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Abstract

Neonates seem to perceive two ends of a partly occluded rod
as two separate objects. However, by 4 months of age
infants often appear to perceive a similar stimulus as
comprised of a single unified object. Little is known about
the mechanisms of development underlying this change.
We constructed four connectionist models of how
perception of object unity might develop in human
infants, based on experience with a variety of visual cues
known to be important to infants' performance. After
exposure to a simulated visual environment, all the models
were able to perceive a partly occluded object as unified. A
rich perceptual environment and the presence of units for
internal  representations were found to improve
generalization of acquired unity knowledge. These resulis
lend plausibility to mechanistic accounts of human
perceptual development, based on learning the statistical
regularities inherent in the normal visual environment.

Introduction

Research exploring the development of object perception
often employs simple displays while recording young
infants’ responses to object properties. For example, the
display depicted in Figure 1 appears to adults to consist of a
center-occluded rod, moving back and forth behind a nearer
box. By 4 months of age, infants appear to perceive such a
partly occluded rod as consisting of a single unified object.
Earlier studies of the cues that support the perception of
object unity concluded that common motion of the rod parts
was the primary visual cue used by infants in determining
that the rod parts belonged to a common object (Kellman &
Spelke, 1983; Kellman, Spelke, & Short, 1986).

However, more recent studies have called this finding
into question by systematically varying the cues available in
occlusion displays. Three-dimensional depth cues were found
to be not necessary for the perception of unity, given that 4-
month-olds perceived object unity in a two-dimensional
(computer generated) rod-and-box display, in which two rod
parts moved above and below a stationary box, against a
textured background (Johnson & Niiiez, 1995). However, in
the absence of a textured background, responses of 4-month-
olds appeared to reflect ambiguity with respect to object
unity (Johnson & Aslin, 1996). The relatability of the two
rod segments (the fact that, if extended, they would meet
behind the screen) was also found to be important to infants’
perception of unity (Johnson & Aslin, 1996).

Currently, there are few accounts of how this
fundamental skill develops. Spelke (1990; Spelke & Van de
Walle, 1993) has suggested that young infants' object
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perception is tantamount to reasoning, in accordance with a
set of core principles. However, infants' performance on
object unity tasks appears to be strongly dependent on the
presence or absence of motion, edge alignment, accretion and
deletion of background texture, and other cues, implying that
low-level perceptual variables influence the development of
veridical object perception, rather than reasoning from core
principles (Johnson & Aslin, 1996; Kellman & Spelke,
1983). Evidence from younger infants also casts doubt on
accounts based on innate reasoning: Neonates appear to
perceive the rod stimulus depicted in Figure 1 as arising
from two disjoint objects (Slater et al., 1990). Two-month-
olds have been found to perceive object unity, but only with
additional perceptual support, relative to displays used with
older infants (Johnson, 1997; Johnson & Aslin, 1995).
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Figure 1. Typical occlusion stimulus

In this paper we explore whether the perception of object
unity can be learned by experience with objects and events in
early infancy. With this goal on mind, we developed a
connectionist model that learned to identify a unified partly
occluded stimulus from lower-level perceptual cues. The key
idea is that when direct perception is not available, a percept
of unity can be mediated by an appropriate combination of
other supporting cues.

Connectionist models are ideal for modeling learning and
development because they develop their own internal
representations in response to environmental pressures
(Elman et al., 1996). However, they are not simply tabula
rasa learning machines. The learning that occurs can be
strongly determined by innate constraints in the form of
specific learning mechanisms or pre-wired connections,
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The rest of this paper unfolds as follows. First, we will
describe the general model architecture, the input to the
model, and what drives learning. Several variations on
architecture and training set were tested, but in this paper we
report only on the best performing combination. Finally,
implications for the development of perception of object
unity in human infants will be discussed.

The Basic Architecture

Figure 2 illustrares the basic model architecture. The
model receives input via a simple retina. The retinal
information is processed by separate encapsulated modules.
Each module identifies the presence of one of the following
cues: (a) motion, (b) texture deletion and accretion, (c) t-
junctions, (d) co-motion (i.e., simultaneous motion) in the
upper and lower halves of the retina, (¢) common motion in
the upper and lower halves of the retina, (f) co-linearity of
objects in the upper and lower halves of the retina, (g) the
relatability of objects in the upper and lower halves of the
retina (i.e., whether the objects’ edges would meet if
extended behind the occluder).

Unity is also a primitive, like the other cues, in that the
network can immediately perceive it (via direct perception).
Indeed, when testing the perception of unity in human
infants, researchers assume that infants can distinguish
single rods from disjoint rod parts. In the absence of direct
perception (i.e., when the object(s) are partly occluded) the
perception of unity is mediated by its association with other
(directly perceivable) cues.

We do not wish to make the claim that a mediated route
is unique to the percept of unity. In the brain, there is likely
a highly complex and interactive network of connections
allowing any number of not-directly-perceivable cues to be
indirectly computed from the activation of other directly-
perceivable cues. However, in the interest of clarity, we have
considered only the one mediated route.
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Figure 2. Schema of network architecture. Each module
processes the retinal information separately and in parallel.

The bottom half of the network embodies innate
abilities. We assume that neonates are able to perceive the
components of each of these cues. Indirect evidence suggests
that this is the case (Slater, 1995). There is no learning in
any of these encapsulated modules. The top half of the
network embodies the learning that can occur through
interactions with the environment. The models discussed
below illustrate several ways in which architectural and
environmental constraints can be combined to guide the
learning of object unity.
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Input to the Model
The network “sees” a series of images from the world
and responds with whether a perceived object is unified or
not. The response is coded across two output units: (+1, -1)
signifies that the object is unified; (-1, +1) signifies that the
object is NOT unified. (+1, +1) or (-1, -1) are interpreted as
an ambiguous response.
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Figure 3. Complete set of 26 possible occlusion events. The
cues present in the display are listed in the corresponding
position of the table.

The input retina consists of a 196-bit vector mapping all
the cells on a 14x14-unit grid. In the middle of the grid is a
4x4-unit occluder. All units corresponding to the position of
the screen are given a value of 1. When background texture
is required, all other units on the retina are given a value of
0.0 or 0.2, depending on the texture pattern. Units with
values of 0.2 correspond to position on which there is a
texture element (e.g., a dot). Units corresponding to the
position of an object (i.e., rod or occluder) are given a value
of 1.0. Figure 3 shows a snapshot taken from the
“ambiguous™ portion of all 26 events in the environment.

An event is made up of a series of snapshots like this
one in which the rod moves progressively across the retina.
All events begin with the object moving onto the retina
from the side. We will call this the unambiguous portion of
the event. The object then moves across the retina, passing
behind the area occupied by the occluding screen. We will
call this the ambiguous portion of the event. Finally, the



object reappears on the other side of the screen and continues
off the retina.

All events except 5 and 6 involve motion. The presence
of texture, t-junctions, relatability and co-linearity are varied
systematically. All events with motion involve motion in
the upper and lower half of the retina (co-motion) but only
half of those involve common motion. This leads to a total
of 26 possible events.

The Perceptual Modules

These modules are not intended to model closely human
neurophysiology. Although the modules embody general
neural computational principles of summation, excitation,
inhibition and local computation, they are also tailored to
the specific nature of our networks’ visual experience. Thus,
they are not general models of the human visual system.
However, they do embody some of the basic principles
believed to underlie the computation of various visual cues
(see Spillman & Werner, 1990 for a review). In essence,
they are neurally plausible information processing modules.

All the modules compute the presence or absence of a
relevant cue from the retinal image. The principles on which
the modules function are as follows:

e Motion detection module

Takes the current retinal image and compares it to the
previous retinal image. If there is a difference between the
images, then there has been motion. If not, then there has
not been any motion.

o Texture module

Counts the number of texture dots in the input image
and compares it to the number of dots in the previous
image. If there is a difference in the number of dots in the
two images, then there has been deletion and/or accretion of
texture elements.

o T-junction module

Focuses on the area immediately above and below the
edge of the occluding screen and computes whether there is a
gap everywhere along the edge.

¢ Co-motion module
Splits the retina into two halves and computes whether
there is motion both in the upper half and in the lower half.

o Common-motion module

Splits the retina into two halves and computes whether
there is the same direction of motion in the upper and the
lower halves.

e Co-linearity module

Computes the tangent of the angle that the object’s axis
of principle length makes with the horizontal for both the
upper and lower halves of the retina and compares these two.

e Relatability module

Computes whether the extension of the axis of principle
length for objects in the upper and lower halves of the retina
will intersect.
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Although alignment has been manipulated as a cue in
some infant studies, note that two objects are aligned if and
only if they are co-linear and relatable. Thus, co-linearity and
relatability are more primitive cues than alignment in the
sense that the later cannot be computed without computing
the former (at least implicitly), whereas the converse is not
true: Both co-linearity and relatability can be computed
independently of alignment.

As an example, the motion detection module is illustrated
in Figure 4. This module takes in the retinal input and
returns 1 if there is motion on the retina or 0 if there is no
motion on the retina. The basic principle of the module is to
take the current retinal image and compare it to the previous
retinal image. If there is a difference between the images,
then there has been motion. If not, then there has not been

any motion.
O ouput

000 ** 00O vitinpu
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time delay link
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Figure 4. Schema of motion detection module

The Input is copied to a memory buffer (Prev.Input). A
layer of hidden units (Diff.Input) computes the unit by unit
difference between the current input and the previous input.
The output unit then sums the activity across the hidden
layer and returns 1 if there are any non-zero values or 0 if
there are no non-zero values.

What drives learning?

Learning is partly driven by a feedback signal from the
environment and partly driven by memory. When the object
is visible, the environment provides immediate feedback
about the unity of the object via the direct perception link.
When the object is not completely visible, the environment
cannot provide feedback about the unity of the object. To
overcome this problem, the model has a short-term, rapidly
decaying memory that encodes unity information obtained
from direct perception (i.e., a kind of visual memory).
Immediately following occlusion there is a clear trace of the
state of the rod before occlusion. After a short delay, that
information disappears and can no longer be wused for
learning.

This relation between direct perception and memory is
embodied in the target signal used for training the weights:

T; (0 = E;(1) + L.T(t-1) (1)

with -1<Tj<+1,0<p< 1, and E; = 0.0 when the rod
is occluded.



E; is the unity signal obtained from the environment by
direct perception for output i, and M is a parameter
controlling the depth of memory. When E; = 0.0 (i.e., there
is no direct percept of unity), the target (T, (1) is derived
entirely from the memory component W.T;(t-1), the second
term in the right-hand side of the equation.

An interesting component of the model’s performance is
the mediated route’s ability to predict whether a test event
corresponds to a single unified object or to two disjoint
objects. Network performance can be assessed either when
direct perception is possible, or when it is not possible (i.e.,
onevents 1, 2, 5, 6, 7, and 8 in Figure 3).

When direct perception is not possible, the model's
prediction of unity (via the mediated route) can be compared
to the modeler’s knowledge of whether the test event arises
from a unified object or not. When direct perception is
possible, the model's prediction of unity (via the mediated
route) can be compared to the signal coming from direct
perception.

The degree to which the model's prediction is correct
when direct perception is NOT possible reflects how well
the model is able to respond to incomplete information.
This can then be compared to infants’ performance when
faced with the same ambiguous stimuli. The degree to which
the prediction is correct when direct perception IS possible
reflects how well the network has extracted general
information about objects that applies across its entire
learning environment.

Model Performance

Four combinations of architecture and environment were
explored. The models either had no hidden units between the
output of the modules and the unity response units (see
Figure 2), or they had three hidden units between the output
of the modules and the unity response units. (The addition of
hidden units provides the model with the power to develop
internal representations of cue combinations and to represent
to non-linearly separable cue relations, such as the
exclusive-or, of a set of cues.) In addition, the models were
trained either with a basic but ecologically plausible set of
events (events 1, 2, 3, and 4), or were trained with an
enriched set of events that sampled more evenly the space of
possible object events (events 1, 2, and 17 though 22).

In the interest of brevity we only report the models’
performance in the best conditions (complete results will be
reported in a future paper). For the moment, it suffices to
note that the presence of hidden units and a richly varying
environment led to the best generalization performance.

Three hidden units were added between the perception
modules and the output response units. The training
environment was enriched to capture the fact that there are
far more examples of disjoint objects in the real world than
unified but occluded objects. Weights were adjusted by
applying the backpropagation algorithm with learning rate =
0.5, momentum = 0.03, logistic activation functions, and
memory (1) = 0.4. The results are based on 10 replications
with different random initial weights.

The networks very quickly learned (by 10 epochs) to
perceive one or two objects during the unambiguous portion
of the events. The unambiguous portion of the events
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corresponds to the time when the rod(s) were moving across
the retina and had not yet reached a position of partial
occlusion (one rod part above and the other below the
occluder). That is, the rod or rod parts were directly visible.

Figure 5 shows the networks’ performance when tested
with the ambiguous portion of events 1, 3, 5, and 7, events
used to test infants (see Johnson, 1997). Note that only
event | was part of the original training set.

Veridical perception of a single unified object (event 1)
was apparently rather difficult to learn (see Figure 5, top
left). Over the first 4000 epochs, the networks perceived
event | as arising from two disjoint objects. Then, from
5000 to BOOO epochs the majority of networks gradually
came to perceive the event as arising from a single object. In
contrast, the networks very quickly learned (by 100 epochs)
to perceive two objects when the event was actually
produced by two objects (event 3; see Figure 5, top right).

There was a different developmental profile in the
absence of motion (event 5; see Figure 5, bottom left). Up
to epoch 500, the networks perceived this event as arising
from two disjoint objects. From epoch 1000 onwards, the
networks consistently perceived the event as arising from a
single unified object. When the object segments were
misaligned but relatable (event 7; see Figure 5, bottom
right), the pattern of development was rather different.
Throughout development, the networks tended to perceive
this event as arising from disjoint objects. At different
times, only up to 20% of networks perceived a unified
object, whereas the rest perceived two disjoint objects.

Network performance on these four events matches
human performance very well (see Johnson, 1997 for
review). Initially, the single object depicted in Figure 1
(event 1) was perceived as two disjoint objects (similar to
human neonates). There was then a transition period in
which either of two responses resulted. After more extensive
training, the display was perceived as arising from a single
object (similar to older infants and adults). Moreover, human
neonates, like these networks, have been found to perceive
separate rod parts undergoing common motion (event 3) as
consisting of separate objects, after little exposure. Finally,
the networks tended to perceive objects with misaligned
edges as disjoint (event 7), similar to infants and adults.

The networks were effective in generalizing their
“knowledge” to the complete set of test events. By the end
of training, they responded correctly to 23 of the 26 test
events when tested with the ambiguous portion of the event.
That 1s, the mediated route made incorrect predictions on 3
events (events 22, 23 and 24). The response to events 23 and
24 were altogether incorrect, whereas half the networks
provided the correct response to event 22 and half provided
an incorrect response. Moreover, the networks performed
very well on the unambiguous, visible segments of the
trajectories. The mediated route produced the correct percept
on 24 of the 26 events. In particular, the networks failed to
respond appropriately on events 20 and 22. In the former
case, four networks correctly predicted two objects while six
predicted a single object, and in the latter case six networks
correctly predicted two objects while four predicted a single
object.
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Figure 5. Number of network showing a correct response when tested with the ambiguous segment of events 1, 3, 5, and 7.

An examination of the internal representations developed
across the hidden units allows us to explain these responses
(Table 1). All three hidden units are used to encode the cue
information, but the units have quite different effects on the
output responses. Hidden unit 2 is strongly associated with
the percept of one object whereas hidden units 1 and 3 are
strongly associated with the percept of two objects. Hidden
unit 3 has about twice as much impact as hidden unit 1.

The presence of T-junctions is strongly associated with
hidden unit 2, and thereby with the percept of unity. Along
this dimension, it is the dominant feature. Relatability and
common motion are also positively associated with hidden
unit 2 (and therefore to the percept of unity), but to a much
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weaker extent,

Hidden unit 3 is positively associated with all the cues.
This means that the unit will almost always be active,
whatever the percept. However, because the impact of hidden
unit 3 on the output response is less than that of hidden unit
2 (e.g., -2.797 vs. 3.183), the activation of hidden unit 1
will determine which way the network responds. If Hidden
unit 1 is active, then the total activation sent to the outputs
will produce a “two object” response (activation of the not-
unified output node) whereas if the Hidden unit 1 is not
active, the total activation sent to the outputs will produce a
“one object” response (activation of the unified output node).



Table 1. Connection weights in a representative network

Relat- Co- Common- Co- T- Texture Motion Bias unit

ability linearity motion motion junction deletion
Hidden -0.174 -1.178 -0.659 0.749 -0.237 -0.477 1.513 -0.266
unit 1
Hidden 0.431 -0.861 0.555 -1.990 2.358 -0918 -1.559 3.991
unit 2
Hidden 0.825 2.058 1.741 0.208 2.491 0.946 1.010 -2.007
unit 3

Hidden unit 1 Hidden unit 2 Hidden unit 3 Bias

unified node -1.601 3.183 -2.797 -0.101
NOT unified node 1.600 -3,183 2.769 0.101

Hidden unit 1 is positively associated with Motion and
Co-motion. Thus if both of these are present, the unit will
tend to fire and the response will tend toward the signalling
of two objects. If either Motion or Co-motion is absent,
hidden unit 1 will be weakened in activity and the network’s
response will tend toward two objects,

Discussion

Qutcomes of these models suggest that perception of
object unity can be learned rapidly through interaction with
the environment. The networks respond to the statistical
regularities in the environment: No prior object
representations are required.

The models can be used to predict the type of percept that
will arise from each of the conditions above. Rather than
appealing to ‘“core principles” that guide inferences about
object unity, the resolution of ambiguous stimuli relies on
the previous association of lower-level cues with direct
percepts of unity. That is, a strong prediction of the model
is that experience viewing unoccluded objects that are
progressively occluded and unoccluded lies at the heart of
learning to resolve ambiguous stimuli.

In these models, the use of backpropagation is not
necessarily crucial; in principle, any algorithm that permits
multi-layer learning would suffice (e.g., O'Reilly, 1998).
However, there is a need for hidden units (the power for
internal re-representation) for proper generalization of
knowledge.

Finally, we believe that connectionist models are an
effective means of investigating outstanding questions in
developmental psychology, in this case by providing a
mechanistic account of how learning to perceive object unity
could occur.
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