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Abstract  23 

Parallel evolution across replicate populations has provided evolutionary biologists with iconic 24 

examples of adaptation. When multiple populations colonize seemingly similar habitats, they 25 

may evolve similar genes, traits, or functions. Yet, replicated evolution in nature or in the lab 26 

often yields inconsistent outcomes: some replicate populations evolve along highly similar 27 

trajectories, whereas other replicate populations evolve to different extents or in atypical 28 

directions. To understand these heterogeneous outcomes, biologists are increasingly treating 29 

parallel evolution not as a binary phenomenon but rather as a quantitative continuum ranging 30 

from nonparallel to parallel. By measuring replicate populations’ positions along this 31 

“(non)parallel” continuum, we can test hypotheses about evolutionary and ecological factors that 32 

influence the likelihood of repeatable evolution. We review evidence regarding the distribution of 33 

(non)parallel evolution in the laboratory and in nature and enumerate the many genetic and 34 

evolutionary processes that contribute to variation in the extent of parallel evolution. 35 

 36 

Key Words: Adaptation, Convergence, Divergence, Many-to-One Mapping, Nonparallel, 37 

Parallel Evolution   38 
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I. INTRODUCTION 39 

 40 

Parallel evolution holds a special place in the annals of evolutionary biology because it provides 41 

strong evidence for adaptation. The replicated independent evolution of similar traits leads us to 42 

infer that evolution was driven by a deterministic process, most likely natural selection (Harvey 43 

& Pagel 1991). Biologists therefore use the repeated, parallel evolution of genes, phenotypes, 44 

or ecotypes to infer that (i) similar environments impose similar natural selection, (ii) there exist 45 

few  solutions to this selection, and (iii) the traits or genes that evolve in parallel are adaptations. 46 

These inferences offer the hope that, in some situations, evolution may even be predictable 47 

enough that we can anticipate evolution of pests or disease-causing agents, or evolutionary 48 

responses to anthropogenic environmental change (Agrawal 2017, Day 2012, de Visser & Krug 49 

2014, Langerhans 2017). However, this optimistic goal of predicting future evolution is only 50 

plausible if parallel evolution is common and strong.  51 

There are many textbook cases of parallel evolution that have rightfully received a lot of 52 

attention (e.g., Colosimo et al 2005, Elmer et al 2014, Khaitovich et al 2005, Thompson et al 53 

1997). But, are these representative of replicated evolution more generally, or have we given 54 

undue attention to a few exceptionally parallel genes, traits, or species? If we objectively 55 

surveyed replicate populations in similar habitats, how common and how extensive would 56 

parallel evolution be? What fraction of replicate populations would evolve in parallel, for what 57 

number of traits? Conversely, how often would replicate populations diverge genetically or 58 

phenotypically despite experiencing similar environments?  59 

As we describe in this review, there is widespread evidence that replicate populations in 60 

similar environments sometimes evolve similar traits (or genes) and sometimes evolve 61 

dissimilar traits (or genes). Thus, we argue here that parallel evolution is best viewed as an 62 

extreme end of a quantitative continuum of ‘(non)parallel evolution’ (see Fig. 1 for a visual 63 

glossary). Section II provides examples of this continuum of (non)parallel evolution, drawn from 64 

settings of practical interest (e.g., disease, agriculture) to motivate study of (non)parallelism. 65 

After addressing some semantics (Section III), we then describe approaches to quantify 66 

(non)parallel evolution (Section IV), what those measures have revealed (Section V), and what 67 

we learn about evolutionary biology more generally as a result (Section VI). Throughout this 68 

essay, we seek answers to questions such as: What evolutionary forces generate variation in 69 

(non)parallelism among replicate populations? What kinds of traits are more or less parallel? 70 

Perhaps most fundamentally: when we see deviations from parallel evolution, what are we to 71 

conclude about adaptation? Biologists use parallel evolution as evidence of adaptation, but 72 
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when evolution in similar environments falls toward the nonparallel end of the continuum, should 73 

we infer there is maladaptation, neutral evolution, or adaptation?  74 

 75 

 76 

II. INCOMPLETELY PARALLEL EVOLUTION 77 

Our first goal for this review is to motivate it. That is, we must establish that evolution is often 78 

less parallel than we might have reasonably expected. Intuitively, we expect that initially similar 79 

populations that are exposed to similar selection pressures will evolve similar phenotypic 80 

adaptations. As we show in this section, however, in many contexts this expectation is only 81 

partly true, and the examples of nonparallel evolution described here illustrate the need for 82 

quantitative rather than binary approaches to studying parallel evolution. In presenting these 83 

cases of (non)parallel evolution, we focus on evolution in highly applied contexts to convey the 84 

point that this evolutionary continuum has very practical consequences and should be 85 

considered in an interdisciplinary way.  86 

 87 

II.1  (Non)parallelism in cancer 88 

Cancer tumors are evolving populations of cells (Burrell et al 2013, Nowell 1976, Shpak & Lu 89 

2016, Swanton 2014). Tumors originate when somatic mutations confer an ‘escape’ from 90 

normal cell cycle regulation. Growing tumors contain multiple genetically divergent cell lines that 91 

differ in their ability to proliferate, evade the immune system, resist chemotherapy, and 92 

metastasize. This genetic variation can therefore be subject to strong selection within a tumor. 93 

Typically, each cancer patient is an independent, replicated case of one or more oncogenic 94 

mutations that initiate a tumor and the subsequent clonal selection on additional mutations. If 95 

tumor evolution is highly parallel, then the same mutations in the same genes should evolve 96 

repeatedly in most or all patients. It is increasingly clear, however, that ostensibly similar tumors 97 

(i.e., same tissue and histology) often comprise fundamentally different mutations across 98 

patients.  99 

In an experimental evolution study, Tegze et al. (2012) applied identical selection (18 100 

months of chemotherapy) to 29 identical artificial tumors that were all derived from one breast 101 

cancer cell line. Only 18 of the 29 replicates evolved resistance, and within those resistant 102 

replicates, the underlying genetic changes were nonparallel, affecting different cell functions 103 

(Tegze et al 2012). This result highlights some key themes: first, even identical starting 104 

populations subjected to identical selection can exhibit nonparallel evolutionary responses. 105 
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Second, parallel evolution of resistance (an emergent function) occurred without parallel 106 

evolution of the underlying genes.  107 

Such evolutionary inconsistency also occurs in real cancer patients. Takahashi et al 108 

(2007) compared allele frequency differences between primary versus metastatic lung tumor 109 

genomes to find targets of selection during metastasis. Most of these rapidly evolving genes 110 

experienced selection in only one or a few patients, and the rest were never shared by more 111 

than half the patients (Takahashi et al 2007 ). This (non)parallel evolution is why cancer 112 

treatment is increasingly reliant not on tissue type or histological traits but rather on 113 

personalized genomics to tailor therapies to the particular causal gene(s) in an individual 114 

(Abbosh et al 2017). 115 

 116 

II.2  (Non)parallel evolution in pathogens 117 

Like cancer, human pathogens show (non)parallel evolution in response to therapies and host 118 

immunity. In HIV patients with low viral load during drug therapy, an interruption to therapy often 119 

results in a rapid rebound of viral load. One study of 12 chronic HIV patients revealed that the 120 

HIV-1 gp120 gene evolved rapidly in each patient when they experienced this viral rebound 121 

(Martinez-Picado et al 2002). If gp120 evolved in parallel following therapy-interruption, we 122 

could potentially develop drugs targeting the gp120 variants that facilitate rapid viral rebound. 123 

However, for unknown reasons, different mutations contributed to this rebound in each patient, 124 

so we cannot develop therapies that anticipate gp120 evolution following treatment interruption. 125 

Human macrophages protect against pathogenic strains of Escherichia coli, but this 126 

bacterium sometimes evolves immune-escape variants, leading to life-threatening illness. In 127 

vitro experimental evolution of E.coli in macrophage culture led to recurrent evolution of bacteria 128 

with increased resistance to macrophage attack (Ramiro et al 2016). But, the magnitude of this 129 

resistance differed among replicates, highlighting yet another major pattern of (non)parallel 130 

evolution. That is, although most replicate populations evolved resistance, the magnitude of 131 

resistance differed among cultures. This quantitative variation was attributed to the evolution of 132 

different genes within each replicate (i.e., nonparallel genetics), although most causal genes 133 

were part of the electron transport chain (i.e., parallel at the level of biochemical pathways). 134 

Notably, through pleiotropy, these electron transport changes made all resistant strains more 135 

sensitive to certain antibiotics (Ramiro et al 2016). This parallel pleiotropic change offers a 136 

therapeutic strategy for anticipating and combating evolution of E.coli resistance to macrophage 137 

attack.  138 

 139 
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II.3  (Non)parallelism in agriculture 140 

Agricultural pests frequently evolve new mechanisms to subvert the herbicides and pesticides 141 

we use to control them. For example, QoI fungicides act to inhibit cytochrome bc1 function in 142 

the mitochondria of fungi that damage crops. Several pathogenic fungi have evolved QoI 143 

resistance, using at least four independent mutations at the same cytochrome b codon (Torriani 144 

et al 2008). From this perspective, Qol resistance has evolved in parallel in two respects (the 145 

same phenotype caused by mutation to the same coding locus), but nonparallel in another 146 

(each of the four mutations are at separate SNPs), highlighting the general point that the extent 147 

of parallel change may differ across biological levels of organization. In this case, highly parallel 148 

evolution at the gene level makes it easier to monitor the spread of resistance through genetic 149 

screens, and to perhaps develop fungicides that target the new mutation as well. However, this 150 

parallel evolution is limited to certain pathogen species; in other fungal species nonparallel 151 

mutations confer resistance to Qol (Fernandez-Ortuno et al 2008). 152 

 Parallel evolution of domesticated species could reveal useful traits and genes for 153 

breeding strategies. The common bean was domesticated twice from wild Phaeseolus vulgaris, 154 

once in Mexico and once in the Andes (Bitocchi et al 2013), providing an unusual opportunity to 155 

consider (non)parallelism in the origins of a major agricultural resource (albeit with N=2). Across 156 

27,197 genes surveyed, 1,835 and 748 exhibited signatures of selection in these respective 157 

geographic replicates, but only 59 appear to be selected in both regions (0.2% of all genes, 158 

which does not exceed null expectations) (Schmutz et al 2014). An equivalent result was seen 159 

for two independent instances of maize domestication at high altitude (Takuno et al 2015). 160 

Thus, artificial selection for domestication has involved largely nonparallel genomic changes in 161 

the few crops for which data are available. It would be fascinating to extend this type of analysis 162 

to more instances of domestication (e.g., replicate origins of fish aquaculture) to locate essential 163 

domestication genes as those evolving in parallel, or to identify nonparallel changes that might 164 

be combined for further improvements. 165 

 166 

 The cases described above illustrate several recurring themes in (non)parallel evolution. 167 

Most notably, when similar populations are exposed to similar selection pressures, only a 168 

subset of the replicates might experience evolution in the same way. That is, the magnitude and 169 

direction of evolution can differ among replicates, among traits, and across biological levels of 170 

organization (gene, pathway, trait, function). The same themes frequently apply to wild 171 

populations (e.g., CITATIONS). This multi-level continuum of (non)parallel evolution offers 172 

opportunities to learn more about evolutionary processes, as we describe below. To do so, 173 
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however, we first need clear terminology, and the quantitative tools for measuring where traits 174 

and populations fall along the (non)parallel continuum.  175 

 176 

 177 

 178 

III. AN ASIDE ON TERMINOLOGY 179 

The study of (non)parallel evolution has been the source of recurrent semantic disagreements. 180 

In the 150-year history of evolutionary biology, ‘parallelism’ first described simultaneous fossil 181 

record transitions across many continents (Darwin 1859). Later, evolutionary biologists used 182 

‘parallelism’ to describe the similarity between embryological development and paleontological 183 

transitions (Cope 1876, Cope & Kingsley 1891, Packard 1898, Wilson 1941). The standard 184 

modern use of ‘parallelism’ emerged in the early 1900’s (Nichols 1916, Osborn 1900, Vavilov 185 

1922) following observations of recurrent similar mutations in Oenothera flowers (Gates 1912). 186 

This led Dobzhansky (1933) to suggest that “the essential similarity of the germ-plasm” 187 

predisposed related species to have similar mutations. However, Gates (1936) cautioned that 188 

this conclusion was premature: “In very few instances, either in plants or animals, has it been 189 

shown genetically that these parallelisms are due to the same gene in related species”.  190 

During this time, convergence was often conflated with parallelism (Haas & Simpson 191 

1945), until Carl Hubbs clarified the distinction between homology and homoplasy (Hubbs 192 

1944). G.G. Simpson (1961) provided a modern definition of parallel evolution as "the 193 

independent occurrence of similar changes in groups with a common ancestry and because 194 

they had a common ancestry.” Common ancestry was crucial in Simpson’s view, because it 195 

implied that initially similar populations evolved similar adaptations. This is in contrast to  196 

convergent evolution, which entails similar evolution but from initially dissimilar (less related) 197 

taxa (Gould 2002). The boundary between ‘common ancestry’ versus ‘less related’ is unclear, 198 

which has long blurred the distinction between parallel and convergent evolution (Arendt & 199 

Reznick 2008, Scotland 2011, Wake 1999). There is some debate whether common ancestry is 200 

even an important criterion. That is, phylogenetically closely related taxa are more likely to use 201 

similar genes to produce similar phenotypes (Conte et al 2012), whereas distantly related taxa 202 

more often use different genes when they converge phenotypically. But, there are examples of 203 

distantly related species that nevertheless use the same genes to adapt to the same challenge 204 

(Rosenblum et al 2010), and closely related populations that use different genes for the same 205 

phenotype (Sturm & Duffy 2012). This decoupling of shared genetics from recent ancestry has 206 

led some biologists to argue that there is no clear distinction between parallel and convergent 207 
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evolution (Arendt & Reznick 2008, Manceau et al 2011). 208 

Developmental biologists, meanwhile, have used ‘convergent’ to describe the evolution 209 

of similar phenotypes but with different underlying genes or developmental pathways (Abouheif 210 

2008; Baguñà & Garcia-Fernàndez 2003). From this point of view, ancestry is irrelevant, and the 211 

key distinction between convergent and parallel has to do with genetic mechanism. Evolution is 212 

parallel when the same gene caused the evolution of similar phenotypes in different groups 213 

(Rosenblum et al 2014). But, there is again a grey area between parallel and convergent: what 214 

constitutes sufficiently similar molecular explanations (Losos 2011, Wake et al 2011). For 215 

instance, evolution can be due to repeated change at the same gene but not the same 216 

nucleotide (Storz 2016). Or, for polygenic traits, evolution may reflected repeated changes at 217 

some causal loci but divergent evolution at others (Elmer & Meyer 2011).  218 

Given the semantic ambiguities described above, some researchers have argued we 219 

should always just apply ‘convergent’ when talking about phenotypes, and ‘parallel’ to describe 220 

genes (Rosenblum et al 2014, Scotland 2011). Other researchers advocate dropping the term 221 

‘parallel’ entirely (Arendt & Reznick 2008). An emerging alternative view is that the terms 222 

parallel and convergent (and their antonyms, nonparallel and divergent), can be defined in 223 

terms of the geometry of evolution in trait space (Fig. 1). Parallel evolution can then be defined 224 

as evolution of two (or more) populations in very similar directions in trait space (Fig. 1e). 225 

Nonparallel evolution is when populations evolve in different directions in trait space, which can 226 

encompass anything from weakly similar directions (Fig. 1d), orthogonal directions (Fig. 1c), to 227 

opposite directions (antiparallel; Fig. 1a). Finally, (non)parallel denotes the entire continuum 228 

illustrated in Fig. 1a-e). In contrast, convergent evolution occurs when derived populations are 229 

phenotypically more similar than their ancestral states were (Fig. 1g); divergence is the reverse 230 

(Fig. 1f). 231 

 232 

IV. QUANTIFYING (NON)PARALLEL EVOLUTION 233 

The semantic challenges in defining parallel or convergent evolution are, in part, a consequence 234 

of trying to make a binary decision (e.g., “parallel or not?”) to describe a quantitative, 235 

multivariate, and multi-scale phenomenon. Therefore, a promising solution is to augment the 236 

binary approach with quantitative measures of how parallel or nonparallel evolution has been 237 

(Langerhans 2017, Oke et al 2017, Speed & Arbuckle 2017, Stuart et al 2017). Below, we 238 

summarize three widely-used approaches to quantifying where replicatens fall along this 239 

(non)parallel continuum. By quantifying (non)parallelism across many replicate populations, 240 

researchers can ask questions such as, “How do abiotic conditions, community ecology, 241 
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historical events, and genetic processes generate variation along this continuum?” We focus on 242 

phenotypic traits hereafter, with the understanding that the methods we describe can also be 243 

applied to other traits including protein structures (Rokas & Carroll 2008, Storz 2016), allele 244 

frequencies (Jones et al 2012), gene expression (Cooper et al 2003, Manousaki et al 2013, 245 

Velotta et al 2017), QTL effects (Conte et al 2015), etc..  246 

 247 

IV.A   Counting.  248 

The simplest strategy when quantifying (non)parallelism is to ‘vote count’, estimating the 249 

probability that a given trait evolves in parallel (Orr 2005). For a given trait (and only one at a 250 

time), measured in multiple independently established populations, one can quantify the fraction 251 

of evolutionary transitions that go in a particular direction. This approach was used in the cancer 252 

and pathogen evolution examples described above. When 100% of the replicate populations 253 

evolve in the same direction, the case for parallel evolution seems clear (given enough 254 

populations). It may be more typical for only a subset of populations evolve in the same 255 

direction. 256 

When interpreting vote counts, it is important to clearly define a null hypothesis. For a single 257 

quantitative trait evolving strictly neutrally, we would expect half the replicate populations to 258 

evolve in the same direction by chance. Using a sign test, one needs a minimum of 6 replicate 259 

populations to all evolve in the same direction for a given trait to reject the null hypothesis of 260 

random evolutionary change at a significance threshold of 0.05. For instance, in 16 replicate 261 

comparisons of parapatric lake and stream stickleback, in half the replicate pairs, stream fish 262 

had higher suction feeding ability than lake fish (Thompson et al 2017), no different from the null 263 

expectation. Thus, it was unclear whether suction feeding capacity was evolving neutrally or 264 

whether it was adaptive but selection itself was inconsistent among watersheds. In contrast, 265 

lake fish had more gill rakers than stream fish in 14 of 16 lake-stream pairs (Fig. 2A) (Stuart et 266 

al 2017).  267 

 268 

IV.B  Variance partitioning.  269 

Vote-counting ignores variation in effect size. Populations might all evolve in the same 270 

direction but to different magnitudes. One approach to account for effect sizes was popularized 271 

by Langerhans and Dewitt (2004), assuming a researcher has quantitative trait data for one or 272 

more traits for multiple individuals in each of two (or more) categorically defined habitats. These 273 

habitats must be replicated across multiple locations (e.g., different islands, watersheds). One 274 

then estimates a statistical model that partitions trait variance among habitats, locations, and 275 
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habitat*location interactions. The main effect of habitat measures the extent to which between-276 

habitat evolutionary divergence is shared across replicate locations (Fig. 2) and thus measures 277 

parallel evolution. The location effect summarizes properties unique to different replicates (e.g., 278 

different islands). Last, the habitat*location interaction measures how the direction or magnitude 279 

of between-habitat divergence is inconsistent among replicate populations, implying nonparallel 280 

evolution. A closely related method focuses on ‘exchangeability’ – a quantitative measure of the 281 

extent to which statistical classification tools correctly or incorrectly assign individuals to the 282 

correct habitat or location (Hendry et al 2013); high exchangeability implies strongly parallel 283 

evolution across independent replicate populations. 284 

Variance partitioning has been applied to a wide variety of measures of population 285 

divergence including karyotopes (Dunn et al 2005), genomes (Ravinet et al 2016), physiology 286 

(Pfenninger et al 2015), and morphology (Langerhans & DeWitt 2004). For instance, an 287 

experimental comparison of inland versus coastal California poppies (Eschscholzia californica) 288 

in California and their invasive range in Chile found equally large effects of habitat, and 289 

habitat*location interactions, indicating that some different traits contributed to inland-coastal 290 

divergence in each region (Leger & Rice 2007).  291 

This analytical approach is appealing because it builds on familiar statistical tools and 292 

provides multivariate, quantitative estimates of each effect: percent partial variance (Langerhans 293 

& DeWitt 2004) or r2 (Langerhans 2017). The approach’s weaknesses include ambiguity in 294 

interpreting the habitat*location interaction. A significant interaction could stem from variance in 295 

the direction of evolution, the magnitude of evolution, or both.  296 

 297 

IV.C  Vector analysis.  298 

‘Phenotypic Change Vector Analysis’ (PCVA) offers a geometric definition of (non)parallelism 299 

(Adams & Collyer 2009, Collyer & Adams 2007, Collyer et al 2015) that we illustrate in Figure 3. 300 

Unlike variance partitioning, PCVA separately measures both magnitude and direction of 301 

evolution. For instance, Stuart et al (2017) used PCVA to show that the direction of phenotypic 302 

divergence between lake and stream stickleback depended on environmental variation, 303 

whereas the magnitude of divergence was best explained by gene flow (or the lack thereof). 304 

PCVA requires replicate population pairs (e.g., ancestral and derived populations) that span 305 

some putative evolutionary change or habitat contrast. For each population, one calculates the 306 

phenotypic centroid in multivariate trait space (or the centroids for breeding values, gene 307 

expression, genomic data, etc.). The vector connecting one population’s centroid to the other 308 

population’s centroid gives a formal measure of the direction and magnitude of divergence 309 
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through trait-space (Fig. 3A). The longer the vector, the more divergent the paired populations 310 

are, while the orientation of a vector in trait-space describes the relative contributions of different 311 

traits to divergence between that pair of populations. To quantify (non)parallel evolution, one 312 

needs two such vectors representing replicated, independent trajectories (Fig. 3A) from which 313 

one calculates two metrics: the angle between the vectors, θ, and the difference in their 314 

magnitudes, ΔL (Fig. 3A). A definition of parallel evolution, then, is that replicate vectors point in 315 

the same direction so that the angle between them is near zero (Fig. 3). Evolutionary change is 316 

literally parallel in the geometric sense of the word. For instance, two sister species of 317 

Brachyrhaphis fishes diverged in multivariate behavior; the direction of this divergence was 318 

similar across independent watersheds (low θ) (Ingley et al 2014). The greater the angle 319 

between two vectors, the less parallel their evolution. The point here is to avoid artificially 320 

discretizing the (non)parallel continuum. But, if we must use categorical descriptions, parallel 321 

evolution has occurred when θ is statistically indistinguishable from zero (assuming decent 322 

power), and nonparallel when θ significantly exceeds zero. Several subgroups along the 323 

continuum might also be useful (Fig. 1): acute nonparallel when the vectors proceed in roughly 324 

the same direction with 0 < θ< 90; orthogonal nonparallel when θ ~ 90; obtuse nonparallel when 325 

90 < θ < 180; antiparallel—a standard mathematical term—when vectors point in opposing 326 

directions (θ  ~ 180).  327 

A more stringent definition of parallel evolution could also require that the vectors have 328 

similar magnitudes (the difference in lengths is near zero). For example, in the Brachyrhaphis 329 

example discussed above, the magnitude of divergence was inconsistent between watersheds 330 

(large ΔL), suggesting some nonparallel evolution. An even stricter criterion could require the 331 

two vectors begin and/or end close together in morphospace (e.g., the Euclidian distances 332 

between starting points of any two vectors (SD), and/or the distance between their ending points 333 

(ED), have near-zero lengths; Fig. 3B). These alternatives highlight a benefit of PCVA: we can 334 

simultaneously quantify parallel evolution, convergence vs. divergence, and the magnitude of 335 

change (Fig. 3C). For example, with replicate ancestor-descendent pairs, evolution is divergent 336 

when descendent populations are farther apart than the ancestral populations (SD < ED) while 337 

convergence has occurred when SD > ED. Note also that convergence or divergence can result 338 

from parallel or nonparallel evolution  (Fig. 3C). In PCVA terminology, parallelism and 339 

convergence are neither mutually exclusive nor redundant terms. Thus, PCVA provides 340 

substantially more information than vote counting or variance partitioning approaches. 341 

PCVA is best applied to ancestor-descendant pairs, because the resulting vector represents 342 

an evolutionary trajectory through time. This is possible when the ancestor is still extant (largely 343 
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unchanged), or when fossil data, ancient DNA, or phylogenetic reconstructions can be used to 344 

infer ancestral states. Unfortunately, such data are rare. Therefore, many researchers apply 345 

PCVA in other contexts such as comparing replicate, extant population pairs in different 346 

habitats. The vector then represents evolutionary divergence between sister populations, rather 347 

than a trajectory through time. We can compare replicate contemporary population pairs to ask 348 

the extent to which between-habitat divergence proceeds in similar directions. PCVA can also 349 

be extended to describe more continuous evolutionary trajectories through time or along a cline 350 

(Phenotypic Trajectory Analysis, PTA (Adams & Collyer 2009, Lohman et al 2017)). Because 351 

summary statistics from PCVA can be collected for any kind of multivariate data, it is possible to 352 

compare the extent of (non)parallel evolution across biological levels (Stuart et al 2017). 353 

PCVA has drawbacks. First, interpreting angle and length differences between multivariate 354 

vectors and translating those differences back to real traits is not always intuitive to biologists 355 

whose mathematical training often emphasizes statistical tests rather than geometry. For 356 

instance, a given angle between two vectors can be achieved many different ways through 357 

divergence in different combinations of traits across different replicate pairs. Interpretation is 358 

especially challenging for high-dimensional data because the mathematical measures of 359 

(non)parallel evolution might be insufficiently explained by 2- or 3-dimensional graphics. 360 

Moreover, PCVA vector angles are not useful alone, but must be considered with vector 361 

lengths: two vectors can share very similar (or highly different) trajectories through trait space 362 

but be biologically uninteresting if vector lengths are near zero.    363 

A second unresolved challenge entails development and testing of biologically useful null 364 

hypotheses. The initial implementations of PCVA provided a permutation-based test for whether 365 

two vectors had a non-zero angle (Collyer & Adams 2007). One problem is that the 366 

randomization procedure has very low power. Another problem is that this permutation test 367 

treats perfect parallel change as the null hypothesis, whereas for many researchers parallel 368 

change is the alternative hypothesis they seek to demonstrate. Should the null instead be that 369 

the vectors are orthogonal? Or, should we test whether vectors are randomly oriented in 370 

multivariate trait space? New techniques that use Bayesian methods to estimate the posterior 371 

probability distribution of θ, or that compare support for alternative models of θ are needed. 372 

Finally, perhaps the biggest problem with PCVA is that angle and length metrics may be 373 

sensitive to one’s choice of trait space. Sampling more traits may change vector orientations 374 

and the angles between them (Carscadden et al 2017). The implication is that researchers’ 375 

decisions about what and how many traits to measure might substantially alter PCVA 376 

interpretation.  377 
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 378 

V. HOW (NON)PARALLEL IS EVOLUTION? 379 

Disagreements over the prevalence of parallel evolution are as old as the discipline itself. 380 

Darwin was keenly aware of nonparallel evolution: “There is hardly a climate or condition in the 381 

Old World which cannot be paralleled in the New… Notwithstanding this general parallelism in 382 

the conditions of the Old and New Worlds, how widely different are their living productions!”  383 

(Darwin 1859; Chapter 12). Similarly, Calman (1935) argued that parallel evolution was the 384 

exception rather than the rule, with divergent evolution far more common. Yet other researchers 385 

felt that parallel evolution was widespread (Muller 1939, Rensch 1939).  386 

This long-standing debate is likely to see substantial progress as the analytical tools 387 

described above are widely adopted to quantify (non)parallel evolution, rather than counting 388 

examples. For examples of this quantitative approach, see (Conte et al 2015, Conte et al 2012, 389 

Eroukhmanoff et al 2009, Evans et al 2013, Fitzpatrick et al 2014, Kaeuffer et al 2012b, 390 

Langerhans & Makowicz 2009, Laporte et al 2015, Manousaki et al 2013, McGee et al 2016, 391 

Oke et al 2017, Perreault-Payette et al 2017, Perrier et al 2013, Pfenninger et al 2015, Pujolar 392 

et al 2017, Ravinet et al 2016, Rosenblum & Harmon 2011, Siwertsson et al 2013, Stuart et al 393 

2017). Below, we describe examples of how these and other studies have provided valuable 394 

insights into how strong, and how variable, parallel evolution can be in natural populations. In 395 

the subsequent section (VI), we describe the biological processes underlying (and revealed by) 396 

this (non)parallel continuum.  397 

  398 

V.A  Evolution in replicate populations is often nonparallel 399 

Studies of parallel evolution often note inconsistencies or variation among replicate populations 400 

pairs without directly explaining them (e.g., (Brinsmead & Fox 2002, Gíslason et al 1999, 401 

Hoekstra & Nachman 2003). Recently these inconsistencies have become an area of research 402 

in their own right, to describe the extent of (non)parallel evolution and explain heterogeneity 403 

along this continuum. A recent study of Bahamian mosquitofish in high versus low predation 404 

environments used variance partitioning methods to show that more than half of the overall 405 

among-population phenotypic variation (of 90 traits) was driven by something other than shared 406 

selection arising from predation regime (Langerhans 2017). In a meta-analysis of parallel 407 

evolution in many species of fishes, Oke et al. (2017)  found large variation within and among 408 

species in the extent of parallel evolution among replicated conspecific populations. Here, 409 

variance partitioning found that fish ecotype (presumably evolved in parallel in shared 410 

environments) accounted for less than 10% of the partial variance of morphology in some 411 
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systems, to over 90% in others. The nonparallel cases tended to be more common. Oke 412 

reached the same result using PCVA or PTA results, which were applicable to 14 fish systems 413 

with paired populations replicated across habitat boundaries (e.g. benthic-limnetic stickleback, 414 

lake-stream stickleback, dwarf-normal whitefish). Of these 14, only 4 had a consistent trend 415 

towards parallel divergence across a boundary (θ < 90° for all pairwise vector comparisons).  416 

Perhaps the strongest evidence for (non)parallelism comes from laboratory experimental 417 

evolution studies (see Sidebar). Researchers have subjected replicate laboratory populations 418 

(e.g., of bacteria, Drosophila, etc.) to identical artificial selection and then evaluated the 419 

repeatability of subsequent evolution (Box 1; Cooper et al 2003, Ferea et al 1999, Fong et al 420 

2005, Roberge 2006). However, most of these studies used vote-counting as their measure of 421 

parallel evolution. For example, Ferea et al (1999) raised three replicate yeast cultures, selected 422 

to live in glucose-limited media, and identified several hundred genes that evolved the same 423 

expression changes in all three populations. A similar experiment with E.coli found 59 genes 424 

(out of the entire genome) that evolved strongly and in the same direction in 2 replicate 425 

populations (Cooper et al 2003). Both studies support parallel evolution, but in their reliance on 426 

vote-counting from a few replicates makes it more likely that parallel changes are coincidental.  427 

 428 

V.B  Evolution across traits is often (non)parallel 429 

Traits vary in the extent of (non)parallel evolution 430 

We expect natural selection to act more strongly on some traits than others. Or, a trait subject to 431 

selection may be highly correlated with some traits but not others. Still other traits may be 432 

subject to divergent natural selection between superficially similar habitat replicates. This 433 

variation in (correlated) selection strength should cause some traits to diverge, and others to 434 

converge, evolve in parallel, or evolve neutrally. Within a given study system, it is often the case 435 

that some traits will show parallel change, while others show nonparallel change or even no 436 

evolution at all (Oke et al 2017). For example, In lake-stream pairs of stickleback, a study of 86 437 

phenotypic traits found that the effect of crossing the lake-stream habitat boundary explained 438 

0% of variation in some traits but over 20% of variation in others (Stuart et al 2017). Similarly, 439 

ninety traits measured in high- and low-predation Bahamian mosquitofish varied from highly 440 

parallel divergence between high and low regimes to nonparallel changes that didn’t match the 441 

predator differences (Langerhans 2017). Neither study found any evidence that certain 442 

categories of traits (e.g., trophic, locomotion, defense) were more strongly parallel than others. 443 

 444 

V.C (Non)parallel evolution across biological scales: genotype versus phenotype 445 
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To what extent does (non)parallelism at one biological scale necessarily correlate with 446 

(non)parallelism at other biological scales? We may be able to predict this in some cases. For 447 

example, because parallel phenotypic evolution is mostly attributed to selection, we would not 448 

expect parallel evolution for neutral genetic markers. This expectation was corroborated by the 449 

study of lake-stream stickleback mentioned above (Fig. 2). Focusing on putatively neutral 450 

markers (by excluding SNPs in the top 5% of lake-stream FST values), the orientation of 451 

genomic PCVA vectors was unrelated to the orientation of phenotypic trait PCVA vectors (Stuart 452 

et al 2017). That is, the combination of neutral SNPs that diverged did not predict the 453 

combination of traits that diverged, likely because these neutral SNPs are shouldn’t be 454 

important for lake-stream divergence. However, the magnitude of trait divergence (ΔL) was 455 

strongly positively correlated with measures of genomic divergence (e.g., FST, or coalescent 456 

estimates of Nm). This positive relationship is consistent with the hypothesis that gene flow 457 

between adjoining habitats constrains lake-stream divergence. When gene flow differs between 458 

replicate watersheds, it creates variance in the magnitude of trait divergence (ΔL) and thus 459 

(non)parallelism. 460 

 The same study found a different result for putatively non-neutral genetic markers (top 461 

5% of lake-stream FST outliers). Replicate watersheds that shared more outlier SNPs were more 462 

phenotypically parallel (though the trend was marginally significant). The authors inferred that 463 

phenotypically parallel change reflects parallel change at particular genes targeted by lake-464 

stream divergent selection. In a study of two benthic-limnetic species pair lakes, Conte et al. 465 

(2015) found that 76% of 42 morphological traits diverged in parallel between benthic and 466 

limnetic forms. These parallel traits were controlled by 43 identifiable chromosomal regions 467 

(QTL), but only 49% of these QTL evolved in parallel in both lakes. Like the lake-stream system, 468 

evolution was less parallel at the genetic level than the phenotypic level (Conte et al 2015). This 469 

pattern is also found in repeated coastal ecotypes of Senecio that exhibit only partial re-use of 470 

QTL among replicate populations (Roda et al 2017).  471 

Another strategy for comparing across levels is, for example,  to deliberately focus only 472 

on strongly parallel evolution at the phenotypic level and ask to what extent it is underlain by 473 

parallel genetic changes (e.g., Colosimo et al 2005). This has been done in studies of lodgepole 474 

pine vs. interior spruce (Yeaman et al 2016); wild vs. weedy sunflower (Lai et al 2008); dwarf vs. 475 

normal whitefish ecotypes (Derome et al 2006); and Midas cichlid ecotypes (Manousaki et al 476 

2013). Using FST outliers to detect putative genomic targets of selection, these studies showed 477 

that phenotypically very-parallel populations often share only a small proportion of their FST 478 

outliers (e.g., Westram et al 2014; Le Moan et al 2016; Kautt et al 2012). For highly parallel 479 
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traits in two pairs of benthic-limnetic stickleback, only 32% of the underlying QTL loci are shared 480 

(Conte et al 2012). Thus, even dramatically parallel phenotypes can be generated by a 481 

continuum of (non)parallelism at the genetic level. 482 

 483 

V.D  (Non)parallel evolution among species 484 

This review has focused on replicated evolution of multiple populations within a species. 485 

However, textbook cases of parallel evolution often come from inter-specific comparisons, 486 

where replicated geographic areas (e.g. islands or lakes) promote the repeated evolution of 487 

independent sets of species, each set containing similar ‘ecotypes’ that are adapted to specific 488 

habitats, suggesting that ecological conditions on the four islands generate adaptive landscapes 489 

with similar selective optima, resulting in convergent evolution: e.g., African Rift Lake Cichlids 490 

(Kocher et al 1993), Hawaiian Silverswords (Baldwin & Sanderson 1998), and Tetragnathan 491 

spiders (Gillespie 2004). Many of these replicated adaptive radiations also contain species that 492 

don’t fall neatly into ecotype categories (Leal et al 2002). This suggests that comparative 493 

phylogenetic methods could be applied to measure (non)parallelism at a higher taxonomic scale 494 

than we considered above (Pérez-Pereira et al 2017).  495 

Such phylogenetic methods have been used to study (non)parallelism in Anolis lizards of 496 

the Greater Antilles. Anoles have repeatedly evolved island communities containing four to six 497 

morphologically distinctive habitat specialists termed ‘ecomorphs’ (Langerhans et al 2006, 498 

Losos 2009). However, of the 120 Anolis species in the Greater Antilles, 25 do not fall into a 499 

classic ecomorph category (Losos 2009), nor do the several hundred species found across the 500 

Lesser Antilles and mainland Central and South America. This vote-counting measure of 501 

(non)parallelism raises the question of whether the ecomorphs are really phenotypic clusters 502 

arising from parallel evolution and whether unique species are due to unique selection 503 

pressures. To address these questions, Ingram and Mahler developed a phylogentic 504 

comparative method that tests whether trait distributions are best explained by genetic drift or 505 

stabilizing selection around one or more phenotypic optima (Ingram & Mahler 2013, Mahler et al 506 

2013). Mahler et al (2013) modeled phenotypic evolution on the Anolis phylogeny, contrasting 507 

alternative hypotheses of Brownian motion alone, Brownian motion around a single optimum (an 508 

Ornstein-Uhlenbeck process), or multiple optima. The empirical data best matched a model with 509 

multiple adaptive optima corresponding to different ecomorphs that evolved independently on 510 

different islands (and in different sub-clades) (Mahler et al 2013). Yet, the analysis confirmed 511 

that some unique species do not fit any broader ecomorph type. These unique species were 512 

mostly confined to the two largest Greater Antillean islands, suggesting the occasional cases of 513 
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nonparallel Anolis evolution require particular biogeographic or ecological settings (e.g., context-514 

dependent evolution). Phylogenetic comparative methods like these allow us to quantify 515 

(non)parallel evolution above the population level, and do not require paired populations that 516 

span some sort of habitat boundary, unlike the quantitative methods described above. However, 517 

these methods do not consider parallel evolution in the strict sense of similar trajectories of trait 518 

change, which is an area where more progress might be made. 519 

  520 

 521 

VI. WHY IS THERE VARIATION ALONG THE (NON)PARALLEL CONTINUUM? 522 

From relatively early in the Modern Synthesis, researchers interpreted parallel evolution as 523 

evidence for similar natural selection (Muir 1924, Simpson 1953) because few if any other 524 

evolutionary forces can produce such deterministic outcomes. In contrast, many evolutionary 525 

forces can give rise to nonparallel evolution. So, observing nonparallel evolution does not 526 

clearly demonstrate any one evolutionary process. Most biologists’ first instinct may be to 527 

explain nonparallel evolution by invoking a non-adaptive process (Losos 2011, Rosenblum et al 528 

2014). However, stochastic forces in evolution mean that even replicated artificial selection on 529 

identical starting populations in highly controlled settings can yields some nonparallel results 530 

(Cooper et al 2003, Ferea et al 1999, Fong et al 2005, Roberge 2006). Thus, stochasticity can 531 

be important even when replicate populations experience similar selection (Orr 2005), especially 532 

in concert with less controlled natural settings, where replicate populations will also vary with 533 

respect to demographic factors like population size, connectivity, constraints from genetic 534 

architecture, plasticity, or many-to-one mapping (Alfaro et al 2004, Kolbe et al 2012, Leinonen et 535 

al 2012, Nosil & Crespi 2004, Oke et al 2017, Stayton 2008, Stuart et al 2017, Thompson et al 536 

2017). On the other hand, (non)parallelism could also be adaptive, if selection differs among 537 

qualitatively similar environments (Kaeuffer et al 2012, Landry & Bernatchez 2010, Landry et al 538 

2007, Langerhans & DeWitt 2004, Stuart et al 2017). In this section, we expand on these topics 539 

to address the question “why is evolution (non)parallel where we might reasonably have 540 

expected parallel change?”  541 

 542 

VI.A Population size 543 

In small populations, enhanced genetic drift will reduce the extent of parallel change across 544 

replicate populations (Szendro et al 2013). Small populations maintain lower genetic diversity, 545 

reducing the probability that the same alleles are available for selection in replicate populations 546 

(Chevin et al 2010, Feiner et al 2017, Gompel & Brud'homme 2009, MacPherson & Nuismer 547 



 18 

2017). Small populations also have lower rates of mutational input to enable responses to 548 

selection (Barrett & Schluter 2008, Coyle et al 2007). Stochastic allele frequency changes 549 

reduce the efficacy of natural selection, so drift decreases the likelihood that initially similar 550 

populations fix the same alleles in response to similar selection (Kimura 1964, Orr 2005). Note 551 

that selection also reduces effective population size (Charlesworth 2013), so strong selection 552 

can induce drift that inhibits populations’ subsequent adaptive capacity. 553 

 554 

VI.B History 555 

The direction of evolution is contingent on populations’ initial genetic conditions: available 556 

genetic diversity upon which selection can act, linkage between loci, and epistatic interactions. 557 

These conditions are likely to differ if two populations are initially genetically divergent, and 558 

populations will therefore respond in different ways even if selection is identical. Accordingly, 559 

studies in the field and lab have shown that more recently-diverged populations are more likely 560 

to use the same alleles or loci during adaptation to a particular environment (Bollback & 561 

Huelsenbeck 2009, Conte et al 2012).  562 

Many phenotypes are controlled by epistatically interacting networks of genes. The 563 

phenotypic effect of any one allele is therefore contingent on the genotypic state at other loci 564 

(Cohen 1967, Costanzo et al 2016). Even mutations at different positions within a single gene 565 

will interact epistatically (Sailer & Harms 2017). Thus, the fitness effects and evolutionary 566 

trajectory of a single mutation will differ among populations, depending on their genotypes at 567 

other loci with which the mutant allele interacts. The importance of epistatic contingency has 568 

been confirmed by artificial selection experiments that yield nonparallel results (Jerison & Desai 569 

2015, Vogwill et al 2014) and is sometimes called a ‘mutation order’ effect because the same 570 

mutations may lead to very different evolutionary results depending on the order in which they 571 

arise and (perhaps) fix (Gerstein et al 2012). 572 

The historical duration of evolutionary divergence is also relevant to (non)parallelism 573 

(Lucek et al 2014). Populations that have been diverging for more time have more scope for 574 

genetic drift to introduce stochastic differences into replicate populations’ evolutionary 575 

trajectories. This is, after all, why Brownian motion models of evolution lead to greater 576 

divergence through time (Ord & Summers 2015). Yet, if evolution is mutation-limited, then older 577 

populations will have had more time to accumulate similar adaptive mutations needed to 578 

converge on similar phenotypic solutions to a given environment (Orr 2005, Whitlock & 579 

Gomulkiewicz 2005).  580 

  581 
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VI.C Selection landscape 582 

It is intuitive that replicate populations in more similar environments should experience more 583 

similar selection and evolve more parallel traits. However, few studies have tested this inference 584 

directly. Theoretical studies of parallel evolution typically assume that selection is identical and 585 

constant across all replicate populations (Orr 2005). Lab studies of experimental evolution 586 

attempt to impose identical selection regimes across replicate populations experiencing the 587 

same treatment (Wichman et al 1999). Even field studies often focus on comparisons between 588 

apparently discrete habitat categories (e.g., lake versus stream), implicitly assuming that 589 

variation within habitat categories is minimal. However, natural selection is unlikely to be exactly 590 

replicated, due to unrecognized site-to-site environmental differences, community structure 591 

differences, or fluctuating selection through time (Siepielski et al 2009). Thus, environmental 592 

heterogeneity among ostensibly replicate habitats might contribute to nonparallel evolution. For 593 

example, replicate lake whitefish populations in eastern Canada have repeatedly diverged into 594 

coexisting dwarf and normal ecotypes that evolved (non)parallel morphology. Dwarf-normal 595 

pairs are more phenotypically (and genetically) divergent in lakes with greater seasonal 596 

variation in oxygen (Landry et al 2007), and larger diet differentiation (Landry & Bernatchez 597 

2010), while nonparallel evolution of immunologically important MHCIIb genes is linked to 598 

nonparallel parasite communities (Pavey et al 2013). Thus, lake-to-lake environmental 599 

differences influence lake-to-lake differences in how dwarf and normal ecotypes diverge. Similar 600 

enviroment-dependent (non)parallelism has been demonstrated in whitefish in Europe 601 

(Siwertsson et al 2013), lake-stream stickleback (Stuart et al 2017) and in Trinidadian guppies 602 

(Fitzpatrick et al 2014).   603 

 Finally, natural selection fluctuates over time in nature (Siepielski et al 2009). Abiotic 604 

conditions change from year to year, and as a result, replicate populations may experience 605 

different selection in any one year. Even if populations experience similar selection, they will 606 

tend to diverge over time in a drift-like process driven by fluctuating selection (Gillespie 1994). 607 

For example, antagonistic coevolution (e.g., between predator and prey, host and parasite or 608 

between males and females) can generate fluctuating selection, as initially winning defensive 609 

strategies become targets for attack by the antagonist and lose their advantage (Ellner et al 610 

2011, Tellier & Brown 2007).  If replicate populations’ eco-evolutionary cycles are out of phase, 611 

they may be phenotypically nonparallel at any one instant in time, yet experience similar cyclical 612 

dynamics over long time-scales (Auld & Brand 2017).  613 

 614 

VI.D Gene flow  615 
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(Non)parallelism should also depend on levels of population connectivity. To our knowledge, 616 

there has been little study of how migration rates alter the extent of parallel evolution, but the 617 

theoretical expectations are intuitive. Gene flow typically constrains divergence between 618 

populations (Lenormand 2002, Slatkin 1985). Therefore, gene flow between replicate 619 

populations in the same habitat type should make them more genetically similar and hence 620 

facilitate more parallel evolution.  621 

Gene flow across habitat types, however, tends to constrain local adaptation. This 622 

constraint will hinder parallel evolution among replicate populations adapting to a particular 623 

habitat. That is, if gene flow is stronger across the habitat boundary for some pairs, but weaker 624 

in other pairs, then evolution will be more strongly constrained in some replicates than in others, 625 

which should contribute to deviations from strictly parallel evolution (Hendry & Taylor 2004, 626 

Moore et al 2007, Stuart et al 2017), especially the magnitude of change (PCVA vector lengths). 627 

For example, gene flow between lake and stream stickleback is strong in some watersheds 628 

(constraining trait divergence), and weak in others (permitting trait divergence), explaining some 629 

of the variation in the magnitude of lake-stream divergence (Stuart et al 2017).  630 

  631 

VI.E Many-to-one mapping 632 

Natural selection acts on morphological traits indirectly via traits’ functional output (Arnold 1983, 633 

Lauder 1981, Wainwright 1996, Walker 2007). If there is a simple 1:1 relationship between form 634 

and function, then replicated selection on function will favor the evolution of similar underlying 635 

phenotypes. However, many physiological or biomechanical functions have many-to-one 636 

mapping, where different trait combinations can generate the same functional output. Such 637 

redundancy allows trait divergence (and nonparallel evolution) even when stabilizing selection 638 

favors a single function (Alfaro et al 2005, Wainwright et al 2005). Hence, many-to-one mapping 639 

enables nonparallel evolution of structural traits even when the emergent functional traits are 640 

evolving in parallel. Consistent with this theory, some studies have found that functional trait 641 

evolution is more predictable (i.e., has a higher percent variance explained by ecotype) than the 642 

underlying structural traits (Thompson et al 2017). This observation highlights the importance of 643 

distinguishing between the extent of (non)parallel evolution at different levels of biological 644 

organization. 645 

 646 

VI.F Genomic architecture  647 

Replicate populations’ (non)parallel response to selection also depends on their respective 648 

genetic architectures (e.g., recombination rates, mutation rates, chromatin packing, and 649 
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epigenetic modifications), which can vary among populations and across the genome 650 

(Hodgkinson & Eyre-Walker 2011, Nachman 2002). 651 

Mutational hotspots within the genome (Burch & Chao 2000, Holland et al 1982) harbor 652 

greater genetic variation and thus present more fodder for natural selection. Because mutational 653 

hot-spots are more evolvable, they increase the probability that mutations arise independently in 654 

the same hot-spot genes, facilitating parallel evolution at the genetic level across independent 655 

taxa. For example, Pitx1 resides in a fragile region of the stickleback genome and has 656 

independently mutated in multiple independent populations to confer a reduced pelvis, which 657 

selection then fixed (Chan et al 2010, Coyle et al 2007). Remarkably, this mutational bias 658 

confirms Dobzhansky’s early explanation for parallel evolution (Dobzhansky 1933). 659 

Empirical work suggests that shared adaptive alleles tend to be found more often in 660 

regions of low recombination, particularly during divergence-with-gene-flow (Roesti et al 2013, 661 

Samuk et al 2017). The most dramatic version of this effect entails chromosomal inversions 662 

segregating within populations. Inversions usually suppress recombination, creating linked 663 

groups of co-adapted alleles at various loci. Selection acts on these loci as a group, facilitating 664 

parallel adaptation to new environments when inversions are shared among founder 665 

populations (Terekhanova et al 2014). 666 

Polygenic traits enable a many-to-one mapping of genotype to phenotype. So, much like 667 

the many-to-one form-to-function mapping discussed above, parallel genetic evolution is more 668 

likely when only a single gene underlies an evolving trait (Orr 2005). Nonetheless, parallel 669 

genomic evolution has been found even when there are multiple mutations in many genes that 670 

can produce similar phenotypic changes (e.g., Frigida, for flowering time (Levy & Dean 1998, 671 

Shindo et al 2005)).  672 

Mutations that improve fitness through one trait might have deleterious effects via a 673 

different trait. This negative pleiotropy reduces the likelihood that the mutation will persist in a 674 

population and eventually fix (Cooper et al 2007, Otto 2004). If negative pleiotropy is common, 675 

then replicate populations are less likely to have the same genetic variants available for 676 

adaptation and evolution will be more nonparallel. Alternatively, pleiotropy may constrain the 677 

number of plausible evolutionary trajectories, increasing the extent of parallel change. There is 678 

little empirical evidence to distinguish these opposing hypotheses, though one study found that 679 

more pleiotropic genes exhibited less parallel evolution of gene expression (Papakostas et al 680 

2014).  681 

Pleiotropy may also reduce the likelihood of parallel evolution through correlated 682 

selection. Basic quantitative genetics tells us that the direction and speed of evolution of a focal 683 
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trait depends on selection that might act on other genetically correlated traits. A focal trait may 684 

be subject to parallel selection, but if correlated traits experience inconsistent selection among 685 

replicate populations, then even the focal trait will not evolve in parallel (Brodie 1992, Falconer 686 

1952, Gratten et al 2008, Lande & Arnold 1983, Thompson et al 2017). 687 

 688 

 In our introduction, we posed the question, “When we see deviations from parallel 689 

evolution, what are we to conclude about adaptation?” The material reviewed above makes it 690 

clear that there is no single answer. Nonparallel evolution may or may not be adaptive. But, 691 

when replicate populations vary along the (non)parallel continuum, these variable evolutionary 692 

outcomes can provide an opportunity to test the alternative models of evolution described 693 

above. 694 

 695 

VII. WHERE NEXT? 696 

In a replicated study of bacteriophage evolution under selection in the lab, only 25% to 50% of 697 

genetic substitutions in any one replicate population also evolved in at least one other replicate 698 

(Wichman et al 1999). This is more parallel than expected by chance, but certainly less than 699 

100%. Such inconsistent responses to selection are common in nature, as our review has made 700 

clear. Thus, Wichman and colleagues’ closing question, “Why is parallel evolution not 701 

complete?”, remains germane. We now have a wide array of plausible answers to Wichman’s 702 

question, but many important questions remain unanswered. In this final section we summarize 703 

some next steps. 704 

 First, we must improve quantitative approaches for describing the continuum of 705 

(non)parallel evolution and statistically distinguishing different patterns of parallel and 706 

nonparallel evolution (Figure 2). The multivariate vector-based approach (PCVA) is a useful 707 

tool, but problems remain with statistical power, defining suitable null hypotheses, sensitivity to 708 

the number of measured phenotypes, and reliance on pairwise comparisons. Nevertheless, 709 

PCVA has proved to be an effective took for making evolutionary inferences (e.g., Stuart et al 710 

2017), so we advocate applying this method to more research systems in the lab and wild. An 711 

intriguing future direction is to apply PCVA to population triplets using vectors to connect an 712 

ancestral population to two descendant populations that have diverged in different habitats. This 713 

latter option offers a more complex geometry (a triangle of vectors) that describes the temporal 714 

trajectories of between-population divergence.  715 

Second, we need formal tools for comparing measures of (non)parallelism across levels 716 

of biological organization. One clear theme in the existing literature is that evolution may be 717 
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parallel for a higher-level trait (e.g., phenotype or function), but nonparallel for lower level traits 718 

(e.g., physiological processes, biochemistry, genes). Understanding how (non)parallel evolution 719 

correlates across levels may increase our ability to predict evolutionary change.  720 

Third, the vast majority of studies of (non)parallelism focus on wild-caught individuals 721 

whose traits are affected by phenotypic plasticity that may exaggerate or obscure patterns of  722 

parallel evolution (Oke et al 2015). The obvious solution is to evaluate (non)parallelism based 723 

on trait measurements taken in common-garden settings or from quantitative genetic estimates 724 

of breeding value. Of course, an important open question concerns the contribution of plasticity 725 

and genotype by environment interactions to parallel trait change (Mazzarella et al 2015). 726 

 Fourth, most studies of (non)parallelism examine extant populations, rather than 727 

ancestor-descendent pairs. The field would benefit from temporal transects that trace replicate 728 

trajectories of evolutionary change through time. This requires fossil and sub-fossil samples to 729 

measure phenotypes (or ancient DNA genotypes) to calculate evolutionary vectors through time 730 

(Bell et al 2004). For most taxa (and most traits), the fossil record is too sparse, generates small 731 

sample sizes, or is entirely absent. However, in exceptional cases where we can measure many 732 

individuals continuously through time, we will surely find that evolution traces non-linear paths 733 

through trait space over time, which would complicate geometric measures of “parallel” 734 

evolution (Adams & Collyer 2009).  Such non-linear multivariate trajectories have been 735 

observed across spatial transects (Lohman et al 2017), but temporal trajectories that might arc 736 

through trait space have not been integrated into (non)parallel evolution studies. Plant 737 

domestication offers an exceptionally promising venue for this work because archaeological 738 

studies provide temporal transects of food plant materials (Fuller et al 2014). Trajectories 739 

through time could also be studied using ‘resurrection studies’, where ancestral populations can 740 

be recreated from seed or egg banks. But,  741 

 Fifth, we need to explain variation in the extent of (non)parallelism among evolutionary 742 

replicates. This requires investigation of the ecological, genetic, and historical mechanisms that 743 

lead to that pattern in the first place. For instance, we tend to assume that similar environments 744 

impose similar selection pressures, but we need to test this explicitly by measuring selection on 745 

populations that are more and less parallel. Better still, experimental manipulation of selective 746 

forces to track parallel responses to selection are an important future direction. Furthermore, a 747 

mechanistic understanding of evolutionary genetics and how traits are constructed may be 748 

necessary to effectively account for nonparallel evolution. Functional genetics studies that 749 

dissect the specific pathways by which traits are built during development will be needed to 750 

understand how genes and traits respond to (non)parallel selection. In particular, it is 751 
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increasingly clear that epistasis is common and strongly influences evolution. To what extent is 752 

epistasis responsible for nonparallel genetic (or phenotypic) evolution when selection would 753 

otherwise favor parallel change? 754 

 Sixth, biomedical and agricultural practices increasingly draw on genome-wide 755 

association studies (GWAS) that pinpoint genetic variants that are correlated with traits. A 756 

common approach is to obtain genomic SNP data for a large number of individuals from many 757 

populations, then identify SNPs correlated with an environment or trait (Coop et al 2010; Davey 758 

et al 2011). Genetic nonparallel evolution undermines the strength of these correlations, 759 

reducing the power of GWAS. At the extreme, GWAS would fail if each population evolved a 760 

given trait via unique genes or alleles, as in HIV-1’s gp120 gene (Martinez-Picado et al 2002).  761 

 Last, we need to expand research on the practical consequences of variation along the 762 

(non)parallel continuum. In the introduction to this review, we summarized a variety of studies 763 

related to medicine or agriculture. To make our basic research useful, we must consider how to 764 

apply the perspectives discussed here to solve real-world challenges. The evolution of tumors, 765 

pathogens, weeds, and pests pose major health and economic burdens. When a pest’s 766 

evolution is strongly parallel, we might effectively anticipate future changes and thereby develop 767 

therapies to preemptively combat any ill effects of evolution. In contrast, nonparallel evolution 768 

will prove harder to anticipate. The (non)parallel continuum also has implications for other 769 

applied concerns. To mitigate extinction risk, conservation biologists and managers sometimes 770 

transfer organisms from healthy populations into declining populations to boost their abundance 771 

and genetic diversity (Rinkevich 2005). When replicate populations have evolved in parallel, 772 

they are pre-adapted to each others’ habitats, and so may be especially well suited to rescuing 773 

declining populations. However, nonparallel local adaptation results in non-interchangeable 774 

populations, in which case transplants may undermine population viability (Kenkel et al 2015, 775 

Stockwell et al 2003).  776 

 777 

 778 

VIII. CONCLUSIONS 779 

Evolution is often described as being parallel, convergent, or divergent. These semantic 780 

designations draw us into binary thinking about evolutionary processes and their resulting 781 

patterns. The reality is wonderfully more subtle and complex: the evolution of multiple 782 

phenotypes or genes in replicate populations is best described by a quantitative continuum from 783 

parallel to antiparallel and convergent to divergent. Some populations will be highly parallel to 784 

each other, while other populations will follow unique trajectories, and some phenotypes and 785 
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genes are more prone to parallel evolution than others. A growing number of studies have 786 

embraced this complexity, recognizing that parallel evolution is a measurable continuum along 787 

which populations and traits and genes will vary. This quantitative view of a (non)parallel 788 

continuum opens up new opportunities to study the processes that generate heterogeneity in 789 

the extent of parallel evolution.  790 

In the past, biologists have used parallel evolution to argue that evolution can be 791 

(sometimes) predictable. Yet, growing evidence suggests that deviations from parallel evolution 792 

can also be deterministic, so nonparallel change need not imply unpredictable evolution. Many 793 

research opportunities lie ahead for biologists seeking to develop tools to explain why evolution 794 

generates a continuum of (non)parallel results. With these tools, we hope to improve our ability 795 

to predict the future course of evolution.  796 
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TERMS AND DEFINITIONS  1266 

Parallel evolution (standard) – evolution of similar phenotypes or genotypes in multiple 1267 

independent populations, in response to similar selection pressures, from similar initial 1268 

conditions.  1269 

Convergent evolution (standard) –  evolution of similar phenotypes or genotypes in multiple 1270 

independent populations, in response to similar selection pressures, from different initial 1271 

conditions. 1272 

Parallel evolution (geometric) - a low angle (θ ~ 0°) between evolutionary trajectories of 1273 

independent replicates through trait (or genotype) space (Fig. 1A). 1274 

Nonparallel evolution – evolutionary vectors of two replicates are not parallel (θ >> 0°), 1275 

potentially resulting in convergent or divergent evolution (Fig 1A).  1276 

Antiparallel evolution – most extreme nonparallelism, when replicate vectors point in exactly 1277 

opposite directions (Fig. 1A;  θ ~ 180°) 1278 

(Non)parallel evolution – shorthand for the distribution of outcomes across populations and traits 1279 

forming a continuum from parallel, to orthogonal, or even antiparallel evolution.  1280 

Convergent evolution (geometric) – when the endpoints of two evolutionary vectors are closer 1281 

together than the vectors origins (Fig. 1B).  1282 

Divergent evolution – the evolution of increased distance between populations in phenotype or 1283 

genotype space (Fig. 1B). 1284 

Many-to-one mapping – when many distinct genotypes can yield the same phenotype, or many 1285 

distinct phenotypes can yield the same function.  1286 

PCVA – Phenotypic Change Vector Analysis is a multivariate approach to measuring trait 1287 

change or (non)parallel evolution by quantitatively comparing change vectors. 1288 

PTA – Phenotypic Trajectory Analysis entails a series of head-to-tail PCVA vectors forming an 1289 

evolutionary trajectory through trait space. 1290 

 1291 

 1292 
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 1293 

Figure 1. A visual glossary illustrating our use of terms. Each panel represents two 1294 

replicate evolutionary trajectories (e.g., from ancestor to descendent) plotted as arrows in 1295 

multivariate trait space. Drawing on geometric definitions, evolution can range from parallel 1296 

(arrows pointing in the same direction) to antiparallel (arrows that point in opposite directions) 1297 

and various angles in between. We use ‘nonparallel’ to refer to the logical complement of 1298 

‘parallel’, and ‘(non)parallel’ to refer to the entire continuum.  Continuing with this geometric 1299 

theme, convergent and divergent are separate concepts from (non)parallelism, having more to 1300 

do with whether or not descendents are more similar to each other than ancestors. The 1301 

relationship between the (non)parallel continuum, and the convergence-divergence continuum 1302 

is illustrated in more detail in Fig. 3.   1303 
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 1305 

Figure 2. An example of variation along the (non)parallel continuum in 16 lake-stream 1306 

pairs of threespine stickleback (modified from Stuart et al. 2017). (A) Gill raker number 1307 

(size-standardized) shows strong parallel changes with more gill rakers in lake fish in 14 out of 1308 

16 pairs (red lines indicate contrary directions), resulting in a strong main effect of habitat 1309 

(shared change). (B) Lower jaw opening kinematic transmission (kt) exhibits little parallel 1310 

evolution with equal numbers of cases of lake or stream fish having higher mean kt, resulting in 1311 

a strong habitat*watershed interaction (unique change). To summarize this variation, Stuart et al 1312 

plotted habitat versus habitat*watershed effect sizes (partial η2) for (C) all 86 morphological 1313 

traits and (D) 74,000 SNPs from ddRADseq. Points lie mostly below the dashed line of equal 1314 

effect, indicating that unique evolution is typically stronger than shared evolution. To view this 1315 

variation along a single nonparallel / parallel axis, we calculated each trait or SNP’s distance 1316 

from the line of equal effect (positive values above/left of the line denote more parallel evolution, 1317 

negative values below/right the line indicate more nonparallel evolution). We plot histograms of 1318 

traits (E) and SNPs (F) on this (non)parallel axis, to illustrate the point that evolution at both 1319 

levels is primarily nonparallel, but a small number of traits and SNPs form a distinct peak of 1320 

parallelism, likely representing targets of parallel selection. 1321 

 1322 
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Figure 3. Use of Phenotypic Change Vector Analysis (PCVA) to quantify (non)parallel 1324 

evolution as well as divergence or convergence.  We illustrate the approach using the 1325 

evolution of two quantitative traits (x and y axes on the small graphs). (A) The trajectory of 1326 

evolution can be represented in morphospace as a vector connecting the centroids of two 1327 

paired from different habitats. Each evolutionary replicate pair constitutes its own vector (here, 1328 

we plot vectors for three such pairs). Any two replicate evolutionary trajectories can be 1329 

compared to calculate an angle θ and a length difference ΔL. (B) In addition to calculating 1330 

measures of parallelism, we can measure the extent of convergence or divergence. We define 1331 

Sd as the distance between two replicates’ starting points; and Ed as the distance between 1332 

ending points. The two vectors diverge if the end points are farther apart than the starting points 1333 

(Sd < Ed), and converge if Sd > Ed. Panel (C) presents various combinations of scenarios for 1334 

(non)parallelism and convergence or divergence. Two replicate evolutionary trajectories are 1335 

highly parallel when the angle between them (θ) is near zero (top row); they are acute 1336 

nonparallel when they point in roughly the same direction but with some moderate angle (e.g., θ 1337 

< 90°; middle row), and obtuse nonparallel or even antiparallel when the replicates evolve in 1338 

opposite directions (θ >> 90°; bottom row). The left and right columns of (C) represent cases 1339 

where vector lengths are similar (ΔL ~0, left column) or different (ΔL >0, right column). Evolution 1340 

is highly parallel in the top left box (θ~0 and ΔL ~0), and no divergence or convergence is 1341 

possible. For all other scenarios it is possible to have divergence or convergence for both 1342 

parallel and nonparallel evolution. 1343 

  1344 
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Sidebar 1. Experimental study of parallel evolution 1345 

 1346 

Many convincing studies of (non)parallelism come from selection experiments in laboratory 1347 

populations (Bailey et al 2015, Graves et al 2017, Lenski 2017, Meyer et al 2010). By limiting 1348 

variation in as many possible explanatory factors as possible, the design of these experiments 1349 

permits careful tests of a limited number of mechanisms at a time. A meta-analysis of evolve-1350 

and-resequence experiments with bacteria and yeast revealed a positive relationship between 1351 

population size and the probability of parallel change (Bailey et al 2017). Mutation rate 1352 

heterogeneity strongly influenced the extent of parallel genetic change during selection in 1353 

shared environments. Deviations from parallel evolution were therefore partly non-adaptive. An 1354 

important lesson from these studies is that the likelihood of observing parallel evolution is often 1355 

dependent on the level of the biological hierarchy that is investigated. Because of many-to-one 1356 

mapping (see main text), repeatability is typically highest for fitness itself, lower for phenotypes, 1357 

lower still at the level of the genes, and lowest at the level of individual mutations (Tenaillon et al 1358 

2016). There is also growing experimental evidence that frequency dependent ecological 1359 

interactions can contribute to (non)parallel evolutionary dynamics (Douglas et al 2016, Herron & 1360 

Doebeli 2013, Josephides & Swain 2017). 1361 
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