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Abstract 

Previous studies suggest improved learning when participants 
actively intervene rather than passively observe the stimuli in 
a judgment task. In two experiments the authors investigate if 
this improvement generalizes to multiple cue judgment tasks 
where judgments may be formed from abstract knowledge of 
cue-criterion relations or exemplar memory. More specific 
hypotheses were that intervention in learning should improve 
performance over observation, and that improvement should 
be associated with a relative shift from exemplar memory to 
cue abstraction. In contrast to previous studies, in a multiple-
cue judgment task with binary cues and continuous criterion, 
there was poorer learning with intervention than observation, 
and participants actively experimenting more produced poorer 
judgments. The results suggest that intervention may distract 
from efficient exemplar encoding and improvement may be 
limited to tasks efficiently addressed by cue-abstraction. 

Introduction 
Information about our environment is acquired in a variety 
of ways. We learn by instruction from others, by passive 
observation, and by acting on our environment, observing 
the consequences of our interventions. These methods of 
acquiring information are all fundamental to our ability to 
adapt and function successfully in the environment. In this 
paper we examine the effects of different learning activities 
in a multiple cue judgment task and, specifically, how these 
activities relate to the cognitive representations that support 
the judgment process. Will people’s knowledge of a judg-
ment task differ depending on how they interact with stimuli 
in training? The learning method used in numerous multiple 
cue judgment and categorization tasks is observation, where 
stimuli are presented; the participants make a judgment, and 
receive outcome feedback. This method is relatively passive 
and participants cannot interact with the stimuli and actively 
test their own hypotheses. There is relatively little work 
examining the role that intervention might have for learning 
and how these effects relate to cognitive representations.  

In the Western scientific tradition the advantage of ex-
perimentation over simple observation has long been recog-
nized (Mill, 2002), but in the areas of categorization and 
multiple-cue judgment, research on intervention is scarce. 

Existent research on intervention in learning suggests that, 
perhaps not surprisingly, learning is promoted by the possi-
bility to causally intervene with the system under study 
(Klayman, 1988; Lagnado & Sloman, 2004). Advances in 
the understanding and modeling of causal relations (Pearl, 
2000) has stimulated renewed interest in cognitive science 
for casual reasoning and its role for learning (Gopnik et al., 
2004; Rehder, 2003; Steyvers, Tenenbaum, Wagenmakers, 
& Blum, 2003). Lagnado and Sloman (2004), for example, 
used a trial by trial based learning paradigm in which par-
ticipants obtained probabilistic data about a causal chain 
either through observing sequences (e.g., seeing a high fuel 
temperature and a low combustion chamber pressure leading 
to the launch of a rocket) or through intervention (e.g., set-
ting both temperature and pressure to either high or low and 
then observing whether a rocket launched or failed). The 
results showed a clear advantage for interveners in terms of 
their ability to subsequently select the causal model likely to 
have generated the data (from an array of possible models).  

In this article we extend this finding by investigating the 
role of intervention in multiple-cue judgment. In a multiple-
cue judgment task participants use a number of cues to infer 
a criterion. Research with this task (Juslin, Jones, Olsson, & 
Winman, 2003; Juslin, Olsson, & Olsson, 2003) has identi-
fied two qualitatively different cognitive processes that can 
underlie performance in the standard observation training 
regime. The first, inspired and motivated by research on 
categorization, emphasizes exemplar memory and assumes 
that people make judgments by retrieving similar exemplars 
from memory (Medin & Schaffer, 1978; Nosofsky & 
Johansen, 2000). The second, derived from research on mul-
tiple-cue judgment, stresses the controlled integration of 
explicit knowledge of cue-criterion relations abstracted in 
training (Einhorn, Kleinmuntz, & Kleinmuntz, 1979).  

In this context we investigate the relationship between ac-
tive intervention and the cognitive representations acquired 
and we will argue that the benefit of intervention should be 
especially large if one engages in cue abstraction. Accord-
ingly, one hypothesis in regard to why intervention affords a 
benefit over observation is that it promotes knowledge rep-
resentation in the form of abstract cue-criterion relations 
rather than memory for exemplars (Juslin, Jones, et al, 2003; 
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Juslin, Olsson, et al., 2003). Because causal intervention 
allows controlled observation, for example, by keeping all 
cues but one constant to investigate its effect on the crite-
rion, arguably it should become easier to abstract the rela-
tions between individual cues and the criterion. One prereq-
uisite for this benefit from intervention is that people spon-
taneously engage in this sort of “experimentation”.  

But is intervention beneficial in all tasks, also tasks where 
judgment is supported by processes other than analysis of 
causal or functional relations between cues and criterion? 
Previous studies have mainly relied on tasks that invite use 
of analytic thinking and abstraction. In this experiment we 
use a simple additive task with many repetitions of the same 
small set of stimuli. This task can be solved either by ab-
straction of cue-criterion relations or exemplar memory, and 
apparently is (Juslin, Olsson, et al., 2003). Note that while 
intervention is beneficial for inferring the task structure and 
abstracting the cue-criterion relations, in regard to exemplar 
memory it may incur a cost. A consequence of cue abstrac-
tion is that participants may concentrate more on the piece-
meal analysis of individual cue-criterion relations at the cost 
of considering and encoding entire feature patterns. There-
fore, encouraging cue abstraction may have the side-effect 
of promoting less efficient encoding of the exemplars.  

With this background in mind, the experiments in this pa-
per investigated whether the benefit from intervention gen-
eralizes also to a multiple cue judgment task where both cue 
abstraction and exemplar memory are viable processes. We 
also ascertained whether the participants spontaneously en-
gage in the sort of controlled observation or “experimenta-
tion” afforded by intervention. Finally, to the extent that we 
observed a benefit from intervention, we wanted to test the 
hypothesis that this benefit is mediated by a relative shift 
from exemplar memory to reliance of cue abstraction.  

Models and Judgment Task 
The two processes that are perhaps most often discussed in 
categorization learning are rule-based and exemplar-based 
processes (Ashby, Alfonso-Reese, Turken, & Waldron, 
1998; Juslin, Jones et al., 2003; Juslin, Olsson et al., 2003; 
Sloman, 1996; Smith, Patalano, & Jonides, 1998). Ruled-
based models, like the cue abstraction model (CAM), im-
plements the idea that people use controlled processes in 
working memory to mentally integrate cues according to a 
linear additive rule. In training participants abstract cue 
weights that are used to estimate the criterion when a new 
probe is presented (Juslin et al., 2003). In contrast, exemplar 
models (EBM) assume that people make judgments by re-
trieving similar stored exemplars from memory (Medin & 
Schaffer, 1978; Nosofsky & Johansen, 2000), a process that 
involves rapid similarity-based processes. The exemplars 
retrieved from memory are representations of holistic con-
crete experienced instances encountered in training. 

We rely on an experimental design that has been success-
ful in distinguish between cue abstraction and exemplar 
memory in a multiple cue judgment task (Juslin, Olsson et 
al., 2003). The task involves a probe defined by four binary 

cues and requires a judgment of a continuous criterion. 
Judgments are initially made in a training phase where 
feedback about the correct criterion is provided after every 
judgment. The cover story involves judgments of the toxic-
ity of subspecies of the exotic (but fictitious) Death Bug.  

The task is summarized in Table 1. The cues C1, C2, C3 
and C4 take on values 1 or 0, where the value 1 signifies an 
increase in toxicity. The toxicity c of a subspecies is a linear 
additive function of the cues: 
 c=50+4·C1+3·C2+2·C3+1·C4     (1) 
The criterion c is thus computed by assigning cue number 
one, C1, most importance and therefore the largest weight 
and cue number four, C4, the least importance. 

When participants make judgments of the continuous cri-
terion CAM suggests that they perform a mental analogue 
of linear multiple regression. For each cue, the weight ωi 
(i=1…4) is retrieved and the estimate of c is adjusted ac-
cordingly: 

∑
=

⋅+=
4

1
ˆ

i
iiR Ckc ω ,  (2)  

where )10(5.50 ∑−⋅+= ik ω . The value of k is to ensure a rota-
tion of the intercept about 55. If ω1=4, ω2=3, ω3=2, and 
ω4=1, Equations 1 and 2 are identical and, in principle, the 
CAM affords perfectly accurate judgment in this task. 
 
Table 1. All 16 exemplars and their binary cue values. T and 
O are exemplars viewed both under training and test. N and 
E are new exemplars only presented in the test phase. 
 

Exemplar 
Cues 

Criteria 

# C1 C2 C3 C4 Add Role 
1 1 1 1 1 60 E 
2 1 1 1 0 59 T 
3 1 1 0 1 58 T 
4 1 1 0 0 57 O 
5 1 0 1 1 57 N 
6 1 0 1 0 56 N 
7 1 0 0 1 55 N 
8 1 0 0 0 54 T 
9 0 1 1 1 56 O 
10 0 1 1 0 55 O 
11 0 1 0 1 54 T 
12 0 1 0 0 53 T 
13 0 0 1 1 53 T 
14 0 0 1 0 52 T 
15 0 0 0 1 51 T 
16 0 0 0 0 50 E 

 
EBM implies that the participants make judgments by re-

trieving similar exemplars from memory. When EBM is 
applied to judgments of a continuous criterion, the estimate 

 of the criterion c is a weighted average of the criteria cEĉ
j 
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stored for the J exemplars, where the similarities S(p,xj) are 
the weights: 

∑

∑

=
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where p is the probe to be judged, xj is stored exemplar j 
(j=1…J), S(p,xj) is the similarity between probe p and ex-
emplar xj. Eq. 4 is the original context model (Medin & 
Schaffer, 1978) applied to a continuum (see, Delosh et al., 
1997; Juslin et al., 2003). The similarity between probe p 
and exemplar xj is computed according to the multiplicative 
similarity rule of the original context model:   
 ,   (4) ∏

=

=
4

1

),(
i

ij dxpS

where di is an index that takes value 1 if the cue values on 
cue dimension i coincide (i.e., both are 0 or both are 1), and 
si if they deviate (i.e., one is 0, the other is 1). si are four 
parameters in the interval [0, 1] that capture the impact of 
deviating cues values (features) on the perceived similarity 
S(p,xj). A value of si close to 1 implies that a deviating fea-
ture on this dimension has no impact on the perceived simi-
larity and is considered irrelevant. A value of si close to 0 
means that the similarity S(p,xj) is close to 0 if this feature is 
deviating, thus assigning crucial importance to it. For low si, 
only identical exemplars have an effect on the judgments.  

 Extra- and interpolation measures how well the correct 
cue-criterion relations have been abstracted (DeLosh, 1997). 
If the participant is able to make correct judgments for the 
new extreme exemplars presented in the test phase (i.e. is 
able to extrapolate), the participant is likely to have figured 
out the underlying cue-criterion relations. This suggests the 
use of cue abstraction. If an exemplar process is used the 
participants are unable to extrapolate beyond the range of 
stimuli seen in training. When judging the new exemplars in 
the middle range, there will be no systematic differences 
between new and old with a cue abstraction process. With 
exemplar processes old exemplars are more correctly judged 
than new exemplars, because old exemplars with the correct 
criterion can be retrieved from memory.  

 
The Cue Abstraction Model
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Figure 1. The judgment task design allows for distinct pre-
dictions by cue abstraction and exemplar-based processes. 
Left: No systematic inter- or extrapolation effects are ex-
pected with cue abstraction process. Right: With an exem-
plar-based process, the participant cannot extrapolate for the 

new extreme exemplars and the middle range judgments are 
better for old than new for new exemplars. 

Experiment 1 
The aims of Experiment 1 were three-fold: First, to replicate 
the benefit of active intervention observed in previous stud-
ies with the sort of multiple-cue judgment used in the pre-
sent study. Second: to investigate if people spontaneously 
realize this possibility to make controlled observation when 
they can actively intervene with the stimuli in training? 
Third: provided that the beneficial effect of intervention is 
replicated, to find out if this improvement is associated with 
a shift from exemplar memory to cue abstraction.  

In Experiment 1 we compared the performance by par-
ticipants who observed (the observation condition) or ac-
tively constructed (the intervention condition) the stimuli in 
the training phase. Although interveners are given a target 
criterion for the exemplar they create by selecting the cue 
values, they do have the freedom to make controlled obser-
vations so as to make cue abstraction more efficient, for 
example, by structuring the successive exemplars that they 
create so that they differ with respect to a single cue. This 
should promote cue abstraction, while observation with no 
control over the cues should make cue abstraction harder; in 
particular, if it is heavily biased towards estimating linear 
slopes between successive exemplars differing with respect 
to a single cue (Juslin, Karlsson, & Olsson, 2004).  

We hypothesized that interveners should exploit the pos-
sibility to make controlled observations by more often creat-
ing successive exemplars differing with respect to only one 
cue as compared to the baseline provided by the observers, 
and that, relative to the observers, there should be a shift 
from exemplar memory to cue abstraction among interven-
ers. The possibility to make controlled observation should 
improve learning for interveners and we expected them to 
need fewer trials to reach a certain learning criterion. 

Method 
Participants. Forty-eight undergraduate students from Upp-
sala University volunteered. All received payment of ap-
proximately 80 SKr ($10) or course credit. Thirty-eight par-
ticipants were women and ten were men. The participants 
had a mean age of 25.5 years (range 19-44, SD=5.66). All 
participants were tested individually. 
 
Materials and Procedure. For the observers each learning 
trial consisted of the presentation of text descriptions of a 
fictitious death bug species with four binary attributes (long 
or short legs, green or brown back, long or short nose, spot-
ted or unspotted fore back). Five exemplars were omitted 
from training. The omitted bugs were Exemplars 1, 5, 6, 7 
and 16 (see Table 1). All participants were shown the exem-
plars in a new and independent random order.  

The participants answered the question “What is the tox-
icity of this bug?” and made a numerical response (% toxic-
ity) on each trial. Feedback about the correct toxicity fol-
lowed the response and remained on the screen until the 
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participant clicked to advance to the next trial. A minimum 
of 45 trials was completed and then training continued until 
the participant had satisfied a pre-determined learning crite-
rion (an average Root Mean Square Deviation RMSD of 0.8 
or less between judged and actual toxicity over the preced-
ing 11 trials). 

Interveners saw the same screen layout as observers but 
rather than seeing predetermined configurations of attrib-
utes, interveners selected four attributes on each trial (e.g., 
brown back, long nose, short legs, spotted fore back). Their 
task was to create a bug of a given toxicity. Thus, on a trial 
they were asked, for example, to “Create a bug that has tox-
icity 57%”. After selecting all four features and clicking 
“create” feedback on the toxicity of the created bug was 
given. The program did not allow participants to create the 
five omitted exemplars, ensuring that in both conditions 
only the Old exemplars in Table 1 could be seen. If an omit-
ted exemplar were about to be created an error message ap-
peared on the screen saying “An error occurred in creation, 
please try another configuration”. 

Consistent with the observation condition participants 
completed a minimum of 45 trials and then continued until 
achieving the same predetermined criterion. Following 
learning half of participants from both groups received a test 
phase in which each of the 16 exemplars was presented 
twice in a random order, for a total of 32 trials. Participants 
responded in the same manner as observation learning, but 
received no feedback. The other half from both groups re-
ceived an intervention test phase, where the task was to cre-
ate a bug of a given toxicity without any feedback. This 
partition was made to see if same training and test condition 
could boost performance (Morris, Bransford, & Franks, 
1977). Finally, all participants were given a series of ques-
tions and tasks designed to elicit their insight into the struc-
ture of the task (not reported in this article). 

Results and Discussion 
The results from the test phase are analyzed in two different 
ways. First, in terms of performance where judgment accu-
racy in the two conditions is compared; second, by cognitive 
modeling, examining how CAM and the EBM are mani-
fested in the participant’s judgment through a model fit.  
 
Performance. A two-way ANOVA on RMSE with training 
condition (observation vs. intervention) and test condition 
(observation vs. intervention) as between-subjects factors 
produces no statistically significant effect of test (F1, 44= .39, 
p= .54), no significant interaction (F1, 44= .98, p= .33), but a 
marginally significant effect of training (F1, 46= 3.32, p= 
.08). Observation in training produced more accurate judg-
ments than intervention (a RMSE of 1.21 vs. 1.56). The 
number of training trials needed to reach the training crite-
rion was similar (F1, 46= .14, p= .72). 

An Experimentation Index (EI) is calculated for the 40 
first trials in the training phase. The EI in the intervention 
condition tells weather participants has experimented, how 
many cues that are held constant from trial to trial, during 

training. More cues held constant suggests more experimen-
tation. The difference in EI is significant (F1,46=20.79, p= 
.000), implying that interveners do more experimentation 
than the baseline obtained in observation. The correlation 
between the EI and RMSE was r48 = .19, not significant (p= 
.2). 
 
Table 2: Mean RMSE, number of training trials needed to 
reach the training criterion, and EI for both conditions. 
 

Condition RMSE Training Trials EI 
Observation 1.21 90.75 (SD=41.8) 1.86 
Intervention 1.56 85.92 (SD=49.2) 2.12 

 
Model Fit. The four best-fitting parameters for each model 
were ascertained by minimizing the SSD between model 
predictions and the last judgment made for each of the 11 
exemplars in the training phase (see Table 1). The models 
with these parameters were then used to predict how the 
participants should perform in the test phase with all 16 ex-
emplars (see Juslin et al., 2003). This implies cross-
validation for the 11 old exemplars and genuine predictions 
for the 5 new exemplars. The models thereby predict what 
the judgments would be like if the participants in each task 
used either the EBM or the CAM. The fit between the 16 
predictions and the 16 mean judgments made in the test 
phase is measured by the RMSD. Model fit was performed 
on individual level. A Split-plot ANOVA with training and 
test condition (observation vs. intervention) as between-
subjects factors and model (CAM vs. EBM) as within-
subjects factor yielded a significant main effects of training 
condition (F1,46=7.2, p=.001), significant effect of model 
(F1,46=16.57, p=.000), but as illustrated in Figure 2 (left 
panel) it is the significant interaction (F1,44=11.74, p=.001) 
that is the key effect. In the observation training condition 
the CAM provides superior fit, but in the intervention train-
ing condition both models show relatively poor fit. 

Experiment 1
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Figure 2. Mean RMSD with 95% confidence intervals for 
the cue abstraction and the exemplar models in the observa-
tion and intervention conditions. 
 
Experiment 1 revealed no benefit in learning for participants 
that learned the task by active intervention. Instead there 
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was a strong tendency towards more accurate judgments and 
better fit for CAM with observation. Both groups needed a 
similar number of trials to reach the pre-determined learning 
criterion. It seems clear that these data provide no evidence 
for increased performance with active intervention or for a 
shift towards more cue abstraction, despite that the partici-
pants in the intervention condition spontaneously engaged 
in “experimentation” when this was made possible. 

Experiment 2 
To further investigate if active intervention with stimuli in 
training produces a representational shift between different 
representations Experiment 2 was conducted. The training 
phase in earlier experiments with this paradigm has been 
220 trials long (Juslin, Jones et al., 2003; Juslin, Olsson et 
al., 2003). One possibility is that in the intervention condi-
tion, the participants begin with more or less fragmentary 
exemplars and as training proceeds cue abstraction is slowly 
improved by more extensive experience with intervention.  

The aim of Experiment 2 was therefore to investigate if 
increasing the number of training trials would increase the 
difference between the two conditions in regard to perform-
ance and dominating representation. In addition, Experiment 
2 serves the complementary purpose of collecting more data 
on one intriguing aspect of Experiment 1; the marginally 
significant deterioration in performance for interveners. 
Manipulation of observation versus intervention at test pro-
duced no effects in Experiment 1 and in Experiment 2 ob-
servation was used in the test phase for both conditions. 

Method 
Experiment 2 followed the same procedure as Experiment 1. 
The difference between the two experiments was the num-
ber of learning trials. Rather than continuing until reaching a 
predetermined learning criterion, all participants completed 
220 trials, ensuring that each of the 11 exemplars was pre-
sented (Observation) or asked for (Interveners) 20 times. 
Twenty-four undergraduate students from Uppsala Univer-
sity took part and were rewarded in the same manner as in 
Experiment 1. Ten participants were male and 14 were fe-
male, with a mean age of 25.71 (range 20-45, SD=4.85). 

Results and Discussion 
The data in Experiment 2 were analyzed in the same way as 
in Experiment 1. Comparisons are made between Experi-
ments 1 and 2 to investigate the effect of increased training. 
 
Performance. A one-way ANOVA on the RMSE shows a 
marginally significant difference, again favoring passive 
observation over active intervention (F1, 22= 3.22, p=.09). 
The experimentation indices was computed for separate 
blocks of trials in the training phase, this time for 11 blocks 
of 20 successive trials were entered as the dependent vari-
able in an ANOVA. The ANOVA shows a significant main 
effect of condition (F10, 242 = 34.5, p = .000), a non-
significant main effect of block (F10, 242 = .64, p = .78), and a 
non-significant interaction (F10, 242 = .67, p = .75), see Figure 

3. The correlation between the Experimentation index and 
RMSE was significantly positive (r24 =.5, p = .014), sug-
gesting that more experimentation was associated with 
poorer judgment accuracy.  
 
Table 3. Mean RMSE and mean EI in Experiment 2. 
 

Condition RMSE EI 
Observation .76 1.9 
Intervention 1.24 2.1 

 
Model Fit. Model fit was analyzed in the same way as in 
Experiment 1. The model fit in Experiment 2 in terms of 
mean RMSD when the models were fitted to the individual 
participant data is summarized in Figure 2 (right panel). A 
Split-plot ANOVA with training condition (observation vs. 
intervention) as between-subjects factor and model (cue 
abstraction vs. exemplar memory) as Within-subjects factor 
show a significant main effect of model (F1,22 = 17.26, p = 
.000) and of training (F1,22 = 10.16, p = .004), but no signifi-
cant interaction (F1,22 = .01, p = .93). As illustrated in Figure 
2, both models show better fit for the observation than the 
intervention condition, and the cue abstraction model shows 
superior fit in both of these training conditions. 
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Figure 3. The mean Experiment Index with 95% confidence 
intervals for both conditions in Experiment 2 plotted as a 
function of training block, where each block consists of 20 
trails. The means for observation define the change of cues 
expected by chance. 
 
Experiment 2 provides further evidence that active interven-
tion can actually instill poorer learning than passive obser-
vation in a task with binary cues, where more active ex-
perimentation actually contributes to poorer judgments. We 
also performed an analysis with data aggregated across Ex-
periments 1 and 2. A two-way ANOVA with RMSE as de-
pendent variable and intervention vs. observation and Ex-
periment 1 vs. 2 as independent variables shows significant 
main effects of training condition (F1, 68=6.33, MSE=.44, 
p=.01) and Experiment (F1, 68=5.6, MSE=.44, p=.02), but no 
statistically significant interaction (F1, 68=.15, MSE=.44, 
p=.7). The more extensive training in Experiment 2 pro-
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duced more accurate judgments and intervention contributed 
to poorer judgments as compared to passive observation. 
The increased training did not serve to separate the two 
conditions from each other and there were no signs of a shift 
from exemplar memory to cue abstraction. The overall supe-
riority of cue abstraction was even clearer in this experiment 
as compared to the previous experiments and this superior-
ity does not appear strengthened by allowing the partici-
pants to actively intervene with stimuli.  

General Discussion 
In two experiments we examined if different activities in the 
learning phase affect the knowledge representation in a mul-
tiple cue judgment task. Previous studies suggests that in-
tervention in learning improves performance (Gopnik et al., 
2004; Klayman, 1988; Lagnado & Sloman, 2004; Steyvers 
et al., 2003). In our experiments we have found that inter-
vention and causal experimentation does not always im-
prove performance. Apparently, in an environment with 
binary cues and a continuous criterion intervention as a 
learning method can not compete with simple and passive 
observation. A possible explanation is that improvement in 
judgment with intervention as learning method is limited to 
environments that spontaneously invite cue abstraction. 
When cues are binary and fewer exemplars exist in the envi-
ronment, memorization of exemplars precedes the abstrac-
tion of rules in both learning conditions. The use of inter-
vention and the search of a rule suppresses the possibility to 
memorize correct exemplars, but in observation the process 
of memorization of exemplars starts immediately.  

No shift in representation from EBM to CAM could be 
found. In the observation condition CAM had significantly 
better fit in both experiments. In intervention no differences 
existed between CAM and EBM in Experiment 1, but in 
Experiment 2 CAM became the best fitting model. 

The poor performance in the Intervention condition (es-
pecially in Experiment 1) raises intriguing issues about how 
exemplars are coded and stored in memory. A default as-
sumption in research on perceptual classification is that ex-
emplars are stored in terms of visual features of the objects, 
as is naturally the case in the Observation condition. In the 
Intervention condition it is however possible that, exemplars 
are not exclusively or even mainly coded in terms of visual 
features, but in terms of the sequence of actions required to 
produce an exemplar of a specific toxicity. Clearly, the ex-
act interpretation of “exemplar” is open to somewhat differ-
ent interpretations in this case. 

To conclude, our results suggest that the proposition that 
experimentation is better than simple observation is not al-
ways true. Contrary to Mill and the believers in the superi-
ority of active learning, intervention as a learning strategy is 
not always better. 
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