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Modeling deformation and chaining of flexible shells in a nematic solvent with
finite elements on an adaptive moving mesh

Andrew DeBenedictis and Timothy J. Atherton*

Department of Physics and Astronomy, Tufts University, 574 Boston Avenue, Medford, Massachusetts 02155, USA

Andrea L. Rodarte and Linda S. Hirst
Department of Physics, University of California, Merced, 5200 Lake Road, Merced, California 95343, USA

(Received 28 June 2017; published 2 March 2018)

A micrometer-scale elastic shell immersed in a nematic liquid crystal may be deformed by the host if the
cost of deformation is comparable to the cost of elastic deformation of the nematic. Moreover, such inclusions
interact and form chains due to quadrupolar distortions induced in the host. A continuum theory model using
finite elements is developed for this system, using mesh regularization and dynamic refinement to ensure quality
of the numerical representation even for large deformations. From this model, we determine the influence of the
shell elasticity, nematic elasticity, and anchoring condition on the shape of the shell and hence extract parameter
values from an experimental realization. Extending the model to multibody interactions, we predict the alignment
angle of the chain with respect to the host nematic as a function of aspect ratio, which is found to be in excellent
agreement with experiments.

DOI: 10.1103/PhysRevE.97.032701

I. INTRODUCTION

An important application of nematic liquid crystals (LCs)
is as guides for self-assembly of included colloidal particles
[1–4]. Chemical treatment of the particles may induce a
preferred orientation of the adjacent nematic on their sur-
face and induce elastic distortions in the bulk liquid crys-
tal. Elasticity-mediated interactions between particles cause
micron-sized particles to self-organize into chains or clusters
that are strongly (∼1000kBT ) bound together [2,5–7]. Smaller
nanoparticles (NPs) disperse uniformly in the isotropic phase
but can be sculpted into a variety of structures by kinetic effects
as the host undergoes a transition into a liquid crystalline phase
[1,8,9]. Self-assembly of nanoparticles in LCs can therefore
exploit nucleation and growth as would occur in an isotropic
fluid [10,11], but the liquid crystalline order permits additional
control over the self-assembled structure [9].

Hierarchical structures can be formed by combining these
mechanisms. Two coauthors of this paper (Rodarte and
Hirst) created nanoparticle shells [12] by cooling a solution
of mesogen-functionalized quantum dots in 5CB from the
isotropic to nematic phase. The nanoparticles are driven to the
boundary of the vanishing isotropic phase and by a nucleating
inner nematic domain; they aggregate and solidify, leaving
behind a shell. As shown in Fig. 1, shells then migrate to align
in long chains due to the elastic interactions and adopt a more
elongated morphology over time.

In this paper, we develop a model of the elongation and
chaining process by minimizing the elastic free energy with
respect to both the spatially varying orientation of the liquid
crystal and the shape of the shell. We predict the LC orientation

*timothy.atherton@tufts.edu

and the shell shape as a function of the elastic constants, and
determine the orientation of the chains with respect to the bulk
nematic. Results are compared with experiment and earlier
models that neglect the shape of the particles [6,13] or use
perfectly ellipsoidal particles [14].

Shape-order optimization problems such as the shells in
this paper are challenging because few analytical results are
available and computational approaches must maintain the
quality of the numerical representation during optimization.
However, the ability to solve such problems may provide
insight into the origins of complex shapes observed in bio-
logical systems [15]. A related and widely studied problem is
to determine the shape of a tactoid, a droplet of nematic liquid
crystal in a host solvent. While a variety of tactoid shapes is
observed in lyotropic systems [16–18], including some that
are not simply connected [19,20] and others that respond to
temperature changes [21], thermotropic liquid crystals such
as 5CB generally form spherical droplets because the surface
tension between the LC and host tends to be much larger than
the cost of elastic deformations.

For the shells in [12] and considered here, significant
deformation occurs because the surface in question is not
the interface between the LC and a host fluid but rather the
surface of the thin shell that is surrounded inside and out by
the LC. Similar deformations—including elongation and cusp
formation— appear when lipid vesicles are embedded in a
nematic host [22–24], and also in shells of active nematic where
defects template the formation of long spindle structures that
appear and disappear in well-defined oscillations [25].

Migration of objects in a host nematic to form chains has
been studied previously with colloidal glass spheres [2,26,27].
These authors observe alignment angles of ∼30◦ for parti-
cles that produce a quadrupolar distortion field in the host
nematic, such as spheres with planar anchoring. While far-field

2470-0045/2018/97(3)/032701(7) 032701-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.97.032701&domain=pdf&date_stamp=2018-03-02
https://doi.org/10.1103/PhysRevE.97.032701


DEBENEDICTIS, ATHERTON, RODARTE, AND HIRST PHYSICAL REVIEW E 97, 032701 (2018)

(c)(b)

20µm
27°

FIG. 1. (a) Fluorescence microscopy images of quantum dot
microshells [12] show subtly elongated shells that form chains, here
at 27◦ to the alignment axis of the nematic host. (b) Schematic of the
computational domain. (c) Fully relaxed simulation with �σ = 20,
�κ = 0, and �W = 100, shaded to indicate the relative elastic energy
of each mesh face. Two copies of the computational domain are
depicted, one reflected about the z axis, to assist visualization.

theoretical approximations predict chaining angles between
45 and 49◦ [6,13,28,29], numerical evaluation of the two-
dimensional Frank free energy can successfully predict the
observed∼30◦ alignment [14]. Additional work has shown that
these colloidal interactions depend on shape [30] and size [31]
of the particles. Varying the aspect ratios of ellipsoidal particles
allows for realization of alignment angles from 30 to 7.5◦, and
demonstrates that particles with large aspect ratios (�5) avoid
aggregation [14]. Recently, chaining has also been observed
in ferromagnetic nanoparticles [32], although these chaining
angles are higher, ∼54◦, because of shell-shell interactions
other than elasticity.

Because no technique can simultaneously resolve the
molecular scale order of the liquid crystal and the micron-
sized shape of the tactoid, theoretical work requires a tradeoff
between size and resolution. Prior work includes Monte Carlo
methods that predict elongation of thermotropic LCs [33]
and formation of tetrahedral smectic vesicles [34], molecular
dynamics simulations that show elongation and spontaneous
chiral order in nanoscale droplets [35–38], bead-spring and
finite difference models that achieve tactoid elongation on fixed
meshes [24,39,40], and continuum theory [41,42] that assumes
a rigid idealized shape for the tactoid boundary. Comparing
spherical harmonic expansion and finite element methods to

predict vesicle shapes, Nguyen et al. found that finite elements
handle large deformations well [43]. Finite elements have also
been used to simulate defect fields in frustrated geometries [44]
or around colloidal spheres [45].

Recently, we created a finite element continuum theory
model to determine tactoid shape incorporating a dynamic
mesh control algorithm that ensures the numerical scheme
remains accurate and stable during shape minimization [46].

Unlike other finite element schemes used to study soft
inclusions in liquid crystals, our scheme incorporates adaptive
mesh refinement and coarsening as well as a moving mesh
with regularization to maintain the quality of the representation
during large shape changes. Here we will use this strategy to
model the shells discussed above.

II. MODEL

The system comprises a nanoparticle shell with nematic
liquid crystal on both the interior and exterior. The total free
energy,

F = Fs + Fn + Fa, (1)

includes three contributions: the elastic energy of deforming
the shell, the elastic energy of the nematic, and an anchoring
term that couples the nematic to the shell. The shells are com-
posed of nanoparticles stabilized by ligand-ligand interactions
with a short range attraction [12]. These interactions resist
changes in the area of the shell. Since the shells are only a few
nanoparticles thick, we a priori expect the bending energy to
be negligible, but include it in the energy to determine its effect
on the shape. The shell elastic contribution to (1) is therefore

Fs = σ

∫
∂S

dA + κ

∫
∂S

(H − H0)2dA

where σ is the surface tension, H is the mean curvature, and
H0 is a prescribed mean curvature. We stress that the surface
tension σ is intended to capture in an approximate sense both
the effect of the shell elasticity and the interfacial tension
between the shell and the host nematic. We combine these
effects because, to linear order, they have the same functional
form and neither has been very precisely characterized experi-
mentally for this system. Since these terms depend only on the
shell shape and not the director, they do not account for any
anisotropic interactions.

Because the shells first form at the interface of an approx-
imately spherical region at a critical radius R, we assume the
preferred mean curvature H0 is that of the initial sphere (1/R).
In practice, we find that H0 and κ have covariant effects on the
final shape, so this choice is somewhat arbitrary.

The elastic energy of the LC is the Frank energy [47],

Fn = 1

2

∫
S,S�

dV [K1(∇·n)2+K2(n·∇×n)2+K3|n×∇×n|2], (2)

where K1, K2, and K3 are the splay, twist, and bend elastic
constants, and the integral is taken over the entire simulation
volume, i.e., both the interior S and exterior S� of the shell.
The usual local constraint n · n = 1 is enforced to ensure the
director is a unit vector.
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Finally, the anchoring term,

Fa = W

2

∫
∂S

(n · ŝ)2dA, (3)

imposes planar-degenerate anchoring relative to the shell sur-
face normal ŝ with associated energy W . Because the shells are
ligand stabilized, we additionally impose a volume constraint:∫

S

dV = V0. (4)

We nondimensionalize the problem by introducing a length
scale �, which we shall later choose to be a typical shell radius,
changing variables x → �x ′ and dividing through by K1�/2.
Hence, the energy (1) becomes

F

K1�
= �σ

∫
∂S ′

dA′ + �κ

∫
∂S ′

(H ′ − H ′
0)2dA′

+2F ′
n/(K1�) + �W

∫
∂S ′

(n · ŝ)2dA′. (5)

Here we also introduced dimensionless parameters �σ = 2σ�
K1

,

�κ = 2κ
K1�

, and �W = W�
K1

, that represent the relative strengths
of the surface tension, mean squared curvature, and anchoring
energy relative to the elastic energy.

The functional (5) is discretized as follows. First, we exploit
the apparent cylindrical symmetry of the shells to work in cylin-
drical polar coordinates (ρ,φ,z). The computational domain,
shown in Fig. 1(b), is the (ρ,z) plane that must be swept out
in φ to recover the full three-dimensional (3D) solution and
is discretized into triangular elements. The initially spherical
shell surface is specified as a sequence of edges terminating
at top and bottom on the ρ = 0 line. The mean curvature H

at a given vertex on the shell is calculated using the discrete
method from [48]. Director values are stored on each vertex and
parametrized in cylindrical coordinates, n = (nρ,nφ,nz) with
appropriate derivatives in (2) reexpressed in these coordinates.
We emphasize that, in spite of the chosen polar coordinate
system, directors may freely rotate out of the (ρ,z) plane. In-
terpolation of the director between vertices is performed using
a special spherical weighted average [49] that maintains unit
length at all points. The Frank energy of each element is then
computed by Gaussian quadrature [50]. The anchoring energy
(3) is also computed along the shell by Gaussian quadrature.

Having constructed a finite element approximation to (5),
we minimize it using gradient descent with respect to both
director values and vertex positions from an initial state with
n = nz at all vertices. To maintain a well-behaved mesh, we
supplement the target functional with auxiliary functionals
as described in [46] that promote equiangular elements and
uniform energy density between adjacent elements. Addition-
ally, local refinement and coarsening is performed to capture
adequate detail in regions of high energy density. Figure 1(c)
shows a converged solution in which the local refinement
and energy density reveal the bipolar field adopted by the
nematic. The system is considered to have converged when
the time-step-normalized percent change to the energy is less
than 10−6 over two cycles of steps to relax both the vertex
location and director orientation. We explicitly test all solutions
for stability by computing the bordered Hessian matrix G

and testing that the number of constraints plus the number

of degrees of freedom for the system is larger than the negative
index of inertia plus the corank of G.

III. RESULTS

A. Shell shape

We ran a series of simulations varying the coefficients
�σ , �κ , and �W to determine how the final shape of the
shell depends on these parameters and hence identify the
space of accessible shell shapes. We use parameter values for
the 5CB host K1 = 6.3 pN, K2 = 4.3 pN, K3 = 9.6 pN [51].
The natural choice for the length scale � is the shell radius
as described earlier; however, the experimental results show
significant polydispersity. We therefore select the radius of a
typical shell and choose 2� = 6.3 μm. The explored ranges
of the �α correspond to σ = 1 to 1000 μJ/m2, κ = 0 to 10 aJ,
and W = 1 to 2000 μJ/m2.

One measure of the final shape is the aspect ratio a, which
is displayed in Fig. 2 as a function of surface tension for
three values of mean squared curvature strength. The high
aspect ratios obtained indicate that the mesh regularization
procedure described permits large physical deviations from
the initial shape. The inset of Fig. 2(c) shows a distribution of
experimental shell aspect ratios as a function of shell radius.
The plot reveals a weak negative trend as might be expected
because larger values of � effectively increase �σ , resulting in
aspect ratios closer to unity regardless of �W and �κ . However,
the scatter about this trend is large due to the stochastic nature
of the shell formation mechanism.

The simulations reproduce aspect ratios similar to those
observed experimentally (1.0 � a � 1.3) under three different
scenarios: first, systems dominated by mean squared curvature;
second, systems dominated by surface tension; and, third,
if the anchoring is very weak. Either of the first two cases
suggests, as we expect, that the interactions between ligands
of the nanoparticles are considerably stronger than interactions
between LC molecules. Indeed, the experimental shells remain
stable even when the surrounding nematic phase is heated to
isotropic above 34 ◦C and remain stable up to about 100 ◦C.
We address and dismiss the third possibility, systems with very
weak anchoring, later on using polarized optical microscopy.

Looking in more detail at the shells displayed in the insets
of Fig. 2 there are two distinct morphologies: Surface tension
dominated shells form a characteristic cusp at the poles;
conversely mean squared curvature dominated shells favor
smooth poles. The fluorescence microscopy image shown in
Fig. 1(a) shows evidence of cusps, and so we conclude that
the shell elasticity is dominated by surface tension. This is
justified by a classic result from shell elasticity: the ratio of
bend energy to stretching energy is of order (R/h)2 where R

is the shell radius and h is the shell thickness [52]. We estimate
the shell thickness to be 10 to 100 times smaller than the radius,
which suggests that �σ/�κ lies between 100 and 10 000.

Figure 2 therefore allows us to predict the shapes that would
result from changing the experimental system. For example,
use of a LC with larger elastic constants would decrease
�σ , resulting in more elongated shells. Similarly, decreasing
(increasing) the concentration of nanoparticles in the initial
system would result in smaller (larger) shells [12], which as
discussed above will elongate more (less). The shapes in our
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FIG. 2. (a–c) Aspect ratio for simulated shells as a function of surface tension for �κ = 0, 0.1, and 1.0. The shading of each data point tells
the value of �W as indicated by the labels in panel (a). The gray region denotes the 90th percentile of the range of aspect ratios observed in
the experimental data, with the darker line indicating the median of 1.07. The inset plot in panel (c) shows the experimental aspect ratios as a
function of average shell radius. Inset graphics visualize the shells for selected points with �W = 100.

system, and their behavior with respect to changing parameters,
resemble those of giant unilamellar vesicles with nematic in-
side and outside reported in [24,40]. However, our shells appear
to have a lower bending modulus, as they more readily form
cusps without volume loss. Our adaptive moving mesh suits
these shells well, as it resolves the shape and field at the cusps
of the shells more easily than a fixed finite difference mesh.

We now turn to the configuration of the liquid crystal
around and inside the shell. To facilitate a comparison with
experiment, an approximate crossed-polarizer microscope
image is generated from each configuration. A very simple
optical model is used, treating the LC as a single anisotropic
layer in the y = 0 plane between two crossed polarizers
above and below the LC. Thus, at a given point the intensity
I = cos2 φ sin2 φ, where φ is the angle of the director off of
the z axis. We emphasize that using a two-dimensional (2D)
slice is a crude approximation of a true crossed-polarizer
image. Moreover, the optical properties of the NP shell itself
are unknown, however motivated by the experimental images
we assume that no light passes through the pixels that lie
directly on the shell boundary at y = 0.

Results are displayed in Figs. 3(b)–3(d) that show simulated
microscope images with different anchoring strengths but
aspect ratios all within 2% of the median experimental aspect
ratio. In spite of the very simple optical model, the simulated
images reproduce the main features of the experimental image
shown in Fig. 3(a): dark bands indicate alignment with one
of the polarizers, while bright regions show distortions from
a uniform field to match the shell’s anchoring preference.
The similarity between the two strongest anchoring cases
and the experimental image suggests an anchoring parameter
of at least �W = 50. This corresponds to a value of W of
order 100 μJ/m2, consistent with characterizations of strong
anchoring [26,53]. That cases with strong anchoring require
�σ � 500 to achieve aspect ratios of 1.07 is also consistent
with the surface tension-dominated system.

B. Shell-shell interactions and chaining

After formation, the NP shells migrate over the course
of minutes to form chains aligned at some angle to the host
nematic [Fig. 1(a)]. We measure this angle to be between 25

and 35◦, which agrees well with the ∼30◦ angles reported by
previous studies using particles that produce a quadrupolar
distortion field [2,14,26,27,31]. Mondiot et al. measure a
series of angles decreasing below 30◦ for stiff ellipsoids
with increasing aspect ratios and predict these values with a
numerical model [14].

Because our shells are nonellipsoidal, we continue to
rely on simulation methods to predict chaining angles. Also,
our simulations allow shells to continuously seek out their
preferred alignment angles, as opposed to repeated numerical
calculations over a range of discrete values. Here, we will
adapt the shape evolution technique developed above to in-
clude two shells that migrate to locate an equilibrium state.
Because the shells composing these chains do not share axes
of symmetry, the cylindrical domain above cannot be used.

2µm(a) (b)

(c)

(d)

FIG. 3. (a) An experimental crossed-polarizer image of a shell
imaged close to the central plane. (b–d) Simulated crossed-polarizer
images for three shells with different anchoring strengths (�W = 10,
50, and 100) and aspect ratios equal to the median aspect ratio
observed experimentally. The director field superimposed over the
simulated images shows stronger anchoring conditions leading to
more curvature in the nematic field.
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FIG. 4. (a–c) Simulation snapshots of two shells with aspect
ratio = 1.18 relaxing from θ0 = 70◦ to θp = 30◦. The shells repel
initially, before finding their preferred alignment angle and attracting
one another. (d) Preferred alignment angle θp as a function of shell
aspect ratio for all of the simulated cases shown in Fig. 2. The black
series contains cases with strong anchoring (�W � 50) while the red
series contains cases with weaker anchoring (�W < 50). The gray
region denotes the range of aspect ratios and angles observed in the
experimental data, with the darker lines indicating the medians of 1.07
and 30◦.

Instead, we develop a two-dimensional model that includes
only the projections of the shells onto the y = 0 plane.

Minimization of elastic deformations in the host nematic
drives the alignment of the shells. However, the results in
Sec. III A indicate that these elastic forces are weak compared
to the surface tension and anchoring forces that define the
shapes of the shells and the LC orientation at the shell-nematic
interfaces. Therefore, we fix the shapes of the shells and
anchoring conditions, so only the elasticity term of (1) is
minimized with respect to the shape of the host nematic
domain.

To initialize the simulation, shell shapes and LC director
fields at the LC-shell interface are taken from final states of
the simulations described in Sec. III A. We place two such
shells, offset so that their centers form an angle θ0 with the z

axis, and take gradient descent steps as previously described.
As the anchoring of the LC to the shell is fixed, the interior
regions of the shells can be excluded from the computational
domain.

Results from a typical run are shown in Fig. 4. Figures 4(a)–
4(c) show selected snapshots from a simulation where the
starting alignment angle θ0 = 70◦. Initially, the shells repel
each other, before rotating around to find a preferable angle and

then collapsing together. This behavior of repulsion at angles
close to 0 or 90◦ and attraction at intermediate angles is well
documented experimentally [26,27].

Figure 4(d) displays the simulated chaining angle as a
function of the aspect ratio of the NP shells with strong
(black) and weak (red) anchoring. As aspect ratio increases,
the chaining angle is reduced. Noise in the plot is due to
variations in the anchoring condition and bend modulus from
the initial configuration. For shells with aspect ratios in the
range observed experimentally, we see preferred angles mostly
from 28 to 36◦, which is in very good agreement with the chains
seen experimentally. Furthermore, extrapolation of the strong
anchoring data in the limit of a → 1, i.e., spherical colloidal
particles with rigid anchoring, implies θp = 34◦, which agrees
well with the 30◦ reported by other authors.

Compared to Fig. 4(d), [14] shows a similar trend but finds
a steeper slope. This is expected because our sharply pointed
shells mimic the curvature of lower aspect ratio ellipsoids away
from the shell cusps. In fact, the shell bending modulus could
be tuned to select the desired regime of alignment angles for a
given shell aspect ratio.

The results presented agree with previous studies of anal-
ogous systems, but represent a significant relaxation of the
assumptions inherent in such models. Ideally, one would
minimize Eq. (5) in three dimensions with respect to arbitrary
variations of n, the shell shapes, and positions. Of the previous
studies on chaining of which we are aware, only one 3D
model [31] uses nonspherical particles (spherocylinders) of
fixed shape, while all other nonspherical shapes are simulated
with 2D models [14,39]. None of these existing studies (2D or
3D) consider shells of arbitrary shape, or allow the shape to
vary. Our approach is readily generalized to three dimensions,
a topic of future work.

IV. CONCLUSION

We present a continuum theory finite element model for
deformation and two body interactions of flexible shells in
a nematic liquid crystal. The model features dynamic mesh
remodeling utilizing auxiliary functionals to maintain accuracy
despite large deformations from the initial configuration. The
model is used to simulate experimentally observed elongation
and chaining of mesogen-functionalized nanoparticle shells
that form as LCs are quenched into the nematic phase. Because
the elastic behavior of these shells is unknown, the model
enables us to extract the contributions of shell elasticity,
nematic elasticity, and anchoring from the observed shapes.
By comparing simulations with experimental images, we
determine that surface tension and anchoring dominate the
system.

Extending the model to incorporate multiple shells, we pre-
dict the chaining angles attained by the shells, and determine
the dependence of chaining angle on shell aspect ratio, which
matches within reason previous results reported on a similar
system. Furthermore, our model predicts the chaining angle of
spherical particles with strong planar anchoring in a nematic
LC more accurately than far-field theoretical treatments.

Our simulations cover a wide range of parameter space, so
information from these results enables us to design systems
with particular shell sizes, shapes, and alignment angles. This
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ability to control and tune particle shape by a scalable self-
assembly method is valuable as part of designing hierarchical
processes. Furthermore, the simulation methodology presented
is computationally cheap and readily adapted, with little mod-
ification, to a wide variety of shape-order problems involving
soft materials.

We caution that the NP shells in a nematic background
presented in this paper differ considerably from nematic shells
in a double emulsion [54–56]. Possessing two nematic-water
interfaces with strong surface tension, these shells do not
tend to deform, and, owing to the isolated nematic region
composing each shell, more elaborate defect structures often
form. However, future model applications include nematic
shells, as well as other systems in which a nematic back-
ground surrounds a thin elastic shell such as a domain wall
or defect loop. Furthermore, the variable-domain nature of

our model makes it well suited to investigate phase tran-
sition and shear flow phenomena in liquid crystals. Lastly,
deformation results given by the model could be compared
with theoretical approximations that attempt to capture large
deformations [57].
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