
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Delta Voronoi Smoothed Particle Hydrodynamics, ẟ-VSPH

Permalink
https://escholarship.org/uc/item/2844728d

Author
Fernandez Gutierrez, David

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2844728d
https://escholarship.org
http://www.cdlib.org/

Delta Voronoi Smoothed Particle Hydrodynamics, δ-VSPH

By

David Fernández Gutiérrez

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Engineering - Mechanical Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Tarek. I. Zohdi, Chair
Professor Ömer Savaş

Professor Mohammad-Reza Alam
Professor Khalid M. Mosalam

Spring 2018

Delta Voronoi Smoothed Particle Hydrodynamics, δ-VSPH

Copyright c© 2018

by

David Fernández Gutiérrez,

UC Berkeley, Mechanical Engineering Department.

All rights reserved.

Abstract

Delta Voronoi Smoothed Particle Hydrodynamics, δ-VSPH

by

David Fernández Gutiérrez

Doctor of Philosophy in Mechanical Engineering

University of California, Berkeley

Professor Tarek I. Zohdi, Chair

A Lagrangian scheme that combines Voronoi diagrams with smoothed particle hydrodynamics
(SPH) for incompressible flows has been developed. Within the Voronoi tessellation, the differen-
tial operators are discretized by adding contributions from neighboring cells following the Voronoi
particle hydrodynamics (VPH) method, (Serrano and Español, Phys. Rev. E, 64, 2001; Hess and
Springel, Month. Not. of the Royal Astronomical Society, 406(4), 2010). This approach is struc-
turally similar to the one used by SPH, although the neighbor set is larger in the latter. Due to this
similitude, and the feasibility to approximate the fluid as weakly compressible in both SPH and
VPH, coupling the two methods is a natural choice explored in detail in this thesis.

The Voronoi cells allow enforcing the boundary conditions directly on the portion of their
perimeter in contact with the boundary. Two sub-domains are then defined based on the prox-
imity to the boundaries. The VPH formulation is used in those particles close to solid boundaries,
where SPH consistency and boundary conditions implementation become problematic. The SPH
formulation is limited to the region such that no boundary falls within the kernel domain. Some
overlapping of both sub-domains is allowed to provide a buffer zone to progressively transition
from one method to the other. In this zone, fields are calculated using both methods and then
coupled by a weighting function that depends on the distance to the closest boundary. As particles
move, they can cross the buffer zone and change sub-domains.

The unbounded nature of Voronoi tessellations requires further treatment close to boundaries
and free-surfaces to ensure that the Voronoi cells associated with the particles do not extend be-
yond the fluid domain. Boundaries are discretized as segments, or D-dimensional triangles in
higher dimensions, and virtual particles are added mirroring the particles next to the boundaries.
Since the boundary becomes a symmetry plane, no Voronoi cell can cross it. However, Voronoi
cells resulting from the tessellation are always convex, so an additional trimming algorithm has
been implemented to deal with concave boundaries. In the case of free-surfaces, a new detection
algorithm determines if a particle is next to the free-surface and estimates the free-surface nor-
mal direction, which is used to bound the corresponding Voronoi cell. Periodic and inlet/outlet
boundary conditions are also included in the coupled scheme.

The δ-SPH correction proposed by Cercos-Pita et al., Applied Math. Modelling, 40(19), 2016,
is extended to the VPH formulation. In addition, the density field is reinitialized every certain
number of time steps following the scheme proposed by Colagrossi and Landrini, J. Comp. Phys,

1

191, 2003. A shifting algorithm inspired by Lloyd, IEEE Trans. of Inform. Theory, 28(2), 1982, is
also included to avoid excessive deformation of the Voronoi cells.

The code key subroutines are written in C++, and the main time-stepping program is imple-
mented in Matlab. A leap-frog numerical scheme is used to iterate forward in time. The program
architecture is summarized graphically, with a detailed analysis of the neighbor boundaries and par-
ticles search algorithm included afterwards. A linear damping term is used during the initialization
process to mitigate possible inconsistencies from the user-defined initial conditions. Finally, the
energy balance of the coupled scheme is discussed.

The method presented in this thesis is suitable for free-surface flows with moving solid bound-
aries within the fluid domain. However, prior to extending it to such complicate problems, the
accuracy of the coupled scheme is discussed by means of a set of well-known verification bench-
marks.

Keywords: CFD – SPH – Voronoi – Coupling

2

To my wife, Rachael, and to my mother, Sara,
you are always a beacon that helps me navigate through this life

i

ii

Contents

List of Figures vii
List of Tables xi
Acknowledgements xiii
Nomenclature xv
1 Introduction 1

1.1 Overview . 1
1.2 Motivation . 2
1.3 Literature review . 4

1.3.1 Particle methods . 4
1.3.2 Smoothed particle hydrodynamics . 5
1.3.3 Coupling . 8

1.4 Major contributions . 9
1.5 Thesis structure . 11

2 Continuum model 13
2.1 Governing equations . 13
2.2 Weakly compressible equation of state . 15
2.3 Speed of sound, c . 17

3 Method 19
3.1 SPH . 19

3.1.1 Fundamentals . 19
3.1.2 Kernel . 22
3.1.3 Diffusive terms (δ-SPH correction) . 24
3.1.4 δ-SPH scheme used . 26

3.2 VPH scheme . 28
3.2.1 General . 28
3.2.2 Artificial viscosity . 31
3.2.3 Diffusive terms . 33
3.2.4 δ-VPH scheme used . 33

3.3 Coupling . 35
3.3.1 SPH & VPH Sub-domains . 35
3.3.2 Fields in the buffer zone . 36
3.3.3 Length of the buffer zone . 38

3.4 Boundary conditions (BCs) . 40
3.4.1 Geometric definition requirements . 40
3.4.2 Convex solid boundaries . 40
3.4.3 Concave solid boundaries . 43
3.4.4 Free-surface . 48

iii

Contents

3.4.5 Voronoi free-surface particle close a solid boundary 51
3.4.6 Periodic . 51
3.4.7 Inlets/Outlets . 52

3.5 Density re-initialization algorithm . 54
3.6 Shifting algorithm . 55

4 Implementation 57
4.1 Overview . 57
4.2 Code . 59
4.3 Neighbor boundaries and particles searching algorithm 67

4.3.1 Grid . 67
4.3.2 Boundaries . 68
4.3.3 Connectivity list . 69

4.4 Initialization . 71
4.5 Time-stepping . 73

4.5.1 Time iteration scheme: leap frog . 73
4.5.2 Linear damping . 74
4.5.3 Time step increment: CFL condition . 74

5 Energy Balance 77
5.1 Continuous level . 77
5.2 Elastic energy . 80
5.3 Discrete level . 80
5.4 Energy balance during simulations . 84

6 Verification 87
6.1 Hydrostatic equilibrium: convex boundaries . 87
6.2 Hydrostatic equilibrium: concave boundaries . 89
6.3 Sound wave . 91
6.4 2D Steady Couette flow . 93
6.5 2D Impulsively-started Couette flow . 95
6.6 Lamb–Oseen vortex . 97
6.7 Two symmetric Lamb–Oseen vortices . 99
6.8 Impinging jet . 101

7 Concluding remarks and Future work 103
7.1 Conclusions . 103
7.2 Recommendations for future work . 104
7.3 Associated publications . 105

References 107
A Artificial vs. Real viscosity 121

A.1 General . 121
A.2 kα = 3kβ proof . 124
A.3 kk and kβ . 128

iv

Contents

B VPH gradient approximation 129
C Numerical damping in VPH 133

C.1 No damping case . 133
C.2 Damping included . 134
C.3 Order of magnitude of numerical damping . 137

D Geometry 139
D.1 Volume of a D-dimensional triangular element . 139
D.2 Area . 140
D.3 Face unit normal vector . 140
D.4 Orthogonal distance from a point to a face plane 141
D.5 Minimum distance from a point to a face . 141
D.6 Point inside a generalized triangular element . 142
D.7 Concave/Convex neighbor boundary faces . 143
D.8 Search threshold to detect convex and concave boundaries 144
D.9 Intersection line and face . 145
D.10 Point within the orthogonal projection of boundary face 145

v

Contents

vi

List of Figures

1.1 CFD simulations . 1
1.2 Portion of a 2D Voronoi diagram, with each cell identified with a different color . . 2
1.3 Overlapping and voids in SPH volume discretization, Rsmoothing ≈ 4∆xparticle. 3
1.4 Voronoi diagram with the same particle distribution as in Fig. 1.3(b). Continuous

lines delimit Voronoi cells, while dotted lines indicate the SPH particle radius . . . 4
1.5 Simulation results for cases with known analytic solutions 10

3.1 C2 Wendland (WC2) kernel function used . 24
3.2 WC2 W(r − r∗, h) in 2D centered at r . 24
3.3 Voronoi tessellation . 28
3.4 Section of a Voronoi diagram, for a set of particles marked with asterisks, showing

the vectors eba and cab. 30
3.5 Sketch with definition of Voronoi, SPH and buffer zones. 35
3.6 Coupling weight function ω as a function of its relative position across the buffer, q 37
3.7 Upper bound of weight differences between neighbor particles. 39
3.8 Voronoi diagrams in the presence of convex boundaries 40
3.9 Section of a Voronoi diagram close to a solid boundary. 41
3.10 Concave cell with boundary virtual nodes . 43
3.11 Voronoi diagram trimmed with concave boundary 44
3.12 Possible scenarios of a fluid particle next to a concave boundary 44
3.13 Zones within the cell into which we can categorize the position of the particle,

based on da and da⊥B . 45
3.14 Representative point in concave faces . 46
3.15 Convex cell zones for the generalized concave categories 48
3.16 Free-surfaces and Voronoi particles . 49
3.17 Voronoi free surface particle detection and edge definition 50
3.18 Voronoi free surface particle approaching a solid boundary 51
3.19 Periodic particles . 52
3.20 Inlet/Outlet particles generation. Particle a only detects one neighbor b and places

3 virtual points. 2 of them are beyond the I/O boundary and become I/O particles . 53

4.1 Program main structure . 59
4.2 Initialization process . 60
4.3 Setting initial conditions for new simulations. See Sec. 4.4 for more details 61
4.4 Computing particle state related variables. See Sec. 4.3 for a detailed description

of how these variables are used for identifying neighbor boundaries and particles . 62
4.5 Time-stepping scheme used: Leap Frog. See Sec. 4.5 for its detailed description . . 63
4.6 Time rates computation . 64
4.7 SPH time rates contribution . 65
4.8 VPH time rates contribution . 66
4.9 Grid (2D) . 68

vii

List of Figures

4.10 Grid cells linked to boundaries . 69
4.11 Example of a connectivity list providing the particle indexes in each cell (1-based

numbering to identify the position in the array) 70
4.12 Kinetic energy evolution with and without linear damping term 72

5.1 Evolution of energy components in the hydrostatic equilibrium simulation with a
trapezoidal configuration (Sec. 6.1) and no linear damping 84

6.1 Left: Zones in a hydrostatic equilibrium simulation. Right: pressure field at same
time. 88

6.2 Left: Kinetic energy evolution with and without linear damping term; Right: Par-
ticles’s pressure distribution . 88

6.3 Kinetic energy evolution using linear damping under different initial density fields . 88
6.4 Left: Zones in a hydrostatic equilibrium simulation with the complex geometry

from Colagrossi et al. (2012). Right: Detail of the Voronoi cell shapes next to the
concave vertex. 89

6.5 Hydrostatic equilibrium with concave boundaries: Pressure field 90
6.6 Hydrostatic equilibrium with concave boundaries: Particles pressure distribution . . 90
6.7 Hydrostatic equilibrium with concave boundaries: Kinetic energy evolution 90
6.8 2D sound wave propagation simulation. Pressure profiles at different time steps . . 92
6.9 Sound wave energy decay . 92
6.10 2D steady Couette flow . 93
6.11 Detail of one Voronoi cell at different time steps with the stationary Couette flow. . 94
6.12 Impulsive starting Couette. Left: Fluid zones; Right: velocity profiles at various τ . 95
6.13 Starting Couette velocity profile at τ = 0.1 under Re = 10 96
6.14 Fluid zones in the Lamb–Oseen vortex simulation 97
6.15 Left: Lamb–Oseen vortex velocity fields in a circular domain at t = 1 s; Right:

Evolution of max ‖u‖ for the same configuration 98
6.16 Left: Lamb–Oseen vortex velocity fields in a square domain at t = 1 s; Right:

Evolution of max ‖u‖ for the same configuration 98
6.17 Left: Initial fluid zones in the simulation with two symmetric Lamb–Oseen vor-

tices. Right: Initial velocity field for the same configuration, with velocity stream-
lines superimposed . 99

6.18 Particle configuration at different time steps with the two symmetric Lamb–Oseen
vortices. Particles colored with their initial vertical position 100

6.19 Particle distribution during the impinging jet simulation (red squares, Voronoi; ma-
genta diamonds, buffer; no SPH particles exist since the extension of the computa-
tional domain is covered entirely by the buffer) 101

6.20 Particle configuration at different time steps for the impinging jet simulation. Par-
ticles colored with their velocity magnitude. 102

B.1 Voronoi vector nomenclature . 130

C.1 Schematic of a simple two-particle configuration 133

viii

List of Figures

D.1 Voronoi cell volume . 140
D.2 Convex vs. concave adjacent faces in 2D . 144
D.3 Boundaries search threshold to detect concave faces 145

ix

List of Figures

x

List of Tables

6.1 Simulation parameters: Hydrostatic equilibrium (convex boundaries) 87
6.2 Simulation parameters: Hydrostatic equilibrium (concave boundaries) 89
6.3 Simulation parameters: Sound wave . 91
6.4 Simulation parameters: Steady Couette flow . 93
6.5 Simulation parameters: Impulsive starting Couette flow 95
6.6 Simulation parameters: Lamb–Oseen vortex . 97
6.7 Simulation parameters: Two symmetric Lamb–Oseen vortices 99
6.8 Simulation parameters: Impinging jet . 101

xi

List of Tables

xii

Acknowledgements

It feels as yesterday when I was at the Towing Tank of the Technical University of Madrid and
heard for the first time the word “SPH”. Many twists after, I finally could learn and contribute to
this field. It has been a privilege to be able to cross it out of my bucket list.

I would like first to thank my advisor, Prof. Tarek I. Zohdi, for giving me a home when I
needed it and the freedom to unleash my curiosity. I truly appreciate your guidance and support
to finish this thesis. I would like also to thank the members of my committee, Prof. Ömer Savaş,
Prof. Mohammad-Reza Alam, and Prof. Khalid M. Mosalam, for all your comments to help me
improve my work. I owe a special recognition to Prof. Antonio Souto Iglesias, you have always
been an invaluable source of inspiration and knowledge.

Nothing of what I have accomplished could have been possible without the continuous example,
encouragement, and support of my family, I cannot thank you enough. There is one person here
that shines with a special light, Rachael, you are the heart and soul of this PhD.

My gratitude also to all the instructors that chose me as a Graduate Student Instructor for ME163
and ME107, it has been an honor to learn from you. I would like to extend my acknowledgement
to the Rafael del Pino Foundation and the Graduate Division for the grants received to support my
studies at UC Berkeley.

Last but not least, I would like to acknowledge all the students, professors, and friends who
have made me a better engineer and, above all, a better person. A special place in my heart is
reserved to my partner in crime, Abdulrahman Jbaily, and to my fellow grad students with whom I
have shared this battleground that we call Berkeley: Claire, Lu, Spencer... the list will be too long
to name everybody. I must thank as well all my Spanish friends for bearing with me despite the
distance, you always make me feel at home! Together all, we will keep making the world smaller.
Those that know me are well aware that soccer runs through my veins, so I couldn’t finish without
thanking all my MEAT soccer buddies for letting me play in the fields.

Thank you everybody for making these past years unforgettable, you know all who you are.

”Make everything as simple as possible, but not simpler”
- Albert Einstein

”The particle method is not only an approximation of the continuum fluid equations, but also
gives the rigorous equations for a particle system which approximates the molecular system

underlying, and more fundamental than the continuum equations”
- Joe J. Monaghan (paraphrasing J. von Neumann)

xiii

Acknowledgements

xiv

Nomenclature

Voronoi diagram components
cell Region assigned to each seed such that it represents the portion of the domain

closer to the linked seed than to any other
edge Connection between two vertices of a face
face D − 1 simplex of a D-dimensional tessellation, representing the contact zone

between two neighboring seeds
perimeter Set of faces that enclose a cell
seeds Points (particles or virtual points) that originate the tessellation
tessellation Set of cells that represent a complete partition of the D-dimensional space
vertex Node of the tessellation common to multiple faces

Acronyms
ALE Arbritray Lagrangian–Eulerian
AV Artificial Viscosity
BC Boundary condition
BEM Boundary Element methods
BVP Boundary virtual point
CFD Computational Fluid Dynamics
DPD Dissipative Particle Dynamics
DSMC Direct Simulation Monte Carlo
FS Free-surface
FSVP Free-surface virtual point
GPU Graphics processing unit
HPC High-performance computing
I/O Inlet/Outlet
LBM Lattice Boltzmann methods
LES Large eddy simulations
LHS Left hand side of an equation
LS Level Set
MD Molecular dynamics
MLS Moving least squares
MPM Material point methods
NS Navier–Stokes
ODE Ordinary differential equation
PDE Partial differential equation
PIC Particle-In-Cell
RHS Right hand side of an equation

xv

Nomenclature

SPH Smoothed Particle Hydrodynamics
VM Vortex methods
VOF Volume of Fluid
VPH Voronoi Particle Hydrodynamics
WC2 Second-order continuous Wendland kernel

Variables (Roman characters)
0 Zero vector
1 Arbitrary constant unit vector
A Aspect ratio
A Area
a Arbitrary fluid particle
b Neighboring particles of a given particle a
c Speed of the sound
cab vector going from the midpoint between particles a and b to the centroid of their asso-

ciated Voronoi cell face
CB Set of boundaries linked to each grid cell
CF Set of Voronoi faces linked to each Voronoi cell
CFL Courant–Friedrichs–Lewy coefficient
CLP Particle indexes arranged sequentially by the grid cell that they belong to
CLC Position of the first particle in CLP for each grid cell
D Rate of deformation tensor
D Number of dimensions of the fluid spatial domain
d Distance to the closest boundary
dmax Distance from a particle to its furthest Voronoi cell face
dg Distance from a particle to the centroid of its Voronoi cell
E Energy
EC Elastic energy
EI Internal energy
EK Kinetic energy
EM Mechanical energy
Enum Numerical dissipated energy
EP Potential energy
ET Thermal energy
Etot Total energy
e Unit vector
e Internal energy per unit mass
F Force
F Normalized kernel derivative

xvi

Nomenclature

f Body forces per unit mass, or arbitrary vector field
f Arbitrary scalar field
FP Set of particles linked to each Voronoi face
FV Set of Voronoi nodes linked to each Voronoi face
Fr Froude number
g Gravity acceleration vector
g Gravity acceleration magnitude
h Smoothing length
I Identity tensor
Kcc Set local relative indexes of neigboring grid cells
kc Local grid cell index vector (gathers the local indexes in each dimension)
kc Global grid cell index
∆kcc Relative global indexes of neighboring grid cells
kk Kernel normalization constant (depends on D)
l Length
M Normalized kernel function
m Mass
Ma Mach number
N, Np Number of particles
Nc Vector containing the number of grid cells in each dimension
Nc Number of grid cells
n Normal vector
n Time step index
∆nρ Density re-initialization frequency
p Pressure
O Zero tensor
O Order of magnitude
P Power
Pnum Numerical dissipation rate
PV Viscous dissipation rate
Q̇ Rate of heat added to a system
Q̇ volumetric heat deposition
q heat flux vector
q Normalized distance to a particle (q = ‖r − ra‖/h), or normalized location across the

buffer (q = (d − κhmax)/lbuffer)
Re Reynolds number
r Position vector
S Surface vector, oriented normal to it and with magnitude S
S Surface magnitude

xvii

Nomenclature

t Time
∆t Time step increment
ts Initial stabilization time
u Fluid velocity vector
u Velocity magnitude
usig Inter-particle signal speed
V Volume
Ẇ Rate of work done by a system
W Kernel function
X Set of point coordinates
∆x Particle size
x Position vector of a Voronoi diagram node
xg Position vector of a Voronoi cell centroid

Variables (Greek symbols)
α Artificial viscosity coefficient
β MLS coefficients
γ Coefficient that defines the level of compressibility of the fluid
δ Diffusive correction term coefficient or Dirac delta function
ε Normalized buffer thickness
ζ Allowed deviation threshold around cell centroid (shifting algorithm coefficient)
η Relative density variation
κ Coefficient that defines the compact support radius of the kernel (multiple of h)
λ Second coefficient of dynamic viscosity
µ First coefficient of dynamic viscosity
ν Kinematic viscosity (ν = µ/ρ)
ξ Linear damping intensity coefficient, usually defined in terms of ξ ∆t
ρ Density evolved using the continuity equation
ρ̌ Density computed from the particle distribution
σ Stress tensor
τ Viscous stress tensor
Ω Fluid domain
∂Ω Fluid domain boundary
ω Coupling weight

Superscripts
∗ Predicted value or local integration variable
? Kinetic energy evolved in time, including only the artificial viscosity numerical dissi-

pation component
0 Initial state (n = 0)

xviii

Nomenclature

α, AV Artificial viscosity component
B Boundary virtual point
FS Free-surface virtual point
IO Inlet/outlet particle
P Periodic particle
p Pressure component
T Tensor transpose
τ, V Viscous component

Subscripts
⊥ Orthogonal
0 Reference values
B Associated with a solid boundary
FS Associated with free-surface
IO Associated with an inlet/outlet boundary
P Associated with a periodic boundary

Mathematical operators
∧ Exterior product
· Dot product
: Double dot product
‖ ‖ Euclidean 2-norm
[] Volume averaged value
< > Smoothed value
d
dt Lagrangian time derivative
∇ Gradient differential operator (grad)
∇· Divergence differential operator (div)
∇2 Laplacian differential operator

xix

Nomenclature

xx

Chapter 1

Introduction

1.1 Overview
The situations where it would be extremely useful to model accurately fluid flows are innumerable.
Despite the fact that the Navier-Stokes equations that govern the motion of fluids were formulated
in the early 19th century, few exact solutions are known (Drazin and Riley, 2006). Practical appli-
cations usually rely on computational fluid dynamics (CFD), which provide numerical solutions
under different assumptions based on the nature of the flow. Some examples are shown in Fig. 1.1.

(a) Simulation on an Airbus A380, showing pressure field
on the structure and streamlines from the nose wheel and
the wings leading edges,
https : / / mdx2 . plm . automation . siemens . com /

cfdImage/simulation-airbus-a380

(b) Simulation of an America’s Cup AC72 cata-
maran under regular waves,
http://www.caponnetto-hueber.com

(c) Simulation of the flow through a marine current turbine
(Fernández-Gutiérrez et al., 2014)

Figure 1.1: CFD simulations

The equations of motion can be formulated in an Eulerian or a Lagrangian form. The Eulerian
approach is typical for fixed-grid solvers, while the Lagrangian one is suitable for meshfree particle
methods since they follow a fluid parcel instead of a grid node. The existence of a grid allows using
higher order numerical operators, but requires modifying the mesh when the shape of the fluid
domain changes. Arbitrary Lagrangian–Eulerian (ALE) methods deal with this type of problems,

1

https://mdx2.plm.automation.siemens.com/cfdImage/simulation-airbus-a380
https://mdx2.plm.automation.siemens.com/cfdImage/simulation-airbus-a380
http://www.caponnetto-hueber.com

Chapter 1: Introduction

but become significantly more complex and computationally expensive (Hirt et al., 1997). Particle
methods avoid this burden, though they rely on lower-order operators.

Many of the physical phenomena of interest involve free-surfaces, which exist in multi-phase
flows with large density differences between the phases. Potential flow solvers such as Boundary
Element Methods (BEM) can be used with low-deformed free-surfaces (Yeung, 1982). However,
more advanced solvers are required when this is not the case and surface-breaking, fragmentation,
and phase entrainment occur. Eulerian methods using techniques such as Volume of Fluid (VOF)
or Level Set (LS) are common alternatives (Hirt and Nichols, 1981; Sethian, 1999). Neverthe-
less, particle methods become very attractive for this type of problems because the free-surface
boundary condition is intrinsically solved in their formulation, not requiring any special treatment.
Smoothed particle hydrodynamics (SPH) solvers are among the most popular ones in this category
(Monaghan, 2012; Springel, 2010b) .

The present thesis focuses on the SPH method, and in particular on how it models the interaction
of the fluid with solid boundaries. An alternative approach is proposed, which takes the particles
close to the boundaries as seeds to partition the spatial domain into Voronoi cells (Fig 1.2). Each
cell represents the space closer to one particle than to any other (Voronoi, 1908), being a logical
choice to link non-overlapping zones to each particle. Moreover, instead of smoothing, an alterna-
tive formulation is employed to approximate the spatial differential operators based on the Voronoi
tessellation. This approach allows us to enforce directly the boundary conditions on those cells
in contact with the boundary, removing the requirement for fictitious repulsive boundary or ghost
particles as it is usually done in standard SPH solvers.

Figure 1.2: Portion of a 2D Voronoi diagram, with each cell identified with a different color

1.2 Motivation
The nature of fluid flows can be very different, being usually characterized by non-dimensional
parameters such as Reynolds number, Re, Mach number, Ma, Froude number, Fr, etc. Particular
flow conditions allow us to apply certain simplifications to tackle the governing equations and
obtain approximate solutions.

Logically, each numerical method is adequate for a certain type of flows. However, there are
many situations where we can identify various fluid regimes within the computational domain.
Ideally, we would like to combine multiple methods, applying each where is more suitable. This

2

Chapter 1: Introduction

task is usually very challenging due to incompatibilities between the methods, but it expands the
applicability of the numerical scheme significantly when achieved.

The smoothed particle hydrodynamics method is known for its flexibility to easily model com-
plex physics and its outstanding conservation properties, but also for its limitations in discretiza-
tion, adaptivity, accuracy and implementation of boundary conditions, among others. The main
motivation of this thesis is precisely to use the “multi-method” approach to tackle these limita-
tions instead of performing modifications to the SPH scheme, which in any case penalizes the
conservation properties.

The meshless nature of SPH makes it suitable for simulating moving objects immersed in a
fluid, such as swimming bodies, propellers, or flapping sails for example. It is even more applicable
when these bodies interact with free-surfaces due to the ease to incorporate them in the numerical
scheme, as explained before. The flows around energy harvesting offshore structures, like coastal
marine current turbines, are good examples for such conditions. The correct implementation of
solid boundary conditions is critical in these applications to model the fluid-structure interaction.
Consequently, it was chosen as the area of SPH to focus on.

In SPH, we define a set of interpolation nodes over the domain, named particles, and assign
to each a certain mass mi. Based on the density field ρ(r, t), we estimate at a given time t(n) the
volume1 associated with each particle as Vi = mi / ρ(ri, t(n)). The value of any field variable at
a particular location can then be approximated, namely smoothed, based on the particles around
it within certain radius. However, because the particles are randomly placed, the total computed
volume from these neighboring particles does not match the actual fluid volume within that radius
(Fig. 1.3(a)). As seen later in Sec. 3.1, this fact has an important impact on the consistency of the
smoothing. Moreover, the deviation between volumes is even larger near the boundaries since part
of the smoothing domain falls beyond the boundary (Fig. 1.3(b)).

(a) Fully immersed in the fluid (b) Close to boundaries

Figure 1.3: Overlapping and voids in SPH volume discretization, Rsmoothing ≈ 4∆xparticle.

1Note that the term “volume” represents the portion of the fluid domain associated with the particle. In 2D prob-
lems, it will be a surface.

3

Chapter 1: Introduction

In order to avoid this issue, an alternative method that provides a consistent partition of the do-
main using Voronoi diagrams was envisioned (Fig. 1.4). Furthermore, Sec. 3.2 shows how we can
develop a formulation similar to SPH based on the information from the Voronoi diagram. Instead
of relying on all particles within certain distance, the spatial differential operators are computed
based on the faces that delimit each cell and the field values of the neighbor/boundaries to which
they correspond. No dependence on the volume mismatch exists in this case, achieving our goal.

Figure 1.4: Voronoi diagram with the same particle distribution as in Fig. 1.3(b). Continuous lines
delimit Voronoi cells, while dotted lines indicate the SPH particle radius

The present work establishes the basis of a coupling between the SPH and Voronoi formula-
tions, so it can be applied at large scale in the future. Long term applications include using the
Voronoi scheme to transition from SPH to fixed-grid methods, where Lagrangian formulations
can be employed close to moving objects and Eulerian ones in the far field. This approach can
also be useful for problems dealing with solidifying materials, common in processes like additive
manufacturing.

1.3 Literature review

1.3.1 Particle methods
It is very intuitive to think of a fluid as a set of moving elements. However, the use of particle
methods is relatively recent (Li and Liu, 2004), despite their mentioned advantages in dealing with
free-surfaces and moving-boundaries. Arguably, this can be attributed to larger computational
requirements, mathematical formulations that lay further from analytic solutions, etc. In any case,
significant advancements have been achieved in particle methods in the last decades2, which remain
as an active research area in the fluid dynamics community (Oñate and Owen, 2011). Looking at
the fluid itself, we can recognize three levels of abstraction:

2https://en.wikipedia.org/wiki/Meshfree_methods

4

https://en.wikipedia.org/wiki/Meshfree_methods

Chapter 1: Introduction

• Molecular level. Molecular dynamics (MD) simulations reach this level (Rapaport, 1996;
Allen and Tildesley, 2017). They are useful to determine thermo-mechanical material prop-
erties, and are mainly used in chemistry physics, material science, molecular biology, and
nano-engineering. At larger scales, they become unfeasible due to the number of elements.

• Mesoscale level, considered as intermediate scale that links the molecular behavior to the
continuum models used at the macroscale level. Methods that focus on this level are for
example Direct Simulation Monte Carlo (DSMC) (Bird, 1976) or Dissipative Particle Dy-
namics (DPD) (Español and Warren, 1995, 2017). Lattice Boltzmann methods (LBM) also
fall within this category, and are becoming very popular recently thanks to their ease to im-
plement and parallelize (Chen and Doolen, 1998). These methods are capable of solving
the flow through porous media intrinsically, although they have difficulties under high Ma or
when free-surfaces are present.

• Macroscale level. The fluid is treated as a continuum medium at this level, with the nu-
merical schemes able to tackle problems ranging from micrometers to millions of kilome-
ters. Particles in this case conform a set of nodes scattered through the fluid domain that
are tracked in a Lagrangian way. Smoothed particle hydrodynamics method belongs to this
group, which evolved from the Particle-In-Cell (PIC) method developed by Evans and Har-
low (1957). Among other common alternatives, Vortex methods (VM) (Chorin, 1973; Chorin
and Bernard, 1973; Leonard, 1980; Wang, 2016; Wang and Yeung, 2016a,b) can be used
for incompressible fluids, and more recently Material point methods (MPM) (Sulsky et al.,
1994) are receiving a growing interest for granular flows.

1.3.2 Smoothed particle hydrodynamics
This thesis focuses on SPH for its great flexibility and potential to tackle complex problems found
in engineering, as discussed before. The SPH method was originally presented by Lucy (1977)
and Gingold and Monaghan (1977) for astro-dynamical applications. Most of the work done in
the following years was done by Prof. Monaghan and his collaborators (Monaghan and Gingold,
1983), but remained within the astrophysical area (Benz, 1988). Monaghan (1994) applied it for
the first time to incompressible free-surface flows, treating the fluid as weakly compressible with
a stiff equation of state3. The density fluctuations depended on the Ma, and the speed of sound
was chosen so that the maximum fluctuations were on the order of 1%. The examples presented
included the evolution of an elliptical droplet, a breaking dam, or a wave maker. Colagrossi (2005)
and Marrone (2011) studied in detail its application to breaking waves and free-surface impacts
with rigid structures, suitable scenarios to show the SPH capabilities. Kiara (2010) delved deeper
into the accuracy, consistency, and stability of the SPH method for free-surface flows, with the aim
of reducing the undesired spurious solutions introduced purely by the numerical scheme. Takeda
et al. (1994) included viscous terms, solving the Navier-Stokes equations for the flow around a
cylinder, 2D Poiseuille flow, and 3D Hagen-Poiseuille flow. Cummins and Rudman (1999) en-
forced incompressibility in SPH by solving the Poisson equation at each time-step to adjust the

3Variant of SPH referred to as weakly compressible smoothed particle hydrodynamics (WCSPH)

5

Chapter 1: Introduction

velocity field to make it divergence-free4. Regarding multiphase flows, Monaghan et al. (1999) ap-
plied SPH to model fluid-fluid interaction with small density differences. Colagrossi and Landrini
(2003) achieved larger density ratios, simulating air–water impact flows. Turbulent flows have
also been modeled with SPH, either directly by including new terms in the formulation (Adami
et al., 2012), using Monte-Carlo probability density functions (Welton, 1998), or as sub-grid mod-
els within large eddy simulations (LES) (Wagner and Liu, 2000) for example. Additionally, Morris
(2000) and Nugent and Posch (2000) included surface-tension forces in the SPH framework.

The efficiency and stability of SPH has been one of the main concerns along its development.
One of the earliest improvements to the original formulation was proposed by Hernquist and Katz
(1989). They combined SPH with hierarchical trees to improve the cost per step to O(N log N),
where N is the number of particles. Unlike in astrophysics, the fluid domain tends to consist mostly
of a compact domain, with few particles detaching from it. It is important to choose the appro-
priate particle resolution to correctly capture the nature of the flow. Adaptive SPH formulations
have been proposed to avoid an excessive resolution far from the regions of interest and therefore
optimize the computational resources5. The total number of particles is lower, although the for-
mulation is more complex with additional algorithms for either modifying the smoothing length
(Shapiro et al., 1996) or merging and splitting particles as they move between regions (Lastiwka
et al., 2005; Vacondio et al., 2013; Hu et al., 2017). Along these lines, Shapiro et al. (1993) and
Martel et al. (1994) investigated previously anisotropic smoothing algorithms with ellipsoidal ker-
nels, originally proposed by Bicknell and Gingold (1983), and useful to increase the resolution
across the flow streamlines. Finally, the SPH method is ideal for parallel computing because only
particles within certain distance interact with each other. The use of GPUs and HPCs has allowed
to greatly expand the maximum number of particles achievable (Ferrari et al., 2009; Cercos-Pita,
2015; Crespo et al., 2015), with the record at this time over 1 billion particles6.

SPH usually relies on explicit schemes to integrate forward in time the Navier-Stokes equations.
Likewise finite difference methods, these schemes are unconditionally unstable without the exis-
tence of some kind of dissipation (Hirsch, 1990). An artificial viscosity term is therefore added to
the momentum equation to ensure stability in inviscid flows. Multiple formulations have been pro-
posed for this term: Monaghan and Gingold (1983); Monaghan (1992, 1997); Takeda et al. (1994);
Cleary (1996); Morris et al. (1997); Español and Revenga (2003); Colagrossi et al. (2010, 2011),
etc. Macià et al. (2012) show how the artificial viscosity can be related to the physical viscosity.
Furthermore, Balsara (1995) and Colagrossi (2005) explored an adaptive artificial viscosity useful
to model shocks.

One characteristic instability in SPH, named “tensile instability”, consists of an nonphysical
clumping of particles. It has been widely studied (Swegle et al., 1995; Morris, 1996), with solutions
involving the SPH kernel functions (Macià et al., 2011b), repulsive forces (Monaghan, 2000), and
particle shifting algorithms (Lind et al., 2012; Sun et al., 2017) among others.

SPH formulations are also sensitive to the particle disorder (Belytschko et al., 1998). Colagrossi
(2005) showed the second-order convergence of the method when particles are arranged on a reg-
ular mesh, but may not converge if they are disordered. Quinlan et al. (2006) studied this issue in

4Variant of SPH referred to as incompressible smoothed particle hydrodynamics (ISPH)
5Variant of SPH referred to as adaptive smoothed particle hydrodynamics (ASPH)
6Reported by Barreiro et al. (2015), animation can be seen at https://youtu.be/B8mP9E75D08

6

https://youtu.be/B8mP9E75D08

Chapter 1: Introduction

more detail, exploring the benefits of re-normalizing the kernel based on the particles within the
smoothing radius. Furthermore, the use of moving least squares (MLS) approximations is clearly
beneficial to deal with disordered particles (Lancaster and Salkauskas, 1981). When applied to
Galerkin formulations solving the weak form of PDEs, it leads to a set of meshless particle meth-
ods grouped under the class name Partition of Unity (Belytschko et al., 1996). Methods in this set
have been successfully applied to simulate the deformation and fracture of solid materials (Liber-
sky and Petschek, 1991; Benz and Asphaug, 1994, 1995; Melenk and Babuška, 1996; Gray and
Monaghan, 2004; Das and Cleary, 2010) and solid-fluid interaction (Antoci et al., 2007). Within
the SPH frame, the MLS is used as a correction to the kernel to ensure its consistency indepen-
dently of the particle distribution (Bonet and Lok, 1999; Dilts, 1999; Souto-Iglesias et al., 2013)7.

Another common issue in SPH is the high-frequency oscillations found in the pressure, density,
and velocity fields. Additional correction terms have been proposed to reduce them, among which
we can highlight the XSPH (Monaghan, 1989) and the δ-SPH (Antuono et al., 2010, 2012; Cercos-
Pita, 2016; Cercos-Pita et al., 2016). The first one is applied to the velocity field, while the second
acts as an additional term in the continuity equation. Colagrossi and Landrini (2003) proposed a
periodic re-initialization of the density field using an MLS interpolant to smooth the pressure field.

Gingold and Monaghan (1982) showed how the original SPH formulation could be adapted to
conserve linear and angular momentum. Later on, Di Lisio et al. (1997, 1998) and Moussa and
Villa (2000) investigated the convergence of the method. The inclusion of the aforementioned
numerical correction terms adds an additional challenge to the conservation properties (Morris
et al., 1997). Ideally, they should be incorporated to a Lagrangian term from which the equations
of motion are derived, which will ensure the conservation of momentum and energy (Bonet and
Lok, 1999), but such is not always the case. The energy balance itself has been subject of analysis
in the literature (Antuono et al., 2015; Cercos-Pita et al., 2017).

The enforcement of solid-boundary conditions, recognized as one of the main issues of SPH,
is the main area of research of this thesis. Monaghan (1994) proposed discretizing the boundaries
into particles with repulsive forces. Libersky et al. (1993), Morris et al. (1997) and Colagrossi and
Landrini (2003) use “ghost” particles, i.e. layers of particles within the solid domain that mirror the
fluid domain and whose properties are adjusted to satisfy the boundary conditions. However, the
application of this method with complex geometries and extension to 3D problems is still problem-
atic, with various extensions proposed in the literature (Yildiz et al., 2009; Marrone et al., 2011;
De Leffe et al., 2011; Macià et al., 2011a). Other alternatives have been published that explore
calculating the intersection of the kernel and the boundary (Feldman and Bonet, 2007), or extend
the immersed boundary technique used in finite difference schemes (Hieber and Koumoutsakos,
2008) or the normal flux technique from finite volume schemes (Marongiu et al., 2008; De Leffe
et al., 2009).

This summary shows the main contributions that have established the foundation of the SPH
method. Multiple additional variants of its formulation have been proposed in the last couple of
decades that attempt to yield better stability, performance, and/or precision for different applica-
tions. The reader is referred to the publications by Monaghan (2005b, 2012); Liu and Liu (2003);
Li and Liu (2004); Violeau (2012) for a more comprehensive review.

7Variant of SPH referred to as corrected smoothed particle hydrodynamics (CSPH)

7

Chapter 1: Introduction

1.3.3 Coupling
Recent examples have explored the coupling of SPH with mesh-based finite volume method solvers
(Marongiu et al., 2010; Marrone et al., 2016; Kumar et al., 2015; Napoli et al., 2016) and have
yielded promising results. An additional appealing approach is to couple SPH with another La-
grangian method with some improved characteristics, like PFEM8 for example (Idelsohn et al.,
2004; Oñate et al., 2008). However, the fully Lagrangian version of Voronoi particle hydrody-
namics, VPH (Hess and Springel, 2010), emerges as an even more attractive option for this kind
of coupling because its formulation is much closer to SPH. VPH evolved from the Voronoi dy-
namics method created by Serrano and Español (Serrano and Español, 2001; Serrano, 2006), who
developed a meshless scheme that is first-order consistent for the first-order differential operators,
regardless of the geometrical distribution of the particles. The method was conceived for molecu-
lar dynamics simulations, and entropy evolution equation was part of the formulation. It is worth
noticing that SPH itself has also been compared to molecular dynamics (Hoover, 1998).

Voronoi diagrams are named after the Russian and Ukrainian mathematician Georgy Voronoi,
who formally defined them in 1908 (Voronoi, 1908) for D-dimensional spaces. They are widely
used in fields such engineering, geography, biology, computer graphics, etc. As indicated in
Sec. 1.2, they partition the domain into cells based on a set of points or seeds, where each cell
encloses the volume closer to one seed than to any other. By brute force, their computation is
O

(
N2 log N

)
, where N is the number of seeds. However, it can be shown how this can be improved

at best to O
(
N log N

)
. The Fortune’s algorithm achieves it in 2D (Fortune, 1987), being therefore

optimal and among the most used ones. In 3D and higher dimensions, generating the Voronoi
tessellation is more complex (Cignoni et al., 1998). Instead, it is more efficient to determine the
Delaunay triangulation and extract the Voronoi tessellation from it, since both structures are dual
(Bowyer, 1981; Watson, 1981)9. There are several open-source implementations available, among
which we can highlight qHull10 (Barber et al., 1996) and Voro++11 (Rycroft, 2009). qHull allows
computing the Voronoi diagrams in any arbitrary number of dimensions, and is included in Matlab
and Python distributions. Moreover, PARAVT12 is an open source parallell implementation de-
veloped by González (2016) that optimizes the use of qHull for large particle sets. On the other
hand, Voro++ is restricted to 3D but was developed specifically for science, physics and engi-
neering applications, where the emphasis is placed on the cell properties rather than the complete
diagram. Voronoi diagrams are an extensive topic in themselves. They have been generalized to
use other metrics apart from the Euclidean distance; to take as seeds objects other than points like
line segments; or to weigh differently each seed like power diagrams (Aurenhammer, 1987). Their
analysis falls beyond the scope of this work, and the reader is referred to the detailed studies done
by Okabe et al. (2000), Okabe (2016), and De Berg et al. (2008).

Within the SPH framework, the application of Voronoi diagrams has been quite recent. Shobeyri
and Ardakani (2017) proposed using Voronoi diagrams to improve the computation of the second
order derivatives, Ghaffari and Xiao (2016) used centroid Voronoi tessellations to adjust the particle

8http://www.cimne.com/pfem/
9Bowyer-Watson algorithm

10http://www.qhull.org
11http://math.lbl.gov/voro++/
12https://github.com/regonzar/paravt

8

http://www.cimne.com/pfem/
http://www.qhull.org
http://math.lbl.gov/voro++/
https://github.com/regonzar/paravt

Chapter 1: Introduction

positions and improve the consistency of the method, and Chiaki and Yoshida (2015) explored
using them as part of a particle splitting algorithm. The idea of a hybrid Lagrangian Voronoi–SPH
scheme was first proposed by Barcarolo (2013) and Barcarolo et al. (2014). They used a finite
volume formulation for the Voronoi sub-domain and Riemann-SPH for the SPH sub-domain. The
coupling was achieved by considering the SPH particles as Voronoi ones when interacting with
Voronoi particles, and vice versa. This coupling does not preserve the order of either method when
taken to the particle level, and some improvements are required.

The SPH European Research Interest Community (SPHERIC), which has grown to bring to-
gether most of the researchers working on SPH, identifies the following remaining SPH Grand
Challenges13:

1. Convergence, consistency, and stability.
2. Boundary conditions.
3. Adaptivity.
4. Coupling to other methods.
5. Applicability to industry.

The use of Voronoi diagrams to improve the enforcement of wall boundary conditions is directly
linked to the 1st, 2nd, and 4th challenges.

1.4 Major contributions
The main contribution of this work is the foundation of a fully Lagrangian VPH-SPH coupled
scheme. The diffusive term in the continuity equation from the δ-SPH formulation has been ex-
tended to the VPH, hence the δ-VSPH name. As explained in detail in Ch. 3, the fluid domain
is subdivided into Voronoi and SPH sub-domains based on the distance to the boundaries, with
certain overlapping between both. All particles in the Voronoi sub-domain are used to generate a
Voronoi diagram at each time step, so VPH can be used to compute the dynamics. We can therefore
distinguish three separate regions:

• Voronoi: Zone close to the solid boundaries, where only VPH is used in order to accurately
implement the solid boundary conditions.

• Buffer: Overlapping zone between both sub-domains that allows for a smooth transition
between methods. All related variables are computed in this region both with the SPH and
VPH formulations and combined using a weighting function.

• SPH: Rest of the fluid domain that is not influenced by the solid boundaries, where only
SPH is used for its simplicity and efficiency to deal with free-surfaces.

The main advantage of this approach is that it is targeted to the core formulation of SPH. VPH
and SPH are so similar that most of the improvements proposed in the literature for SPH can
be directly extended to VPH. In the end, both methods provide a way to approximate the spatial

13http://spheric-sph.org/grand-challenges

9

http://spheric-sph.org/grand-challenges

Chapter 1: Introduction

derivatives without a predefined connectivity between particles. Furthermore, the Voronoi tessel-
lation provides additional information beneficial to the SPH scheme itself. Firstly, it allows us
to associate a certain volume to each particle, and considering its mass, a derived density. These
values can be used for the density re-initialization to reduce the high-frequency pressure oscilla-
tions. Also, they allow enforcing the conservation of total volume in addition to the conservation
of mass in the Voronoi region. In addition, the Voronoi diagram can allow us to detect unphysical
clustering and avoid the tensile instability.

Unlike ghost particles, Voronoi diagrams can be simply extended to 3D and even higher dimen-
sions. They can also be applied to complex geometries, although the existence of concave faces
requires an additional trimming process that can be computationally expensive. To avoid excessive
complexity, the size of the boundary faces is used to set an upper bound to the maximum size of
the surrounding particles.

The main source of difficulties for this type of coupling comes from the different characteristic
lengths of each method. SPH relies on all the particles within a given smoothing radius, typi-
cally 4 times the particle size, while VPH uses only the immediate neighbors in contact with the
Voronoi cell. This fact, which is precisely what simplifies the enforcement of the boundary condi-
tions, requires also a larger buffer zone to keep the scheme conservative and to avoid non-physical
interactions between the methods.

In addition to the δ-SPH correction mentioned above, the density field is reinitialized follow-
ing Colagrossi and Landrini (2003), and a particle shifting algorithm inspired by Lloyd (1982)
is included in the VPH formulation to avoid an excessive cell distortion. The resulting scheme
has been tested under configurations where analytic solutions are known (Fig. 1.5), showing good
agreement. Being an explicit scheme, the code was developed keeping in mind the inclusion of par-
allel computing. However, the ability to use multiple computing nodes hasn’t been implemented
yet. The emphasis was placed in proving the feasibility of the method, which limited the number
of particles used in the simulations.

(a) Hydrostatic equilibrium with concave boundaries.
Particles colored based on their gauge pressure

(b) Two Lamb-Osseen contra-rotating vortices. Particles
colored based on their initial vertical position

Figure 1.5: Simulation results for cases with known analytic solutions

10

Chapter 1: Introduction

1.5 Thesis structure
This thesis is structured as follows:

1. The continuous model is presented, discussing the governing differential equations and their
underlying assumptions (chapter 2). The specific characteristics of the weakly compressible
fluid model are included.

2. The detailed explanation of the coupled scheme constitutes the main part of this thesis (chap-
ter 3). A description of the main characteristics of SPH and VPH is included, followed by
their coupling strategy. The way boundary conditions are implemented deserves a dedicated
analysis that follows next (section 3.4). Finally, the specifics of the density re-initialization,
and particle shifting algorithms are presented (sections 3.5-3.6).

3. The next step is presenting the actual implementation of the coupled scheme using C++ and
Matlab (chapter 4). Special emphasis is placed on describing the leap-frog algorithm used to
march forward in time, the neighboring boundaries and particles search algorithm, and the
initialization process.

4. The energy balance of the scheme is discussed thereafter (chapter 5).

5. The method is then tested with some verification cases: hydrostatic equilibrium with simple
and complex geometries; reflecting sound wave; steady and starting Couette flow; decaying
Lamb-Ossen vortex; two contra-rotative Lamb-Ossen vortices; and an impinging jet (chap-
ter 6).

6. Conclusions and future lines of work are enumerated to close the thesis (chapter 7).

11

Chapter 1: Introduction

12

Chapter 2

Continuum model

The scope of this research covers monophasic free-surface viscous flows. This chapters sum-
marizes their governing differential equations (Sec. 2.1), which will be solved numerically later.
Special emphasis is placed in describing the weakly compressible equation of state used (Sec. 2.2),
and the selection of an adequate speed of the sound to approximate properly incompressible fluids
while keeping an acceptable computational cost (Sec. 2.3).

2.1 Governing equations
Monophasic free-surface viscous flows are governed by the well known Navier–Stokes equations.
These equations, derived from the balance of mass, momentum, and energy, read in their general
Lagrangian differential form:

dρ
dt

+ ρ∇ · u = 0 , (2.1)

ρ
du
dt

= ρ f + ∇ · σ , (2.2)

ρ
d
dt

(
e +

1
2

u · u
)

= ρ f · u + ∇ ·

(
σu

)
− ∇ · q + ρQ̇ , (2.3)

where d/dt is the Lagrangian time derivative, ρ the fluid density, t the time, u the fluid velocity
vector, f the body forces per unit mass, σ the stress tensor, e the internal energy per unit mass, q
the heat flux vector, and Q̇ the volumetric heat deposition.

The long-term applications that motivate the present research, such as additive manufacturing,
mostly involve liquids. Moreover, the expected fluid regimes allow us to accurately model them
as barotropic and weakly compressible. Under this assumption, and by neglecting entropy in-
fluence, the pressure becomes a function of density only in an equation of state, and the energy
equation (2.3) becomes uncoupled from the mass and momentum balances in Eqs. (2.1)-(2.2).

In this first stage, thermal effects have not been included so the energy equation can be dropped
to simplify the formulation. Also, only uniform gravitational body forces and Newtonian fluids are
considered. Under these conditions,

σ = (−p + λ∇ · u) I + 2 µD , (2.4)

ρ
du
dt

= ρg − ∇p + ∇ (λ(∇ · u)) + ∇ · (2µD) , (2.5)

where g is the gravity acceleration vector, p the pressure, µ and λ the first and second coefficients
of viscosity, and D the rate of deformation tensor defined as

D =
1
2

(
∇u + ∇uT

)
, (2.6)

13

Chapter 2: Continuum model

with the superscript T indicating tensor transpose. Substituting the definition of D in Eq. (2.5),
using the algebraic relation ∇ · (∇u)T = ∇ (∇ · u), and with the additional hypothesis of constant
dynamic viscosity coefficients λ and µ , we finally arrive at

ρ
du
dt

= ρg − ∇p + (λ + µ)∇ (∇ · u) + µ∇2u , (2.7)

where ∇2u = ∇ · (∇u) is the Laplacian differential operator. The compressible viscosity term is
negligible in the weakly compressible regime for the flows studied in this work (see, e.g., Marrone
et al. (2013) and Colagrossi et al. (2013)) and it is not further considered.

Regarding the equation of state, the formulation proposed by Monaghan (1994) is followed.
Section 2.2 will discuss it in detail. The relaxation from incompressible to weakly compressible is
generally followed within the SPH method. This way, we can avoid solving the Poisson equation
for the pressure field, and use an explicit time integration for the discrete equations.

Based on all these hypotheses, we can simplify the previous expressions to obtain the final
governing and constitutive equations of the continuum model:

dρ
dt

= −ρ∇ · u , (2.8)

du
dt

= g −
∇p
ρ

+ ν∇2 u , (2.9)

dr
dt

= u , (2.10)

p =
c2ρ0

γ

[(
ρ

ρ0

)γ
− 1

]
+ p0 . (2.11)

where ν = µ/ρ is the kinematic viscosity. The fluid velocity, u, is defined as the material derivative
of a fluid material point at the position r. c is the speed of the sound discussed in Sec. 2.3, and γ
is the coefficient that determines the level of compressibility of the fluid, discussed in detailed in
Sec. 2.2. p0 and ρ0 are the reference pressure and density of the fluid, respectively.

Finally, the following possible boundary conditions (BC’s) are considered:

Solid boundary (wall): Two possible alternatives can be selected

• No slip BC: Fluid velocity on the boundary is equal to the velocity of the boundary.
Typical in viscous shear dominant problems.

u|B = uB . (2.12)

• Slip BC: Tangential velocity of the fluid is independent of the boundary, typical for
inviscid or very thin boundary layers problems. Only normal velocity is equal to the
wall velocity, i.e. the fluid cannot penetrate the boundary.

du
dn

∣∣∣∣∣
B

= 0 =⇒ u · nB = uB · nB . (2.13)

where nB represents the normal vector to the boundary pointing towards the fluid. Note
that this condition can also be used to model symmetry planes (Slip BC).

14

Chapter 2: Continuum model

Free surface: Pressure at the free surface is the atmospheric reference pressure. No surface ten-
sion has been included yet.

pFS = p0 . (2.14)

Note that Lagrangian particles follow the free surface shape even for large deformations
fulfilling implicitly the kinematic BC.

Periodic:
u(r)|B = u(r + ∆r) , p(r)|B = p(r + ∆r) . (2.15)

Inlet/Outlet (I/O): Boundaries through which the fluid enters or leaves the domain. Dirichlet
or Neumann BC’s can be assigned to the velocity and pressure variables depending on the
boundary nature. If no specific condition is imposed for a variable, the natural Neumann BC
is assumed (d

dn

∣∣∣
IO

= 0). The following combinations are considered:

• Velocity I/O: Fluid velocity is fixed at the boundary as uIO,

u|IO = uIO ,
dp
dn

∣∣∣∣∣
IO

= 0 . (2.16)

• Pressure I/O: Pressure is fixed at the boundary as pIO,

du
dn

∣∣∣∣∣
IO

= 0 , p|IO = pIO . (2.17)

• Free I/O: No specific conditions imposed,

du
dn

∣∣∣∣∣
IO

= 0 ,
dp
dn

∣∣∣∣∣
IO

= 0 . (2.18)

2.2 Weakly compressible equation of state
The purpose of this section is to clarify the equation of state used, anticipated in Eq. (2.11). We
start by acknowledging that the use of particles introduces numerical variations in the density
which should be taken into account if a compressible model is used. Incompressibility can be
imposed by determining a pressure correction term that should satisfy a Poisson equation in each
time step, although this process increases the computational cost of the simulations.

A more efficient approach consists of letting the density fluctuate and using an equation of state
to determine the consequent pressure variations, as proposed by Monaghan (1994). For liquids we
can use a weakly compressible equation of state following Tait’s equation, which enforces very
low density variations and is efficient to compute:

p = Bp

[(
ρ

ρ0

)γ
− 1

]
+ p0 , (2.19)

where Bp and γ are the constants that control the amplitude of the pressure change due to the den-
sity fluctuations. We can characterize the relative density fluctuations as a function of a parameter
η, defined as

η =
∆ρ

ρ
≈

u2

c2 , (2.20)

15

Chapter 2: Continuum model

where u = ‖u‖2 is the velocity magnitude given by its Euclidean norm. Typically η = 0.01,
allowing density fluctuations of the order of 1%.

The corresponding pressure fluctuations can be determined from Eq. (2.19).

∆ρ = ρ2 − ρ1 , (2.21)

∆p = p2 − p1 = Bp

[(
ρ2

ρ0

)γ
−

(
ρ1

ρ0

)γ]
= Bp

[(
ρ1 + ∆ρ

ρ0

)γ
−

(
ρ1

ρ0

)γ]
= Bp

[(
ρ1

ρ0

)γ (
1 +

∆ρ

ρ1

)γ
−

(
ρ1

ρ0

)γ]
= Bp

(
ρ1

ρ0

)γ [
(1 + η)γ − 1

]
. (2.22)

Using a Taylor expansion of (1 + η)γ around the equilibrium (η = 0) leads to

(1 + η)γ ≈
[
(1 + η)γ

]
η=0 + (η − 0)

[
γ(1 + η)γ−1

]
η=0

= 1 + γη , (2.23)

∆p ≈ Bp

(
ρ1

ρ0

)γ [
1 + γη − 1

]
= Bp

(
ρ1

ρ0

)γ
γη . (2.24)

Both ρ1 and ρ2 oscillate closely around ρ0, which entitle us to approximate ρ1
ρ0
≈ 1 to obtain the

order of magnitude of the density and pressure variations:

∆ρ ≈ ρ0η , (2.25)
∆p ≈ Bpγη . (2.26)

Using the definition of the speed of sound we can relate the two magnitudes above, and express
Bp as a function of the other variables:

c2 =
∂p
∂ρ
≈

∆p
∆ρ

=
Bpγη

ρ0η
=

Bpγ

ρ0
, (2.27)

Bp =
c2ρ0

γ
. (2.28)

Substituting Eq. (2.28) in Eq. (2.19) we obtain the weakly compressible equation of state (2.11),
dependent only on γ:

p =
c2ρ0

γ

[(
ρ

ρ0

)γ
− 1

]
+ p0 .

As discussed by Becker and Teschner (2007), typically γ = 7. However, if we analyze the
impact that the variation of each variable in this equation of state has, we can observe how c is
more relevant than γ. As a matter of fact, the order of magnitude of the pressure fluctuations
determined in Eq. (2.26) can be rewritten expanding Bp from Eq. (2.28) as

∆p ≈
c2ρ0

γ
γη = c2ρ0η , (2.29)

16

Chapter 2: Continuum model

showing how it does not depend on γ. We can therefore choose γ = 1 without a major impact
on the pressure fluctuations and obtain a simpler equation of state, as proposed by Antuono et al.
(2010):

p = c2 (ρ − ρ0) + p0 . (2.30)

Furthermore, it is not necessary to use the physical speed of sound, since the compressibility
effects should be physically negligible for the studied problems under the weakly compressible
assumption (Mach number, Ma = u/c << 1). Consequently, we can vary c to adjust the level of
compressibility based on the flow conditions, as analyzed below in Sec. 2.3. The common practice
in SPH is to reduce c as much as possible to avoid the extremely small time steps that would result
from using the physical sound velocity, as will be shown later in Sec. 4.5.

2.3 Speed of sound, c
As stated before, the selection of c is critical to determine the time step for the stability of the
scheme. Physically, we can interpret it as the speed at which information propagates through the
fluid. However, when the time-scale of the analyzed problem is much larger than this transfer
of information (Ma << 1), we can modify the value of c, up to a certain point, with negligible
consequences in the flow response. It is a common practice to set the upper limit at Ma = 0.1,
which keeps density fluctuations below 1% (η = ∆ρ/ρ0 < 0.01, see Eq. (2.20)), and where the
weakly compressible assumption remains valid.

In general, the common practice in SPH is to use a fictitious c one or two orders of magnitude
smaller in order to achieve the largest possible time step while keeping η < 0.01. Because the
velocity field is unknown a priori, it should be checked during the simulation that this condition
is met. However, the following considerations are suggested to choose the value of c beforehand,
based on an order of magnitude analysis of the characteristic variables of the flow:

Velocity driven flows such as uniform stream or flow around objects

umax ≈ u0 ,

∆p ≈ c2∆ρ ≈ ρu2 → c2 =
ρu2

∆ρ
>

u2
0

0.01
→ c > 10 u0 . (2.31)

Gravity driven flows such as gravity waves or hydrostatic conditions

∆p ≈ ρgH ,

∆p = c2∆ρ = ρgH → c2 =
ρgH
∆ρ

>
gH
0.01

→ c > 10
√

gH , (2.32)

where H is the reference height.

Pressure driven flows such as Poiseuille flows

‖∇p‖ ≈ K ,

‖∇p‖ ≈
∆p
∆x

=
c2∆ρ

∆x
= K → c2 = K

∆x
∆ρ

> K
∆x

0.01ρ
, (2.33)

where ∆x is the particle size, which gives the order of magnitude of the particle spacing.

17

Chapter 2: Continuum model

Shear driven flows such as Couette flows

µ∇2u ≈ ∇p → µ
∆u
∆x2 ≈

∆p
∆x

, (2.34)

∆p = c2∆ρ = µ
∆u
∆x

→ c2 =
µ

∆ρ

∆u
∆x

>
µ

0.01ρ
∆u
∆x

. (2.35)

Note that in this last case, the condition requires an estimate of the maximum velocity gra-
dient on the flow, similar to the pressure gradient previously. In both cases, if transitory
conditions are studied, the maximum gradients during the transition phase should be used,
which are generally significantly larger than in the steady state.

18

Chapter 3

Method

This chapter contains a detailed description of the coupled scheme. First, it presents each numerical
method individually: SPH in Sec. 3.1, VPH in Sec. 3.2, and the coupling strategy in Sec. 3.3. The
enforcement of different types of boundary conditions are discussed next in Sec. 3.4. Special em-
phasis is placed in the solid boundary conditions, both with convex and concave walls (Secs. 3.4.2
and 3.4.3, respectively). A new free-surface treatment under the VPH method is proposed in
Secs. 3.4.4-3.4.5, with periodic boundaries and inlet/outlets discussed afterwards in Secs. 3.4.6-
3.4.7. Finally, two additional numerical corrections to improve the stability of the method are
analyzed: density re-initialization (Sec. 3.5) and particle shifting (Sec. 3.6).

3.1 SPH

3.1.1 Fundamentals
The SPH method can be explained as a two-step approximation method, as originally described by
Libersky et al. (1993), that involves:

1. Smoothing: Any field variable at a given point can be approximated as the weighted average
of its value around this point.

2. Particle approximation: The continuous domain is discretized into a set of points, named
particles, on which mass is lumped.

We can always re-write any field variable f (r) exactly as

f (r) =

∫
Ω

f (r∗) δ(r − r∗) dV∗ , (3.1)

where Ω is the fluid domain, r∗ is a local integration variable, dV∗ a differential volume, and
δ(r − r∗) is the Dirac delta function. Its smoothed approximated value is obtained by using a
known finite weighting function W, i.e. kernel, instead of the Dirac delta.

< f (r) >=

∫
Ω

f (r∗) W(r − r∗, h) dV∗ , (3.2)

where h is the smoothing length that characterizes the radius of action of the kernel. The benefit of
the smoothing comes when evaluating the spatial derivatives with integration by parts:

< ∇r f (r) > =

∫
Ω

[
∇r∗ f (r∗)

]
W(r − r∗, h) dV∗

=

∫
∂Ω

f (r∗)W(r − r∗, h) dS∗ −
∫

Ω

f (r∗)∇r∗W(r − r∗, h) dV∗ , (3.3)

19

Chapter 3: Method

where ∂Ω is the perimeter of the domain of integration and dS∗ a differential surface normal
vector. If we impose the condition that the kernel is zero in the far field, the first term vanishes.
Furthermore, if we also require the kernel function to be symmetric, W(r − r∗) = W(r∗ − r) →
∇r∗W(r− r∗) = −∇r∗W(r∗− r) = ∇rW(r− r∗) as long as h is constant or at least symmetric between
r and r∗, i.e. h(r) = h(r∗). This fact allows us to arrive at the final expression for the derivative

< ∇r f (r) > =

∫
Ω

f (r∗)∇rW(r − r∗, h) dV∗ . (3.4)

We have successfully expressed the derivative as a function of the variable itself and the deriva-
tive of the kernel which is a known function.

We can now proceed with the second step, the particle approximation. By going from the
continuous to the discrete level, we can simplify the previous integrals into summations since the
values of f and W are evaluated only at the particle locations.

< f (r) > =
∑

b

∫
Vb

f (rb) W(r − rb, h) dV∗ =
∑

b

f (rb) W(r − rb, h)Vb , (3.5)

< ∇r f (r) > =
∑

b

∫
Vb

f (rb)∇rW(r − rb, h) dV∗ =
∑

b

f (rb)∇rW(r − rb, h)Vb , (3.6)

where the counter b runs through the particles that fall within the smoothing domain with non-zero
W. The particles themselves are just interpolation nodes, but we can define their associated volume
based on the mass lumped on them asVb = mb

ρb
, with m being the mass and ρ the density.

Note that even if f is discrete, < f > is still a continuous value. However, for computation
purposes we are usually interested only on evaluating the smoothed values on the location of the
particles themselves. To simplify the notation, the common convention in SPH is adopted:

• a for the analyzed particle, and b for all particles within the smoothing domain

• < f (ra) >= fa

• fab = fa − fb

• f ab = (fa + fb)/2

• W(ra − rb, h) = Wab

• ∇raW(ra − rb, h) = ∇aWab

We can therefore approximate the values at the particle locations based on the surrounding ones
as

fa =
∑

b

mb

ρb
fb Wab , (3.7)

∇ fa =
∑

b

mb

ρb
fb ∇aWab . (3.8)

20

Chapter 3: Method

However, Eq. (3.8) does not necessarily vanish for constant fields due to the random location of
the neighbor particles, which is clearly incorrect. To fix it, we can use an auxiliary function Φ to
rewrite the derivative as

∇ fa =
1

Φa

[
∇(Φ f)a − fa∇Φa

]
=

1
Φa

∑
b

mb

ρb
Φb fb ∇aWab − fa

∑
b

mb

ρb
Φb ∇aWab


= −

1
Φa

∑
b

mb

ρb
Φb(fa − fb)∇aWab . (3.9)

Different choices of Φ have been explored in the literature, with the most common ones being

Φ = 1 → ∇ fa = −
∑

b

mb

ρb
fab ∇aWab , (3.10)

Φ = ρ → ∇ fa = −
1
ρa

∑
b

mb fab ∇aWab , (3.11)

These expressions can be directly extended to compute the divergence of a vector field:

Φ = 1 → ∇ · f a = −
∑

b

mb

ρb
f ab · ∇aWab , (3.12)

Φ = ρ → ∇ · f a = −
1
ρa

∑
b

mb f ab · ∇aWab , (3.13)

The Laplacian operator that shows up in the viscous term involves second derivatives. The same
approach can be followed to approximate it, but the resulting formulation has a certain number of
disadvantages as it is shown in the literature (see e.g. Monaghan (2005b)). An alternative approach
is focusing on the formulations proposed for inviscid flows. Even if the Laplacian is not present,
an artificial viscosity (AV) term is required in the momentum equation for stability to dissipate the
numerical noise. Multiple formulations can be found in the literature, as introduced in Sec. 1.3.2.
In this research, we use the Monaghan-Cleary-Gingold’s formulation discussed by Macià et al.
(2012) that evolved from the original one proposed by Monaghan and Gingold (1983). It conserves
linear and angular momentum, vanishes in the limit of h→ 0 and for rigid rotations, and is Galilean
invariant (Monaghan, 2005b).

(
du
dt

)AV , SPH

a
= −

∑
b

mbΠab∇aWab (3.14)

Πab =
α hab cab ρab

ρa ρb

uab · rab

‖rab‖
2 (3.15)

where α is a coefficient used to adjust the magnitude of this artificial viscous term. Note that
Πab = Πba and how Eq. (3.15) accounts for possible different smoothing lengths and sound speeds
between particles. Appendix A demonstrates how we can trace this term back to the original
Navier-Stokes momentum Eq. (2.9), following the work by Español and Revenga (2003) and Vi-
oleau (2009). By matching terms, we can link Eq. (3.14) to the actual viscous components and

21

Chapter 3: Method

determine an approximation to the Laplacian operator, independent of the kernel used and consis-
tent with Monaghan (2005b), Hu and Adams (2006), and Macià et al. (2011a).

1
2(D + 2)

α h c → ν , (3.16)

∇2ua ≈ −
∑

b

2(D + 2) mb
ρab

ρa ρb

uab · rab

‖rab‖
2 ∇aWab , (3.17)

where D is the number of spatial dimensions.

3.1.2 Kernel
From the expressions above, it is clear that the kernel function is at the core of the SPH method,
and its selection is crucial to obtain valid results. In general, no direction is preferred, so the kernel
can be expressed as a function of a normalized radial coordinate, q.

q =
‖r − r∗‖

h
, (3.18)

W(r − r∗, h) → W(q) =
kk

hD M(q) , (3.19)

where kk is a constant coefficient so the kernel is normalized (Eq. (3.24)). Section A.3 shows how
kk in its general form can be written as

kk =
Γ
(

d
2

)
2πD/2

∫
Ω

M(q) qD−1dq
, (3.20)

where Γ is the Gamma function. Regarding the kernel gradient, we can expand Eq. (3.18) such that

∇rW(r − r∗, h) =
kk

hD

dM(q)
dq
∇rq =

kk

hD

dM(q)
dq

(r − r∗)
h2q

, (3.21)

which is usually expressed as

∇rW(r − r∗, h) = (r − r∗)F(q) , (3.22)

F(q) =
kk

hD+2 q
dM(q)

dq
. (3.23)

The form of the kernel function is not arbitrary, but should satisfy a minimum set of require-
ments (Liu and Liu, 2003):

1. It should be normalized: ∫
Ω

W(r − r∗, h)dV∗ = 1 . (3.24)

2. It should be compactly supported, i.e.

W(r − r∗, h) = 0 ∀ ‖r − r∗‖ > κh , (3.25)

where κ is used to adjust the spread of the smoothing function. Therefore, q ∈ [0, κ] for
W , 0.

22

Chapter 3: Method

3. It should be positive within the support domain

W(r − r∗, h) > 0 ∀q ≤ κ . (3.26)

4. It should decrease monotonically, so the impact weight of particles decrease as they lay
further from the analyzed location

F(q) < 0 ∀q ≤ κ . (3.27)

5. It should converge to the Dirac delta function in the limit of h→ 0

lim
h→0

W(r − r∗, h) = δ(r − r∗) . (3.28)

6. It should be an even function, i.e. a symmetric function, so

W(r − r∗, h) = W(−r + r∗, h) , (3.29)

which is automatically satisfied when expressed as a function of M(q).

7. It should be sufficiently smooth i.e. have continuous derivatives. The higher order of con-
tinuity, the better to approximate higher derivatives of a function and be less sensitive to
particle disorder.

Multiple kernel formulations can be found in the literature, and we refer the reader to Liu and
Liu (2003) and Violeau (2012) for a detailed analysis of the most commonly used. In this research,
the C2 Wendland kernel (WC2) is used following Macià et al. (2011b), which has a 2h compact
support and the following formulation (Fig. 3.1):

M(q) =

 (1.0 − 0.5 q)4 (1.0 + 2.0 q) q ≤ 2
0 q > 2

, (3.30)

F(q) =


−

kk

hD+2 5.0 (1.0 − 0.5q)3 q ≤ 2

0 q > 2
, (3.31)

that leads to its dimensional form (Fig. 3.2)

W(r − r∗, h) =


kk

hD

(
1.0 − 0.5

‖r − r∗‖
h

)4 (
1.0 + 2.0

‖r − r∗‖
h

)
‖r − r∗‖ ≤ 2h

0 ‖r − r∗‖ > 2h

, (3.32)

∇rW(r − r∗, h) =


− (r − r∗)

kk

hD+2 5.0
(
1.0 − 0.5

‖r − r∗‖
h

)3

q ≤ 2

0 q > 2

, (3.33)

23

Chapter 3: Method

with

1D→ kk =
3
4
,

2D→ kk =
7

4π
,

3D→ kk =
21

16π
.

(a) M(q) and its derivative (b) F(q)

Figure 3.1: C2 Wendland (WC2) kernel function used

Figure 3.2: WC2 W(r − r∗, h) in 2D centered at r

3.1.3 Diffusive terms (δ-SPH correction)
In order to avoid the excessive pressure oscillations, Molteni and Colagrossi (2009) explored
adding an additional diffusive term in the smoothed continuity equation. Antuono et al. (2010,

24

Chapter 3: Method

2012) expanded this concept, formally establishing the δ-SPH scheme that we use in the SPH
sub-domain. The continuity Eq. (2.8) is written in its SPH form as

<
dρ
dt

>a = −ρa < ∇ · u >a +

(
dρ
dt

)δ−SPH

a
. (3.34)

with the new artificial diffusion term written in its general form as a function of a variable ψ such
that (

dρ
dt

)δ−SPH

a
= δ c

∑
b

hab
mb

ρb
ψab · ∇aWab . (3.35)

where δ is a parameter used to adjust the intensity of this diffusion coefficient. Like the artificial
viscosity, multiple formulations for ψ exist in the literature. We will adopt in this work the formu-
lation proposed by Cercos-Pita (2016) and Cercos-Pita et al. (2016) based on its good consistency
and conservation properties, and the fact that it doesn’t require tuning parameters:

δ c hab ψab =
∆t ρa

ρ0

(
(pb − pa)

rab

‖rab‖
2 + fL(pa, pb)

)
, (3.36)

where ∆t is the time step in the numerical scheme and fL is a correction coefficient when close to
the boundaries. Since in the coupled model presented no SPH particle interacts with a boundary,
we can drop fL from our formulation. Furthermore, we include an additional term to remove the
expected pressure difference from the body forces ∆pg, i.e. its hydrostatic component:

∆pg, ab = ρab g · rab . (3.37)

Including Eqs. (3.36)-(3.37) into Eq. (3.35), we arrive at:(
dρ
dt

)δ−SPH

a
=

∑
b

mb

ρb

∆t ρa

ρ0

(
pb + ρab g · rab − pa

) rab

‖rab‖
2 · ∇aWab . (3.38)

Based on the expression of ∇W from Eq. (3.22), we can further simplify this equation:

Fab = F
(
‖rab‖

hab

)
→ ∇aWab = rab Fab , (3.39)(

dρ
dt

)δ−SPH

a
=

∑
b

mb

ρb

∆t ρa

ρ0

(
pb + ρab g · rab − pa

)
Fab . (3.40)

Physically, Eq. (3.40) opposes the natural density change from the pressure jump1, effectively
suppressing the induced sound wave and smoothing the density field. The main caveat of this
formulation is its lack of symmetry, i.e. the effect from particle a on particle b is different than that
from b on a. However, since ρa ≈ ρb ≈ ρ0, this differences can be negligible (Cercos-Pita et al.,
2016).

1 pb > pa =⇒ ρb > ρa → ρa ↑ , ρb ↓ to reach equilibrium. However, since Fab < 0 =⇒
(

dρ
dt

)δ−S PH

a
< 0

25

Chapter 3: Method

3.1.4 δ-SPH scheme used
The δ-SPH formulation is used to approximate the spatial derivatives in the Navier–Stokes govern-
ing Eqs. (2.8)-(2.9). As a result, we obtain a set of ODEs used in the SPH sub-domain to compute
the numerical solution.

The only special treatment is applied to the pressure gradient, following the common practice
in SPH. Rather than the expansion used for the general gradient formulation in Eq. (3.9), the
following approach is used here:

∇p
ρ

= ∇

(
p
ρ

)
+

p
ρ2∇ρ , (3.41)

<
∇p
ρ

>a =
∇pa

ρa
=

∑
b

mb

(
pa

ρ2
a

+
pb

ρ2
b

)
∇aWab , (3.42)

where the direct smoothing relation from Eq. (3.8) has been used to smooth the RHS terms of
Eq. (3.41). The resulting approximated pressure gradient does not vanish for constant fields, but it
conserves exactly linear and angular momentum as the force on a due to b is equal and opposite to
the force on b due to a. (Monaghan, 2005b; Colagrossi et al., 2009).

After we take into consideration all the expressions derived in the previous sections, the evolu-
tion equations of the final δ-SPH scheme used, for the a-th particle, read:

dρa

dt
= −ρa∇ · ua +

∑
b

mb

ρb

∆t ρa

ρ0

(
pb + ρab g · rab − pa

)
Fab ,

dua

dt
= ga −

1
ρa

∑
b

mb

(
pa

ρ2
a

+
pb

ρ2
b

)
rab Fab

−
∑

b

(
ν 2(D + 2) + α hab c

)
mb

ρab

ρa ρb

uab · rab

‖rab‖
2 rab Fab ,

dra

dt
= ua ,

(3.43)

with

ν , 0 =⇒ α = 0 ,

−ρa∇ · ua =


∑

b

mb uab · rab Fab ρ0,a = ρ0,b ,

ρa

∑
b

mb

ρb
uab · rab Fab ρ0,a , ρ0,b ,

(3.44)

pa =


c2 (ρa − ρ0) + p0 γ = 1 ,

c2ρ0

γ

[(
ρa

ρ0

)γ
− 1

]
+ p0 γ , 1 ,

(3.45)

(
ha

h0

)D

=
ρ0

ρa
. (3.46)

By default we use Eq. (3.13) to compute the divergence of the velocity, since densities cancel
leading to a simpler and more robust formulation. However, when two or more fluids are present

26

Chapter 3: Method

with large density ratios,2 Eq. (3.13) is more accurate since it involves explicitly the density in the
summation (Colagrossi, 2005). The artificial viscosity component is only applied in inviscid flows,
as otherwise it will just unnecessarily modify the real fluid viscosity.
ρ0 and ν are set based on the fluid properties. p0 is a background pressure, useful for avoiding

possible negative pressures. It is set to zero for free-surface flows. c is selected following the
guidelines from Sec. 2.3, and h0 is the reference smoothing length. Defining the particle size as

∆xa = (Va)1/D =

(
ma

ρa

)1/D

(3.47)

for particle a, we specify the reference smoothing length as a multiple of the particle size at the
reference pressure to capture an adequate number of neighbors. In the present work:

h0 = 2 ∆xa,0 = 2
(
ma

ρ0

)1/D

, (3.48)

that corresponds to an average number of particles in the kernel support of about 50. The smoothing
length may vary slightly from the reference value h0 along the simulation for each particle so that
the number of neighbors remains approximately constant.

2Within one fluid domain, no large density changes are expected based on the weakly compressible assumption
as equation of state. Therefore, the large jumps in density between neighboring particles should only be caused by
different fluid types

27

Chapter 3: Method

3.2 VPH scheme

3.2.1 General
In a Voronoi tessellation (dual construction of a Delaunay triangulation), a polyhedral volume is
assigned to each particle, which encompasses the space closer to that particle than to any other.
By itself, it is a pure geometrical construction based only on the location of the particles. Various
optimized algorithms for its generation are already available, as presented in Sec. 1.3.3. In this
work, the open-source C library qHull is used for its good performance and scalability to 3D and
higher dimensions (Barber et al., 1996). As graphically shown in Fig. 3.3, the resulting Voronoi
tessellation for a D-dimensional space is characterized by:

Nodes, given by their set of coordinates XV .

Faces, where each face represent the contact surface between two neighbor particles. It is or-
thogonal to the vector connecting both particles, and placed half-way between them. Each
Voronoi face is a simplex, i.e. a D-dimensional triangle, and therefore consists always of a
set of D nodes. They are given by

• Face connectivity list, specifying the nodes linked to each face, FV .

• Face particles, i.e, set of 2 particles linked to each face, FP.

Cells, given by the set of faces that delimit the polyhedral volume associated to each cell, CF .
Note that each particle cell can have different number of associated faces.

Voronoi Cells

Voronoi Faces

Voronoi Nodes

Particles

Delaunay
triangulation

Figure 3.3: Voronoi tessellation

Based on this partition of the fluid domain, Serrano and Español (2001) devised a methodology
to calculate the spatial derivatives, with many similarities to SPH. Later, Hess and Springel (2010)
applied this concept to solve for fluid flows, formally establishing the basis for Voronoi particle

28

Chapter 3: Method

hydrodynamics (VPH). The method starting point is defining a smoothing function χ linked to a
given cell a (Flekkøy et al., 2000), such that

χa(ra − r∗, h) =

exp
(
−
‖ra − r∗‖2

2 h2

)
∑

b

exp
(
−
‖rb − r∗‖2

2 h2

) . (3.49)

Taking its limit, we arrive at the Voronoi characteristic function:

lim
h→0

χa =
∏

b

H (‖ra − r∗‖ − ‖rb − r∗‖) (3.50)

where H is the Heaviside step function in this case. Similar to the Dirac delta in SPH where we
were looking at a single point, in this case this function becomes one within the Voronoi cell a and
zero everywhere else. Following a similar approach to SPH, we can use this Voronoi characteristic
function to determine an approximation of the differential operators. The formal derivation is not
trivial, and we refer the reader to the work by Serrano and Español (2001) and Serrano (2002).

Conceptually, we use the cell information as a unique domain of integration for each particle,
so we can approximate any field value at a particle a location as a volume average on the given
cell, [f]a, such that

[f (r)]a =
1
Va

∫
Va

f (r∗) dV∗ , (3.51)

where Va is determined from the volume of the Voronoi cell (Appendix D.1). Unlike smoothing,
this approach does not provide a continuous field based on the discrete set of particles. The particle
approximation in this case turns into approximating the value of f (r) as constant within the cell:

f (r) = f (ra) ∀r ∈ Va . (3.52)

Equation (3.51) becomes trivial for f , but provides a starting point to evaluate the derivatives.

[∇ f (r)]a =
1
Va

∫
Va

∇ f (r∗) dV∗ . (3.53)

For consistency, we will follow the same simplified notation convention of SPH (Sec. 3.1.1), with
fa = f (ra) = [f (r)]a and ∇ fa = ∇ f (ra) = [∇ f (r)]a in this case.

If we use the divergence theorem, we’ll arrive at [∇ f (r)]a = 1
Va

∫
Sa

f (r∗) dS∗, where S indicates
the face surfaces that enclose the cell. This approach however leaves us with the problem of
evaluating f at the faces, where its value is discontinuous since it is shared by two neighboring
cells. Alternatively, if we start by applying the divergence theorem on (1 · r)∇ f (r) following Hess
and Springel (2010), where 1 indicates an arbitrary constant unit vector, we show in Appendix B
how the following equality is valid:∫

Va

∇ f (r∗) dV∗ =

∫
Sa

r∗
(
∇ f (r∗) · dS∗

)
−

∫
Va

r∗ ∇2 f (r∗)dV∗ . (3.54)

29

Chapter 3: Method

We can subdivide the integral over Sa as a summation over each individual cell face Sab, whose
normal vector is precisely the unit vector pointing from particle a to particle b (see Fig. 3.4).

dSab = eba dSab , (3.55)

eba =
rb − ra

‖rb − ra‖
= −eab . (3.56)

Furthermore, if the field values are sufficiently smooth we can assume a linear approximation for
the gradient at each cell face as

∇ f (r∗)|Sab
≈

fb − fa

‖rb − ra‖
eba =

fab

‖rab‖
eab . (3.57)

Under this smooth fields approximations, and if the particles fall close to the centroid of the cells,
the volume integral on the RHS of Eq. (3.54) can be neglected. Based on these assumptions,
Appendix B summarizes the derivation presented by Hess and Springel (2010), showing how we
arrive at the following approximation for the gradient operator:

∇ fa =
1
Va

∑
b,a

Aab fab

[
eab

2
−

cab

‖rab‖

]
, (3.58)

where the neighboring particles b in VPH are defined as those with common cell faces with particle
a, Aab is the area of cell face between particles a and b (Appendix D.2), and cab is a vector going
from the midpoint between a and b to the centroid of their associated face, as shown in Fig. 3.4.

b
a

Figure 3.4: Section of a Voronoi diagram, for a set of particles marked with asterisks, showing the
vectors eba and cab.

It is straightforward to extend this formulation to compute the divergence of a vector field:

∇ · f a =
1
Va

∑
b,a

Aab f ab ·

[
eab

2
−

cab

‖rab‖

]
. (3.59)

We must also highlight that, for linear fields, these first order differential operators are exact,
independently of the particle locations (Serrano and Español, 2001), which is a significant im-
provement from the SPH approach.

30

Chapter 3: Method

Like in SPH, the Laplacian operator of a vector field is approximated following an alternative
approach. Starting with the general volume averaged expression and using directly the divergence
theorem in this case,[

∇2 f (r)
]

a
=

1
Va

∫
Va

∇2 f dV∗ =
1
Va

∫
Sa

∇ f · dS∗ =
1
Va

∑
b,a

∫
Sab

∇ f · eba dS∗ . (3.60)

We can interpret the dot product inside the integral as the directional derivative of f . Same as in
the derivation for the gradient, we can use the linear approximation for the gradient in Eq. (3.57)
so

∇ f · eba =
f ab

‖rab‖
eab · eba = −

f ab

‖rab‖
, (3.61)

which leads to the following estimate for the Laplacian operator:

∇2 f a = −
1
Va

∑
b,a

Aab
f ab

‖rab‖
. (3.62)

The order of this formula is not clearly established in literature. Serrano (2006) used it to
simulate a shear stationary flow, showing that the schemes display extra dissipation when particles
are in disordered configurations while it renders accurate results for orderly ones. For an extensive
discussion on the properties of the Laplacian operator in Voronoi and Delaunay tessellations, the
reader is referred to Duque et al. (2017) and references therein.

3.2.2 Artificial viscosity
Same as in the SPH scheme, an artificial viscosity term is necessary for inviscid problems to
achieve stability. We showed in Appendix A (Eq. (A.12)) how the AV in the SPH formulation can
be expressed in the continuum form as(

du
dt

)AV

≈
1

2(D + 2)
α h c

[
∇2u + 2∇(∇ · u)

]
.

The component linked to ∇ · u in weakly compressible flows is usually negligible. However,
under certain flows ∇2u ≈ 0, so we will keep both components for the artificial viscosity formula-
tion. Appendix C discusses the stability of a simple uni-dimensional configuration, showing why
this numerical damping term is needed and demonstrating its chosen order of magnitude (αhc).

If we follow the general VPH approach, the approximation of ∇(∇ · u) would lead to dou-
ble summations that are computationally expensive3. Same as with the Laplacian operator, we

3Combining Eqs. (3.58) and (3.59), we would arrive at

∇
(
∇ · f a

)
=

1
Va

∑
b,a

Aab (∇ · fa − ∇ · fb) ·
[
eab

2
−

cab

‖rab‖

]

=
1
Va

∑
b,a

Aab

 1
Va

∑
b,a

Aab f ab ·

[
eab

2
−

cab

‖rab‖

]
−

1
Vb

∑
c,b

Abc f bc ·

[
ebc

2
−

cbc

‖rbc‖

] [eab

2
−

cab

‖rab‖

]
where c goes through all the neighbors of each neighboring particle b

31

Chapter 3: Method

approach this component from a simpler perspective, leading to an alternative expression much
easier to compute. Starting again from the volume averaged expression, we can apply directly the
divergence theorem, leading to

[∇(∇ · u)]a =
1
Va

∫
Va

∇ (∇ · u) dV∗ =
1
Va

∫
Sa

(∇ · u) dS∗ = −
1
Va

∑
b,a

∫
Sab

(∇ · u) eab dS∗ . (3.63)

Looking at the physical meaning of the divergence of the velocity, from the continuity Eq. (2.8)
we see how it represents the change of volume of the cell.

∇ · u = −
1
ρ

dρ
dt

= −
V

m
d
dt

(m
V

)
=

1
V

dV
dt

. (3.64)

Since the divergence is evaluated on the faces in this case, we can interpret it as how each face
contributes to the overall change of volume, i.e. whether the face moves towards the particle or
away from it. Each face is placed halfway between the particle a and its neighbor b in a Voronoi
diagram, allowing us to determine its relative velocity to particle a as,

uface =
ub + ua

2
− ua =

ub − ua

2
. (3.65)

We can use Eq. (3.65) to approximate the change of cell volume due to the face movement as

Vface ≈ Aab
‖rb − ra‖

2
, (3.66)

dV
dt face

≈
Aab ‖dr‖ba

dt
= Aab

dr · eba

dt
= Aab uface · eba = Aab

uba · eba

2
. (3.67)

Substituting it into Eq. (3.64), we can approximate the divergence on the face as

(∇ · u)face ≈
uab · eab

‖rab‖
, (3.68)

which substituted in Eq. (3.63) yields the VPH approximation for the gradient of the divergence:

[∇(∇ · u)]a = −
1
Va

∑
b,a

Aab
uab · eab

‖rab‖
eab . (3.69)

The last step is using the derived expressions for the differential operators in Eq. (A.12) for the
artificial viscosity to determine its form under the VPH methodology(

du
dt

)AV ,VPH

a
=

1
2(D + 2)

α h c

− 1
Va

∑
b,a

Aab
uab

‖rab‖
− 2

1
Va

∑
b,a

Aab
uab · eab

‖rab‖
eab

 , (3.70)

or in a more compact form, and considering that h can vary(
du
dt

)AV ,VPH

a
= −

1
Va

∑
b,a

Aab
α hab c

2(D + 2)

[
uab

‖rab‖
+ 2

(
uab

‖rab‖
· eab

)
eab

]
. (3.71)

Strictly, the smoothing length is not present in the VPH scheme and it should be replaced by the
particle size ∆xa = (ma/ρa)1/D, as done in Appendix C. However, h is kept in order to be consistent
with the δ-SPH formulation and facilitate the coupling later.

32

Chapter 3: Method

3.2.3 Diffusive terms
The density can be estimated from the Voronoi cell. However, it is more beneficial to use the
continuity equation to evolve it in time, so we can include a diffusive term to reduce the high-order
pressure oscillations as discussed in SPH (Sec. 3.1.3). The same formulation used in the δ-SPH
scheme can be extended to the VPH, although no previous reference in the literature was found.
Comparing the SPH and VPH formulations, we can extract the following analogy:∑

b

mb

ρb
(. . .)∇aWab ↔

1
Va

∑
b,a

Aab (. . .)
[
eab

2
−

cab

‖rab‖

]
, (3.72)

which applied to diffusive term used in SPH (Eq. (3.38)) leads to(
dρ
dt

)δ−VPH

a
=

1
Va

∑
b,a

Aab
∆t ρa

ρ0

(
pb + ρab g · rab − pa

) rab

‖rab‖
2 ·

[
eab

2
−

cab

‖rab‖

]
. (3.73)

Noting that eab = rab
‖rab‖

is orthogonal to cab (so rab · cab = 0), we can simplify this equation and
arrive at the final expression for the diffusive term used:(

dρ
dt

)δ−VPH

a
=

1
Va

∑
b,a

Aab
∆t ρa

ρ0

(
pb + ρab g · rab − pa

)
2 ‖rab‖

. (3.74)

As a final remark, we should point out that since density is evolved in time unlike the volume
that is computed from the Voronoi diagram, both values are not related. We can use the cell volume
from the tessellation to determine a Voronoi density estimate, ρ̌, but it will not match the evolved
density ρ.

ρa , ρ̌a =
ma

Va
. (3.75)

3.2.4 δ-VPH scheme used
Based on the previous expressions, we can again approximate the spatial derivatives in the Navier–
Stokes governing Eqs. (2.8)-(2.9), reducing them to a set of ODEs used in the Voronoi sub-domain
to evolve the flow variables.

Like in SPH, the pressure gradient component receives special treatment to ensure that it is
pairwise antisymmetric, i.e. the force on a due to b is equal in magnitude and opposite to the force
on b due to a, and therefore conserve angular and linear momentum. Under the VPH this is fairly
simple, since a close domain always satisfies∑

b,a

Aabeab = 0 . (3.76)

By subtracting pa
∑

b,a Aab eab from Eq. (3.58), we arrive at the desired expression for the pressure
gradient used (Serrano and Español, 2001; Hess and Springel, 2010),

∇pa = −
1
Va

∑
b,a

Aab

[
(pa + pb)

eab

2
+ (pa − pb)

cab

‖rab‖

]
, (3.77)

33

Chapter 3: Method

Finally, substituting the definitions presented for the differential operators, we obtain the evolu-
tion equations of the δ-VPH scheme proposed, which read for the a-th particle

dρa

dt
= −

ρa

Va

∑
b,a

Aab uab ·

[
eab

2
−

cab

‖rab‖

]
+

1
Va

∑
b,a

Aab
∆t ρa

ρ0

(
pb + ρab g · rab − pa

)
2 ‖rab‖

,

dua

dt
= ga +

1
ρaVa

∑
b,a

Aab

[
(pa + pb)

eab

2
+ (pa − pb)

cab

‖rab‖

]
−

ν

Va

∑
b,a

Aab
uab

‖rab‖

−
1
Va

∑
b,a

Aab
α hab c

2(D + 2)

[
uab

‖rab‖
+ 2

(
uab

‖rab‖
· eab

)
eab

]
,

dra

dt
= ua ,

(3.78)

with ν , 0 =⇒ α = 0, and using the same equation of state than in δ-SPH,

pa =


c2 (ρa − ρ0) + p0 γ = 1 ,

c2ρ0

γ

[(
ρa

ρ0

)γ
− 1

]
+ p0 γ , 1 .

Va and Aab are computed from the Voronoi tessellation (Appendix D).

34

Chapter 3: Method

3.3 Coupling

3.3.1 SPH & VPH Sub-domains
The SPH and VPH schemes described in the previous sections are very similar, and their coupling
arises as a natural way of capturing the advantages of each one. VPH reduces the interaction
between particles to the immediate neighbors, i.e. those with shared faces. This is beneficial to
enforce the boundary conditions if we are able to map exactly the boundaries with cell faces, as
discussed in Secs. 3.4.2 and 3.4.3. On the other hand, SPH manages efficiently free-surfaces with
large deformations.

We define two sub-domains in the fluid based on the distance to the closest boundary, d, com-
puted as explained in Appendix D.5. VPH is used in the sub-domain closer to the boundaries, while
SPH is used away from the boundaries. There is some overlapping between the two sub-domains
to allow for a smooth transition between the two methods, so we distinguish three separate zones
as shown in the sketch presented in Fig. 3.5:

Voronoi : Zone next to the boundaries where only VPH is used.

Buffer : Overlapping zone between both sub-domains, where variables are computed using both
VPH and SPH.

SPH : Zone away from the boundaries where only SPH is used.

Figure 3.5: Sketch with definition of Voronoi, SPH and buffer zones.

The width of the Voronoi zone is such that all particles outside the Voronoi zone will be at
distance to the closest solid boundary larger than κhmax, with κ being the factor that characterizes
the support radius of the kernel4 and hmax the largest smoothing length. Consequently, no particle
belonging to the SPH sub-domain (buffer and SPH) will have any interaction with the solid bound-
aries, i.e. we don’t need to account for solid boundary conditions in the SPH formulation.

4The C2 Wendland kernel with κ = 2 is used in this work (Sec. 3.1.2), so the limit is set to 2 hmax

35

Chapter 3: Method

The thickness of the buffer zone, lbuffer, is also at least κhmax, so no particle in the SPH zone
interacts with a particle in the Voronoi zone. However, it can be extended to achieve a smoother
transition between methods, as discussed in Sec. 3.3.3. Finally, the SPH zone is simply the rest of
the fluid domain.

At each time step, we will identify each particle as Voronoi, buffer, or SPH based on the zone
where it lays, which depends on the position of the boundaries at that time step. We should stress
that the particles themselves are just interpolation points where physical variables are evaluated
(p, ρ, u, dρ/dt, etc.), and are not linked to any formulation. In this way, a “Voronoi particle” can
become a “buffer particle” as it moves away from the boundary, and once it crosses the buffer
become an “SPH particle”, and vice versa.

3.3.2 Fields in the buffer zone
First, we should re-state that the value of the different field variables at the particle locations is
unique, independent of the formulation used to compute them. In the buffer zone, however, fields
are evaluated with both SPH and VPH so they need to be combined. Therefore, the value of a
certain field A at a particle a when it is in the buffer is defined as:

Aa := ωa ASPH
a + (1 − ωa) AVor

a , (3.79)

where ASPH
a is the field value obtained through the SPH interpolation, AVor

a is the field value obtained
with the VPH interpolation, and ω is a weight defined so that the coupling is C1. We must stress
that this condition is a first best guess, inspired by the h2 order of the SPH interpolation studied in
detailed by Quinlan et al. (2006). However, other alternatives are of course possible. To this aim,
the value Aa should tend to AVor

a as the particle gets close to the Voronoi zone and should tend to
ASPH

a as the particle gets close to the SPH zone. A factor q is defined using the distance da between
the particle a and the closest solid wall:

qa :=
da − κhmax

lbuffer
, (3.80)

and ωa is the output of a third-grade polynomial in ra (Fig. 3.6), which allows us to have the
required C1 class for the coupling scheme in Eq. (3.79):

ωa := q2
a (3 − 2 qa) . (3.81)

We have seen in the VPH expressions for the differential operators how we are looking at the
interaction of a particle a with its neighbors b. Since each particle has a different weight, the
remaining question is which one to use. Two possible approaches are considered:

1. Calculate the interaction with all neighbors and apply the weight in the final value of the
derivative,

∇Aa = ωa ∇ASPH
a + (1 − ωa)∇AVor

a , (3.82)

2. Average weights in the local interaction between particles a and b,

∇Aa =
∑
b,a

∇Aab =
∑
b,a

ωab ∇ASPH
b→a + (1 − ωab)∇AVor

b→a , (3.83)

36

Chapter 3: Method

Figure 3.6: Coupling weight function ω as a function of its relative position across the buffer, q

The first option seems simpler, but is not conservative since the force on a due to b is different
than on b due to a, even if the formulation is pair-wise antisymmetric in SPH and VPH. Looking
at the pressure force as an example,

f p, b→a = ma
∇pab

ρa
=

ma

ρa

[
ωa ∇pSPH

b→a + (1 − ωa)∇pVor
b→a

]
,

f p, a→b = mb
∇pba

ρb
=

mb

ρb

[
ωb ∇pSPH

a→b + (1 − ωb)∇pVor
a→b

]
.

(3.84)

Both SPH and VPH formulations for ∇pa (Eqs. (3.41)) and (3.77)) satisfy

ma
∇pSPH

b→a

ρa
= −

mb

ρb
∇pSPH

a→b , (3.85)

ma
∇pVor

b→a

ρa
= −

mb

ρb
∇pVor

a→b . (3.86)

In order to be conservative, f p, b→a and f p, a→b should cancel to conserve momentum, but due to
the different weights it is not the case

∆ f ab = f p, b→a + f p, a→b =
ma

ρa
(ωa − ωb)

(
∇pSPH

b→a − ∇pVor
b→a

)
, 0 . (3.87)

The second option is fully pair-wise antisymmetric and therefore conservative overall. However,
the individual components from SPH and VPH are unbalanced due to the different weight for each
neighbors. For example, we can interpret this fact in SPH as a modification of the kernel which is
no longer a symmetric function. Neighbors further from the boundary have a bigger impact with
no physical reason. Likewise, the neighbor contribution in VPH is not just linked to the face area,
becoming more relevant those neighbors closer to the boundary.

Ideally, these deviations should cancel each other. However, this is not the case due to the
different characteristic lengths of VPH (∆x) and SPH (κh). Consequently, the number of neighbors
involved is different, with different individual contributions in each method. We can quantify the

37

Chapter 3: Method

order of this deviation, O(∆∇Aa), by subtracting both approaches

O(∆∇Aa) =

∣∣∣∣∣∣∣(ωa ∇ASPH
a + (1 − ωa)∇AVor

a

)
−

 ∑
b:SPH

ωab ∇ASPH
b→a +

∑
b:VPH

(1 − ωab)∇AVor
b→a


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣ ∑b:SPH

ωa − ωb

2
∇ASPH

b→a −
∑

b:VPH

ωa − ωb

2
∇AVor

b→a

∣∣∣∣∣∣∣ . (3.88)

Based on the formulation used for the weight,

max |ωa − ωb|Vor ≤ |ωa − ωb|SPH ,

since the smoothing compact support is larger than the particle size so the possible maximum
distances between SPH neighbors are equal or larger than in VPH (κhmax > ∆x). We can therefore
determine an upper bound to this deviation as

O(∆∇Aa) ≤
max |ωa − ωb|SPH

2

 ∑
b:SPH

∇ASPH
b→a −

∑
b:VPH

∇AVor
b→a

 =
max |ωa − ωb|SPH

2
O

(
(κh)2

)
, (3.89)

where we have directly applied the known second order of the SPH and VPH approximations. If
this approach is followed to compute the derivatives, we should limit this deviation to at least an
order of magnitude lower than O

(
(κh)2

)
to avoid loosing accuracy. We achieve this by adjusting

the buffer length to limit the maximum weight variations, as discussed in Sec. 3.3.3 below, such
that:

O(∆∇Aa) ≤ 0.1O
(
(κh)2

)
=⇒

max |ωa − ωb|SPH

2
≤ 0.1 . (3.90)

3.3.3 Length of the buffer zone
We can take the kernel compact support radius as an upper bound for the maximum difference in
the distance to the boundary between a and b

max |da − db| ≤ κhmax . (3.91)

Without any loss of generality since the sub-indexes can be interchanged, we can assume da >
db → ωa > ωb, and remove the absolute values to determine an upper bound for the maximum
expected weight differences

da ≤ db + κhmax . (3.92)

Based on Eq. (3.80), we can express the relative position in the buffer of particle b as

qa =
da − κhmax

lbuffer
≤

db − κhmax

lbuffer
+
κhmax

lbuffer
= qb +

κhmax

lbuffer
. (3.93)

Naming ε = κhmax
lbuffer

, we can use this expression to determine the maximum expected weight differ-
ence for the coupling scheme used as

ωa − ωb ≤ (qb + ε)2(3 − 2(qb + ε)) − q2
b(3 − 2qb)2

≤ ε2(3 − 2 ε) + 6qbε(1 − ε − qb) ,

38

Chapter 3: Method

with ε ∈ [0, 1], qb ∈ [0, 1], and qb + ε ≤ 1 as shown in Fig. 3.7, and whose maximum for a given ε
occurs at

∂

∂qb
(ωa − ωb) = −6ε (ε + 2qb − 1) = 0 =⇒ qb =

1
2

(1 − ε) , (3.94)

max |ωa − ωb|SPH ≤
ε

2

(
3 − ε2

)
. (3.95)

Figure 3.7: Upper bound of weight differences between neighbor particles.

We finally use this upper bound for |ωa − ωb| in Eq. (3.90), to determine the minimum buffer
length

max |ωa − ωb|SPH

2
=
ε(3 − ε2)

4
≤ 0.1 , (3.96)

which, to the leading order, yields the following minimum buffer length5,

3
4
ε =

3
4
κhmax

lbuffer
< 0.1 =⇒ lbuffer ≥ 7.5 κhmax . (3.97)

Based on the previous considerations, the following practices have been followed in this work:

Compute derivatives independently if a non-conservative scheme is acceptable for the problem
solved (option 1). The buffer length is set to its minimum ,

lbuffer = κhmax ,

to minimize the area where forces between particles are not balanced, as well as the extra
computational cost from calculating the field variables with both methods.

Average weights between neighbors to keep a conservative scheme (option 2). The buffer length
is set as

lbuffer = 8 κhmax

to maintain the order of each method as discussed above.

5Note that the expression obtained is based on the coupling scheme followed (Eq. (3.81)), and should be revised if
a different scheme is used.

39

Chapter 3: Method

3.4 Boundary conditions (BCs)

3.4.1 Geometric definition requirements
• All surfaces bounding the fluid domain are discretized into a set of D − 1 dimensional trian-

gles. In this way, they are always flat surfaces, same as the Voronoi faces.

• The nodes that define each face are oriented so their normal vector points towards the fluid,
as defined in Appendix D.3.

• No particle can interact with more than one boundary node. Therefore, an upper bound for
the largest admissible particle size is established as half the length of the smallest boundary
edge.

3.4.2 Convex solid boundaries
Under the coupled scheme, only Voronoi particles interact with solid boundaries. Consequently,
the solid BCs need to be imposed only within the VPH formulation. The main challenge lies
on achieving that the solid boundary becomes the actual boundary of well-defined Voronoi cells.
The main topological limitation is that Voronoi cells are always convex when observed from the
fluid particle. We must then distinguish between convex and concave adjacent boundary faces as
explained in Appendix D.7, since only the convex ones can be overlapped with “pure” Voronoi cell
faces. Concave adjacent faces require a different treatment, discussed in Sec. 3.4.3.

Voronoi diagrams are unbounded by definition, representing a partition of the complete spatial
domain. Those particles physically in contact with the boundary will result in Voronoi cells that
extend beyond the fluid domain, and need to be bounded. We can simply do this by noticing that in
a symmetric configuration of particles, the Voronoi cells should be symmetric as well. Therefore,
the symmetry plane should be mapped with cell faces since it cannot be crossed. Taking advantage
of this fact, the boundary faces are converted into symmetry planes, and effectively become part
of the tessellation, by creating a set of points that reflect the particles in the boundary nearby, as
shown in Fig. 3.8.

(a) Unbounded cells (b) Bounded cells

Figure 3.8: Voronoi diagrams in the presence of convex boundaries

Unlike ghost particles in SPH, these reflected points are used only to create the Voronoi tessel-
lation, but do not play any role in the mathematical treatment of the flow fields. We’ll refer to them

40

Chapter 3: Method

as boundary virtual points, and identify them with a superscript B. A priori, we cannot know which
fluid particles are in contact with the boundary, so all particles within a distance threshold are re-
flected6. Each boundary virtual point is associated to one boundary face, so when it is identified as
a neighbor we know the type of solid BC to be applied. In order to show how they are imposed, a
sample particle a adjacent to a boundary, and its reflected boundary virtual point aB will be used
as an example7, as displayed in Fig. 3.9.

B

aB

a

AaaB

nB

Figure 3.9: Section of a Voronoi diagram close to a solid boundary.

Once the solid boundaries become part of the perimeter of the Voronoi cells, the BCs from
Sec. 2.1 can be enforced on the related terms in the VPH formulation (Sec. 3.2.4). This is done
by expressing the required field values at aB as functions of the known physical properties at the
boundaries. We should recall that linear approximations were used to derive the VPH differen-
tial operators under the assumption of smooth fields (Sec. 3.2.1, Appendix B). Under the same
assumption, we arrive at the following relations:

Boundary velocity, uB. Two alternatives can be applied (Sec. 2.1):

1. No-slip BC: the flow velocity tends to the boundary velocity as a fluid element gets
closer to the boundary. To achieve this:

uaB = 2 uB − ua , (3.98)
uaaB = ua − uaB = 2(ua − uB) = 2 uaB . (3.99)

2. Free slip BC: the normal velocity tends to the boundary normal velocity as a fluid
element gets closer to the boundary. Eq. (3.98) is then projected on the boundary
normal nB = eaaB , while the tangential component, uaB, t, remains unaltered:

uaB · nB = (2 uB − ua) · nB , (3.100)
uaB, t = ua, t = ua − (ua · nB)nB . (3.101)

6In this work, the condition used is da < ∆x0. Note that the distance to the boundaries needs also to be calculated
to determine if it is a Voronoi, buffer, or SPH particle.

7Note that following the requirements in Sec. 3.4.1, the solid boundary is discretized as a polygonal line in 2D and
no more than one boundary node can be covered by the cell.

41

Chapter 3: Method

uaaB should then be aligned with the normal vector, so

uaaB = (2 uaB · nB) nB =⇒

 uaaB · eaaB = 2 uaB · nB

uaaB · caaB = 0
(3.102)

Boundary pressure, pB. The pressure gradient is obtained by projecting the momentum equation
on the boundary normal to enforce the following Neumann condition (Marrone et al., 2011):

∂p
∂nB

= ρ

[
g · nB −

duB

dt
· nB + ν∇2u|B · nB

]
, (3.103)

with the last term being generally negligible8. Noting that nB is oriented towards the fluid,
and using the centroid of the cell face as the representative point to account for hydrostatic
correction, we approximate the constant pB at the face by linear extrapolation as:

pB = pa −
∂p
∂nB

‖raaB‖

2
+ ρa g · caaB = pa − ρa g ·

(raaB

2
− caaB

)
+ ρa

duB

dt
·

raaB

2
, (3.104)

which leads to express the pressure at the boundary virtual point as

paB = 2pB − pa = pa − ρa

[(
g −

duB

dt

)
· raaB − 2g · caaB

]
. (3.105)

Using these relations on the corresponding elements in the VPH evolution equations, given in
Eq. (3.78), we arrive at the following contributions from the solid boundaries to the time deriva-
tives:

1. No-slip BC, uaaB = 2(ua − uB) = 2 uaB

(
dρa

dt

)VPH

aB→a
=

ρ∇·u︷ ︸︸ ︷
−
ρa

Va
AaaB uaaB ·

(
nB

2
−

caaB

‖raaB‖

)
+

diffusive term, δ−VPH︷ ︸︸ ︷
1
Va

AaaB
∆t ρa

ρ0

ρa

2
duB

dt
· nB ,

(
dua

dt

)VPH

aB→a
=

−
∇p
ρ︷ ︸︸ ︷

1
ρaVa

AaaB

[
ρa

((
g −

duB

dt

)
· raaB − 2g · caaB

) (
nB

2
−

caaB

‖raaB‖

)
+ pa nB

]
−

ν

Va
AaaB

uaaB

‖raaB‖︸ ︷︷ ︸
ν∇2u

−
1
Va

AaaB
α ha c

2(D + 2)

[
uaaB

‖raaB‖
+ 2

(
uaaB

‖raaB‖
· nB

)
nB

]
︸ ︷︷ ︸

artificial viscosity

,

(3.106)

2. Slip BC, uaaB = (2 uaB · nB) nB

(
dρa

dt

)VPH

aB→a
= −

ρa

Va
AaaB uaB · nB +

1
Va

AaaB
∆t ρa

ρ0

ρa

2
duB

dt
· nB ,(

dua

dt

)VPH

aB→a
=

1
ρaVa

AaaB

[
ρa

((
g −

duB

dt

)
· raaB − 2g · caaB

) (
nB

2
−

caaB

‖raaB‖

)
+ pa nB

]
−
ν

Va
AaaB

uaaB

‖raaB‖
−

1
Va

AaaB
α ha c

2(D + 2)
3 uaaB

‖raaB‖
,

(3.107)

8From the no-penetration BC, the normal velocity to the wall should show very small variations

42

Chapter 3: Method

3.4.3 Concave solid boundaries
When a particle is in the proximity of two or more adjacent concave faces (Appendix D.7-D.8),
the previous approach of simply adding extra points is not feasible. We know that the resulting
cell will be concave, but the Voronoi algorithm can generate only convex cells. In fact, if we still
add the boundary virtual points, the resulting symmetry planes will intersect the cell as shown in
Fig. 3.10, which is clearly erroneous.

aB2

a

B2

B1

aB1

Figure 3.10: Concave cell with boundary virtual nodes

Therefore, when a particle is near two or more concave boundary faces, it does not generate
any boundary virtual points. The resulting convex Voronoi cell, which extends beyond the fluid
domain, is trimmed with the boundary after the tessellation is generated. The intersection algorithm
used proceeds as follows:

1. Check if a particle is in the proximity of boundaries but has no boundary virtual points.
We’ll refer to particles that satisfy this condition as concave boundary particles. If not, no
trimming is required and goes to the next particle.

2. Extracts the faces shared with neighbors that are also concave boundary particles, as those
are the only ones that need to be trimmed.

3. Faces linked to neighbors with lower index have been trimmed already, so directly imports
them.

4. Determines which cell nodes are within the fluid domain, and if a boundary node falls within
the cell (the maximum particle size was limited to ensure that only one boundary node can
be covered by a particle).

5. Removes cell faces with all their nodes outside the fluid domain.

6. With the remaining cell faces, determines the intersection points between cell edges and
boundary faces as shown in Appendix D.9. We define edges as segments connecting two
nodes in one face. In 3D and higher dimensions, cell faces and edges are different, so the
intersection points between cell faces and the boundary edges need also to be calculated.

43

Chapter 3: Method

7. Based on the intersection points found, trims the existing cell faces. The possible boundary
node within the cell and the intersection points are also used to create the new faces on the
boundary that close the cell. Each resulting face should still have only D nodes, so more
than one face can be generated on the original cell face/boundary planes.

8. Updates the trimmed faces in the tessellation data, and adds the new faces and nodes found.

9. Updates the linked faces to the trimmed cell, and starts in step 1 with the next particle.

The resulting tessellation includes degenerate cells with concave faces, but maps correctly
boundaries as shown in Fig. 3.11 The next step is enforcing properly the BCs on them.

(a) Untrimmed cells (b) Trimmed cells

Figure 3.11: Voronoi diagram trimmed with concave boundary

As before, let’s use a sample particle a next to a concave boundary B. As depicted in Fig. 3.12,
the fluid particle within the cell can be on either side of the plane containing the concave boundary.
In fact, as the particle moves, it can cross this plane without crossing or even being close to the
boundary itself. This implies that at some point it could coincide with its potential boundary
virtual point, which mathematically implies that uaaB → 0 and ‖raaB‖ → 0. This scenario leads
to a singularity in the formulation used with convex boundaries (Eqs. (3.106), (3.107)), making it
numerically unstable and therefore invalid to be applied directly.

(a) (b) (c) (d) (e)

Figure 3.12: Possible scenarios of a fluid particle next to a concave boundary

Using the minimum distance to the surrounding boundaries, da (Appendix D.5), and the orthog-
onal distance to the boundary B (Appendix D.4),

da⊥B = (ra − x1) · nB , (3.108)

44

Chapter 3: Method

where x1 is the position vector of the closest node of the face, we can group the possible locations
of the particle within the cell into three main categories, as graphically shown in Fig. 3.13.

3

2

1
nB

B
1
2
3

Figure 3.13: Zones within the cell into which we can categorize the position of the particle, based
on da and da⊥B

Based on this subdivision, the following generalized formulation is proposed, tailored for each
category:

da⊥B ≥ da

Particle on the side of the boundary towards the fluid, since nB is oriented towards the fluid.
Furthermore, it falls within the orthogonal projection of the boundary so it is feasible to use
the convex formulation already derived (Eqs. (3.106)-(3.107)) by simply creating a boundary
virtual point at

raB = ra − 2 da⊥B nB =⇒

 raaB = 2 da⊥B nB ,

‖raaB‖ = 2 da⊥B .
(3.109)

0 < da⊥B < da

Still on the fluid side, but at risk of approaching the concave boundary plane without ap-
proaching the boundary face. If we go back to the derivation of the differential operators in
Appendix B, we see how

• we used the mid-point between particles as the representative point on the face, rba
2 ,

• we approximated the derivative on the face as constant and evaluated it at this mid-point
using the field values from the particles (Eq. (B.12)): ∇ f (r∗) ≈ f (rb)− f (ra)

‖rb−ra‖
eba =

fba
‖rba‖

eba.

We can revise this formulation for concave boundaries by realizing that this mid-point is not
the representative point in this case. A more logical option is choosing the closest boundary
node to the particle, x1, as shown in Fig. 3.14, to get a better estimate of the derivative:

∇ f (r∗) ≈
f (ra) − f (x1)
‖ra − x1‖

ra − x1

‖ra − x1‖
. (3.110)

Unlike with regular faces between neighbors, the field value at the face is known in this case.
Following our notation convention, we define fax1 = f (ra) − f (x1) and rax1 = ra − x1. In

45

Chapter 3: Method

nB

B

x1

a

Figure 3.14: Representative point in concave faces

addition, if we reached this case, the fluid particle falls outside of the orthogonal projection
of the boundary. The distance from the particle to x1 is precisely the minimum distance
from the particle to the boundary, da. Furthermore, its projection to nB should be precisely
the orthogonal distance, da⊥B:

‖rax1‖ = da , (3.111)
rax1 · nB = da⊥B , (3.112)

so we can write the gradient in a more compact way as

∇ f (r∗) ≈
fax1

da

rax1

da
. (3.113)

Using these new expressions in Eq. (B.13), as originally done to derive the general VPH
differential operators, we arrive at∫

Sab

(rba

2
+ r∗⊥

) fba

‖rba‖
eba · ebadS∗ →

∫
SaB

(
−da⊥B nB + r∗⊥

) fax1

da

rax1

da
· (−nB)dS∗

= fax1

da⊥B

d2
a

∫
SaB

(
da⊥B nB − r∗⊥

)
dS∗ . (3.114)

where we use the fact that rba
2 = −da⊥B nB, since it is the relative location of the orthogonal

projection in the face. Comparing it with the original formulation, we observe that(
eab

2
−

cab

‖rab‖

)
→

da⊥B

d2
a

(da⊥B nB − caB) (3.115)

Note that both formulations converge as da⊥B → da, i.e. the particle approaches the or-
thogonal projection of the boundary, since faB →

fab
2 , but now does not become singular

as da⊥B → 0. Using in Eq. (3.61) the new approximation of the gradient at the concave
boundary given in Eq. (3.113):

uab

‖rab‖
= ∇u · eab →

uax1

da

rax1

da
· nB =

da⊥B

d2
a

uax1 , (3.116)

which is directly applied to the Laplacian and the gradient of the divergence operators in
Eq. (3.62) and Eq. (3.69), respectively. Note that we have used uax1 based on the velocity of

46

Chapter 3: Method

the fluid at the boundary, ux1 , which under the slip BC is not necessary equal to boundary
velocity uB.

Finally, the pressure at the boundary in Eqs. (3.103)-(3.105) and the diffusive term from
the δ-VPH correction in Eqs. (3.73)-(3.74) need to be modified. Again, using the cell face
centroid for the hydrostatic correction combined with Eq. (3.115) leads to:

pB = pa − ρa g · (da⊥B nB − caB) + da⊥B
duB

dt
· nB , (3.117)(

pb + ρab g · rab − pa
)

‖rab‖
eab ·

(
eab

2
−

cab

‖rab‖

)
→ ρa

d3
a⊥B

d3
a

duB

dt
· nB . (3.118)

We can use these new expressions in Eq. (3.78) to obtain the final contributions for the
concave boundaries to the time derivatives:

1. No-slip BC, uax1 = ua − uB = uaB

(
dρa

dt

)VPH

B→a
=

ρ∇·u︷ ︸︸ ︷
−
ρa

Va
AaB uax1 ·

da⊥B

d2
a

(da⊥B nB − caB) +

diffusive term, δ−VPH︷ ︸︸ ︷
1
Va

AaB
∆t ρ2

a

ρ0

d3
a⊥B

d3
a

duB

dt
· nB ,

(
dua

dt

)VPH

B→a
=

−
∇p
ρ︷ ︸︸ ︷

1
ρaVa

AaB

[
ρa

(
da⊥B

(
g −

duB

dt

)
· nB − g · caB

)
da⊥B

d2
a

(da⊥B nB − caB) + pa nB

]

−
ν

Va
AaB

da⊥B

d2
a

uax1︸ ︷︷ ︸
ν∇2u

−
1
Va

AaB
α ha c

2(D + 2)
da⊥B

d2
a

[
uax1 + 2

(
uax1 · nB

)
nB

]
︸ ︷︷ ︸

artificial viscosity

.

(3.119)

2. Slip BC, uax1 = (uaB · nB) nB

(
dρa

dt

)VPH

B→a
= −

ρa

Va
AaB

d2
a⊥B

d2
a

uax1 · nB +
1
Va

AaB
∆t ρa

ρ0

ρa d2
a⊥B

d2
a

duB

dt
·

rax1

da
,

(
dua

dt

)VPH

B→a
=

1
ρaVa

AaB

[
ρa

(
da⊥B

(
g −

duB

dt

)
· nB − g · caB

)
da⊥B

d2
a

(da⊥B nB − caB) + pa nB

]

−
ν

Va
AaB

da⊥B

d2
a

uax1 −
1
Va

AaB
α ha c

2(D + 2)
da⊥B

d2
a

3 uax1 ,

(3.120)

As a final note, we should point out that even if we are using x1 as the reference point, it does
not appear explicitly in the formulation above and therefore does not need to be determined.

da⊥B ≤ 0
In this category, the particle is located behind the fluid side of the boundary. As a result,
its effect in the fluid particle behavior is indirect. Evaluating it would require some kind of
field interpolation within the cell to link the particle with the fluid area next to the boundary

47

Chapter 3: Method

face. Nevertheless, since the face should fall further from the particle than other faces where
da⊥B > 0, it shouldn’t have a significant impact. As a first approximation, we will neglect its
effect and assume da⊥B < 0 ≡ da⊥B = 0, which leads to a simplified formulation:

(
dρa

dt

)VPH

B→a
= 0 ,

(
dua

dt

)VPH

B→a
=

1
ρaVa

AaB pa nB .

(3.121)

both for slip and no-slip BCs.

In fact, almost all convex cells satisfy da⊥B ≥ da when all particles have the same size and a
shifting algorithm keeps the fluid particle close to the cell centroid, xg. The first condition leads
to neighbor particles being at a similar distance from the boundary, so their faces should be fairly
orthogonal to the boundary plane (small θ in Fig. 3.15). The second condition avoids the particles
drifting excessively towards to the faces, and therefore avoids the regions outside of this category,
marked in green in Fig. 3.15. In addition, keeping the particle close to the cell centroid allows us
to assume

da ≈ ∆x
da⊥B ≈ ∆x

 =⇒
da⊥B

d2
a
≈

1
da⊥B

.

Under the first category, the convex formulation is directly used. Moreover, in the unlikely event of
falling under the other possible category, 0 < da⊥B < da, the conservative formulation used in this
case should yield very similar results. Therefore, we could extend this generalized formulation to
convex boundaries and have a unified formulation for all types of boundaries.

nB2

θ2

θ1
nB1

B2

B1

xg

Figure 3.15: Convex cell zones for the generalized concave categories

3.4.4 Free-surface
There is not special treatment for SPH regarding the free-surface (FS). The free-surface boundary
conditions (kinematic and free-stress) are a direct consequence of the Lagrangian and explicit
nature of the scheme.

48

Chapter 3: Method

Regarding VPH, no previous simulations dealing with free-surfaces were found, so a specific
treatment is proposed to detect whether a Voronoi element a should be bounded by a FS. The
identification of free-surface shape from the particle distribution becomes increasingly difficult as
we increase the dimensionality of the fluid space, allow for large deformations, surface fragmen-
tation, air entrapment, etc. In this work, a simple approach described below is followed, leaving
for future-work the exploration of more advanced methods proposed in the literature (Dilts, 2000;
Haque and Dilts, 2007; Marrone et al., 2010; Marrone, 2011).

Prior to the generation of the Voronoi tessellation, the angular regions between the lines con-
necting the center of element a with the center of neighbor elements is explored. Under a flat
free-surface, as depicted in Fig. 3.16, neighbor particles next to the FS should be located parallel
to it. We can also place free-surface virtual points (FSVP) if we want to map the free-surface with
Voronoi faces, as done before with the boundaries.

aFS

a

FS 90º

(a) 2D

a

aFS

90ºFS

(b) 3D

Figure 3.16: Free-surfaces and Voronoi particles

If we assign a distinct angular region for each neighbor in Fig. 3.16, without prioritizing any
neighbor, we can clearly see how the portion assigned to the FS will cover a range of 90◦ in any
angular dimension. Inspired by this fact, the algorithm proposed uses as a condition for valid
directions to place FSVPs that their angle to any other particle neighbor is at least 45◦,

eaFS a · eba = eaaFS · eab ≤ cos(45◦) ∀eba . (3.122)

where eaFS a = −eaaFS is the unit vector from particle a to a free-surface virtual point aFS . The
algorithm that detects FSVP directions proceeds as follows:

2D (left panel Fig. 3.17(a))
Neighbors are arranged by their angular location with respect to a. If the angle between two
adjacent neighbors is greater than 90◦, one or more FSVP directions (if > 180◦) are assigned.

3D and higher dimensions (left panel Fig. 3.17(b))
Multiple angular dimensions exist in this case, making it difficult to keep the same proce-
dure as in 2D. Instead, a more coarse approach is followed where we restrict the possible
FSVP directions to a predefined set, each one with an assigned angular sector. The algo-
rithm proceeds checking the sector where each neighbor falls, marking unfeasible its linked
FSVP direction and the surrounding ones that fall within the ±45◦ threshold. The remaining
feasible directions after checking all neighbors are assigned to the particle.

49

Chapter 3: Method

If the particle has no neighbors, 2D FSVP directions aligned with the Cartesian coordinate axis
are automatically assigned. Furthermore, only particles in the nearby of the free-surface identified
in the previous step are checked to minimize the computational requirements.

Finally, one free-surface virtual point is created for each valid direction found, and placed at a
distance l defined as

l = ∆xa,0 = V1/D
a,0 =

(
ma

ρ0

)1/D

. (3.123)

These virtual particles are considered for the Voronoi tessellation and ensure that the cells belong-
ing to fluid particles are bounded. Defining the FSVP this way induces the creation of a face in
between a and aFS (right panels in Fig. 3.17), which leads to the volume of particle a being close
toVa,0. Since mass is conserved, the density of such particle, ρa, will be close to ρ0 and therefore
the pressure at the free-surface elements will be around p0.

a

b1

b2

∆x0

>90º
aFSa

b1

b2

(a) 2D

x y

z

∆x0

a
aFS

>90º

a

b2

b1

b7
b4

b6
b3

b5

b8

b9

b2

b1

b4
b6

b3

b5

b8

b9

b7

b2

b1

b4
b6

b3

b5

b8

b9

(b) 3D

Figure 3.17: Voronoi free surface particle detection and edge definition

The set of Voronoi faces between fluid particles and free-surface virtual particles conform the
free-surface that delimit the VPH sub-domain. It is precisely in these free-surface faces where we
apply the dynamic and kinematic free-surface BCs (Sec. 2.1), respectively:

pFS = p0 =⇒ paFS = 2p0 − pa , (3.124)
uFS = ua =⇒ uaaFS = 0 , (3.125)

50

Chapter 3: Method

which leads to the following contribution from the free-surfaces to the time derivatives

(
dρa

dt

)VPH

FS→a
= 0 ,

(
dua

dt

)VPH

FS→a
=

1
ρaVa

AaaFS

[
p0 eaaFS + 2 (pa − p0)

caaFS

‖raaFS ‖

]
.

(3.126)

Note that ‖raaFS ‖ , 2∆xa,0 since a particle can interact with free-surface virtual points created
by other particles.

3.4.5 Voronoi free-surface particle close a solid boundary
When a free-surface SPH particle approaches a solid boundary, it is treated as a Voronoi particle,
consistently with the approach discussed in Sec. 3.3.1. The same criteria to detect possible free-
surface virtual point directions described in Sec. 3.4.4 is followed in the proximity of boundaries.
However, in order to include the angle covered by the boundary, we also include as part of the
particle neighbors:
• the linked reflected point aB,
• the common boundary nodes if more than one face is near the particle.

However, particles already on the free surface are free to collide with or detach from a boundary.
In this case no reflected point aB is included in the free-surface criterion, leaving that region open
to place a free-surface virtual point aFS . While the relative distance to aFS is fixed at ∆x0, the
reflected point aB gets closer as the particle a moves towards the boundary. Both virtual points
are used for the Voronoi tessellation, so the algorithm that generates it will implicitly select which
one (or maybe both if they are not aligned) is required to close the cell (Fig. 3.18). This approach
provides a smooth transition between free surface and solid boundary conditions.

t

a aB
ua aBaua

aFSaFS

Figure 3.18: Voronoi free surface particle approaching a solid boundary

3.4.6 Periodic
This type of boundary condition is applied when field values at locations at ±∆r are equal. There-
fore, we only need to solve for the flow within a pair of planes spaced ‖∆r‖. As a result, boundary

51

Chapter 3: Method

faces are placed on these planes to limit the computational domain. We can determine the period-
icity direction for each face using its normal nP such that

∆rP =
∆r · nP

‖∆r · nP‖
∆r . (3.127)

However, we cannot use them to bound the Voronoi cells like solid walls because physically they
do not exist. Instead, we use the periodic BC to place additional layers of particles beyond the
periodic faces, named aP since each one is linked to a regular fluid particle located in the nearby
of the periodic faces.

raP = ra + ∆rP . (3.128)

a1 a1
P

a2
P

a2

||∆r||

nP1
P1 nP2

P2

Figure 3.19: Periodic particles

Periodic particles ensure that the regular fluid particles remain bounded and are properly sur-
rounded by neighbors. The fluid fields on them are assigned based on their linked particle:

uaP = ua , paP = pa . (3.129)

3.4.7 Inlets/Outlets
Inlets and outlets represent the portion of the boundaries through which fluid can enter or leave
the computational domain, respectively. As such, their related BCs refer either to the fluid mo-
tion through them (u), or the fluid driving forces (∇p), as discussed in Sec. 2.1. In a Lagrangian
scheme, particles can cross these boundaries. Moreover, since SPH and VPH rely on the interac-
tion with neighbor particles, we need to include particles beyond inlet/outlets to ensure that the
particles within the fluid domain are well surrounded (Federico et al., 2012). In the proposed cou-
pled scheme, only Voronoi particles are in contact with the inlets/outlets to avoid mixing different
particle characteristic lengths as happens in the buffer zone. This is enforced by including the
distance to inlet/outlets boundaries when evaluating the criteria to determine the VPH and SPH
sub-domains (Sec. 3.3.1).

Like with periodic faces, inlet/outlet boundaries do not exist physically and cannot be used to
bound Voronoi cells. This closure is achieved by a layer of inlet/outlet particles, identified as bIO

since they act only as neighbors of regular fluid particles. In order to ensure that bIO particles cover
properly the fluid domain, the same algorithm that detects FSVP directions described in Sec. 3.4.4
is used on particles next to inlet/outlet faces. Every virtual point found is evaluated to check if it
falls in the orthogonal projection of the inlet/outlet face (Appendix D.10), and if so is added as a
inlet/outlet particle instead than a free surface virtual point as shown in Fig. 3.20.

52

Chapter 3: Method

a

nIOIO

aFS

b

b1
IO

b2
IO

Figure 3.20: Inlet/Outlet particles generation. Particle a only detects one neighbor b and places 3
virtual points. 2 of them are beyond the I/O boundary and become I/O particles

Inlet/outlet particles are still fluid particles, so they are taken as such when acting as neigh-
bors of particles within the fluid domain. On the other hand, the BCs are used to determine the
field values on them and evaluate their movement, instead of relying on the dynamics from their
neighbors. Still, these neighbors are used as a reference to extrapolate the field values using linear
approximations when Neumann type BCs are applied, as done with the previous boundary types.
If an inlet/outlet particle is linked to multiple regular fluid particles, the contribution from each is
weighted based on the relative contact area shared such that

ωabIO =
AabIO

AbIO
, (3.130)

where a AabIO is the area of the shared face with the linked particle a, and AbIO =
∑

a AabIO is the total
area shared with regular fluid particles. As a result, the following formulations are used depending
on the type of inlet/outlet:

Velocity I/O

ubIO = uIO , (3.131)

pbIO =
∑

a

ωabIO pa . (3.132)

Pressure I/O

ubIO =
∑

a

ωabIO ua , (3.133)

pbIO = pIO . (3.134)

Free I/0

ubIO =
∑

a

ωabIO ua , (3.135)

pbIO =
∑

a

ωabIO pa . (3.136)

53

Chapter 3: Method

3.5 Density re-initialization algorithm
Mass is automatically conserved in this Lagrangian scheme as it is lumped in the particles. Vol-
ume is obtained from the density that is evolved using the continuity equation, with no explicit
conservation requirements under the weakly compressible assumption. However, the numerical
corrections and errors in the integration of the continuity equation allow the particles to “expand”
without actually pushing away their neighbors accordingly. In fact, the total volume of the fluid
domain that enclose the particles can differ significantly from the summation of the individual vol-
umes of each particle. Furthermore, this incorrect expansion converts elastic into kinetic energy,
as discussed later in Sec. 5, agitating the particles and leading to erroneous density, pressure, and
velocity fields.

Following Colagrossi and Landrini (2003), the density field is periodically re-initialized to re-
cover the consistency between the mass, density, and volume. Under the coupled scheme,

ρa =


ρ̌S PH

a SPH zone,
ρ̌Vor

a Voronoi zone,
ω ρ̌S PH

a + (1 − ωa) ρ̌Vor
a Buffer zone.

(3.137)

where ρ̌ indicates the density calculated from the particle distribution instead than evolved using
continuity. In this case there is no need to average weights between particles in the buffer zone
since there is no requirement for a pair-wise antisymmetric formulation. Regarding the Voronoi
value, its value can be directly obtained from the cell volume:

ρ̌Vor
a =

ma

Va
. (3.138)

In the case of SPH, the same approach than Colagrossi and Landrini (2003) is followed

ρ̌S PH
a =

∑
b

mbWMLS
ab . (3.139)

A first-order accurate moving-least-squares (MLS) kernel is used in this case to guarantee its con-
sistency at particle level, i.e. satisfy

∑
b Wab = 1, and obtain a consistent value of the density.

Defining the generalized position vector r̂ab as

r̂ab =
(
1, r1

ab, ... , r
D
ab

)
, (3.140)

we compute the MLS kernel coefficient through

WMLS
ab =

(
βa · r̂ab

)
Wab , (3.141)

where Wab is the kernel used for the SPH formulation as shown in Sec. 3.1.2, and βa is the vector
containing the specific MLS coefficients for particle a.

βa =


β0

a

β1
a
...

β1
a

 = A−1
a


1
0
...

0

 , (3.142)

54

Chapter 3: Method

with

Aa =
∑

r̂ab r̂ab Wab (3.143)

In the end, this procedure requires summing over all the neighbors to determine the matrix Aa,
invert it to determine the MLS coefficients βa, and then go again through all neighbors to calculate
the density.

To avoid excessive computations, the frequency at which this density re-initialization is applied,
∆nρ, can be adjusted as an external parameter9. Colagrossi and Landrini (2003) show substantial
improvements in the flow fields by performing the density re-initialization every 20 steps, avoiding
the high-frequency oscillations found otherwise.

3.6 Shifting algorithm
As particles move, the resulting Voronoi cells tend to get distorted. Furthermore, a Voronoi di-
agram can have multiple generating particle configurations, which reflects the existence of glass
modes that results in a progressive drift of the particles away from the centroid of their cell. In
order to balance these effects that reduce the precision of the differential operators, a shifting al-
gorithm inspired by the Lloyd’s method (Lloyd, 1982) is used in the Voronoi sub-domain, similar
to Springel (2010a). When applied, the distance dg between the particle and the cell centroid xg is
monitored, shifting the particle if exceeds certain given threshold according to Eq. (3.144).

ra → ra +



0 for
dg

ζ ∆xa
< 0.9,

(xg − ra)
dg − 0.9ζ ∆xa

0.2ζ ∆xa
for 0.9 ≤

dg

ζ ∆xa
< 1.1,

xg − ra for 1.1 ≤
dg

ζ ∆xa
,

(3.144)

where ζ is the coefficient that defines the reference threshold, typically set to ζ = 0.25. The position
of xg is determined after the tessellation is generated. This shift is applied at the end of the time
step to ensure that the Voronoi faces remain orthogonal to rab when computing all flow variables.

9If not defined, it is assumed that ∆nρ = 0 and no density re-initialization is applied

55

Chapter 3: Method

56

Chapter 4

Implementation

4.1 Overview
The code key routines are written in C++, and the main time-stepping program is implemented
in Matlab. MEX functions are used to connect both languages. Section 4.2 show graphically
the program architecture. The code has been tested in 2D but is designed to work also in 3D.
Parallelization has not yet been undertaken. The Voronoi tessellation requires around 20% of the
computation time. Apart from it, the performance of the code is similar to that of any standard
serial SPH model.

To avoid double summations, particle neighbors are identified using a hierarchical tree algo-
rithm as commonly done in SPH (Sec. 4.3). The characteristic parameters of the geometry and
initial conditions are read from text files. The initial particle distribution is generated afterwards
based on a given reference particle size, ∆x0, and flow field variables are assigned to each particle
based on the initial conditions. To mitigate possible inconsistencies and reach a well balanced
initial state,1 an initialization ramp can be activated (Sec. 4.4). A leap-frog numerical scheme is
used to iterate forward in time, described in Sec. 4.5. The simulation proceeds until any of the
following stopping criteria is reached:

• Maximum time or number of iterations reached: t > tmax, n > nmax, where n indicates the
time step index.

• Maximum number of particles allowed exceeded: Np > Nmax, which can occur in simulations
with inlets filling the fluid domain.

• Time step increment below allowed threshold: ∆t < ∆tmin

• Maximum aspect ratio of Voronoi cells beyond allowed threshold: max
a∈VPH

Aa >Amax, where

Aa = dmax a
dmin a

. dmax a and dmin a are the distances from the particle to the furthest and closest
Voronoi cell face, respectively. In this work we keepAmax = 3.

Values of tmax, nmax, Np max, ∆tmin, andAmax are defined as external simulation parameters2. Dur-
ing the simulation, flow fields can be saved with a given periodicity defined also as a simulation
parameter for post-processing later. The output data is saved as an HDF5 file3, whose C++ library
is already integrated in Matlab.

1While the fluid is modeled as weakly compressible, it can be expected to define the initial conditions as if it was
incompressible. In addition, going from the continuous initial fields to a set of discrete values at the particles introduce
some unbalances. As a result, undesirable excessive loads can occur at the first time steps that can destabilize the
simulation.

2If any of these parameters is not specified, its corresponding stopping criteria is not applied
3Hierarchical Definition File, release 1.8.12 used. https://www.hdfgroup.org/solutions/hdf5/

57

https://www.hdfgroup.org/solutions/hdf5/

Chapter 4: Implementation

Regarding external libraries loaded for the calculations, the Eigen C++ library4 is used for
matrix calculations. The generation of the Voronoi diagram is performed using the qHull C++

library5. Its performance is stated in its documentation6: “ Let n be the number of input points, v
be the number of output vertices, and fv be the maximum number of facets for a convex hull of v
vertices. If both conditions hold, Qhull runs in O(n log v) in 2-D and 3-D and O(n fv/v) otherwise.
The function fv increases rapidly with dimension. It is O(vfloor(D/2)/floor(D/2)!). ”

4Release 3.3.2 http://eigen.tuxfamily.org/
5Release 2005.2 http://www.qhull.org
6http://www.qhull.org/html/qh-code.htm#performance

58

http://eigen.tuxfamily.org/
http://www.qhull.org
http://www.qhull.org/html/qh-code.htm#performance

Chapter 4: Implementation

4.2 Code
Figure 4.1 below summarizes the architecture of the implementation developed. Elements high-
lighted in green are written in C++, red are in Matlab, and yellow combine both languages.

MAIN
PROGRAM

Reads last saved time step

Includes linear damping

Writes field values in an output file

Save initial state

SET INITIAL CONDITIONS

INITIALIZATION

TIME STEPPING

POST-PROCESS

Save data?

Stopping criteria
reached?

Read saved simulation time steps

Update density from Voronoi
(VPH) and MLS kernel (SPH)

Determine next time step values
(LEAP FROG)

end of simulation

N
o

N
o

Yes

Yes

Visualize the required results in Matlab

Continue
simulation?

Yes

No

Re-initialize
density?

Initialization
ramp?

No

Yes

No

Yes

Figure 4.1: Program main structure

59

Chapter 4: Implementation

In addition, the block diagrams in the following figures zoom into its main modules:

• Figure 4.2: Initialization process

• Figure 4.3: Setting the initial conditions for new simulations

• Figure 4.4: Computation of particle state related variables

• Figure 4.5: Leap-frog time-stepping scheme

• Figure 4.6: Computation of time rates following the coupled scheme (Sec. 3.3)

• Figure 4.7: Contribution to the time rates from the δ-SPH scheme (Sec. 3.1.4)

• Figure 4.8: Contribution to the time rates from the δ-VPH scheme (Sec. 3.2.4)

Read from simulation file:
- Simulation parameters
- Geometry
- Field functions for initial values of density and velocity

Checks that all fields and boundaries are correctly defined

INITIALIZATION

Initializes simulation fields with the maximum # of particles and define
calculation constants

Discretize boundaries into D-simplex faces, and removes all
non-closed domains

Fills fluid domain with particles in a Cartesian grid with spacing Δ𝑥

Figure 4.2: Initialization process

60

Chapter 4: Implementation

INITIAL VALUES

All shifting distance
within threshold?

No Shift
particles

Assign initial field values to particles based on their position (𝜌, 𝒗)

Assign mass to each particles based on its density & cell volume

Yes

Compute initial energy components (total, kinetic, potential, elastic)

Compute derived particle state variables (𝑝, Δ𝑥, ℎ, 𝑑*+,)

PARTICLE STATE:
Grid, Boundaries, & Voronoi diagram

Figure 4.3: Setting initial conditions for new simulations. See Sec. 4.4 for more details

61

Chapter 4: Implementation

Create grid

PARTICLE STATE:
Grid, Boundaries, & Voronoi diagram

Assign boundaries to grid cells

Creates free-surface virtual points & new inlet/outlet particles

Generates the Voronoi diagram with all virtual points, inlet/outlet
particles, and all particles with neighbors in the VPH sub-domain
(Note: uses all particles during the initialization)

Computes for particles:
- Distance to closest boundary (→ VPH-SPH coupling weights)
- Creates new particles if needed (periodic & velocity inlet/outlet)
- Creates boundary virtual points (except near concave boundaries)
- Particles-cells connectivity list

Compute from Voronoi cells:
- Volume (𝑉)
- shifting distance from particles to cell centroid

Links particles with Voronoi cell faces, trim cells with concave
boundaries, & compute cell face areas

Compute derived particle state variables (𝑝, Δ𝑥, ℎ, 𝑑*+,)

Figure 4.4: Computing particle state related variables. See Sec. 4.3 for a detailed description of
how these variables are used for identifying neighbor boundaries and particles

62

Chapter 4: Implementation

PREDICTOR STEP

TIME STEPPING: LEAP FROG

CORRECTOR STEP

Apply particle shifting

Computes energy balance

Removes particles beyond fluid domain and inlet/outlet
particles not in contact with any fluid particle

Compute derived particle state variables (𝑝, Δ𝑥, ℎ, 𝑑*+,)

TIME RATES

PARTICLE STATE:
Grid, Boundaries, & Voronoi diagram

Figure 4.5: Time-stepping scheme used: Leap Frog. See Sec. 4.5 for its detailed description

63

Chapter 4: Implementation

For each cell

For each particle “a” in cell

Initializes derivative fields

Extract all particles in cell and adjacent cells

Add acceleration due to gravity

TIME RATES

Updates time step increment limit (Δ𝑡)

SPH DERIVATIVES

VPH DERIVATIVES

a in VPH
sub-domain?

Yes

No

Figure 4.6: Time rates computation

64

Chapter 4: Implementation

For each neighbor b
(remaining particles in cell plus all particles in neighbor cells)

𝜔1→2 = 𝜔2→1 =
𝜔2 + 𝜔1

2

Adds calculated components to the total derivatives for the
particle and its neighbor, each affected by its coupling weight

d
d𝑡 2

= 𝜔1→2
d
d𝑡 2→1

and vice versa

SPH DERIVATIVES

Computes density rate of change (including 𝛿-SPH correction)

Are a or b
SPH particles?

Are a or b
regular fluid particles*

* Interactions between periodic particles are not needed

Average weights?

Yes

Yes

Computes acceleration components due to pressure, viscosity,
& artificial viscosity

Max. time step increment from particle-neighbor signal velocity

Neighbor within
kernel support radius?

𝜔1→2 = 𝜔2
𝜔2→1 = 𝜔1

Yes

Yes

No

Figure 4.7: SPH time rates contribution

65

Chapter 4: Implementation

For each cell face

𝜔1→2
𝜔2→18 =

𝜔2 + 𝜔1
2

Adds calculated components to the total derivatives for the
particle and its neighbor, each affected by its coupling weight

d
d𝑡 2

= (1 − 𝜔1→2)
d
d𝑡 2→1

and vice versa if b is a fluid particle

VPH DERIVATIVES

Computes density rate of change (including 𝛿-SPH correction)

b
VPH?

a or b are
regular fluid particles*

* Interactions between periodic and/or I/O particles are not needed

Average
weights?

Yes

Yes

Computes acceleration components due to pressure, viscosity,
& artificial viscosity

Max. time step increment from particle-neighbor signal velocity

𝜔1→2 = 𝜔2
𝜔2→1 = 𝜔1

Yes

No

b: Fluid particle b: Free surface b: Boundary

b>a

Yes

𝜔1→2 = 𝜔2

Determines neighbor “b” linked to the face and its type

No

Figure 4.8: VPH time rates contribution

66

Chapter 4: Implementation

4.3 Neighbor boundaries and particles searching algorithm

4.3.1 Grid
The range of interaction of a particle is finite in both SPH and Voronoi schemes. For this reason,
an efficient way to identify the neighbors is using a hierarchical tree (Hernquist and Katz, 1989).
This method relies on creating a grid that splits the fluid domain in cells such that the interaction
range of the particles belonging to one grid cell will be restricted to that cell plus the neighboring
ones. To achieve this, we start by creating a uniform grid at each time step whose cells must have
as length max(κha) in the case of SPH and max(2 dmax a) for the VPH scheme, where

dmax a = max
(
‖rab‖

2

)
, (4.1)

which represents the the distance to the furthest face of the Voronoi cell linked to particle a. How-
ever, we need the grid to identify the boundaries linked to each particle before creating the Voronoi
tessellation, so dmax a is not known yet. Still, its value cannot change dramatically between time
steps and is safe to assume7 that max(dmax a)t ≤ 2 max(dmaxa)

t−∆t. Taking the upper bound, we
determine the grid cell length as

l t
grid = max

[
max

a∈S PH
(κha) t, max

a∈VPH
(4 dmax a) t−∆t

]
. (4.2)

If no value of d t−∆t
max a is available, either because is the first iteration or because the particle just

entered the VPH subdomain, we can approximate it using the particle size:

@ d t−∆t
max a → d t−∆t

max a ≈
∆xa

2
.

When particles with significant different sizes fall within one grid cell, it can be useful to create
“child” cells within the “parent” to further remove neighbors beyond their interaction scope. This
is not the case in the coupled scheme presented, where all particles have similar sizes, and therefore
it is not necessary.

Once the grid is created, the next step is to assign a unique index to each grid cell. Based on the
fluid domain extension and lgrid, we know the number of cells in each of the D Cartesian directions,
Nc. It is straightforward to determine the local index along each i-th direction, ki

c. Using linear
indexing, we can determine a global index kc as

kc = k1
c +

D∑
i=2

ki
c (Ni

c − 1) . (4.3)

7For stability reasons of the explicit scheme, we limit the time increment between time steps to ensure that the
particle displacement is below a fraction of its radial size, ∆xa/2, as discussed in Sec. 4.5. Therefore, the maximum
variation of dmax a is upper bounded by the maximum distance that two neighbor particles can move away: ∆rab <
(∆xa + ∆xb)/2. Noting that ∆xa < 2 dmax a, we conclude that

dt
max a ≤ dt−∆t

max a +
max(‖∆rab‖)t−∆t

2
≤ dt−∆t

max a +
max(∆xa, ∆xb)t−∆t

2
≤ dt−∆t

max a + max(dmax a, dmax b)t−∆t

max dt
max a ≤ max [dmax a + max(dmax a, dmax b)]t−∆t = 2 max dt−∆t

max a

67

Chapter 4: Implementation

The relative local indexes to a given cell are given by all possible permutations with repetition of
{−1, 0, 1} leading to vectors of D components, except 0 that corresponds to the reference cell itself.
We’ll refer to this set as Kcc, which contains (3D − 1) elements:

Kcc,2D = {[−1,−1], [−1, 0], [−1, 1], [0,−1], [0, 1], [1,−1], [1, 0], [1, 1]} ,
Kcc,3D = {[−1,−1,−1], [−1,−1, 0], [−1,−1, 1], ... , [1, 1,−1], [1, 1, 0][1, 1, 1]} .

Moreover, we can determine the global index of the j-th adjacent cell, k j
cc, as

k j
cc = kc + ∆k j

cc , (4.4)

∆k j
cc = k1 j

cc +

D∑
i=2

ki j
cc (Ni

c − 1) (4.5)

where ki j
cc indicates the i-th component of the j-th element in the Kcc set, and ∆k j

cc the relative
global index corresponding to this j-th element. Note that ∆kcc only depends onKcc, and therefore
needs to be computed only once. This procedure to determine adjacent cells will fail with those
cells on the perimeter of the grid, since not all elements in Kcc are applicable. We deal with it by
extending the grid beyond the fluid domain with one additional layer of cells to ensure that all grid
cells containing fluid particles are completely surrounded by adjacent cells, as shown in Fig. 4.9.

additional layer of cells

kc
1

kc
2

∆kcc> 0j

∆kcc< 0j

Figure 4.9: Grid (2D)

4.3.2 Boundaries
Now that the grid is completely characterized, we can determine which boundary faces should be
linked to each grid cell, if any. The starting point is recognizing that the domain of influence of the

68

Chapter 4: Implementation

boundaries is precisely the VPH sub-domain, whose extension is characterized by the thickness of
the Voronoi zone (lVor > κhmax) and the buffer zone (lbuffer, see Sec. 3.3.3). We can express it as a
multiple of the grid cell size, such that

Nccb =

⌈
lVor + lbuffer

lgrid

⌉
→ lVPH ≤ Nccb lgrid . (4.6)

The algorithm to assign boundary faces to grid cells proceeds as follows:

1. For each boundary face, using the face nodes determine the range of grid cells covered in
each dimension.

2. Enlarge it by ±Nccb

3. Checks for each grid cell in the extended range whether any point inside of it falls within the
VPH subdomain. If so, links the cell to the boundary face.

The final outcome is a list of boundaries linked to each cell, CB. Particles within a cell will only
evaluate the distance to its associated boundaries to determine which zone do they fall in and its
corresponding coupling weight value, ω. If no boundaries are linked, it belongs to the SPH zone
automatically.

nB

lVor + lbuffer

∆kc
1

∆k
c2

∆k
c +

 2
N

cc
b

2

∆kc + 2Nccb
1

N
cc

b

Nccb

boundary nodes

enlarged covered grid range

covered grid range

linked cells to boundary

Figure 4.10: Grid cells linked to boundaries

4.3.3 Connectivity list
Finally, a connectivity list needs to be created to determine efficiently which particles belong to a
given grid cell. This list consists of two components, graphically shown in Fig. 4.11:

69

Chapter 4: Implementation

• CLP: Particles indexes arranged sequentially by the cell that they belong to.

• CLC: List with the position of the first particle in CLP that belongs to the cell, and the
number of particles in that cell.

particle index pos. of 1st
particle

grid cell index # of particles
in cell

Figure 4.11: Example of a connectivity list providing the particle indexes in each cell (1-based
numbering to identify the position in the array)

Loops that go through all the particles and require the interaction with neighbors, like when
identifying FS particles, take advantage of this connectivity list. Instead, they are substituted by
loops that go through the grid cells, limiting the interactions to the particles contained in it and
its adjacent cells. Moreover, when the individual contribution from each neighbor is independent,
as with the time derivatives in SPH , we can further limit the adjacent cells to those with a higher
global index (∆k j

cc > 0 as highlighted in Fig. 4.9). Cells with a lower global index have already
been analyzed, so the interaction with their particles was computed previously.

70

Chapter 4: Implementation

4.4 Initialization
The initialization process can either read the last saved state and continue from there, or start a new
simulation based on the following input settings:

1. Geometry definition that characterizes the physical domain, Ω0 := Ω(t = 0), and specifies
the nature of each face (solid wall, periodic, inlet/outlet) and its related variables (slip vs.
no-slip, boundary velocity, etc.).

2. Initial density and velocity fields, ρ(x, t = 0) and u(x, t = 0), gravity acceleration g, physical
properties of the fluid, ρ0, p0, ν, c, and γ (weakly compressible coefficient).

3. Reference particle size ∆x0

4. Parameters of the numerical scheme: α (artificial viscosity), whether use diffusive term in
the continuity or not, whether average weights in the buffer or not, density re-initialization
frequency, ζ (shifting threshold), maximum number of particles, minimum admissible time
step increment, etc.

5. Frequency at which fields are plotted and saved for post processing.

Particles are initially placed on a Cartesian grid built over Ω, keeping the minimum separation
with the boundaries to be approximately ∆x0/2, leading to a certain number of particles, Np. After-
wards, a Voronoi tessellation is carried out for all particles and the shifting algorithm in Sec. 3.6 is
applied repeatedly until all particles fall close to the cell centroids. Once this is achieved, the vol-
ume from the Voronoi cell for each particle is used to determine the mass of each particle, defined
as ma = ρ(ra, 0)Va, and kept constant throughout the whole simulation.

In those simulations that start from static conditions, a stabilization scheme of the particle po-
sitions is executed with the aim of finding a balanced initial condition. All viscous terms in the
momentum Eq. (2.5) are replaced by a linear damping term, −ξ u, to accelerate the process of
reaching a static equilibrium, as proposed by Monaghan (1994):

du
dt

= g −
∇p
ρ
− ξ u , (4.7)

where ξ controls the intensity of the damping and is typically set to ξ ∆t = 0.05, with ∆t being the
time step increment. Sec. 4.5.2 shows later how is integrated in the time stepping scheme.

During the stabilization phase, the maximum velocity umax = maxa ‖ua‖ and the total kinetic
energy EK =

∑
a 0.5 ma ‖ua‖

2 are monitored. The stabilization evolves till t/ts ∼ 0.1, with ts being
the maximum time span allowed. From then on, it continues until one of the following conditions
is satisfied:

• Maximum time span or maximum number of iterations allowed reached:

t > ts

n > nmax s

where n indicates the time step index. Both ts and nmax s are given as external parameters.
Their values should be chosen depending on the nature of the flow to allow enough time for
the stabilization scheme to reach an equilibrium.

71

Chapter 4: Implementation

• Maximum velocity satisfying

maxa ‖ua‖

U
< 0.01

• Total kinetic energy satisfying

En
K

E0
< 0.001

• Rate of change of kinetic energy satisfying(
En

K − E
n−1
K

)
∆t

< 0.001
E0

ts

with U being the characteristic velocity of the problem and E0 a reference energy, also specified as
external parameters. Once this moment is reached, the particle setup is considered in equilibrium
and the simulation can be launched.

In simulations with a free surface, the background pressure p0 of the equation of state (2.11)
is set to zero, while in confined domain simulations, p0 := 0.05 ρ0 c2 to make the scheme more
sensitive to pressure variations while still remaining within the weakly compressible regime.

The effectiveness of this linear damping has been tested under the hydrostatic equilibrium ver-
ification case detailed in Sec. 6.1. It consists of a trapezoidal tank filled up to height H, with all
particles initialized at the reference density ρ0. Under the presence of gravity g, this case is an ex-
tension to 2D of the 1D scenario analyzed in Appendix C. Being initialized in an out-of-equilibrium
situation, the fluid column is expected to show some oscillation that physically represent an ex-
change between kinetic and elastic energy. Figure 4.12 shows the evolution of the kinetic energy of
the system of particles. It can be seen that the inclusion of the linear damping term quickly removes
the acoustic-related oscillations present in the flow, bringing it rapidly to a static equilibrium.

Figure 4.12: Kinetic energy evolution with and without linear damping term

72

Chapter 4: Implementation

4.5 Time-stepping

4.5.1 Time iteration scheme: leap frog
A first-order leap frog predictor-corrector scheme is used to integrate the governing equations
(Sec. 2.1) and advance in time the flow fields, following Gray (2001) and Souto-Iglesias et al.
(2006). With similar computational requirements than the forward Euler method, it shows better
performance because it uses information from the predicted state in the next time step. Identifying
the predicted values with ∗, the first-order leap frog algorithm can be written for generic field A as:

An+1 = An +
1
2

(
dA∗

dt
+

dAn

dt

)
∆t =

predictor: A∗︷ ︸︸ ︷
An +

dAn

dt
∆t +

corrector︷ ︸︸ ︷
∆t
2

(
dA∗

dt
−

dAn

dt

)
(4.8)

Computationally, it is implemented as follows

1. Predictor step. Since velocities and accelerations are known, the positions of the particles
are advanced in time with an explicit second-order scheme instead of the general first-order
scheme. 

r∗a = rn
a + un

a ∆t +
1
2

dun
a

dt
∆t2 ,

u∗a = un
a +

dun
a

dt
∆t ,

ρ∗a = ρn
a +

dρn
a

dt
∆t .

(4.9)

2. Compute the time derivatives following the coupled scheme formulation:
du∗a
dt

,
dρ∗a
dt

.

3. Corrector step. Since the position was predicted with a second-order scheme, it is not
corrected. 

rn+1
a = r∗a ,

un+1
a = u∗a +

∆t
2

(
du∗a
dt
−

dun
a

dt

)
,

ρn+1
a = ρ∗a +

∆t
2

(
dρ∗a
dt
−

dρn
a

dt

)
.

(4.10)

4. Update time derivatives. Strictly, we should recalculate them with the corrected fields, but
this would duplicate the computational cost. Assuming that the corrections are small, we
skip it and use the predicted values to achieve a more efficient code.

dun+1
a

dt
=

du∗a
dt

,
dρn+1

a

dt
=

dρ∗a
dt

. (4.11)

73

Chapter 4: Implementation

4.5.2 Linear damping
Special mention should be made to the linear damping term followed during the stabilization phase
in the initialization. Instead of incorporating it as part of the time derivatives in the δ-SPH and δ-
VPH schemes, it can be added as an additional component in the time-stepping scheme. In this
way, we simply need to remove the viscous terms in the momentum equation, which is simplified
to

du
dt

= g −
∇p
ρ
→



(
dua

dt

)S PH

= ga −
1
ρa

∑
b

mb

(
pa

ρ2
a

+
pb

ρ2
b

)
rab Fab ,(

dua

dt

)VPH

= ga +
1

ρaVa

∑
b,a

Aab

[
(pa + pb)

eab

2
+ (pa − pb)

cab

‖rab‖

]
.

(4.12)

To improve its stability, we treat the linear damping term implicitly both in the predictor and
corrector steps following Monaghan (1994) such that:

dun
a

dt
→

dun
a

dt
− ξu∗a ,

du∗a
dt
→

du∗a
dt
− ξun+1

a .

Starting from the general formulation of the leap frog in Eq. (4.8), and denoting with ∗∗ the new
predicted values using the linear damping term:

un+1
a = un

a +
∆t
2

(
du∗∗a
dt
− ξun+1

a +
dun

a

dt
− ξu∗∗a

)
=

predictor: u∗∗a︷ ︸︸ ︷
un

a + ∆t
dun

a

dt
−

∆t
2
ξu∗∗a +

corrector︷ ︸︸ ︷
∆t
2

(
du∗∗a
dt
−

dun
a

dt
− ξun+1

a

)
.

(4.13)

Solving each of them individually, we arrive at

u∗∗a =
1

1 + 0.5 ξ ∆t

(
un

a + ∆t
dun

a

dt

)
, (4.14)

un+1
a =

1
1 + 0.5 ξ ∆t

[
u∗∗a +

∆t
2

(
du∗∗a
dt
−

dun
a

dt

)]
. (4.15)

Note that if we make ξ → 0, then u∗∗a → u∗a and we recover the original scheme.

4.5.3 Time step increment: CFL condition
The time step increment is defined from the following criteria that affect the stability of the explicit
scheme:

1. Courant condition for the propagation of sound waves, both for the first and second order
terms,

∆t1 = min
a

(
0.5∆xa

c

)
, (4.16)

∆t2 = min
a

√
∆xa

(∥∥∥∥∥dua

dt

∥∥∥∥∥)−1

. (4.17)

74

Chapter 4: Implementation

2. Time step increment associated with an inter-particle signal speed defined as

usig
ab = 2c − uab · eab , (4.18)

with index b going through the neighbors of particle a:

∆t3 = min
ab

‖rab‖

usig
ab

 . (4.19)

3. Damping condition, that prevent the velocity vector to flip direction when it is larger than a
given threshold, typically set as 0.01c, such that

∆t4 = min
a

‖ua‖

(∥∥∥∥∥dua

dt

∥∥∥∥∥)−1 ∀ a ∈ ‖ua‖ > 0.01c . (4.20)

The time step increment is obtained as the minimum of these, affected by a CFL factor.

∆t = CFL min (∆t1,∆t2,∆t3,∆t4) . (4.21)

We use in this work a first-order leap frog method, so a conservative CFL = 0.2 was used. These
limitations to the time step increment effectively bound the movement of the particle between time
steps. This fact is used to estimate the grid size (Sec. 4.3.1) and the boundaries search threshold
(Appendix D.8) based on the previous step inter-particle distances.

75

Chapter 4: Implementation

76

Chapter 5

Energy Balance

While there is literature regarding the analysis of SPH energy conservation properties (Antuono
et al., 2015; Cercos-Pita et al., 2017), including the analysis of solid boundary conditions, that is,
to our knowledge, not the case in VPH. However, the scheme presented in this work replicates
all SPH coefficients in the VPH formulation to facilitate the coupling, enabling to extend the SPH
energy balance to VPH as well.

This chapter starts, following Cercos-Pita et al. (2017), with the analysis at the continuous level
in Sec. 5.1. An analytic expression for the elastic energy in a weakly compressible fluid is also
derived in Sec. 5.2. Next, Sec. 5.3 extends the formulation to the discrete level to determine the
different energy components under the δ-VSPH formulation. Finally, the evolution of this energy
components is visualized in Sec. 5.4, using the hydrostatic tank verification case (Sec. 6.1) as an
example.

5.1 Continuous level
The First Law of Thermodynamics, i.e. the conservation of energy E, is defined for a closed system
Ω as

dEΩ

dt
= Q̇ − Ẇ , (5.1)

where Q̇ is the rate of heat added to the system and Ẇ the rate of work done by the system. We
can distinguish between the energy of the system due to thermodynamic state, EI (internal energy),
and due to its motion state, EK (kinetic energy), such that

EΩ = EI + EK . (5.2)

Regarding the rates of heat deposition and work, we can distinguish between volumetric compo-
nents (body heat deposition and body forces) and the surface components (surface heat flux and
boundary work). As a matter of fact, if we revert the the energy Eq. (2.3) from the Navier–Stokes
formulation to its integral form, we can immediately identify each component:

d
dt

EI︷ ︸︸ ︷∫
Ω

ρ e dV +
d
dt

EK︷ ︸︸ ︷∫
Ω

ρ
1
2
‖u‖2dV =

−Ẇ︷ ︸︸ ︷∫
Ω

u · ρ f dV︸ ︷︷ ︸
rate of body
work: ẆΩ

+

∫
∂Ω

u · σ · dS︸ ︷︷ ︸
rate of surface
work: Ẇ∂Ω

+Q̇︷ ︸︸ ︷
−

∫
∂Ω

q · dS︸ ︷︷ ︸
surface heat

flux: Q̇∂Ω

+

∫
Ω

ρQ̇ dV︸ ︷︷ ︸
body heat
flux: Q̇Ω

,

(5.3)

Only constant gravitational effects are considered for now as body forces. Being conservative,

77

Chapter 5: Energy Balance

and therefore reversible, its work is taken as a change of potential energy, EP. Since u = dr
dt ,

−ĖP =

∫
Ω

ρ g ·
dr
dt

dV =

∫
Ω

d
dt

(ρ g · r) dV , (5.4)

EP = −

∫
Ω

ρ g · r dV . (5.5)

Regarding the rate of surface work, it is treated directly as a power delivered to the fluid through
the boundaries, P∂Ω. Expanding dS|∂Ω = n∂Ω dS, we can express it as

P∂Ω =

∫
∂Ω

u ·
(
σ · n∂Ω

)
dS =

∫
∂Ω

u · dF , (5.6)

where dF represents the force applied on a differential boundary surface element. Moreover, we
limited our scope in this research to Newtonian fluids, whose stress tensor was formulated in
Eq. (2.4) as

σ = (−p + λ∇ · v) I + 2 µD .

with I and D = (∇u + ∇uT)/2 being the identity and rate of strain tensors, respectively. Con-
ceptually, we split σ into a component associated with pressure (−p I), and another with viscosity
(τ = λ∇ · v I + 2 µD). This subdivision leads to split P∂Ω into

P∂Ω = P
p
∂Ω

+ P τ
∂Ω , (5.7)

where 
P

p
∂Ω

:=
∫
∂Ω

u · dFp , dF p := −p n∂Ω dS ,

P τ
∂Ω :=

∫
∂Ω

u · dF τ , dF τ :=
[
λ (∇ · u)∂Ω n∂Ω + 2 µD∂Ω · n∂Ω

]
dS ,

(5.8)

with dFp and dFν being the elementary pressure and viscous forces of the body surfaces acting on
the fluid. Using this decomposition, we can express the force applied by the the solid boundaries
as:

F∂ΩB = F p
∂ΩB

+ F τ
∂ΩB

=

∫
∂ΩB

dF p +

∫
∂ΩB

dF τ . (5.9)

Based on the previous relations, we can summarize Eq. (5.3) as

dEI

dt
+

dEK

dt
= −

dEP

dt
+ P∂Ω + Q̇ . (5.10)

Instead of approaching EP as a source of energy from external field force, it is usually considered
as an internal capacity to generate that force based on the fluid position. As such, is a way of storing
kinetic energy and therefore is lumped with it into a global mechanical energy, EM. Based on this
approach, we define the total energy of the fluid system as

Etot = EI + EM = EI + EK + EP , (5.11)

78

Chapter 5: Energy Balance

and express the conservation of energy equation as

dEI

dt
+

dEM

dt
= P∂Ω + Q̇ . (5.12)

However, it is not possible from the previous expressions to discern between the internal and
kinetic energy evolution. In order to achieve this, we turn to the momentum Eq. (2.2). Dotting
with u both sides of the equation, and integrating over the fluid domain, we arrive at∫

Ω

ρ
du
dt
· u dV =

∫
Ω

ρ
1
2

d
dt

(u · u) dV︸ ︷︷ ︸
ĖK

=

∫
Ω

ρ f · u dV︸ ︷︷ ︸
−ĖP

+

∫
Ω

(
∇ · σ

)
· u dV . (5.13)

We can relate the last volume integral to the power delivered by the boundaries using the divergence
theorem.∫

Ω

(
∇ · σ

)
· u dV =

∫
Ω

∇ ·

(
σu

)
dV −

∫
Ω

σ : ∇u dV

=

∫
∂Ω

σu · dS −
∫

Ω

σ : ∇u dV = P∂Ω −

∫
Ω

σ : ∇u dV . (5.14)

Physically, the last integral that depends on σ : ∇u represents the energy used to deform the fluid
without altering its motion state (Kundu and Cohen, 2008). Following the same decomposition
into pressure and viscous terms,

∫
Ω

σ : ∇u dV =

ĖC︷ ︸︸ ︷∫
Ω

−p I : ∇u dV+

PV︷ ︸︸ ︷∫
Ω

(λ∇ · v I + 2 µD) : ∇u dV , (5.15)

Noting that (I : ∇u) = ∇ · u and (D : ∇u) = D : D1,

dEC

dt
=

∫
Ω

−p (∇ · u) dV , (5.16)

PV =

∫
Ω

λ (∇ · u)2 + 2 µD : D dV (5.17)

Using these expressions, we can formulate the evolution of the kinetic energy from Eq. (5.13) as

dEK

dt
= −

dEP

dt
+ P∂Ω −

dEC

dt
− PV . (5.18)

Physically, we can relate the divergence of the velocity to the density change by the continuity
Eq. (2.8). As such, ĖC represents the portion of kinetic energy converted into elastic energy by
compressing the fluid, hence its name. This is a reversible term, justifying why is treated as an

1 Decomposing ∇u = 0.5
(
∇u + ∇uT

)
+ 0.5

(
∇u − ∇uT

)
, the anti-symmetric component cancels when dotted with

D, which is precisely the symmetric component.

79

Chapter 5: Energy Balance

energy transfer. On the other hand, PV is the viscous dissipation rate. It is always positive, consis-
tent with the Second Law of Thermodynamics, and represents the amount of kinetic energy that is
permanently converted into internal energy. Lastly, we can combine Eq. (5.10) and Eq. (5.18) to
isolate the evolution of the internal energy, which reads

dEI

dt
=

dEC

dt
+ PV + Q̇ . (5.19)

Based on this last expression, we subdivide the internal energy into the elastic component already
mentioned and a thermal component, ET . Substituted in Eq. (5.11), leads to the final decomposition
of the total energy of the system as

Etot = EK + EP + EC + ET . (5.20)

5.2 Elastic energy
Using the continuity Eq. (2.8), we can express the rate of change of the elastic energy in Eq. (5.16)
as

∇ · u = −
1
ρ

dρ
dt

→
dEC

dt
=

∫
Ω

p
ρ

dρ
dt

dV . (5.21)

If the fluid was incompressible, dρ
dt = 0, which implies that the elastic energy remains invariant.

However, under the weakly compressible regime this is not the case.
First, we substitute the equation of state for weakly compressible fluids, Eq. (2.11), in the rate

of change of elastic energy, leading to

p =
c2ρ0

γ

[(
ρ

ρ0

)γ
− 1

]
+ p0 →

dEC

dt
=

∫
Ω

c2

γ

(ρ
ρ0

)γ−1

−
ρ0

ρ

 +
p0

ρ

 dρ
dt

dV . (5.22)

Taking as a reference the fluid at rest (ρ(r) = ρ0 → EC = 0), we can solve the time integral to
determine an expression for the elastic energy∫ EC(t)

EC(0)
dE∗C =

∫
Ω

∫ ρ(t)

ρ(0)

c2

γ

(
ρ∗

ρ0

)γ−1

+

(
p0 −

c2ρ0

γ

)
1
ρ∗

 dρ∗ dV , (5.23)

EC =

∫
Ω

c2 ρ0

γ2

[(
ρ

ρ0

)γ
− 1

]
+

(
p0 −

c2ρ0

γ

)
ln

(
ρ

ρ0

)
dV . (5.24)

5.3 Discrete level
Following the particle discretization done both in SPH and VPH, we approximate the flow fields
within each particle domain as constant, either smoothed or volume averaged as discussed in
Secs. 3.1.1 and 3.2.1. Under this assumption, we can transform the integral expressions into sum-
mations such that, for a general integrand A,∫

Ω

A dV →
∑

a

∫
Ωa

Aa dV =
∑

a

Aa
ma

ρa
, (5.25)

80

Chapter 5: Energy Balance

where a goes through all the fluid particles. Applying it to the different energy components, we
arrive at their discrete formulation:

EK(t) =
∑

a

1
2

ma‖ua(t)‖2 , (5.26)

EP(t) =
∑

a

ma g · ra(t) , (5.27)

EC(t) =
∑

a

c2 ρ0

γ2

ma

ρa(t)

[(
ρa(t)
ρ0

)γ
− 1

]
+

(
p0 −

c2ρ0

γ

)
ma

ρa(t)
ln

(
ρa(t)
ρ0

)
. (5.28)

In a similar way, the power delivered from the solid boundaries from Eq. (5.6) becomes

P∂ΩB =
∑

B

∑
a↔B

uB · FB→a =
∑

B

∑
a↔B

ma uB ·

(
du
dt

)VPH

B→a
, (5.29)

where B goes through all the solid boundaries, a ↔ B goes through the interactions between a
boundary and all the particles in contact with it, and B→ a indicates the action on an a-th particle
due to B. Only VPH is used in the coupled scheme near the boundaries, hence the exclusive use
of

(
du
dt

)VPH
. We refer to Secs. 3.4.2 and 3.4.3 for the specific formulations applied for convex and

concave walls, respectively. In fact, we can follow the same approach with the rest of boundary
types that enclose the fluid domain:

• Free-surfaces do not transfer any power, since we impose on them p = 0 (dynamic BC, no
background pressure is applied when free-surfaces are involved).

• Periodic boundaries do not deliver any overall power, since the net power transferred to the
fluid on one side should be equal and with opposite sign on the other side.

• Inlet/Outlets do interact with regular fluid particles, and as such contribute to P∂Ω. Since
the contact area with the IO particles is known from the Voronoi diagram, we can follow
the same approach than with solid boundaries (Sec. 3.4.7). Doing a linear approximation to
determine the velocity at the face, as done for the differential operators,

P∂ΩIO =
∑
IO

∑
a↔bIO

ma
ubIO + ua

2
·

(
du
dt

)VPH

bIO→a
. (5.30)

Moreover, even if the mass of each particle does not change along the simulation, we must
also account for particles added/removed from the fluid domain through this type of bound-
aries. Under the time stepping scheme, they behave as discrete variations of the total energy
of the system,

∆E
a→← bIO

tot =
∑

bIO→a

Etot, bIO︷ ︸︸ ︷
EK, bIO + EP, bIO + EC, bIO + ET, bIO −

∑
a→bIO

Etot, a︷ ︸︸ ︷
EK, a + EP, a + EC, a + ET, a , (5.31)

where bIO → a goes through the IO particles that become fluid particles and a→ bIO through
the fluid ones that become IO particles.

81

Chapter 5: Energy Balance

The next component is the viscous dissipation rate. Instead of solving directly Eq. (5.17), we
can take an step back and notice that from Eq. (5.14) we can write∫

Ω

τ : ∇u dV =

∫
∂Ω

τu · dS −
∫

Ω

(
∇ · τ

)
· u dV , (5.32)

PV =

∫
∂Ω

u · dF τ −

∫
Ω

ρ

(
du
dt

)V

· u dV , (5.33)

where
(

du
dt

)V
stands for the component of the time derivative of the velocity due to the viscous

effects from the momentum Eq. (2.5). Going into its discrete level, it becomes

PV =
∑
∂Ω

∑
a↔∂Ω

ma u∂Ω ·

(
du
dt

)V,VPH

∂Ω→a
−

∑
a

ma ua ·

(
du
dt

)V

a
, (5.34)

where we have used Eq. (5.29) to express in a general way the viscous power from the boundaries,
and the time derivatives are approximated following the coupled VSPH formulation described in
Sec. 3.3.2

However, the discrete evolution equations include additional terms that haven’t been accounted
for at the continuous level. Furthermore, additional corrections applied at each time step such as
the density re-initialization and the particles shifting alter the particle state, and therefore should be
included in the discrete energy balance. Keeping in mind that the goal of all these corrections is to
improve the stability of the scheme, physically they should act overall as a dissipative coefficient
that tends to reduce the total energy. Therefore, we gather all of them into a new discrete power
term, Pnum, which transfers energy into a new component, Enum. As a result, the conservation of
total energy from Eq. (5.12) will read at the discrete level

dEtot

dt
=

dEI

dt
+

dEM

dt
= P∂Ω + Q̇ − Pnum , (5.35)

dEnum

dt
= Pnum . (5.36)

Under the assumption of a barotropic fluid, the pressure field is independent of the temperature
field. Mathematically this implies that Q̇ is uncoupled with ĖC and has no effect in the mechanical
energy. For simplicity, we haven’t included thermal effects in the coupled scheme yet, assuming
for the simulations done that Q̇ = 0. As a result, we only solve for the mechanical energy evolution,
which entitle us to restrict the numerical dissipation to the mechanical energy. Therefore, Eq. (5.18)
reads at the discrete level

dEM

dt
=

dEK

dt
+

dEP

dt
= P∂Ω −

dEC

dt
− PV − Pnum . (5.37)

In order to determine an expression for Pnum, we can subdivide it into multiple components,
each linked to the specific correction/approximation involved:

2In the present work we have assumed that the stress components related to the λ coefficient are neglected (see
Sec. 2.1, Marrone et al. (2013), Colagrossi et al. (2013)), and therefore are not present in the computation of the time
derivatives.

82

Chapter 5: Energy Balance

• Pα
num: artificial viscosity

• P δ
num: diffusive coefficient (δ-correction)

• P
ρ
num: density re-initialization

• P
ζ
num: particle shifting

• PVSPH
num : approximations for the differential operators in SPH and VPH

• P∆t
num: approximations for the time-stepping scheme used to move forward in time

The artificial viscosity appears explicitly in the momentum equation as a substitute for the fluid
viscosity. Integrating it directly from the discrete momentum equation, we can determine its con-
tribution as

Pα
num =

∑
a

ma ua

(
du
dt

)AV

a
(5.38)

The derivation for the rest of the terms, however, is not trivial. Instead, since they are the last
components to be determined, we lump them into a single coefficient, P̃num and focus on its net
contribution to the numerical dissipated energy.

P̃num = Pnum − P
α
num . (5.39)

To do so, we simply compare the kinetic energy after updating the fields for a new time step with
its time-evolved value without including P̃num. Starting with Eq. (5.13), we can approximate∫

Ω

ρu ·
du
dt

dV →
∑

a

ma ua ·
dua

dt
. (5.40)

Only the artificial viscosity numerical component is accounted for in the velocity time derivative
in the coupled scheme. Therefore, from Eq. (5.18), we define the kinetic energy time derivative at
the discrete level with no further numerical corrections as:

dE?K
dt

= −
dEP

dt
+ P∂Ω −

dEC

dt
− PV − P

α
num =

∑
a

ma ua ·
dua

dt
. (5.41)

Following the same first-order leap frog time-stepping algorithm described in Sec. 4.5, we can
evolve in time the value of the kinetic value as well

E? ∗K = En
K +

dE? n
K

dt
∆t → E? n+1

K = E? ∗K +
∆t
2

(
dE? ∗K

dt
−

dE? n
K

dt

)
+ ∆E

a→← bIO

K , (5.42)

where n is the time step index. However, we can actually determine the kinetic energy based on
the new particle state from Eq. (5.26). The difference must be due to the unaccounted numerical
corrections, which lead us to conclude

∆Ẽnum = Ẽ n+1
num − Ẽ

n
num =

∑
a

1
2

ma

∥∥∥un+1
a

∥∥∥2
− E? n+1

K ≈ P̃ n
num ∆t , (5.43)

83

Chapter 5: Energy Balance

taking as a reference the initial conditions so Ẽ n=0
num = 0. Similarly, we can use the time-stepping

algorithm to determine the values of the artificial and physical viscous dissipation,

E ∗T = E n
T + P n

V ∆t → E n+1
T = E ∗T +

∆t
2

(
P ∗V − P

n
V
)

+ ∆E
a→← bIO

T , E n=0
T = 0 , (5.44)

Eα ∗num = Eα n
num + Pα n

num ∆t → Eα n+1
num = Eα ∗num +

∆t
2

(
Pα ∗num − P

α n
num

)
, Eα n=0

num = 0 . (5.45)

Note that the numerical dissipated energy is not linked to the fluid, so no variation between time
steps is due to inlet/outlet particles. Also, since the coupled scheme does not account for thermal
effects, it doesn’t include any thermal energy associated with the particles. This simplification
leads to ∆E

a→← bIO

T = 0, which combined with Q̇ = 0 implies that ET simply accumulates the overall
energy dissipated due to the fluid viscosity along the simulation.

5.4 Energy balance during simulations
The same hydrostatic equilibrium configuration used in Sec. 4.4 is used now as an example to
evaluate the energy components during a simulation. In fact, only the case with no linear damping
term is analyzed here, since this term has not been accounted for in the energy balance.

Figure 5.1 shows the evolution of the energy components variations, defined as the difference
with their corresponding initial value and made non-dimensional with the initial total energy,

∆̂E =
E − E0

E0
tot

. (5.46)

Time is made non-dimensional with
√

g/H, where g is the magnitude of the gravity acceleration.

Figure 5.1: Evolution of energy components in the hydrostatic equilibrium simulation with a trape-
zoidal configuration (Sec. 6.1) and no linear damping

As described in Sec. 6.1, this verification case consists on a trapezoidal tank, filled to a certain
height H, and initialized with the fluid at rest and ρ(r, t = 0) = ρ0. However, this density field does

84

Chapter 5: Energy Balance

not correspond to the expected one from the hydrostatic pressure for a weakly compressible fluid
and therefore leads to oscillations of the water column. We can clearly appreciate the exchange
between kinetic, potential, and elastic energy components, with an overall decay of the total energy
due to the damping terms.

The fluid is treated as inviscid (PV = 0 → ET = 0), so all damping comes from the numerical
dissipation (Pαnum and ˜Pnum). Since the fluid is initialized at rest and with the reference density
ρ0, the only non-zero initial energy component is the potential energy in this case. Therefore
E0

tot = ρ0 g H
2 V

0
tot, where V0

tot is the total volume covered initially by the fluid. Furthermore, the
boundaries remain static, which implies that P∂Ω = 0.

85

Chapter 5: Energy Balance

86

Chapter 6

Verification

The coupled scheme presented in the previous chapters is tested with some verification cases in the
following sections. They cover pressure and shear driven flows, with and without free-surfaces.

6.1 Hydrostatic equilibrium: convex boundaries
This test case evaluates the ability of the presented numerical scheme to reach equilibrium from
an unbalanced initial condition. The same configuration than the one studied by Colagrossi et al.
(2012) is analyzed here, consisting on a trapezoidal tank filled with fluid particles to a certain
height and all initialized with atmospheric pressure. Under the presence of gravity, they should
reach hydrostatic equilibrium if sufficient damping exists to attenuate the oscillations due to the
elasticity of the fluid. Table 6.1 summarizes the simulation parameters, and ρ(r, t = 0) = ρ0.

Table 6.1: Simulation parameters: Hydrostatic equilibrium (convex boundaries)

General: 2D, # of particles: 3125, ∆x0 = 0.02 m, g = [0,−9.81] m/s2

Stopping criteria Fluid properties Numerical scheme
tmax 0.20 s
nmax —
∆tmin 10−6 s
Np max 3200
Amax 3

p0 0 Pa
ρ0 1000 kg/m3

ν —
c 50 m/s
γ 1

Diffusive δ-term? X Average weights? 7

α 0.02
ζ 0.25
∆nρ —
CFL 0.20

Initialization ramp? X
ts 0.20 s
nmax s —
U —
E0 —

Figure 6.1 shows the result obtained, with no noticeable difference in the pressure field between
the Voronoi and SPH sub-domains, indicating that the coupling is working adequately.

The effectiveness of the initialization linear damping is visualized through the evolution of
the kinetic energy, as discussed previously in Sec. 4.4 and displayed again on the left panel of
Fig. 6.2. On its right panel, the pressure is plotted as a function of the vertical position for all the
particles in the fluid domain, showing reasonable agreement with the hydrostatic incompressible
exact solution. One possible improvement to reduce the initial oscillation observed in Fig. 6.2
is to use the actual expected density from the hydrostatic field, ρhydr, as shown in Fig. 6.3. This
hydrostatic density can be obtained from the Eq. of state (2.11) for a weakly compressible fluid as

ρ = ρ0

[
γ

c2 ρ0
(p − p0) + 1

] 1
γ

→ ρhydr(r) = ρ0

[
γ

c2 ρ0

[
g · (r − r0) − p0

]
+ 1

] 1
γ

(6.1)

where r0 represents a location on the fluid where p = p0, which in this case is (0,H).

87

Chapter 6: Verification

Figure 6.1: Left: Zones in a hydrostatic equilibrium simulation. Right: pressure field at same time.

Figure 6.2: Left: Kinetic energy evolution with and without linear damping term; Right: Particles’s
pressure distribution

Figure 6.3: Kinetic energy evolution using linear damping under different initial density fields

88

Chapter 6: Verification

6.2 Hydrostatic equilibrium: concave boundaries
The second complex geometry presented by Colagrossi et al. (2012) is also tested here. It includes
concave boundaries that require the use of the trimming algorithm introduced in Sec. 3.4.3, and
allows us to test the dedicated formulation to enforce the solid BCs on them, presented also in
Sec. 3.4.3. Table 6.2 summarizes the simulation parameters chosen in this case.

Table 6.2: Simulation parameters: Hydrostatic equilibrium (concave boundaries)

General: 2D, # of particles: 7427, ∆x0 = 0.02 m, g = [0,−9.81] m/s2

Stopping criteria Fluid properties Numerical scheme
tmax 0.20 s
nmax —
∆tmin 10−6 s
Np max 7500
Amax 3

p0 0 Pa
ρ0 1000 kg/m3

ν —
c 50 m/s
γ 1

Diffusive δ-term? X Average weights? 7

α 0.02
ζ 0.25
∆nρ —
CFL 0.20

Initialization ramp? X
ts 0.20 s
nmax s —
U —
E0 —

Figure 6.4 shows the different zones in the fluid domain, including a detail of the cell shapes
around the concave corner.

Figure 6.4: Left: Zones in a hydrostatic equilibrium simulation with the complex geometry from
Colagrossi et al. (2012). Right: Detail of the Voronoi cell shapes next to the concave vertex.

Figure 6.5 shows the pressure field obtained, zooming near the concave corner on its right
panel, and confirming the capability of the current numerical scheme to deal with more complex
boundaries. Like in the trapezoidal configuration before, the pressure values from each individual
particle show good agreement with the hydrostatic incompressible exact solution, as shown in
Fig. 6.6. Finally, Fig. 6.7 shows the initial stabilization scheme performance through the evolution
of the kinetic energy, with the density field initialized with ρ(r, t = 0) = ρhydr.

89

Chapter 6: Verification

Figure 6.5: Hydrostatic equilibrium with concave boundaries: Pressure field

Figure 6.6: Hydrostatic equilibrium with concave boundaries: Particles pressure distribution

Figure 6.7: Hydrostatic equilibrium with concave boundaries: Kinetic energy evolution

90

Chapter 6: Verification

6.3 Sound wave
The propagation and ulterior reflection of a sound wave is discussed next, aiming to investigate
how pressure-driven flows are treated by the coupled scheme. The case was first used by Ott
and Schnetter (2003) to assess the accuracy of a multiphase SPH implementation. In our case, a
rectangular domain of 1 × 0.03 m, periodic in y, is considered. The particles are evenly distributed
and a small amplitude perturbation in their density, ∆ρ(x), is set according to the following formula:

ρ(r, t = 0) = ρ0 + ∆ρ(x) = ρ0 + A ρ0 x2 exp
{
−

(x − x0

W

)2
}
, x ∈ (0, L) (6.2)

where A controls the amplitude of the pressure wave, W controls its width, x0 is the location of
the initial peak of the pressure wave, and L the longitudinal extension of the fluid domain. In
this simulation, their values are set to A = 0.005 to have density variations of ∼1%, W = 0.1 L,
x0 = 0.5 L, and L = 1 m from the rectangular domain dimensions. An initial horizontal velocity is
given to the particles in order to privilege one propagation direction against the other, ux(r, t = 0) = c

∆ρ(x)
ρ0

,

uy(r, t = 0) = 0 .
(6.3)

The flow is treated as inviscid, so the artificial viscosity is included for numerical stability. How-
ever, the diffusive δ-correction term is not included, since its purpose is precisely to attenuate the
pressure waves that we want to observe. Table 6.3 summarizes the simulation parameters.

Table 6.3: Simulation parameters: Sound wave

General: 2D, # of particles: 8000, ∆x0 = 0.0025 m, g = [0, 0] m/s2

Stopping criteria Fluid properties Numerical scheme
tmax 0.20 s
nmax —
∆tmin 10−6 s
Np max 10000
Amax 3

p0 0 Pa
ρ0 1000 kg/m3

ν —
c 40 m/s
γ 1

Diffusive δ-term? 7 Average weights? 7

α 0.02
ζ 0.25
∆nρ —
CFL 0.20

Initialization ramp? 7

A cross section of a 2D sound wave is shown at various time steps in Fig. 6.8, where t∗ = t c/L.
Since x0 = 0.5 L is taken as the initial, position, t∗ = 1 corresponds to the moment when the wave
returns to the original position after one reflection. The results show how the wave maintains its
shape reasonably well after its propagation, and reflection in the Voronoi region adjacent to the
lateral walls.

91

Chapter 6: Verification

Figure 6.8: 2D sound wave propagation simulation. Pressure profiles at different time steps

Figure 6.9 shows the evolution of the energy components variation as defined in Eq. (5.46):1

∆̂E = (E − E0)/E0
tot. Physically, we can observe the conversion between kinetic and elastic energy

in the reflections (as defined in Eqs. (5.26) and (5.28), respectively), with an overall decay due to
numerical dissipation.

Figure 6.9: Sound wave energy decay

1Since no thermal nor gravitational effects are included, E0
P = 0 and E0

T = 0 and therefore Etot = EK + EC in this
case

92

Chapter 6: Verification

6.4 2D Steady Couette flow
A plane Couette viscous flow is considered in this case, shown in Fig. 6.10. The height of the
channel is set to a = 0.1, with the upper wall moving horizontally with velocity U = 1 m/s and the
lower wall remaining static. The velocity field is initialized with its exact solution, ux(r, t = 0) = U

y
a
,

uy(r, t = 0) = 0 ,
(6.4)

and since no gravitational effects are included, the density field is initialized with ρ(r, t = 0) = ρ0.
The viscosity is set to achieve Re = a U/ν = 10. Table 6.4 summarizes the simulation parameters.

Table 6.4: Simulation parameters: Steady Couette flow

General: 2D, # of particles: 960, ∆x0 = 0.005 m, g = [0, 0] m/s2

Stopping criteria Fluid properties Numerical scheme
tmax 0.20 s
nmax —
∆tmin 10−6 s
Np max 1000
Amax 3

p0 5000 Pa
ρ0 1000 kg/m3

ν 0.01 m2/s
c 10 m/s
γ 1

Diffusive δ-term? X Average weights? 7

α —
ζ 0.25
∆nρ —
CFL 0.20

Initialization ramp? 7

Figure 6.10: 2D steady Couette flow

From its analytic solution we can state that

u =

(
U

y
a
, 0

)
→ r(t) =

(
x0 + t U

y
a
, y0

)
,

ri(t = 0) = (0, 0),
r j(t = 0) = (−z, z), z ∈ [0, a],

→ ri(t = a/U) = (0, 0),
r j(t = a/U) = (0, z),

 ,
93

Chapter 6: Verification

where (x0, y0) represent the initial positions. Basically, all the particles located at a -45◦ diagonal
on an initial Cartesian arrangement become vertically aligned after t = a/U. Figure 6.11 shows the
shape of one Voronoi cell at different time steps during the simulation, showing how the theoretical
prediction is achieved and the cells deform due to the different relative velocity recovering the
original shape.

Figure 6.11: Detail of one Voronoi cell at different time steps with the stationary Couette flow.

94

Chapter 6: Verification

6.5 2D Impulsively-started Couette flow
The starting Couette flow allows us to test the performance of the code under strong shear flows.
While the particle size is kept equal to the steady case before, the height of the channel is enlarged
to a = 1 m, proportionally increasing the resolution. The fluid is initialized at rest (zero initial
velocity), with the upper boundary located at y = a moving horizontally with velocity U = 1 m/s
in the positive x direction and the lower boundary at y = 0 moving with the same velocity but
opposite direction, like the case presented by Monaghan (2005a). ρ(r, t = 0) = ρ0 and viscosity is
adjusted to achieve Re = a U/ν = 10, as shown in Tab. 6.5 and same than the steady case before.

Table 6.5: Simulation parameters: Impulsive starting Couette flow

General: 2D, # of particles: 5600, ∆x0 = 0.005 m, g = [0, 0] m/s2

Stopping criteria Fluid properties Numerical scheme
tmax 0.20 s
nmax —
∆tmin 10−6 s
Np max 6000
Amax 3

p0 1250 Pa
ρ0 10 kg/m3

ν 0.1 m2/s
c 50 m/s
γ 1

Diffusive δ-term? X Average weights? 7

α —
ζ 0.25
∆nρ —
CFL 0.20

Initialization ramp? 7

The left panel of Figure 6.12 shows the different zones within the 0.1 × 1 m rectangular fluid
domain. Its right panel presents multiple velocity profiles along the vertical direction at various
time steps. Time is made non-dimensional using the mean lifetime of the transition to stationary
state, such that

τ = t
ν

ρ0 (a/2)2 . (6.5)

Figure 6.12: Impulsive starting Couette. Left: Fluid zones; Right: velocity profiles at various τ

95

Chapter 6: Verification

Figure 6.13 shows the horizontal velocity profile along the vertical direction at a given τ, com-
paring the numerical results with the theoretical solution given by Batchelor (1967) and adapted to
present boundary conditions,

u x(y, t)
U

= −

(
1 −

2y
a

)
−

2
π

∞∑
j=1

1
j

sin(jπỹ) exp(− j2π2τ) , (6.6)

where ỹ indicates the distance to the closest boundary made non-dimensional with a/2,

ỹ =

 2 − y
a y > a ,

y
a y ≤ a .

(6.7)

The agreement is reasonable but small deviations from the exact solution are noticeable.

Figure 6.13: Starting Couette velocity profile at τ = 0.1 under Re = 10

96

Chapter 6: Verification

6.6 Lamb–Oseen vortex
This test case also represents a shear flow, in particular a pure viscous diffusion process. Its analytic
solution is presented by Macià et al. (2012), where two types of fluid domains are considered for
the numerical simulations: circular and square (Fig. 6.14). The theoretical velocity and density
distributions are assigned to the fluid particles as the initial conditions, leaving them free to move
afterward under the sole no-slip boundary conditions on the enclosing walls.

ρ(r, t = 0) = ρ0 , (6.8)

u(r, t = 0) = (ux,uy) = q
1 − exp

(
− r2

a2

)
r2 (−y, x) , (6.9)

a(t)2 = a2
0 + 4 ν t , (6.10)

where q gives the intensity of the vortex, a is the effective vortex core radius where the velocity
is maximum, ν is the kinematic viscosity, and r = ‖r‖ = ‖(x, y)‖ is the magnitude of the position
vector. Both circular and square configurations have been simulated using the same input values
than Maciá et al.: q = 0.5, a0 = 1, and Re =

2πq
ν

= 10. The number of particles differ from each
simulation, Table 6.6 summarizes the simulation parameters.

Table 6.6: Simulation parameters: Lamb–Oseen vortex

General: 2D, # of particles:

 12172 square
15376 circular

, ∆x0 = 0.2 m, g = [0, 0] m/s2

Stopping criteria Fluid properties Numerical scheme
tmax 10 s
nmax —
∆tmin 10−6 s
Np max 17000
Amax 3

p0 1250 Pa
ρ0 1000 kg/m3

ν 0.1 πm2/s
c 5 m/s
γ 1

Diffusive δ-term? X Average weights?
α —
ζ 0.25
∆nρ —
CFL 0.20

circular: 7

square: X
Initialization ramp? 7

Figure 6.14: Fluid zones in the Lamb–Oseen vortex simulation

97

Chapter 6: Verification

Figures 6.15 and 6.16 show the resulting velocity fields, displaying on their right the evolution of
the calculated maximum velocity together with the analytic solution. The simulation results show
a good agreement with the theoretical values. In addition, we can observe how the conservative
formulation in the square configuration, achieved by averaging the coupling weights (Sec. 3.3.2),
removes the spurious oscillations visible in the circular one.

Figure 6.15: Left: Lamb–Oseen vortex velocity fields in a circular domain at t = 1 s; Right:
Evolution of max ‖u‖ for the same configuration

Figure 6.16: Left: Lamb–Oseen vortex velocity fields in a square domain at t = 1 s; Right:
Evolution of max ‖u‖ for the same configuration

98

Chapter 6: Verification

6.7 Two symmetric Lamb–Oseen vortices
Under the square domain configuration in the previous single Lamb–Oseen case, particles move
across the buffer changing their weight values. However, the velocities in this zone are relatively
small, making it difficult to extract conclusions. An alternative case with two symmetric Lamb–
Oseen vortices has been simulated to visualize better this feature of the coupled scheme, as shown
in Fig. 6.17. The coupling weights are averaged like in the square configuration before, and the
same values of q, a0, and ρ are used, although the walls are closer to the vortex centers in this
case. The viscous dissipation is reduced by applying the free slip BC at the walls and reducing the
viscosity to achieve Re =

2πq
ν

= 60, which facilitates the movement of the particles.

Table 6.7: Simulation parameters: Two symmetric Lamb–Oseen vortices

General: 2D, # of particles: 7688, ∆x0 = 0.1 m, g = [0, 0] m/s2

Stopping criteria Fluid properties Numerical scheme
tmax 20 s
nmax —
∆tmin 10−6 s
Np max 8000
Amax 3

p0 1250 Pa
ρ0 1000 kg/m3

ν 0.05 m2/s
c 5 m/s
γ 1

Diffusive δ-term? X Average weights? X

α —
ζ 0.25
∆nρ 20
CFL 0.20

Initialization ramp? 7

Figure 6.17: Left: Initial fluid zones in the simulation with two symmetric Lamb–Oseen vortices.
Right: Initial velocity field for the same configuration, with velocity streamlines superimposed

Figure 6.18 shows the resulting particle distribution at various time steps. Each particle is
colored based on its initial vertical position, y0 = y(t = 0). It can be observed how the mixing
induced by the vortices leads to a movement of particles into and away from the walls, crossing

99

Chapter 6: Verification

smoothly the buffer zone. These results show how the coupled scheme is also able to transport
mass across the buffer.

Figure 6.18: Particle configuration at different time steps with the two symmetric Lamb–Oseen
vortices. Particles colored with their initial vertical position

100

Chapter 6: Verification

6.8 Impinging jet
This last verification case involves a velocity inlet, through which fluid particles are introduced in a
rectangular computational domain. Table 6.8 summarizes the simulation parameters, and Fig. 6.19
shows the particle distribution at the last time step.

Table 6.8: Simulation parameters: Impinging jet

General: 2D, # of particles: 2040, ∆x0 = 0.01 m, g = [0,−9.81] m/s2

Stopping criteria Fluid properties Numerical scheme
tmax 1 s
nmax —
∆tmin 10−6 s
Np max 3000
Amax 3

p0 0 Pa
ρ0 1000 kg/m3

ν —
c 40 m/s
γ 1

Diffusive δ-term? X Average weights? X

α 0.02
ζ 0.25
∆nρ 20
CFL 0.20

Initialization ramp? 7

Figure 6.19: Particle distribution during the impinging jet simulation (red squares, Voronoi; ma-
genta diamonds, buffer; no SPH particles exist since the extension of the computational domain is
covered entirely by the buffer)

Figure 6.20 shows the particle distribution at various time steps. Initially, the fluid domain is
empty and only I/O particles are included. As time goes on, the fluid column falling from the inlet
stretches due to gravity before it hits the bottom. After the impact, the fluid expands laterally until
it reaches the sides when a second collision with the walls occurs. The fluid moves upwards but
is slowed by gravity, and as it runs down it overturns backwards and plunges into the underlying
fluid, similar to the dam break case analyzed by Colagrossi and Landrini (2003).

Given that particles under the VPH formulation only interact with their immediate neighbors,
they are more sensitive to their relative movement than under the SPH scheme. As a result, they

101

Chapter 6: Verification

Figure 6.20: Particle configuration at different time steps for the impinging jet simulation. Particles
colored with their velocity magnitude.

show a larger cohesion than in SPH, which increases the difficulty in capturing the free-surface
deformations. This can be appreciated in Fig. 6.20 both when the fluid is sliding over the bottom
and when is overturning, where a narrower shape in the former and a larger detachment in the
latter were expected. Therefore, we conclude that a finer resolution will be needed to capture
violent free-surface deformations if they occur within the VPH sub-domain.

102

Chapter 7

Concluding remarks and Future work

7.1 Conclusions
The methodology and results presented in this work show the feasibility of combining SPH with
Voronoi diagrams into a hybrid Lagrangian SPH-VPH scheme, with an explicit weakly compress-
ible formulation for both methods. While SPH is based on smoothing using a kernel function,
VPH uses volume averaged approximations based on a Voronoi tessellation (Serrano and Español,
2001; Hess and Springel, 2010). However, both methods are conceptually very close, making it
logical to extend to VPH the stabilization corrections proposed in the literature for SPH. As such,
new artificial viscosity and diffusive terms are included in the VPH scheme inspired by the δ-SPH
standard formulation (Antuono et al., 2010, 2012; Cercos-Pita et al., 2016).

The fluid domain is subdivided into three separate zones: close to the boundaries where only
VPH is applied; far from the boundaries where only SPH is applied; and a transition zone where all
fields are computed using both methods and combined through a weighting function. A detailed
analysis of the size of the transition (buffer) zone is included to discuss how the conservation
properties of both SPH and VPH are kept under this coupling.

Despite the associated computational cost to determine the Voronoi tessellation, it provides
additional information beneficial for the numerical scheme. Firstly, the Voronoi tessellation asso-
ciates a distinct portion of the fluid domain to each particle, i.e. its Voronoi cell, which can be used
to determine a density value that will conserve volume as well. In addition, this value can be used
to re-initialize the density field with a given periodicity, beneficial to reduce the high-frequency
pressure oscillations. In this way, it corrects the numerical inconsistencies derived from evolving
the density by integrating the continuity equation, while it maintains the benefits of including the
δ-correction to mitigate the undesired sonic effects. The clustering of particles is also avoided
by limiting the deviation of the particle position from the centroid of its cell through a shifting
algorithm inspired by Lloyd (1982).

However, the main advantage of VPH lies on the enforcement of the boundary conditions.
Under the VPH scheme, the interaction with neighbor elements is done through the cell face shared
with them. By overlapping the boundaries with cell faces:
• no cell crosses the boundary, so we maintain the consistency of the volumetric subdivision

of the fluid domain, and
• we use the known physical values at the face from the boundary conditions to evaluate the

VPH differential operators. Not only it avoids requiring (ghost) fluid particles beyond the
boundary, but it is also directly applicable in 3D and higher dimensions with no further
modification of the scheme.

Special emphasis has been placed in the algorithm generating the tessellation to enforce this exact
mapping of boundary faces. Moreover, it is done without imposing any restriction on the particles
movement. This is achieved by using the convex boundaries as symmetry planes to reflect the
particles next to them, whereas concave boundaries are used to trim the unbounded cells crossing

103

Chapter 7: Concluding remarks and Future work

them. In addition, the boundaries themselves must be discretized into a set of planar elements
(segments in 2D, triangles in 3D).

The inclusion of free-surfaces in VPH represented a challenge, with no previous attempts found
in the literature. In this work, a new algorithm to detect angular regions around particles not cov-
ered by neighbors is used to detect the free-surface location. Periodic and inlet/outlet boundaries
complete the possibilities to surround the fluid domain, which are treated by including an addi-
tional layer of Voronoi particles beyond the boundary to ensure that the fluid particles are properly
bounded.

In summary, the new coupled scheme proposed extends the artificial viscosity and δ-correction
to the VPH formulation, incorporates free-surfaces to it for the first time, and is capable of dealing
with complex geometries. The treatment of the boundary conditions is greatly simplified by using
Voronoi diagrams, compensating for the additional computational cost that it requires building the
tessellation.

The method has been coded in a hybrid Matlab–C++ implementation, using a first-order leap
frog time-stepping scheme. During the program initialization, a linear damping term is introduced
to remove the initial instabilities from unbalanced initial conditions following Monaghan (1994).
The energy balance at the discrete level of the scheme is analyzed, identifying its different compo-
nents.

The accuracy of the coupled scheme is discussed by means of a set of well-known verification
benchmarks. The results showed that pressure gradient dominated problems, such as hydrostatic
conditions or sound wave propagations, are well simulated by the method. However, problems
which are dominated by viscous diffusion render less accurate results, consistent with the in-
creased error made in the higher order differential operators. The oscillations observed in the
impulsively-started Couette reflect the impact of sonic effects, even in shear driven fluids. While
they progressively vanish, a larger attenuation or a lower sensitivity to density variations must be
considered if the transient phase is the main focus of the simulation.

7.2 Recommendations for future work
While this work establishes the foundation of the δ-VSPH method, it remains to be further devel-
oped in multiple areas:

• Parallelize the code to be able to run in multiple processors through external libraries such
OpenMP1 or OpenMPI2. This will allow us to use larger number of particles and tackle more
complex geometries and flows.

• Validate the method with experimental results (Zhou et al., 1999; Lobovský et al., 2014).

• Run simulations with 3D configurations and moving bodies to demonstrate the full potential
of the method, more feasible once the code is parallelized.

1http://www.openmp.org
2https://www.open-mpi.org

104

http://www.openmp.org
https://www.open-mpi.org

Chapter 7: Concluding remarks and Future work

• Analyze its consistency under large free-surface deformations with air entrapment (Cola-
grossi and Landrini, 2003), and explore more advanced free-surface detection methods pro-
posed for SPH (Dilts, 2000; Haque and Dilts, 2007; Marrone et al., 2010; Marrone, 2011).

• Include thermal effects, multi-phase flows, and surface-tension loads in the simulations.

• Reduce the computational demands and/or improve the precision of the method by including
variable time scales for different locations of the flow (multirate methods), higher order time-
stepping algorithms like RK4, adaptive artificial viscosity to model shocks (Balsara, 1995),
and particle merging/splitting algorithms for variable spatial resolution (Shapiro et al., 1996;
Lastiwka et al., 2005; Vacondio et al., 2013; Hu et al., 2017).

The great advantage of the coupled scheme presented is that it combines the core formulations
of SPH and VPH, but does not establish any further restriction on each. As such, incorporating the
existing modifications in the literature should be straightforward, a priori. Once again, the large
similarities between both methods will simplify transferring the techniques proposed for the more
mature SPH to VPH, anticipating an exciting future for this coupled approach.

7.3 Associated publications
• D. Fernandez-Gutierrez, A. Souto-Iglesias, T. I. Zohdi (11/2017) “A hybrid Lagrangian

Voronoi-SPH scheme”, Journal of Computational Particle Mechanics, ISSN 2196-4378.
URL https://link.springer.com/article/10.1007%2Fs40571-017-0173-4

• D. Fernandez-Gutierrez, and T.I. Zohdi, (11/2017). “Coupling SPH with Voronoi diagrams
to model solid boundaries”. 70th Annual Meeting of the American Physical Society Division
of Fluid Dynamics (APS-DFD). Denver, USA.

• D. Fernandez-Gutierrez, A. Souto-Iglesias, T. I. Zohdi (06/2017) “A hybrid Lagrangian
Voronoi-SPH scheme”, 12th International SPHERIC SPH Workshop. Ourense, Spain.

105

https://link.springer.com/article/10.1007%2Fs40571-017-0173-4

Chapter 7: Concluding remarks and Future work

106

References

Adami, S., Hu, X., and Adams, N. (2012). “Simulating three-dimensional turbulence with SPH”.
In Proceedings of the Summer Program, p. 177. Center for Turbulence Research.

Allen, M. P. and Tildesley, D. J. (2017). Computer simulation of liquids. Oxford university press.

Antoci, C., Gallati, M., and Sibilla, S. (2007). “Numerical simulation of fluid–structure interaction
by SPH”. Computers & Structures, 85(11):pp. 879 – 890. ISSN 0045-7949. Fourth MIT Con-
ference on Computational Fluid and Solid Mechanics, URL http://www.sciencedirect.
com/science/article/pii/S0045794907000132.

Antuono, M., Colagrossi, A., and Marrone, S. (2012). “Numerical diffusive terms in weakly-
compressible SPH schemes”. Computer Physics Communications, 183(12):pp. 2570–2580.

Antuono, M., Colagrossi, A., Marrone, S., and Molteni, D. (2010). “Free-surface flows solved by
means of SPH schemes with numerical diffusive terms”. Computer Physics Communications,
181(3):pp. 532–549. ISSN 0010-4655. URL http://www.sciencedirect.com/science/
article/pii/S0010465509003506.

Antuono, M., Marrone, S., Colagrossi, A., and Bouscasse, B. (2015). “Energy balance in the
δ-SPH scheme”. Computer Methods in Applied Mechanics and Engineering, 289:pp. 209–226.

Aurenhammer, F. (1987). “Power diagrams: Properties, algorithms and applications”. SIAM
Journal on Computing, 16(1):pp. 78–96.

Balsara, D. S. (1995). “Von Neumann stability analysis of Smoothed Particle Hydrodynamics -
Suggestions for optimal algorithms”. Journal of Computational Physics, 121:pp. 357–372.

Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. (1996). “The quickhull algorithm for convex
hulls”. ACM Trans. Math. Softw., 22(4):pp. 469–483. ISSN 0098-3500. URL http://doi.
acm.org/10.1145/235815.235821.

Barcarolo, D. A. (2013). Improvement of the precision and the efficiency of the SPH method:
theoretical and numerical study. Ph.D. thesis, Ecole Centrale de Nantes.

Barcarolo, D. A., Touzé, D. L., Oger, G., and de Vuyst, F. (2014). “Voronoi-SPH: on the analysis
of a hybrid Finite Volumes - Smoothed Particle Hydrodynamics method”. In 9th Int. SPHERIC
workshop, pp. 371–378.

Barreiro, A., Domı́nguez, J. M., Crespo, A. J. C., Garcı́a-Feal, O., and Gesteira, M. G. (2015).
“Smoothed Particle Hydrodynamics for free-surface flows”. In J. Klapp, G. Ruı́z Chavarrı́a,
A. Medina Ovando, A. López Villa, and L. D. G. Sigalotti, eds., Selected Topics of Compu-
tational and Experimental Fluid Mechanics, pp. 119–136. Springer International Publishing,
Cham. ISBN 978-3-319-11487-3. URL https://doi.org/10.1007/978-3-319-11487-
3_6.

107

http://www.sciencedirect.com/science/article/pii/S0045794907000132
http://www.sciencedirect.com/science/article/pii/S0045794907000132
http://www.sciencedirect.com/science/article/pii/S0010465509003506
http://www.sciencedirect.com/science/article/pii/S0010465509003506
http://doi.acm.org/10.1145/235815.235821
http://doi.acm.org/10.1145/235815.235821
https://doi.org/10.1007/978-3-319-11487-3_6
https://doi.org/10.1007/978-3-319-11487-3_6

References

Batchelor, G. K. (1967). Introduction to Fluid Dynamics. Cambridge University Press, New York.

Becker, M. and Teschner, M. (2007). “Weakly compressible SPH for free surface flows”. In
Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation,
pp. 209–217. Eurographics Association.

Belytschko, T., Krongauz, Y., Dolbow, J., and Gerlach, C. (1998). “On the completeness of mesh-
free particle methods”. Int. J. Numer. Methods Engineering, 43(5):pp. 785–819.

Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., and Krysl, P. (1996). “Meshless meth-
ods: An overview and recent developments”. Computer Methods in Applied Mechanics and
Engineerings, 139:pp. 3–47.

Benz, W. (1988). “Applications of Smoothed Particle Hydrodynamics (SPH) to Astrophysical
Problems”. Computer Physics Communications, 48:pp. 97–105.

Benz, W. and Asphaug, E. (1994). “Impact Simulations with Fracture. I. Method and Tests”.
Icarus, 107(1):pp. 98–116. ISSN 0019-1035. URL http : / / www . sciencedirect . com /
science/article/pii/S0019103584710098.

Benz, W. and Asphaug, E. (1995). “Simulations of brittle solids using smooth particle hydrody-
namics”. Computer Physics Communications, 87(1–2):pp. 253–265.

Bicknell, G. V. and Gingold, R. A. (1983). “On tidal detonation of stars by massive black holes”.
The Astrophysical Journal, 273:pp. 749–760.

Bird, G. A. (1976). “Molecular gas dynamics”. NASA STI/Recon Technical Report A, 76.

Bonet, J. and Lok, T. (1999). “Variational and momentum preservation aspects of Smoothed Par-
ticle Hydrodynamics formulations”. Comput. Methods Appl. Mech. Eng., 180:pp. 97–115.

Bowyer, A. (1981). “Computing dirichlet tessellations*”. The Computer Journal, 24(2):pp. 162–
166. /oup/backfile/content_public/journal/comjnl/24/2/10.1093/comjnl/24.
2.162/2/240162.pdf.

Cercos-Pita, J. (2015). “AQUAgpusph, a new free 3D SPH solver accelerated with OpenCL”.
Computer Physics Communications, 192(0):pp. 295–312. ISSN 0010-4655. URL http : / /
www.sciencedirect.com/science/article/pii/S0010465515000909.

Cercos-Pita, J., Antuono, M., Colagrossi, A., and Souto-Iglesias, A. (2017). “SPH energy conser-
vation for fluid–solid interactions”. Computer Methods in Applied Mechanics and Engineering,
317(Supplement C):pp. 771–791. ISSN 0045-7825. URL http : / / www . sciencedirect .
com/science/article/pii/S0045782516303644.

Cercos-Pita, J., Dalrymple, R., and Herault, A. (2016). “Diffusive terms for the conservation of
mass equation in SPH”. Applied Mathematical Modelling, 40(19):pp. 8722 – 8736. ISSN 0307-
904X. URL http : / / www . sciencedirect . com / science / article / pii /
S0307904X16302669.

108

http://www.sciencedirect.com/science/article/pii/S0019103584710098
http://www.sciencedirect.com/science/article/pii/S0019103584710098
/oup/backfile/content_public/journal/comjnl/24/2/10.1093/comjnl/24.2.162/2/240162.pdf
/oup/backfile/content_public/journal/comjnl/24/2/10.1093/comjnl/24.2.162/2/240162.pdf
http://www.sciencedirect.com/science/article/pii/S0010465515000909
http://www.sciencedirect.com/science/article/pii/S0010465515000909
http://www.sciencedirect.com/science/article/pii/S0045782516303644
http://www.sciencedirect.com/science/article/pii/S0045782516303644
http://www.sciencedirect.com/science/article/pii/S0307904X16302669
http://www.sciencedirect.com/science/article/pii/S0307904X16302669

References

Cercos-Pita, J. L. (2016). A novel generalized diffusive SPH model: Theoretical analysis and 3D
HPC implementation. Ph.D. thesis, Technical University of Madrid (UPM).

Chen, S. and Doolen, G. D. (1998). “Lattice Boltzmann method for fluid flows”. Annual Review
of Fluid Mechanics, 30(1):pp. 329–364. URL https : / / doi . org / 10 . 1146 / annurev .
fluid.30.1.329.

Chiaki, G. and Yoshida, N. (2015). “Particle splitting in smoothed particle hydrodynamics based on
Voronoi diagram”. Monthly Notices of the Royal Astronomical Society, 451(4):pp. 3955–3963.

Chorin, A. J. (1973). “Numerical study of slightly viscous flow”. Journal of Fluid Mechanics,
57(4):p. 785?796.

Chorin, A. J. and Bernard, P. S. (1973). “Discretization of a vortex sheet, with an example of
roll-up”. Journal of Computational Physics, 13(3):pp. 423 – 429. ISSN 0021-9991. URL
http://www.sciencedirect.com/science/article/pii/0021999173900454.

Cignoni, P., Montani, C., and Scopigno, R. (1998). “DeWall: A fast divide and conquer Delaunay
triangulation algorithm in Ed”. Computer-Aided Design, 30(5):pp. 333 – 341. ISSN 0010-4485.
URL http://www.sciencedirect.com/science/article/pii/S0010448597000821.

Cleary, P. (1996). “New implementation of viscosity. Tests with Couette flows”. Tech. rep., CSIRO
Division of Mathematics and Statistics.

Colagrossi, A. (2005). A meshless lagrangian method for free-surface and interface flows with
fragmentation. Ph.D. thesis, Università di Roma La Sapienza.

Colagrossi, A., Antuono, M., and Le Touzé, D. (2009). “Theoretical considerations on the free-
surface role in the smoothed-particle-hydrodynamics model”. Phys. Rev. E, 79:p. 056701. URL
https://link.aps.org/doi/10.1103/PhysRevE.79.056701.

Colagrossi, A., Antuono, M., Souto-Iglesias, A., and Le Touzé, D. (2011). “Theoretical analy-
sis and numerical verification of the consistency of viscous smoothed-particle-hydrodynamics
formulations in simulating free-surface flows”. Physical Review E, 84:p. 026705. URL
https://link.aps.org/doi/10.1103/PhysRevE.84.026705.

Colagrossi, A., Antuono, M., Souto-Iglesias, A., Le Touzé, D., and Izaguirre-Alza, P. (2010).
“Theoretical analysis of SPH in simulating free-surface viscous flows”. In 5th ERCOFTAC
SPHERIC workshop on SPH applications.

Colagrossi, A., Bouscasse, B., Antuono, M., and Marrone, S. (2012). “Particle packing algorithm
for SPH schemes”. Computer Physics Communications, 183(2):pp. 1641–1683.

Colagrossi, A. and Landrini, M. (2003). “Numerical Simulation of Interfacial Flows by Smoothed
Particle Hydrodynamics”. J. Comp. Phys., 191:pp. 448–475.

Colagrossi, A., Souto-Iglesias, A., Antuono, M., and Marrone, S. (2013). “Smoothed-particle-
hydrodynamics modeling of dissipation mechanisms in gravity waves”. Phys. Rev. E, 87:p.
023302.

109

https://doi.org/10.1146/annurev.fluid.30.1.329
https://doi.org/10.1146/annurev.fluid.30.1.329
http://www.sciencedirect.com/science/article/pii/0021999173900454
http://www.sciencedirect.com/science/article/pii/S0010448597000821
https://link.aps.org/doi/10.1103/PhysRevE.79.056701
https://link.aps.org/doi/10.1103/PhysRevE.84.026705

References

Crespo, A., Dominguez, J., Rogers, B., Gomez-Gesteira, M., Longshaw, S., Canelas, R., Vacon-
dio, R., Barreiro, A., and Garcia-Feal, O. (2015). “DualSPHysics: Open-source parallel CFD
solver based on Smoothed Particle Hydrodynamics (SPH)”. Computer Physics Communica-
tions, 187:pp. 204–216. ISSN 0010-4655.

Cummins, S. and Rudman, M. (1999). “An SPH projection method”. J. Comp. Phys., 152(2):pp.
584–607.

Das, R. and Cleary, P. (2010). “Effect of rock shapes on brittle fracture using Smoothed Particle
Hydrodynamics”. Theoretical and Applied Fracture Mechanics, 53(1):pp. 47 – 60. ISSN 0167-
8442. URL http : / / www . sciencedirect . com / science / article / pii /
S0167844209001219.

De Berg, M., Cheong, O., Van Kreveld, M., and Overmars, M. (2008). Computational Geometry:
Introduction. Springer.

De Leffe, M., Le Touzé, D., and Alessandrini, B. (2009). “Normal flux method at the boundary for
SPH”. In 4th SPHERIC, pp. 149–156.

De Leffe, M., Le Touzé, D., and Alessandrini, B. (2011). “A modified no-slip condition in weakly-
compressible SPH”. In 6th ERCOFTAC SPHERIC workshop on SPH applications, pp. 291–297.

Di Lisio, R., Grenier, E., and Pulvirenti, M. (1997). “On the regularization of the pressure field
in compressible euler equations”. Annali della Scuola Normale Superiore di Pisa. Classe di
Scienze. Serie IV , 24(2):pp. 227–238. ISSN 0391-173X. URL http://www.numdam.org/
item?id=ASNSP_1997_4_24_2_227_0.

Di Lisio, R., Grenier, E., and Pulvirenti, M. (1998). “The convergence of the SPH method”.
Computers & Mathematics with Applications, 35(1):pp. 95–102. ISSN 0898-1221. URL http:
//www.sciencedirect.com/science/article/pii/S0898122197002605.

Dilts, G. A. (1999). “Moving-least-squares-particle hydrodynamics? I. Consistency and stabil-
ity”. International Journal for Numerical Methods in Engineering, 44(8):pp. 1115–1155. ISSN
1115–1155.

Dilts, G. A. (2000). “Moving least-squares particle hydrodynamics II: conservation and bound-
aries”. International Journal for Numerical Methods in Engineering, 48(10):pp. 1503–1524.
ISSN 1097-0207.

Drazin, P. G. and Riley, N. (2006). The Navier-Stokes equations: a classification of flows and exact
solutions. 334. Cambridge University Press. ISBN 9780521681629.

Duque, D., Español, P., and de la Torre, J. A. (2017). “Extending linear finite elements to quadratic
precision on arbitrary meshes”. Applied Mathematics and Computation, 301:pp. 201 – 213.
ISSN 0096-3003. URL http : / / www . sciencedirect . com / science / article / pii /
S0096300316307366.

110

http://www.sciencedirect.com/science/article/pii/S0167844209001219
http://www.sciencedirect.com/science/article/pii/S0167844209001219
http://www.numdam.org/item?id=ASNSP_1997_4_24_2_227_0
http://www.numdam.org/item?id=ASNSP_1997_4_24_2_227_0
http://www.sciencedirect.com/science/article/pii/S0898122197002605
http://www.sciencedirect.com/science/article/pii/S0898122197002605
http://www.sciencedirect.com/science/article/pii/S0096300316307366
http://www.sciencedirect.com/science/article/pii/S0096300316307366

References

Español, P. and Revenga, M. (2003). “Smoothed dissipative particle dynamics”. Phys. Rev. E,
67:p. 026705. URL https://link.aps.org/doi/10.1103/PhysRevE.67.026705.

Español, P. and Warren, P. (1995). “Statistical mechanics of dissipative particle dynamics”. EPL
(Europhysics Letters), 30(4):p. 191. URL http : / / stacks . iop . org / 0295 -
5075/30/i=4/a=001.

Español, P. and Warren, P. B. (2017). “Perspective: Dissipative particle dynamics”. The Journal
of Chemical Physics, 146(15):p. 150901.

Evans, M. W. and Harlow, F. H. (1957). “The particle-in-cell method for hydrodynamic calcula-
tions”. Tech. rep., LOS ALAMOS NATIONAL LAB NM. Los Alamos Scientific Laboratory
report LA-2139.

Federico, I., Marrone, S., Colagrossi, A., Aristodemo, F., and Antuono, M. (2012). “Simulating
2D open-channel flows through an SPH model”. European Journal of Mechanics - B/Fluids,
34:pp. 35 – 46. ISSN 0997-7546. URL http : / / www . sciencedirect . com / science /
article/pii/S0997754612000337.

Feldman, J. and Bonet, J. (2007). “Dynamic refinement and boundary contact forces in SPH
with applications in fluid flow problems”. International Journal for Numerical Methods in
Engineering, 72(3):pp. 295–324. URL http://www3.interscience.wiley.com/cgi-
bin/abstract/114179937/ABSTRACT.

Fernández-Gutiérrez, D., Moreu, J., de Guzmán, S., Yeung, R. W., and Moreu, M. (2014). “Numer-
ical simulations in the design of a new Tension-Tethered marine current turbine”. In Proceedings
of the 33rd ASME International Conference on Ocean, Offshore, and Arctic Engineering.

Ferrari, A., Dumbser, M., Toro, E. F., and Armanini, A. (2009). “A new 3D parallel SPH scheme
for free surface flows”. Computers & Fluids, 38(6):pp. 1203–1217. ISSN 0045-7930. URL
http://www.sciencedirect.com/science/article/pii/S0045793008002284.

Flekkøy, E. G., Coveney, P. V., and De Fabritiis, G. (2000). “Foundations of dissipative particle
dynamics”. Phys. Rev. E, 62:pp. 2140–2157. URL https://link.aps.org/doi/10.1103/
PhysRevE.62.2140.

Fortune, S. (1987). “A sweepline algorithm for Voronoi diagrams”. Algorithmica, 2(1):p. 153.
ISSN 1432-0541.

Ghaffari, M. A. and Xiao, S. (2016). “Smoothed Particle Hydrodynamics with Stress Points and
Centroid Voronoi Tessellation (CVT) Topology Optimization”. International Journal of Com-
putational Methods, 13(05):p. 1650031. URL http://www.worldscientific.com/doi/
abs/10.1142/S0219876216500316.

Gingold, R. and Monaghan, J. (1977). “Smoothed Particle Hydrodynamics: theory and application
to non-spherical stars”. Mon. Not. Roy. Astron. Soc. (MNRAS), 181:pp. 375–389.

111

https://link.aps.org/doi/10.1103/PhysRevE.67.026705
http://stacks.iop.org/0295-5075/30/i=4/a=001
http://stacks.iop.org/0295-5075/30/i=4/a=001
http://www.sciencedirect.com/science/article/pii/S0997754612000337
http://www.sciencedirect.com/science/article/pii/S0997754612000337
http://www3.interscience.wiley.com/cgi-bin/abstract/114179937/ABSTRACT
http://www3.interscience.wiley.com/cgi-bin/abstract/114179937/ABSTRACT
http://www.sciencedirect.com/science/article/pii/S0045793008002284
https://link.aps.org/doi/10.1103/PhysRevE.62.2140
https://link.aps.org/doi/10.1103/PhysRevE.62.2140
http://www.worldscientific.com/doi/abs/10.1142/S0219876216500316
http://www.worldscientific.com/doi/abs/10.1142/S0219876216500316

References

Gingold, R. and Monaghan, J. (1982). “Kernel estimates as a basis for general particle methods
in hydrodynamics”. Journal of Computational Physics, 46(3):pp. 429–453. ISSN 0021-9991.
URL http://www.sciencedirect.com/science/article/pii/0021999182900250.

González, R. (2016). “PARAVT: Parallel Voronoi tessellation code”. Astronomy and Computing,
17(Supplement C):pp. 80 – 85. ISSN 2213-1337. URL http://www.sciencedirect.com/
science/article/pii/S2213133716300609.

Gray, J. (2001). Caldera collapse and the generation of waves. Ph.D. thesis, Monash University.

Gray, J. and Monaghan, J. (2004). “Numerical modelling of stress fields and fracture around
magma chambers”. Journal of Volcanology and Geothermal Research, 135(3):pp. 259–283.
ISSN 0377-0273. URL http : / / www . sciencedirect . com / science / article / pii /
S0377027304000678.

Haque, A. and Dilts, G. A. (2007). “Three-dimensional boundary detection for particle methods”.
Journal of Computational Physics, 226(2):pp. 1710–1730. ISSN 0021-9991. URL http :
//www.sciencedirect.com/science/article/pii/S0021999107002586.

Hernquist, L. and Katz, N. (1989). “TreeSPH: A Unification of SPH with the Hierarchical Tree
Method”. Astrophysical Journal Supplement, 70:pp. 419–446.

Hess, S. and Springel, V. (2010). “Particle hydrodynamics with tessellation techniques”. Monthly
Notices of the Royal Astronomical Society, 406(4):pp. 2289–2311.

Hieber, S. and Koumoutsakos, P. (2008). “An immersed boundary method for smoothed particle
hydrodynamics of self-propelled swimmers”. Journal of Computational Physics, 227(19):pp.
8636–8654. ISSN 0021-9991. URL http://www.sciencedirect.com/science/article/
pii/S0021999108003343.

Hirsch, C. (1990). Numerical computation of internal and external flows. Vol. 2: computational
methods for inviscid and viscous flows. John Wiley & Sons.

Hirt, C., Amsden, A., and Cook, J. (1997). “An arbitrary Lagrangian-Eulerian computing method
for all flow speeds”. J. Comput. Phys., 135(2):pp. 203–216. ISSN 0021-9991. Reprinted from J.
Comput. Phys. 1974; 14:227–253, URL http://dx.doi.org/10.1006/jcph.1997.5702.

Hirt, C. and Nichols, B. (1981). “Volume of fluid (VOF) method for the dynamics of free bound-
aries”. Journal of Computational Physics, 39(1):pp. 201 – 225. ISSN 0021-9991. URL
http://www.sciencedirect.com/science/article/pii/0021999181901455.

Hoover, W. (1998). “Isomorphism linking smooth particles and embedded atoms”. Physica A:
Statistical Mechanics and its Applications, 260(3):pp. 244 – 254. ISSN 0378-4371. URL http:
//www.sciencedirect.com/science/article/pii/S0378437198003574.

Hu, W., Pan, W., Rakhsha, M., Tian, Q., Hu, H., and Negrut, D. (2017). “A consistent multi-
resolution smoothed particle hydrodynamics method”. Computer Methods in Applied Mechanics
and Engineering, 324:pp. 278 – 299. ISSN 0045-7825. URL http://www.sciencedirect.
com/science/article/pii/S0045782517305315.

112

http://www.sciencedirect.com/science/article/pii/0021999182900250
http://www.sciencedirect.com/science/article/pii/S2213133716300609
http://www.sciencedirect.com/science/article/pii/S2213133716300609
http://www.sciencedirect.com/science/article/pii/S0377027304000678
http://www.sciencedirect.com/science/article/pii/S0377027304000678
http://www.sciencedirect.com/science/article/pii/S0021999107002586
http://www.sciencedirect.com/science/article/pii/S0021999107002586
http://www.sciencedirect.com/science/article/pii/S0021999108003343
http://www.sciencedirect.com/science/article/pii/S0021999108003343
http://dx.doi.org/10.1006/jcph.1997.5702
http://www.sciencedirect.com/science/article/pii/0021999181901455
http://www.sciencedirect.com/science/article/pii/S0378437198003574
http://www.sciencedirect.com/science/article/pii/S0378437198003574
http://www.sciencedirect.com/science/article/pii/S0045782517305315
http://www.sciencedirect.com/science/article/pii/S0045782517305315

References

Hu, X. Y. and Adams, N. A. (2006). “Angular-momentum conservative smoothed particle dynam-
ics for incompressible viscous flows”. Physics of Fluids, 18(10):p. 101702.

Idelsohn, S., Oñate, E., and Pin, F. D. (2004). “The particle finite element method: a powerful tool
to solve incompressible flows with free-surfaces and breaking waves”. International Journal for
Numerical Methods in Engineering, 61(7):pp. 964–989. ISSN 1097-0207.

Kiara, A. (2010). Analysis of the smoothed particle hydrodynamics method for free-surface flows.
Ph.D. thesis, Massachusetts Institute of Technology.

Kumar, P., Yang, Q., Jones, V., and McCue-Weil, L. (2015). “Coupled SPH-FVM Simulation
within the OpenFOAM Framework”. Procedia IUTAM, 18:pp. 76–84. ISSN 2210-9838. URL
http://www.sciencedirect.com/science/article/pii/S2210983815002771.

Kundu, P. K. and Cohen, I. (2008). Fluid mechanics. Elsevier Acad. Press, London, 4th ed.

Lancaster, P. and Salkauskas, K. (1981). “Surfaces generated by moving least squares methods”.
Mathematics of computation, 37(155):pp. 141–158.

Lastiwka, M., Quinlan, N., and Basa, M. (2005). “Adaptive particle distribution for smoothed
particle hydrodynamics”. International Journal for Numerical Methods in Fluids, 47(10-11):pp.
1403–1409. ISSN 1097-0363. URL http://dx.doi.org/10.1002/fld.891.

Leonard, A. (1980). “Vortex methods for flow simulation”. Journal of Computational Physics,
37(3):pp. 289 – 335. ISSN 0021-9991. URL http://www.sciencedirect.com/science/
article/pii/0021999180900406.

Li, S. and Liu, W. K. (2004). Meshfree Particle Methods. Springer-Verlag Berlin Heidelberg, 1 ed.
ISBN 978-3-540-71471-2.

Libersky, L., Petschek, A., Carney, T., Hipp, J., and Allahdadi, F. (1993). “High strain Lagrangian
hydrodynamics a three-dimensional SPH code for dynamic material response”. Journal of Com-
putational Physics, 109(1):pp. 67–75.

Libersky, L. D. and Petschek, A. G. (1991). “Smooth particle hydrodynamics with strength of ma-
terials”. In H. E. Trease, M. F. Fritts, and W. P. Crowley, eds., Advances in the Free-Lagrange
Method Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynam-
ics Method: Proceedings of the Next Free-Lagrange Conference Held at Jackson Lake Lodge,
Moran, WY, USA 3–7 June 1990, pp. 248–257. Springer Berlin Heidelberg, Berlin, Heidelberg.
ISBN 978-3-540-46608-6. URL https://doi.org/10.1007/3-540-54960-9_58.

Lind, S., Xu, R., Stansby, P., and Rogers, B. (2012). “Incompressible smoothed particle hy-
drodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and
validations for impulsive flows and propagating waves”. Journal of Computational Physics,
231(4):pp. 1499 – 1523. ISSN 0021-9991. URL http : / / www . sciencedirect . com /
science/article/pii/S0021999111006279.

113

http://www.sciencedirect.com/science/article/pii/S2210983815002771
http://dx.doi.org/10.1002/fld.891
http://www.sciencedirect.com/science/article/pii/0021999180900406
http://www.sciencedirect.com/science/article/pii/0021999180900406
https://doi.org/10.1007/3-540-54960-9_58
http://www.sciencedirect.com/science/article/pii/S0021999111006279
http://www.sciencedirect.com/science/article/pii/S0021999111006279

References

Liu, G. and Liu, M. (2003). Smoothed particle hydrodynamics. A meshfree particle method. World
Scientific Publishing Co. Pte. Ltd. ISBN 978-981-238-456-0.

Lloyd, S. (1982). “Least squares quantization in PCM”. IEEE Transactions on Information Theory,
28(2):pp. 129–137. ISSN 0018-9448.

Lobovský, L., Botia-Vera, E., Castellana, F., Mas-Soler, J., and Souto-Iglesias, A. (2014). “Experi-
mental investigation of dynamic pressure loads during dam break”. Journal of Fluids and Struc-
tures, 48(Supplement C):pp. 407–434. ISSN 0889-9746. URL http://www.sciencedirect.
com/science/article/pii/S0889974614000656.

Lucy, L. (1977). “A numerical approach to the testing of the fission hypothesis”. Astronomical
Journal, 82:pp. 1013–1024.

Macià, F., Antuono, M., González, L. M., and Colagrossi, A. (2011a). “Theoretical Analysis of the
No-Slip Boundary Condition Enforcement in SPH Methods”. Progress of Theoretical Physics,
125(6):pp. 1091–1121. URL http://ptp.ipap.jp/link?PTP/125/1091/.

Macià, F., Colagrossi, A., Antuono, M., and Souto-Iglesias, A. (2011b). “Benefits of using a
Wendland kernel for free-surface flows”. In 6th ERCOFTAC SPHERIC workshop on SPH ap-
plications.

Macià, F., Sánchez, J. M., Souto-Iglesias, A., and González, L. M. (2012). “WCSPH viscosity
diffusion processes in vortex flows”. International Journal for Numerical Methods in Fluids,
69(3):pp. 509–533. ISSN 1097-0363.

Marongiu, J., Leboeuf, F., and Parkinson, E. (2008). “Riemann solvers and efficient boundary
treatments: an hybrid SPH-finite volume numerical method”. In 3rd ERCOFTAC SPHERIC
workshop on SPH applications. EPFL.

Marongiu, J.-C., Leboeuf, F., Caro, J., and Parkinson, E. (2010). “Free surface flows simula-
tions in Pelton turbines using an hybrid SPH-ALE method”. Journal of Hydraulic Research,
48(sup1):pp. 40–49.

Marrone, S. (2011). Enhanced SPH modeling of free-surface flows with large deformations. Ph.D.
thesis, PhD thesis, University of Rome, La Sapienza.

Marrone, S., Antuono, M., Colagrossi, A., Colicchio, G., Le Touzé, D., and Graziani, G. (2011).
“Delta-SPH model for simulating violent impact flows”. Computer Methods in Applied Me-
chanics and Engineering, 200(13-16):pp. 1526–1542. ISSN 0045-7825.

Marrone, S., Colagrossi, A., Antuono, M., Colicchio, G., and Graziani, G. (2013). “An accurate
SPH modeling of viscous flows around bodies at low and moderate Reynolds numbers”. Journal
of Computational Physics, 245:pp. 456–475. ISSN 0021-9991.

Marrone, S., Colagrossi, A., Le Touzé, D., and Graziani, G. (2010). “Fast free-surface detection
and level-set function definition in SPH solvers”. Journal of Computational Physics, 229(10):pp.
3652–3663. ISSN 0021-9991. URL http://www.sciencedirect.com/science/article/
pii/S0021999110000343.

114

http://www.sciencedirect.com/science/article/pii/S0889974614000656
http://www.sciencedirect.com/science/article/pii/S0889974614000656
http://ptp.ipap.jp/link?PTP/125/1091/
http://www.sciencedirect.com/science/article/pii/S0021999110000343
http://www.sciencedirect.com/science/article/pii/S0021999110000343

References

Marrone, S., Mascio, A. D., and Le Touzé, D. (2016). “Coupling of Smoothed Particle Hydrody-
namics with Finite Volume method for free-surface flows”. Journal of Computational Physics,
310:pp. 161–180. Available online 11 December 2015.

Martel, H., Shapiro, P. R., Villumsen, J. V., and Kang, H. (1994). “Adaptive Smoothed Particle Hy-
drodynamics with Application to Galaxy and Large-Scale Structure Formation (Invited paper)”.
Memorie della Società Astronomia Italiana, 65:p. 1061.

Melenk, J. and Babuška, I. (1996). “The partition of unity finite element method: Basic theory
and applications”. Computer Methods in Applied Mechanics and Engineering, 139(1):pp. 289 –
314. ISSN 0045-7825. URL http://www.sciencedirect.com/science/article/pii/
S0045782596010870.

Molteni, D. and Colagrossi, A. (2009). “A simple procedure to improve the pressure evaluation
in hydrodynamic context using the SPH”. Computer Physics Communications, 180(6):pp. 861–
872. ISSN 0010-4655. URL http://www.sciencedirect.com/science/article/pii/
S0010465508004219.

Monaghan, J. (1989). “On the problem of penetration in particle methods”. Journal of Computa-
tional Physics, 82(1):pp. 1 – 15. ISSN 0021-9991. URL http://www.sciencedirect.com/
science/article/pii/0021999189900326.

Monaghan, J. (1992). “Smoothed Particle Hydrodynamics”. Annual Review of Astronomy and
astrophysics, 30:pp. 543–574.

Monaghan, J. (1994). “Simulating Free Surface Flows with SPH”. J. Comp. Phys., 110(2):pp.
39–406.

Monaghan, J. (1997). “SPH and Riemann Solvers”. J. Comp. Phys., 136:pp. 298–307.

Monaghan, J. (2000). “SPH without a Tensile Instability”. Journal of Computational Physics,
159(2):pp. 290 – 311. ISSN 0021-9991. URL http://www.sciencedirect.com/science/
article/pii/S0021999100964398.

Monaghan, J. (2005a). “Smoothed Particle Hydrodynamic simulations of shear flow”. Monthly
Notices of the Royal Astronomical Society, 365:pp. 199–213. URL http://dx.doi.org/10.
1111/j.1365-2966.2005.09783.x.

Monaghan, J. (2005b). “Smoothed particle hydrodynamics”. Reports on Progress in Physics,
68(8):pp. 1703–1759. URL http://stacks.iop.org/0034-4885/68/i=8/a=R01.

Monaghan, J. (2012). “Smoothed Particle Hydrodynamics and Its Diverse Applications”. Annual
Review of Fluid Mechanics, 44(1):pp. 323–346.

Monaghan, J., Cas, R., Kos, A., and Hallworth, M. (1999). “Gravity currents descending a ramp
in a stratified tank”. Journal of Fluid Mechanics, 139:p. 39.

Monaghan, J. and Gingold, R. A. (1983). “Shock Simulation by the particle method SPH”. Journal
of Computational Physics, 52(2):pp. 374–389.

115

http://www.sciencedirect.com/science/article/pii/S0045782596010870
http://www.sciencedirect.com/science/article/pii/S0045782596010870
http://www.sciencedirect.com/science/article/pii/S0010465508004219
http://www.sciencedirect.com/science/article/pii/S0010465508004219
http://www.sciencedirect.com/science/article/pii/0021999189900326
http://www.sciencedirect.com/science/article/pii/0021999189900326
http://www.sciencedirect.com/science/article/pii/S0021999100964398
http://www.sciencedirect.com/science/article/pii/S0021999100964398
http://dx.doi.org/10.1111/j.1365-2966.2005.09783.x
http://dx.doi.org/10.1111/j.1365-2966.2005.09783.x
http://stacks.iop.org/0034-4885/68/i=8/a=R01

References

Morris, J. (2000). “Simulating surface tension with smoothed particle hydrodynamics”. Interna-
tional Journal for Numerical Methods in Fluids, 33(3):pp. 333–353.

Morris, J. P. (1996). “A study of the stability properties of Smooth Particle Hydrodynamics”.
Publications of the Astronomical Society of Australia, 13(1):p. 97?102.

Morris, J. P., Fox, P. J., and Zhu, Y. (1997). “Modeling Low Reynolds Number Incompressible
Flows Using SPH”. Journal of Computational Physics, 136:pp. 214–226.

Moussa, B. and Villa, J. (2000). “Convergence of SPH method for scalar nonlinear conservation
laws”. Siam J. Numerical Analysis.

Napoli, E., Marchis, M. D., Gianguzzi, C., Milici, B., and Monteleone, A. (2016). “A coupled
Finite Volume-Smoothed Particle Hydrodynamics method for incompressible flows”. Computer
Methods in Applied Mechanics and Engineering, 310:pp. 674–693. ISSN 0045-7825. URL
http://www.sciencedirect.com/science/article/pii/S0045782516308131.

Nugent, S. and Posch, H. (2000). “Liquid drops and surface tension with smoothed particle applied
mechanics”. Physical Review E, 62(4).

Okabe, A. (2016). “Spatial tessellations”. In International Encyclopedia of Geography: Peo-
ple, the Earth, Environment and Technology, pp. 1–11. John Wiley and Sons, Ltd. ISBN
9781118786352.

Okabe, A., Boots, B., Sugihara, K., and Chiu, S. N. (2000). Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams. John Wiley and Sons, Ltd. ISBN 978-0-471-98635-5.

Oñate, E., Idelsohn, S. R., Celigueta, M. A., and Rossi, R. (2008). “Advances in the particle
finite element method for the analysis of fluid–multibody interaction and bed erosion in free
surface flows”. Computer Methods in Applied Mechanics and Engineering, 197(19):pp. 1777 –
1800. ISSN 0045-7825. Computational Methods in Fluid–Structure Interaction, URL http :
//www.sciencedirect.com/science/article/pii/S0045782507002368.

Oñate, E. and Owen, R. (2011). Particle-Based Methods, vol. 25 of Computational Methods in
Applied Sciences. Springer Netherlands, 1 ed. ISBN 978-94-007-0735-1.

Ott, F. and Schnetter, E. (2003). “A modified SPH approach for fluids with large density differ-
ences”. arXiv:physics/0303112.

Quinlan, N. J., Lastiwka, M., and Basa, M. (2006). “Truncation error in mesh-free particle meth-
ods”. International Journal for Numerical Methods in Engineering, 66(13):pp. 2064–2085.
URL http://dx.doi.org/10.1002/nme.1617.

Rapaport, D. C. (1996). “The art of molecular dynamics simulation”. Computers in Physics,
10(5):pp. 456–456. URL https://doi.org/10.1063/1.4822471.

Rycroft, C. (2009). “Voro++: A three-dimensional Voronoi cell library in C++”. Tech. rep.,
Lawerence Berkeley National Lab. Report Number: LBNL-1432E.

116

http://www.sciencedirect.com/science/article/pii/S0045782516308131
http://www.sciencedirect.com/science/article/pii/S0045782507002368
http://www.sciencedirect.com/science/article/pii/S0045782507002368
http://dx.doi.org/10.1002/nme.1617
https://doi.org/10.1063/1.4822471

References

Serrano, M. (2002). Modelos para la hidrodinámica mesoscópica de fluidos simples y complejos.
Ph.D. thesis, Universidad Nacional de Educación a Distancia.

Serrano, M. (2006). “Comparison between smoothed dissipative particle dynamics and Voronoi
fluid particle model in a shear stationary flow”. Physica A: Statistical Mechanics and its Appli-
cations, 362(1):pp. 204–209. ISSN 0378-4371. URL http://www.sciencedirect.com/
science/article/pii/S037843710500957X.

Serrano, M. and Español, P. (2001). “Thermodynamically consistent mesoscopic fluid particle
model”. Phys. Rev. E, 64:p. 046115. URL http : / / link . aps . org / doi / 10 . 1103 /
PhysRevE.64.046115.

Sethian, J. A. (1999). Level set methods and fast marching methods: evolving interfaces in compu-
tational geometry, fluid mechanics, computer vision, and materials science, vol. 3. Cambridge
university press.

Shapiro, P. R., Martel, H., Villumsen, J. V., and Kang, H. (1993). “Smoothed Particle Hydrody-
namics and the Simulation of Galaxy and Large-Scale Structure Formation”. Revista Mexicana
de Astronomia y Astrofisica, 27.

Shapiro, P. R., Martel, H., Villumsen, J. V., and Owen, J. M. (1996). “Adaptive Smoothed Par-
ticle Hydrodynamics, with Application to Cosmology: Methodology”. Astrophysical Journal
Supplement, 103:p. 269.

Shobeyri, G. and Ardakani, R. R. (2017). “Improving accuracy of SPH method using Voronoi dia-
gram”. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 41(3):pp.
345–350. ISSN 2364-1843.

Souto-Iglesias, A., Delorme, L., Pérez-Rojas, L., and Abril-Pérez, S. (2006). “Liquid moment
amplitude assessment in sloshing type problems with smooth particle hydrodynamics”. Ocean
Engineering, 33(11-12):pp. 1462–1484.

Souto-Iglesias, A., Maciá, F., González, L. M., and Cercos-Pita, J. L. (2013). “On the consistency
of MPS”. Computer Physics Communications, 184(3):pp. 732 – 745. ISSN 0010-4655. URL
http://www.sciencedirect.com/science/article/pii/S0010465512003852.

Springel, V. (2010a). “E pur si muove: Galilean-invariant cosmological hydrodynamical simula-
tions on a moving mesh”. Monthly Notices of the Royal Astronomical Society, 401(2):p. 791.

Springel, V. (2010b). “Smoothed Particle Hydrodynamics in Astrophysics”. Annual Review of
Astronomy and Astrophysics, 48(1):pp. 391–430. URL https : / / doi . org / 10 . 1146 /
annurev-astro-081309-130914.

Sulsky, D., Chen, Z., and Schreyer, H. L. (1994). “A particle method for history-dependent mate-
rials”. Computer Methods in Applied Mechanics and Engineering, 118(1):pp. 179–196. ISSN
0045-7825. URL http : / / www . sciencedirect . com / science / article / pii /
0045782594901120.

117

http://www.sciencedirect.com/science/article/pii/S037843710500957X
http://www.sciencedirect.com/science/article/pii/S037843710500957X
http://link.aps.org/doi/10.1103/PhysRevE.64.046115
http://link.aps.org/doi/10.1103/PhysRevE.64.046115
http://www.sciencedirect.com/science/article/pii/S0010465512003852
https://doi.org/10.1146/annurev-astro-081309-130914
https://doi.org/10.1146/annurev-astro-081309-130914
http://www.sciencedirect.com/science/article/pii/0045782594901120
http://www.sciencedirect.com/science/article/pii/0045782594901120

References

Sun, P., Colagrossi, A., Marrone, S., and Zhang, A. (2017). “The δplus-SPH model: Simple
procedures for a further improvement of the SPH scheme”. Computer Methods in Applied
Mechanics and Engineering, 315(Supplement C):pp. 25 – 49. ISSN 0045-7825. URL http :
//www.sciencedirect.com/science/article/pii/S0045782516309112.

Swegle, J. W., Hicks, D. L., and Attaway, S. W. (1995). “Smoothed Particle Hydrodynamics
Stability Analysis”. Journal of Computational Physics, 116:pp. 123–134.

Takeda, H., Miyama, S. M., and Sekiya, M. (1994). “Numerical Simulation of Viscous Flow by
Smoothed Particle Hydrodynamics”. Progress of Theoretical Physics, 92(5):pp. 939–960.

Vacondio, R., Rogers, B., Stansby, P., Mignosa, P., and Feldman, J. (2013). “Variable resolution
for SPH: A dynamic particle coalescing and splitting scheme”. Computer Methods in Applied
Mechanics and Engineering, 256(Supplement C):pp. 132 – 148. ISSN 0045-7825. URL http:
//www.sciencedirect.com/science/article/pii/S0045782512003842.

Violeau, D. (2009). “Dissipative forces for Lagrangian models in computational fluid dynamics
and application to smoothed-particle hydrodynamics”. Phys. Rev. E, 80:p. 036705. URL https:
//link.aps.org/doi/10.1103/PhysRevE.80.036705.

Violeau, D. (2012). Fluid mechanics and the SPH method: theory and applications. Oxford
University Press.

Voronoi, G. (1908). “Nouvelles applications des paramètres continus à la théorie des formes
quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs”. Journal für
die reine und angewandte Mathematik, 134:pp. 198–287. ISSN 0075-4102.

Wagner, G. J. and Liu, W. K. (2000). “Turbulence simulation and multiple scale subgrid models”.
Computational Mechanics, 25(2):pp. 117–136. ISSN 1432-0924.

Wang, L. (2016). High-Performance Discrete-Vortex Algorithms for Unsteady Viscous-Fluid
Flows near Moving Boundaries. Ph.D. thesis, University of California at Berkeley.

Wang, L. and Yeung, R. W. (2016a). “Investigation of full and partial ground effects on a flapping
foil hovering above a finite-sized platform”. Physics of Fluids, 28(7):p. 071902. URL https:
//aip.scitation.org/doi/abs/10.1063/1.4954656.

Wang, L. and Yeung, R. W. (2016b). “On the performance of a micro-scale Bach-type turbine as
predicted by discrete-vortex simulations”. Applied Energy, 183:pp. 823 – 836. ISSN 0306-2619.
URL http://www.sciencedirect.com/science/article/pii/S0306261916312946.

Watson, D. F. (1981). “Computing the n-dimensional Delaunay tessellation with application to
Voronoi polytopes”. The Computer Journal, 24(2):pp. 167–172. /oup/backfile/content_
public/journal/comjnl/24/2/10.1093/comjnl/24.2.167/2/240167.pdf.

Welton, W. C. (1998). “Two-Dimensional PDF/SPH simulations of compressible turbulent flows”.
Journal of Computational Physics, 139(2):pp. 410 – 443. ISSN 0021-9991. URL http :
//www.sciencedirect.com/science/article/pii/S0021999197958782.

118

http://www.sciencedirect.com/science/article/pii/S0045782516309112
http://www.sciencedirect.com/science/article/pii/S0045782516309112
http://www.sciencedirect.com/science/article/pii/S0045782512003842
http://www.sciencedirect.com/science/article/pii/S0045782512003842
https://link.aps.org/doi/10.1103/PhysRevE.80.036705
https://link.aps.org/doi/10.1103/PhysRevE.80.036705
https://aip.scitation.org/doi/abs/10.1063/1.4954656
https://aip.scitation.org/doi/abs/10.1063/1.4954656
http://www.sciencedirect.com/science/article/pii/S0306261916312946
/oup/backfile/content_public/journal/comjnl/24/2/10.1093/comjnl/24.2.167/2/240167.pdf
/oup/backfile/content_public/journal/comjnl/24/2/10.1093/comjnl/24.2.167/2/240167.pdf
http://www.sciencedirect.com/science/article/pii/S0021999197958782
http://www.sciencedirect.com/science/article/pii/S0021999197958782

References

Yeung, R. W. (1982). “Numerical methods in free-surface flows”. Annual Review of Fluid Me-
chanics, 14(1):pp. 395–442.

Yildiz, M., Rook, R. A., and Suleman, A. (2009). “SPH with the multiple boundary tangent
method”. International Journal for Numerical Methods in Engineering, 77(10):pp. 1416–1438.
ISSN 1097-0207.

Zhou, Z., De Kat, J., and Buchner, B. (1999). “A nonlinear 3-D approach to simulate green water
dynamics on deck”. In Proc. 7th International Symposium on Numerical Ship Hydrodynamics,
Report, vol. 7.

119

References

120

Appendix A

Artificial vs. Real viscosity

A.1 General
Following the derivation from Español and Revenga (2003) and Violeau (2009), we can relate
the artificial viscosity (AV) formulation from Eq. (3.14) to the viscous term in the Navier-Stokes
momentum Eq. (2.9). In addition, this relation allows us to determine an alternative way to express
the Laplacian operator to directly follow the smoothing procedure, which is more consistent with
its physical meaning as discussed by Monaghan (2005b).

Let’s start with the expression of the viscous term used, as defined in Sec. 3.1.1:(
du
dt

)AV

a
= −

∑
b

mb
α hab cab ρab

ρa ρb

uab · rab

‖rab‖
2 ∇aWab . (A.1)

Turning back the summation into an integral, and taking h, c, and ρ as constants, we can switch
to the continuum field(

du
dt

)AV

= −

∫
Ω

α h c
(u − u∗) · (r − r∗)
‖(r − r∗)‖2

∇rW(r − r∗, h) dV∗ , (A.2)

where

mb
ρab

ρa ρb
→

m
ρ

= V → dV∗ ,

uab → (u − u∗) ,
rab → (r − r∗) .

Looking at the kernel gradient, we saw in Sec. 3.1.2 how we can use the following relations

W(r − r∗, h) =
kk

hD M(q) ,

∇rW(r − r∗, h) = (r − r∗)
kk

q hD+2

dM(q)
dq

= (r − r∗)F(q) ,

where D is the number of spatial dimensions, q = ‖r−r∗‖
h , and kk is a normalizing coefficient that

depends on D and the kernel used. Using index notation as in Español and Revenga (2003), where
the super-indexes indicate the tensor component, this integral can be rewritten as(

du
dt

)AV, i

= −α h c
∫

Ω

(u − u∗) j (r − r∗) j

(h q)2 (r − r∗)iF(q)dV∗ . (A.3)

By Taylor-expanding u∗ around r, we obtain

(u∗) j = (u) j + ∇ku j(r − r∗)k +
1
2
∇k∇lu j(r − r∗)k(r − r∗)l + O

(
∇3u j : (r − r∗)3

)
, (A.4)

121

Appendix A: Artificial vs. Real viscosity

where

∇k =
∂

∂xk
,

being xk the k-th coordinate in the reference system used. The higher order terms are negligible
for sufficiently smooth fields, and using this expansion in Eq. (A.3), we arrive at(

du
dt

)AV, i

≈ −α h c
∫

Ω

[
∇ku j(r − r∗)k + 1

2∇
k∇lu j(r − r∗)k(r − r∗)l

]
(r − r∗) j

(h q)2 (r − r∗)iF(q)dV∗ .

(A.5)
We can express this integral in a more compact way by defining (r − r∗) = h q and dV∗ = hD dQ,
with D being the number of dimension of the domain space, so(

du
dt

)AV, i

≈ −α h c
∫

Ω

[
∇ku j h qk + 1

2∇
k∇lu j h2 qkql

]
h q j

(h q)2 h qiF(q) hD dQ

≈ −α h c

hD+1 ∇ku j
∫

Ω

[
qi q j qk

]
q2 F(q) dQ +

1
2

hD+2∇k∇lu j
∫

Ω

[
qi q j qk ql

]
q2 F(q) dQ

 .
(A.6)

It can be shown how the first integral in Eq. (A.6) vanishes by isotropy of the third order tensor,
reducing it to (

du
dt

)AV, i

≈ −
1
2
α h c

∇k∇lu j
∫

Ω

hD+2

[
qi q j qk ql

]
q2 F(q) dQ

 . (A.7)

This fourth order tensor integral can be directly computed using the Kernel formulation. Again, we
can show how the only components of the fourth order tensor that render non-zero integral outputs
are of the type

[
qα qα qα qα

]
and

[
qβ qβ qα qα

]
, with α and β going through all the components (see

Sec. A.2).

−

∫
Ω

hD+2
[
qα qα qα qα

]
q2 F(q) dQ = kα = 3kβ , (A.8)

−

∫
Ω

hD+2

[
qβ qβ qα qα

]
q2 F(q) dQ = kβ . (A.9)

We can therefore contract the RHS of Eq. (A.7), which becomes simply(
du
dt

)AV, i

≈
1
2
α h c

D∑
j=1

(
3kβδi j∇

i∇iu j + kβ(1 − δi j)
(
∇i∇ ju j + ∇ j∇iu j + ∇ j∇ jui

))
. (A.10)

Noting that

∇ j∇i = ∇i∇ j ,

δi j∇
i∇iv j = δi j∇

i∇ jv j = δi j∇
j∇ jvi = ∇i∇ivi ,

122

Appendix A: Artificial vs. Real viscosity

we easily reach(
du
dt

)AV, i

≈
1
2
α h c

D∑
j=1

(
kβ∇ j∇ jui + 2kβ∇i∇ ju j + (kα − 3kβ)∇i∇iu jδi j

)
≈

1
2
α h c

D∑
j=1

(
kβ∇ j∇ jui + 2kβ∇i∇ ju j

)
, (A.11)

since kα = 3kβ (Sec. A.2). Furthermore, Sec. A.3 shows how kβ = 1
D+2 for all kernels. Recovering

the vector notation, it becomes directly(
du
dt

)AV

≈
1

2(D + 2)
α h c

[
∇2u + 2∇(∇ · u)

]
, (A.12)

which matches perfectly the real viscous terms in the Navier-Stokes equations,

ρ

(
du
dt

)VI

= µ∇2u + (µ + λ)∇(∇ · u) , (A.13)

with
µ = λ =

1
2 (D + 2)

α h c
ρ

. (A.14)

We can extract the following conclusions:

• The formulation used for artificial viscosity effectively includes both shear and compress-
ibility in a single term, beneficial to fulfill its goal of dampening the different sources of
numerical noise.

• If it is assumed that the fluid properties satisfy µ = λ, it can be used to model very closely
the viscous diffusion in the momentum equation.

• Even if another relation is assumed where µ , λ, like the commonly followed Stokes hy-
pothesis of zero bulk viscosity (µB = 2

3µ + λ = 0), the compressiblity component is usually
negligible in weakly compressible fluid, as discussed by Marrone et al. (2013) or Colagrossi
et al. (2013)). Therefore, we can still use as a good approximation

1
2(D + 2)

α h c
[
∇2u + 2∇(∇ · u)

]
≈

1
2(D + 2)

α h c∇2u , (A.15)

which equaled to a slightly simplified artificial viscous formulation provides a good approx-
imation of the Laplacian operator in its SPH form:

1
2(D + 2)

α h c∇2ua ≈ −
∑

b

mb
α h c ρab

ρa ρb

uab · rab

‖rab‖
2 ∇aWab , (A.16)

∇2ua ≈ −
∑

b

2(D + 2) mb
ρab

ρa ρb

uab · rab

‖rab‖
2 ∇aWab . (A.17)

123

Appendix A: Artificial vs. Real viscosity

A.2 kα = 3kβ proof
Our goal is determine the values of the fourth order tensor resulting from the integrals of the type:

−

∫
Ω

hD+2

[
qi q j qk ql

]
q2 F(q) dQ . (A.18)

For a normalized D-dimension space, we can define a generalized D-spherical coordinate sys-
tem, {q, θ1, . . . , θD−1}, with q ∈ [0,∞), θ1 ∈ [0, 2pi), and θm ∈ [0, π] for m > 1, which can be
converted to Cartesian as1 

x1 = qx∗1 = q cos θ1 ,

x2 = qx∗2 = q sin θ1 cos θ2 ,
...

xi = qx∗i = q
i−1∏
m=1

sin θm cos θi ,

...

xD−1 = qx∗D−1 = q
D−2∏
m=1

sin θm cos θD−1 ,

xD = qx∗D = q
D−1∏
m=1

sin θm .

(A.19)

and whose differential volume element is given by

dQ = qD−1 sinD−2 θ1 sinD−3 θ2 · · · sin θD−2 dr dθ1 · · · dθD−1 = qD−1dq
D−2∏
m=1

sinD−1−m θm dθm dθD−1 .

(A.20)

Under this coordinate system, we can rewrite the initial integral in Eq. (A.18) as[
qi q j qk ql

]
= q4

[
x∗i x∗ j x∗k x∗l

]
, (A.21)

∫
Q

hD+2 qD+1 F(q)dq

θ1=2π
θm=π
θD−1=π∫
θ1=0
θm=0
θD−1=0

[
x∗i x∗ j x∗k x∗l

] D−2∏
m=1

sinD−1−m θm dθm dθD−1 , (A.22)

where Q represents the kernel support radius in the normalized space. The integration over q is the
same no matter which combination of i, j, k, and l. We will refer to it as

Kq =

∫
Q

hD+2 qD+1 F(q)dq . (A.23)

1https://en.wikipedia.org/wiki/N-sphere

124

https://en.wikipedia.org/wiki/N-sphere

Appendix A: Artificial vs. Real viscosity

Therefore, all the differences should come from the integration over the angular domains. We can
expand the integrand as

[
x∗i x∗ j x∗k x∗l

]
=

 i−1∏
m=1

sin θm cos θi


 j−1∏

m=1

sin θm cos θ j


 k−1∏

m=1

sin θm cos θk

  l−1∏
m=1

sin θm cos θl

 .
(A.24)

Without any loss of generality, we can order the indexes such that always i ≤ j ≤ k ≤ l. Let’s
analyze the following possible scenarios, where we use α, β, γ, and δ to refer to distinct values but
in no particular order:

At least one index unique. This situation happens when
• [qδ, qγ, qβ, qα]: All indexes are different, as shown in Eq. (A.25).
• [qγ, qγ, qβ, qα]: Only two are equal. Eq. (A.26) shows one possible combination, with the

only change when i < j = k < l or i = j < k < l, consisting on where the cos2 θ is placed.
• [qβ, qβ, qβ, qα]: Three indexes are equal. Eq. (A.27) shows one possible combination, with

the only change being where cos3 θ is placed when i = j = k < l.

i < j < k < l :
[
x∗i x∗ j x∗k x∗l

]
=

 i−1∏
m=1

sin4 θm

 sin3 θi cos θi

 j−1∏
m=i+1

sin3 θm

 sin2 θ j cos θ j k−1∏
m= j+1

sin2 θm

 sin θk cos θk

 l−1∏
m=k+1

sin θm

 cos θl , (A.25)

i < j < k = l :
[
x∗i x∗ j x∗k x∗k

]
=

 i−1∏
m=1

sin4 θm

 sin3 θi cos θi j−1∏
m=i+1

sin3 θm

 sin2 θ j cos θ j

 k−1∏
m= j+1

sin2 θm

 cos2 θk , (A.26)

i < j = k = l :
[
x∗i x∗ j x∗ j x∗ j

]
=

 i−1∏
m=1

sin4 θm

 sin3 θi cos θi

 j−1∏
m=i+1

sin3 θm

 cos3 θ j . (A.27)

Equations (A.25), (A.26), and (A.27) are given for l < D. However, the only difference when
l = D is in the last term, which becomes sinn θ instead of cosn θ, where n refers here to a general
integer value to include all cases.

We should note how the common characteristic of all expressions is that at least display one
coefficient of the type sinn θ cos θ. Since no cos θ exists in dr, these coefficients will directly lead
to integrals of the type ∫ π,2π

0
sinn θ cos θdθ =

sinn+1 θ

n + 1

∣∣∣∣∣∣π,2π
0

= 0 ∀ n . (A.28)

We conclude therefore that all this type of combinations will lead to zero-integrals.

125

Appendix A: Artificial vs. Real viscosity

Indexes equal by pairs: [qβ, qβ, qα, qα], as shown in Eq. (A.29).

i = j < k = l :
[
x∗i x∗i x∗k x∗k

]
=

 i−1∏
m=1

sin4 θm

 sin2 θi cos2 θi

 k−1∏
m=i+1

sin2 θm

 cos2 θk . (A.29)

None of the previous situation occurs, which lead to non-zero integral. Eq. (A.29) is given for
k , D. If k = D, the only change is that the last term becomes sin2 θD−1 instead of cos2 θD−1.
Substituting them in the angular integrals from Eq. (A.24), we can use the following algebraic
properties2 for the different integral patterns:

m ∈ [1, (i − 1)] :
∫ π,2π

0
sinn+4 θ dθm =

(n + 3)(n + 1)
(n + 4)(n + 2)

∫ π,2π

0
sinn θm dθm , (A.30)

m = i :
∫ π,2π

0
sinn+2 θm cos2 θm dθm =

(n + 1)
(n + 4)(n + 2)

∫ π,2π

0
sinn θm dθm , (A.31)

m ∈ [(i + 1), (k − 1)] :
∫ π

0
sinn+2 θ dθm =

(n + 1)
(n + 2)

∫ π

0
sinn θm dθm , (A.32)

m = k , D :
∫ π

0
sinn θm cos2 θmdθm =

1
(n + 2)

∫ π

0
sinn θm dθm , (A.33)

m = k = D :
∫ π

0
sin2 θD−1dθm =

π

2
=

1
(n + 2)

∫ π

0
sinn θD−1dθD−1 (n = 0) , (A.34)

so we take the coefficients due to x∗ outside the integrals and arrive at

θ1=2π
θm=π
θD−1=π∫
θ1=0
θm=0
θD−1=0

[
x∗i x∗ j x∗k x∗l

] D−2∏
m=1

sinD−1−m θm dθm dθD−1 = Kββαα Kθ , (A.35)

Kββαα =

 i−1∏
m=1

(D − m + 2)(D − m)
(D − m + 3)(D − m + 1)

 (D − i)
(D − i + 3)(D − i + 1)

 k−1∏
m=i+1

(D − m)
(D − m + 1)

 1
(D − k + 1)

, (A.36)

Kθ =

θ1=2π
θm=π∫
θ1=0
θm=0

D−2∏
m=1

sinD−1−m θm dθm

∫ π

0
dθD−1 =

2πD/2

Γ
(

D
2

) , (A.37)

where we used the definition of the surface area of an D-dimensional ball for Kθ, being Γ the
gamma function3. Furthermore, we can simplify Kββαα by noticing that we can rewrite it as

Kββαα =

∏i−1
m=1(D − m + 2)∏i
m=1(D − m + 3)

∏k−1
m=1(D − m)∏k

m=1(D − m + 1)
, (A.38)

2The can be easily obtained integrating by parts
3Γ(1/2) =

√
π; Γ(1) = 1; Γ(x + 1) = xΓ(x)

126

Appendix A: Artificial vs. Real viscosity

and since

i∏
m=1

(D − m + 3) =

i−1∏
m=0

(D − m + 2) = (D + 2)
i−1∏
m=1

(D − m + 2) , (A.39)

k∏
m=1

(D − m + 1) =

k−1∏
m=0

(D − m) = D
k−1∏
m=1

(D − m) , (A.40)

it simply reduces to

Kββαα =
1

D (D + 2)
, (A.41)

and based on Eq. (A.9) we arrive at

kβ = −Kq Kββαα Kθ = −
Kq Kθ

D (D + 2)
. (A.42)

All indexes equal: [qα, qα, qα, qα], as shown in Eq. (A.43).

i = j = k = l :
[
x∗i x∗i x∗k x∗k

]
=

 i−1∏
m=1

sin4 θm

 cos4 θi . (A.43)

Doing similar analysis as in the previous case, we use now the following algebraic properties in
addition to Eq. (A.30) for m ∈ [1, (i − 1)]:

m = i , D :
∫ π

0
sinn θm cos4 θmdθm =

3
(n + 4)(n + 2)

∫ π

0
sinn θm dθm , (A.44)

m = i = D :
∫ π

0
sin4 θD−1dθm =

3π
8

=
3

(n + 4)(n + 2)

∫ π

0
sinn θD−1dθD−1 (n = 0) . (A.45)

Substituting these expression in the angular integral renders now

Kαααα =

 i−1∏
m=1

(D − m + 2)(D − m)
(D − m + 3)(D − m + 1)

 3
(D − i + 3)(D − i + 1)

=
3

∏i−1
m=1(D − m + 2)(D − m)∏i

m=1(D − m + 3)(D − m + 1)
,

(A.46)

which using the same properties than before reduces to

Kαααα =
3

D (D + 2)
, (A.47)

and from Eq. (A.8):

kα = −Kq Kαααα Kθ = −
3Kq Kθ

D (D + 2)
= 3kβ , (A.48)

as we wanted to demonstrate.

127

Appendix A: Artificial vs. Real viscosity

A.3 kk and kβ
The results from the previous section4 show that we can express kβ as

kβ = −

∫
Q

hD+2

[
qβ qβ qα qα

]
q2 F(q) dQ = −

Kq Kθ

D (D + 2)
, (A.49)

with

Kq =

∫
Q

hD+2 qD+1 F(q)dq ,

Kθ =

θ1=2π
θm=π∫
θ1=0
θm=0

D−2∏
m=1

sinD−1−m θm dθm

∫ π

0
dθD−1 =

2πD/2

Γ
(

D
2

) .
The only remaining step to determine kβ is calculate Kq. At first sight, it depends on F(q), but

if we use its definition as a function of the kernel function from Eq. (3.21),

F(q) =
kk

hD+2 q
dM(q)

dq
, (A.50)

we can rewrite Kq using integration by parts as

Kq =

∫
Q

hD+2 qD+1 kk

hD+2 q
dM(q)

dq
dq ,= kk

∫
Q

q
dM(q)

dq
dq = −kk

∫
Q

D qD−1M(q) dq , (A.51)

since M(q) is zero beyond its support radius. In addition, we should notice that kk is a normaliza-
tion coefficient used to satisfy

∫
Ω

W(r − r∗, h)dr∗ = 1, so expanding W as a function of M from
Eq. (3.19), and normalizing dr∗ with h as before, we arrive at

∫
Q

kk

hD M(q) hD dq = kk

∫
Q

M(q) qD−1dq

Kθ︷ ︸︸ ︷
θ1=2π
θm=π∫
θ1=0
θm=0

D−2∏
m=1

sinD−1−m θm dθm

∫ π

0
dθD−1 , (A.52)

kk =
1

Kθ

∫
Q

M(q) qD−1dq
=

Γ
(

D
2

)
2πD/2

∫
Q

M(q) qD−1dq
. (A.53)

Substituting it in Eq. (A.51), and independently of the kernel function used, Kq and kβ simply
reduce to

Kq = −
D
Kθ

, (A.54)

kβ = −
− D

Kθ
Kθ

D (D + 2)
=

1
D + 2

. (A.55)

4See Eqs. (A.9, A.23, A.37, A.41, and A.42)

128

Appendix B

VPH gradient approximation

Below is summarized the derivation presented by Hess and Springel (2010) that leads to the
Voronoi gradient operator. It should be stressed here that the notation eab, with the vector point-
ing from a to b usually used as notation for SPH, is the opposite than Hess and Springel (2010)’s
notation. In their article, a vector subindex ab implies that is obtained by subtracting the value in
particle b from that in particle a.

We start by proving Eq. (3.54),∫
Va

∇ f (r∗) dV∗ =

∫
Sa

r∗
(
∇ f (r∗) · dS∗

)
−

∫
Va

r∗ ∇2 f (r∗)dV∗ ,

which is obtained by applying the divergence theorem on (1 · r∗)∇ f (r∗), being f (r∗) a scalar field
and 1 a random constant unit vector, such that∫

Va

∇ ·
[
(1 · r∗)∇ f (r∗)

]
dV∗ =

∫
Sa

[
(1 · r∗)∇ f (r∗)

]
· dS∗ . (B.1)

We can expand the integrand in the LHS as

∇ ·
[
(1 · r∗)∇ f (r∗)

]
= ∇(1 · r∗) · ∇ f (r∗) + (1 · r∗)∇2 f (r∗) . (B.2)

Noting that ∇r∗ = I and ∇1 = O , being I and O the identity and zero tensors, respectively,

∇(1 · r∗) = ∇1 · r∗ + 1 · ∇r∗ = 1 · I = 1 , (B.3)

∇ ·
[
(1 · r∗)∇ f (r∗)

]
= 1 · ∇ f (r∗) + (1 · r∗)∇2 f (r∗) . (B.4)

Using Eq. (B.4) in the left hand side of Eq. (B.1), we arrive at∫
Va

1 · ∇ f (r∗)dV∗ +

∫
Va

(1 · r∗)∇2 f (r∗)dV∗ =

∫
Sa

[
(1 · r∗)∇ f (r∗)

]
· dS∗ . (B.5)

1 is constant, so it can be taken out of the integral on both sides. Rearranging terms,

��1·
∫
Va

∇ f (r∗)dV∗ = ��1·
∫
Sa

r∗ ∇ f (r∗) · dS∗ −��1·
∫
Va

r∗ ∇2 f (r∗)dV∗ . (B.6)

Basically, “1·” implies a projection of the vectors from the integrals into the direction given by
1. Since is applied in both sides, we can cancel it leading precisely to the initial equality that we
wanted to demonstrate (Eq. (3.54)).

Next, substituting this relation in the volume averaged gradient given in Eq. (3.53) leads to

[∇ f (r)]a =
1
Va

∫
Va

∇ f (r∗) dV∗ =
1
Va

∫
Sa

r∗ ∇ f (r∗) · dS∗ −
1
Va

∫
Va

r∗ ∇2 f (r∗)dV∗ . (B.7)

129

Appendix B: VPH gradient approximation

Let’s focus on the surface integral in the right hand side. We can subdivide it as a summation of
integrals, one for each face, where the normal vector is constant, eba, as discussed in Sec. 3.2.1.∫

Sa

r∗ ∇ f (r∗) · dS∗ =
∑
b,a

∫
Sab

r∗ ∇ f (r∗) · ebadS∗ . (B.8)

Furthermore, since the Voronoi face is placed at half way between the particles, we can express
any point on it as

r∗ = ra +
1
2

rba + r∗⊥ (B.9)

where r∗⊥ is a new integration variable that takes the midpoint between a and b as the origin, as
shown in Fig. B.1.

ra

rba

r*

r*

x

y

b
a

Figure B.1: Voronoi vector nomenclature

Substituting this expansion of r∗ into the surface integral leads to∫
Sa

r∗ ∇ f (r∗) · dS∗ = ra

∑
b,a

∫
Sab

∇ f (r∗) · ebadS∗ +
∑
b,a

∫
Sab

(rba

2
+ r∗⊥

)
∇ f (r∗) · ebadS∗ . (B.10)

The first term of the RHS in this expression can be traced back to a single integral through all
the faces, and using the divergence theorem directly converted into a volume integral:

ra

∑
b,a

∫
Sab

∇ f (r∗) · ebadS∗ = ra

∫
Sa

∇ f (r∗) · dS∗ =

∫
Va

ra ∇
2 f (r∗)dV∗ . (B.11)

Regarding the second term, we first approximate the gradient as constant over the face and deter-
mine it assuming a linear variation of the field values between the particles:

∇ f (r∗) ≈
f (rb) − f (ra)
‖rb − ra‖

eba =
fba

‖rba‖
eba , (B.12)

acceptable if the fields are sufficiently smooth. Using this approximation in the second integral of
Eq. (B.10), and since eba = rba/‖rba‖ and eba · eba = 1, it transforms into∫

Sab

(rba

2
+ r∗⊥

) fba

‖rba‖
eba · ebadS∗ = fba

∫
Sab

(
eba

2
+

r∗⊥
‖rba‖

)
dS∗ . (B.13)

130

Appendix B: VPH gradient approximation

Furthermore, ∫
Sab

eba

2
dS∗ =

eba

2

∫
Sab

dS∗ =
eba

2
Aab , (B.14)∫

Sab

r∗⊥
‖rba‖

dS∗ =
1
‖rba‖

∫
Sab

r∗⊥ dS∗ =
cba

‖rba‖
Aab , (B.15)

where cba is the position vector of the centroid of the face area relative to the middle point between
a and b,1 since

cba = cab = r∗centroid, ab −
ra + rb

2
=

∫
Sab

r∗ −
(

ra+rb
2

)
dS∗∫

Sab
dS∗

=

∫
Sab

r∗⊥ dS∗

Aab
. (B.16)

Using these expressions in the RHS of Eq. (B.10), we can rewrite it as∫
Sa

r∗ ∇ f (r∗) · dS∗ =

∫
Va

ra ∇
2 f (r∗) dV∗ +

∑
b,a

Aab fba

(
eba

2
+

cba

‖rba‖

)
. (B.17)

Finally, substituting it in the original expansion for the volume-averaged gradient in Eq. (B.7),
and merging the two volume integrals, we arrive at

[∇ f (r)]a =
1
Va

∑
b,a

Aab fba

(
eba

2
+

cba

‖rba‖

)
+

1
Va

∫
Va

(ra − r∗)∇2 f (r∗)dV∗ . (B.18)

The following observations can be made:

• For linear fields, ∇2 f (r∗) = 0 and the second integral vanishes. Furthermore, the approx-
imation of the gradient in Eq. (B.12) is exact. Therefore, this volume integral is a second
order correction, and the derived expression for ∇ f is exact for uniform and linear fields,
independently of the particle arrangement.

• If we still consider second order values, we can approximate ∇2 f (r∗) as a constant value,
∇2 fa, so the volume integral can be approximated to a third order as

1
Va

∫
Va

(ra − r∗)∇2 f (r∗)dV∗ ≈ ∇2 fa

∫
Va

(ra − r∗) dV∗

Va
= ∇2 fa

(
ra − rcentroid, a

)
(B.19)

We conclude that as long as the particles are close to the centroid of the Voronoi cells and
the fields are sufficiently smooth, this second order correction is negligible, arriving at the
final expression for [∇ f (r)]a = ∇ fa used in VPH, Eq. (3.58):

∇ fa =
1
Va

∑
b,a

Aab fab

[
eab

2
−

cab

‖rab‖

]
where the relations fba = − fab, eba = −eab, and cba = cab have been used.

1Remember that the origin of the relative position vector r∗⊥ is the middle point between a and b

131

Appendix B: VPH gradient approximation

• Note on accuracy: If the particles drift away from the centroid, the error due to neglecting
these second order term may become significant. This fact explains the advantage of intro-
ducing a shifting algorithm to ensure that the particles do not deviate from the centroids more
than a selected threshold. Despite introducing non-physical particle movements, i.e. not due
to any force, the avoidance of the loss of accuracy of the volume averaged approximations is
more beneficial overall.

132

Appendix C

Numerical damping in VPH

When no viscous dissipation forces are included in the model, the explicit VPH formulation leads
to an unstable scheme. Thus, we need to introduce an artificial viscous component to ensure that
we dissipate the fictitious energy introduced numerically in the system. We can visualize this by
analyzing the simple uni-dimensional1 configuration shown in Fig. C.1, with only two particles,
bounded at the bottom, and free at the top.

Figure C.1: Schematic of a simple two-particle configuration

We can establish the following relations for a weakly compressible fluid where we determine
the density from the particle cell size:

ρ1 =
m
l1
, ρ2 =

m
l2
, s =

l0

2
, (C.1)

x1 = l1 − l2 + s , (C.2)
x2 = l1 + l2 − s , (C.3)

p1 + p2

2
=

c2ρ0

2γ

[(
m
ρ0l1

)γ
+

(
m
ρ0l2

)γ
− 2

]
+ p0 , (C.4)

p1 − p2

2
=

c2ρ0

2γ

[(
m
ρ0l1

)γ
−

(
m
ρ0l2

)γ]
. (C.5)

C.1 No damping case
Considering only the pressure component, the equilibrium of forces on the system leads to∑

F1 = mẍ1 = p1 −
p1 + p2

2
=

p1 − p2

2
, (C.6)∑

F2 = mẍ2 = −p0 +
p1 + p2

2
. (C.7)

1In 1D, Voronoi cells are segments, with the limit between cells at half way between the particles

133

Appendix C: Numerical damping in VPH

Stating p and x as functions of l, we arrive at the differential system of equations in l1 and l2 that
define the movement of the system, which can be simplified by adding and subtracting the initial
set of equations.

ml̈1 − ml̈2 =
c2ρ0

2γ

[(
m
ρ0l1

)γ
−

(
m
ρ0l2

)γ]
ml̈1 + ml̈2 =

c2ρ0

2γ

[(
m
ρ0l1

)γ
+

(
m
ρ0l2

)γ
− 2

]
− p0

→


ml̈1 =

c2ρ0

2γ

[(
m
ρ0l1

)γ
− 1

]
−

p0

2

ml̈2 =
c2ρ0

2γ

[(
m
ρ0l2

)γ
− 1

]
+

p0

2
.

(C.8)

The result is a non-coupled system of nonlinear ODEs. Looking at l1, we can rewrite it as

l̈1 −
c2mγ−1

2γργ−1
0

l−γ1 +
c2ρ0

2γm
+

p0

2m
= 0 . (C.9)

No large variations of l are expected since we are dealing with a weakly compressible fluid.
As a first approximation, we can Taylor expand the second term around the equilibrium length, l0,
leading to

l−γ1 ≈ −γl−γ−1
0 (l1 − l0) , (C.10)

which substituted in the ODE, and noticing that m
ρ0

= l0, leads to its linearized form:

l̈1 +

(
c2

l2
0

)
l1 =

(
c2

2l0
−

c2

2γl0
−

p0

2m

)
, (C.11)

The analytic solution of this ODE has complex eigenvalues with zero real parts, i.e. consists in
pure oscillations around an equilibrium length. Its solution using an explicit numerical scheme is
unstable, confirming our initial statement.

C.2 Damping included
The first way to obtain a stable system is include damping as was initially devised. Inspired by the
stress tensor for Newtonian fluids,

σ = −pI + λ (∇ · u) I + µ 2D ,

where I is the identity and D the rate of deformation tensors, we can simply include a new damping
term proportional to the divergence of the velocity,

fβ = β∇ · v , (C.12)

since in 1D

∇ · u = 2D =
d u
d x
≈

∆ẋ
∆x

. (C.13)

134

Appendix C: Numerical damping in VPH

Evaluated on each cell limit yields:

∇ · u |x=0 =
ẋ1

x1
, (C.14)

∇ · u |x=l1 =
ẋ2 − ẋ1

x2 − x1
, (C.15)

∇ · u |x=l1+l2 = 0 . (C.16)

Substituting them on the original equilibrium of forces, and taking into account that the force
acts along the normal to each face pointing outwards, we obtain:∑

F1 = mẍ1 =
p1 − p2

2
− β

ẋ1

x1
+ β

ẋ2 − ẋ1

x2 − x1
, (C.17)∑

F2 = mẍ2 =
p1 + p2

2
− p0 − β

ẋ2 − ẋ1

x2 − x1
. (C.18)

Following the same steps than before, we arrive at the final system of ODEs for this case
ml̈1 =

c2ρ0

2γ

[(
m
ρ0l1

)γ
− 1

]
−

p0

2
−
β

2
l̇1 − l̇2

l1 − l2 + s
,

ml̈2 =
c2ρ0

2γ

[(
m
ρ0l2

)γ
− 1

]
+

p0

2
+
β

2
l̇1 − l̇2

l1 − l2 + s
− β

l̇2

l2 − s
.

(C.19)

Based on the expected small variations of l, we again use the Taylor expansion l−γ1 ≈ −γl−γ−1
0 (l1−l0).

Furthermore, we can assume that

l1 − l2 + s ≈ s =
l0

2
, (C.20)

since both l1 and l2 are both on the order of l0, so its difference is negligible compared to s. We can
also use this fact to simplify the last coefficient in the second ODE, by assuming

l2 − s ≈ l0 −
l0

2
=

l0

2
. (C.21)

Under all these assumptions, the linearized form of our system of ODEs are
l̈1 = −

β

ml0
l̇1 +

β

ml0
l̇2 −

(
c2

l2
0

)
l1 +

(
c2

2l0
−

c2

2γl0
−

p0

2m

)
l̈2 = +

β

ml0
l̇1 −

3β
ml0

l̇2 −

(
c2

l2
0

)
l2 +

(
c2

2l0
−

c2

2γl0
+

p0

2m

) (C.22)

The stability of the system depends on the coefficients multiplying the particle lengths and its
derivatives in the LHS. Therefore, without any loss of generality we will assume γ = 1 and p0 = 0,
so all constant values on the r values become zero. The system of ODE remain coupled, but if we
define an auxiliary variable ς = l̇, we can rewrite it as

ς̇1

ς̇2

l̇1

l̇2

 =


−

β

ml0
+

β

ml0
− c2

l20
0

+
β

ml0
−

3β
ml0

0 − c2

l20
1 0 0 0
0 1 0 0



ς1

ς2

l1

l2

 → ˙̀ = J ` (C.23)

135

Appendix C: Numerical damping in VPH

The stability of the system depends on the eigenvalues λ of the Jacobian matrix J.

|J − λI| = λ4 + λ3
(

4β
ml0

)
+ λ2

(
2β2

m2l2
0

+
2c2

l2
0

)
+ λ

(
4βc2

ml3
0

)
+

c4

l4
0

= 0 . (C.24)

Defining

A =
c2

l2
0

, B =
β

ml0
, (C.25)

we can determine the eigenvalues as

λ1,2 = ±

√
−2A + (3 − 2

√
2)B2

2
+

1 −
√

2
√

2
B , (C.26)

λ3,4 = ±

√
−2A + (3 + 2

√
2)B2

2
+
−1 −

√
2

√
2

B . (C.27)

Noticing that (3 − 2
√

2) = (1 −
√

2)2 and (3 + 2
√

2) = (−1 −
√

2)2, we can further simplify these
expressions by defining

B1 = (1 −
√

2)B , B2 = (−1 −
√

2)B , (C.28)

leading to

√
2 λ1,2 = ±

√
−2A + B2

1 + B1 , (C.29)
√

2 λ3,4 = ±

√
−2A + B2

2 + B2 . (C.30)

For β > 0 =⇒ B > 0 =⇒ B1 < 0 and B2 < 0, the following conditions are extracted to ensure
that the real parts of the eigenvalues are negative, condition for the system to be stable:

|B1| > +

√
−2A + B2

1

|B2| > +

√
−2A + B2

2

(C.31)

Since A > 0 
B2

1 − 2A < B2
1 =⇒ +

√
B2

1 − 2A < |B1| ∀B1

B2
2 − 2A < B2

2 =⇒ +

√
B2

2 − 2A < |B2| ∀B2 .
(C.32)

We conclude that as long as we introduce some damping, the VPH explicit scheme is stable if
an appropriate time step is chosen (Sec. 4.5).

136

Appendix C: Numerical damping in VPH

C.3 Order of magnitude of numerical damping
We have seen how any β > 0 is valid. However, we should keep in mind that the artificial viscosity
is a fictitious component. Therefore, we should keep it as low as possible so its impact on the flow
fields is negligible, i.e. the deviations for the physical response are not noticeable.

We can achieve this by determining the order of magnitude of the pressure forces, Fp and
making the numerical damping one, Fβ, proportional to it:

Fβ = αFp , (C.33)

where we choose α to ensure that Fβ is at least one order of magnitude smaller than Fp to have
a minimum impact in the flow, independently of the absolute value of Fp. From Eq. (2.26) we
determined

∆p ≈ c2ρ0η . (C.34)

where η =
∆ρ

ρ
. On the other hand, using the continuity equation we can approximate the order of

magnitude of the numerical damping as

Fβ = β∇ · u = −β
1
ρ

dρ
dt
≈ −β

1
ρ

∆ρ

∆t
= −β

η

∆t
. (C.35)

Based on Sec. 4.5, we can approximate the time step as ∆t ≈ l0
c , which leads to

Fβ ≈ −β
c η
l0
. (C.36)

Substituting these expressions in Eq. (C.33), we can finally determine an expression for β

β = α l0 c ρ0 . (C.37)

Noticing that l0 ≈ ∆x ≈ h, we can directly identify this value as the one used in the artificial
viscosity formulation used in SPH (Eq. (3.14)) and VPH (Eq. (3.71)). Typically, α ≈ 0.02.

137

Appendix C: Numerical damping in VPH

138

Appendix D

Geometry

This appendix summarizes several geometrical properties that we can compute using the Voronoi
tessellation data as described in Sec. 3.2.1 (nodes, faces, and cells). The following notation is
followed unless otherwise stated:

• D indicate the number of dimensions of the geometrical space Ω

• Cartesian coordinate system assumed

• Sub-indexes used to identify vectors, and super-indexes to identify vector components. Thus,
vk

j is the kth component of the jth face vector.

• x and r are Voronoi nodes and fluid particle position vectors, respectively. Algebraically,
vectors are treated as arrays of one column and D rows.

• Xab = {x1, ... , xD} is the subset of Voronoi nodes in a cell face between particles a and b

D.1 Volume of a D-dimensional triangular element
A D-dimensional triangle, also named D-simplex, is defined as the domain enclosed by flat sides
(polytope) with the least number of nodes in a D-dimensional space, i.e. D + 1 nodes. Therefore in
1D is a segment, in 2D a triangle, or in 3D a tetrahedron for example. Its volume can be computed
as a function of the nodes coordinates as

vi = xi+1 − x1 i = 1 ...D ,

V =
1

D!
abs


∣∣∣∣∣∣∣∣∣∣
v1

1 · · · v1
D

...
. . .

...

vD
1 · · · vD

D

∣∣∣∣∣∣∣∣∣∣
 . (D.1)

Note that depending on the order of the nodes, the determinant can be positive or negative,
hence the need to take the absolute value. Applied to a Voronoi diagram, the volume of each cell
can be taken as the summation of a set of simplexes, each one delimited by the nodes of one face
and the particle itself as shown in Fig. D.1(a).

Va =
1

D!

∑
b,a

sab abs


∣∣∣∣∣∣∣∣∣∣
(x1 − ra)1 · · · (xD − ra)1

...
. . .

...

(x1 − ra)D · · · (xD − ra)D

∣∣∣∣∣∣∣∣∣∣
 , (D.2)

where sab is a coefficient introduced to account for possible concave faces resulting from the inter-
section with concave boundaries1. As shown in Fig. D.1(b), if we split the domain by the hyper-
plane containing the boundary face, the volume should be added to the total volume if the particle

1Concave sides should be only on the boundaries, since pure Voronoi cells are always convex.

139

Appendix D: Geometry

falls within the fluid side of the face (sab = 1), and subtracted if not (sab = −1). Based on the unit
normal vector to the boundary, n, which is always oriented towards the fluid (Appendix D.3), we
can define

sab =

 +1 (ra − x1) · n ≥ 0
−1 (ra − x1) · n < 0 ,

(D.3)

being x1 the first of node in Xab.

(a) Convex cell

n

n

(b) Concave cell

Figure D.1: Voronoi cell volume

D.2 Area
The volume of a D-simplex can be also calculated as

V =
1
D

A H , (D.4)

where A is the area of the base and H its height. We can directly apply this fact to determine the
area of the Voronoi cell face by using it as a base to construct a simplex with height H = 1. This
is simply achieved if we include a vector of length 1 orthogonal to the hyper-plane containing the
face, i.e., its unit normal vector n. In general, n can be computed based on the face nodes as shown
in Appendix D.3, although we can use the fact that the Voronoi faces are orthogonal to the vector
joining their related particles, so n = rab/‖rab‖ = eab. As a result,

Aab = =
1

(D − 1)!
abs


∣∣∣∣∣∣∣∣∣∣
n1 (x2 − x1)1 · · · (xD − x1)1

...
...

. . .
...

nD (x2 − x1)D · · · (xD − x1)D

∣∣∣∣∣∣∣∣∣∣
 . (D.5)

D.3 Face unit normal vector
Both boundary faces and Voronoi cell faces are planar D − 1 dimensional triangles. We can there-
fore determine the unit normal vector to them using the normalized exterior product between the

140

Appendix D: Geometry

D − 1 vectors resulting from connecting the first node of the face with the rest:

vi = xi+1 − x1 i = 1 ...D − 1 ,

n∗ = v1 ∧ ... ∧ vD−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
e1 · · · en

v1
1 · · · vD

1
...

. . .
...

v1
D−1 · · · vD

D−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (D.6)

n =
n∗

‖n∗‖
, (D.7)

where ei is the unit vector of the orthogonal basis in the ith direction.
Based on this definition, a requirement is set to order each boundary face nodes in its triangula-

tion so its normal vector points towards the fluid, i.e. ordered counterclockwise.

D.4 Orthogonal distance from a point to a face plane
Is obtained projecting the vector connecting the point to one of the face nodes to the face unit
normal.

d⊥ = (ra − x1) · n . (D.8)

D.5 Minimum distance from a point to a face
The orthogonal distance to the face plane in Eq. (D.8) is not necessary the minimum distance,
since the closest point of the plane may not fall on the actual face polygon. The problem of finding
the minimum distance is equivalent to finding the closest point inside the face to that orthogonal
projection point on the face plane.

Each face consists on a closed polygon within a hyper-plane and is defined by D points. This
hyper-plane represents a subspace of the domain with dimension D − 1. Taking the first node of
the polygon as the origin, x1, we can define D − 1 vectors vi like before, which conform a base of
this subspace (assuming that the face is not ill-defined, so there are no coincident nodes)

vi = xi+1 − x1 i = 1 ...D − 1 . (D.9)

In order to determine the minimum distance, we need to determine the closest point within the
face, xc, to the analyzed point, ra. This point belongs to the hyper-plane subspace, so it can be
defined as a linear combination of the base vectors vi.

xc = x1 +

D−1∏
i=1

λivi = x1 +


v1

1 · · · v1
D−1

...
. . .

...

vD
1 · · · vD

D−1



λ1

...

λD−1

 = x1 + Vλ . (D.10)

141

Appendix D: Geometry

The square of the distance, d, is then given by

d2 = ‖xc − ra‖
2 = ‖x1 − ra + Vλ‖2 = ‖r + Vλ‖2 = (r + Vλ) · (r + Vλ)

= rT r + rT (Vλ) + (Vλ)T r + (Vλ)T (Vλ) , (D.11)

where T indicate the transpose. Using the property that v = (vT)T , and that each of the elements
of the previous expression lead to an scalar value, so abT = (abT)T = baT , we can rewrite the
previous expression as

d2 = rT r + 2rT Vλ + λT VT Vλ . (D.12)

We are looking for the minimum distance, which should satisfy the condition that the derivative
is zero, or what is equivalent, that the derivative of d2 is zero. Therefore

d d2

dλ
= 2rT V + (VT Vλ)T + λT VT V = 2rT V + 2λT VT V = 0 . (D.13)

Taking the transpose of the complete expression, we can rewrite it leading to a algebraic system
of equations whose solution provides the values of λi that determine the location of the closest
point in the hyper-plane.

VT Vλ = −VT r . (D.14)

However, the resulting point may not lay within the face limits if it doesn’t satisfy the conditions
stated in Appendix D.6. To locate the closest point within the face we can do it recursively as:

1. If exist values of λi < 0, set them to zero and as they lead to points away from the face. If
not, go to step 3.

2. Recompute with the remaining valid vectors,
{
vi | λ

i
≥ 0

}
the new values of λi. If some of the

new values of λi are negative, go back to the previous state and iterate until all the values are
positive.

3. Check that the condition of
∑D−1

i=1 λi
≤ 1 is satisfied. If so, a valid point has been found.

Otherwise, we scale the values of λi to satisfy it

λi =
λi (∗)∑D−1

i=1 λi (∗) , (D.15)

where λi (∗) represent the original values.

D.6 Point inside a generalized triangular element
We can always express any point x inside of a D-dimensional triangle as a linear combination of
the base vectors obtained by connecting the first node to all the rest,

B = {v1, ... , vD | vi = xi+1 − x1} , (D.16)

142

Appendix D: Geometry

so

x = λ1v1 + ... + λnvn =


v1

1 · · · v1
D

...
. . .

...

vD
1 · · · vD

D



λ1

...

λD

 . (D.17)

Note that λ = [λ1; ... ; λD] are the node coordinates in the new base, although the basis itself is
not orthogonal. The conditions for a point to belong to the triangular element are:

λi
≥ 0 ∀i = 1 ...D , (D.18)

D∑
i=1

λi
≤ 1 . (D.19)

In addition, a point is located on one of the sides of the triangle if one of the conditions below
are satisfied:

∃ λi = 0 , (D.20)
D∑

i=1

λi = 1 . (D.21)

Finally, the point is located along one of the edges connecting two nodes if the condition below
is satisfied,  0 ≤ λ j ≤ 1

λi = 0 ∀i , j .
(D.22)

As a final remark, all these conditions can be directly extended to a lower dimension simplex
within the D-dimensional space by simply replacing D with the dimension order of the simplex.
For example, in 3D we can evaluate if a point falls within a planar triangle by simply applying
these expressions with D = 2, which basically is the dimension of the sub-space to which all the
points in the triangle belong.

D.7 Concave/Convex neighbor boundary faces
Two adjacent faces are defined as those sharing D − 1 nodes. When seen from the fluid particles,
they can be convex or concave as shown in Fig. D.2. Generally, Voronoi cells are always convex
when looked from the particle inside the cell. However, when trimmed with concave boundaries
may include concave adjacent faces that are treated differently, as discussed in Sec. 3.4.3.

The condition used to determine whether adjacent faces are convex or concave is based on the
dot product of the vector connecting the free nodes from the first and second face2, xf1 and xf2,

2Each face have D nodes. Since D − 1 are shared, there is only one unshared node in each face independently of
the dimension of the problem

143

Appendix D: Geometry

1 2

n1

e21

(a) Convex

1 2

n1

e21

(b) Concave

Figure D.2: Convex vs. concave adjacent faces in 2D

respectively, and the normal to the first face, n1, such that

e21 = xf2 − xf1 , (D.23) e21 · n1 ≥ 0 → convex
e21 · n1 < 0 → concave .

(D.24)

D.8 Search threshold to detect convex and concave boundaries
We have determined when estimating the grid size in Sec. 4.3.1 that the maximum expected vari-
ation of the inter-particle distance can be upper bounded based on the stability limitations for
explicit scheme (Sec. 4.5) as

d t
max a ≤ d t−∆t

max a +
max(‖∆rab‖) t−∆t

2
≤ d t−∆t

max a + max(dmax a, dmax b) t−∆t .

When applied to convex boundaries, since their virtual points are reflections of the fluid particle,

dmax b = da⊥B ≤ dmax a . (D.25)

As a result, the following distance threshold ensures that we don’t miss any convex boundary
previously linked:

0 < dt
a⊥B ≤ 2 d t−∆t

max a , (D.26)

using d t−∆t
max a ≈

∆xa
2 if no previous value is available. However, even if this condition is satisfied,

we showed in Sec. 3.4.3 that no boundary virtual points should be placed when concave faces are
located in the nearby. We define “nearby” as the range when a possible virtual point can lay closer
to another face, BB, than the one used to create it B:

| daB⊥BB | > | daB⊥B | = | da⊥B | . (D.27)

Graphically, Fig. D.3 show how we can establish

| da⊥BB | = | daB⊥BB | + | rab · nBB | ≤ | daB⊥BB | + ‖rab‖ = | daB⊥BB | + 2 | da⊥B | . (D.28)

Reordering the terms, we conclude that

| daB⊥BB | ≥ | da⊥BB | − 2 | da⊥B | . (D.29)

144

Appendix D: Geometry

nBB

B

BB

n B ·
 r aa

B

aB

a

Figure D.3: Boundaries search threshold to detect concave faces

Based on Eqs. (D.26), (D.27), and (D.29), we arrive at the following threshold to link a boundary
to a particle:

∣∣∣ d t
a⊥B

∣∣∣ ≤  2 d t−∆t
max a only convex boundaries,

6 d t−∆t
max a otherwise.

(D.30)

This definition guarantees that no boundary beyond this search scope can actually be closer to
any virtual point created from a linked convex boundary, since

| da⊥BB | > 6 dt−∆t
max a

| da⊥B | ≤ 2 dt−∆t
max a

 =⇒ | daB⊥BB | ≥ | da⊥BB | − 2 | da⊥B | > 2 dt−∆t
max a ≥ | da⊥B | (D.31)

D.9 Intersection line and face
A line is defined by a base point, xl and a direction vector v, while a face plane is defined by a face
point x1 and a normal vector n. The intersection point, xi should belong to the line and the face
simultaneously, so  xi = xl + λv

(xi − x1) · n = 0
. (D.32)

Combining both, we determine λ that gives the intersection point coordinates

λ =
(x1 − xl) · n

v · n
(D.33)

D.10 Point within the orthogonal projection of boundary face
The orthogonal distance from a point to a face is given by Eq. (D.8). If we want to determine if
the orthogonal projection of the point into the face plane lays within the face, we can do so in a
simpler way than the procedure to determine the minimum distance described in Appendix D.5.

145

Appendix D: Geometry

We have seen how each face consists of a closed polytope defined by D points, such that we can
define a set of D− 1 vectors vi = xi+1 − x1 with i = 1 ...D− 1. We need one more vector outside of
the face hyper-plane to define a valid basis for the domain space, which can be simply the normal
vector to the face n. Noting that we used x1 as the reference origin for the in-plane base vectors,
we can express the relative position of any given point xp to the face as r = xp − x1, which also
can be expressed as a combination of the base vectors. Therefore,

r = λ0 n +

D−1∏
i=1

λivi =


n1 v1

1 · · · v1
D−1

...
...

. . .
...

nD vD
1 · · · vD

D−1



λ0
...

λD−1

 = Vλ (D.34)

This consist on an algebraic system of equations that can be solved to determine the values of
λi, which allow us to extract the following information:

• λ0 is the orthogonal distance to the face.

• In order for xp to be located within the orthogonal projection of the face, it needs to be
satisfied that:

λi ≥ 0 ∀i = 1 ...D − 1 (D.35)
D−1∑
i=1

λi ≤ 1 (D.36)

146

	List of Figures
	List of Tables
	Acknowledgements
	Nomenclature
	Introduction
	Overview
	Motivation
	Literature review
	Particle methods
	Smoothed particle hydrodynamics
	Coupling

	Major contributions
	Thesis structure

	Continuum model
	Governing equations
	Weakly compressible equation of state
	Speed of sound, c

	Method
	SPH
	Fundamentals
	Kernel
	Diffusive terms (delta-SPH correction)
	delta-SPH scheme used

	VPH scheme
	General
	Artificial viscosity
	Diffusive terms
	delta-VPH scheme used

	Coupling
	SPH & VPH Sub-domains
	Fields in the buffer zone
	Length of the buffer zone

	Boundary conditions (BCs)
	Geometric definition requirements
	Convex solid boundaries
	Concave solid boundaries
	Free-surface
	Voronoi free-surface particle close a solid boundary
	Periodic
	Inlets/Outlets

	Density re-initialization algorithm
	Shifting algorithm

	Implementation
	Overview
	Code
	Neighbor boundaries and particles searching algorithm
	Grid
	Boundaries
	Connectivity list

	Initialization
	Time-stepping
	Time iteration scheme: leap frog
	Linear damping
	Time step increment: CFL condition

	Energy Balance
	Continuous level
	Elastic energy
	Discrete level
	Energy balance during simulations

	Verification
	Hydrostatic equilibrium: convex boundaries
	Hydrostatic equilibrium: concave boundaries
	Sound wave
	2D Steady Couette flow
	2D Impulsively-started Couette flow
	Lamb–Oseen vortex
	Two symmetric Lamb–Oseen vortices
	Impinging jet

	Concluding remarks and Future work
	Conclusions
	Recommendations for future work
	Associated publications

	References
	Artificial vs. Real viscosity
	General
	ka = 3 kb proof
	kk and kb

	VPH gradient approximation
	Numerical damping in VPH
	No damping case
	Damping included
	Order of magnitude of numerical damping

	Geometry
	Volume of a D-dimensional triangular element
	Area
	Face unit normal vector
	Orthogonal distance from a point to a face plane
	Minimum distance from a point to a face
	Point inside a generalized triangular element
	Concave/Convex neighbor boundary faces
	Search threshold to detect convex and concave boundaries
	Intersection line and face
	Point within the orthogonal projection of boundary face

