particular behavior in these

neuromorphic systems.

To summarize the whole procedure, we

1. Design a NeuroDyn VLSI circuit with variable parameters to emulate a physical

neuron

2. Send the designs to be manufactured

3. Run the DA procedure on the manufactured chip to estimate parameter offsets due
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to manufacturing defects

4. Use the recovered error in the parameters to recover the desired behavior.
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Figure 2.4. Predictions for NeuroDyn chip with conductances, reversal potentials and
kinetic parameters estimated from V,m ,h, n. We see that the parameters estimated
give near perfect predictions. Data collected by Jun Wang in the laboratory of Gert
Cauwenberghs at UCSD [75]

2.6 Data Assimilation with Neuron Data

Now we pivot to using DA on measurements from biological rather than neuromor-

phic neurons. The neurons in question are physically taken from the high vocal center

(HVC) song nucleus of the zebra finch [76, 77]. HVC is a central player in song production,

participating in generating the timing that controls song output [78]. Study of HVC affords

numerous advantages. Firstly, the ionic currents of all the major HVC cells types are

described, permitting HH descriptions [79, 80]. These single cell models can be explored

in terms of networks, giving considerable insight into patterns of connections between
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cells. Furthermore, the output of HVC and its functional role in generating song timing is

intensely studied [81], with the complexity of the network operation constrained by the

stereotypy of song. Analysis of HVC presents an outstanding opportunity to extrapolate

from the behavior of individual neurons to the emergent property of networks through

the study of sequential pattern generation, a central problem in motor systems research.

A further technical advantage is that HVC sits close to the dorsal surface of the brain,

greatly facilitating two photon miscroscopy [82] for imaging Ca fluorescence signals arising

from the activity of neurons in active networks.

For the experiment, the activity of basal ganglia Area X projecting (HVCX) neurons,

projecting to the basal ganglia component of the zebra finch song system, are measured

through patch clamp recordings. The data is shown in Fig.(2.5) and was recorded by Dan

Meliza in the laboratory of Dan Margoliash at the University of Chicago.

Figure 2.5. Voltage trace data and stimulating current from patch clamp recording on a
HVC X-projecting neuron.

We would like to fit a model to the data using data assimilation. The model

details are given in the next section. The data assimilation action differs from the nudging

routine used for the VLSI problem in that we don’t use the minimization suggested by the

Euler-Lagrange equations but instead minimize the action directly. Starting from Eq.(2.3)

we make a number of assumptions:
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1. The prior is uniform

2. The model is perfect

3. The fit of the model to the data is determined not just by the mean square error

(MSE) but also the spike timings, the spike shape and the fit of the subthreshold

behavior.

Expanding on the last point, small variations in parameters can have a big impact on

the exact timing of spikes. A mistimed spike can lead to a dramatic increase in MSE,

but the model may be very close from a biological perspective. Therefore instead of the

usual least squares action with no prior and a perfect model A0(X|U) = 1
2

∑n
t=0(u(t) −

H[x(t)])TΣ−1
H (u(t) −H[x(t)]), we use the normalized root mean square error

NRMSE(x) = 1
max y − min y

√√√√ 1
n × D

n∑
t=0

∥u(t) − H[x(t)]∥2 (2.11)

combined with a measure of the accuracy of spike timings called the bivariate spike distance

(BSD)—invented by Kreuze et.al.[83, 84].

BSD gives a value between 0 (identical spike trains) and 1 (completely dissimilar

spike trains). It is calculated by identifying each instant in time t with the previous and

next spikes of each of the two spike trains. Using these these spike timings they define a

spike dissimilarity metric S(t) which can be integrated to find BSD [85]

BSD = 1
T

∫ T

0
S(t)dt.

Therefore our action is

A0(X) = (1 − ϵ) NRMSE(X) + ϵ BSD(X) (2.12)

which is mediated by the variable ϵ which allows us to give more or less weight to the spike

40



times vs the subthreshold activity and the spike shape. The model is enforced directly by

applying the equations of motion and therefore the action is only a function of the initial

condition X0 and the parameters of the model.

2.6.1 Model

The model consists of a Hodgkin-Huxley like model with 9 ion channels/74 param-

eters and is described in detail in the paper by Nogaret et.al. [86].

Table 2.1. The ion channels of the HH like model of a HVC X projecting neuron,
reproduced from [86]

ID Channel Current Density
NaT Fast and transient Na+ current INaT = gNaTm

3h(ENa − V )
NaP Persistent Na+ current INaP = gNaPm(ENa − V )
K1 Transient depolarization activated K+ current IK1 = gK1m

4(Ek − V )
K2 Rapidly inactivating K+ current (A current) IK2 = gK2m

4h(EK − V )
K3 Ca2+ activated K+ current IK3 = gK3m(Ek − V )
CaL High threshold Ca2+ current ICaL = ρm2ICa
CaT Low threshold Ca2+ current ICaT = m2hICa
HCN Hyperpolarization-activated cation current IHCN = gHCNh(EHCN − V )
Leak Leakage channels IL = gL(EL − V )

2.6.2 Results and Discussion

The action Eq.(2.12) is nonlinear and thus requires a global optimization routine

to solve for the minima. The routine used in this study is the covariance matrix adaption

evolutionary strategy (CMAES) [87].

CMAES is a stochastic method that attempts to minimize a nonlinear, high

dimensional function with respect to an input vector. It is part of the evolutionary class

of algorithms that have achieved remarkable success in gradient free global optimization.

Other examples of this class of algorithm include differential evolution [88]. CMAES is

known to work well for highly nonlinear problems up to ∼ 100 − 200 parameters and is

thus well suited for use in data assimilation where we are minimizing the action over a set
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of parameters.

The results of the estimation procedure are shown in Fig.(2.6). We see that both

the subthreshold behavior and the spike timings match up well both in the estimation and

the prediction window. The goal was to reproduce the results in [86] but with the new

optimization technique rather than nudging which was used in that study. The advantages

of the new technique include the speed and scaling of the procedure, as well as the ability

to weight the spike timings vs spike shape. Having proved that the technique works well

with voltage data, we now extend this study to the case where we have Ca fluorescence

data.

Figure 2.6. Result from the DA procedure. ϵ = 0.5 in this case which evenly balances the
spike timing cost with the normalize root mean square error which tends to emphasize the
subthreshold activity. The red curve is the estimate while the black curve is the measured
data. The vertical dashed line seperates the estimation from the prediction window.

2.7 Twin Experiments with Ca Fluorescence Data

We describe a twin experiment using Ca Fluorescence data with a known Iext to

estimate voltage as well as the maximal conductances. A twin experiment is one in which

artificial data with added noise is generated from a computational model, then we see if
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parameters in the model can be inferred from the generated data. This kind of experiment

gives a proof of concept that the experiment is possible and gives us a simulation platform

to study experimental protocol.

The main reason we would want to be able to use Ca data in a DA context is

that the development of two photon microscopy [82, 89–93] has made it possible to image

the activity of networks of neurons near the surface of the brain in vivo. This gives it a

distinct advantage in the study of network connectivity and function when compared to

electrophysiology. While previous studies have focused on spike timing inference [94], here

we look at the possibility of fitting a HH like model to Ca data given a known stimulus.

2.7.1 Neuron Model

The neuron model is a slightly modified version of the model in Ye et. al [95].

There are 5 state variables: V , h, n, Ca, rT . The voltage equation

V̇ (t) = − 1
Cm

(INa + IK + ICaL + ICaT + ISK + IL − Iext(t))

contains 6 currents. Na, K and L are sodium, potassium and leakalong with T and L type

Ca currents and a K/Ca current denoted SK.

The sodium current is assumed to be fast and therefore does not include voltage

gated ion channels

INa = gNam
3
∞h(V − ENa).

IK/IL are in the standard HH form

IK = gKn
4(V − EK)

IL = gL(V − EL).

The Ca2+ currents are separated in L type and T type. The Ca concentration is
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governed by
d[Ca]

dt = −ϵ(ICaL + ICaT ) − kca([Ca] − 0.1))

which is simply mass conservation of Ca. The L type Ca current is

ICaL = gCaLs
2
∞(V − ECa)

where s∞ = σ(V, θS, σS) with σ(x, y, z) = 1
2(1 + tanh y−x

2z ). T type Ca is

ICaT = gCaTaT∞(V, θaT , σaT )3bT∞(rT, θbT , σbT )3(V − ECa)

with aT∞ = σ(V, θaT , σaT ) and bT∞ = σ(rT, θbT , σbT ) − σ(0, θbT , σbT ). The K/Ca current

depends on the Ca concentration through the Hill equation

ISK = gSK
Ca4

Ca4 + ks4 (V − EK).

The stimulating current is taken from the x variable of the Lorenz 63 equations.

2.7.2 Fluorescence Data

The fluorescence signal is recorded as F (t)/F0 with F0 a constant. Vogelstein

et.al.[94] suggests that this can be related to the change in intracellular calcium as

F (t)
F0

= CaN

CaN +KN
D

+ noise.

Solving for Ca we find

Ca(t) = KD

(
F (t)

F0−F (t)

)1/N
.

This model in experimental data will have to be calibrated to find KD and N . Here we

set them to KD = 1, N = 1.
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Figure 2.7. Fluorescence data and stimulating current for the twin experiment. These
are the two measurements we have from which to estimate the model.

2.7.3 Twin Experiment

We present the CMAES method with the fluorescence data, the injected current

Fig.(2.7) and the model. We estimate V (t), h(t), n(t), Ca(t), rT (t) as well as gNa, gK , gSK ,

gCaT , gL and gCaL. The bounds, truth and estimated parameters are shown in Table.2.7.3

and the initial guess was selected randomly between the lower and upper bounds of the

search. Results are shown in the Figure 2.8.

The results show that given a correct model with missing parameters as well as

noisy fluorescence data one can reconstruct the state variables and the missing parameters.

With experimental data, of course, there are many additional complications. For a start,

two photon microscopy can tell the activity of the neuron but the input signal is unknown

in vivo. Additionally the data may have a higher signal to noise ratio or there may be

other factors influencing the fluorescence. Finally, the model may be incorrect and this

will need to be accounted for in the procedure. Thus, this is a preliminary study that will

need some development before being fully ready to deploy experimentally.
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Figure 2.8. Estimate of the Fluorescence data through the noise as well as the voltage
estimate and prediction. Since only F (t)/F0 was measured, the voltage estimate and
prediction has to be inferred along with h, n and rT . Given that the model is correct it is
not entirely surprising that we were able to recover the correct state. In true experiments
the noise may not be gaussian and the model may be incorrect.

name low high true estim

gNa 0 2500 450 463.4

gK 0 100 50 51.1

gSK 0 10 2 2.01

gCaT 0 10 3 2.98

gCaL 0 20 10 10.09

gL 0 10 2 1.9995

2.8 Summary of Chapter 2

Fitting physical models of neurons to data is an extremely challenging task due

to their high degree of dynamical nonlinearity, as well as the large number of possible

parameters to specify in any computation. A gradient descent based curve fitting approach

would fail due to the innumerable local minima in the cost function Eq.(2.3). In this

chapter we have developed an optimization formulation, based on Bayesian inference and

synchronization, that allows us to fit models of individual neurons to data.

46



The examples chosen to illustrate the power of this technique include

1. the estimation of parameter errors due to manufacturing in neuromorphic VLSI

circuits through the measurement of all state variables in response to a driving

current

2. the estimation of all state variables and parameters in a complex neuron model from

voltage data taken from a zebra finch HVCX projecting neuron

3. simulation study based on Ca data.

The ability to fit an arbitrarily complex neuron model to data allows the asking of a

number of interesting questions. Firstly, it constrains the physical characteristic of the

neuron, telling us the number and kind of ion channels, the voltage sensitivity of the

membrane proteins, the capacitance of the cell membrane and other quantities. One can

group and identify types of neurons within a cluster based on their function and physical

qualities. Furthermore, one can compare neurons within species to see whether the same

type of neurons have similar properties and what can cause these properties to change. In

Miller et.al. [1] the neuron ion channel conductance of zebra finch siblings was compared,

finding that the physical characteristics of sibling’s neurons are very similar compared to

birds not in the family.

The next steps will be to connect the microscopic details of individual neurons

and types of neurons to the aggregate activity of neuron networks. While there has

been much study on human pyschology and behavior, as well as on individual and small

networks of neurons, it has been extraordinarily difficult to connect the two. Complex

systems produce intricate behavior that can not easily be extrapolated from the interaction

laws of its various components. Therefore these techniques must be made scalable both

experimentally as well as computationally. The study of calcium is an important first

step in this regard, as it extends the use of DA to an experimental technique that can
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measure hundreds of neurons rather than the handful one has access to using detailed

voltage recordings.

In the rest of this thesis we move from using Bayesian inference to estimate

parameters in a physical model to replacing that physical model with a recurrent neural

network (RNN). This has some advantages in that the RNN learns a surrogate model

from the data alone, thus removing the issue of introducing errors into the model through

incorrect parameterization. Of course the advantages of the approach come with drawbacks

including reduced interpretability and the inability to estimate unmeasured state variables.

Chapter 2, in part, is adapted from the material as it appears in Anna Miller, Dawei

Li, Jason Platt, Arij Daou, Daniel Margoliash, and Henry D. I. Abarbanel. “Statistical

Data Assimilation: Formulation and Examples From Neurobiology”. In: Frontiers in

Applied Mathematics and Statistics 4 (2018). issn: 2297-4687. doi: 10.3389/ fams.2018.

00053 . Anna Miller was the primary inverstigator and author of the work, the dissertation

author is a coauthor on the paper.
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Chapter 3

Forecasting Chaos through Recur-
rent Neural Networks

This chapter is adapted from [2] previously published by Chaos.

3.1 Introduction

Machine Learning (ML) is a computing paradigm for data-driven prediction in

which an algorithm is presented with input data in a network training phase, and then

asked to predict the future behavior of new data in a generalization/forecast phase. No

detailed physical model is needed for this procedure.

RNNs are a family of artificial neural networks where the internal state of the

network depends explicitly both on the previous internal or ‘hidden’ state and an external

driving signal. Thus, there is a natural ordering to the data—we call the order label

time—which explicitly allows treatment of an RNN as a dynamical system. In contrast,

other forms of artificial neural networks impose no ordering on the data and thus their

natural mathematical description is as a function [96].

An RNN takes a D-dimensional input sequence u(t) ∈ RD, evolves as the N -

dimensional state r(t) ∈ RN , and is asked to predict a value y(t) ∈ RY . Equation 10.5 in

Deep Learning by Goodfellow, et al. [97], gives the general discrete time RNN evolution
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equation

r(t) = F (r(t− 1),u(t− 1); θ) (3.1)

where θ represents the RNN hyperparameters. This shows the dependence of r(t) on the

previous RNN state r(t − 1) and external driving signal u(t − 1). The output/readout

layer of the network then ‘reads’ r(t) as containing the memory of previous inputs,

through the recursive relation, to predict y(t). In other words, the output of the network

û(t) ≡ Wout(r(t)) is a function Wout of the RNN hidden state r(t). The operator Wout

defined here is a generic function, and could even be implemented as a neural network. Later

we will take Wout to be a linear operator (a matrix). We can thus use û(t) ∼ y(t) = u(t)

as a forecast.

Long short-term memory (LSTM) networks, introduced by Hochreiter and Schmid-

huber (1997) [98] and Gers et al. (1999) [99] have been one of the most useful varieties

of RNN, as they are capable of maintaining a representation of long-term dependencies.

This design helped LSTMs to circumvent a number of difficulties that plagued RNNs

regarding exploding and vanishing gradients during optimization using backpropagation.

A simplified form of the LSTM was later developed by Kyunghyun Cho et al. in 2014

[100] called the Gated Recurrent Unit (GRU), which has a reduced set of trainable model

parameters.

A class of RNN architectures with demonstrated capability for forecasting dynamical

systems is reservoir computing (RC) [101–110]. In RC, a large fixed random network is

selected and only the final output layer is trained—typically through linear regression. The

network is straightforward to train because the architecture and weights in the reservoir

layer are fixed during training and operation, bypassing the vanishing/exploding gradients

that may appear to trouble other RNN models [111–113].

The training input signal to the network may be generated from a known dynamical

system [114, 115], or it may result from observations where the underlying dynamical rules
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are unknown. RC’s ease of training and demonstrated prediction capabilities make them a

serious contender for time series forecasting tasks [116].

Training Phase

Forecasting Phase

Input  u(t) ∈ ℝD

Reservoir Computer

Reservoir Computer

Nonlinear Nonautonomous Driven Reservoir

r(t) ∈ ℝN
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Figure 3.1. Flow of operations for implementing a Reservoir Computation (RC) strategy
to perform forecasting/prediction of an input u(t) ∈ RD presented to a RC with dynamical
degrees-of-freedom r(t) ∈ RN . The RC dynamics are given as ṙ(t) = Fr(r(t),u(t),θ); θ are
fixed parameters in the RC. When the input and the reservoir exhibit predictive generalized
synchronization (PGS), ua = φa(r); a = 1, 2, ...D; training consists of estimating any
parameters in a representation of φ(r). After the regions of PGS are established for a
given u(t) and a selected Fr(r,u,θ), one may wish to change the values of θ within the
PGS region to optimize the predictive performance of the RC.

The ability to develop a data-driven model using a method such as RC is attractive

for a number of practical reasons. RC allows us to construct predictive models of unknown

or poorly understood observed dynamics. Should the input signal u(t) arise from mea-

surements of high dimensional geophysical or laboratory flows [117, 118], for example, the

striking speedup in computing with a reservoir network realized in hardware [119, 120]

may permit the exploration of detailed statistical questions about the observations that
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might be difficult or impossible otherwise. RC has the potential to provide significant

computational cost savings in prediction applications, since the RC dynamics typically

comprise a network with computationally simple active dynamics at its nodes.

3.1.1 Background

RC [101, 105] is a general term that encompasses multiple research tracks that

developed in different fields in the early 2000’s, in particular Echo State Networks (ESNs)

[104, 106, 121] and Liquid State Machines (LSMs) [108]. It is a kind of RNN with a

structure consisting of a fixed high-dimensional “reservoir” combined with a single trained

output layer. The fixed nature of the reservoir reduces the size of the trained parameter

space to a handful of ‘macro-scale’ parameters governing global properties, as well as

‘micro-scale’ parameters that comprise the matrix and vector elements. A key advantage

of RC is that the final output or ‘readout’ layer can be formulated as a linear layer and

then trained using linear regression. This reduction in the size of the searchable parameter

space allows one to easily bypass the exploding/vanishing gradient problems that arise

due to the use of backpropagation schemes [111–113].

In 2007, Schrauwen, Verstraeten, and Campenhout [107] drew the connection

between methods proposed by [104] and [108] and the state-of-the-art learning rule for

RNNs described by [122]. For example, the recurrent learning rule of Atiya and Parlos

(2000) [123] trains the output weights while the internal weights are only globally scaled

up or down.

In addition to being easy to use and train, RCs have been shown to be very

successful for chaotic time series prediction [110, 116, 124, 125]. For numerical weather

prediction (NWP) specifically, a major use case of multivariate chaotic time series prediction,

Arcomano et al. (2020) [126] applied RC to a global atmospheric forecast model. Penny

et al. (2021) [4] integrated RC with state-of-the-art data assimilation methods to estimate

the forecast error covariance matrix, tangent linear model representation, and other
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components of the data assimilation process that are typically costly to either formulate or

compute. Further computational advantage are afforded by implementing RCs on GPUs

or even dedicated hardware [120].

We note that other ML methods have been explored for modeling dynamical

systems, with varying degrees of success. While we cannot name them all, we highlight

a few examples. Bocquet et al. [127, 128] used NNs and Convolutional NNs [97] to

learn ODEs that could then be integrated using traditional numerical methods. As

with RC, they have similarly been able to reconstruct the Lyapunov spectrum of simple

systems. Convolutional LSTMs have been used in MetNet [129] to predict the evolution of

precipitation. Eric Bollt [130] and Gauthier et al. [131] introduced a vector autoregression

scheme that has shown remarkable success in the prediction of small systems; see, for

example, Clark et al. [132] for an application in neurobiology.

3.1.2 Discerning how RC Works

The success of RNNs and their increased adoption in research applications has

perhaps out paced the understanding of how these data driven processes are successful.

It is not known how best to design a network for a particular problem, nor how much

or what kind of data is most useful for training. General guidelines are established and

widely discussed [103, 105, 107, 133]. These tend to be justified with empirical rather than

theoretical considerations. In probing this question, the very interesting idea arose [114,

134] that the explanation might be a form of synchronization known as ‘generalized

synchronization’ (GS) [135–137].

Unidirectional driven systems such as these have long been studied, especially in the

analysis of nonlinear dynamical systems [34, 138]. There exists a kind of synchronization

between systems with different numbers of state variables, such as the D-dimensional

source of the u(t) and the N-dimensional reservoir r(t), and this is called generalized

synchronization (GS) [135, 136]; this is in contrast with the synchronization introduced by
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Pecora and Carroll [139], which analyzes how two identical systems may synchronize. GS

is a statement that there is a relation r(t) = ψ(u(t)) meaning the r(t) dynamics tracks

the driving dynamics u(t) even though they can be quite different dynamical systems.

GS was established by experiments as early as 1998 [140] and has a role in areas as

diverse as synchronization of neurons in a brain circuit to cryptographic code breaking[141].

In the synchronization of dynamical systems in the presence of noise, the two systems

being synchronized are never precisely the same so GS is essential in explaining how

synchronization works in practice.

In the framework of reservoir computing—to achieve the goal of the reservoir

learning the dynamical information in the signal—one uses the idea that the signal

u = Woutr turns the driven system Eq. (3.1) into an autonomous system. The reservoir

may be analyzed as an initial value problem while yielding a forecasting model for the

learning u(t). In the language of GS this suggests that the inverse of the GS relationship

r(t) = ψ(u(t)), namely u(t) = φ(r(t)) would generalize the linear u → r feedback relation

u = Woutr.

The existence of the inverse GS relationship is associated with the requirements of

the inverse function theorem and requires the functions ψ(u) and φ(r) be differentiable

[142]. This is a local requirement for the inverse of ψ(u) to exist.

Dynamical systems often have many basins of attraction in r space, and the basin

one is in depends on the choice of r(0) in the initial value solution of the reservoir equation.

The boundaries between basins of attraction are known to be fractal in many examples [143],

and maintaining differentiability across such boundaries would appear to be unlikely. The

idea that ψ(u) is invertible, expressed as invertible GS [144], cannot be a global property

of all reservoirs. The inverse in one basin of attraction may be quite different in another.

We are interested in investigating the role of GS in the formulation of the attractive

idea of RC, since a relation u = φ(r) would turn the reservoir into an autonomous system

and achieve the training needed to make the reservoir an excellent forecasting machine.
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GS can be identified for a given driving or teaching signal u(t) in a most straight-

forward manner using the auxiliary system approach [136] which for choices of parameters

of the reservoir selection identifies when r(t) = ψ(u(t)) holds. The condition is succinctly

stated as requiring that the Lyapunov exponents of the reservoir, conditioned on the

teaching signal, be negative [139]. This feature of GS appears equivalent to the fading

memory feature of useful reservoirs.

In reservoir computing a GS relation is not immediately useful for moving the

driven reservoir into an autonomous dynamical system for r(t). We introduce the term

predictive generalized synchronization (PGS) to remind us that invertibility of the GS

relation is not globally true in general, and to give us a reservoir parameter region where

it could hold. In such a region we may assume that u = φ(r) happens and proceed with

the framework of reservoir computing with confidence.

3.1.3 Goals

The goal of this paper is to provide a useful path for finding reservoir parameters

where good generalization/forecasting is possible.

The training of an RC, as indicated in Fig.(3.1), consists of minimizing

∑
t

∥u(t) − φ(r(t))∥2, (3.2)

with respect to parameters that enter in the representation of the vector valued function

φ(r) of the reservoir variables r(t). This training of the PGS function φ(r) to match the

data stream u(t) is the essential step of transferring the information content in the data

u(t) to the reservoir dynamics.

We pursue the interesting suggestion given in [114, 134] that GS is instrumental

in RC, using, however, PGS rather than GS, to move from a somewhat ad hoc training

approach to a systematic strategy. In training, we ensure that the input u(t) and the
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reservoir degrees-of freedom r(t) satisfy PGS, u(t) = φ(r(t)), and point out that it is

parameters in the representation of the function φ(r) that we need to estimate.

We demonstrate a computationally efficient way to choose regions of RC hyperpa-

rameters where PGS occurs as well as regions where PGS does not occur. This is then

employed in guiding hyperparameter choices for skillful forecasting of the input training

data u(t), given an accurate enough approximation to φ(r). These hyperparameters may

include some properties of the N × N adjacency matrix A such as the spectral radius

and the density of connections among the r ∈ RN active units ρA. These quantities are

collected together in Table 1 as they appear in an RC with tanh dynamics at its nodes.

A related issue is that the traditional method of evaluating the effectiveness of an

RNN, with training and testing data sets, is awkward when performing dynamical systems

forecasting. This method gives no indication of the stability of the forecast. Another

approach to evaluation, showing a prediction of a single time series, also gives no indication

of the stability of the predictions over the entire range of inputs. In this paper we attempt

to rectify these deficiencies by using dynamical properties of the reservoir to design and

evaluate a trained network.

3.1.4 Presentation Strategy

1. We introduce a computationally efficient numerical test, based on PGS, and using

the ‘auxiliary method’, to guide hyperparameter selections in RCs resulting in very

good forecasting.

2. We portray the ideas for the use of PGS with some simple illustrative models [145–

147], then discuss an important geophysical model, the Shallow Water Equations

(SWE) [148–150], and finish with a discussion of a biophysical model of neuron

dynamics [151, 152]. The last item comprises data from a driven dynamical system
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(the neuron), and these data depend on an injection of current to stimulate the

neuron into interesting oscillations. The RC must obtain information about the

driving force as it is trained.

3. We explore a metric for a “well trained” RC network using the reproduction of the

input system’s Lyapunov exponent spectrum. We introduce a criterion for excellent

forecasting connected to the conditional Lyapunov exponents [139] of the reservoir,

and

4. We briefly address, and speculate about, the long-term value of RC for problems

encountered in physical systems.

3.2 PGS in Reservoir Computing

RCs are often applied to forecasting problems where a familiar task is to learn from

an input sequence u(t) ∈ RD generated from observed data produced by a likely unknown

autonomous dynamical system
du(t)
dt

= Fu(u(t)), (3.3)

and then forecast the future of u(t).

In this paper we will utilize data from three autonomous dynamical systems:

1. The Lorenz 1963 three dimensional model [145]. This a familiar test bed for ML

forecasting of chaotic dynamics.

2. The Lorenz 1996 [146] D-dimensional model. Often used in geophysics as a platform

for examining ideas in a context in which the dimension D of the produced data can

be easily made large.

3. The shallow water equations (SWE). These describe the flow of a thin layer of fluid

(say the ocean/atmosphere system which has a depth approximately 10-15 km) on
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a sphere (the earth with a radius of about 6400 km). The SWE are a set of three

partial differential equations in three state variables {u(x, y, t), v(x, y, t), h(x, y, t)}

on a mid-latitude tangent plane to the earth.

3.3 RC Definition

In the context of chaotic time series prediction we apply RC to the temporal ML

problem where the task is to predict a time series u(t) generated from an autonomous

dynamical system

u̇(t) = fu(u(t)), (3.4)

where the dot denotes a time derivative and fu denotes the equations of the dynamical

system. The dimension of the input system is D. In general fu is not known, nor does it

need to be known for RC to be used. We do assume that fu exists and that time dependent

data can therefore be generated deterministically. The system fu can describe any physical

process and therefore these techniques can be applied in fields such as biology, hydrology,

meteorology, oceanography, economics, chemistry, and many others.

Here we use an RC model with the specific form of a simplified “Elman” style[153]

RNN. The RC consists of three layers: an input layer Win, the reservoir itself, and

an output layer Wout. The reservoir is composed of N nodes that are generally acted

upon with simple nonlinear elements e.g., tanh activation functions. The nodes in the

network are connected through an N ×N adjacency matrix A, chosen randomly to have

a connection density ρA and non-zero elements uniformly chosen between [−1, 1], scaled

such that the maximal eigenvalue of A is a number denoted the spectral radius (ρSR).

The input layer Win is an N ×D dimensional matrix that maps the input signal

u(t) from D dimensions into the N dimensional reservoir space. The elements of Win are

chosen uniformly between [−σ, σ]. The matrix Wout provides the mapping from the RC

reservoir state to the system state as û(t) = Woutr(t). The reservoir state r(t) can be
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viewed as embedding the information given in the time series u(t),u(t− 1), . . . ,u(0) in a

higher N > D dimensional space, consistent with Takens theorem of time-delay embedding

[154]. Takens theorem implies that information from unobserved states of the dynamics is

contained in the time delay signal, thus allowing an RC to operate even when not all the

information is measured.

Prediction
ෝ𝐮(𝑡𝑛+1)

Reservoir Computer

Readout
Input
𝐮(𝑡𝑛)

Input

Forecasting

A

Figure 3.2. Schematic of information flow in the RC. The input data u(tn) ∈ RD

is mapped through the input layer Win ∈ RN×D into the reservoir r ∈ RN where the
nonlinear activation function (e.g. tanh) is applied and mixed through a fixed (i.e. not
trained) adjacency matrix A ∈ RN×N . The readout layer Wout ∈ RD×N is typically trained
using linear regression and gives the one-step-ahead prediction. Longer-term forecasts are
achieved by cycling a feedback of the output back to the input.

Training Wout

The output layer is a function such that φa(r) = ua(t), chosen during the training

phase during which we estimate any parameters in φ(r). It is common practice, followed

in this paper, to choose φ(r) as a linear (or at most quadratic) function of r, but this is

by no means the only, or best, representation [155–161].

We take the output layer Wout ∈ RD×N to be a matrix such that Woutr(t) ≡

û(t) ∼ u(t) chosen during the training phase. The elements of Wout are what we call
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“micro-scale” parameters—in contrast to the “macro-scale” parameters (σ, ρSR, ρA, N,. . . )

that set overall properties of the RC by adjusting multiple matrix elements at once. An

analogy would be that setting the macro-scale parameters is similar to specifying the

overall temperature or pressure of a gas, the positions and velocities of each individual

particle need not be taken into account, greatly simplifying the problem. The micro-scale

parameters that comprise the elements of Wout can be trained at minimal cost using linear

regression.

The reservoir dynamics themselves can either be posed in mapping or differential

form. The differential form is

ṙ(t) = fdr (r(t),u(t)) = γ
[
−r(t) + tanh(Ar(t) + Winu(t) + σb1)

]
(3.5)

with γ the inverse time constant, σb the input bias, 1 a vector of 1’s, and t ∈ R.

The mapping form is

r(t+ 1) = F d
r (r(t),u(t)) = α tanh(Ar(t) + Winu(t) + σb1) + (1 − α)r(t) (3.6)

with t ∈ Z. The notation is as follows; f describes the differential form, while F describes

the mapping form. F d
r denotes the ‘driven’ RC, as opposed to ‘autonomous’ (F a

r ), r is the

reservoir state vector, and u is the state produced by the true dynamics, which is provided

as input data. Eqs.(3.5, 3.6) are denoted the “driven RC” because u(t) enters directly into

the reservoir equation of motion.

The mapping form is equivalent to the differential form when the latter is integrated

using the Euler method. This can be shown by setting α = γ∆t and discretizing Eq.(3.5)

with the Euler discretization scheme. While both the mapping and differential forms can

be used interchangeably, this detail must be acknowledged as the integration method may

affect the RC accuracy. Alternative forms of the RC have been suggested—see [119] for a
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review—but so far we have not found any advantages in using those forms.

We determine the micro-scale parameters in Wout by optimizing the loss

minimize Lmicro(r,u) = ||Woutr − u||2 + β||Wout||2, (3.7)

where r is a matrix containing r(t) and u is a matrix containing u(t) for all t in the

training dataset, and β is a Tikhonov-Miller regularization hyperparameter [162]. This is

also known as ridge regression. The solution is

Wout = urT (rrT + βI)−1, (3.8)

where I is the N × N identity matrix. There is an option to add nonlinearity to the

readout operator, which is addressed in section 4.4.5.

Forecasting

When making a forecast, the external forcing u(t) is replaced by a feedback loop

Woutr(t). Thus the equation for the “autonomous RC” is

r(t+ 1) = F a
r (r(t)) = α tanh[Ar(t) + WinWoutr(t) + σb1] + (1 − α)r(t). (3.9)

One can see that u(t) is replaced by Woutr(t) and so in prediction we have F a
r (r(t)) being

an autonomous dynamical system, allowing multi-timestep forecasts via recursion.

3.3.1 Synchronization and Training

Generalized Synchronization refers to the synchronization of two nonidentical

dynamical systems which, by definition, cannot exhibit identical oscillations [135–137,

163]. For an input system u(t) and response system r(t), if there is GS, then there is a

function ψ such that r = ψ(u); note that this relation is only true asymptotically—i.e.,
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Table 3.1. Global scalar parameters of the RC. These parameters may either be treated
as ‘macro-scale’ model parameters to be optimized during training, or may be used as
hyperparameters and tuned manually.

Parameter Description
ρSR Spectral radius (max eigenvalue) of the adjacency matrix A
ρA Density of the adjacency matrix A
N Degrees-of-Freedom of the reservoir
α Leak rate (time constant) of the reservoir computer
σ Strength of input signal
σb Strength of input bias
β Tikhonov regularization parameter

after a certain finite amount of time has passed for transients to die out. The dynamics of

the response system are therefore entirely predictable from the history of the input; in RC,

for a contracting system, this property is related to the “echo state property” [104] and

“fading memory” [164]. One rarely has an explicit form for ψ, but if there is GS, then that

suggests it exists [34, 114]. To our knowledge, the details of the mathematical properties

of ψ(r) are not known. Important information about ψ is found in [165–167].

When u(t) and r(t) are synchronized, the combined system in RN+D will lie on an

invariant synchronization manifold M [168]. M must be locally attracting, that is the

Lyapunov exponents transverse to the manifold, called conditional Lyapunov exponents,

are negative. The stability of the motion on such a manifold has been the subject of

numerous inquiries [168, 169] but can overall be summarized by the statement that M must

be normally hyperbolic—i.e., the contraction normal to M is larger than the contraction

tangential to M [170].

While GS is defined to be r = ψ(u), we have defined PGS to be u = φ(r) without

assuming φ = ψ−1 in a global sense. PGS assumes that the system is contained in a

local region where ψ is smooth, invertible and differentiable—see [142] for a discussion

of conditions where this might hold. If the basins of attraction to the synchronization

manifold are fractal then different initial conditions of the reservoir may end up on different
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attractors.

PGS gives us some advantage in the analysis of RC networks; it assures us that the

dynamical properties that the dynamical properties of the stimulus u(t) and the reservoir

r(t) are now essentially the same. They share global Lyapunov exponents [29], attractor

dimensions, and other quantities classifying nonlinear systems [135]. The principal power

of PGS in RC is that we may replace the initial non-autonomous reservoir dynamical

system with an autonomous system operating on the synchronization manifold.

The function φ(r) is approximated in some manner, through training, Eq. (3.2),

and then this is substituted for u in the reservoir dynamics. In previous work on this [114,

115] the authors approximated φ(r) as a polynomial expansion in the components rα

and used a Tikhonov-Miller [162, 171, 172] regularization method, also known as ridge

regression [173], to find the coefficients of the powers of rα. In this paper we follow their

example. However, we note that there are a large number of approximation methods

for representing functions of many variables [155–161, 174]. Some may provide a useful

general representations of φ(r) whose value could exceed that of a Taylor series expansion.

The reservoir dynamics acts at the nodes of the non-autonomous network equations

for r(t) given by
dr(t)
dt

= Fr[r(t),u(t),θ], (3.10)

or the equivalent statement of the dynamics in discrete time.

If PGS takes place, we may replace Eq. (3.10) by the autonomous dynamical system

dr(t)
dt

= Fr[r(t), φ(r(t)),θ]. (3.11)

We use this for forecasting. What information we have about the manner in which driving

forces influence the forecasting capability of the RC is now encoded in φ(r) through the

PGS relation u = φ(r).
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3.3.2 The Auxiliary Method for PGS

There are a variety of approaches for determining whether one’s selection of r(t)

and u(t) exhibit PGS. Perhaps the most direct approach is to work with two identical

reservoirs [34, 136] driven by the same u(t),

drA(t)
dt

= Fr(rA(t),u(t),θ) and drB(t)
dt

= Fr(rB(t),u(t),θ). (3.12)

Solve these two equations, keeping u(t) fixed and with rA(0) ̸= rB(0); then examine the

distance between rA(t) and rB(t) as t becomes large. If rA(t) → rB(t) we have PGS. This

‘auxiliary method’ was first used in an experimental verification of GS by [140].

The auxiliary method is simply a restatement of the fact that GS is contingent

upon the conditonal Lyapunov exponents (CLE) being negative. The CLEs give the rate

of error growth of the response system dynamics on M. Given a small perturbation to

the RC trajectories—r̂(t) = r(t) + δr(t)—the error growth rate after linearization is

d
dtδr(t) = Fr(r(t),u(t),θ) − Fr(r̂(t),u(t),θ) ⇒ d

dtδr(t) = DrF (r(t),u(t),θ) · δr(t),

(3.13)

with DrF the jacobian with respect to r. The CLEs can be calculated by solving this

variational equation; for a reservoir dimension of several thousand this calculation can be

computationally intensive.

The advantage of the auxiliary method test is that it fast and efficient, unlike the

challenges associated with evaluating the CLE directly [27, 29, 34]. While the results

of the two methods may be essentially the same, the required computations might be

quite unequal. We show the outcomes of both approaches in Fig.(3.4). The CLEs [139] of

the reservoir systems being negative mean that the two reservoir states should converge

exponentially towards each other.

The auxiliary method is not a direct test for PGS. Rather it is a test that the
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GS function ψ exists, is smooth and continuous [136]. While we do not claim that these

properties always guarantee that the auxiliary method implies PGS, it is highly suggestive

that it does. In addition, there are some limitations in general on the accuracy of the

auxiliary method in certain circumstances. The method is only applicable when the driven

system does not trend to a fixed point or a limit cycle for arbitrary u, but is instead

“driven” by the input. Moreover, one may construct systems for which a function φ exists

but for which the auxiliary method will fail. Therefore this test will not always guarantee

PGS.

To restate the claim: if the auxiliary method passes then GS exists and the

synchronization manifold in all likelihood is locally smooth and differentiable implying

the existence of PGS. If the auxiliary test fails then in general GS is not occurring except

in certain circumstances such as the presence of multiple basins of attraction. Therefore

PGS is almost certainly not occurring. In factorable systems (such as an RC with block

diagonal entries in the adjacency matrix) all independent components would have to be

tested separately. In our experience, however, the auxiliary method is a useful practical

tool for standard formulations of RC.

3.3.3 Testing for PGS

PGS provides us with a test of whether a particular reservoir, with a specific choice

of architecture, nodal dynamics and hyperparameters, has the capability to learn the

dynamics presented by the data. As described in the previous section, without training

one can simply evolve ṙ(t) = Fr(r(t),u(t),θ) with the input u(t) present for two different

initial conditions, and then test to see if PGS occurs. If PGS does not occur between

the reservoir and the data, then our forecasting results will be unwelcome, and a more

suitable choice of hyperparameters should be sought.

In Fig.(3.3) we display the predictive consequences of a set of θ that admits PGS,

TopPanel, and after that the predictive consequences of a set of θ that does not admit
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Figure 3.3. Top Prediction by an N = 2000 tanh reservoir output (red) receiving input
from Lorenz63 dynamics (black) [145]. In Aαβ : SR = 0.9 and ρA = 0.02. This is in the
PGS region. The black vertical line is the end of the “training period”. Bottom When
one selects the hyperparameters outside the region of PGS, for example using N = 2000,
SR = 1.6 and ρA = 0.02 for the tanh reservoir, the function φ(r) does not exist. We may
expect the reservoir to operate poorly in producing a replica of the input u(t), as we can
see it does.
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PGS, BottomPanel. This Figure comes from a tanh reservoir driven by data coming

from solving the Lorenz63 [145] equations.

Establishing regions of θ for PGS can greatly reduce the number of RCs with

different hyperparameters that must be trained and tested in a grid search over θ or other

identification technique.
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Figure 3.4. We display two ways of computing regions of PGS for a reservoir with
Fitzhugh-Nagumo neurons [175, 176] at the nodes (N = 500). Both methods give approxi-
mately the same result.
Left Panel The largest conditional Lyapunov exponent (CLE) calculated for Lorenz63
input and a Fitzhugh-Nagumo RC as we vary the hyperparameters SR and ρA. Blue
shows regions with positive CLEs, so no PGS. Red shows regions of negative CLE meaning
PGS exists in this region.
Right Panel The error between the response system and the auxiliary response system
as t → ∞: ∥rA(t) − rB(t)∥. If this remains large, there is no PGS. If it goes to zero, there
is PGS. Choices for hyperparameters in the Blue regions indicate the absence of PGS,
while choices in the Red regions show PGS.
There is a slight discrepancy between the two calculations. Part of this is certainly caused
by numerical errors in estimating the CLEs of a high dimensional dynamical system using
a finite trajectory. It is also possible that the auxiliary method initialized at different
points could be falling into different basins of attraction resulting in a failed test even
though the CLEs may be negative.
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Figure 3.5. Time for testing a single set of hyperparameters for a tanh RC as a function of
reservoir dimension using either the auxiliary method or directly through training the linear
regression output. The test was executed on a personal desktop with an intel i9-9900K
cpu. We recommend using the auxiliary test to find the bounds of the feasible space of
hyperparameters for the RC. In addition, if using a cost function based optimization, then
one could use the auxiliary method as a prescreen for a proposed set of parameters.

3.3.4 Advantages

The advantage of searching first for PGS comes from the fact that the auxiliary

method test is fast and efficient. In practice this property often means that one can look

at a much smaller segment of time in the data series than is required for accurate results

for training. In addition, the linear regression step does not need to be completed, so

searching for PGS is computationally much more efficient than training a reservoir and

then evaluating it by predicting at multiple points.

As an example of the computational speedup afforded by the auxiliary method

test, we evaluated the timing of the test vs the timing of training an RC as a function of

reservoir dimension—Fig.(3.5). The benefit in using the auxiliary test comes for large N

RCs.

Even greater benefit is accrued when running on a big system using a parallel

reservoir scheme on localized patches such as in section 3.2.3. Generally PGS on one of

68



the parallel RCs implies PGS on all so we can decrease the computation substantially.

The test for the SWE in 3.2.3 took 16 seconds per point searched, while training required

a several hundred node CPU cluster with multiple reservoirs running in parallel and each

point in the search required 20 minutes. In a Bayesian optimization setting such as in

[125] this test can be used as a binary (PGS or no PGS) prescreening function to the cost

function evaluation.

As may be seen in Fig.(3.4), the boundary between PGS and nonPGS regions is,

in practice, quite sharp. This also seen in Fig.(3.8). So the search for PGS and nonPGS

regions in θ space may be coarse grained to begin and subsequently refined if desired [88].

Additionally, it has been suggested that RC works best at the “edge of stability” [177].

The auxiliary method allows the user to find this “edge” and concentrate the search for

the hyperparameters in the border region where it has empirically been shown that the

RC works best.

Testing for PGS only tells us that the function φ(r) exists, not whether our

approximation to it is sufficient for prediction. One would expect a linear approximation

in r to φ(r) would predict well only for a small subset of the parameters for which PGS is

shown to occur; indeed this is exactly what we find empirically. We suggest that richer

approximations for φ(r) might expand this subset of good predictions to include much

more of the region indicated by the PGS test.

3.4 Using PGS in Forecasting Examples

3.4.1 Two RC Networks

For the purposes of this paper, we have used two quite distinct dynamical systems

at the reservoir nodes. One has tanh nonlinearities at the reservoir nodes, and the second

has nonlinear FHN [175, 176] oscillators at its nodes. Our methods are the same, giving

qualitatively similar results, for the identification of PGS and noPGS regions for these
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and many other instantiations of input signals and reservoir activation functions. We have

used simple Hodgkin-Huxley neuron models [151, 152, 178] in an RC architecture, but do

not report the results in this paper.

These simple and familiar choices emphasize our earlier comment that any smooth

dynamics may be used as activation functions in an RC.

The descriptions of these two choices now follows:

The Hyperbolic Tangent RC

We use the adjacency matrix Aαβ and nonlinear activation function tanh() in this

RC model. γ adjusts the time scale of the reservoir dynamics, and σ weights the strength

of the input signal u(t)

drα(t)
dt

= γ

[
−rα(t) + tanh(Aαβrβ(t) + σWαaua(t))

]
. (3.14)

Repeated indices are summed over. The N ×D matrix Wαa determines where the input

signals are introduced into the reservoir.

In Table (3.1) we display the meaning of the parameters in the tanh RC. For other

selections of active units and RC architectures different tables may be useful.

The FHN RC

The equations for the Fitzhugh-Nagumo Model (FHN) [175, 176] operating at

reservoir sites γ = 1, 2, .., N are

dVγ(t)
dt

= 1
τ

[Vγ(t) − 1
3Vγ(t)

3 − wγ(t)] +
{

N∑
β=1

AγβVβ(t)I0(γ, β) +
D∑
b=1

Wγbub(t)
}

(3.15)

dwγ(t)
dt

= Vγ(t) − ηwγ(t) + ξ
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The constants are ξ = 0.7, η = 0.8, τ = 0.08 ms. I0(γ, β) = I0
2 [1 + tanh(K(Vβ(t) − Vp))]

is a synaptic current from a presynaptic neuron labeled by β to a postsynaptic neuron

labeled by γ; K = 3/2, Vp = 1, I0 = 1.0.

3.4.2 Data Sources

Lorenz63 Model

The Lorenz-63 [145] equations form a deterministic nonlinear dynamical system

that exhibits chaos for broad ranges of parameters. It was originally presented as a three

dimensional, very reduced, approximation to the partial differential equations for the

heating of the lower atmosphere of the earth by insolation. The dynamical equations of

motion are

dx(t)
dt

= σ[y(t) − x(t)]

dy(t)
dt

= x(t)[ρ− z(t)] − y(t)

dz(t)
dt

= x(t)y(t) − βz(t) (3.16)

(3.17)

with time independent parameters often chosen to be σ = 10, ρ = 28, β = 8/3.

The global Lyapunov exponents here are {λ1, λ2, λ3} = [0.9, 0,−14.7] calculated

using the QR decomposition algorithm given by Eckmann and Ruelle [27].

We chose this model to provide three dimensional input u(t) = {x(t), y(t), z(t)}

from the Lorenz63 system, as it is a test bed for many new ideas involving chaotic time

series.

Lorenz-96 Model

This model of Lorenz [146, 147] is widely used in geophysics to examine new

methods of data assimilation [179]. It has the structure of ‘stations” at xa(t) on a ring
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forced by a constant f . For f ≈ 8.0 the x(t) are chaotic when D ≥ 3.

The dynamical equations introduced by Lorenz [146, 147]:

dxa(t)
dt

= xa−1(t)(xa+1(t) − xa−2(t)) − xa(t) + f (3.18)

and a = 1, 2, ..., D; x−1(t) = xD−1(t); x0(t) = xD(t); xD+1(t) = x1(t). f is a fixed parameter

which we take to be in the range 8.0 to 8.2 where the solutions to these dynamical equations

are chaotic [179, 180]. The equations for the states xa(t); a = 1, 2, ..., D are meant to

describe ‘stations’ on a periodic spatial lattice. We use D = 5.

The Lyapunov exponents are {λ1, . . . , λ5} = [0.6, 0.0,−0.4,−1.4,−3.8] and were

evaluated via the QR decomposition algorithm given by Eckmann and Ruelle [27].

Data from this model are used in Section (3.5).

Shallow Water Equations

These are equations for three fields the East-West and North-South velocities, and

the fluid height [u(x, y, t), v(x, y, t), h(x.y.t)] = [V(x,y,t), h(x, y, t)] and describe the flow of

a thin (≈ 10km) layer of fluid on a two dimensional mid-latitude plane tangent to the earth

(≈ 6400km in radius) [148–150]. They form a core contribution to much more complex

models of the atmosphere/ocean system in weather and climate prediction models.

∂V(x, y, t)
∂t

+ η(ẑ × (h(x, y, t)V(x, y, t))) + ∇[gh(x, y, t) + V(x, y, t)2

2 ] = 0

and
∂h(x, y, t)

∂t
+ ∇ · (h(x, y, t)V(x, y, t)) = 0. (3.19)
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ẑ is a unit vector normal to the (x,y) plane of the fluid flow. g is the strength of gravity

and

η = ∂xv(x, y, t) − ∂yu(x, y, t)
h(x, y, t) , (3.20)

is the potential vorticity.

Figure 3.6. Top Plot Contour plot of PGS and no PGS regions. Blue/Purple indicates
a region of parameters in a localized tanh reservoir model (N = 5000) which shows PGS
or noPGS with a driving signal from the 8 × 8 Shallow Water Equations (SWE) [148, 149]
as u(t) ∈ R192. The red region shows no PGS.
Bottom Plot Forecast for the normalized vertical vorticity at a particular point on the
192 dimensional 8 × 8 × 3 grid. The forecast starts here at time 0 after a spinup period
which is not shown. The localized reservoir algorithm and details of the SWE are found in
section 3.2.3.
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Shallow Water Equation Results

Accurate numerical solutions to the SWEs on a grid have been investigated in

detail by Sadourny [148] who concluded that a potential-enstrophy conserving scheme is

effective. The details of this scheme can be found in Section 2 of [148]. We use a form of

the SWEs with three dynamical variables: surface height h(x, y, t), and the u(x, y, t) and

v(x, y, t) components of velocity. We solve the SWEs numerically on a discretized grid of

size N∆ = 8 in two horizontal directions, resulting in an 8 × 8 grid. Including the three

dynamical variables, this yields a D = 192-dimensional dynamical system.

Following the scheme used in [110] on a 1 dimensional grid, we use this discretized

numerical integration of the SWEs to drive a set of localized reservoirs arranged in 16

overlapping local “patches” on a 2 dimensional grid. Each patch receives input from a

subset of 48 local variables of the total 192-dimensional input vector. The 48 variables

input to each local reservoir consist of 16 u(t), 16 v(t) and 16 h(t) that are located at the

16 points on a local patch of the grid. Each local reservoir is used to predict 12 (4 u(t), 4

v(t), 4 h(t)) of these after training, thus creating the overlapping scheme.

From the dynamical variables {u(x, y, t), v(x, y, t), h(x, y, t)} we compare the reser-

voir output for normalized height and for the normalized vertical vorticity ωz(x, y, t):

ωz(x, y, t) = ∂v(x, y, t)
∂x

− ∂u(x, y, t)
∂y

. (3.21)

with their counterparts in the data.

Even in this complicated set of overlapping localized RCs, it is straightforward and

computationally efficient to apply our PGS test to the data. Applying the auxiliary test

we see—Fig.(3.6)—that there is a broad region where our 16 reservoir scheme synchronizes

with the data. This test is much more computationally efficient than evaluating the

reservoir by training, thus giving us guidance as to where to focus our search. Then, after

a traditional search over this smaller grid of hyperparameters, a set of hyperparameters
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were found that produce reasonable and robust predictions over a short time scale. The

test enables us to significantly reduce the number of hyperparameters searched.

We have also tested our procedures on other autonomous dynamical system drivers

of an RC: (1) the Colpitts oscillator [181] and (2) the Double Scroll system [182]. The

success of these investigations produces no additional guidance on using PGS, so we do

not report on them any further in this paper.

Driven Dynamical Systems; A Biophysical Example

The examples we have discussed until now have addressed data streams u(t) from

autonomous dynamical systems as represented in Eq. (3.3). Here we extend the discussion

to a driven dynamical system.

A scientific area where RC may well find broad application is biophysics, in particular

neurobiology. Neurons individually or in a functional biophysical circuit exhibit only a

fixed point behavior (“resting potential”) when they do not receive external stimuli I(t).

Clearly one does not need RC to predict the future of such a response.

When driven by electrical forces, usually a stimulating current I(t), the dynamics

for the same neuron model [151, 152] is conditional on the forcing. The equations for the

data stream change from Eq. (3.3) to the non-autonomous data source system:

du(t)
dt

= Fu(u(t), I(t))), (3.22)

and, as u(t) depends on the selected forces in I(t), information about this must be conveyed

to the RC. This physical setting for data sources is important well beyond biophysics.

As an example to show how RC works in this situation we have chosen to examine a

data stream arising from the forcing of the simplest neuron models: that of Hodgkin-Huxley

(HH). We use essentially the one they established 70 years ago [151, 152, 178]. The HH

model is perhaps the earliest biophysical model of neuron oscillations. This neuron, a
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nonlinear electrical oscillator, has ion channels in its cell membrane through which Na+

ions and K+ ions flow, as well as a ‘leak’ channel which represents the fact that the cell

membrane leaks charge.

We selected this model as it is the basis for the characterization of much more

complex neuron structures.
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Figure 3.7. Top Panel Three dimensional display of the PGS and nonPGS regions in the
case of an NaKL Hodgkin-Huxley neuron [151, 152, 178], driven by an external current with a
waveform derived from the components associated with the Lorenz63 [145] model, and presented
to a tanh RC. These regions were selected using the auxiliary method, and we show the logarithm
of ∥rA(t) − rB(t)∥ for large times as a function of SR and ρA. The regions colored blue/purple
are where PGS is found. The nonuniform surface reflects the residual roundoff error using
single precision arithmetic in the calculations. Bottom Panel The cross membrane voltage
showing both the known data and the prediction of the trained reservoir in the case of an NaKL
Hodgkin-Huxley neuron [151, 152, 178], driven by an external current with a waveform derived
from the components associated with the Lorenz63 [145] model, and presented to a tanh RC.
The parameters SR = 3.65 and ρA = 0.02 were selected to be in the PGS region of the top panel.
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The Hodgkin-Huxley model is governed by the following four first-order differential

equations

C
dV (t)
dt

= Iinj(t) + gNam(t)3h(t)(ENa − V (t))

+gKn(t)4(EK − V (t)) + gL(EL − V (t)).

dG(t)
dt

= G0(V (t)) −G(t)
τG(V (t)) G(t) = {m(t), h(t), n(t)}

G0(V ) = 1
2[1.0 + tanh

(
V − VG

∆VG

)
]

τG(V ) = τG0 + τG1

(
1 − tanh2

(
V − VG

∆VG

))
(3.23)

In these equations the {gNa, gK} are maximum conductances for the Na and K

ion channels, the {ENa, EK} are reversal potentials for those ion channels, and Iinj(t) is

the external stimulating current injected into the neuron. The overall strength of an ion

channel is set by the maximal conductances.

The gating variables G(t) = {m(t), h(t), n(t)} are taken to satisfy first order kinetic

equations and each lies between zero and unity, as they are effectively the probability that

the ion channel is open.

The quantities G0(V ) and τG(V ) are the voltage dependent activation function and

the voltage dependent time constant of the gating variable G(t). The forcing to the cell

Iinj(t), here a scalar, is known to us. The 19 parameters entering Eq. (3.23) are selected

and further discussed in [52] as well as in many other places [151, 152, 178, 179].

We, for this example, have chosen the forcing current to be a function Iinj(t) taken

to be proportional to the x(t) component of the Lorenz63 model. The Physics reasons for

that are addressed in [52].

We have found that, if we convey the data stream for the four Hodgkin-Huxley state

variables, along with only the x(t) component from the Lorenz63 model, then following our
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guiding path to working with an RC, we arrive at quite good predictions of the HH data

stream (not shown here). However, if we add the information about the other Lorenz63

state variables, {y(t), z(t)}, the forecasting capability of the RC (here a tanh reservoir) is

very much enhanced.

The procedure is to perform training and predicting with RC on the HH System (4

Dimensions) + L63 Dimensional System (3 Dimensions). The key difference between the

driven and autonomous cases is that throughout the prediction process, the 3 dimensions

of L63 are driven by their true values. This means that the 4 dimensions of the NaKL

system are linked together to the 3 dimensions of the L63 system through the mixing

process in the reservoir. The statistical stationarity of the L63 model allows predictions

forward in time.

In Figure (3.7) we show, in the top panel the regions of PGS and nonPGS when a

Hodgkin-Huxley data stream is presented to an N = 1000 dimensional tanh reservoir. The

parameters for the prediction in the bottom panel are chosen at the edge of stability

(SR = 3.65) showing the benefit of first looking at the PGS regions and then searching for

hyperparameters.

3.5 Assessing Successful Reservoir Properties

After running the test for PGS and performing a hyperparameter search, the

question arises of how to guarantee stable forecasting. One often encounters the two

situations in RC:

• The forecast starts out close to the data but then quickly diverges and becomes

non-physical

• The forecast is “good” for certain initial starting conditions but not for others.

The problem of finding a set of hyperparameters that will give robust predictions is

one of the main challenges in reservoir computing and RNNs in general. The definition of

78



0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4
0 . 0 0 0
0 . 0 2 5
0 . 0 5 0
0 . 0 7 5
0 . 1 0 0
0 . 1 2 5
0 . 1 5 0
0 . 1 7 5
0 . 2 0 0
0 . 2 2 5
0 . 2 5 0

V a r i a t i o n s  i n  T r a i n i n g :  L o r e n z 6 3  t o  t a n h  R e s e r v o i r

Pr
ob

ab
ilit

y D
ist

rib
uti

on
 Fu

nc
tio

n

P r e d i c t i o n  T i m e     ( u n i t s  o f  l 1 t )
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

V a r i a t i o n s  i n  P r e d i c t i o n :  L o r e n z 6 3  t o  t a n h  R e s e r v o i r

Pr
ob

ab
ilit

y D
ist

rib
uti

on
 Fu

nc
tio

n

P r e d i c t i o n  T i m e     ( u n i t s  o f  l 1 t )

Figure 3.8. Left Panel Gaussian fit to the prediction time for 10 N=2000 tanh RCs
trained on Lorenz63 data with the same hyperparameters but different random seeds and
training data. The prediction time is the time for which the prediction stays close to
the true values; the calculation is detailed in the appendix. Each reservoir predicts 4000
randomly selected training points. These points are different for each reservoir. The 10
RC’s prediction times overlap closely; the (mean(10 reservoirs)) = 5.92 and the (RMS
deviation(10 reservoirs)) = 0.24. This shows the robustness of this set of hyperparameters
to training data and randomization of the reservoir layers. Right Panel A histogram
and the Gaussian fit to it from the Left Panel better displays the variation shown in one
hyperparameter setting of the reservoir computer.
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a robust set of hyperparameters is one in which neither the randomness of the adjacency

matrix Aαβ or the training data set causes the reservoir to fail in prediction. An example

of robustness is shown in Fig.(3.8) for a Lorenz63 input system. Many sets of parameters

work well for a particular example or point on the attractor. It is more challenging to

find a set of parameters that predict well for many initial conditions and for different

instantiations of the RC.

The typical approach for evaluating ML predictions with the mean squared error

over a test set does not capture a key feature of RC; a well trained RC should be able to

give good short term predictions for all initial starting points and be stable in the medium

to long term. This feature is called attractor reconstruction [114]. Instead of a test set, we

propose an additional criterion for RC evaluation; a well trained RC reproduces the

spectrum of Lyapunov exponents of the input system Fu; Fig.(3.9) for an example.

Lyapunov exponents (LEs) characterize the average global error growth rate of a

dynamical system [25] along directions in phase space. One can calculate the N LEs of

the forecast reservoir ṙ(t) = Fr(r(t), φ(r(t),θ) and compare the largest of them to the

D exponents of the input system. If the D largest LEs match and the smaller N − D

exponents of the RC are negative, then the two systems will have the same global behavior,

increasing the likelihood of robust, stable predictions. It is important to note that the

exponents of the input system can be calculated directly from experimental data [34].

We show this calculation for the Lorenz96 system [146] in Fig.(3.9). Our results

show that when more of the spectrum of LE’s are matched by the RC, the better the

average predictions. In situations where it is difficult to exhaustively test the RC, perhaps

because the model is expensive to run or there is limited data, evaluating the Lyapunov

exponents of the forecasting reservoir will guarantee that the global error growth of the

RC is the same as the data.

The LE criterion should be used as a check on the robustness of the system; this

is in lieu of checking robustness by training and predicting over thousands of initial
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Figure 3.9. Top Average prediction time of a N=2000 tanh reservoir as a function of SR
when driven by a D = 5 Lorenz96 u(t) [146]. The time is in units of λ1t. The error bars
indicate variation in prediction depending on the stability of the input stimulus. Middle
The largest Lyapunov exponent, λ1 of the forecast reservoir and λ1 of the input system
(black line) as a function of SR. Bottom λ2, ..., λ5. The next four Lyapunov exponents
of the forecast reservoir . The method for computing the Lyapunov Exponents of an RC
is discussed in [27, 34, 102]. Theoretically one of the LEs should always be 0, the slight
discrepancy between 0 and the LEs is caused by numerical errors in estimating the LEs
of a high dimensional dynamical system from a finite time sequence. Of course, we have
displayed only a small subset of the LE’s of the trained reservour computer in this Figure.
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Figure 3.10. The Kaplan-Yorke fractal dimension [32, 33] (Green) of the tanh forecasting
reservoir (N=2000) trained by a Lorenz96 D = 5 system as a function of SR plotted along
with the Prediction Time in units of λ1t (Blue); this is the same system and RC as for
the data shown in Fig.(3.9). The predicting reservoir KY dimension is an estimate of the
dimensionality of the synchronization manifold where the RC resides. The KY dimension
of the 5D L96 system is shown as the dashed line. As SR crosses ≈ 1.1, corresponding to
the largest Conditional Lyapunov Exponent of the reservoir crossing 0, the KY dimension
of the reservoir increases rapidly. This corresponds to the reservoir moving off the low
dimensional PGS manifold. One expects that as this occurs, the forecasting capability of
the RC will vanish quickly.
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conditions Fig.(3.8). These data may not be available for experimental systems or simply

computationally infeasible.

One could also use the matching of LEs as a cost function over which to evaluate

the best hyperparameters. This calculation is, however, quite expensive on a cpu but may

work more efficiently given a GPU implementation. There are also reasonably efficient

approximation techniques for estimating the largest exponent [183].

One can gain additional insight by plotting the forecast against the Kaplan-Yorke

fractal dimension of the synchronization manifold Fig.(3.10). The KY dimension is

calculated using the LEs of the autonomous forecast reservoir when it has moved onto the

synchronization manifold. The lower the dimension of the synchronization manifold, the

better the predictions will be. If there are too many degrees of freedom there is movement

in directions that do not correspond to physically meaningful signals; thus the effect of the

extra dimensions is to add the equivalent of noise into the reservoir. Another view is that

a lower dimensional synchronization manifold corresponds to a smooth and continuous φ

which is quantified by the KY dimension.

We speculate that the lowest dimension of the synchronization manifold could be

related to the minimum embedding dimension of the system [34]—not necessarily the

fractal dimension of those systems. However, when calculated for the Lorenz 63 [145],

Lorenz 96 [146] and Colpitt’s Oscillator we could find no direct correspondence between

the dimension of the synchronization manifold and the embedding dimension. Our failure

in this regard does not mean that the correspondence does not exist.

The results presented in Fig.(3.9) match the suggestion that the reservoir operates

best at “the edge of chaos” [102, 184, 185], that is, the maximal prediction time of the

reservoir corresponds to a SR just less than 1. [177] makes the point that the “edge of

chaos” is not necessarily always the best point for predictions of the reservoir.
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3.6 Conclusion and Discussion

In this paper we have addressed the following topics:

• Generalized Synchronization for a dynamical system r(t) driven by a signal u(t)

dr(t)
dt

= Fr(r(t),u(t),θ), (3.24)

in which category Reservoir Computing (RC) belongs, has long been seen as the con-

dition that there is some function ψ(u) = r connecting the network Fr(r(t),u(t),θ)

coordinates r to the unidirectional drive signal u. After a discussion of the possibility

that this may translate to a similar connection u = φ(r), which we called Predictive

Generalized Synchronization (PGS) we concluded, based on our present knowledge,

that this connection need not be global inverses of each other. We suggested, for

example, in the case of multistability [143, 186, 187] of the dynamics of r and/or u,

such a global relation might be difficult to establish.

To bypass this subtle mathematical issue, we used PGS, u = φ(r) in the discussion

of RC, as this is all that is required to investigate how we might focus on the manner

in which RC forecasts so well.

• We introduced a computationally efficient numerical test, based on PGS, and using

the ‘auxiliary method’, to guide hyperparameter selections in RCs resulting in very

good forecasting.

• We delineated the ideas for the use of PGS with a few simple low illustrative

models [145–147] presented as u(t) to an RC for forecasting, then we turned to an

important geophysical model [148–150], and finished with a discussion of a biophysical

model of neuron dynamics [151, 152]. The last item produces data from a driven

dynamical system (the neuron), and the data depend on an injection of current to
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stimulate the neuron into interesting oscillations. The RC must obtain information

about the driving force as it is trained.

• We explored a metric for a “well trained” RC network using the reproduction of the

input system’s Lyapunov exponent spectrum.

3.6.1 Issues to Address

The discussion in this paper directs attention to at least these issues:

• It appears interesting to complete the investigation of driven systems such as the

neuron model we considered in Section (3.4.2). What information is required,in

detail, about the forces stimulating the driven system of interest. This is especially

of interest when the dynamics, if any, of those forces may not be known.

• With reference to the previous item, one should investigate how we can use RC to

forecast in a non-stationary environment [188, 189], [138] Chapter 13, and references

therein, see also [190]. This may be an important question for analysis of observed

data.

• We used a polynomial representation for φ(r), Section (3.7.1), following a path

drawn in the literature [114]. However, we have also successfully used radial basis

functions [155–161, 174] in this regard. This material is not presented in this paper.

• Once parameters for PGS regions for a given u(t) and a selected

Fr(r(t),u(t),θ) are found, one may still wish to seek choices in those regions yielding

the ‘best’ forecasting, Section (3.5). In this regard, not presented here, we have

found the algorithm, Differential Evolution [88], to be quite helpful.

Finally, we address the question of why all this could be very interesting for the use

of ML in forecasting Physical, Geophysical, Biophysical, and other observed data. It might

seem that requiring the use of a high dimensional ‘reservoir’ Fr(r(t),u(t),θ) to forecast
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low dimensional observed dynamics is not promising. However, from the work of [120]

on implementing reservoirs in hardware, it appears that one can build special purpose

computers to forecast the future of observed data and provide a fast, rather easily realized

forecast machine. The simplicity of many choices of activation functions at the nodes of

the RC lends itself to realizing this in practice.

3.7 Appendix

3.7.1 Polynomial Expansion

GS assures us that the dynamical properties of the stimulus u(t) and the reservoir

r(t) are now essentially the same. They share global Lyapunov exponents [29], attractor

dimensions, and other classifying nonlinear system quantities [135].

The principal power of PGS in RC is that we may replace the initial non-autonomous

reservoir dynamical system
drα(t)
dt

= Fα[r(t),u(t)], (3.25)

with an autonomous system operating on the synchronization manifold [168]

drα(t)
dt

= Fα[r(t), φ(r(t))]. (3.26)

In practice, the function u = φ(r) is approximated in some manner, through training, and

then this is substituted for u in the reservoir dynamics. In previous work on this [114,

115] the authors approximated φ(r) via a polynomial expansion in the components

rα; α = 1, 2, ..., N , and used a regression method to find the coefficients of the powers of

rα.

This means we write ua(t) = φa(r(t)) = ∑N
α,β=1 Jaα rα(t) + Zaαβ rα(t)rβ(t) + . . .,

and we evaluate the coefficients {J,Z, . . .} by minimizing with respect to the constant

matrices Jaα and Zaαβ
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∑
t

[
ua(t) −

{
N∑

α,β=1
Jaα rα(t) + Zaαβ rα(t)rβ(t) + . . .

}]2

+ regularization term. (3.27)

See the discussions in [162, 171, 172, 191, 192].

The dimension of Jaα is D by N . The dimension of Zaαβ is D by N(N+1)
2 as it is

symmetric in {α, β}. If one simplifies to keeping only ‘diagonal’ terms in {αβ}, then the

second term in Eq. (3.27) is Zaα[rα]2 and this has dimension D by N .

We use this polynomial representation for φ(r), noting there are many ways of

approximating multivariate functions of r [155–159, 161].

3.7.2 What if only one component of the data is known ?

If we only know one component of the time series, say s(tn) = s(n), which is

a scalar, we can define an M-dimensional proxy space of vectors S(n) ∈ RM via time

delays [34, 138, 193] as

S(n) = [s(n), s(n− τ), ..., s(n− (M − 1)τ)]

= [S1(n), S2(n), ..., SM(n)] (3.28)

From the definition of the components of S(n) = {Sk(n) = s(n− (k − 1)τ)} for S

∈ RM we have in time steps of τ ,

S(n+ 1) = H(S(n)), (3.29)

We know something about H(S): noting that Sk(n + 1) = Sk−1(n) for k = 2,...,M. For

k = 1, S1(n+ 1) = s(n+ 1) = H1(S(n)). H1(S) is a scalar function of the M-dimensional

variables S.
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We have, for H1(S), the same problem we addressed in representing a function of

many variables φ(r). This is an easier issue than representing φ(r), as it is a vector in RD,

while H1(S) is a scalar.

To ‘train’ H1(S) we note that S1(n+ 1) = s(n+ 1), so s(n+ 1) = H1(S(n)). We

know the values of s(n), so we can ‘train’ H1(S(n)) by expanding it in a Taylor series in

S(n), for example, and then determine the expansion coefficients in that series expansion

as we did in Eq. (3.27) for φ(r).

It is important to keep nonlinear terms in S(n) in the representation of H1(S(n)).

If we were to take H1(S) to be linear, we would miss the nonlinear terms in the dynamical

equations producing s(tn).

3.7.3 Prediction Quality

Figure 3.11. NCE(λ1t), Eq.(3.30), Lorenz63 input to a tanh RC; N = 2000. NCE
remains quite small for a long time. As the two time series separate NCE(t) rises. The
dashed line suggests when the quality of the prediction has “ended.”

To compare prediction times, a metric is required to estimate when the RC’s

capability to accurately predict u(t) ends. It needs to allow that the RC could be close to

but not precisely the input for a number of time steps before diverging. A good metric for
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this Normalized Cumulative Error (NCE):

NCE(t) =
T∑
t=1

1
t
[u(t) − φ(r(t))]2. (3.30)

T is the length of the prediction phase. NCE(λ1t) stays small and flat for a long time

before rising rapidly. One can see this in Fig.(3.11).

Chapter 3, in full, is a reprint of the material as it appears in Jason A. Platt,

Adrian S. Wong, Randall Clark, Stephen G. Penny, and H. D. I. Abarbanel. “Robust

forecasting using predictive generalized synchronization in reservoir computing”. In: Chaos

31 (2021), p. 123118. url: https://doi.org/10.1063/5.0066013 . The dissertation author

was the primary investigator and author of this paper.
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Chapter 4

Practical Reservoir Computing

Parts of this chapter are adapted from [3].

4.1 Introduction

The previous chapter was an examination of the dynamics of an RC and how

GS could be used to understand the function of the RNN. In this chapter, through the

examination of architectural and procedural choices for the RC design, we present “best in

class” results for a wide range of simple dynamical systems. We then explore the method

of localization for scaling the RC to larger spatiotemporally chaotic systems. We note that

because the structure of the RC is nearly identical to the canonical RNN [194], many of

the findings will be relevant for general RNNs as well.

Although published guides to the general use of RC exist [195] and there have

been multiple studies on specific applications of RC with dynamical systems [119], there

has been little guidance on best practices for implementing RC for forecasting chaotic

dynamical systems. A practitioner must piece together design decisions by drawing on

potentially conflicting information from multiple sources. We intend here to point the

researcher or practitioner to strategies that have proven more successful, and to avoid those

that we show to be ‘traps’ (i.e., commonly published design decisions that have little or

even negative impact on overall performance). Additionally, using ML to forecast chaotic
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dynamical systems presents a number of its own unique challenges when compared to

standard practices in ML. There is a high potential for misunderstanding by practitioners

and developers.

This chapter aims to lay out in clear terms the problem being solved by RC for the

specific task of forecasting chaotic dynamical systems, guidance on how to train and test

the RC models, as well as the lessons we have learned in applying these methods over the

last several years on the specifics of implementations for particular problems.

4.2 RC Theory

4.2.1 Stability

Recalling the earliest works on RCs [104, 121], setting the spectral radius ρSR < 1

is given as a guarantee of the “echo state property” i.e., generalized synchronization and

fading memory—see section 4.2.2. Over the years the caveats in the original derivation, for

example that the condition holds only when u(t) = 0 is an input, have generally been lost;

the claim is therefore that the ρSR should always be set to a value less than 1. Despite

this statement being proved empirically incorrect [185, 196], it is usually one of the first

statements one comes across when studying the RC literature. In the following we give an

alternative analysis based on dynamical stability theory.

Intuitively, local stability around a fixed point requires that small perturbations do

not result in large movements to the state of the system [197]. If the RC were unstable, a

small variation in training data would result in vastly different reservoir states, making

finding a readout Wout practically if not theoretically impossible [198]. Therefore finding

conditions for local instability can in practice give us conditions on the trainability of the

RC.

The fixed points of a nonlinear map r(n+1) = Fr(r(n)) are solutions of the equation
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r⋆ = Fr(r⋆). Therefore, for our reservoir Eq.(3.6)

r(t+ 1) = F d
r (r(t),u(t)) = α tanh(Ar(t) + Winu(t) + σb1) + (1 − α)r(t)

we find can find the equilibrium

r⋆ = tanh(Ar⋆ + Winu + σb1), (4.1)

which has solution r⋆ = 0 when u = 0, and σb = 0.

The stability of the system is governed by the eigenvalues of the Jacobian of the

map evaluated at r⋆. If the magnitude of the largest eigenvalue is < 1 then the system is

stable around the fixed point [199]; one caveat is that local stability does not imply global

stability where a perturbed orbit will stay in the neighborhood of the unperturbed orbit.

The Jacobian of a nonlinear map is DFr = ∂Fr

∂r

∣∣∣
r⋆

. For the RC, taking the derivative of

Eq.(3.6) with respect to r

DFd
r = ∂Fr

∂r

∣∣∣∣
r⋆

= α · diag(1 − tanh(Ar⋆ + Winu + σb1)2)A + (1 − α)I

and plugging in r⋆ = tanh(Ar⋆ + Winu + σbI) from Eq.(4.1) to simplify, we find

DFd
r = ∂Fr

∂r

∣∣∣∣
r⋆

= α · diag(1 − r2
⋆)A + (1 − α)I, (4.2)

where diag(·) denotes the formation of a diagonal matrix. We can use this equation to

visualize the areas of stability of the RC. If we assume r⋆ ∼ 0 for ũ = Winu small then

tanh(Ar⋆ + ũ) ∼ tanh ũ + r⋆diag(sech2(ũ))A and we solve for

r⋆ = tanh(ũ)(I + diag(sech2(ũ))A)−1. (4.3)
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Figure 4.1. The magnitude of the maximal eigenvalue of the Jacobian matrix Eq.(4.2)—
N = 200, α = 0.5, ρA = 0.9. When the eigenvalue of the Jacobian is < 1 then the fixed
point equilibrium of the RC is stable; this is a general property of discrete dynamical
systems [199]. If the fixed point is stable then orbits of the RC as it is driven around
the fixed point will tend to stay in the neighborhood of that point. This would suggest
that the RC is trainable (i.e., a “good” Wout can be found)—see section 4.2.2 for a more
general criterion for trainability. An eigenvalue above 1 indicates an unstable fixed point,
making the RC sensitive to perturbations (e.g., noise) in the driving signal. The white
line indicates ρSR = 1, the generally accepted limit for the spectral radius. This example
indicates that one should be careful when assuming a requirement that ρSR < 1.
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With the fixed points given we can plot the maximal eigenvalue of DFd
r . An example

is given in Fig.(4.1). In this example, the RC is stable for values of ρSR that are much

greater than 1. This also gives a clear example that for nonzero input, there can be regions

where ρSR is less than one but the RC is unstable.

Having a globally stable RC is most likely necessary, but certainly not a sufficient

condition for obtaining a Wout that gives good predictions. For instance, it has been noted

many times that the RC operates best at the “edge of stability”[177, 184, 198] and in

general the RC is sensitive to parameter variation. An unstable RC is, however, rather

unlikely to have a linear map between r and u.

LEs in Reservoir Computing

When the LEs of the autonomous Eq.(3.9) RC match the LEs of the input data

generated from the dynamical system fu then the RC is said to have “reconstructed” the

attractor [124]. A reconstructed attractor is strongly correlated with properties such as

the physicality and robustness of forecasts [2]. The LEs of fu can be estimated from the

data with no knowledge of the dynamics [26].

To calculate the LEs of the autonomous reservoir we note that the Jacobian/linear

propagator of Eq.(3.9) is

DFa
r(n) = α · diag(1 − tanh[Wr(n) + σb1]2)W + (1 − α)I (4.4)

with diag denoting a diagonal matrix and the constant matrix W = A + WinWout. This

propagator may be used in the algorithms given in Geist et al., [200] using the procedure

given in [116, 124] to calculate the LEs.

4.2.2 Generalized Synchronization

To reiterate the main point of chapter 3 and as described in detail by [2, 124],

the RC works by making use of the concept of generalized synchronization (GS) [135].
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The definition of GS is: for a drive system u ∈ RD and response system r ∈ RN , they

are synchronized if there exists a function ψ such that r = ψ(u) [135]. Intuitively this

implies that the dynamics of the response system are entirely predictable from the history

of the input; in RC, for a contracting system, this property is related to the “echo state

property” [104] and “fading memory” [164]. The requirement to find a matrix Wout such

that Woutr(t) = u(t) is tantamount to finding a linear approximation to the local inverse

of the generalized synchronization function—we call this statement predictive generalized

synchronization [2]. We would like to note that the statement of the existence of the

inverse of ψ is in general not a global, but a local property due to the necessity of ψ being

differentiable [142] for ψ−1 to exist. Grigoryeva et. al., [201, 202] details general conditions

for differential GS to exist in an RC. When ψ does not meet these criteria then the RC is

untrainable; this statement is connected to the stability criterion explored in section 4.2.1.

The concept of GS is useful for visualizing the operation of the RC. When u(t) and

r(t) are synchronized, the combined state RN+D will lie on an invariant synchronization

manifold M [168]. This manifold is generally low dimensional [2] and so the dynamics

of the RC are taking place on this low dimension structure in phase space. In addition,

the concept of synchronization shows that there is a certain amount of “spinup” time

needed for the transient initial conditions to contract to the synchronization manifold.

The amount of time needed for spinup is directly related to the strength of the conditional

Lyapunov exponents (CLEs) [203] of the synchronization manifold. The statement of

stability of the motion on the manifold [168, 169] is that the contraction normal to the

manifold must be larger than the contraction tangential to it [170], thus giving a statement

of the stability of the RC.

The CLEs and the constraint that they be negative is in fact closely related to the

stability conditions we discuss in section 4.2.1. If the RC is unstable everywhere, DFd
r > 1,

then the CLEs will always be positive and the RC will not synchronize with the input

data. As a last note, it has been observed that RCs work best when at the edge of stability
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[177, 184, 198]; this edge corresponds to the largest CLE being ∼ 0 and DFd
r ∼ 1 [2].

4.3 Data Generation for Numerical Experiments

We begin with a discussion of the training and testing data used in the following

numerical experiments. The use of input data is different for dynamical systems forecasting

than for the typical ML use case. Typically in ML there are standard training and testing

datasets e.g., MNIST [204], that one can acquire in order to directly test newly proposed

models against published results from previous models [205]. For dynamical systems

forecasting we instead have certain standard models from which one can generate data.

Therefore it is important to make sure one is observing best practices when constructing

ones own training, validation and testing sets.

We would like to construct independent training, validation and testing data

for training and testing our ML models. In order to be confident in our results, the

validation/testing data must be independent from both one another and the training data.

Furthermore, we would like the testing data to sample as much of the phase space of fu as

possible, so that we can be confident that the RC generalizes to parts of the input with

different properties than which it has been trained on. All data have been generated with

these principles in mind Fig.(4.2).

Additionally, we report forecast times in terms of the Lyapunov timescale of the

input dynamical system. This timescale τλ = 1/λ1, gives the natural timescale of error

growth in the system and is therefore a useful measure of how “good” the forecast is. Not

even a perfect model can predict a chaotic dynamical system forever—numerical errors will

eventually cause divergence—and therefore τλ gives us a metric of a reasonable timescale

for prediction.
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Figure 4.2. Training data (blue) and test forecast initial conditions (black) for the L63
system. For the training data it is important that the data cover most parts of the input
attractor. This ensures that the RC does not overfit a local section of the dynamics and
that it can generalize. The difference in dynamics over the attractor can be formalized
by the finite time Lyapunov exponents (FTLE) [26, 30], which denote the localized error
growth rates. These can be positive or negative for the L63 system depending on the
initial condition. Likewise for the testing data, the initial conditions for the test forecasts
should widely sample the attractor. It is important that the testing data be long term
forecasts and not one-step forecasts in order to capture the broadband frequencies of the
chaotic dynamics.
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4.3.1 Generative Models

The dynamical models used for data generation have been chosen for their applica-

bility to certain use cases as well as their ability to test particular abilities of reservoir

computing. The Rossler system and Colpitt’s oscillator are both 3 dimensional systems

with long time scale dynamics—i.e., τλ large, slow error growth rates. The Colpitt’s

oscillator is particularly interesting because its dynamical equations of motion include an

exponential term, making it the most nonlinear of the models studied here. The degree

of nonlinearity of the dynamics can create greater difficulty for prediction with a linear

readout operator. The Lorenz attractor (L63) is another 3 dimensional system but with

shorter time scale dynamics than Rossler or Collpitts. The Lorenz 1996 system can be

defined with arbitrary size so we can use it to look at how our RC scales with system

dimension. Finally the Climate Lorenz Model (CL63) is composed of three L63 systems

coupled together with multi-timescale dynamics. RCs tend to focus on a particular time

scale [101] so it is important to study multi-timescale dynamics for certain applications

such as in a weather prediction context [15, 206]. See the appendix for equations and

parameters.

Table 4.1. Dataset timescales. All dynamical systems we consider are made dimensionless,
so the “time” here is number of dimensionless steps into the future.

Dataset Largest LE λ1 Time Scale τλ = 1/λ1

Rossler 0.065 15.4
Colpitts 0.07 14.3

L63 0.9 1.1
L96-5D 0.4 2.5
L96-10D 1.1 0.9

CL63 0.9 1.1
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4.3.2 Forecast Testing Metric

A common ML benchmark for time series prediction is the one-step prediction

mean square error Eq.(3.7). Indeed this is exactly how we train the micro-scale parameters

in Wout to obtain the linear map from u(t) → r(t) → u(t+ 1). As a method for testing,

however, one-step prediction is not an appropriate metric; it overemphasizes the high

frequency modes in the data at the expense of the long-term stability of the RC forecast.

As shown by Platt et al.,[2], the metric that best represents the ideal behavior of the

RC—good short-term predictions coupled with “physical” (the forecast RC stays on the

synchronization manifold M) long-term forecasts—is best represented by the reproduction

of the input system’s LEs. In practice the LEs can be difficult to calculate from high-

dimensional experimental data and computationally expensive for the RC. Therefore, a

proxy for the reproduction of the LEs has in practice been long-term forecasts [2].

Our standard metric for forecast time is the valid prediction time (VPT) [116].

The VPT is the time t when the accuracy of the forecast exceeds a given threshold. For

example,

RMSE(t) =

√√√√ 1
D

D∑
i=1

[uf
i (t) − ui(t)

σi

]2
> ϵ, (4.5)

where D is the system dimension, σ is the long term standard deviation of the time series,

ϵ is an arbitrary threshold, and uf is the RC forecast. For the results shown in subsequent

section a total of 200 test initial conditions are used to report a distribution of VPTs with

ϵ set arbitrarily to 0.3. [116] use ϵ ∼ 0.5 in their reported results.

4.4 RC Training

Training the RC model can be separated into training the macro-scale parameters—

e.g., spectral radius, leak rate—and the micro-scale parameters i.e., the elements of Wout.

Much of the early guidance on RC training [195] included advice on the intuition behind
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Figure 4.3. Two stage parameter optimization showing the training procedure for the
RC. The routine take in as input the data u(t) which is used for training and comparing
the forecast. Parameters for the RC are then chosen and the proposed RC forecasts M
times producing uf . uf is then compared directly to the data with the exponential term
introduced to countermand the natural error growth due to positive LEs. The cost is then
used to inform the next selection of parameters.

hand-tuning the macro parameters for a particular problem as hyperparameters. For

instance, a widely cited guideline is that the spectral radius must be below 1—see section

4.2.1—but that is based on many assumptions that do not necessarily hold for a particular

RC application. Modern optimization algorithms and increased computational power

have decreased the need to hand-tune all of these macro parameters as hyperparameters.

Instead, they can be incorporated directly into the objective function for training via

optimization. For intuition on the effect of these parameters on the RC we refer the reader

to Lukovsevivcius [195].

We employ a two step optimization approach, described by [4, 125] and illustrated in

Fig.(4.3) where one first fixes the macro-scale parameters, trains the micro-scale parameters

through linear regression Eq.(3.8) and then tests the completed RC on a series of long

forecasts. For the macro loss function we have had success using the scaled error

Lmacro =
M∑
i=1

tf∑
t=ti

∥∥∥uf (t) − u(t)
∥∥∥2

exp
{

− t− ti
tf − ti

}
,
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with M being the number of forecasts used for comparison. We reiterate that the training

for the macro-scale parameters does not use the one-step-ahead prediction error because

that is not a good proxy for the reproduction of the LE spectrum. The exponential

weighting in 4.4 is added to approximately offset the exponentially growing error in the

forecast due to positive LEs.

Penny et al., [4] (Fig.12) examined the effect of increasing numbers of M on the

cost function landscape and showed that increasing M smooths out the loss function

landscape and enables better convergence to the global minimum. However, a compromise

is necessary as increasing M will substantially increase computational complexity. Griffith

et al., [125] showed that using M = 1 causes the RC to be overly sensitive to unstable sets

in the dataset. We have empirically found that using 15-20 or so forecasts is generally

enough for these simple models, provided that those forecasts are made at statistically

independent points. Ideally the data would well sample the input system attractor, but in

practice that cannot always be the case.

We set the random seed for the reservoir instantiation during the optimization to

reduce the noise in the optimization function. After training, however, we have not found

the random seed leading to substantially different prediction times over a large number of

test samples—see Fig 7 in [2] for an illustration. This does not mean that the prediction

for any individual test will be exactly the same but that on aggregate the randomness

does change the mean of the distribution substantially. This result may be different in the

“small” reservoir regime of N <∼ 100.

4.4.1 Bayesian Optimization

Rather than hand-tune each macro-scale parameter as a hyperparameter, we suggest

instead using an optimization procedure such as the two step optimization routine described

above. While any global search algorithm can be used e.g., differential evolution, we use

a Bayesian optimization technique using surrogate modeling. Bayesian optimization is
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a protocol for optimizing expensive nonlinear functions that works by “minimiz[ing] the

expected deviation from the extremum” of a target loss function [207]. We have found

success with the efficient global optimization algorithm of Jones et al., [208] as implemented

by [209]. This algorithm evaluates the loss function over a number of sampled points and

then a Gaussian process regression is fit to the surface produced. One can then optimize

over this interpolated “surrogate” model to identify promising regions of parameter space

and then iterate by reevaluating the loss function in these regions. Given that we need

only train a few macro-scale parameters, this surrogate optimization technique renders

the optimization problem computationally tractable.

With these algorithms, one can jettison the hand-tuning of hyperparameters and

simply optimize all the macro-scale RC parameters for a given problem. This procedure

produces good performance for a wide range of simple dynamical models Fig.(4.4) in a

reasonable amount of time.

We will now go into greater detail on the choices that must be made outside of

the optimization routine (by definition hyperparameters) and how they can affect the

solution to the RC problem. The experiments are conducted by fixing/varying a particular

hyperparameter or macro-scale parameter from table 1 and then optimizing over the rest

of the macro-scale parameters. It will be stated if we are not optimizing over the un-varied

parameters.

4.4.2 Reservoir Dimension

The reservoir dimension N of the RC is related to the memory capacity of the

network [121, 195]. Larger reservoirs do tend to produce more accurate forecasts with

longer VPTs than smaller networks. However, there are diminishing returns where ever

larger reservoirs are needed for ever smaller improvements in predictability. For example,

consider the L63 system in Fig.(4.5). Using a reservoir size of just 250 nodes, we see a

VPT only a couple Lyapunov time scales less than when using a reservoir of size 2000.
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Figure 4.4. (left) Valid prediction time for the best fit parameters of the RC over
different datasets. Note the distribution of forecast times. The RC predicts well on all the
models given to it. Results are shown for N = 2000, results for N = 250 are shown in
Fig.(4.5).
(right) Histogram view of the distribution of VPT for the different models. The distribu-
tions are close to Gaussian but with heavier tails. The outliers correlate with the FTLEs
of the input system. When the FTLEs are low negative values, meaning the input data is
very stable, then prediction times can be extremely long and vice versa. While some of
the variability in prediction time is caused by randomness and training in the RC, other
variability is intrinsic to the dynamics we are attempting to predict.

Therefore if our application only requires a few Lyapunov time scales of prediction skill,

then it is possible to use a much smaller and more computationally efficient RC.

Because optimization routines are far more computationally intensive than fore-

casting with the RC, it is practical to ask whether one can optimize/train using a smaller

reservoir and then scale up to larger reservoir to generate a forecast. The answer is that

one can indeed train a small reservoir and then use those same macro-scale parameters

with a larger reservoir to see substantial improvement in prediction skill. This strategy

was used by [4]. However, an RC optimized at the larger size will tend to produce more

accurate forecasts. If computational resources allow, it is appropriate to perform a final

optimization using the reservoir size that will be used for the production RC. The left side

of Fig.(4.5) shows the effect of increasing the reservoir dimension without re-optimizing

parameters. The RC performance tends to saturate as the reservoir dimension increases.
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Figure 4.5. (left) The effect of increasing reservoir dimension without reoptimization of
the global parameters. RCs optimized for N = 2000.
(right) VPT for a 3 different RCs 1) small N = 250 RC optimized at N = 250 2) an RC
with identical global parameters to 1, but with a dimension scaled up to N = 2000 3) an
RC with N = 2000 optimized for N = 1500.

4.4.3 Spinup Time

The spinup time is the time it takes for a trained RC to converge from its initial

condition (usually either set to zero or randomly chosen) onto the synchronization manifold

to which it is driven by the input data. The number of steps needed for spinup is related

to:

1. How far the initial condition of the RC is from the synchronization manifold.

2. The CLEs of the generalized synchronization manifold; these are related to the “echo

state property” and the spectral radius of the adjacency matrix A.

3. The RC approaches the synchronization manifold asymptotically so while the error

tolerance is also important, it probably does not need to converge to within 10−12.

Convergence during spinup and error growth during prediction are both governed by

δx(t) ≈ δx0e
λt with λ giving the negative CLEs for spinup or the positive LEs for

forecasting.

In practice it is easy to tell empirically how much time is needed—see Fig.(4.6)—

usually for these small models only O(10) time steps are necessary. For larger systems the

spinup time can be significantly higher.
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Figure 4.6. Effect of setting the number of spinup steps on the VPT of the RC for L63
and L96-5D. Longer spinup times reduce the initial error of the forecast as the RC and
input data synchronize together.

4.4.4 Input Bias
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Figure 4.7. There are two sets of parameters: 1) no input bias 2) input bias. Both sets
of parameters are optimized separately but with the same reservoir size. The readout
is linear for both. The input bias is a constant σb, which is optimized Eq.(3.6). σb sets
the nonlinear regime of the tanh. When σb = 0 the optimization is not able to find any
parameters that work for many of the models. However, when σb is optimized all models
produce accurate and reliable forecasts.

The input bias σb can have a significant impact on RC prediction skill, but it has

consistently been left out of most published RC studies focused on forecasting chaotic

dynamics. We see in Fig.(4.7) that if we do not include this term in the RC when optimizing
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macro-scale parameters then for almost all models the forecast skill is negligible. The

input bias sets the extent of the ‘nonlinearity’ in the reservoir Fig.(4.8); σb = 0 corresponds

to the reservoir operating mostly in the linear part of the tanh function around 0, while

a high bias term corresponds to the RC operation being in a more nonlinear part of the

regime.

Effect of Input Bias on Tanh Activation Function

𝜎! = 0

𝜎! > 0

Figure 4.8. Effect of input bias σb on tanh activation function. When σb ≈ 0, the tanh(·)
activation function operates mostly around 0 in the “linear” regime of the activation
function. A nonzero σb will push the operating point to the nonlinear regime of the tanh(·)
activation function, possibly giving more expressive results. The bias also affects the
sensitivity of the RC to input. Around the origin the RC has maximal gain, while a high
bias term will reduce the gain shown in the figure by the slope of the lines.

4.4.5 Readout Functions: Linear, Biased, Quadratic

We generalize the readout Woutr to WoutQ(r) for some function Q. An example in

the literature is by Lu et al., [124] who use a quadratic readout function Q(r) =
[
r(t), r2(t)

]
.

As another example, [195] recommended a biased output where Q(r,u) =
[
r(t),u(t− 1)

]
so the previous input is fed directly into Wout. We have tested a number of options and

found that the readout does not have much impact on the quality of the forecasts made

by the RC Fig.(4.9) as long as the parameters are well optimized and the input bias σb

is not set to 0. While these results seemingly contradict those reported and used in the

previously cited studies, we note that when the bias term is not included—see Fig.(4.7)—
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then changing the readout layer does indeed improve the predictions. We speculate that

the readout in this case is injecting a certain amount of nonlinearity, essential for good

predictions, into a system that is operating around the linear regime of the activation

function.

In addition to the injection of nonlinearity into the RC, the improved performance

of the RC with input bias may be due to the breaking of the symmetry of the reservoir

equations [210]. Herteux et al. showed that for the simple Lorenz 63 system, the symmetry

of the equations leads to the formation of a “mirror attractor” that causes divergence of

the RC off the synchronization manifold and onto an alternate trajectory. Adding either

input bias or a quadratic readout resolved the issue. These results were extended by [211]

to show that, espeicially for small reservoirs, breaking the symmetries of the input data

can be extremely important for prediction. Therefore, while we do not see any change in

prediction for the different readout functions once input bias is added, perhaps for small

reservoirs (<∼ 100) a nonlinear readout could become important.
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Figure 4.9. Predictions for 3 different kinds of readout methods. Linear: û(t) = Woutr(t),
Biased: û(t) = Wout[r(t),u(t− 1)], Quadratic: û(t) = Wout[r(t), r2(t)].

4.4.6 Amount of Training Data

The data are used differently in the two steps of the training routine—see Eq.(4.4).

The data should be separated into the M long forecasts that are used to compute the loss
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Lmacro and the data used to train Wout in Eq.(3.8). More and longer test forecasts for the

global loss will help guarantee 1) the generalizability of the RC to segments of the data the

RC might not have seen, 2) stability of the trained RC, and 3) the optimality of the global

parameters found during training. The amount of data that is used for the micro-scale loss

function governs the accuracy of the linear map Wout. Experiments indicate diminishing

returns, where increasing the size of the training data leads to diminishing improvements

in forecast skill Fig.(4.10).
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Figure 4.10. (left) L63, RC N=250 for different values of regularization without reopti-
mizing all the parameters. Diminishing returns with increasing amounts of data. (right)
Here we re-optimize the RC for each amount of training data. We still see a clear reduction
in the rate of increasing skill as the amount of training data increases.

4.4.7 Normalization

Normalization is a standard practice in ML. Applying normalization is usually

among the first suggestions to anyone analyzing a new dataset [97]. We must emphasize,

however, that when forecasting dynamical systems the standard methods for normalizing

datasets can have deleterious effects. To illustrate, we introduce two normalization schemes,

1. Normalize each variable separately by subtracting the mean and dividing by the

standard deviation

unorm
i = ui − mean(ui)

std(ui)
; i ∈

[
1, 2, . . . , D

]
.
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2. Normalize the variables by the joint mean and max/min of the variables

unorm
i = ui − mean(u)

max u − min u
i ∈

[
1, 2, . . . , D

]
.

We assume that the variables in the dynamical system have been nondimensionalized. The

statistical functions mean, max, and min are calculated from all the training data and

thus represent “climatological” statistics. The VPTs resulting from both normalization

schemes are shown in Fig.(4.11).

As shown in Figure 4.11, normalization scheme 2 vastly outperforms scheme 1. Our

hypothesis is that normalizing each variable separately (particularly subtracting the mean)

destroys the cross-variable information necessary to reconstruct the relationships in the

dynamical system. There is a significant amount of information stored in the relationships

between the variables as well as their magnitudes. The second scheme compensates for

the normalization via σ and σb to preserve all the information in the data while the first

scheme destroys that information.

It is possible that we could recover the prediction skill by a skillful selection of Win.

If we optimized the inputs (σ) for each column of Win separately as well as σb, that would

help the RC to compensate for the normalization. However, this introduces additional

global parameters that must be optimized.

Generally, we recommend not normalizing the variables when the data is nondi-

mensionalized, as is the case for the dynamical models examined here. We note that [4]

used no normalization and still produced successful predictions with the RC models. In

a realistic setting, however, when the data is collected from sensors and there are many

different unit scales, one has to do some kind of normalization in order for the methods to

be numerically stable. We discuss this point further with a simple example in appendix

4.7.1. Because we have shown that normalization can be detrimental when using data to

forecast dynamical systems, we emphasize that care must be taken when normalizing any
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Figure 4.11. Results from normalizing by the two different schemes. The results from
scheme 1 can actually be improved slightly by adding a small ∼ 1 − 2% amount noise to
the data—a phenomenon described as well in [116]—but the improvement is marginal.
While we are not advocating for a particular normalization scheme, particularly for
already nondimensionalized data, it is important to keep in mind that there is essential
information in the relationships between the time series that can be destroyed by introducing
normalization.

data prior to training.

4.4.8 Effect of Noise

The RC is quite sensitive to additive noise Fig.(4.12). There is a sharp decrease in

prediction quality with even a small amount of noise, meaning that any slight perturbation

to the training of Wout causes the errors to multiply rapidly. This is consistent with our

observation that even casting double precision floating point numbers in Wout to single

precision can cause similar degradation.

We must address a phenomenon reported by [116] that sometimes a small amount

of noise can help predictions. This observation held true when we normalized the data

using scheme 1 rather than scheme 2—see the previous section. We note, however, that

even with the small observed increase in predictive skill, the VPT was still far below that

reported with the scheme 2. While [116] speculated that the noise could regularize the

data, we find this is not true in general.
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Figure 4.12. Mean VPT as a function of additive Gaussian noise expressed as a percentage
of the long term standard deviation of each dynamical variable. The parameters were
optimized for each noise level.

Sparse in Time

RC can be quite sensitive to the time step of the input data i.e., how sparse the

measurements are in time. In Fig.(4.13) we tested the RC for different time steps ∆t,

reoptimizing the RC each time. The total time of the training data T = L∆t for L number

of steps, did not change. We call attention to the result that finer training data does not

always increase the prediction time of the RC and that certain models had an optimal

time step. In practice one may want to interpolate the input data to try to match the

optimal time step.

4.4.9 Sparsity of the Adjacency Matrix A

The sparsity of the adjacency matrix in general makes very little difference to the

predictive capability of the RC—this is described by [195] and matches our experience.

The benefit of using a very sparse matrix comes from taking advantage of sparse matrix

representations in scientific computing software packages to vastly increase computational

speed. We have found a set value of 98% or 99% sparsity, ρA = 0.01 to be sufficient for all

applications, provided the resulting matrix is full rank.

Of course there is a limit to this guideline—if the matrix is too sparse (i.e., has no
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Figure 4.13. VPT as a function of the time step of the RC. The shading denotes the
95% confidence interval for the mean of the distribution. Note the decrease in VPT as the
time step increases for the L9610d and CL63 systems and increase for the Rossler system.

nonzero values) then the RC will not work. In addition, when using small reservoirs of say

less than N=100 then the randomness of the selection of A can have a significant impact

on the quality of predictions [101]. Slightly larger reservoirs seem to be more robust to

random variations in connectivity.

4.5 Scaling to Higher Dimensional Systems

Up to this point we have considered systems with a state dimension D ≤ 10, and

a single RC model has been sufficient to predict their time evolution. However, systems

with larger state spaces will require larger reservoirs to make adequate predictions. We

highlight this situation in Figure 4.14, which shows the VPT of RC models with increasing

reservoir dimension on the Lorenz96 system with 40 nodes. Note that we use a leading

Lyapunov exponent of λ1 ≃ 1.68 to represent the timescale for this system following [116].

There is no prediction skill until a certain minimum reservoir size is attained, somewhere

between 4,800 and 6,000. For systems with even larger state spaces, the reservoir size will

have to increase beyond the amount of Random Access Memory (RAM) available and

parallelization schemes will have to be considered.
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Figure 4.14. VPT from predictions of the 40D Lorenz96 system with a single RC and no
localization. Parameters are optimized for each reservoir size. Parameter values are given
in [3].

To address these issues, [110] introduced a parallelization strategy which has been

used in numerous high dimensional applications, e.g. [4, 116, 126]. In this localization

scheme, multiple reservoirs work semi-independently, each making predictions of a subset

of the system state. More precisely, the elements of the system state u ∈ RD are split up

into Ng groups, such that each group is assigned an individual RC model that predicts

Noutput of the state vector nodes, with D = NgNoutput. At each time step, each group

receives Nhalo of the neighboring state vector values, such that a system with a single

spatial dimension has an input dimension for each RC model of Ninput = 2Nhalo +Noutput.

With this architecture one must decide how to choose Noutput and Nhalo. Our goal in this

section is to explore these choices within the framework outlined in Sections 4.3 & 4.4.

4.5.1 Varying the halo size and output dimension

Figure 4.15(a) shows the performance of localized RC models with varying output

size, Noutput and halo size, Nhalo. For output dimensions 2 and 4 (color), we see that the

RC model shows its best performance when the halo size is 2. These RC models show no

prediction skill with halos smaller than 2, and exhibit diminishing performance as the halo
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Figure 4.15. VPT of localized RC model predictions for the 40D Lorenz96 system. (a)
Performance across various Noutput (color) and Nhalo values (x-axis). The reservoir size
is fixed at Nr = 2, 000. (b) Performance for Noutput = 4, with the reservoir size fixed
at 2,000 (orange) and reservoir size increasing with Ninput (purple). Each histogram is
generated from 1,000 samples with parameters optimized for the given reservoir size,
output dimension, and halo size. Parameter values are given in [3].

size increases beyond this point. These results suggest that for this particular system, the

optimal configuration has a halo size of 2. For the Lorenz96 system, this is unsurprising

since we know that the time evolution for each individual node requires information of

neighboring states up to 2 nodes away, equation (3.18). For halo sizes smaller than 2,

the known interactions between neighboring grid points are not represented. As the halo

size increases, the RC model must effectively ‘learn’ the length scale across which the

underlying dynamical interactions occur.

The results suggests that the optimal halo size should be set to a “minimum length

scale” relevant to the time evolution of the dynamical system. This value is obviously

system dependent, and will require knowledge of how the training data are acquired. If

the data arise from a numerical model, the halo size could be related to the numerical

stencil used in time integration (e.g. finite difference or finite element scheme). In the case
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of observed data, approximating the minimum length scale will require knowledge of the

system dynamics.

As the output dimension for each local reservoir increases we see a similar effect as

increasing the halo size: the prediction skill decreases. Taken together, prediction skill

is optimal when the reservoir “stencil” is as small as possible: each local RC model is

trained with exactly the amount of information it needs. This result is in some ways a

restatement of [110] (their Figure 5b), who show that prediction performance improves

as the number of local reservoirs increases with a fixed system dimension. Using more

local reservoirs requires more computational resources, and the benefits must be weighed

against the increase in computational cost.

4.5.2 Increasing the reservoir size with input dimension

The previous section showed that prediction skill decreases as the input dimension

increases. Here, we test the impact of increasing the reservoir size in order compensate for

this reduction in performance. Figure 4.15(b) shows the result of this test for Noutput = 4,

comparing performance with a fixed reservoir size Nr = 2, 000 (orange) against models

where Nr = 300Ninput. For Nhalo = 4, the median VPT increases by 1.4 (32%) as a result

of increasing the reservoir size from 2,000 to 3,600 (80%). For larger values of Ninput,

the payoff from increasing the reservoir size is even smaller. For example, Nhalo = 6, the

median VPT increases by 0.6 (15%) but requires a reservoir size that is 4,800 (140%

larger). The results highlight what is shown in Section 4.4.2 (Figure 4.5). After a certain

level of performance is obtained for a given problem size, increasing the reservoir size

provides diminishing returns for prediction skill.

4.5.3 Input bias at scale

Finally, we emphasize the importance of the bias term in the RC architecture,

which is accentuated in high dimensional systems. Figure 4.16 compares the performance
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Figure 4.16. VPT of various RC based predictions of the 40D Lorenz96 system. The
Local RC (blue) has the configuration (Noutput, Nhalo, Nr) = (2, 2, 720). The Single RC
(orange) uses Nr = 6, 000 (Figure 4.14). The green box plot shows results from the
localized RC Model 3 in [4], which uses (Noutput, Nhalo, Nr) = (2, 4, 6000). The purple and
tan dotted lines indicates the VPT from [116], which use (Noutput, Nhalo, Nr) = (2, 4, 3000)
and (Noutput, Nhalo, Nr) = (2, 4, 1000), respectively. We note that the VPT computed by
[116] used a threshold of 0.5, so we estimate their VPT based on a threshold of 0.3 to match
our results. Additionally, [116] compute VPT based on the average NRMSE evolution
from 100 sample points, while we compute a histogram of VPT based on each NRMSE
from 1,000 sample points. Both the Local RC and Single RC models use an optimized
nonzero input bias σb, while the other RC designs use σb = 0. Parameter values for the
first three models are given in [3]. The amount of training data for the Nr = 720 case is
40, 000 with a time step of dt = 0.01 which compares to 500, 000 data points in [116].
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of two RC models that use an optimized value for σb (“Local RC” and “Single RC”) against

two RC models that use σb = 0 (from [4] and [116]). The RC configuration from [4] uses

Ng = 20 local reservoirs, each with an output dimension of 2, halo size 4, and reservoir

size of 6,000. Even with all other parameters optimized, the VPT is roughly half that of a

single RC model with reservoir size 6,000 when an optimized (nonzero) bias term is used.

When 20 local reservoirs are used with an optimized bias term and (Noutput, Nhalo) = (2, 2),

the VPT is approximately tripled.

Penny et al. (2021) [4] found it necessary to increase the local reservoir dimension

to 6,000 in order to attain reasonable prediction skill. The results in this section show

that this was essentially a brute force solution to overcome an inactive bias term. This is

an important takeaway for forecasting high dimensional systems, which may have such a

large number of localized RC models that increasing the reservoir size to overcome this

inactive bias term would become prohibitive.

4.6 Conclusion and Discussion

Reservoir computing is a powerful machine learning method that can be used to

successfully predict chaotic time series data. While not as flexible as other RNN methods,

the RC has a number of properties that make it a good method of choice for these kinds of

tasks. The ability to set the macro-scale properties of the network and the quick training

of the micro-scale parameter through linear regression couple together to allow the RC

to be trained and deployed quickly and easily. Additionally, the RC has been shown not

only to give good predictions but also to react like a physical model to perturbations

in the system state (shown as the reproduction of the LEs) [2, 4, 124]. This property

is crucial for applications in numerical weather prediction and other fields where it is

important to produce both a forecast as well as an uncertainty estimate of that forecast.

RCs can also be scaled up to large systems while being accelerated on dedicated hardware
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for vast speedups [120], thus making them an exciting candidate for the simulation of high

dimensional systems.

We present in this paper an exploration of the options needed for RCs to be trained

successfully for chaotic time series forecasting. Almost all the results presented here

involve the reoptimization of parameters through the outlined Bayesian optimization

procedure for every experiment. The complex effects of the macro-scale parameters on the

predictability of the RC and the correlations between these parameters preclude drawing

many conclusions from simply varying each one of the parameters individually. When

the data, RC training method, or one parameter is changed then a full re-optimization is

necessary to compensate. This is one reason why the results presented here differ from

those presented in previous literature.

The bias term in the RC equation is found to be criticaly important for all but the

L63 system Fig.(4.7), and we emphasize that this is generally neglected in the current

literature. Indeed predictions were practically impossible for many of the models without

the addition of this term. We additionally show that the form of the readout has little

impact on the skillful forecast time, at least for the given dynamical models. While this

may be surprising given that the inclusion of an r2 term in the readout has become a

standard practice [110, 116, 124], we note that without the inclusion of bias, the nonlinear

readout does have some positive impact (results not shown).

Our further exploration included showing the deleterious effects of a standard ML

normalization procedure where each dimension of the input is recentered and rescaled

separately [97]. This procedure is important in deep learning where the stability of the op-

timization procedure using backpropagation can be compromised. Centering all of the data

around 0, however, destroys the important relationships between the variables, leading to a

very poor predictive capacity for the RC. The RC is not trained through backpropagation,

therefore it is advisable to avoid this kind of normalization when attempting to predict

chaotic time series.
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We also examine the effect of the reservoir dimension N , the amount of training

data as well as the time step of the data on the performance of an RC. A general “law of

diminishing returns” is exhibited in regards to RC size and the amount of data. This effect

can be partially mitigated by re-optimizing the RC using a larger reservoir size instead

of scaling up directly. We suggest that more effort should be dedicated to increasing the

robustness of the RC to noise, since in real applications this will be a limitation on the

usefulness of the method.

Finally, we show how to scale up the method to larger systems through localization,

examining the effect of halo size and output dimension. We present results on the 40

dimensional Lorenz system. Comparing to state of the art results for the RC [4, 116], the

reported architecture in this paper increases the VPT while decreasing the computational

cost. Vlachas et al. (2020) [116] noted “that RC...have slightly lower VPT than GRU

and LSTM but require significantly lower training times.” Our results now give a clear

advantage of RC over the LSTM and GRU in pure predictive capacity as well as training

time; additionally the RC has the advantage of reproducing the LEs of the input data,

enabling the reproduction of the climatalogical attractor [124]. We hope that this work,

by collecting a number of different characteristic models together, gives a clear set of

standards to compare as a benchmark when developing new RC techniques.

4.7 Appendix

4.7.1 Malkus Water Wheel

For physical applications, determining the correct normalization scheme can be

more difficult when the state variables have different units e.g., temperature, pressure,

velocity,. . . . All of the source models that we used in this study were nondimensionalized.

In practice we may instead have data measured in quantities with different units. There

are two solutions that we propose:
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1. Nondimensionalize the state variables using physical parameters of the system. This

does not require knowledge of the full equations of motion, only basic knowledge of

the physics involved.

2. Allow the RC to learn the correct scaling laws by setting a separate σ and σb for each

unit type. For example, one might have a σTemperature and a σPressure. Note that this

replaces the scalar σ with a vector σ that has the structure σ =
[
σ1, . . . , σ1, . . . , σp

]
for p different units for the state variables.

As an illustrative example, we consider the Malkus water wheel [197, 212, 213].

The chaotic water wheel is a physical model of the L63 equations and thus provides a

mixed-units example with which to apply the proposed normalization schemes. Following

the notation of [212], the three state variables are ω, y and z where ω is the angular

velocity of the water wheel dθ
dt for the angle θ in the plane of the wheel, and y/z gives the

position of the center of mass (COM) also in the plane of the wheel. The equations of

motion are

ω̇ = ay − fω

ẏ = ωz − λy

ż = −ωy + λ(R − z)

where a is the angular acceleration due to gravity per horizontal displacement of the COM,

f−1 is the time constant for the axle friction and input water drag, λ is the leakage rate

of the water and R is the radius of the wheel. We see that λ−1 also gives the relaxation

time constant for the COM. The maximal LE when R = 1 m, a = 1 (m s)−1, f = 0.4,

λ = 0.1 s−1 is 0.053 giving a time constant of ∼ 19 model time units.

To nondimensionalize the system we see that there are two different units for the

state variables. ω has units 1/time ≡ 1/T while y and z have units length ≡ ℓ. Therefore,
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if we choose a time scale T and length scale ℓ, we can nondimensionalize by taking

ω⋆ = ω/T , y⋆ = ℓy and z⋆ = ℓz. Using knowledge of the physics but without knowing

the equations of motion we can write a list of parameters on which the equations may

depend—see table 4.2. Again, no a priori knowledge of the equations of motion is needed.

Table 4.2. Deduced parameters of the equations of motion for the Malkus water wheel.

α axel friction kg m/s2

I moment of inertia kg m2

λ leak rate 1/s
R radius m

g sinϕ gravity at angle ϕ m/s2

M mass kg

We can construct T and ℓ using this set of candidate parameters. An obvious choice

for ℓ is R, since both have the same units. For T we could use T = 1/λ or T =
√

RMg sinϕ
I

.

There is no wrong answer as long as all the parameters with the same units are scaled in

the same way and one can measure the parameters needed.

As a (somewhat extreme) example, let us say the distance measurements from our

sensor are in µm, and ω is measured in rad/s. In this case the RC is not able to predict

the system at all Fig.(4.17). This is not really surprising considering the wildly different

scales between ω and the x and y variables. We correct this by scaling ω by λ and x and

y by R. This leads to reasonably accurate forecasts. Letting the optimization determine

the correct scaling between the variables also leads to accurate forecasts.

Chapter 4, in full, has been submitted for publication of the material as it may

appear in Jason A. Platt, Stephen G. Penny, Timothy A. Smith, Tse-Chun Chen, and

Henry D. I. Abarbanel. “A Systematic Exploration of Reservoir Computing for Forecasting

Complex Spatiotemporal Dynamics”. In: (Submitted to Neural Networks 2022). arXiv:

2201.08910 . The dissertation author was the primary investigator and author of this

paper.
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Figure 4.17. (left) Our hypothetical sensor measures the COM in µm, leading to an
RC that utterly fails. (right) By normalizing the measurements correctly we find that
the RC can now predict the Malkus water wheel with reasonable accuracy.
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Chapter 5

Conclusion

5.1 Application of RC to DA

Parts of this section are taken from [7], previously published by JAMES.

An issue that has not been addressed so far when considering the operation of RC

in realistic scenarios is how to incorporate sparsely sampled or partial observations into

the forecasting system. Lu et.al. [214] considered the problem of partial observations and

showed that it is possible to drive the RC with limited observations in some circumstances

by directly inserting the measurements into the RC operation. Penny et.al. [7] makes it

clear, however, that this technique breaks down for infrequent observations. The most

robust solution to this problem is to integrate RC directly into the DA formalism. By

applying DA in the reservoir space of the RC, and then using the composition of an

observation operator with the readout in order to compare hidden/reservoir states with

observations of the original system, we are able to design a system that is robust to sparse

and noisy observations.

With an RNN-DA system there are two perspectives on the value this combination

provides. From the perspective of operational forecasting, the RNN provides a simple

and low-cost replacement for the production of essential information needed for the online

DA cycle. The physical models used in the traditional DA routine may be expensive to

integrate, imperfect and may not have a computable Jacobian. Replacing this physical
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model with an model derived directly from the data may make the most sense in this

situation, at least for some of the necessary quantities such as generating error-covariance

matrices. From the machine learning perspective, the DA algorithms allows the RNN

hidden/reservoir dynamics to be driven with a noisy and sparsely observed signal. DA

methods can produce valid reconstructions of the system state as well as viable initial

conditions for short-term forecasts.

DA typically requires a physical model of the process—often assumed to be “almost”

perfect—in order to interpolate between the measurements and predictions. Here we

substitute this physical model for a surrogate RC data driven model. The advantages of

doing so can be computational, given that the RC can often be much faster than integrating

the equations [120], or for the reason that the underlying equations are unresolved. In

modern DA systems, such as the local ensemble transform Kalman filter (LETKF) [215,

216] the method relies on the correct estimation of the error-covariance matrices that

define the level of certainty in the routine. An example estimate of the error-covariance

matrix P for the LETKF is

Pt = 1
k − 1Xf

t

(
Xf
t

)T
(5.1)

where the columns of Xf
t are perturbations around the forecast ensemble mean at time t.

This estimate requires that the perturbations X of the RC act in the “correct” manner—i.e.,

that perturbations grow as the LEs, in particular the finite time LEs [30, 34], of the true

dynamical system.

While it was shown in chapter 3 that the global LEs of the RC match the LEs

of the input system, it is not necessarily the case that the error growth rates over short

time scales will as well. In Fig.(5.1) we compare the FTLE and the prediction error as a

function of time. The FTLE are not estimated well for short timescales but converge to

the global LEs over time. As the LEs converge, however, the prediction error increases so

there is a tradeoff between estimation of P and the accuracy of the RC.
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Figure 5.1. Convergence of the leading FTLE (λ1) for a trained RNN averaged over 100
initial conditions of the L96-6D system. As the RNN is integrated for longer periods of
time, the error growth rates generated by the RNN model become more accurate. However,
over the same period there is an exponential growth of errors in initial conditions.
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Figure 5.2. Normalized error of the RNN-LETKF based state estimation for the L96-
40D system using RNN Model 3. (Top) Normalized Root Square Error (NRSE) shown
for each node of the L96 system (y-axis). (Bottom) NRMSE computed separately for
the observed and unobserved nodes of the Lorenz system, with 15 nodes of the system
observed. Note the y-axis is logarithmic in the lower plot. The error in both plots are
normalized by the temporal standard deviation of the true trajectory. The RNN-LETKF
uses a 30 member ensemble, with σobs=σnoise=0.5. The observed nodes of the system are
[0, 3, 5, 8, 10, 14, 16, 19, 20, 25, 27, 30, 34, 36, 39]. This figure was generated by Tim Smith of
NOAA CIRES [7].

Using the results from the previous sections to design an RC as well as the LETKF

scheme outlined in [7], the RC-LETKF was tested on the L96-40D system Fig.(5.2). After

about 20 model time units the DA cycle converges to a low level of error and we are able

to predict going forward in time. Thus the RC has successfully been incorporated into a

DA routine, using the concepts of GS and the reproduction of the LEs in order to correctly

estimate and construct the quantities for use in the Kalman filter.
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5.2 Concluding Remarks

Complex systems are phenomena that cannot be reduced to the sum of the individual

constituent pieces or derived from the fundamental laws of physics. The great physicist

Phil Anderson put it most succinctly in his essay More is Different [217] where he states

At some point we have to stop talking about decreasing symmetry and start
calling it increasing complication. Thus, with increasing complication...we
expect to encounter fascinating and, I believe, very fundamental questions
at each stage in fitting together less complicated pieces into the more
complicated system and understanding the basically new types of behavior
which can result.

As the number of constituent pieces increases we find emergent behavior which can

include everything from superconductivity to memory. The study of these phenomena

is as important today as it was 50 years ago when Anderson made his appeal as to the

fundamentality of such systems.

In this thesis we began with a discussion of nonlinear dynamics and the application

of state and parameter estimation methods to neurobiological systems. Starting from

the Bayesian inference formulation of statistical data assimilation, the Euler-Lagrange

equations were derived for the equations of motion of a dynamical system forced by

measurements and weighted by their uncertainties. From the equations of motion the

equivalence to the nudging method of meteorology, based on generalized synchronization,

was proposed and applied to the estimation of manufacturing errors in neuromorphic

circuits. After demonstrating the ability to estimate parameters in VLSI systems we turned

our attention to the Zebra finch song system that underlies major studies of human speech

development. Here we see a direct line of inquiry between the dynamics of components

and small networks in the brain and questions of learning and psychology that motivate

us to study these systems. As shown in chapter 2, direct measurement of individual

neurons enable characterization of the ion currents and physical constants that govern

their oscillatory behavior. Only in expanding this kind of characterization to many cells,
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however, will we be able to continue to answer questions about the collective behavior of

such neuronal conurbations. Therefore we ended the chapter with a first look at how to use

calcium fluorescence data—collected from many neurons using two photon microscopy—to

solve for parameters in the biophysical equations.

From the study of biological networks we turned our attention to recurrent neu-

ral networks—specifically reservoir computing—and their application to the forecasting

problem. It is impossible to produce long term forecasts of chaotic systems due to the

exponential growth of errors quantified by the systems Lyapunov exponent spectrum.

Short term forecasts are, however, desirable in particular applications such as weather

prediction. RC was shown to be able to successfully produce accurate short term forecasts

on simplified weather models. Additionally, the RC model was optimized and scaled up to

show state of the art results on higher dimensional systems. That success was explained

using generalized synchronization, which enabled the establishment of a computationally

efficient test for pretraining the network. Additionally, because GS guarantees that the RC

has been driven onto a synchronization manifold which shares dynamical characteristics

(e.g., LEs) with the input data, we can test for the reproduction of those characteristics in

examining how well we expect the RC to extrapolate to unseen data from the same source.

Finally we showed results from integrating the RC into a state of the art DA

optimization routine. This routine enabled us to apply RC to a more realistic scenario

where collected data is sparse and noisy. The success of the routine for the 40 dimensional

Lorenz systems shows its promise in applying to ever larger systems.

Clearly there is much work to be done in the application of these kinds of data

driven methods to real world problems. One area of research that is particularly interesting

is the combination of machine learning with dynamical systems knowledge. There has been

much fervor in the computer science and physics communities on enforcing conservation

laws in neural networks and discovering low dimensional dynamical systems from data.

These approaches were explored in the physics inspired neural networks of Raissi et.al.
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[218] and the sparse identification of nonlinear dynamical system algorithm of Brunton

et.al. [219].

It has been self evident for at least the last 20 years, however, that most real world

systems—made of the complex interactions of many constituent components—are not

well described by the symmetries of fundamental interactions. Most systems of interest

are dissipative and not conservative—e.g., any dynamical system containing friction is

dissipative. Dissipative systems do not obey Louiseville’s theorem and do not conserve

quantities such as energy/momentum. In the vast majority of applications where the

phase flow is not incompressible, the attempt to integrate conservation laws and Lagrange

symmetries into neural networks may not be applicable.

For the prediction of chaotic systems it may be that although the short term

predictions will inevitably diverge, the long term predictions may preserve some invariants.

The multiplicative ergodic theorem shows that the LEs and the fractal dimension are

both invariant under smooth coordinate transformations and have algorithms that make

them feasible to compute from observed date [34]. It should be possible to enforce these

conservations laws in ML systems.

The integration of RNNs into forecasting routines and the scientific toolkit is still

in its infancy and there is much work to be done. Ideally these tools will become simply

another method/routine just like perturbation theory, numerical integration or monte carlo

methods are today—something well understood and taken for granted. The questions

that need to be answered are how to best train these methods and how to guarantee

interpretability and the physicality of predictions so that the correct invariant quantities

are conserved. In the future, the techniques will most likely be combined into hybrid

physics/machine learning methods to best capture the strengths of both. It is the sincere

hope of this author that this thesis has gone some way to explaining the abilities of a few

of these techniques and shown useful applications

Chapter 5, in part is adapted from S. G. Penny, T. A. Smith, T.-C. Chen,
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J. A. Platt, H.-Y. Lin, M. Goodliff, and H. D. I. Abarbanel. “Integrating Recurrent

Neural Networks With Data Assimilation for Scalable Data-Driven State Estimation”.

In: Journal of Advances in Modeling Earth Systems 14.3 (2022), e2021MS002843. doi:

https://doi.org/10.1029/2021MS002843 . Stephen Penny was the primary investigator

and author of this material while the disertation author was a coauthor.
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Appendix A

A.1 Details of Datasets

A.1.1 Rossler

The Rossler system [220] was proposed as a simplified form of the L63 system

with a single second order nonlinearity and only one lobe of the strange attractor. The

equations are

dx = −(y + z)

dy = x+ 0.2y

dz = 0.2 + z(x− 5.7).

The LEs are
[
0.06, 0,−4.9

]
.
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Figure A.1. Rossler Attractor
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A.1.2 Colpitts

The Colpitts Oscillator [21] is a three dimensional nonlinear dynamical system

describing chaos in a nonlinear circuit. The equations of the system are given

dx(t)
dt

= αy(t)

dy(t)
dt

= −γ(x(t) + z(t)) − qy(t)

dz(t)
dt

= η(y(t) + 1 − exp(−x(t)))

with α = 5, γ = 0.0797, q = 0.6898 and η = 6.2723. For α < 5 this circuit has limit cycle

oscillations.

The Lyapunov exponents are {λ1, λ2, λ3} =
[
0.09, 0, −0.8

]
calculated via the

QR decomposition algorithm given by Eckmann and Ruelle [27].

A.1.3 L63

The Lorenz-63 [23] equations form a deterministic nonlinear dynamical system

that exhibits chaos for certain ranges of parameters. It was originally found as a three

dimensional, reduced, approximation to the partial differential equations for the heating of

the lower atmosphere of the Earth by solar radiation. The dynamical equations of motion

are

dx(t)
dt

= σ[y(t) − x(t)]

dy(t)
dt

= x(t)[ρ− z(t)] − y(t)

dz(t)
dt

= x(t)y(t) − βz(t)

with time independent parameters σ = 10, ρ = 28, β = 8/3.
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Figure A.2. Colpitt’s Oscillator
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The Lyapunov exponents are {λ1, λ2, λ3} =
[
0.9, 0, −14.7

]
calculated using the

QR decomposition approach given by Eckmann and Ruelle [27].
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Figure A.3. Lorenz 1963

A.1.4 L96

These dynamical equations were introduced by [221]:

dxa(t)
dt

= xa−1(t)(xa+1(t) − xa−2(t)) − xa(t) + f

and a = 1, 2, ..., D; x−1(t) = xD−1(t); x0(t) = xD(t); xD+1(t) = x1(t). f is a fixed

parameter that we take to be 8.0 where the solutions to these dynamical equations are

chaotic [180]. The equations for the states xa(t); a = 1, 2, ..., D are meant to describe
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points on a periodic spatial lattice. We use D = 5, D = 10 and D = 40.

The Lyapunov exponents are {λ1, . . . , λ5} =
[
0.4, 0,−0.5,−1.3,−3.5

]
and

{λ1, . . . , λ10} =
[
1.1, 0.7, 0.1, 0,−0.4,−0.8,−1.3,−1.9,−2.7,−4.5

]

calculated using the QR decomposition approach given by Eckmann and Ruelle [27].
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Figure A.4. Lorenz 1996 10 dimensions

A.1.5 CL63

The climate Lorenz 63 system[206] consist of three L63 systems coupled together

with multiple time scales. The three layers are an extratropical atmosphere, a tropical

atmosphere, and a tropical ocean system. The presence of multiple time scales often
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creates a challenge for RC models.

Extratropical atmosphere system
dxe
dt = σ(ye − xe) − κe(Sxt + k1)

dye
dt = ρxe − ye − xeze + κe(Syt + k1)
dze
dt = xeye − βze

Tropical atmosphere system
dxt
dt = σ(yt − xt) − κ(Sxo + k2) − κe(Sxe + k1)
dyt
dt = ρxt − yt − xtzt + κ(Syo + k2) + κe(Sye + k1)
dzt
dt = xtyt − βzt + κzzo

Tropical ocean system
dxo
dt = τσ(yo − xo) − κ(xt + k2)

dyo
dt = τρxo − τyo − τSxozo + κ(yt + k2)
dzo
dt = τSxoyo − τβzo − κzzt

σ = 10, ρ = 28, β = 8/3., S = 1, k1 = 10, k2 = −11, τ = 0.1, κ = 1, κe = 0.08, κz = 1

LEs =
[
0.9, 0.4, 0,−0.1,−0.6,−0.8,−1.6,−11.7,−14

]
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