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ABSTRACT OF THE DISSERTATION

Robust and Efficient Methods in Semi-supervised Inference and Causal

Inference

by

Yuqian Zhang

Doctor of Philosophy in Mathematics with a Specialization in Statistics

University of California San Diego, 2022

Professor Jelena Bradic, Chair

We consider the mean response estimation and inference in semi-supervised settings

in the first two chapters. Such settings consist of a relatively small labeled dataset and

an extensive unlabeled dataset. Chapter 1 considers the classical semi-supervised setup

that the outcome is missing completely at random (MCAR). Our goal is to improve the

efficiency of the supervised sample mean estimator using the additional unlabeled data. We

proposed a semi-supervised mean estimator based on flexible working models, including high-

dimensional and non-parametric models. In Chapter 2, we further consider the situation

xii



that a selection bias may appear. Our goal is to remove the bias originating from the

dependence between the missing and outcome. We propose a semi-supervised doubly robust

mean estimator with valid inference results when some product rate condition holds. Our

work fills in the gap between the semi-supervised literature and the missing data literature.

We allow selection bias – this extends the semi-supervised literature. We also allow extremely

unbalanced labeled/unlabeled groups and violate the usual positivity condition, which is

always assumed throughout the missing data literature.

The last two chapters consider the estimation and inference of the dynamic treatment

effect (DTE) when the treatment variable is longitudinal and the covariates are possibly high

dimensional. Chapter 3 proposes a doubly robust DTE estimator based on (imputed) Lasso-

type nuisance estimators. We established root-n inference when all the nuisance models are

correctly specified and some sparsity conditions hold. Chapter 4 further provides root-n

inference for the DTE even when model misspecification occurs. This is achieved based on

special “moment targeting” nuisance estimators. We provide valid inference as long as one

of the nuisance models is correctly specified at each time spot – such a result is better than

all the existing literature, even containing the low-dimensional works.
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Chapter 1

High-dimensional semi-supervised

learning: in search of optimal

inference of the mean

1.1 Introduction

We consider a semi-supervised setting with n independent and identically distributed

pairs (Xi, Yi)
n
i=1 ∼ P(X,Y ) of observations, with covariates Xi ∈ Rp−1 and the outcome

Yi ∈ R. We presuppose the existence of an additional set of m observations, (Xi)
n+m
i=n+1.

With τ = limm,n→∞ n/(m+n) ∈ [0, 1] denoting the ratio of the fully observed data and data

with the missing outcomes, we are particularly focused on the case of τ = 0, i.e., m � n.

The semi-supervised learning setting can be viewed as a particular missing data setting,

where the outcome is missing completely-at-random. Although the missing data literature,

in general, addresses a more general setting of the outcomes missing-at-random [SRR99],

1



semi-supervised learning has a particular caveat that the missing data’s size is enormous,

m � n. With m � n, typical missing-at-random approaches [BR05] no longer apply.

The positivity/overlap condition, see, e.g., [RLSR12], is no longer satisfied; with τ = 0,

the probability of observing the outcome converges to zero, therefore implying that the

semi-supervised setting is not a simple subset of the missing-at-random setting. Instead,

we treat the missingness size, an impediment from the missing-at-random perspective, as

a semi-supervised strength. In the case of infinite missingness of the response, we are left

with infinite additional information regarding the covariates’ distribution, PX . Mimicking

the known PX setting, we remove the bias in estimating the outcome model and show that

semi-supervised-double-robust inference is achievable.

Our main contribution is in constructing new semi-supervised estimates of θ = E(Y )

and in providing root-n inferential guarantees while allowing for misspecification of the dis-

tribution of Y | X. An impediment to providing optimal inferences about θ lies in the

inability to estimate E(Y | X) with root-n guarantees. Sparse regularizers, random forests,

nonparametric (smoothing) estimators, or neural networks do not admit root-n consistency.

While there is vast literature on semi-supervised learning, comparatively little is known about

making inferences about θ; see [Zhu05]. Recent results of [WL08,EACR+16,MC18] consider

the class of low-dimensional graph-oriented semi-supervised algorithms. Semi-supervised

learning in the context of classification has had a long tradition; see [CSZ09, GB05]. A

small but growing literature has considered the development of semi-supervised inferential

procedures. The recent work of [ZBC19] is a special case of our construction. Authors

utilize the least-squares approach in linear models whenever p = o(n1/2). Our results are

based on n−1 log(p) = o(1) together with many possible estimators, e.g., random forests

2



and neural networks. [CC18] develop the semi-supervised regression method with improved

efficiency when the linear model is misspecified. [GC18] consider semi-supervised prediction,

while [CG20] propose semi-supervised explained variance estimates. We, therefore, view our

contribution as complementary to this growing literature.

We believe that our new estimating tools will be useful beyond the specific class of en-

vironments studied here. We illustrate this point by applying our findings to heterogeneous

treatment effects. Existing approaches of [CCD+18, KSBY19]; and [CCD+17] build learn-

ers that can conform to many machine learning methods [WA18, AIW18]. However, they

do not consider the semi-supervised setting with the outcome and the treatment missing.

We discover that the asymptotic variance size is reduced regardless of whether additional

information on the treatment is available. Moreover, treatment assignment can potentially

depend on all covariates with no explicit sparsity requirement. The method also shares the

low-dimensional asymptotic efficiency of [CAC18].

1.2 Efficient estimation of the mean

1.2.1 From de-biasing to double-robustness

Let β∗ ∈ Rp, the population slope, be an l2 projection defined as

β∗ = arg min
β∈Rp

E
(
Y − β1 −XTβ−1

)2
.

Here, β−j denotes β with the j-th coordinate removed. For ε = Y − β∗1 − XTβ∗−1 and

σ2
ε = var(ε) with E(ε | X) 6= 0 we do not necessarily assume that the regression model

is linear. With µ and C, denoting the mean and the covariance of Xi, respectively, we

3



use Vi = Xi − µ, and Zi = C−1/2(Xi − µ). With X̃i = (1, XT
i )T and Ṽi = (1, V T

i )T, let

µ̃ = (1, µT)T and C̃ = cov(X̃) denote the mean and covariance of X̃ = (1, XT)T. The mean

of the response, θ = E(Y ), can be seen as a linear contrast of β∗:

θ = µ̃Tβ∗.

When p � n, a good candidate estimate of β∗, is a regularized estimator, β̂, e.g.,

Lasso [Tib97] or square-root Lasso [BCW11]. However, such estimators suffer from slower

than root-n consistency: when the outcome model is linear, ‖β̂−β∗‖2
2 = oP{s log(p)/n} with

s = |{j : β∗j 6= 0}|. Hence, a plug-in estimate will not achieve root-n inference regarding θ,

even if the outcome model is correct, unless s is a constant. Existing literature provides easy

solutions with many possible ways to remove the bias of regularization. Each of these could

potentially achieve root-n inference of θ but would, however, require strong assumptions on

the models: the outcome must be well specified as well as sparse enough. For example, let

β̂db = β̂ + n−1
∑n

i=1 Θ̂X̃i(Yi − X̃i
T
β̂), denote the de-biased Lasso [VdGBRD14]. Here, Θ̂, is

a candidate estimate of Σ̃−1, Σ̃ = EX̃X̃T ∈ Rp×p. Root-n inference of θ would then require

outcome sparsity s = o{n1/2/ log(p)} as well as |{k 6= j : (Σ̃−1)j,k 6= 0}| = o{n/ log(p)}

[VdGBRD14].

However, β̂db does not directly use the additional covariate information available in

the semi-supervised setting. Let us consider a particular case where PX , and with it, Σ̃−1

and µ̃ are known. In this case, we could use an improved de-biased semi-supervised estimator

β̃ = β̂ + n−1
∑n

i=1 Σ̃−1X̃i(Yi − X̃i
T
β̂), which then leads to

µ̃Tβ̃ = µ̃Tβ̂ + n−1

n∑
i=1

eT1 X̃
T
i (Yi − X̃iβ̂) = µ̃Tβ̂ + n−1

n∑
i=1

(Yi − X̃T
i β̂),
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where e1 = (1, 0, 0, . . . , 0)T. Interestingly, by algebraic manipulation, it is not difficult to

see that the right-hand side above becomes Ȳ + (µ̃ − X̄)Tβ̂, where Ȳ = n−1
∑n

i=1 Yi and

X̄ = n−1
∑n

i=1 X̃i, therefore matching with the low-dimensional estimator of [ZBC19]. There

seems to be an intricate connection between the above estimator and the double-robust,

missing-at-random estimators of [BR05]. However, there is an important difference. If Tj = 1

for j = 1, . . . , n and zero otherwise, i.e., T is the indicator of the observed data. Missing-at-

random treats T as a random variable whereas semi-supervised learning treats T as fixed,

non-random. Semi-supervised learning can be viewed as missing-at-random conditional on

(Ti)
m+n
i=1 being fixed. Then, the missing-at-random average treatment effect of the treated

matches the above estimator

µ̃Tβ̂ + (n+m)−1
n+m∑
i=1

Ti(Yi −Xiβ̂)/P (Ti = 1 | Xi),

where P (Ti = 1 | Xi) = P (Ti = 1) = n/(n + m). However, missing-at-random double-

robust estimates require P (Ti = 1 | Xi) > 0 whereas in the semi-supervised setting we have

P (Ti = 1 | Xi)→ 0 with m� n.

In the semi-supervised setting, we aim to show that the above estimator’s sample

equivalent will suffice for root-n inference on θ. Let

θ̃ = µ̂Tβ̂ + n−1

n∑
i=1

(Yi − X̃T
i β̂), µ̂ = (n+m)−1

n∑
i=1

X̃i.

Our estimator will use cross-fitting, which plays a crucial role in establishing the double-

robust property of the proposed estimator, i.e., in controlling the term t2 in the decomposition

θ̃ − θ = t1 + t2 + t3,

where t1 = θ−n−1
∑n

i=1 Yi, t2 = (n−1
∑n

i=1 X̃i− µ̂)T(β̂−β∗), t3 = (n−1
∑n

i=1 X̃i− µ̂)Tβ∗.
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The cross-fitting technique helps in removing the bias arising from t2. With the use of cross-

fitting, β̂’s and Xi’s influences in t2 are separated and tight control of t2 is achieved under

minimal conditions. Without cross-fitting, |θ̃−θ| ≤ ‖n−1
∑n

i=1 X̃i− µ̂‖∞‖β̂−β∗‖1 where the

right-hand side is OP (n−1/2) as long as s ≤ n1/2/ log(p). Instead, with the use of cross-fitting,

we can guarantee root-n consistency as long as s ≤ n/ log(p). Cross-fitting can be traced

back to the natural ideas of cross-validation. Historical background is provided by [Sto74]

and [Gei75] for example. More recently, [RWG19] show that sample splitting increases the

accuracy and robustness of inference. [CCD+17] use cross-fitting to define double-robust

missing-at-random estimates.

We start by splitting the labeled observations into K sets, Ik, each of size N , and split

the unlabeled observations into sets I ′k. Let Jk = Ik ∪ I ′k with |Jk| = M . Let β̂(−k) denote an

estimate of β∗ computed on all but the kth labeled observations, β̂(−k) = β̂({(X̃i, Yi) : i ∈

{1, 2, . . . , n} \ Ik}) ∈ Rp. Then, we propose

θ̂(k) = µ̂(k)Tβ̂(−k) +N−1
∑
i∈Ik

(
Yi − X̃T

i β̂
(−k)
)
, µ̂(k) = M−1

∑
i∈Jk

X̃i. (1.1)

Finally, we propose the following semi-supervised estimator, which aggregates the above

estimates:

θ̂ = K−1

K∑
k=1

θ̂(k).

We will show that this estimator becomes an unbiased estimator of θ, even in finite samples.
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1.2.2 From the mean to the coefficient of determination

A crucial statistical problem is the estimation of the Proportion of Variance Explained

(PVE),

PVE = var(X̃Tβ∗)/σ2
Y .

Estimation of PVE with p � n is difficult due to the numerous overfitting issues. In this

section, we propose a semi-supervised coefficient of determination, R2, an estimator of PVE.

The estimation of the explained variance, b2 = var(X̃Tβ∗), [CG20] can be done with the

cross-fitted residuals

b̂2(k) = β̂(−k)TĈ(k)β̂(−k) + 2N−1
∑
i∈Ik

β̂(−k)TV̂iε̂i, ε̂i = Yi − θ̂ − β̂(−k)TV̂i, (1.2)

and b̂ = K−1
∑K

k=1 b̂
2(k) , where the estimates of Ṽi are V̂i = X̃i − µ̂(k) and their covariance

Ĉ(k) = M−1
∑

i∈Jk V̂iV̂
T
i . The motivation behind this careful construction is governed by

bias-propagation in the high-dimensional setting; as we will show, the residuals as defined

above are, however, root-n consistent. This, in turn, provides a more stable estimate and

enables theoretically weak conditions. To see that the naive estimate Yi − β̂TX̃i may not

guarantee root-n consistency, we only need to observe that in such a case, Yi − β̂TX̃i =

εi+(θ− β̂Tµ̃)− (β̂−β∗)T(X̃i− µ̃), while the term θ− β̂Tµ̃ is not necessarily root-n consistent

whenever p � n. Our cross-fitted construction can be seen as a bias-corrected estimate of

the residuals. We propose a new estimator of the variance of the response, σ2
Y = var(Y ),

σ̂2(k)

Y = N−1
∑
i∈Ik

(Yi − θ̂)2 +N−1
∑
i∈Ik

β̂(−k)T
(
Ĉ(k) − V̂iV̂ T

i

)
β̂(−k), (1.3)

and with it σ̂2
Y = K−1

∑K
k=1 σ̂

2(k)

Y . Our results also hold for the truncated version σ̂2
Y,trunc =

max(σ̂2
Y , 0). A classical estimate, the simple sample variance, S2

Y = n−1
∑n

i=1(Yi − Ȳ )2,
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does not utilize any additional knowledge of the covariates. Alternatively, one may consider

n−1
∑n

i=1(Yi− θ̂)2. However, both of these estimates can be improved. Our theoretical results

demonstrate a persistent variance magnification,

n−1

n∑
i=1

(Yi − θ̂)2 = σ2
Y + n−1

n∑
i=1

{β∗T(ṼiṼ
T
i − C̃)β∗}+ T +OP (n−1),

where E(T ) = 0 and T = n−1
∑n

i=1( 2β∗TṼiεi + ε2
i − σ2

ε). Hence, our estimator adds a

correction term so that the contribution of the middle term disappears. Therefore, R2 can

be obtained by plugging in the estimators of b2, (1.2), and the variance of the response

σ2
Y ,(1.3),

R2 = K−1

K∑
k=1

b̂2(k)/σ̂2(k)

Y . (1.4)

1.2.3 Root-n consistency

We establish the root-n consistency of the proposed semi-supervised estimators. Con-

stants in what follows, possibly changing from line to line, are independent of the sample

size.

Assumption 1.1. Let the covariance matrix C be such that λmin(C) > 0 and λmax(C) ≤ c1

and sup‖a‖2=1 E|aTZ|2+c < c1 as well as E|Y |2+c < c1, for positive constants c, c1 > 0.

Assumption 1.2. The responses are such that E|Y |4+c < c1 whereas the covariance ma-

trix C satisfies, λmin(C) > 0 and λmax(C) ≤ c1 and sup‖a‖2=1 E|aTZ|4+c < c1 for positive

constants c, c1 > 0.

Assumption 1.3. β̂ is an estimator for β∗ that satisfies ‖β̂ − β∗‖2 = OP (1), as n, p→∞.
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Condition 1.1 or 1.2, used one at a time, provide a well-defined linear approximation

model β∗. A bounded variance of Y simplifies exposition; all of the results still hold even

if this condition is removed. However, the results would be less interpretable. Condition

1.3 allows for a wide variety of estimates of β∗: Lasso, Dantzig, Square-root Lasso, Elastic-

net [ZH05] or Slope [BVDBS+15] are plausible. Similarly, different structural forms of β∗

are permissible; a considerably weaker form of sparsity, lr sparsity with r ∈ (0, 1), would be

effective as long as ‖β∗‖rr = o[{n/ log(p)}1−r/2] [YZ10], for example. As per Conditions 1.1

and 1.2, bounded 2 + c and 4 + c moments allow heavy-tailed distributions for the covariates

as well as the noise; see, e.g., the Huber estimate of [SZF20].

Theorem 1.1. Let Conditions 1.1 and 1.3 hold. Then, as m,n, p→∞, θ̂− θ = OP (n−1/2).

Moreover, if Condition 1.2 hold as well, σ̂2
Y − σ2

Y = OP (n−1/2).

Regarding θ̂, Condition 1.1 can be relaxed to bounded 1 + c moments. Importantly,

we do not rely on a strong signal-to-noise ratio to achieve root-n consistency. If s = p,

one can show that the Lasso estimate equals zero with high-probability, in which case the

proposed estimate will be the same as the naive Ȳ . Hence, there is no loss in efficiency, and

it seems that the semi-supervised mean estimate is advantageous in almost all cases. We

discuss some aspects of the variance in the Section 1.4.

1.2.4 Asymptotic normality

In this section, we proceed to prove that semi-supervised estimates are asymptotically

normal and that they improve the efficiency of estimation by borrowing strength from the

additional dataset.
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Assumption 1.4. β̂ is an estimator of β∗ that satisfies ‖β̂ − β∗‖2 = oP (1), as n, p→∞.

Theorem 1.2. Let Conditions 1.1 and 1.4 hold. Then, as m,n, p→∞,

n1/2(θ̂ − θ)→ N
(
0, σ2

ε + τb2
)
, (1.5)

in distribution, provided that σ2
ε + τb2 > c for some constant c > 0.

Compared with requirements for inference in high-dimensional linear models, Con-

ditions 1.1 and 1.4 are milder. Where we require only moderately sparse regimes s =

o(n/ log p), high-dimensional and even doubly-robust methods require more strict settings;

see, e.g., [SRR19, Tan20b, Tan20a, BWZ19]. In particular, we do not require any sparsity

structure on Σ−1, a condition that has been typically assumed throughout the literature, if

the variance is unknown. Lastly, we do not require homogeneity of the errors, ε.

Regarding efficiency, observe that

var(n1/2Ȳ ) = σ2
Y = σ2

ε + b2 ≥ σ2
ε + τb2.

where σ2
ε + τb2 is the asymptotic variance of θ̂ as in (1.5). Hence, the semi-supervised esti-

mator θ̂ is asymptotically at least as accurate as Ȳ and is often more accurate. Namely, the

additional unlabeled data reduce the asymptotic variance by (1− τ)b2. The more unlabeled

data we observe, the more accurate the proposed estimator θ̂ becomes. When τ = 0, the

asymptotic variance is equivalent to the case of known PX .

Throughout the chapter, we mainly focus on the case of the signal-to-noise ratio,

snr = b2/σ2
ε , being bounded away from 0 and ∞. However, observe that the two ex-

tremes are not particularly informative. Namely, the case of snr = 0 illustrates that no
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estimator can improve the naive Ȳ . Conversely, the case of snr = ∞ and τ = 0, illus-

trates that semi-supervised estimator can potentially lead to a better than n1/2 conver-

gence rate. Set ρj = Corr(Zj, Y ) for each j ∈ {1, 2, . . . , p − 1}. Then, b2 = β∗−1
TCβ∗−1 =

{C−1E(V Y )}TCC−1E(V Y ) = σ2
Y

∑p−1
j=1 ρ

2
j . If τ < 1 and σ2

Y

∑p−1
j=1 ρ

2
j > c for some c > 0, i.e.,

when at least one of the covariates has positive marginal correlation with the response, θ̂ is

asymptotically more accurate than Ȳ .

Our estimator is also optimal in the following sense. The asymptotic variance in

Theorem 1.2 is the same as that of [ZBC19], proved under a low-dimensional setting; see

their Theorem 2.4. Moreover, it also achieves the oracle lower bound presented in their

Proposition 3.1. The following result presents theoretically valid root-n confidence intervals

of θ, while only requiring consistency of β̂ at an arbitrarily slow rate.

Theorem 1.3. Let Conditions 1.1 and 1.4 hold. With ε̂i defined in (1.2), we define σ̂2
ε =

n−1
∑n

i=1 ε̂
2
i . Then, whenever m,n, p → ∞, σ̂2

ε = σ2
ε + oP (1), b̂2 = b2 + oP (1), and a valid

confidence intervals about θ, at significance level α, is defined as

CI(θ) =
(
θ̂ − z1−α/2{σ̂2

ε/n+ b̂2/(m+ n)}1/2, θ̂ + z1−α/2{σ̂2
ε/n+ b̂2/(m+ n)}1/2

)
, (1.6)

with z1−α/2 being (1− α/2)-quantile of a standard normal distribution.

A few comments are in order. If we are willing to assume Condition 1.2, we show that

b̂2 − b2 = OP (‖β̂ − β∗‖2
2 + n−1/2). In contrast, a naive plug-in estimate of b2, β̂(−k)TĈβ̂(−k)

would only guarantee OP (‖β̂−β∗‖2). Therefore, our result on b̂2 can be seen as complemen-

tary to [CG20]. We provide the same convergence rate, whenever b2 > c, c > 0, however,

with weaker assumptions: we allow heavy-tailed X and ε and misspecified linear model. An
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asymptotically normal result holds once ‖β̂−β∗‖2 = oP (n−1/4); the details of the asymptotic

theory regarding b̂ are contained in Theorem 1.6 under a more general setting.

Next, we discuss the high-dimensional R2 semi-supervised estimate. We begin by

highlighting the asymptotic results on the variance estimate, followed by a simple corollary

regarding the asymptotics of R2.

Theorem 1.4. Let Conditions 1.2 and 1.4 hold. Then, as m,n, p→∞,

n1/2(σ̂2
Y − σ2

Y )→ N
{

0, var(ε2 + 2β∗TṼ ε) + τvar(β∗TṼ )2
}
, (1.7)

in distribution, provided that var(ε2 + 2β∗TṼ ε) + τvar(β∗TṼ )2 > c for some constant c > 0.

Moreover, for σ̂2
ν and σ̂2

ξ defined in (1.15) and (1.17), respectively, we have

σ̂2
ν + n(m+ n)−1σ̂2

ξ = var(ε2 + 2β∗TṼ ε) + τvar(β∗TṼ )2 + oP (1). (1.8)

A sufficient condition regarding Theorem 1.4 includes var(ε2 + 2β∗TṼ ε) > 0 – when-

ever σ2
ε > c1, and corr(ε2, β∗TṼ ε) > −1 + c2, for some c1, c2 > 0, the asymptotic variance

in (1.7) is positive. Now we are ready to state the asymptotic normality of R2 as a simple

corollary of a more general result; see Theorem 1.6.

Corollary 1.1. Let Conditions 1 and 4 hold. Then, for R2 defined in (1.4), we have R2 =

PV E + oP (1), whenever m,n, p → ∞. Moreover, if Condition 2 holds with ‖β̂ − β∗‖2 =

oP (n−1/4), then, as m,n, p→∞,

n1/2V −1/2(R2)(R2 − PVE)→ N(0, 1)

in distribution, provided V (R2) > 0, where

V (R2) = var[σ−4
Y b2ε2 + σ−4

Y σ2
ε{2εβ∗

TṼ + τ(β∗TṼ )2}] + τσ−8
Y σ4

εvar{(β∗TṼ )2}.
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1.3 Beyond linear outcome models

Recall that our estimation towards the mean depends on the linear projection of

g0(x) = E(Y | X = x). A question arises naturally: can we use general machine learning

algorithms to estimate g0(x) and design non-linear projection for optimal estimation of θ?

Are we able to construct confidence intervals, and will the asymptotic variances of the

estimators be improved? We provide positive answers to both questions.

A natural extension of θ̂ can be defined as

θ̂gen = K−1

K∑
k=1

θ̂(k)
gen, where θ̂(k)

gen = M−1
∑
i∈Jk

ĝ(−k)(Xi) +N−1
∑
i∈Ik

{
Yi − ĝ(−k)(Xi)

}
, (1.9)

and ĝ(−k) is the estimate of g0 computed on all but the k-th labeled observations. We

suppose the existence of some g∗ = g∗d : Rp → R, such that µ2,X{ĝ(−k)(x)− g∗(X)} = oP (1)

as n → ∞, and possibly p, q → ∞ and where µr(f) = E{f − E(f)}r is the r-th central

moment, and µr,X(f) = EX{f − EX(f)}r with EX denoting the conditional expectation on

the marginal distribution PX . Here, d denotes the degree of freedom of the working model.

Note that g∗(x) = g0(x) is unnecessary. Here, g∗ = g∗d can be chosen as the projection of the

underlying curve g0(x) to a functional class Gd, i.e.,

g∗ = arg min
g∈Gd

E{g∗(X)− g0(X)}2. (1.10)

With a small abuse in notation, let ε = Y − g∗(X) denote the unexplained error of the

model. To better interpret our results, we assume that E(ε) = 0 and E{εg∗(X)} = 0, which

is satisfied once b + ag ∈ Gd for all a, b ∈ R and g ∈ Gd. We demonstrate in Theorem 1.5

that, θ̂gen of (1.9), is asymptotically normal with asymptotic variance

Vgen(θ) = σ2
ε,gen + τb2

gen,
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where b2
gen = var{g∗(X)} denotes the explained variance of the model g, and σ2

ε,gen = E{Y −

g∗(X)}2 = var(Y )− b2
gen denotes the unexplained variance. When g∗ is defined as in (1.10),

b2
gen and σ2

ε,gen are the largest explained variance and smallest unexplained variance among

the functional class Gd, respectively. The unexplained variance can be estimated using a

cross-fitting scheme

σ̂2
ε,gen = n−1

K∑
k=1

∑
i∈Ik

{
Yi − θ̂gen − ĥ(−k)(Xi)

}2

, (1.11)

with ĥ(−k)(Xi) = ĝ(−k)(Xi)−M−1
∑

i∈Jk ĝ
(−k)(Xi). As for the explained variance, (1.2) can

be generalized through a bias-corrected cross-fitting estimator

b̂2
gen = (m+n)−1

K∑
k=1

∑
i∈Jk

{ĥ(−k)(Xi)}2 +2n−1

K∑
k=1

∑
i∈Ik

ĥ(−k)(Xi){Yi− θ̂gen− ĥ(−k)(Xi)}. (1.12)

Now, V̂gen(θ) = σ̂2
ε,gen + nb̂2

gen/(m + n) and a α-level confidence interval can be constructed

as

CIgen(θ) =

(
θ̂gen − z1−α/2

{
V̂gen(θ)/n

}1/2

, θ̂gen + z1−α/2

{
V̂gen(θ)/n

}1/2
)
. (1.13)

The asymptotic normality of non-linear R2 is established in Theorem 1.6.

Theorem 1.5. Suppose that E|Y |2+c < C and E|g∗(X)|2+c < C for some C < ∞. Then,

as long as µ2,X{ĝ(−k)(x) − g∗(X)} = oP (1) for each k, as n, p → ∞ (or n, p, d → ∞), θ̂gen

satisfies

n1/2V −1/2
gen (θ)(θ̂gen − θ)→ N(0, 1), V̂gen(θ) = Vgen(θ) + oP (1),

provided that Vgen(θ) > 0.

The asymptotic variance above depends on the explained variance b2
gen: the larger

the explained variance is, the more efficient estimation of θ is. In particular, a worst case of
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b2
gen = 0 corresponds to the sample mean estimator. When g∗(x) = g0(x), the asymptotic

variance is optimal; it matches the oracle lower bound of Proposition 3.1 in [ZBC19] and one

can see a clear efficiency gain through b2
gen(g∗) ≤ b2

gen(g0).

1.4 Further discussion on the variance

1.4.1 Asymptotic inference for the variance

When we are interested in estimating and perhaps constructing confidence intervals

regarding the variance of Y , we require the same set of simple assumptions used in obtaining

inferential statements regarding the mean of Y . Even when β̂ is a biased estimate whose bias

is bounded asymptotically (but is not diminishing) we are able to guarantee n1/2 consistency

of the estimate, (1.3). For consistent β̂, even without specified rate assumptions, we can

guarantee more, in distribution,

n1/2(σ̂2
Y − σ2

Y )→ N

{
0, var

(
ε2 + 2β∗TṼ ε

)
+ τvar

(
β∗TṼ

)2
}
.

The result above remains correct even when there is a large dependence of εi on Ṽi. The

result simplifies a lot if both the covariates Xi and the errors εi have Gaussian distribution;

in that case, the asymptotic variance becomes 2σ4
ε +4σ2

εb
2 +2τb4. Moreover, under the same

set of assumptions, we can consistently estimate the asymptotic variance of σ̂2
Y . To do so, we

estimate the two components of the asymptotic variance separately. Let’s focus on estimating

var(β∗TṼ )2 first. To that end, we construct consistent estimates of (β∗TṼi)
2 − E(β∗TṼ )2,

ξ
(k)
i , as follows

ξ
(k)
i = β̂(−k)T

(
V̂iV̂

T
i − Ĉ(k)

)
β̂(−k). (1.14)
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Then we set

σ̂2
ξ = N−1

K∑
k=1

∑
i∈Ik

ξ
(k)
i

2
≈ var(β∗TṼ )2. (1.15)

Next, we estimate var(ε2 + 2β∗TṼ ε). To that end we define

η
(k)
i = ε̂2

i + 2β̂(−k)TV̂iε̂i + β̂(−k)TĈ(k)β̂(−k),

and observe that σ̂2
Y is an average of η

(k)
i . Then, we create a cross-fitted residuals of the

following form

ν
(k)
i = η

(k)
i − σ̂2

Y (1.16)

and show

σ̂2
ν = N−1

K∑
k=1

∑
i∈Ik

ν
(k)
i

2
≈ var(ε2 + 2β∗TṼ ε). (1.17)

In Theorem 1.4, we showcase that as long as any consistent estimate of β̂ is used, the

confidence interval

CI(σ2
Y ) =

(
σ̂2
Y − z1−α/2{σ̂2

ν/n+ σ̂2
ξ/(m+ n)}1/2, σ̂2

Y + z1−α/2{σ̂2
ν/n+ σ̂2

ξ/(m+ n)}1/2
)

(1.18)

will be asymptotically correct.

1.4.2 Variance estimation discussion

Based on Theorem 1.4, when the data follows Gaussian distribution, it is not difficult

to see that when τ ≤ 1, i.e., m ≥ n

var(ε2 + 2β∗TṼ ε) + τvar(β∗TṼ )2 ≤ var(Y − θ)2 = var(n1/2S2
Y ) + o(1).

Namely, the constructed confidence interval for σ2
Y as presented in (1.18) is asymptotically

more accurate in the sense of having smaller width asymptotically, than the interval that is
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solely based on {Yi}ni=1(
S2
Y

/{
1− zα/2(γ̂ − 1)1/2/n1/2

}
, S2

Y

/{
1 + zα/2(γ̂ − 1)1/2/n1/2

})
,

or its robust alternatives (see for example [HBH05]) where γ̂ is any consistent estimator for

the kurtosis. One of the choices for γ̂ can be

γ̂ =
n(n+ 1)

(n− 1)(n− 2)(n− 3)

∑
i

(Yi − Ȳ )4

S4
Y

− 3(n− 1)2

(n− 2)(n− 3)
+ 3.

This, in turn, implies that the proposed semi-supervised estimator, σ̂2
Y is asymptoti-

cally more accurate than the sample variance, S2
Y .

In general, the efficiency of the proposed semi-supervised estimator σ̂2
Y would depend

on the particular model of non-linearity, i.e., on the particular deviations from the linear

model. We illustrate the discussion with two specific examples. To that end, we introduce a

proportionality coefficient r as the proportion of the decrease achieved by the semi-supervised

estimator compared to S2
Y . We define such coefficient with

r =
var(Y − θ)2 − var(ε2 + 2β∗TṼ ε)

var(Y − θ)2
. (1.19)

Here, we have assumed that m� n and the effect of τ is negligible.

The first example discusses a heteroscedastic linear model where the variance of the

error depends quadratically on the covariates. The second discusses larger deviations from

normality, where the response model is highly non-linear. In particular, we consider

Yi =

p∑
j=1

Xij +

(
a

p∑
j=1

X2
ij +

p∑
j=1

Xij

)
ηi (Example 1)

Yi = a

∣∣∣∣log
(

0.8
∣∣ p∑
j=1

Xij

∣∣+0.01
)∣∣∣∣+ p∑

j=1

Xij + ηi (Example 2)
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Figure 1.1: Proportion of the decrease in asymptotic variance achieved by the proposed semi-
supervised estimator σ̂2

Y as a function of the coefficient a representing the heteroscedasticity
in (a) and (c) and non-linearity in (b) and (d) subfigures. Different colors correspond to
different dimensionality settings, in (a) and (c), we have p = 1 (solid), p = 10 (dashed) and
p = 20 (dotted); in (b) and (d), we have p = 1 (solid), p = 3 (dashed) and p = 5 (dotted).

where a measures the size of the deviation from the linear model. In the above Xi, ηi ∼

N(0, 1). When r > 0 we see that the proposed estimator is more efficient than S2
Y .

From Example 1, we observe that efficiency persists over a broad range of het-

eroscedastic model specifications. We also observe that the larger the magnitude of a is

– the more significant the effect of heteroscedasticity is – the smaller the signal is in the lin-
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ear model. This, in turn, results in smaller r values. Example 2 is showing a more complex

scenario; smaller magnitudes of a indicate not too great deviations from the linear model

and result in greater efficiency in σ̂2
Y . For larger a, the linear approximation is too far from

the data generating process. Results are presented in Figure 1.1, where we also showcase

the Signal to Noise ratio corresponding to each setting.

1.4.3 Inference of variance by a general machine learning model

In addition to the confidence interval of mean E(Y ), one may also be interested in

inference towards the variance σ2
Y = var(Y ), the explained variance b2

gen and the unexplained

variance σ2
ε,gen.

The general semi-supervised estimators towards σ2
ε,gen and b2

gen are proposed in (1.11)

and (1.12) when we construct asymptotic confidence intervals of the mean. As for the

variance of Y , recall that in our setting, σ2
Y = σ2

ε,gen + b2
gen. Hence, the variance can be

estimated by the sum of estimated explained variance and unexplained variance

σ̂2
Y,gen = σ̂2

ε,gen + b̂2
gen. (1.20)

The estimation of PVE can also be handled by the usage of a general machine learning

model. An extension of R2 can be defined as

R2
gen = K−1

K∑
k=1

b̂2(k)

gen /σ̂
2(k)

Y,gen.

Because of the limited length of the paper, here we only propose the asymptotic normality

results of the generalized estimators.

Theorem 1.6. Suppose that we have n independent and identically distributed samples

(Yi, Xi) ∼ P whose marginal distributions are (PY , PX). In addition, suppose that we observe

19



a supplementary set of m independent and identically distributed samples Xi that are drawn

from the same distribution PX . Moreover, suppose that E|Y |4+c < C, E|g∗(X)|4+c < C and

the estimation error satisfies µ4,X{ĝ(−k)(X)− g∗(X)} = oP (1), then

n1/2(σ̂2
Y,gen − σ2

Y )

{V (σ2
Y )}1/2

→ N(0, 1),

in distribution, where

V (σ2
Y ) = var

{
ε2 + 2ε(g∗(X)− θ) +

n

m+ n
(g∗(X)− θ)2

}
+

mn

(m+ n)2
var
{

(g∗(X)− θ)2
}
.

The asymptotic variance V (σ2
Y ) can be estimated by

V̂ (σ2
Y ) = n−1

K∑
k=1

∑
i∈Ik

(
νi −N−1

∑
i∈Ik

νi

)2

+
m

(m+ n)2

K∑
k=1

∑
i∈Ik

(
ξi −N−1

∑
i∈Ik

ξi

)2

,

with V̂ (σ2
Y )/V (σ2

Y ) = 1 + oP (1), where

νi =
(
Yi − θ̂

)2

− m

m+ n

{
ĝ(−k)(Xi)−M−1

∑
i∈Jk

ĝ(−k)(Xi)

}2

,

ξi =

{
ĝ(−k)(Xi)−M−1

∑
i∈Jk

ĝ(−k)(Xi)

}2

.

Moreover, if in addition that µ2,X{ĝ(−k)(X)−g∗(X)} = oP (n−1/2) and either a) g(x) is linear

on x, or b) µ2,X{ĝ(−k)(X)− g∗(X)}µ2,X{g∗(X)− g0(X)} = oP (n−1), then

n1/2(σ̂2
ε,gen − σ2

ε,gen)

{V (σ2
ε,gen)}1/2

→ N(0, 1),
n1/2(b̂2

gen − b2
gen)

{V (b2
gen)}1/2

→ N(0, 1), (1.21)

n1/2V −1/2(R2
gen)(R2

gen − PVE)→ N(0, 1),

in distribution, provided that V (σ2
ε,gen) > c, V (b2

gen) > c and V (R2
gen) > c, where V (σ2

ε,gen) =
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var(ε2) and

V (b2
gen) = var

[
2ε{g∗(X)− θ}+

n

m+ n
{g∗(X)− θ}2

]
+

mn

(m+ n)2
var
[
{g∗(X)− θ}2

]
,

V (R2
gen) = var[σ−4

Y b2
genε

2 + σ−4
Y σ2

ε,gen{2ε(g∗(X)− θ) + n(m+ n)−1(g∗(X)− θ)2}]

+ n(m+ n)−1σ−8
Y σ4

ε,genvar{(g∗(X)− θ)2}.

Based on Theorem 1.6, an asymptotic confidence intervals for σ2
Y , at significant level

α, is proposed as

CIgen(σ2
Y ) =

(
σ̂2
Y,gen − z1−α/2

{
V̂ (σ2

Y )/n
}1/2

, σ̂2
Y,gen + z1−α/2

{
V̂ (σ2

Y )/n
}1/2

)
. (1.22)

For a general non-linear model, as in Theorem 1.6, we can see that the asymptotic

normality results of estimating explained variance and unexplained variance (1.21) require

rates on ĝ − g∗ and g∗ − g0. Here we provide some insights on the two rates. As the

degree of freedom d grows, the estimation error err1 = µ2,X{ĝ(−k)(X) − g∗(X)} grows and

the misspecification error err2 = µ2,X{g∗(X)− g0(X)} decreases. To obtain (1.21), we need

err1 = oP (n−1/2) and err1err2 = oP (n−1), which is weaker than err3 = µ2,X{ĝ(−k)(X) −

g0(X)} = oP (n−1/2).

Here we take the ReLu network as an example and showcase the conditions when the

asymptotic normalities (1.21) hold. Following the settings as in [FLM21], let W and L being

the number of parameters and the number of layers, respectively. Assume the conditions in

Theorem 2 of [FLM21], g0(X) ∈ Wr,∞((−1, 1)p) = {g : maxα,|α|≤r ess supx∈(−1.1)d |Dαg(x)| ≤

1}. For W ∝ na with any a > 0 and L ∝ log n, omitting the logarithm terms, we have err1,

err2 are of the order n−a and n−2ar/p respectively. Hence, the asymptotic normalities (1.21)

hold when a ∈ (0, 1/2) and p < 2r. In other words, the degree of freedom d, or W in the

21



neural network example, is flexible, and we are able to obtain the asymptotic normalities for

a wide range of d.

1.5 Data missing-at-random

Now, we turn to missing-at-random setting, where whether we observe Yi depends

on Xi. Suppose that we have m + n independent and identically distributed samples

(Ti, Yi, Xi) ∼ P , whose marginal distributions are (PT , PY , PX). Here, Ti ∈ {0, 1} denotes

the labeling: Yi is observable if and only if Ti = 1. Assume the missing-at-random condi-

tion: Yi ⊥ Ti | Xi. Let Y o
i = TiYi. Let n =

∑m+n
i=1 Ti be the amount of labeled samples.

Here, n is a random variable. Estimating the mean of Y is equivalent to the estimation

of the average treatment effect of the treated. Let ĝ(−k)(x) and ŝ(−k)(x) be estimates of

g0(x) = E(Y | X = x) and s0(x) = E(T | X = x) computed on all but the observations in

k-th fold, respectively. Then,

θ̂MAR = (m+ n)−1

K∑
k=1

∑
i∈Jk

[
ĝ(−k)(Xi) +

Ti{Y o
i − ĝ(−k)(Xi)}
ŝ(−k)(Xi)

]
(1.23)

is an estimate of the mean θMAR = E(Y ) under the missing-at-random setting. Here, the

mean estimator (1.23) is a special case of the double/debiased machine learning estimator

of [CCD+18], where they require a positive overlap assumption P{s0(X) > c} = 1 for some

constant c > 0. In our semi-supervised setting, we do allow that τ = limm,n→∞ n/(m+n) = 0,

i.e. s0(X) = E(T ) → 0. Hence, it is natural to ask if we can relax the positive overlap to

a more general condition on s0(x), rather than forcing s0(x) being a constant as in semi-

supervised learning? In Theorem 1.7 bellow, we showcase that only P{s0(X) > c1E(T )} = 1

is needed, and that E(T )→ 0 is allowed.
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Theorem 1.7. Suppose that E|Y |2+c < c1, E(ε2 | X) < c1 and E(ε2) > c2 for some

c, c1, c2 > 0. Suppose the expected number of labeled samples grows to infinity, i.e. (m +

n)E(T ) → ∞. Besides, for a given covariate, the ratio of the probability of observing

the corresponding response to the overall labeling probability is bounded away from zero,

i.e. P{s0(X) > c1E(T )} = 1, for some c1 > 0. Suppose K < ∞ and the estimators

of the outcome and the propensity score model, ĝ and ŝ, have estimation errors satisfying

EX{ĝ(−k)(X)− g0(X)}2 = oP (1), EX{1− s0(X)/ŝ(−k)(X)}2 = oP (1), and

EX{ĝ(−k)(X)− g0(X)}2 · EX{1− s0(X)/ŝ(−k)(X)}2 = oP [(m+ n)−1{E(T )}−1]

as m+ n, p→∞. Then, the estimator θ̂MAR, (1.23), is asymptotically normally distributed

(m+ n)1/2
[
E{g0(X)}2 + E

{
Tε/s0(X)

}2
]−1/2

(θ̂MAR − θ)→ N(0, 1). (1.24)

Moreover, if EX [{ĝ(X)− g0(X)}2{1− s0(X)/ŝ(−k)(X)}2] = oP (1), then,

V̂MAR = (m+ n)−1

K∑
k=1

∑
i∈Jk

[
ĝ(−k)(Xi) +

Ti{Y o
i − ĝ(−k)(Xi)}
ŝ(−k)(Xi)

− θ̂MAR

]2

is consistent, in that as m+n, p→∞, V̂MAR(θ) = [E{g0(X)}2 +E {Tε/s0(X)}2
]{1+oP (1)}.

Hence, an asymptotic (1 − α)-level confidence interval for the mean θMAR could be

defined as:

(
θ̂MAR − z1−α/2V̂MAR(θ)(m+ n)−1/2, θ̂MAR + z1−α/2V̂MAR(θ)(m+ n)−1/2

)
.

Observe that under the assumptions of Theorem 1.7,

(m+ n)−1[E{g0(X)}2 + E{Tε/s0(X)}2] = O[{(m+ n)E(T )}−1],

which is of the same order as n−1, since n ∼ Binomial{m + n,E(T )}. That is, the mean

estimate θ̂MAR is n1/2-consistent. Hence, the accuracy depends on the number of labeled
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samples rather than the total number of samples. The consistency rate under the missing-at-

random setting coincides with [CC18], see Section 2 of their Supplementary Material. Unlike

assuming s0(X) to be known, we consider the consistency rates of EX{1−s0(X)/ŝ(−k)(X)}2.

Whenever, E(T )→ 0, the rate of 1− s0(X)/ŝ(−k)(X) depends on (m+n)E(T ), rather than

m + n alone. Hence the estimation error of ŝ cannot be simply ignored for a large m. An

illustrative example is that of the case of T is independent of X with the empirical mean

T̄ = (m + n)
∑m+n

i=1 Ti . One can easily check that, for Ti ∼ Bernoulli{E(T )}, we have

1− E(T )/T̄ = OP [{(m+ n)E(T )}−1/2].

1.6 Heterogeneous treatment effects

Suppose that in addition to previous settings, we have access to a treatment indicator

Di ∈ {0, 1}, i = 1, · · · ,m+n. Following the potential outcomes framework, [SNDS90,Rub74,

Hol88] we then hypothesize the presence of potential outcomes Yi(0) and Yi(1) corresponding

to, respectively, the response the i-th subject would have experienced with and without the

treatment. We then observe that the average treatment effect (ATE)

δ = E{E(Y | X,D = 1)− E(Y | X,D = 0)} = τ1 − τ0. (1.25)

Similarly as in Section 1.2, we hypothesize the existence of the l2 slopes β∗w =

minβ∈Rp E{(Y − X̃Tβ)2 | D = w}, defined at the population level for w ∈ {0, 1} . A

standard way of constructing the average treatment effects estimates is to posit a model on

the treatment assignment and then adjust for possible confounding. Treatments are assigned

to subjects according to an underlying scheme that depends on the subjects’ features. Their
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dependence can be captured by

Di = e(Xi) + ζi, (1.26)

where e(Xi) is an unknown propensity score function [?]. In the following, we assume two

primitive conditions: a widely regarded overlap condition regarding the treatment missing-

ness and an identifiability condition.

Assumption 1.5. Let P{c ≤ e(X) ≤ 1− c} = 1 and P{c ≤ ê(X) ≤ 1− c} = 1 with some

constant c ∈ (0, 1). For εi = Yi(Di)− {Diβ
∗
1 + (1−Di)β

∗
0}TX̃i, let E(ζ | X) = 0, as well as

P{E(ε2 | X) < C} = 1 with some constant C > 0.

Let β̂1, β̂0, ê denote estimators for β∗1 , β∗0 , e, respectively, satisfying EPX{(β̂
(−k)
w −

β∗w)TX̃}2 = OP (a2
n,p), EPX{ê(−k)(X)− e(X)}2 = OP (b2

m+n,p), and E[{E(Y | X)− β∗w
TX̃}2 |

D = w] = OP (c2
p). Here, an,p, bm+n,p and cp are non-negative sequences of numbers with cp

describing how close the linear model is to the true underlying curve. The semi-supervised

estimator (1.1) needs to be adjusted for the confounding effects. To that end, we introduce

τ̂ (k)
ω = µ̂(k)Tβ̂(−k)

ω +N−1
∑
i∈Ik

w
(−k)
i (ω)

(
Yi − X̃T

i β̂
(−k)
ω

)
, µ̂(k) = M−1

∑
i∈Jk

X̃i.

In the above, the weights, w
(−k)
i (ω), correspond to the ratio of the observed treatment pro-

portion; then, the framework from Section 1.2.1 will still lead to root-n consistent estimates.

We denote these weights as

w
(−k)
i (ω) = ωDi/ê

(−k)(Xi) + (1− ω)(1−Di)/{1− ê(−k)(Xi)}.

Then, the estimate of the average treatment effect can be defined as a difference of δ̂(k) =

τ̂
(k)
1 − τ̂ (k)

0 and δ̂ = K−1
∑K

k=1 δ̂
(k).
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An asymptotic (1−α)-level confidence interval for the ATE could then be defined as

(
δ̂ − z1−α/2V̂

1/2
δ n−1/2, δ̂ + z1−α/2V̂

1/2
δ n−1/2

)
. (1.27)

The estimator of Vδ = V1+τV2, (1.30), is defined as V̂δ = K−1
∑K

k=1{V̂
(k)

1 +n(m+ n)−1V̂
(k)

2 }.

Observe that V1 = var{r(Y −β∗1TX̃)− ρ(Y −β∗0TX̃)}. Then, a natural plug-in estimator can

be defined as V̂
(k)

1 = N−1
∑

i∈Ik ν
2
δ,i, where

νδ,i = r
(−k)
i (Yi − β̂(−k)T

1 X̃i)− ρ(−k)
i (Yi − β̂(−k)T

0 X̃i)− {δ̂ − (β̂
(−k)
1 − β̂(−k)

0 )Tµ̂(k)},

recall µ̂(k) is defined as (1.1). The second component, V2 = E{(β∗1 − β∗0)T(X̃ − µ̃)}2, is

estimated as V̂
(k)

2 = N−1
∑

i∈Ik ξ
2
δ,i for ξδ,i = (β̂

(−k)
1 − β̂(−k)

0 )T(X̃i − µ̂). The next theorem is

the main result of this section.

Theorem 1.8. Let Conditions 1.1 and 1.5 hold. Then, under the setting of this section

δ̂ − δ = OP (n−1/2 + an,pbm+n,p + bm+n,pcp),

whenever an,p = O(1). Therefore, whenever an,pbm+n,p = o(1) and bm+n,pcp = o(1), δ̂ is

consistent. If however, an,pbm+n,p = O(n−1/2) and bm+n,pcp = O(n−1/2), δ̂ is a n1/2-consistent

estimate of δ. Additionally, the asymptotic normality follows

n1/2(δ̂ − δ)→ N(0, Vδ) (1.28)

in distribution, whenever,

an,p = o(1), bm+n,p = o(1), an,pbm+n,p = o(n−1/2), bm+n,pcp = o(n−1/2), (1.29)

with an asymptotic variance

Vδ = var (εζ/[e(X){1− e(X)}]) + τ(β∗1 − β∗0)TC̃(β∗1 − β∗0), (1.30)

provided that Vδ > c for some c > 0, and τ = limm,n→∞ n/(m+n). Moreover, V̂δ = Vδ+oP (1).
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Suppose the sparsity of the outcome and the treatment model are sY and sD, respec-

tively. For illustration purposes suppose that both models are parametric and linear. Then,

cp = 0, the rates an,p and bm+n,p for a Lasso estimate, become an,p = OP [{sY log(p)/n}1/2],

bm+n,p = OP [{sD log(p)/(m+n)}1/2]. Therefore, sY = o{n/ log(p)}, sD = o{(m+n)/ log(p)}

and sY sD = o[(m+n)/{log(p)}2] are required to achieve asymptotic normality. Then, when

m is large enough, in that sDn log p/m → 0, we require sY = o{n/ log(p)}, which is ex-

tremely mild, i.e., consistency in estimation of the propensity model at any arbitrary rate.

If both D and Y were unavailable in the unlabeled data, the estimation error on the propen-

sity score would depend on n rather than m + n with the same sparsity assumptions as

in [CCD+17, SRR19] and others. At the same time, we achieve a more efficient estimator,

regardless of whether D is available in the unlabeled data or not, i.e., reducing the size of the

asymptotic variance. When the outcome model is misspecified, even if cp = O(1) that the

linear model does not reach the underlying curve as p grows, we can still obtain the asymp-

totic normality (1.28) provided m is large enough so that bm+n,p = o(n−1/2). Supervised

settings have more stringent conditions; see, e.g., [SRR19,Tan20b]. If one is only interested

in obtaining a root-n consistency, the outcome model can be completely misspecified, in-

cluding completely dense high-dimensional models. They can be estimated using machine

learning methods, such as random forests, Bayesian classification, regression tree, and deep

neural networks; one just needs to replace the linear projection X̃T
i β̂

(−k) by any ĝ(−k)(w,Xi),

δ̂gen =(m+ n)−1

K∑
k=1

∑
i∈Jk

{
ĝ(−k)(1, Xi)− ĝ(−k)(0, Xi)

}
+ n−1

K∑
k=1

∑
i∈Ik

[
Di{Yi − ĝ(−k)(1, Xi)}

ê(−k)(Xi)
− (1−Di){Yi − ĝ(−k)(0, Xi)}

1− ê(−k)(Xi)

]
, (1.31)

where ĝ(−k)(w,Xi) is an estimate of E(Y | X,D = w) trained on (Di, Yi, Xi)i∈{1,2,...,n}\Ik , for
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w ∈ {0, 1}. Moreover, an asymptotic confidence interval can be extended from (1.27), by

replacing the linear outcome model with a general non-linear model.

1.7 Finite-sample experiments

1.7.1 Numerical experiments

In this section, we illustrate the finite-sample properties of θ̂. We consider semi-

supervised estimators based on ordinary least squares (SSL-OLS), 10-fold cross-validated

lasso (SSL-Lasso), additive model (SSL-Additive), XGBoost (SSL-XGBoost), multilayer

perceptron (SSL-MLP), and random forest (SSL-RF) for which vanilla, pre-set tuning pa-

rameters are used. We compare with the sample mean Ȳ = n−1
∑n

i=1 Yi and with the

semi-supervised least squares estimator (SSLS) proposed in [ZBC19], whenever p < n. We

consider confidence intervals (1.13), where the significance level is α = 0.05 throughout.

Each set of results is based on 200 repetitions with K = 5. The black solid line in all the

plots denotes the optimal ratio {σ2
Y −mb2

gen(g0)/(m + n)}/σ2
Y . We will see that, as long as

the sample size n is large enough, our proposed semi-supervised estimators θ̂ is better than

the sample mean Ȳ in the sense of mean squared error.

Model 5.1. Let Xi ∼iid Np−1(0, Ip−1), with p = 500, m = 10n, Yi = s−1/2
∑s

j=1Xij +

δi, s ∈ {30, 50, 70, 90}, δi ∼iid N(0, 0.25). Results are presented in Figure 3.1, where we

observe that our SSL-Lasso estimator is more efficient than the sample mean, Figure 1.2a,

regardless of the level of sparsity. Figure 1.2b illustrates robustness in terms of the average

coverage probability of the SSL-Lasso estimate.
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Figure 1.2: Model 5.1: Comparison of SSL-Lasso and the sample mean. The mean squared
error of the sample mean is denoted as MSE0. The plot includes sample mean (red squares)
and SSL-Lasso (blue circles) estimates. The sparsity level of the linear coefficients, s, is
denoted with long dashed, dashed, dotted and solid lines for s = 90, s = 70, s = 50 and
s = 30, respectively.

Model 5.2. Let Xi and δi be as in Model 5.1. and consider a non-linear model

Yi = 3 cos(Xi1 + Xi2 + Xi3) + δi, with p = 51, m = 10n. We compare our SSL estimator

with a variety of baseline procedures and the semi-supervised least squares estimator θ̂SSLS

of [ZBC19]. Figure 1.3a illustrates that SSLS is less efficient than the sample-mean estima-

tor, that our SSL-Lasso is equivalent to the sample-mean, and that all other SSL-methods

are more efficient with SSL-XGBoost outperforming the rest. Figure 1.3b demonstrates

extremely poor finite-sample coverage of SSLS and nominal coverage of our proposal.

Model 5.3. Let Xi ∼iid Np−1(0, C), be equi-correlated with Cij = {1−1/(2p)}1{i=j}+

1/(2p)1{i 6=j}, with p = 1001, m = 10n. We consider a non-linear additive outcome model

Yi =
∑p−1

j=1 0.7j−1 sin(Xij) + δi, where δi ∼iid N(0, 0.25). Figure 1.4a demonstrates significant

gain in reduction of MSE of the proposed method with the SSL-Lasso in the lead. Figure

1.4b presents strong finite sample coverage.
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Figure 1.3: Model 5.2: Comparison of SSL-method estimators and the SSLS [ZBC19]. The
plot includes sample mean (red squares), SSL-Lasso (blue circles), SSL-Additive (green up
triangles), SSL-XGBoost (purple pluses), SSL-RF (brown diamonds), and SSLS (pink down
triangles) estimates.

0.4

0.6

0.8

1.0

100 200 300 400 500
n

M
S

E
/M

S
E

0

(a) The ratio of mean squared errors.

0.93

0.94

0.95

0.96

0.97

100 200 300 400 500
n

A
C

(b) The average coverage.

Figure 1.4: Model 5.3: Comparison of SSL-method and the sample mean. The plot includes
sample mean (red squares), SSL-Lasso (blue circles), SSL-Additive (green up triangles),
SSL-XGBoost (purple pluses), and SSL-RF (brown diamonds) estimates.
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Figure 1.5: Model 5.4: Impact of the size of additional data. The plot includes sample mean
(red squares), SSL-Lasso (blue circles), SSL-Additive (green up triangles), SSL-XGBoost
(purple pluses), SSL-RF (brown diamonds), and SSLS (pink down triangles) estimates.

Model 5.4. Here we observe behavior with varying m. Let Xi and δi be as in Model

5.1. and consider the non-linear outcome of Model 5.3.. Set p = 201, n = 500 and let m

vary from 0.1n to 10n. We compare with Ȳ and SSLS of [ZBC19]. We see substantial gains

in efficiency. SSL-RF dominates the other estimators, both in terms of MSE, Figure 1.5a,

and coverage Figure 1.5b. SSLS is losing coverage with a larger m. When m is small, the

ordinary least squares estimate’s impact is not significant, and SSLS is similar to the sample

mean Ȳ . As m grows, the instability of least-squares and the unfitness of SSLS is exposed.

Model 5.5. Is sample-splitting needed? Let Xi ∼iid Lognormalp−1(0, C), with C as

in Model 5.3. with p = 101 and m = 10n. Let Yi =
∑3

j=1{log(Xij + 1)2 + 0.1} + δi, where

δi ∼iid N(0, 0.25). We varied K from 1 to 5 and then to 20. We observe that some methods,

like SSL-MLP, benefit significantly from sample splitting: without it, they under-cover,

Figure 1.6b, and have the largest MSE, Figure 1.6a.

Model 5.6. In finite samples, the randomness from the K-partition creates an ad-

ditional variance. We repeat the random K-partition for S times, and for each time, we
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Figure 1.6: Model 5.5: Is sample-splitting needed? The plot includes sample mean (red
squares), SSL-Lasso (blue circles), SSL-XGBoost (purple pluses), SSL-MLP (orange crosses),
and SSL-RF (brown diamonds) estimates. The number of folds, K, is denoted with solid,
dashed, and long dashed lines for K = 1(without cross-fitting), K = 5, and K = 20,
respectively.

obtain an estimate θ̂s and the corresponding estimated asymptotic variance V̂ (θ̂s). Here we

compare θ̂1 with the average θ̃ = S−1
∑S

s=1 θ̂
s. An asymptotic confidence interval based on θ̃

can be constructed using an estimated variance Ṽ (θ̃) = S−1
∑

s=1S{V̂ (θ̂s) + (θ̂s − θ̃)2}. The

outcome model is non-linear with one interaction term Yi = Xi1Xi2 +0.5(Xi3 +0.5)2 +δi and

Xi and δi are as in Model 5.1. with p = 4, m = 10n. Figures 1.7a and 1.7b illustrate that

partitions do not matter much for the least-squares procedure: SSL-Lasso, SSL-Additive,

and SSL-RF do not vary much. However, highly non-linear methods, such as SSL-MLP and

SSL-XGBoost, benefit significantly from repeating the partitioning process.

Model 5.7. (ATE) Let Xij ∼iid Uniform(−1, 1), p = 11, Di ∼ Bernoulli[1/{1 +

exp(51/2
∑5

j=1Xij/2)}]. Linear Setting: the outcome model is Yi = Di(1 + βT
1Xi) + (1 −

Di)β
T
0Xi + δi, where δi ∼iid N(0, 0.22) and β0 = −(0.51/2, 0.5, 0.53/2, 0.52, 0.52, 0, 0, 0, 0, 0),

β1 = −β0. Non-linear Setting: the outcome model is Yi = Di{Xi1Xi2 + 0.5(Xi3 + 0.5)2} +

(1−Di){Xi1Xi2−0.5(Xi3 +0.5)2}+δi. For the Linear Setting our proposed estimator and the
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Figure 1.7: Model 5.6: Does partitioning matter? The plot includes sample mean (red
squares), SSL-OLS (blue circles), SSL-Additive (green up triangles), SSL-XGBoost (purple
pluses), SSL-MLP (orange crosses), SSL-RF (brown diamonds), and SSL-SSLS (pink down
triangles) estimates. The number of cross-fitting repetitions, S, is denoted with solid and
dashed lines for S = 1 and S = 5, respectively.

estimator of [CCD+17], estimate the propensity and the outcome model by cross-validated

generalized and linear ridge regression. For the Non-Linear Setting, the outcome models are

estimated by ridge regression, additive model, and multilayer perceptron. Parameters α and

β of [CAC18] are estimated by cross-validated adaptive lasso, where the initial weights are

estimated by linear regression or generalized linear regression; the parameter γ is estimated

by cross-validated lasso; the kernel is chosen to be 6-th order Gaussian, and the bandwidth

is estimated by the plug-in method. Table 1.1 contains all the results. We found that the

biases of our SSL and the supervised estimator of [CCD+17] are not sensitive to the choice

of the tuning parameters, while the bias of [CAC18] is. Under the linear outcome models,

the two SSL estimators have smaller mean squared errors than the supervised estimator;

under non-linear outcome models, our semi-supervised mlp+ridge estimator outperforms

the others.
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Table 1.1: Experiments for the ATE including Bias: average of the estimation biases, Emp
SE: empirical standard error, ASE: average of estimated standard errors, RMSE: root-mean-
square error, and AC: average coverage of the 95% confidence intervals

Estimator Bias Emp SE ASE RMSE AC

n = 100,m = 200 Linear Outcome

Zhang & Bradic (ridge+ridge) 0.0010 0.0881 0.0812 0.0879 0.935

[CCD+17] (ridge+ridge) 0.0097 0.1295 0.1238 0.1295 0.930

[CAC18] -0.0147 0.0885 0.0801 0.0895 0.925

n = 500,m = 1000 Linear Outcome

Zhang & Bradic (ridge+ridge) -0.0025 0.0333 0.0351 0.0333 0.945

[CCD+17] (ridge+ridge) -0.0052 0.0588 0.0546 0.0588 0.965

[CAC18] -0.0093 0.0329 0.0352 0.0341 0.940

n = 200,m = 400 Non-Linear Outcome

Zhang & Bradic (ridge+ridge) 0.0031 0.0660 0.0672 0.0659 0.965

[CCD+17] (ridge+ridge) 0.0051 0.0714 0.0737 0.0714 0.955

Zhang & Bradic (additive+ridge) 0.0027 0.0622 0.0638 0.0621 0.960

[CCD+17] (additive+ridge) 0.0054 0.0705 0.0731 0.0706 0.960

Zhang & Bradic (mlp+ridge) -0.0027 0.0518 0.0497 0.0518 0.935

[CCD+17] (mlp+ridge) 0.0015 0.0570 0.0596 0.0569 0.960

[CAC18] -0.0209 0.0637 0.0655 0.0669 0.970

n = 500,m = 1000 Non-Linear Outcome

Zhang & Bradic (ridge+ridge) -0.0005 0.0384 0.0413 0.0383 0.970

[CCD+17] (ridge+ridge) -0.0014 0.0433 0.0457 0.0432 0.955

Zhang & Bradic (additive+ridge) -0.0001 0.0385 0.0395 0.0383 0.975

[CCD+17] (additive+ridge) -0.0006 0.0436 0.0455 0.0435 0.960

Zhang & Bradic (mlp+ridge) -0.0025 0.0256 0.0275 0.0255 0.975

[CCD+17] (mlp+ridge) -0.0017 0.0361 0.0354 0.0361 0.940

[CAC18] -0.0143 0.0377 0.0408 0.0402 0.945
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1.7.2 Real data

We consider the dataset of [BSB+06], available at the Stanford University HIV Drug

Resistance Database [RGK+03] https://hivdb.stanford.edu. It is known that mutations

are common in HIV, and some of the mutations may affect HIV drug resistance. We provide

estimation and inference for the average treatment effect of a specific mutation on the reverse

transcriptase (RT) to the drug resistance. The outcome is lamivudine (3TC), a nucleoside

reverse transcriptase inhibitor (NRTI), drug resistance. The treatment, D, denotes the

existence of a mutation on the T -th position of the HIV’s RT. Explanatory variables Xj,

where j ∈ {1, 2, . . . , 240} \ {T}, denotes existence of a mutation on the j-th position. We

consider the subtype B sequence. Redundant viruses obtained from the same individuals were

excluded. We obtained n = 423 pairs of supervised data (Di,T , Yi, {Xi,j}j 6=T )ni=1 and m =

2458 pairs of additional unlabeled covariates (Di,T , {Xi,j}j 6=T )m+n
i=n+1. Fix T ∈ {1, 2, . . . , 240}.

Before we perform our semi-supervised methods, we first check whether there is a significant

difference between the distribution of X in the two groups; see the back-to-back bar chart of

the labeled and unlabeled group’s mutation proportions on different RT positions in Figure

1.8a. The p-value based on Pearson Statistic was obtained using a permutation distribution

[AK05] and resulted in a value of 0.178. We do not have any significant evidence that the

covariates’ distributions differ between the supervised and unlabeled groups. Estimators

of the propensity score and the outcome model are: (logistic) lasso + lasso, XGBoost +

XGBoost, and random forest + random forest. In order to improve the stability of the

estimator, we trim each ê(−k)(Xi) to (0.01, 0.99). We compare with the sample estimator

(
∑n

i=1Di)
−1
∑n

i=1DiYi − {
∑n

i=1(1−Di)}−1
∑n

i=1(1−Di)Yi, suitable only for homogeneous

35



0.75

0.5

0.25

0

0.25

0.5

0.75

  1  60 120 180 240
T

m
ut

at
io

n 
pr

op
or

tio
ns

(a)

0.0

0.5

1.0

1.5

2.0

2.5

39 41 69 74 75 98 123 151 162 184 203

T

Supervised

Semi−supervised

sample

Lasso

XGBoost

RF

(b)

Figure 1.8: Real data. Left: A back-to-back bar chart comparing the labeled and unlabeled
group’s mutation proportions on RT positions between 1-240. The blue color on the top
denotes the unlabeled group, and the red color on the bottom denotes the labeled group.
Right: Confidence intervals of the average treatment effect. We compare the sample mean of
the labeled samples (red border and red fill), supervised [CCD+17] estimators (red border),
and our SSL-method estimators (blue border). Estimators of the propensity score and the
outcome model are: logistic + Lasso (green fill), XGBoost + XGBoost (aqua fill), RF + RF
(purple fill).

effects. Figure 1.8b shows the confidence intervals for δ on several positions based on different

estimators. We can see that there is a large average treatment effect on position 184, a small

average treatment effect on positions 39, 69, and potentially a small average treatment effect

on positions 41, 75, and 203. The sample estimator is most different from the rest on positions

41, 98, 151, and 203. The sample estimator is biased when the distribution of X on treated

and control is different. It implies that the mutations on positions 41, 98, 151, and 203 are

significantly dependent on the other positions’ mutations. Moreover, our confidence intervals

are shorter than those of [CCD+17]. It coincides with the fact that additional unlabeled data

provide improved asymptotic efficiency.
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1.8 Proofs of main results

Notation A constant c > 0, independent of n, p,m may change value from one line to

the other. For any vector a ∈ Rp and r > 0, ‖a‖r = (
∑p

j=1 a
r
j)

1/r, ‖a‖0 = #{j ≤ p :

aj 6= 0}. For any matrix A ∈ Rp×p, we denote ‖A‖2 = supz 6=0 ‖Az‖2/‖z‖2. We define

µr(f) = E{f − E(f)}r being the r-th central moment, and µr,X(f) = EX{f − EX(f)}r.

Recall that EX(f) =
∫
fdPX is the conditional expectation on the marginal distribution

PX . With a slight abuse of notation, for any function g,

EIck(g) = E{g | (Yi, Xi)i∈{1,2,...,n}\Ik}

and (Y,X) ∼ PY,X independent of (Yi, Xi)i∈{1,2,...,n}\Ik in the proof of Theorems 1.1, 1.2, 1.3,

1.4, 1.5, 1.6;

EIck(g) = E{g | (Di, Yi, Xi)i∈{1,2,...,n}\Ik}

and (D, Y,X) ∼ PD,Y,X independent of (Di, Yi, Xi)i∈{1,2,...,n}\Ik in the proof of Theorem 1.8.

EJck(g) = E{g | (Ti, Yi, Xi)i∈{1,2,...,m+n}\Jk}

and (T, Y,X) ∼ PT,Y,X independent of (Ti, Yi, Xi)i∈{1,2,...,m+n}\Jk in the proof of Theorem 1.7.

1.8.1 Auxiliary Lemmas

We begin by presenting three simple results that will be useful throughout the docu-

ment.

Lemma 1.1 (Lemma B.1 in [CCD+17]). Let {Xn} and {Yn} be sequences of random vari-

ables. If for any c > 0, P (|Xn| > c|Yn) = oP (1). Then, Xn = oP (1). In particular, this
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occurs if E(|Xn|q | Yn) = oP (1) for any q ≥ 1. Typical examples we used in our proofs are

a) E(X2
n | Yn) = oP (1), b) Xn =

∑n
i=1 Zn,i/n, where (Zn,i) is a row-wise independent and

identically distributed triangular array, conditional on Yn, with E(|Zn,1| | Yn) = oP (1).

Lemma 1.2. Let {Xn} and {Yn} be sequences of random variables. If E(X2
n | Yn) =

OP (1), then Xn = OP (1). Consequently, if (Zn,i) is a row-wise independent and identically

distributed triangular array conditional on Yn, with var(Zn,1 | Yn) = OP (1), or a stronger

condition that E(Z2
n,1 | Yn) = OP (1). Then,

∑n
i=1 Zn,i/n = E(Zn,1) +OP (n−1/2).

Proof of Lemma 1.2. For any c > 0, since E(X2
n | Yn) = OP (1), there exists C > 0 such

that, for all n ≥ 1,

P{E(X2
n | Yn) > C} < c1/2.

Hence,

P{|Xn| > (2C/c)1/2} = E[1{|Xn|>(2C/c)1/2}]

= E
[
1{E(X2

n|Yn)≤C}E(1{|Xn|>(2C/c)1/2} | Yn)
]

+ E
(
1{E(X2

n|Yn)>C}E[1{|Xn|>(2C/c)1/2} | Yn]
)

< E
[
1{E(X2

n|Yn)≤C}E{cX2
n/(2C) | Yn}

]
+ E[1{E(X2

n|Yn)>C}]

= cE
[
1{E(X2

n|Yn)≤C}E(X2
n | Yn)

]
/(2C) + P{E(X2

n | Yn) > C}

≤ c/2 + c/2 = c.

That is, Xn = OP (1). It follows that
∑n

i=1 Zn,i/n = E(Zn,1) +OP (n−1/2) since

E

n{n−1

n∑
i=1

Zn,i − E(Zn,1)

}2

| Yn

 = var(Zn,1 | Yn) = OP (1).
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Lemma 1.3. Let (Zn,i) be a row-wise independent and identically distributed triangular array

with E(Zn,1) = 0 and E|Zn,1|q < c1 for q > 1 and C < ∞. Let Xn =
∑n

i=1 Zn,i/n. Then,

Xn = oP (1).

Proof of Lemma 1.3. Let Yn,i = Zn,i1{|Zn,i|<n}. For any c > 0,

P (|Xn| ≥ c) ≤ P{∪ni=1(Zn,i 6= Yn,i)}+ P

(∣∣∣∣∣
n∑
i=1

Yn,i

∣∣∣∣∣ ≥ nc

)

Let r ∈ (1, q ∧ 2), then E|Zn,1|r ≤ (E|Zn,1|q)r/q < c
r/q
1 . By Markov’s Inequality,

P{∪ni=1(Zn,i 6= Yn,i)} ≤ nP (|Zn,1| ≥ n) ≤ nE|Zn,1|q/nq = n1−qE|Zn,1|q = o(1)

and

P

(∣∣∣∣∣
n∑
i=1

Yn,i

∣∣∣∣∣ ≥ nc

)
≤ E

∣∣∣∣∣
n∑
i=1

Yn,i

∣∣∣∣∣
2

/(nc)2 = nE
[
Z2
n,11{|Zn,i|<n}/(nc)

2
]

= E
[
|Zn,1|r|Zn,1|2−r1{|Zn,i|<n}/(nc2)

]
≤ n1−rE|Zn,1|r/c2 = o(1).

Hence, P (|Xn| ≥ c) = oP (1). That is, Xn = oP (1).

1.8.2 Proofs of the main theorems

Proof of Theorem 1.1. This proof provides n1/2 consistencies of θ̂ and σ̂2
Y .

Part 1. We first assume Condition 1.1 and 1.3 and show that θ̂− θ = OP (n−1/2). By

the definition of β∗, as in Lemma 1 of [ZBC19],

E(ε) = 0, E(X̃ε) = 0, θ = β∗Tµ̃, σ2
Y = b2 + σ2

ε .

By the definition of θ̂(k) as in (1.1),

θ̂(k) − θ = N−1
∑
i∈Ik

(Yi − θ)−N−1
∑
i∈Ik

β̂(−k)TṼi +M−1
∑
i∈Jk

β̂(−k)TṼi. (1.32)
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Now we will show that each of the terms on the RHS is of the order OP (n−1/2). From

Conditions 1.1, 1.3 and recall that Ṽ = X̃ − µ̃ is independent of (Yi, Xi)i∈{1,2,...,n}\Ik , while

β̂(−k) is a function of (Yi, Xi)i∈{1,2,...,n}\Ik ,

E(Y − θ)2 ≤ (E|Y − θ|2+c)2/(2+c) < c1,

E(β∗TṼ )2 = E(Y − θ)2 − σ2
ε ≤ E(Y − θ)2 < c1,

EIck

{
(β̂(−k) − β∗)TṼ

}2

= (β̂(−k) − β∗)TC̃(β̂(−k) − β∗) ≤ ‖β̂(−k) − β∗‖2
2‖C̃‖2 = OP (1),

and by triangle inequality, EIck( β̂
(−k)TṼ )2 = OP (1). Then, by Lemma 1.2,

N−1
∑
i∈Ik

(Yi − θ) = OP (N−1/2), (1.33)

N−1
∑
i∈Ik

β̂(−k)TṼi = OP (N−1/2), (1.34)

M−1
∑
i∈Jk

β̂(−k)TṼi = OP (M−1/2). (1.35)

Therefore, θ̂(k) − θ = OP (N−1/2) + OP (N−1/2) + OP (M−1/2) = OP (N−1/2), since M ≥ N .

When K <∞,

θ̂ = K−1

K∑
k=1

θ̂(k) = θ +OP (n−1/2). (1.36)

Part 2. Now we assume Condition 1.2 and 1.3 and show that σ̂2
Y − σ2

Y = OP (n−1/2).

Recall the definition of σ̂2(k)

Y in Section 1.2.2,

σ̂2(k)

Y = N−1
∑
i∈Ik

(Yi − θ̂)2 +M−1
∑
i∈Jk

(
β̂(−k)TV̂i

)2

−N−1
∑
i∈Ik

(
β̂(−k)TV̂i

)2

,
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We first approximate the terms on the RHS by replacing θ̂ and V̂i by θ and Ṽi, respectively.

Recall (1.33) and (1.36),

N−1
∑
i∈Ik

(Yi − θ̂)2 = N−1
∑
i∈Ik

(Yi − θ)2 + (θ̂ − θ)2 − 2(θ̂ − θ)N−1
∑
i∈Ik

(Yi − θ)

= N−1
∑
i∈Ik

(Yi − θ)2 +OP (N−1)

Besides, by definition, V̂i = Ṽi − (µ̂(k) − µ̃), where µ̂(k) − µ̃ = M−1
∑

i∈Jk β̂(−k)TṼi. Recall

(1.34) and (1.35),

M−1
∑
i∈Jk

(
β̂(−k)TV̂i

)2

= M−1
∑
i∈Jk

( β̂(−k)TṼi)
2 − { β̂(−k)T(µ̂(k) − µ̃)}2

= M−1
∑
i∈Jk

( β̂(−k)TṼi)
2 +OP (M−1), (1.37)

and

N−1
∑
i∈Ik

( β̂(−k)TV̂i)
2 = N−1

∑
i∈Ik

( β̂(−k)TṼi)
2 + { β̂(−k)T(µ̂(k) − µ̃)}2

− 2 β̂(−k)T(µ̂(k) − µ̃)N−1
∑
i∈Ik

β̂(−k)TṼi

= N−1
∑
i∈Ik

( β̂(−k)TṼi)
2 +OP (M−1 +N−1/2M−1/2). (1.38)

Hence,

σ̂2(k)

Y = N−1
∑
i∈Ik

(Yi − θ)2 −N−1
∑
i∈Ik

( β̂(−k)TṼi)
2 +M−1

∑
i∈Jk

( β̂(−k)TṼi)
2 +OP (N−1). (1.39)

Now we will show that each of the terms on the RHS of (1.39) is of the order OP (N−1/2).

By Lemma 1.2, it suffices to show

E(Y − θ)4 = O(1), (1.40)

EIck( β̂
(−k)TṼ )4 = OP (1). (1.41)
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Here, (1.40) follows by the assumption that E|Y |4+c < c1. Besides, recall that Ṽ = X̃ − µ̃ =

(0, V T)T, where V = C1/2Z. By Condition 1.2, we have bounded 4-th moments

E(β∗TṼ )4 = E( β∗−1
TC1/2Z)4 = b4E( β∗−1

TC1/2Z/b)4 ≤ b4 sup
‖a‖2=1

E(aTZ)4 = O(1),

EIck

{
(β̂(−k) − β∗)TṼ

}4

≤ ‖β̂(−k) − β∗‖4
C̃

sup
‖a‖2=1

E(aTZ)4 = OP (1),

and hence (1.41) follows. Now, we obtain

σ̂2(k)

Y − σ2
Y = OP (N−1/2) (1.42)

and the proof is finalized by noticing that for finite K, the rate above is inherited for the

averaged estimator

σ̂2
Y = σ2

Y +OP (n−1/2). (1.43)

Proof of Theorem 1.2. This proof provides an asymptotic normal result for n1/2(θ̂ − θ) by

relying on Conditions 1.1 and 1.4. Recall from (1.32),

θ̂(k) − θ = N−1
∑
i∈Ik

(Yi − θ)−N−1
∑
i∈Ik

β̂(−k)TṼi +M−1
∑
i∈Jk

β̂(−k)TṼi

= N−1
∑
i∈Ik

εi +M−1
∑
i∈Jk

β∗TṼi −N−1
∑
i∈Ik

(β̂(−k) − β∗)TṼi +M−1
∑
i∈Jk

(β̂(−k) − β∗)TṼi

Since

EIck

{
(β̂(−k) − β∗)TṼ

}2

= ‖β̂(−k) − β∗‖2
C̃
≤ ‖β̂(−k) − β∗‖2

2‖C̃‖2 = oP (1),

and by Lemma 1.1,

N−1
∑
i∈Ik

(β̂(−k) − β∗)TṼi = oP (N−1/2), M−1
∑
i∈Jk

(β̂(−k) − β∗)TṼi = oP (M−1/2).
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Therefore,

θ̂(k) − θ = N−1
∑
i∈Ik

εi +M−1
∑
i∈Jk

β∗TṼi + oP (N−1/2).

When K <∞,

n1/2(θ̂ − θ) = n−1/2

n∑
i=1

εi + n1/2M−1
∑
i∈Jk

β∗TṼi + oP (1).

By Condition 1.1, E|ε|2+c < c1, E| β∗TṼ |2+c < c1. With a slight abuse of notation, assume

that σ2
ε = limn→∞E(ε2), τb2 = limn→∞ nE( β∗TṼ )2/(m+n) both exists. We continue the

analysis by analyzing three separate cases.

a) When σ2
ε > 0 and τb2 > 0,

E|ε|2+c

{E(ε2)}1+c/2
< c1,

E|(n/(m+ n))1/2 β∗TṼ |2+c

{nE( β∗TṼ )2/(m+ n)}1+c/2
< c1,

i.e. the Lyapunov condition holds. By Lindeberg-Feller Central Limit Theorem,

n−1/2

n∑
i=1

εi → N
(
0, σ2

ε

)
, n1/2M−1

∑
i∈Jk

β∗TṼi → N
(
0, τb2

)
.

in distribution. By Slutsky’s Theorem and multivariate delta method,

n1/2(θ̂ − θ) = n−1/2

n∑
i=1

εi + n1/2M−1
∑
i∈Jk

β∗TṼi + oP (1)→ N
(
0, σ2

ε + τb2
)
. (1.44)

b) When σ2
ε = 0, recall the assumption that σ2

ε + τb2 > 0, we have τb2 > 0. In this case, by

Lemma 1.1 and Lindeberg-Feller Central Limit Theorem,

n−1/2

n∑
i=1

εi = oP (1), n1/2M−1
∑
i∈Jk

β∗TṼi → N
(
0, τb2

)
.

By Slutsky’s Theorem, (1.44) holds.

c) When τb2 = 0, similarly as in b), (1.44) holds.
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Proof of Theorem 1.3. This proof provides consistency results for σ̂2
ε and b̂2 by assuming

Conditions 1.1 and 1.4.

Part 1. We first show that σ̂2
ε = σ2

ε + oP (1). Recall the definition of σ̂2(k)

ε ,

σ̂2(k)

ε = N−1
∑
i∈Ik

(Yi − θ̂ − β̂(−k)TV̂i)
2.

Now we first approximate the RHS by replacing θ̂ and V̂i by θ and Ṽi, respectively. Recall

from (1.33) – (1.36),

σ̂2(k)

ε = N−1
∑
i∈Ik

(Yi − θ − β̂(−k)TṼi)
2 + {θ̂ − θ − β̂(−k)T(µ̂(k) − µ̃)}2

− 2{θ̂ − θ − β̂(−k)T(µ̂(k) − µ̃)}N−1
∑
i∈Ik

(Yi − θ − β̂(−k)TṼi)

= N−1
∑
i∈Ik

ε2
i +N−1

∑
i∈Ik

{(β̂(−k) − β∗)TṼi}2

− 2N−1
∑
i∈Ik

εi(β̂
(−k) − β∗)TṼi +OP (N−1). (1.45)

Remember the definition that EIck(g) = E{g | (Yi, Xi)i∈{1,2,...,m+n}\Ik}. By Condition 1.1,

E|ε|2+c < c1, EIck{(β̂
(−k) − β∗)TṼ }2 = oP (1) and hence EIck |ε(β̂

(−k) − β∗)TṼ | = oP (1). By

Lemma 1.1,

N−1
∑
i∈Ik

{(β̂(−k) − β∗)TṼi}2 = oP (1), N−1
∑
i∈Ik

εi(β̂
(−k) − β∗)TṼi = oP (1).

By Lemma 1.3,

N−1
∑
i∈Ik

ε2
i = σ2

ε + oP (1).

Hence, σ̂2(k)

ε = σ2
ε + oP (1). When K <∞, σ̂2

ε = σ2
ε + oP (1).

Part 2. Now we show that b̂2 = b2 + oP (1). By the definition of b̂2(k) ,

b̂2(k) = M−1
∑
i∈Jk

(β̂(−k)TV̂i)
2 + 2N−1

∑
i∈Ik

β̂(−k)TV̂i(Yi − θ̂)− 2N−1
∑
i∈Ik

(β̂(−k)TV̂i)
2.
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We first approximate the terms of RHS by replacing θ̂ and V̂i by θ and Ṽi, respectively.

Recall from (1.37) and (1.38),

β̂(−k)TĈ(k)β̂(−k) = M−1
∑
i∈Jk

( β̂(−k)TṼi)
2 +OP (M−1), (1.46)

N−1
∑
i∈Ik

(β̂(−k)TV̂i)
2 = N−1

∑
i∈Ik

( β̂(−k)TṼi)
2 +OP (N−1).

Recall from (1.33) – (1.36),

N−1
∑
i∈Ik

β̂(−k)TV̂i(Yi − θ̂)

= N−1
∑
i∈Ik

β̂(−k)TṼi(Yi − θ) + β̂(−k)T(µ̂(k) − µ̃)(θ̂ − θ)

− β̂(−k)T(µ̂(k) − µ̃)N−1
∑
i∈Ik

(Yi − θ)− (θ̂ − θ)N−1
∑
i∈Ik

β̂(−k)TṼi

= N−1
∑
i∈Ik

β̂(−k)TṼi(Yi − θ) +OP (N−1).

Hence,

b̂2(k) = M−1
∑
i∈Jk

( β̂(−k)TṼi)
2 + 2N−1

∑
i∈Ik

β̂(−k)TṼi(Yi − θ)

− 2N−1
∑
i∈Ik

( β̂(−k)TṼi)
2 +OP (N−1).

The first term on the RHS can be expressed as

M−1
∑
i∈Jk

( β̂(−k)TṼi)
2 = M−1

∑
i∈Jk

( β∗TṼi)
2 + 2M−1

∑
i∈Jk

(β̂(−k) − β∗)TṼi β∗TṼi

+M−1
∑
i∈Jk

{(β̂(−k) − β∗)TṼi}2.

By Condition 1.1 and 1.4, E| β∗TṼ |2+c < c1, EIck{(β̂
(−k)−β∗)TṼ }2 = oP (1), which implies

that EIck |(β̂
(−k) − β∗)TṼ β∗TṼ | = oP (1). By Lemma 1.3, M−1

∑
i∈Jk( β

∗TṼi)
2 = b2 + oP (1).
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By Lemma 1.1,

M−1
∑
i∈Jk

(β̂(−k) − β∗)TṼi β∗TṼi = oP (1), M−1
∑
i∈Jk

{(β̂(−k) − β∗)TṼi}2 = oP (1).

Hence,

M−1
∑
i∈Jk

( β̂(−k)TṼi)
2 = b2 + oP (1). (1.47)

Similarly, N−1
∑

i∈Ik( β̂
(−k)TṼi)

2 = b2 + oP (1). Recall from (1.33) – (1.36),

N−1
∑
i∈Ik

β̂(−k)TV̂i(Yi − θ̂)

= N−1
∑
i∈Ik

β̂(−k)TṼi(Yi − θ) + β̂(−k)T(µ̂(k) − µ̃)(θ̂ − θ)

− β̂(−k)T(µ̂(k) − µ̃)N−1
∑
i∈Ik

(Yi − θ)− (θ̂ − θ)N−1
∑
i∈Ik

β̂(−k)TṼi

= N−1
∑
i∈Ik

β∗TṼi(Yi − θ) +N−1
∑
i∈Ik

(β̂(−k) − β∗)TṼi(Yi − θ) +OP (N−1). (1.48)

By Condition 1.1 and 1.4, E| β∗TṼ (Y − θ)|2+c < c1 and EIck |(β̂
(−k)−β∗)TṼ (Y − θ)| = oP (1).

By Lemma 1.3, N−1
∑

i∈Ik β∗TṼi(Yi−θ) = b2+oP (1), and by Lemma 1.1, N−1
∑

i∈Ik(β̂
(−k)−

β∗)TṼi(Yi − θ) = oP (1). Hence, N−1
∑

i∈Ik β̂
(−k)TV̂i(Yi − θ̂) = b2 + oP (1). Combining all the

previous results,

b̂2(k) = M−1
∑
i∈Jk

( β̂(−k)TṼi)
2 + 2N−1

∑
i∈Ik

β̂(−k)TṼi(Yi − θ)

− 2N−1
∑
i∈Ik

( β̂(−k)TṼi)
2 +OP (N−1) (1.49)

= b2 + oP (1) + 2{b2 + oP (1)} − 2{b2 + oP (1)} = b2 + oP (1). (1.50)

When K <∞, b̂2 = b2 + oP (1).

Part 3. Now assume Conditions 1.2 and 1.4, we provide consistency rate results for
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σ̂2
ε and b̂2. We first consider σ̂2

ε , recall (1.45),

σ̂2(k)

ε = N−1
∑
i∈Ik

ε2
i +N−1

∑
i∈Ik

{(β̂(−k) − β∗)TṼi}2 − 2N−1
∑
i∈Ik

εi(β̂
(−k) − β∗)TṼi +OP (N−1).

By Conditions 1.2 and 1.4, E(ε4) < c1,

EIck{(β̂
(−k) − β∗)TṼ }4 ≤ ‖β̂(−k) − β∗‖4

C̃
sup
‖a‖2=1

E(aTZ)4 = O(‖β̂(−k) − β∗‖4
C̃

)

and hence EIck{ε(β̂
(−k) − β∗)TṼ }2 = O(‖β̂(−k) − β∗‖2

C̃
). By Lemma 1.2,

N−1
∑
i∈Ik

ε2
i = σ2

ε +OP (N−1/2),

N−1
∑
i∈Ik

{(β̂(−k) − β∗)TṼi}2 = ‖β̂(−k) − β∗‖2
C̃

+OP (‖β̂(−k) − β∗‖2
C̃
N−1/2),

N−1
∑
i∈Ik

εi(β̂
(−k) − β∗)TṼi = OP (‖β̂(−k) − β∗‖C̃N

−1/2).

Hence,

σ̂2(k)

ε = N−1
∑
i∈Ik

ε2
i +N−1

∑
i∈Ik

{(β̂(−k) − β∗)TṼi}2

− 2N−1
∑
i∈Ik

εi(β̂
(−k) − β∗)TṼi +OP (N−1)

= σ2
ε +OP (‖β̂(−k) − β∗‖2

C̃
+N−1/2).

When K <∞, σ̂2
ε = σ2

ε +OP (‖β̂(−k) − β∗‖2
C̃

+N−1/2) = σ2
ε +OP (‖β̂(−k) − β∗‖2

2 + n−1/2).

By the same strategy, now we show the consistency result for b̂2. Recall (1.49),

b̂2(k) = M−1
∑
i∈Jk

( β̂(−k)TṼi)
2 + 2N−1

∑
i∈Ik

β̂(−k)TṼi(Yi − θ)

− 2N−1
∑
i∈Ik

( β̂(−k)TṼi)
2 +OP (N−1),
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where

M−1
∑
i∈Jk

( β̂(−k)TṼi)
2 = M−1

∑
i∈Jk

( β∗TṼi)
2 + 2M−1

∑
i∈Jk

(β̂(−k) − β∗)TṼi β∗TṼi

+M−1
∑
i∈Jk

{(β̂(−k) − β∗)TṼi}2.

By Conditions 1.1 and 1.2, E( β∗TṼ )4 < c1, and recall that EIck{(β̂
(−k) − β∗)TṼ }4 =

O(‖β̂(−k) − β∗‖4
C̃

), hence

EIck{(β̂
(−k) − β∗)TṼ β∗TṼ }2 = O(‖β̂(−k) − β∗‖2

C̃
)

By Lemma 1.2,

M−1
∑
i∈Jk

( β∗TṼi)
2 = b2 +OP (M−1),

M−1
∑
i∈Jk

{(β̂(−k) − β∗)TṼi}2 = ‖β̂(−k) − β∗‖2
C̃

+OP (‖β̂(−k) − β∗‖2
C̃
M−1/2), (1.51)

M−1
∑
i∈Jk

(β̂(−k) − β∗)TṼi β∗TṼi = (β̂(−k) − β∗)TC̃β∗ +OP (‖β̂(−k) − β∗‖C̃M
−1/2). (1.52)

Hence, M−1
∑

i∈Jk( β̂
(−k)TṼi)

2 = b2+‖β̂(−k)−β∗‖2
C̃

+2(β̂(−k)−β∗)TC̃β∗+OP (M−1). Similarly,

N−1
∑

i∈Ik( β̂
(−k)TṼi)

2 = b2 + ‖β̂(−k)− β∗‖2
C̃

+ 2(β̂(−k)− β∗)TC̃β∗+OP (N−1). Besides, recall

(1.48). Then, simple algebra concludes

N−1
∑
i∈Ik

β̂(−k)TV̂i(Yi − θ̂)

= N−1
∑
i∈Ik

β∗TṼi(Yi − θ) +N−1
∑
i∈Ik

(β̂(−k) − β∗)TṼi(Yi − θ) +OP (N−1).

By Conditions 1.2 and 1.4,

E{ β∗TṼ (Y − θ)}2+c = O(1), EIck{(β̂
(−k) − β∗)TṼ (Y − θ)}2 = O(‖β̂(−k) − β∗‖2

C̃
).
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By Lemma 1.2,

N−1
∑
i∈Ik

β∗TṼi(Yi − θ) = b2 +OP (N−1/2),

N−1
∑
i∈Ik

(β̂(−k) − β∗)TṼi(Yi − θ) = (β̂(−k) − β∗)TC̃β∗ +OP (‖β̂(−k) − β∗‖C̃N
−1/2).

Hence, N−1
∑

i∈Ik β̂
(−k)TV̂i(Yi − θ̂) = b2 + (β̂(−k) − β∗)TC̃β∗ + OP (N−1/2). Combining all

previous results,

b̂2(k) = b2 + ‖β̂(−k) − β∗‖2
C̃

+ 2(β̂(−k) − β∗)TC̃β∗ + 2{b2 + (β̂(−k) − β∗)TC̃β∗}

− 2{b2 + ‖β̂(−k) − β∗‖2
C̃

+ 2(β̂(−k) − β∗)TC̃β∗}+OP (N−1/2)

= b2 +OP (‖β̂(−k) − β∗‖2
C̃

+N−1/2).

When K <∞, b̂2 = b2 +OP (‖β̂(−k) − β∗‖2
C̃

+N−1/2) = b2 +OP (‖β̂(−k) − β∗‖2
2 + n−1/2).

Proof of Theorem 1.4. This proof provides an asymptotic normal result for n1/2(σ̂2
Y − σ2

Y )

and a consistent estimate for the asymptotic variance.

Part 1. We first show n1/2(σ̂2
Y − σ2

Y ) → N
(

0, var(ε2 + 2 β∗TṼ ε) + τvar( β∗TṼ )2
)

.

Recall from (1.39),

σ̂2(k)

Y = N−1
∑
i∈Ik

(Yi − θ)2 −N−1
∑
i∈Ik

( β̂(−k)TṼi)
2 +M−1

∑
i∈Jk

( β̂(−k)TṼi)
2 +OP (N−1).

By (1.51) and (1.52),

M−1
∑
i∈Jk

( β̂(−k)TṼi)
2 = M−1

∑
i∈Jk

( β∗TṼi)
2 + ‖β̂(−k)− β∗‖C̃ + 2(β̂(−k)− β∗)TC̃β∗+ oP (M−1/2).

Similarly,

N−1
∑
i∈Ik

( β̂(−k)TṼi)
2 = N−1

∑
i∈Ik

( β∗TṼi)
2 + ‖β̂(−k) − β∗‖C̃ + 2(β̂(−k) − β∗)TC̃β∗ + oP (N−1/2).
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Hence,

σ̂2(k)

Y = M−1
∑
i∈Jk

( β∗TṼi)
2 +N−1

∑
i∈Ik

(Yi − θ)2 −N−1
∑
i∈Ik

( β∗TṼi)
2 + oP (N−1/2).

When K < ∞, by the independency between (Yi, Xi)
n
i=1 and {Xi}m+n

i=n+1, and similarly as

(1.44),

n1/2(σ̂2
Y − σ2

Y ) = n−1/2
∑
i∈Ik

(ε2
i + 2εi β

∗TṼi − σ2
ε) (1.53)

+ n1/2(m+ n)−1

m+n∑
i=1

{
( β∗TṼi)

2 − b2
}

+ oP (1) (1.54)

→ N
{

0, var(ε2 + 2 β∗TṼ ε) + τvar( β∗TṼ )2
}
,

in distribution, provided that var(ε2 + 2 β∗TṼ ε) + τvar( β∗TṼ )2 > 0.

Part 2. Now we prove the consistency of σ̂2
ν + nσ̂2

ξ/(m+ n). It suffices to show

σ̂2
ν = E(ε2 + 2β∗TṼ ε− σ2

ε)
2 + oP (1)

and σ̂2
ξ = E{ β∗T(Ṽ Ṽ T − C̃)β∗}2 + oP (1). Recall (1.14), ξ

(k)
i = β̂(−k)T

(
V̂iV̂

T
i − Ĉ(k)

)
β̂(−k).

Now define ξi = β∗T(ṼiṼ
T
i − C̃)β∗. Observe that by algebraic manipulation followed by a

Cauchy - Schwarz inequality∣∣∣∣∣N−1
∑
i∈Ik

ξ
(k)2

i −N−1
∑
i∈Ik

ξ2
i

∣∣∣∣∣ =

∣∣∣∣∣N−1
∑
i∈Ik

(ξ
(k)
i − ξi)2 + 2N−1

∑
i∈Ik

ξi(ξ
(k)
i − ξi)

∣∣∣∣∣
≤

∣∣∣∣∣N−1
∑
i∈Ik

(ξ
(k)
i − ξi)2

∣∣∣∣∣+2

{
N−1

∑
i∈Ik

ξ2
iN
−1
∑
i∈Ik

(ξ
(k)
i − ξi)2

}1/2

. (1.55)

By Condition 1.2, E| β∗T(Ṽ Ṽ T − C̃)β∗|2+c < c1. By Lemma 1.3,

N−1
∑
i∈Ik

ξ2
i = E{ β∗T(Ṽ Ṽ T − C̃)β∗}2 + oP (1).
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Now, we need to prove N−1
∑

i∈Ik(ξ
(k)
i − ξi)2 = oP (1). Observe that

ξ
(k)
i − ξi =

{
( β̂(−k)TV̂i)

2 − ( β∗TṼi)
2
}
−
[
β̂(−k)TĈ(k)β̂(−k) − b2

]
.

It suffices to show

N−1
∑
i∈Ik

{
( β̂(−k)TV̂ )2 − ( β∗TṼ )2

}2

= oP (1), β̂(−k)TĈ(k)β̂(−k) − b2 = oP (1).

By (1.46) and (1.47), we can see that β̂(−k)TĈ(k)β̂(−k) − b2 = oP (1).

New, we consider ai = β∗TṼi and ∆i = β̂(−k)TV̂i − β∗TṼi. Then

N−1
∑
i∈Ik

[
( β̂(−k)TV̂i)

2 − ( β∗TṼi)
2
]2

= N−1
∑
i∈Ik

∆2
i (2ai + ∆i)

2

= N−1
∑
i∈Ik

(∆4
i + 4ai∆

3
i + 4a2

i∆
2
i ).

By Condition 1.2 and 1.4, N−1
∑

i∈Ik a
4
i = E( β∗TṼ )4 + oP (1) with E( β∗TṼ )4 < c1 and by

the fact that {(a+ b+ c)/3}4 ≤ (a4 + b4 + c4)/3,

N−1
∑
i∈Ik

∆4
i (1.56)

= N−1
∑
i∈Ik

{
(β̂(−k) − β∗)TṼi − β∗T(µ̂(k) − µ̃)− (β̂(−k) − β∗)T(µ̂(k) − µ̃)

}4

≤ 27N−1
∑
i∈Ik

[{
(β̂(−k) − β∗)TṼi

}4

+ 27
{
β∗T(µ̂(k) − µ̃)

}4

+ 27
{

(β̂(−k) − β∗)T(µ̂(k) − µ̃)
}4
]

= oP (1), (1.57)

here N−1
∑

i∈Ik{(β̂
(−k) − β∗)TṼi}4 = o(1) results from EIck{(β̂

(−k) − β∗)TṼ }4 = o(1) and

Lemma 1.1. Hence, by Holder’s Inequality,

N−1
∑
i∈Ik

{
( β̂(−k)TV̂i)

2 − ( β∗TṼi)
2
}2

= oP (1).
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Therefore, N−1
∑

i∈Ik(ξ
(k)
i − ξi)2 = oP (1) and

N−1
∑
i∈Ik

ξ
(k)2

i = N−1
∑
i∈Ik

ξ2
i + oP (1) = E{ β∗T(Ṽ Ṽ T − C̃)β∗}2 + oP (1).

When K <∞,

σ̂2
ξ = K−1

K∑
k=1

N−1
∑
i∈Ik

ξ
(k)2

i = E{ β∗T(Ṽ Ṽ T − C̃)β∗}2 + oP (1).

To show σ̂2
ν = E(ε2 + 2β∗TṼ ε − σ2

ε)
2 + oP (1), recall (1.16), ν

(k)
i = ε̂2

i + 2β̂(−k)TV̂iε̂i +

β̂(−k)TĈ(k)β̂(−k)− σ̂2
Y , where ε̂i = Yi− θ̂− β̂(−k)TV̂i. Define νi = ε2

i + 2β∗TṼiεi−σ2
ε . Similarly

as in (1.55), ∣∣∣∣∣N−1
∑
i∈Ik

ν
(k)2

i −N−1
∑
i∈Ik

ν2
i

∣∣∣∣∣
≤

∣∣∣∣∣N−1
∑
i∈Ik

(ν
(k)
i − νi)2

∣∣∣∣∣+ 2

{
N−1

∑
i∈Ik

ν2
iN
−1
∑
i∈Ik

(ν
(k)
i − νi)2

}1/2

.

By Condition 1.2, E|ε2 + 2β∗TṼ ε− σ2
ε |2+c < c1, and by Lemma 1.3,

N−1
∑
i∈Ik

ν2
i = E

(
ε2 + 2β∗TṼ ε− σ2

ε

)2

+ oP (1).

Now it remains to prove N−1
∑

i∈Ik(ν
(k)
i − νi)2 = oP (1). It suffices to show

N−1
∑
i∈Ik

(ε̂2
i − ε2

i )
2 = oP (1), (1.58)

N−1
∑
i∈Ik

(β̂(−k)TV̂iε̂i − β∗TṼiεi)2 = oP (1), (1.59)

β̂(−k)TĈ(k)β̂(−k) − σ̂2
Y + σ2

ε = oP (1). (1.60)

Recall that from (1.43), (1.46) and (1.47), we have β̂(−k)TĈ(k)β̂(−k) − b2 = oP (1), σ̂2
Y =

σ2
Y + oP (1) and hence (1.60) holds. As for (1.58),

N−1
∑
i∈Ik

(ε̂2
i − ε2

i )
2 = N−1

∑
i∈Ik

(ε̂i − εi)2{(ε̂i − εi) + 2εi}2. (1.61)
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By Condition 1.2, E|ε|4+c < c1. By Lemma 1.3,

N−1
∑
i∈Ik

ε4
i = E(ε4) + oP (1) (1.62)

with E(ε4) < c1. Besides,

N−1
∑
i∈Ik

(ε̂i − εi)4 = N−1
∑
i∈Ik

(θ̂ − θ + β̂(−k)TV̂i − β∗TṼi)
4

≤ 8(θ̂ − θ)4 + 8N−1
∑
i∈Ik

(β̂(−k)TV̂i − β∗TṼi)
4 = oP (1), (1.63)

where the last equality results from (1.36) and (1.57). By (1.61), (1.62), (1.63) and Holder’s

Inequality, (1.58) holds. Now, for (1.59),

N−1
∑
i∈Ik

(β̂(−k)TV̂iε̂i − β∗TṼiεi)2

= N−1
∑
i∈Ik

{
(β̂(−k)TV̂i − β∗TṼi)εi + β∗TṼi(ε̂i − εi) + (β̂(−k)TV̂i − β∗TṼi)(ε̂i − εi)

}2

.

Since

N−1
∑
i∈Ik

ε4
i = Eε4 + oP (1), N−1

∑
i∈Ik

( β∗TṼi)
4 = E( β∗TṼ )4 + oP (1),

N−1
∑
i∈Ik

(ε̂i − εi)4 = oP (1), N−1
∑
i∈Ik

(β̂(−k)TV̂i − β∗TṼi)
4 = oP (1),

by Holder’s Inequality, (1.59) holds. Now combining (1.58), (1.59) and (1.60), we have

N−1
∑

i∈Ik(ν
(k)
i − νi)2 = oP (1) and hence

N−1
∑
i∈Ik

ν
(k)2

i = N−1
∑
i∈Ik

ν2
i + oP (1) = E

(
ε2 + 2β∗TṼ ε− σ2

ε

)2

+ oP (1).

When K <∞,

σ̂2
ν = K−1

K∑
k=1

N−1
∑
i∈Ik

ν
(k)2

i = E
(
ε2 + 2β∗TṼ ε− σ2

ε

)2

+ oP (1).

Therefore, σ̂2
ν + nσ̂2

ξ/(m+ n) = var(ε2 + 2 β∗TṼ ε) + τvar( β∗TṼ )2 + oP (1).
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Proof of Corollary 1.1. When Conditions 1.1 and 1.4 hold, we have consistency results (1.42)

and (1.50). By Slutsky’s Theorem, for each k ≤ K,

b̂2(k)/σ̂2(k)

Y = b2/σ2
Y + op(1) = PV E + op(1)

and hence R2 = PV E + op(1).

The asymptotic normality result holds as a consequence of Theorem 1.6.

Proof of Theorem 1.5. This proof provides an asymptotic normal result for n1/2(θ̂gen − θ)

and the consistency of the asymptotic variance estimator. We first show the asymptotic

normality. Let

θ̂(k)
gen = M−1

∑
i∈Jk

ĝ(−k)(Xi) +N−1
∑
i∈Ik

{
Yi − ĝ(−k)(Xi)

}
,

where M = (m+ n)/K and N = n/K, then θ̂gen = K−1
∑K

k=1 θ̂
(k)
gen. Observe that

θ̂(k)
gen = M−1

∑
i∈Jk

g∗(Xi) +N−1
∑
i∈Ik

εi +M−1
∑
i∈Jk

{
ĝ(−k)(Xi)− g∗(Xi)

}
−N−1

∑
i∈Ik

{
ĝ(−k)(Xi)− g∗(Xi)

}
.

By Lemma 1.1,

M−1
∑
i∈Jk

{
ĝ(−k)(Xi)− g∗(Xi)

}
= oP (M−1/2),

N−1
∑
i∈Ik

{
ĝ(−k)(Xi)− g∗(Xi)

}
= oP (N−1/2).

Hence, when K <∞,

θ̂gen = (m+ n)−1

m+n∑
i=1

g∗(Xi) + n−1

n∑
i=1

εi + oP (n−1/2).
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By Lindeberg-Feller Central Limit Theorem, as m,n, p→∞,

n1/2
{

(m+ n)−1
∑m+n

i=1 g∗(Xi) + n−1
∑n

i=1 εi
}

var(ε) + τvar{g∗(X)}
→ N(0, 1)

and hence

n1/2(θ̂gen − θ)
σ2
ε,gen + n

m+n
b2

gen

→ N(0, 1).

Now, we showcase that b̂2
gen and σ̂2

ε,gen are consistent estimators of b2
gen and σ2

ε,gen, respectively.

For k ∈ K and i ∈ Ik, let

νε,gen,i = Yi − θ̂gen − ĝ(−k)(Xi) +M−1
∑
i∈Jk

ĝ(−k)(Xi).

Then, ∣∣∣∣∣N−1
∑
i∈Ik

ν2
ε,gen,i −N−1

∑
i∈Ik

ε2
i

∣∣∣∣∣
≤ N−1

∑
i∈Ik

(νε,gen,i − εi)2 + 2

{
N−1

∑
i∈Ik

ε2
iN
−1
∑
i∈Ik

(νε,gen,i − εi)2

}1/2

,

where N−1
∑

i∈Ik ε
2
i = σ2

ε,gen + oP (1). Besides,

νε,gen,i − εi = −(θ̂gen − θ)−

{
ĝ(−k)(Xi)−M−1

∑
i∈Jk

ĝ(−k)(Xi)− g∗(Xi) + θ

}
,

where θ̂gen − θ = oP (1) and by Lemma 1.1,

∑
i∈Ik

{
ĝ(−k)(Xi)−M−1

∑
i∈Jk

ĝ(−k)(Xi)− g∗(Xi) + θ

}
= oP (1).

Hence,

N−1
∑
i∈Ik

ν2
ε,gen,i = N−1

∑
i∈Ik

ε2
i + oP (1) = σ2

ε,gen + oP (1)

and therefore, σ2
ε,gen = σ2

ε,gen + oP (1). Similarly, b2
gen = b2

gen + oP (1).
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Proof of Theorem 1.6. This proof provides asymptotic normalities for the variance, explained

variance and unexplained variance estimators. We first work on the explained variance and

the unexplained variance. With a slight abuse of notation, define

b̂2(k) = M−1
∑
i∈Jk

{ĥ(−k)(Xi)}2 + 2N−1
∑
i∈Ik

ĥ(−k)(Xi){Yi − θ̂gen − ĥ(−k)(Xi)},

b̃2(k) = M−1
∑
i∈Jk

{ĝ(−k)(Xi)− µ(−k)}2

+ 2N−1
∑
i∈Ik

{ĝ(−k)(Xi)− µ(−k)}{Yi − θ − ĝ(−k)(Xi) + µ(−k)},

b̌2(k) = M−1
∑
i∈Jk

{g̃∗(Xi)}2 + 2N−1
∑
i∈Ik

εig̃
∗(Xi),

σ̂2(k)

ε = N−1
∑
i∈Ik

{Yi − θ̂gen − ĥ(−k)(Xi)}2,

σ̃2(k)

ε = N−1
∑
i∈Ik

{Yi − θ − ĝ(−k)(Xi) + µ(−k)}2,

σ̌2(k)

ε = N−1
∑
i∈Ik

ε2
i .

where ĥ(−k)(Xi) = ĝ(−k)(Xi) −M−1
∑

i∈Jk ĝ
(−k)(Xi), µ

(−k) = EIck{ĝ
(−k)(X)} and g̃∗(Xi) =

g∗(Xi)− θ. The proof consists of 3 steps:

Step 1: b̂2(k) = b̃2(k) + oP (N−1), σ̂2(k)

ε = σ̃2(k)

ε + oP (N−1).

Step 2: b̃2(k) = b̌2(k) + oP (N−
1
2 ), σ̃2(k)

ε = σ̌2(k)

ε + oP (N−
1
2 ).

Step 3: n1/2{V (σ2
ε,gen)}−1/2(σ̂2

ε,gen − σ2
ε,gen) → N(0, 1), n1/2{V (b2

gen)}−1/2(b̂2
gen − b2

gen) →

N(0, 1).

Step 1. Let ∆1 = M−1
∑

i∈Jk ĝ
(−k)(Xi) − µ(−k), ∆2 = θ̂gen − θ and δi = ĝ(−k)(Xi) −

µ(−k) − g̃∗(Xi) . Then, ∆2 = OP (n−1/2), and

∆1 = M−1
∑
i∈Jk

δi +M−1
∑
i∈Jk

g̃∗(Xi).
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By Lemma 1.1 and 1.2,

M−1
∑
i∈Jk

δi = oP (M−1/2), M−1
∑
i∈Jk

g̃∗(Xi) = OP (M−1/2)

and hence ∆1 = OP (M−1/2). Observe that

b̂2(k) = b̃2(k) −∆2
1 + ∆1(∆2 −∆1)−∆1N

−1
∑
i∈Ik

{
Yi − θ − ĝ(−k)(Xi) + µ(−k)

}
+ (∆1 −∆2)N−1

∑
i∈Ik

{
ĝ(−k)(Xi)− µ(−k)

}
,

where by Lemma 1.1 and Lemma 1.3,

N−1
∑
i∈Ik

{
Yi − θ − ĝ(−k)(Xi) + µ(−k)

}
= oP (1), N−1

∑
i∈Ik

{
ĝ(−k)(Xi)− µ(−k)

}
= oP (1).

Therefore,

b̂2(k) = b̃2(k) + oP (N−1/2). (1.64)

Besides,

σ̂2(k)

ε = σ̃2(k)

ε − 2(∆1 −∆2)N−1
∑
i∈Ik

(εi − δi) + (∆1 −∆2)2 = σ̃2(k)

ε + oP (N−1/2).

Step 2. Observe that

b̃2(k) = b̌2(k) +M−1
∑
i∈Jk

δi{δi + 2g̃∗(Xi)}+ 2N−1
∑
i∈Ik

δi{εi − g̃∗(Xi)− δi},

σ̃2(k)

ε = σ̌2(k)

ε − 2N−1
∑
i∈Ik

εiδi +N−1
∑
i∈Ik

δ2
i .
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By Lemma 1.1,

M−1
∑
i∈Jk

δi{δi + 2g̃∗(Xi)} = EIck(δ
2) + 2EIck{δg̃

∗(X)}+ oP (M− 1
2 ),

N−1
∑
i∈Ik

δi{εi − g̃∗(Xi)− δi} = EIck(δε)− EIck{δg̃
∗(X)} − EIck(δ

2) + oP (N−
1
2 ),

N−1
∑
i∈Ik

εiδi = EIck(δε) + oP (N−
1
2 ),

N−1
∑
i∈Ik

δ2
i = EIck(δ

2) + oP (N−
1
2 ).

Hence,

b̃2(k) = b̌2(k) + 2EIck(δε)− EIck(δ
2) + oP (N−

1
2 ), (1.65)

σ̃2(k)

ε = σ̌2(k)

ε − 2EIck(δε) + EIck(δ
2) + oP (N−

1
2 ). (1.66)

By assuming EIck(δε) = oP (N−
1
2 ) and EIck(δ

2) = oP (N−
1
2 ), we have

b̃2(k) = b̌2(k) + oP (N−
1
2 ), σ̃2(k)

ε = σ̌2(k)

ε + oP (N−
1
2 ). (1.67)

Step 3. Observe that

K−1

K∑
k=1

b̌2(k) = 2n−
1
2

n∑
i=1

εig̃
∗(Xi) + (m+ n)−1

n∑
i=1

{g̃∗(Xi)}2 + (m+ n)−1

m+n∑
i=n+1

{g̃∗(Xi)}2,

K−1

K∑
k=1

σ̌2(k)

ε =
n∑
i=1

ε2
i .

By Lindeberg-Feller Central Limit Theorem, as m,n, p→∞,

n1/2(K−1
∑K

k=1 b̌
2(k) − b2

gen)

{V (b2
gen)}1/2

→ N(0, 1),
n1/2(K−1

∑K
k=1 σ̌

2
ε − σ2

ε,gen)

{V (σ2
ε,gen)}1/2

→ N(0, 1).

Hence,

n1/2{V (b2
gen)}−1/2(b̂2

gen − b2
gen)→ N(0, 1), n1/2{V (σ2

ε,gen)}−1/2(σ̂2
ε,gen − σ2

ε,gen)→ N(0, 1).
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Now, we show the asymptotic normal result for the variance estimator. Recall from

(1.65) and (1.66),

σ̂2
Y,gen = b̂2

gen + σ̂2
ε,gen

= K−1

K∑
k=1

{
b̌2(k) + 2EIck(δε)− EIck(δ

2) + σ̌2(k)

ε − 2EIck(δε) + EIck(δ
2) + oP (N−

1
2 )
}

= K−1

K∑
k=1

{
b̌2(k) + σ̌2(k)

ε + oP (N−
1
2 )
}
,

where the bias terms 2EIck(δε) and EIck(δ
2) canceled out. By Lindeberg-Feller Central Limit

Theorem and Slutsky’s Theorem, as m,n, p→∞,

n1/2(σ̂2
Y,gen − σ2

Y )

{V (σ2
Y )}1/2

→ N(0, 1).

Lastly, for the PVE estimation, by Step 1 and 2, we showcase that b̂2(k) = b̌2(k) + oP (N−1/2)

and σ̂2(k)

Y = σ̌2(k)

Y + oP (N−1/2), where σ̌2(k)

Y = σ̌2(k)

ε + b̌2(k) . Besides, we also have σ̂2(k)

Y =

σ2
Y + oP (1) by Lemma 1.1. Hence, for each k ≤ K,

n1/2

(
b̂2(k)

σ̂2(k)
Y

−
b2

gen

σ2
Y

)
= n1/2

{
σ2
Y (b̂2(k) − b2

gen)− b2
gen(σ̂2(k)

Y − σ2
Y )

σ2
Y σ̂

2(k)
Y

}

= n1/2

[
σ2
Y {b̌2(k) − b2

gen + oP (N−1/2)} − b2
gen{σ̌2(k)

Y − σ2
Y + oP (N−1/2)}

σ2
Y {σ2

Y + oP (1)}

]

= n1/2σ−2
Y (b̌2(k) − b2

gen)− n1/2σ−4
Y b2

gen(σ̌2(k)

Y − σ2
Y ) + oP (1).
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It follows that

n1/2(R2
gen − PV E)

= n1/2σ−2
Y K−1

K∑
k=1

(b̌2(k) − b2
gen)− n1/2σ−4

Y b2
genK

−1

K∑
k=1

(σ̌2(k)

Y − σ2
Y ) + oP (1)

= n1/2

n∑
i=1

(
σ−4
Y σ2

ε,gen[{g̃∗(Xi)}2 + εig̃
∗(Xi)− b2

gen]− σ−4
Y b2

gen(ε2
i − σ2

ε)
)

+ n1/2

m+n∑
i=n+1

σ−4
Y σ2

ε,gen[{g̃∗(Xi)}2 − b2
gen].

By Lindeberg-Feller Central Limit Theorem,

n1/2V −1/2(R2
gen)(R2

gen − PVE)→ N(0, 1).

Proof of Theorem 1.7. This proof provides an asymptotic normal result for n1/2(θ̂MAR −

θMAR). Assume the following rates

EJck{ĝ
(−k)(X)− g0(X)}2 = OP (am+n,p), EJck{1− s

∗(X)/ŝ(−k)(X)}2 = OP (bm+n,p).

By definition, the proposed estimator θ̂MAR can be rewritten as

θ̂MAR = K−1

K∑
k=1

θ̂
(k)
MAR,

with

θ̂
(k)
MAR = M−1

∑
i∈Jk

[
g(−k)(Xi) +

Ti{Y o
i − g(−k)(Xi)}
ŝ(−k)(Xi)

]
,

where M = |Jk| = (m+ n)/K. Recall that for each i,

Yi = g0(Xi) + εi, Ti = s∗(Xi) + ri.
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Hence,

θ̂
(k)
MAR − θ

= M−1
∑
i∈Jk

[
g0(Xi) +

Tiεi
s∗(Xi)

+ Tiεi

{
1

ŝ(−k)(Xi)
− 1

s∗(Xi)

}

−
ri
{
ĝ(−k)(Xi)− g0(Xi)

}
s∗(Xi)

− Ti
{
ĝ(−k)(Xi)− g0(Xi)

}{ 1

ŝ(−k)(Xi)
− 1

s∗(Xi)

}]
.

Since Yi and Ti are independent conditional on Xi, the expectations of the terms on RHS

are

E

{
g0(X) +

Tε

s∗(X)

}
= θ, EJck

[
Tε

{
1

ŝ(−k)(X)
− 1

s∗(X)

}]
= 0,

EJck

[
r
{
ĝ(−k)(X)− g0(X)

}
s∗(X)

]
= 0.

Now, since EJck(T | X) = s∗(X) and by the tower property of the conditional expectations,

we have

EJck

∣∣∣∣T {ĝ(−k)(X)− g0(X)
}{ 1

ŝ(−k)(X)
− 1

s∗(X)

}∣∣∣∣
= EJck

{∣∣ĝ(−k)(X)− g0(X)
∣∣ · ∣∣∣∣ 1

ŝ(−k)(X)
− 1

s∗(X)

∣∣∣∣EJck(T | X)

}
= EJck

∣∣∣∣{ĝ(−k)(X)− g0(X)
} s∗(X)− ŝ(−k)(X)

ŝ(−k)(X)

∣∣∣∣ .
Now, by simple Holder’s inequality and following the assumptions, the above is of the order

of OP (am+n,pbm+n,p).

As for the the second moments, with similar reasoning, we have

EJck

[
Tε

{
1

ŝ(−k)(X)
− 1

s∗(X)

}]2

= EJck

[{
ŝ(−k)(X)− s∗(X)

ŝ(−k)(X)s∗(X)

}2

EJck(Tε
2 | X)

]

= EJck

[{
ŝ(−k)(X)− s∗(X)

ŝ(−k)(X)s∗(X)

}2

EJck(T | X)EJck(ε
2 | X)

]

= EJck

[{
ŝ(−k)(X)− s∗(X)

}2

{ŝ(−k)(X)}2
s∗(X)

EJck(ε
2 | X)

]
= OP (b2

m+n,p/E(T )),
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as well as

EJck

[
ri
{
ĝ(−k)(X)− g0(X)

}
s∗(X)

]2

= EJck

[{
ĝ(−k)(X)− g0(X)

}2

{s∗(X)}2
EJck(r

2 | X)

]

= EJck

[{
ĝ(−k)(X)− g0(X)

}2 {1− s∗(X)}
s∗(X)

]
= OP (a2

m+n,p/E(T )).

By Lemma 1.2, we have

M−1
∑
i∈Jk

Tiεi

{
1

ŝ(−k)(Xi)
− 1

s∗(Xi)

}
= OP (M−1/2bm+n,p{E(T )}−1/2)

= oP (M−1/2{E(T )}−1/2),

M−1
∑
i∈Jk

ri
{
ĝ(−k)(Xi)− g0(Xi)

}
s∗(Xi)

= OP (M−1/2am+n,p{E(T )}−1/2)

= oP (M−1/2{E(T )}−1/2).

By Lemma 1.1, and that am+n,pbm+n,p = oP ((m+ n)−1/2{E(T )}−1/2),

M−1
∑
i∈Jk

Ti
{
ĝ(−k)(Xi)− g0(Xi)

}{ 1

ŝ(−k)(Xi)
− 1

s∗(Xi)

}
= oP (M−1/2{E(T )}−1/2).

Therefore,

θ̂
(k)
MAR =

∑
i∈Jk

{
g0(Xi) +

Tiεi
s∗(Xi)

}
+ oP

(
M−1/2{E(T )}−1/2

)
.

For K <∞, we have

θ̂MAR =
m+n∑
i=1

{
g0(Xi) +

Tiεi
s∗(Xi)

}
+ oP

(
(m+ n)−1/2{E(T )}−1/2

)
.

Let VT = E{Tε/s∗(X)}2, and recall that E(ε2 | X) < c1,

VT = E

[
1

{s∗(X)}2
E(Tε2 | X)

]
= E

[
1

{s∗(X)}2
E(T | X)E(ε2 | X)

]
= E

{
1

s∗(X)
E(ε2 | X)

}
= E

{
ε2

s∗(X)

}
≥ {E(ε2)}2

E{s∗(X)ε2}
>
{E(ε2)}2

C1E(T )
.
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which implies that

1{| Tε
s∗(X)

|>δ(m+n)V
1/2
T } ≤ 1

{ ε2

c21{E(T )}2
>
δ2(m+n)2{E(ε2)}2

C1E(T )
}

= 1{C1ε2>c21δ
2(m+n)2{E(ε2)}2E(T )}

≤ C1ε
2

c2
1δ

2(m+ n)2 {E(ε2)}2E(T )
.

Hence, for any δ > 0,

V −1
T E

[{
Tε

s∗(X)

}2

1{| Tε
s∗(X)

|>δ(m+n)V 1/2}

]

≤ C1E(T )

{E(ε2)}2
E

[
Tε2

{s∗(X)}2
·
∣∣∣∣ C1ε

2

c2
1δ

2(m+ n)2 {E(ε2)}2E(T )

∣∣∣∣c/2
]

=
C

1+c/2
1 {E(T )}1−c/2

cc1δ
c(m+ n)c{E(ε2)}2+c

E

[
|ε|2+c

{s∗(X)}2
E(T | X)

]
=

C
1+c/2
1 {E(T )}1−c/2

cc1δ
c(m+ n)c{E(ε2)}2+c

E

{
|ε|2+c

s∗(X)

}
=

C
1+c/2
1 E|ε|2+c

c1+c
1 δc(m+ n)c{E(ε2)}2+c{E(T )}c/2

→ 0,

since (m+n)2E(T )→∞. Therefore, by the Lindeberg Central Limit Theorem, as m+n, p→

∞,

{(m+ n)VT}−1/2

m+n∑
i=1

Tiεi
s∗(Xi)

→ N(0, 1)

in distribution. Besides, when E{g0(X)}2 > C > 0, we have

E|g0(X)|2+c

[E{g0(X)}2]1+c/2
<∞,

by the Lindeberg-Feller Central Limit Theorem, as m+ n, p→∞,

[
(m+ n)E{g0(X)}2

]1/2 m+n∑
i=1

{g0(Xi)− θ} → N(0, 1)

in distribution. Observe that

cov

{
g0(X),

T ε

s∗(X)

}
= 0.
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Then, by the delta method, as m+ n, p→∞, we obtain[
m+ n

VT + E{g0(X)}2

]1/2 m+n∑
i=1

{
g0(Xi) +

Tiεi
s∗(Xi)

− θ
}
→ N(0, 1), (1.68)

in distribution. When E{g0(X)}2 → 0, by Lemma 1.1,
∑m+n

i=1 {g0(Xi)−θ} = oP ((m+n)−1/2).

Since [VT + E{g0(X)}2]/VT → 1, by the Slutsky’s Theorem, (1.68) still holds. Now, recall

that

θ̂MAR =
m+n∑
i=1

{
g0(Xi) +

Tiεi
s∗(Xi)

}
+R

where

R = oP
(
(m+ n)−1/2{E(T )}−1/2

)
.

Hence,

m+ n

VT + E{g0(X)}2
R2 = oP

(
1

E(T )[VT + E{g0(X)}2]

)
= oP (1).

Therefore, as m+ n, p→∞, the estimator θ̂MAR is asymptotically normal[
m+ n

VT + E{g0(X)}2

]1/2

(θ̂MAR − θ)→ N(0, 1).

Here,

(m+n)−1[VT +E{g0(X)}2] ≤ (m+n)−1

[
{E(ε2)}2

C1E(T )
+ E{g0(X)}2

]
= OP ((m+n)−1/E(T )).

Now we showcase that V̂MAR(θ) is a consistent estimator of VMAR(θ) = VT +E{g0(X)2}. Let

νθ,i = g(−k)(Xi) +
Ti{Yi − g(−k)(Xi)}

s(−k)(Xi)
− θ̂MAR, ν∗θ,i = g0(Xi) +

Ti{Yi − g0(Xi)}
s∗(Xi)

− θ.

Then, similarly as in (1.55),∣∣∣∣∣M−1
∑
i∈Jk

ν2
θ,i −M−1

∑
i∈Jk

ν∗θ,i
2

∣∣∣∣∣ ≤M−1
∑
i∈Jk

(
νθ,i − ν∗θ,i

)2

+ 2

{
M−1

∑
i∈Jk

ν∗θ,i
2M−1

∑
i∈Jk

(
νθ,i − ν∗θ,i

)2

}1/2

.

64



We first consider the term M−1
∑

i∈Jk ν
∗
θ,i

2. Let Wn,i = ν∗θ,i
2/VMAR(θ). Then,

nP (|Wn,1| > n) ≤ E
[
|Wn,1|1{|Wn,1|>n}

]
≤M−c/2E|Wn,1|1+c/2

≤M−c/2E|g0(X)− θ + Tε/s∗(X)|2+c

{VMAR(θ)}1+c/2

≤M−c/2

{
(E|g0(X)− θ|2+c)

1/(2+c)
+ (E|Tε/s∗(X)|2+c)

1/(2+c)
}2+c

{VMAR(θ)}1+c/2

≤M−c/2E [|ε|2+c/{s∗(X)}1+c]

{VMAR(θ)}1+c/2
+O(M−c/2)

≤ C
1+c/2
1 E|ε|2+c

c1+c
1 M c/2{E(ε2)}2+c{E(T )}c/2

+O(M−c/2) = o(1),

since ME(T )→∞. Besides, for any 0 < c1 < 2, similarly,

M−1E[W 2
n,11{|Wn,1|≤M}] ≤M−1E(W 2

n,1|M/Wn,1|1−c/2) = M−c/2E|Wn,1|1+c/2 = o(1).

By general weak law of large numbers,

M−1
∑

i∈Jk ν
∗
θ,i

2

VMAR(θ)
= 1 + oP (1).

Now, consider the term M−1
∑

i∈Jk(νθ,i − ν
∗
θ,i)

2. Observe that

νθ,i − ν∗θ,i = Tiεi

{
1

ŝ(−k)(Xi)
− 1

s∗(Xi)

}
− ri{ĝ(−k)(Xi)− g0(Xi)}

s∗(Xi)

− Ti
{
ĝ(−k)(Xi)− g0(Xi)

}{ 1

ŝ(−k)(Xi)
− 1

s∗(Xi)

}
− (θ̂MAR − θ).

Recall that

EJck

[
Tε

{
1

ŝ(−k)(X)
− 1

s∗(X)

}]2

= oP{1/E(T )},

EJck

[
ri
{
ĝ(−k)(X)− g0(X)

}
s∗(X)

]2

= oP{1/E(T )}.
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Besides,

EJck

[
T
{
ĝ(−k)(X)− g0(X)

}{ 1

ŝ(−k)(X)
− 1

s∗(X)

}]2

= EJck

[{
ĝ(−k)(X)− g0(X)

}2

{
ŝ(−k)(X)− s∗(X)

}2

{ŝ(−k)(X)}2
s∗(X)

]
= oP{1/E(T )}.

By Lemma 1.1,

M−1
∑
i∈Jk

[
Tiεi

{
1

ŝ(−k)(Xi)
− 1

s∗(Xi)

}]2

= oP{1/E(T )},

M−1
∑
i∈Jk

[
ri{ĝ(−k)(Xi)− g0(Xi)}

s∗(Xi)

]2

= oP{1/E(T )},

M−1
∑
i∈Jk

[
Ti
{
ĝ(−k)(Xi)− g0(Xi)

}{ 1

ŝ(−k)(Xi)
− 1

s∗(Xi)

}]2

= oP{1/E(T )}.

Combining with the fact that (θ̂MAR − θ)2 = oP{1/E(T )}, we have

M−1
∑
i∈Jk

(νθ,i − ν∗θ,i)2 = oP{1/E(T )}.

Therefore,

M−1
∑
i∈Jk

ν2
θ,i = M−1

∑
i∈Jk

ν∗θ,i
2 + oP{1/E(T )}+ 2 [VMAR{1 + oP (1)}oP{1/E(T )}]1/2

= VMAR{1 + oP (1)}+ oP{1/E(T )}

and hence

V̂MAR

VMAR

=
K−1

∑K
k=1 M

−1
∑

i∈Jk ν
2
θ,i

VMAR

= 1 + oP (1).

Proof of Theorem 1.8. Part 1. We first provide consistency rates of δ̂ and an asymptotic

normal result for n1/2(δ̂−δ) when some specific rates are satisfied. Recall that, by definition,

Y = D β∗1
TX̃ + (1−D) β∗0

TX̃ + ε, D = e(X) + ζ, E(ζ | X) = 0.
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By the definitions of β∗1 and β∗0 and Lemma 2.1 in [ZBC19],

E(Y − β∗1
TX̃ | D = 1) = 0, E(Y − β∗0

TX̃ | D = 0) = 0,

E{(Y − β∗1
TX̃)X̃ | D = 1} = 0, E{(Y − β∗0

TX̃)X̃ | D = 0} = 0.

Hence, E(D β∗1
TX̃ε) = E{ β∗1TX̃(Y − β∗1

TX̃) | D = 1}E(D) = 0. Similarly, E{(1 −

D) β∗0
TX̃ε} = 0. Besides,

E(ε) = E{Y −D β∗1
TX̃ − (1−D) β∗0

TX̃}

= E(Y − β∗1
TX̃ | D = 1)E(D)− E(Y − β∗0

TX̃ | D = 0){1− E(D)} = 0.

Therefore,

E(Y 2) = E{D( β∗1
TX̃)2}+ E{(1−D)( β∗0

TX̃)2}+ σ2
ε ,

where σε = var(ε). Since P{c ≤ e(X) ≤ 1− c} = 1,

E( β∗1
TṼ )2 ≤ E( β∗1

TX̃)2 ≤ c−1E{e(X)( β∗1
TX̃)2} = c−1E{D( β∗1

TX̃)2} ≤ c−1E(Y 2).

(1.69)

Let

r
(−k)
i = Di/ê

(−k)(Xi), r
(−k) = D/ê(−k)(X), ri = Di/e(Xi), r = D/e(X).

Since both e(X) and ê(−k)(X) are bounded away from 0 uniformly with probability 1,

EIck(r
(−k) − r)2 = EIck

D{ê(−k)(X)− e(X)}2

{ê(−k)(X)e(X)}2
= OP (b2

m+n,p). (1.70)
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Here, recall that EIckg = E{g | (Di, Yi, Xi)i∈{1,2,...,n}\Ik} and (D, Y,X) ∼ PD,Y,X independent

of (Di, Yi, Xi)i∈{1,2,...,n}\Ik . By the definition of τ̂
(k)
1 , we can obtain the following formula

τ̂
(k)
1 = β∗1

Tµ̂(k) +N−1
∑
i∈Ik

ri(Yi − β∗1
TX̃i) + (β̂

(−k)
1 − β∗1)Tµ̂(k)

+N−1
∑
i∈Ik

(r
(−k)
i − ri)(Yi − β∗1

TX̃i) −N−1
∑
i∈Ik

ri(β̂
(−k)
1 − β∗1)TX̃i

−N−1
∑
i∈Ik

(r
(−k)
i − ri)(β̂(−k)

1 − β∗1)TX̃i, (1.71)

where recall that µ̂(k) = M−1
∑

i∈Jk X̃i. Observe that each term of the RHS in (1.71) is an

average of (conditional) independent and identically distributed random variables. Hence,

by Lemma 1.2, we can obtain the rates of each of the terms by looking at the first and second

moments. For the first moments, recall that r = D/e(X) and E(r | X) = E(D | X)/e(X) =

1, we have

E(β∗1
TX̃) = β∗1

Tµ̃,

E{r(Y − β∗1
TX̃)} = τ1 − β∗1

Tµ̃,

E{(β̂(−k)
1 − β∗1)TX̃} = (β̂

(−k)
1 − β∗1)Tµ̃,

EIck{r(β̂
(−k)
1 − β∗1)TX̃} = (β̂

(−k)
1 − β∗1)Tµ̃,

and by the Holder’s inequality,

EIck{(r
(−k) − r)(Y − β∗1

TX̃)} = EIck{(r
(−k) − r)(E(Y | X)− β∗1

TX̃)} = OP (bm+n,pcp),

(1.72)

EIck{(r
(−k) − r)(β̂(−k)

1 − β∗1)TX̃} = OP (an,pbm+n,p). (1.73)

We can see that the terms β∗1
Tµ̃ and (β̂

(−k)
1 −β∗1)Tµ̃ will cancel out, and the terms (1.72) and

(1.73) will be the main contributions of the first moment.
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As for the second moments, we have

var(β∗1
TX̃) = E(β∗1

TṼ )2 ≤ c−1E(Y 2) = O(1), (1.74)

EIck{(β̂
(−k)
1 − β∗1)TṼ }2 ≤ EIck{(β̂

(−k)
1 − β∗1)TX̃}2 = OP (a2

n,p),

where (1.74) results from (1.69). By Condition 1.5, r = D/e(X) ≤ c−1 and |r(−k) − r| =

|D/ê(−k)(X) −D/e(X)| ≤ c−1 with probability 1. Hence, we have following results for the

variance (or second moments) of the terms in (1.71),

E{r2(Y − β∗1
TX̃)2} ≤ c−2σ2

ε = O(1),

EIckr
2{(β̂(−k)

1 − β∗1)TṼ }2 ≤ c−2
1 EIck{(β̂

(−k)
1 − β∗1)TX̃}2 = OP (a2

n,p), (1.75)

EIck(r
(−k) − r)2{(β̂(−k)

1 − β∗1)TX̃}2 ≤ c−2
1 EIck{(β̂

(−k)
1 − β∗1)TX̃}2 = OP (a2

n,p). (1.76)

Besides, by the assumption that P{E(ε2 | X) < C} = 1, we have

EIck(r
(−k) − r)2(Y − β∗1

TX̃)2 ≤ CEIck(r
(−k) − r)2 = OP (b2

m+n,p). (1.77)

Now, by Lemma 1.2, we have asymptotic results for each of the terms in (1.71). The terms

β∗1
Tµ̂(k) and (β̂

(−k)
1 − β∗1)Tµ̂(k) are averages of M (conditional) independent and identically

distributed random variables, we have

β∗1
Tµ̂(k) = β∗1

Tµ̃+OP (M−1/2),

(β̂
(−k)
1 − β∗1)Tµ̂(k) = (β̂

(−k)
1 − β∗1)Tµ̃+OP (an,pM

−1/2).

The other terms in (1.71) are averages of N (conditional) independent and identically dis-
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tributed random variables, we have

N−1
∑
i∈Ik

ri(Yi − β∗1
TX̃i) = τ1 − β∗1

Tµ̃+OP (N−1/2),

N−1
∑
i∈Ik

ri(β̂
(−k)
1 − β∗1)TX̃i = (β̂

(−k)
1 − β∗1)Tµ̃+OP (an,pN

−1/2),

and

N−1
∑
i∈Ik

(r
(−k)
i − ri)(Yi − β∗1

TX̃i) = OP (bm+n,pcp + bm+n,pN
−1/2),

N−1
∑
i∈Ik

(r(−k) − r)(β̂(−k)
1 − β∗1)TX̃ = OP (an,pbm+n,p + an,pN

−1/2).

Combining the previous results, we have

τ̂
(k)
1 = τ1 +OP (an,pbm+n,p + bm+n,pcp + (1 + an,p + bm+n,p)N

−1/2),

Similarly,

τ̂
(k)
2 = τ2 +OP (an,pbm+n,p + bm+n,pcp + (1 + an,p + bm+n,p)N

−1/2).

When K <∞, an,p = O(1), an,pbm+n,p = O(n−1/2) and bm+n,pcp = O(n−1/2),

δ̂ = τ̂1 − τ̂2 = δ +OP (an,pbm+n,p + bm+n,pcp + (1 + an,p + bm+n,p)n
−1/2)

= δ +OP (n−1/2). (1.78)

Moreover, if an,p = oP (1), bm+n,p = oP (1), an,pbm+n,p = oP (n−1/2) and bm+n,pcp =

oP (n−1/2). Then, by the previous results and Lindeberg-Feller Central Limit Theorem,

n1/2(δ̂ − δ) = n1/2(m+ n)−1

m+n∑
i=1

(β∗1 − β∗0)TṼi + n−1/2

n∑
i=1

εiζi/[e(Xi){1− e(Xi)}]

− E[εζ/e(X){1− e(X)}] + oP (1) (1.79)

→ N(0, Vδ),
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in distribution, provided that

Vδ = var

[
εζ

e(X){1− e(X)}

]
+ τ(β∗1 − β∗0)TC̃(β∗1 − β∗0) > c > 0.

Part 2. Now we provide a consistency result for V̂δ. Recall the definition of νδ,i,

νδ,i = r
(−k)
i (Yi − β̂(−k)T

1 X̃i)− ρ(−k)
i (Yi − β̂(−k)T

0 X̃i)− δ̂ + (β̂
(−k)
1 − β̂(−k)

0 )Tµ̂(k),

where r
(−k)
i = Di/ê

(−k)(Xi) and ρ
(−k)
i = (1 − Di)/{1 − ê(−k)(Xi)}. Define ν∗δ,i = ri(Yi −

β∗1
TX̃i)− ρi(Yi− β∗0

TX̃i), where ri = Di/e(Xi) and ρi = (1−Di)/{1− e(Xi)}. Similarly as

in (1.55), ∣∣∣∣∣N−1
∑
i∈Ik

ν2
δ,i −N−1

∑
i∈Ik

ν∗δ,i
2

∣∣∣∣∣
≤

∣∣∣∣∣N−1
∑
i∈Ik

(νδ,i − ν∗δ,i)2

∣∣∣∣∣+ 2

{
N−1

∑
i∈Ik

ν∗δ,i
2N−1

∑
i∈Ik

(νδ,i − ν∗δ,i)2

}1/2

.

By Conditions 1.1 and 1.5, E|r(Y − β∗1
TX̃) − ρ(Y − β∗0

TX̃)|2+c < c1, where r = D/e(X)

and ρ = (1−D)/{1− e(X)}. By Lemma 1.2,

N−1
∑
i∈Ik

ν∗δ,i
2 = V1 + oP (1),

where V1 = var{r(Y−β∗1TX̃)−ρ(Y−β∗0TX̃)}. Now it remains to showN−1
∑

i∈Ik(νδ,i−ν
∗
δ,i)

2 =

oP (1). Observe that νδ,i − ν∗δ,i = A1,i + A2,i + A3, where

A1,i = r
(−k)
i (Yi − β̂(−k)T

1 X̃i)− ri(Yi − β∗1
TX̃i),

A2,i = −ρ(−k)
i (Yi − β̂(−k)T

0 X̃i) + ρi(Yi − β∗0
TX̃i),

A3 = (β̂
(−k)
1 − β̂(−k)

0 )Tµ̂(k) − δ̂.

Hence, it suffices to show

N−1
∑
i∈Ik

A2
1,i = oP (1), N−1

∑
i∈Ik

A2
2,i = oP (1), A3 = oP (1).
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Observe that

A1,i = (r
(−k)
i − ri)εi − ri(β̂(−k)

1 − β∗1)TX̃i − (r
(−k)
i − ri)(β̂(−k)

1 − β∗1)TX̃i

From (1.77), (1.75) and (1.76),

EIck{(r
(−k) − r)2ε2} = oP (1), EIck [r

2{(β̂(−k)
1 − β∗1)TX̃}2] = oP (1),

EIck [(r
(−k) − r)2{(β̂(−k)

1 − β∗1)TX̃}2] = oP (1).

Hence,

EIck{(r
(−k) − r)ε− r(β̂(−k)

1 − β∗1)TX̃ − (r(−k) − r)(β̂(−k)
1 − β∗1)TX̃}2 = oP (1).

By Lemma 1.1, N−1
∑

i∈Ik A
2
1,i = oP (1). Similarly, we have N−1

∑
i∈Ik A

2
2,i = oP (1). Besides,

A3 = (β̂
(−k)
1 − β∗1)Tµ̃− (β̂

(−k)
0 − β∗0)Tµ̃+ (β∗1 − β∗0)T(µ̂(k) − µ̃)

+ (β̂
(−k)
1 − β∗1)T(µ̂(k) − µ̃)− (β̂

(−k)
0 − β∗0)T(µ̂(k) − µ̃)− (δ̂ − δ).

Under the condition an,p = o(1), we have (β̂
(−k)
1 −β∗1)Tµ̃ = oP (1) and (β̂

(−k)
0 −β∗0)Tµ̃ = oP (1).

By Lemma 1.2, (β∗1−β∗0)T(µ̂(k)− µ̃) = oP (1). By Lemma 1.1, (β̂
(−k)
1 −β∗1)T(µ̂(k)− µ̃) = oP (1)

and (β̂
(−k)
0 − β∗0)T(µ̂(k) − µ̃) = oP (1). Recall (1.78), δ̂ − δ = oP (1). Therefore, A3 = oP (1).

Now, combining all the previous results,

N−1
∑
i∈Ik

(νδ,i − ν∗δ,i)2 = oP (1), (1.80)

and hence

N−1
∑
i∈Ik

ν2
δ,i = N−1

∑
i∈Ik

ν∗δ,i
2 + oP (1) = V1 + oP (1).
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Now recall ξδ,i = (β̂
(−k)
1 − β̂

(−k)
0 )T(X̃i − µ̂(k)). Define ξ∗δ,i = (β∗1 − β∗0)TṼi. Similarly as in

(1.55), ∣∣∣∣∣N−1
∑
i∈Ik

ξ2
δ,i −N−1

∑
i∈Ik

ξ∗δ,i
2

∣∣∣∣∣
≤

∣∣∣∣∣N−1
∑
i∈Ik

(ξδ,i − ξ∗δ,i)2

∣∣∣∣∣+ 2

{
N−1

∑
i∈Ik

ξ∗δ,i
2 ·N−1

∑
i∈Ik

(ξδ,i − ξ∗δ,i)2

}1/2

,

By Condition 1.1, E|(β∗1 − β∗0)TṼ |2+c < c1. By Lemma 1.3,

N−1
∑
i∈Ik

ξ∗δ,i
2 = V2 + oP (1),

where V2 = (β∗1 − β∗0)TC̃(β∗1 − β∗0). Now it remains to show N−1
∑

i∈Ik(ξδ,i − ξ
∗
δ,i)

2 = oP (1).

Observe that

ξδ,i − ξ∗δ,i = (β̂
(−k)
1 − β∗1)TṼi − (β̂

(−k)
0 − β∗0)TṼi

− (β∗1 − β∗0)T(µ̂(k) − µ̃)− (β̂
(−k)
1 − β∗1)T(µ̂(k) − µ̃) + (β̂

(−k)
0 − β∗0)T(µ̂(k) − µ̃).

By Lemma 1.1, N−1
∑

i∈Ik(β̂
(−k)
1 − β∗1)TṼi = oP (1), N−1

∑
i∈Ik(β̂

(−k)
0 − β∗0)TṼi = oP (1),

(β̂
(−k)
1 − β∗1)T(µ̂(k) − µ̃) = oP (1) and (β̂

(−k)
0 − β∗0)T(µ̂(k) − µ̃) = oP (1). By Lemma 1.3,

(β∗1 − β∗0)T(µ̂(k) − µ̃) = oP (1). Therefore,

N−1
∑
i∈Ik

(ξδ,i − ξ∗δ,i)2 = oP (1),

and hence N−1
∑

i∈Ik ξ
2
δ,i = N−1

∑
i∈Ik ξ

∗
δ,i

2 + oP (1) = V2 + oP (1). When K <∞,

V̂δ = K−1

K∑
k=1

{
N−1

∑
i∈Ik

ν2
δ,i + nN−1

∑
i∈Ik

ξ2
δ,i/(m+ n)

}
= Vδ + oP (1).
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Chapter 2

Double robust semi-supervised

inference for the mean: selection bias

under MAR labeling with decaying

overlap

2.1 Introduction

Inference in semi-supervised (SS) settings has received substantial attention in re-

cent times. Unlike traditional statistical learning settings that are usually either supervised

or unsupervised, an SS setting represents a confluence of these two settings. A typical

SS setting has two types of available data: apart from a small or moderate-sized labeled

(or supervised) data L = (Yi,Xi)
n
i=1, one has access to a much larger sized unlabeled (or
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unsupervised) data U = (Xi)
N
i=n+1 with N � n. Here, Yi ∈ R and Xi ∈ Rp denote the

outcome of interest and a covariate vector (possibly high dimensional), respectively. To inte-

grate the notation, we use Ri ∈ {0, 1} to denote the missingness/labeling indicator and use

S = L ∪ U = (Ri, RiYi,Xi)
N
i=1 to denote the full data, a collection of N i.i.d. (independent

and identically distributed) observations of (R,RY,X), where throughout this chapter, we

let (R,RY,X) denote an independent copy of (Ri, RiYi,Xi).

SS settings arise naturally whenever the covariates are easily available for a large

cohort (so that U is plentiful), but the corresponding response is expensive and/or difficult

to obtain due to various practical constraints (thus limiting the size of L), a frequent scenario

in modern studies involving large databases in the ‘big data’ era. Examples of such settings

are ubiquitous across various scientific disciplines, including machine learning problems like

speech recognition, text mining etc. [Zhu05, CSZ09], as well as more recent (and relevant

to our work) biomedical applications, like electronic health records (EHR) and integrative

genomic studies [CC18,CG20]. It is important to note that while SS settings can be viewed

as a missing data problem of sorts, the fact that |U| � |L| is a key distinguishing feature

of SS settings (for instance, |L| could be of the order of hundreds, while |U| could be in

the order of tens of thousands!). This condition, a natural consequence of the underlying

practical situations leading to these data, implies that the proportion of labeled observations

in SS settings converges to 0 as the sample sizes |L|, |U| → ∞. This makes SS settings unique

and fundamentally different from any standard missing data problem where this proportion

is always assumed to be bounded away from 0, a condition also known as the positivity (or

overlap) assumption in the missing data literature [Imb04,Tsi07], which is naturally violated

here.
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Most of the SS literature, however, implicitly assumes that X is equally distributed

in L and U samples, that is, a missing completely at random (MCAR) setting, where R ⊥⊥

(Y,X), and the goal is to improve efficiency over an (already valid) supervised estimator based

on L. A biased, covariate-dependent, missing at random (MAR) type labeling mechanism

has not been studied much, although they are much more realistic in practice, especially

in biomedical applications (including the examples discussed earlier) where selection bias is

common. For instance, in EHR data, relatively ‘sicker’ patients may often be more likely

to be labeled, especially if the labeling is for a disease response. We work in this type of a

‘decaying’ MAR domain, which we name MAR-SS for short, under the typical “ignorability”

assumption:

R ⊥⊥ Y | X,

thereby allowing for a selection bias in the process. It is important to note that the traditional

MAR setting amongst the missing data literature is typically studied together with an overlap

(positivity) condition that bounds away the propensity score (PS) E(R|X) uniformly from

zero [BR05]. Compared to such MAR settings, our MAR-SS setting is significantly more

challenging due to the inevitably decaying nature of the PS. We also interchangeably refer

to this setting as decaying overlap. As N � n here, positivity is automatically excluded,

thus leading to a non-standard asymptotic regime.

Subtleties To work with such unbalanced labeling, we denote the PS as πN(X) :=

E(R|X) ≡ P (R = 1|X) and let πN := E(R). It is important to note that to allow a

non-degenerate PS with E(R)→ 0 as N →∞, we must allow R, πN(X) and πN to depend

on N (otherwise forcing n/N → 0 would lead to a degenerate situation with E(R) = 0 and
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E(R|X) = 0 almost surely (a.s.)). Hence, both {RN,i}N,i and {πN(Xi)}N,i form triangular

arrays. We suppress the dependence of RN on N throughout for notational simplicity.

Under such a decaying MAR-SS setting, we study the fundamental problem of esti-

mation and inference towards the mean response, defined as:

θ0 := E(Y ).

The mean estimation problem above is a canonical problem in classical missing data as

well as causal inference literature, and we consider it here mainly as a prototype problem.

The bigger purpose of this chapter is to provide a deeper understanding of this MAR-SS

setting and all its subtleties, where the main challenge is to allow for the uniform decay of

the PS with the sample size and handle the non-standard asymptotics that arises inevitably.

Moreover, unlike “traditional” SS settings (with MCAR), the goal here is not to “improve”

over a supervised estimator from L (which is no longer valid under selection bias) but rather

develop from scratch a consistent and rate-optimal estimator along with inferential tools for

it. The contributions of this work therefore constitutes advances both in the literature of

classical missing data and causal inference as well as that of traditional SS inference. We first

provide an overview of the existing literature(s), followed by a summary of our contributions.

2.1.1 Related Literature

SS-literature on prediction problems is vast, typically under the name of semi-supervised

learning; see [Zhu05] and [CSZ09] for a review. SS inference has attracted a lot of recent

attention. [ZBC19] and [ZB21] proposed SS mean estimators. The estimators in [ZB21] can

be roughly seen as a special (MCAR) case of the MAR-SS setting here. [ABS+21] and [CC18]
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tackled the SS linear regression problem, while [KK13] considered likelihood based SS in-

ference. [CG20] studied SS inference of the explained variance in high dimensional linear

regression. However, they all require a MCAR assumption, i.e., R ⊥⊥ (Y,X). MCAR is

practically too strong, and these estimators lead to doubtful results once the dependency of

R on X occurs.

Works that remove some of the MCAR restrictions have been proposed recently.

A special stratified labeling in a SS framework was studied in [GLTC20] with a focus on

prediction performance measures. Stratified labeling was also studied in [HLL20], though

their setting is very specific in that their only source of randomness arises from the treatment

assignment. [LZC20] consider a covariate shift regression under a SS framework using a semi-

nonparametric approach based on density ratio estimations albeit, working only with a non-

decaying PS. To our knowledge, only [KM20] have recently considered settings of a similar

type as ours. Their main focus, however, was on treatment effects estimation and efficiency

theory when surrogate variables occur in the usual MAR setting (with positivity). They

do provide some results under a decaying PS setting, including a semiparametric efficiency

bound. We provide a complete characterization (see Sections 2.3.1-2.3.2) of the asymptotic

properties as well as inference based on the estimator (see Section 2.3.3), and under much

weaker conditions. For instance, we only require NπN →∞ (while they require Nπ2
N →∞)

and we allow an unbounded support for X, which is essentially violated under the uniformly

bounded density ratio condition πN/πN(X) < C assumed in [KM20]. Moreover, the authors

therein did not provide any results and/or methodology on the decaying PS’s estimation

which is an essential component of the problem here.

Our work is also naturally connected to the rich missing data (and causal infer-
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ence) literature on semi-parametric methods, and especially to so-called doubly robust

(DR) inference; see [RRZ94], [RR95], [BR05], [Tsi07], [KS07], and [Gra11] for a review.

High-dimensional DR equivalents have been presented recently as well; see for example

[BCH14, Far15, CCD+18, SRR19, BWZ19]. They work on a low-dimensional parameter es-

timation problem that involves high-dimensional nuisance parameters. On the other hand,

[SC17] and [CLCL19] work on problems where the parameters of interest themselves are

high-dimensional. However, the positivity assumption is always assumed. Our work is a

direct extension of the above literature where we now include a decaying PS, and therefore

a setting of imbalanced treatment mechanisms.

Another related setting to our decaying PS setting is the so-called “limited overlap”

setting. A few notable prior works on limited overlap include [CHIM09,KT10,YD17,Rot17,

VZ18] among others, where a truncation of the PS is introduced and a restricted analysis

to the portions of the treatment groups such that overlap holds is performed. The “limited

overlap” condition is also weaker than the usual overlap condition, but very different from

our decaying PS situation. The limited overlap allows the PS to approach zero on some

specific regions in the support of X, while we allow E(R|X) to shrink to zero (with N)

uniformly in X. Moreover, they assume that E(R|X) is independent of N . By allowing R to

depend on N , we allow PR and PR|X to depend on N so that πN = E(R)→ 0 is permissible (a

necessity under our settings of interest), much unlike the existing limited overlap literature.
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2.1.2 Our Contributions

Contributions of our work are three fold: on (i) double robust estimation with decaying

PS, (ii) estimation of decaying PS, and (iii) average treatment effect (ATE) estimation with

imbalanced groups.

Double robust estimation with decaying propensity We believe this work fills in

an important gap in both the SS literature and the missing data literature. A selection

bias in the labeling mechanism is allowed, therefore parting with the SS literature. A PS is

allowed to decay to zero uniformly, consequently enriching the MAR literature. We propose

a double robust semi-supervised (DRSS) mean estimator (see Sections 2.3.1-2.3.2), which

can be viewed as an adaptation of the standard DR estimator [RRZ94] to our MAR-SS

setting. Theorem 2.2, our main result for this part, provides a full characterization of the

DRSS estimator and its asymptotic expansion when at least one of the nuisance functions

is correctly specified. Throughout, our results bring in a new set of rate-adjusted high-level

estimation error conditions on the nuisance estimators that are agnostic to their mode of

construction. When both nuisance models are correctly specified, we derive the asymptotic

normality of our estimator if a product rate condition for the estimation errors is further

assumed, with an asymptotic variance reaching the semi-parametric efficiency bound de-

rived in [KM20]. We also construct a corresponding confidence interval (see Section 2.3.3)

that adapts to the rate of decay of the PS. Adaptivity here implies that the confidence sets

are wider for the cases of faster decay without changing the estimators themselves. The

analyses and the methods are considerably more involved here compared to the standard

problems, due to the decaying nature of the PS. For example, we establish that the rate of
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convergence is no longer governed by N solely; rather the effective rate is identified to be

in terms of NaN , where a−1
N = E{π−1

N (X)}. In high dimensions, and using standard para-

metric nuisance models, the product rate condition required for the asymptotic normality

is smsπ{log(p)}2 = o(NaN), where sm and sπ are the sparsity levels of the (linear/logistic)

nuisance functions m(X) = E(Y |X) and πN(X) = E(R|X), respectively. When aN � 1,

such a condition coincides with the usual product condition [CCD+18] where the positiv-

ity condition is assumed. However, whenever aN → 0, the condition is stricter in order to

compensate for the decay of the PS.

Estimation of the decaying propensity A key challenge for any methodological de-

velopment in our MAR-SS setting is the modeling of the decaying PS. We propose several

choices and associated results in this regard, including (i) stratified labeling (see Section

2.4.4) as well as (ii) a novel offset based imbalanced logistic regression model (see Section

2.4.1), under both low and high dimensional settings. The first approach, (i), is often practi-

cally relevant in the presence of apriori information available on a stratifying variable. The

second approach, (ii), on the other hand, is applicable quite generally and constitutes a nat-

ural extension of logistic models to our case of a decaying PS. Related to the latter model,

imbalanced classification in low-dimensions was recently studied by [Owe07] and [Wan20].

Our offset based model is closely related to their diverging intercept model, and yet has

distinct methodological advantages; see Remark 2.11 below.

We provide theoretical results about estimation rates and other properties of these

models under both high and low dimensional settings. These results may be more gen-

erally useful and are of independent interest; for example, our results on estimation of
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decaying PS under a logistic model in high dimensions are the first such results to our

knowledge. We demonstrate that, for a sub-Gaussian X, the estimation error of πN(·) is

Op(
√
sπ log(p)/(NπN)), where sπ is the sparsity level of the logistic model parameter. Such

a result is non-trivial as, per Theorem 2.5, an appropriate choice of the regularization param-

eter is non-standard with λN �
√
πN log(p)/N . We also obtain a regular and asymptotically

linear (RAL) expansion for the estimator of the logistic regression parameter in the low-

dimensional case; see Theorem 2.4. Moreover, we showcase that the estimator reaches the

asymptotic variance as established in [Wan20] for low-dimensional problems. For the cases

where the outcome model is misspecified, we further construct an adjusted RAL expansion

of our DRSS estimator. Lastly, in Section 2.4.5, we also consider the special case of the

MCAR model and the corresponding results in that setting.

Average treatment effect (ATE) estimation with imbalanced groups Drawing

on a natural connection between the causal inference and missing data settings (see the

discussions in Section 1.1 of [CLCL19] for instance) we extend our results to a corresponding

ATE estimation problem. Our results allow for an extremely imbalanced treatment or control

groups, in that πN = P (R = 1)→ 0 (or alternatively, πN → 1) as N →∞.

We establish a RAL expansion for the proposed ATE estimator with a non-standard

consistency rate, Op(1/
√
NπN), where without loss of generality we assume πN → 0. A

sufficient condition for the expansion’s validity is correctness of the model for the treatment

group’s outcome as well as that of the PS model. Notably, the control group’s outcome

and PS models can be (even both) misspecified if πN → 0 fast enough. Such a condition is

different from most of the recent results, such as [Far15] and [CCD+18], where the nuisance
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functions in both of the groups need to be correctly specified for valid inference results. It

is also different from the recent work of [SRR19] and [Tan20a], where they used specific

parametric working models and they required at least one of the nuisance functions to be

correctly specified for both of the groups.

The PS setting, the parameter of interest, and the methodology are also different from

the limited overlap literature, e.g., [CHIM09]. As shown in [KT10], the information bound

for the ATE estimation is 0 if only under the ignorability assumption and a.s., πN(·) ∈ (0, 1).

As a result, a common approach in the limited overlap literature is to re-target the parameter

of interest by considering a “shifted” ATE induced by the truncation of the PS [CHIM09].

In this chapter, we show that it is in fact possible to estimate the ATE directly when we

have additional information that the inverse PS has well-behaved tails, e.g., πN(·) follows an

offset logistic model and X is sub-Gaussian; see Theorems 2.2, 2.4, and 2.5.

2.1.3 Notation

We use the following notation throughout. Let P (·) and E(·) denote the probability

measure and expectation characterizing the joint distribution of the underlying (possibly

unobserved) random vector Z := (R, Y,X), respectively, where R ∈ {0, 1}, Y ∈ R, and

X ∈ Rp. Let PX denote the marginal distribution of X. For any r > 0, let ‖f(·)‖r,P :=

{E|f(Z)|r}1/r and ‖f(·)‖r,PX
:= {EX|f(X)|r}1/r. For any vector z ∈ Rp, we denote z(j)

as the j-th coordinate of z. For r ≥ 1, define the lr-norm of a vector z with ‖z‖r :=

(
∑p

j=1 |z(j)|r)1/r, ‖z‖0 := |{j : z(j) 6= 0}|, and ‖z‖∞ := maxj |z(j)|. For a matrix A ∈ Rp×p,

‖A‖r := supz 6=0 ‖Az‖r/‖z‖r and λmin(A) denotes the smallest eigenvalue of A. For sequences
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aN and bN , we denote aN � bN if there exists constants c, C,N0 > 0 such that cbN < aN <

CbN for all N > N0. Lastly, we define the logit function as logit(u) := log{u/(1 − u)} for

any u ∈ (0, 1).

2.2 Problem setup

Let the entire dataset be denoted as: S := {Zi = (Ri, RiYi,Xi), i = 1, . . . , N}. The

dimension of the covariates p can be either fixed or growing with N in that p = pN →∞ as

N →∞. We assume the following ignorability condition throughout.

Assumption 2.1 (Ignorability or MAR condition). We assume that R ⊥⊥ Y | X.

The ignorability condition is standard in the missing data literature [BR05, Tsi07].

Let m(x) := E(Y |X = x) and πN(x) := E(R|X = x) denote the conditional mean of Y and

the conditional PS, respectively. We define aN as:

a−1
N := E{π−1

N (X)}, (2.1)

which is a natural quantity that appears in all of our results under the MAR-SS setting, and

plays a key role in determining the rates of any inverse-probability weighting type estimator.

The value aN shrinks when the distribution of πN(·) has too much mass concentrated around

0; see Remark 2.5 for more details. We consider the case of aN → 0, although our results

hold more broadly. Notice that the usual positivity (overlap) condition, πN(X) > c > 0,

is NOT assumed throughout the chapter, and we allow a uniformly decaying PS in that

πN(x)→ 0 as N →∞, for every x in the support X .
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Example 2.1 (Offset based PS model). Here, as an illustration of such decaying PS models,

we introduce a general offset based PS model as follows.

πN(X) = g(f(X) + log(πN)), with some f : Rp → R and g(u) :=
exp(u)

1 + exp(u)
,

where log(πN) is an “offset”. The model above constitutes a fairly general way of incorporat-

ing the naturally decaying nature of the PS in our setting. Further details on the rationale

behind and the analysis of such an offset model are discussed in Section 2.4.1. Here we in-

troduce the model mainly to illustrate how πN(X) depends on N . In our analysis in Section

2.4.1, we allow a linear f with any sub-Gaussian X, where clearly the positivity condition

is easily violated. Moreover, we allow πN(X) to be small in a “uniform way”: for example,

if X has a compact support X , then c1πN ≤ πN(x) ≤ c2πN for all x ∈ X with constants

0 < c1 < c2.

Preliminaries: Identification and alternative representations We have the follow-

ing three alternative representations or identifications of θ0 = E(Y ) based on the observable

variables and some unknown (but estimable) nuisance functions, i.e., m(X) and πN(X).

(Reg) Regression based representation: θ0 = E{m(X)}.

(IPW) Inverse probability weighting representation: θ0 = E{π−1
N (X)RY }.

(DR) Doubly robust representation: θ0 = E[m(X) + π−1
N (X){RY −Rm(X)}].

A natural estimator of θ0 would be the empirical mean of the observed responses, Ȳlabeled :=∑N
i=1 RiYi/

∑N
i=1Ri. Under a MCAR setting, Ȳlabeled is a consistent estimator. However,

under the MAR setting, Ȳlabeled is no longer a consistent estimator; Ȳlabeled
p−→ E(Y |R =
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1) 6= E(Y ) in general. According to the above representations, with m̂(·) and π̂N(·) es-

timating m(·) and πN(·), respectively, we could consider θ̂Reg := N−1
∑N

i=1 m̂(Xi) and

θ̂IPW := N−1
∑N

i=1 RiYiπ̂
−1
N (Xi). For the sake of simplicity, here we consider an ideal case

that m̂(·) and π̂N(·) are trained on another additional set so that (m̂(·), π̂N(·)) ⊥⊥ (Xi)
N
i=1.

It is then not hard to show that

θ̂Reg − θ0 = Op

(
‖m̂(X)−m(X)‖1,PX

+N−1/2
)
,

θ̂IPW − θ0 = Op

(
‖1− πN(X)/π̂N(X)‖2,PX

+N−1/2
)
.

Hence, the Reg and IPW estimators are not even consistent when the corresponding nui-

sance model is misspecified. Even when the corresponding nuisances are correctly specified,

estimators directly depend on the estimation error of m̂(·) and π̂N(·), respectively, which

are not
√
N -consistent (nor

√
NπN -consistent) in the high-dimensional or non-parametric

settings.

The DR representation of θ0, viewed as a combination of the Reg and IPW repre-

sentations [Acc74], leads to double robustness. DR estimators are consistent as long as at

least one of the models are correctly specified (this property is called “double robustness”,

see, e.g., Theorem 2 of [Far15]). When both models are correctly specified, the estimation

errors of the DR estimators depend on the product of estimation errors of the nuisance func-

tions; this property is called “rate double robustness,” as defined in Definition 2 of [SRR19].

Moreover, DR estimators are known to be semi-parametrically optimal when both models

are correct [BR05], as well as first order insensitive to the estimation errors of the nuisance

functions [CCD+18]; see the discussions in [CLCL19]. In Section 2.3, we propose estimators

based on the above DR representation.
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2.3 Semi-supervised inference under a MAR-SS set-

ting

2.3.1 Known PS πN(·)

We first consider an oracle case where the PS, πN(·), is known. In other words,

the missing mechanism is designed and controlled by the researcher. This is also closely

related to the randomized controlled trials in causal inference literature. Based on the DR

representation, we consider the following SS estimator:

θ̃ := N−1

N∑
i=1

m̂(Xi) +N−1

N∑
i=1

Ri

πN(Xi)
{Yi − m̂(Xi)}, (2.2)

where m̂(Xi) is a cross-fitted estimator established as follows: 1) for any fixed K ≥ 2, let

{Ik}Kk=1 be a random partition of I := {1, . . . , N}; 2) for each k ≤ K, obtain the estimator

m̂(·; S−k) using the training set S−k := {Zi : i ∈ I \ Ik}, where for typical supervised

methods, m̂(·;S−k) only depends on the labeled observations, {Zi : i ∈ I \ Ik, Ri = 1}; 3)

for each i = 1, . . . , N , let m̂(Xi) := m̂(Xi;S−k(i)), where k(i) denotes the unique k such that

i ∈ Ik. The proposed θ̃ can be seen as a debiased θ̂Reg estimator, where the misspecification

or estimation bias of m̂(·) is removed by the knowledge of πN(·). On the other hand, θ̂IPW

is a special case of θ̃ with π̂N(·) = πN(·) and m̂(·) ≡ 0. However, θ̃ with a “good” estimator

for the outcome model improves the efficiency of the IPW estimator; see e.g., Remark 2.3.

The cross-fitting is vital for the bias correction; see discussions in [CCD+18] and [CLCL19].

By the cross-fitting construction, m̂(·;S−k(i)) ⊥⊥ Zi for each i ≤ N . As a result,

EX

[
m̂(X) +

R

πN(X)
{Y − m̂(X)}

]
= EX

[
m̂(X) +

πN(X)

πN(X)
{Y − m̂(X)}

]
= θ0,
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and hence the proposed estimator θ̃ is unbiased for θ0, even if m(·) is misspecified. We denote

µ(·) as a “limit” (potentially misspecified) of m̂(·), i.e., in general, µ(·) 6= m(·) is allowed.

Assumption 2.2 (Basic assumption). (a) Z has finite 2nd moments and Σ ≡ Var(X) is

positive definite. (b) Let E[{Y −m(X)}2|X = x] ≥ σ2
ζ,1 > 0 and E[{Y − µ(X)}2|X = x] ≤

σ2
ζ,2 <∞ for all x in the support X of PX. Moreover, Var(Y ) ≤ σ2

ζ,2.

Assumption 2.3 (Tail condition). Let a−1
N E

[
ψ2
µ,π(Z)1

{
|ψµ,π(Z)| > c

√
N/aN

}]
→ 0, for

any c > 0 as N →∞, where recall that aN is defined in (2.1), and with ψµ,π(Z) as:

ψµ,π(Z) := µ(X) +
R

πN(X)
{Y − µ(X)} − θ0 = Y − θ0 +

{
R

πN(X)
− 1

}
{Y − µ(X)}.

(2.3)

Remark 2.1 (Discussion on Assumptions 2.2 and 2.3). Assumption 2.2 imposes some mild

moment conditions; similar versions can be found in [ZBC19, ZB21]. Assumption 2.3 is

needed only for the asymptotic normality and is satisfied if 1) πN(·) follows an offset propen-

sity model as in Example 2.1 with sub-Gaussian f(X) (see Section 2.4.1 where we analyzed

a special case of the offset model); 2) E{|Y − µ(X)|2+δ|X} < C, E(|Y − θ0|2+δ) < C with

constants δ, C > 0; and 3) NπN → ∞ as N → ∞. A sufficient condition for Assumption

2.3 is given in in Assumption 2.4.

In the result below, we analyze the theoretical properties of θ̃ including its consistency,

convergence rate, asymptotic normality and robustness properties.

Theorem 2.1. Let Assumptions 2.1 and 2.2 hold. Let NaN → ∞ as N → ∞. Let µ(·) be

a well-defined limit of the cross-fitted m̂(·), that satisfy:

EX

[
aN

πN(X)
{m̂(X;S−k)− µ(X)}2

]
= Op(c

2
µ,N), with sequence cµ,N = o(1), (2.4)
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for k ≤ K. Then,

θ̃ − θ0 = N−1

N∑
i=1

ψµ,π(Zi) +Op

(
cµ,N√
NaN

)
and VN(µ) := Var{ψµ,π(Z)} � a−1

N ,

where ψµ,π(Zi) is defined in (2.3). Alternatively, we also have the following asymptotically

linear representation:

θ̃ − θ0 = N−1

N∑
i=1

ψ̃µ(Zi) +Op

(
cµ,N√
NaN

+
1√
N

)
and ṼN(µ) := Var{ψ̃µ(Z)} � a−1

N ,

where ψ̃µ(Z) := R/πN(X){Y − µ(X)} − E[R/πN(X){Y − µ(X)}] and E{ψ̃µ(Z)} = 0. Ad-

ditionally, as long as Assumption 2.3 holds, we have:

(NaN)1/2(θ̃ − θ0) = Op(1), and N1/2V
−1/2
N (µ)(θ̃ − θ0) → N(0, 1).

Moreover, if aN → 0 as N →∞, then,

N1/2Ṽ
−1/2
N (µ)(θ̃ − θ0) → N(0, 1), and

VN(µ)

ṼN(µ)
= 1 +O(aN).

Remark 2.2 (Discussion on condition (2.4)). As per Theorem 2.1, consistency and asymp-

totic normality of θ̃ depend on (2.4), a condition that involves 1) the convergence rate of

m̂(·) towards some µ(·), depending on the (expected) labeled sample size (NπN), and 2)

the tail of π−1
N (X), that is, how much of the mass of the distribution of πN(X) concen-

trates around zero. For a special case of πN(X) ≡ πN , MCAR, (2.4) is equivalent to

‖m̂(·;S−k)−µ(·)‖2,PX
= op(1) coinciding with [ZB21]. On the other hand, when πN(·) follows

the offset model (Example 2.1) with sub-Gaussian f(X), we have aN � πN , and (2.4) holds

once EX{|m̂(X; S−k)− µ(X)|2+δ} = op(1) with δ > 0.

Remark 2.3 (Efficiency of θ̃ and the choice of µ(·)). Although the choice of m̂(·) is arbitrary

as long as it converges to some µ(·) as in (2.4), the efficiency of θ̃ does depend on the limit
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µ(·), and hence also on the choice of m̂(·). For a simple case of m̂(x) = µ(x) = 0 for all

x ∈ X , θ̃ can be written as θ̃ = N−1
∑N

i=1RiYi/πN(Xi), which coincides with the IPW

estimator, an estimator independent of m(·). However, an appropriate estimator m̂(·) will

provide a better efficiency for θ̃. The optimal choice of µ(·) that minimizes the asymptotic

variance VN(µ) is µ(·) = m(·) indicating that the outcome model is correctly specified.

Remark 2.4 (Intuition behind the IFs). Two separate IFs ψµ,π(Z) and ψ̃µ(Z) appear in the

expansions of θ̃ in Theorem 2.1. The first IF ψµ,π(Z) is an “accurate influence function”

in that θ̃ − θ0 = N−1
∑N

i=1 ψµ,π(Zi) + op((NaN)−1/2) with N−1
∑N

i=1 ψµ,π(Zi) � (NaN)−1/2.

When aN → 0 as N →∞, the second IF ψ̃µ(Z) captures the main contribution of ψµ,π(Z). It

only involves the labeled samples and hence one can clearly see that the rate of θ̃ is effectively

determined by the smaller sized, labeled data only. When the outcome model is correctly

specified, the second IF ψ̃µ(Z) coincides with the efficient IF of [KM20]; see Theorem 4.1

therein.

Remark 2.5 (Convergence rate and “effective sample size”). Suppose the conditions in

Theorem 2.1 hold, then θ̃ is a (NaN)1/2-consistent estimator for θ0. The value NaN can

be seen as an “effective sample size” having a similar role as the sample size in supervised

learning. Bellow is a discussion on the value NaN . By Jensen’s inequality, NaN ≤ NπN ,

where the difference between the two rates is related to the tail of π−1
N (X). Here, NπN is the

expected sample size as NπN = E(n), where n :=
∑N

i=1Ri. Therefore, the effective sample

size, NaN , depends on 1) how much of the mass of the distribution of πN(X) concentrates

around 0 and 2) the (expected) size of the labeled sample. MCAR is a special case with πN(·)

being a constant and therefore NaN = NπN . In another example, the offset based model in
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Example 2.1 and Section 2.4.1, we have aN � πN for sub-Gausian X; see Theorems 2.4 and

2.5.

2.3.2 Unknown PS πN(·) and the general version of the DRSS

estimator

With πN(·) being unknown in general observational studies, we propose our final

estimator, a doubly robust semi-supervised (DRSS) estimator of the mean θ0, given by:

θ̂DRSS := N−1

N∑
i=1

m̂(Xi) +N−1

N∑
i=1

Ri

π̂N(Xi)
{Yi − m̂(Xi)}, (2.5)

where π̂N(Xi) is a cross-fitted estimator of πN(Xi) constructed similarly as m̂(Xi), as dis-

cussed below (2.2) in Section 2.3.1. The proposed estimator (2.5) is a plug-in version of

(2.2). We denote with eN(·) a “limit” of π̂N(·), which is possibly misspecified, i.e., eN(·) is

not necessarily the same as πN(·). Define the following generalization of (2.3), i.e., a DR

score (influence) function:

ψµ,e(Z) := µ(X) +
R

eN(X)
{Y − µ(X)} − θ0 = Y − θ0 +

{
R

eN(X)
− 1

}
{Y − µ(X)}.

(2.6)

We have the following asymptotic results under the two cases: (a) both πN(·) and m(·) are

correctly specified; (b) one of πN(·) and m(·) is correctly specified.

Theorem 2.2. Let Assumptions 2.1 and 2.2 hold and let NaN →∞, as N →∞. Suppose

the cross-fitted versions of m̂(·) and π̂N(·) have well-defined (possibly misspecified) limits µ(·)
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and eN(·), respectively, such that (2.4) holds for k ≤ K as well as

EX

[
aN

πN(X)

{
1− eN(X)

π̂N(X;S−k)

}2
]

= Op(c
2
e,N) with sequence ce,N = o(1), (2.7)

EX{m̂(X; S−k)− µ(X)}2 = Op(r
2
µ,N) with sequence rµ,N = o(1), and (2.8)

EX

{
1− eN(X)

π̂N(X;S−k)

}2

= Op(r
2
e,N) with sequence re,N = o(1). (2.9)

The properties of θ̂DRSS under different cases are as follows:

(a) Suppose both µ(·) = m(·) and eN(·) = πN(·) hold. Then, as N → ∞, θ̂DRSS

satisfies the following asymptotic linear expansion:

θ̂DRSS − θ0 = N−1

N∑
i=1

ψµ,e(Zi) +Op

(
cµ,N√
NaN

+
ce,N√
NaN

+ rµ,Nre,N

)
,

and VN(µ, e) � a−1
N , where VN(µ, e) := Var{ψµ,e(Z)}. Hence, as long as the product rate

rµ,Nre,N from (2.8) and (2.9) further satisfies rµ,Nre,N = o(1/
√
NaN), and Assumption 2.3

holds, we have:

(NaN)1/2(θ̂DRSS − θ0) = Op(1), and N1/2V
−1/2
N (µ, e)(θ̂DRSS − θ0) → N(0, 1). (2.10)

(b) Suppose now that either µ(·) = m(·) or eN(·) = πN(·) holds. Moreover, if eN(·) 6=

πN(·), we assume c ≤ πN(X)/eN(X) ≤ C a.s. for some constants c, C > 0. Then, as

N →∞, θ̂DRSS satisfies the following asymptotic linear expansion:

θ̂DRSS − θ0 = N−1

N∑
i=1

ψµ,e(Zi) +Op

(
cµ,N√
NaN

+
ce,N√
NaN

+ rµ,Nre,N

)
+ ∆̂N ,

with ∆̂N satisfying (2.11) or (2.12):

∆̂N := N−1

N∑
i=1

{
Ri

πN(Xi)
− Ri

π̂N(Xi)

}
{µ(Xi)−m(Xi)} if eN(·) = πN(·), (2.11)

∆̂N := N−1

N∑
i=1

{
Ri

πN(Xi)
− Ri

eN(Xi)

}
{m̂(Xi)−m(Xi)} if µ(·) = m(·). (2.12)
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Suppose for case (2.11), ‖m(·)−µ(·)‖2,PX
< C, while for case (2.12), ‖1−πN(·)/eN(·)‖2,PX

<

C, with a constant C <∞. Then, θ̂DRSS satisfies:

θ̂DRSS − θ0 = Op

(
1 + cµ,N + ce,N√

NaN
+ rµ,Nre,N + re,N1{µ(·) 6= m(·)}+ rµ,N1{eN(·) 6= πN(·)}

)
.

A few remarks pertaining to the estimation rates are presented next.

Remark 2.6 (Conditions in Theorem 2.2). Here we discuss the rate conditions (2.4), (2.7),

(2.8), and (2.9) required in Theorem 2.2. The rate (2.8) is a standard estimation error of

the outcome model; see for example, [ZBC19]. The other rates, (2.4), (2.7), and (2.9), are

rescaled or self-normalized versions of conditions in [CCD+18]. They are needed as the price

of violating the positivity condition. The rate (2.9), a rescaled version of the usually consid-

ered EX{π̂N(X)− eN(X)}2, is a change needed to properly address a decaying PS estimator.

Then, (2.4) and (2.7) can be seen as self-normalized versions with the normalization factor

being ω(X) := aN/πN(X). Notice that E{ω(X)} = 1, so these weights ω(·) can be viewed

as reweighing or redistribution factor. Then, the estimation errors of π̂N(X) and m̂(X) at

X, with a smaller PS, contribute more to rates (2.8) and (2.9). The rates of the reweighed

versions, cµ,N and ce,N in (2.4) and (2.7), only need to be o(1); whereas rµ,N and re,N in (2.8)

and (2.9) appear in the final rate for θ̂DRSS. In high dimensions, assume πN(·) follows an

offset based model as in Example 2.1. Suppose m(·) and f(·) in Example 2.1 are linear with

sparsity levels sm and sπ, respectively. Then, for sub-Gaussian X, we demonstrate in Theo-

rem 2.5 that aN � πN as long as re,N =
√
sπ log(p)/(NπN) and rµ,N =

√
sm log(p)/(NπN),

therefore coming close to the simplest missingness pattern, that of MCAR.

Remark 2.7 (Double robustness, rates and efficiency). Here, we discuss the double robust-

ness and the efficiency of the proposed estimator. Whenever πN(·) and m(·) are correctly
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specified, the asymptotic normality with a rate of consistency (NaN)−1/2 is guaranteed if a

product rate condition rµ,Nre,N = o(1/
√
NaN) is satisfied. We can see that our product rate

condition is an analog of the usual product rate condition in the literature [CCD+18], if the

sample size is replaced with NaN , the “effective sample size” in our case; see Remark 2.5. In

addition, when the asymptotic normality occurs, our estimator reaches the semi-parametric

efficiency bound proposed in [KM20] when πN → 0 as N → ∞. When one of πN(·) and

m(·) is misspecified, we obtain a consistency rate of Op(re,N) if πN(·) is correctly specified,

whereas the rate is Op(rµ,N) if m(·) is correctly specified. Therefore, the consistency rate of

θ̂DRSS directly depends on the estimation error rate of the correct model. As a special case,

θ̂DRSS is consistent as long as the correct model is consistently estimated. Additionally, we

can see that θ̂DRSS can still be (NaN)1/2-consistent as long as the correct model is estimated

with an error rate Op(NaN)−1/2, which is reachable in low dimensions. For instance, for a

(correctly specified) low-dimensional offset logistic PS model as introduced in Section 2.4.2,

as shown in Theorem 2.4, not only do we reach the error rate Op(NaN)−1/2 but are able to

construct a RAL expansion for θ̂DRSS.

Remark 2.8 (Unbounded support for X). We do not enforce a bounded support for X,

which is typically an assumption assumed (implicitly) in missing data and causal inference

literature. For instance, suppose πN(·) follows an (offset based) logistic model as in Example

2.1. Both the usual positivity condition P (πN(X) > c > 0) = 1 in the standard miss-

ing data literature [Imb04, Tsi07, IR15b] and the uniform bounded density ratio condition,

πN/πN(X) < C, in [KM20], which tackles a MAR-SS setting, essentially require a compact

support for X. However, our results only require a sub-Gaussian X as in Theorems 2.4 and

95



2.5.

Remark 2.9 (Asymptotic linearity and (NaN)1/2-consistency under misspecification). More-

over, in Section 2.4, we demonstrate that θ̂DRSS can still be asymptotically normal even if

m(·) is misspecified. Such an asymptotic normality is constructed based on a careful analysis

to obtain the regular and asymptotically linear (RAL) expansion and the IF for the additional

error term ∆̂N in (2.11), in that

∆̂N = N−1

N∑
j=1

IFπ(Zj) + op
(
(NaN)−1/2

)
,

for some IFπ(·) with E{IFπ(Z)} = 0 and E{IF2
π(Z)} � a−1

N . The final IF of θ̂DRSS involves

the extra IF contributed from the estimation error of π̂N(·). Consequently, the RAL expan-

sion and the asymptotic normality of θ̂DRSS are also affected accordingly. Using the above

expansion for ∆̂N and the general expansion of θ̂DRSS from Theorem 2.2, we have a RAL

expansion of θ̂DRSS as:

θ̂DRSS − θ0 = N−1

N∑
i=1

ψµ,e(Zi) +Op

(
cµ,N√
NaN

+
ce,N√
NaN

+ rµ,Nre,N

)
+ ∆̂N

= N−1

N∑
i=1

{ψµ,e(Zi) + IFπ(Zi)}+ op
(
(NaN)−1/2

)
.

The function Ψ(Z) := ψµ,e(Z) + IFπ(Z) is the final adjusted IF of θ̂DRSS with E{Ψ(Z)} = 0

and Var{Ψ(Z)} � a−1
N . Consequently, we also have:

N1/2[Var{Ψ(Z)}]−1/2(θ̂DRSS − θ0) → N(0, 1). (2.13)

2.3.3 Asymptotic variance estimation

In this section, we consider the estimation of the asymptotic variances VN(µ) in

Theorem 2.1 (with πN(·) known) and VN(µ, e) in Theorem 2.2 (with πN(·) unknown and
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both m(·) and πN(·) are correctly specified). These facilitate inference on θ0 (via confidence

intervals, hypothesis tests etc.) using θ̃ and θ̂DRSS. We assume the following tail condition.

Assumption 2.4 (Tail condition). With N →∞, for a constant δ > 0, let

N−δ/2a
1+δ/2
N E{|ψµ,π(Z)|2+δ} → 0.

The Assumption 2.4 is a sufficient condition for Assumption 2.3. Under the setting

in Theorem 2.1 and part (a) of Theorem 2.2, we have:

N1/2V
−1/2
N (µ)(θ̃ − θ0) → N(0, 1), N1/2V

−1/2
N (µ, e)(θ̂DRSS − θ0) → N(0, 1).

We propose the plug-in estimates: V̂N(µ) = V̂N(m̂, πN , θ̃) and V̂N(µ, e) = V̂N(m̂, π̂N , θ̂DRSS),

where

V̂N(a, b, c) := N−1

N∑
i=1

[
a(Xi)− c+

Ri

b(Xi)
{Yi − a(Xi)}

]2

.

Theorem 2.3. (a) Let Assumptions in Theorem 2.1 hold. Then, as N → ∞, V̂N(µ) =

VN(µ){1 + op(1)}. (b) Let Assumptions (a) of Theorem 2.2 hold. Further let Assumption 2.4

hold and

E

[
aN

πN(X)

{
1− πN(X)

π̂N(X;S−k)

}2

{m̂(X;S−k)−m(X)}2

]
= op(1). (2.14)

Then, as N →∞, V̂N(µ, e) = VN(µ, e){1 + op(1)}.

Notice that we only require a op(1) condition in (2.14). Such a condition can be

satisfied as long as we have upper bounds for the (2 + c)-th moment of the estimation

errors and the tail of π−1
N (X) is well-behaved. Under a standard positivity condition, when

µ(·) = m(·), (2.14) only requires rµ,N = o(1), which would have been already assumed for

consistency.
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Under the conditions in Theorem 2.3, asymptotically valid 100(1 − α)% confidence

intervals (CIs) for θ̃ and θ̂DRSS at any significance level α can now be obtained as:

CI(θ̃) :=
(
θ̃ −N−1/2V̂

1/2
N (µ)z1−α/2, θ̃ +N−1/2V̂

1/2
N (µ)z1−α/2

)
,

CI(θ̂DRSS) :=
(
θ̂DRSS −N−1/2V̂

1/2
N (µ, e)z1−α/2, θ̂DRSS +N−1/2V̂

1/2
N (µ, e)z1−α/2

)
, (2.15)

where z1−α/2 is the (1 − α/2)-quantile of a standard normal distribution. As shown in

Theorems 2.1 and 2.2, VN(µ) � a−1
N and VN(µ, e) � a−1

N . Hence, the length of the proposed

confidence intervals are of the order (NaN)−1/2.

It is important to note, that these confidence intervals are valid when both the out-

come and propensity score models are correctly specified. Whenever the outcome model is

misspecified, they need further adjustment based on an adjusted RAL expansion as discussed

in Remark 2.9. Based on the adjusted IF, Ψ(Z), therein, one can estimate the asymptotic

variance Var{Ψ(Z)} using a plug-in estimate N−1
∑N

i=1 Ψ̂2(Zi; θ̂DRSS), where Ψ̂(·; θ̂DRSS) is a

consistent estimator of Ψ(·), and obtain the corresponding adjusted confidence intervals. We

also illustrate the numerical performance of these adjusted confidence intervals in Section

2.6.4.

2.4 Decaying PS models

In Section 2.3, we proposed a DR estimator θ̂DRSS of θ0 = E(Y ). Such an estimator is

based on an outcome estimator m̂(·) and a PS estimator π̂N(·). Due to the decaying nature

of the PS, the estimation of πN(·) itself is also an interesting and challenging problem. In this

section, we illustrate three decaying PS models: (i) an offset logistic model (Section 2.4.1),

(ii) a stratified labeling model (Section 2.4.4), and (iii) a MCAR labeling model (Section
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2.4.5). These are just some natural examples of modeling a decaying PS – our main results

are completely general. We propose PS estimators under each of the three models and

establish detailed asymptotic results, especially for the offset logistic model (in both low and

high dimensions). Moreover, as discussed in Remark 2.9, for a misspecified m(·), based on a

case by case study of πN(·), we further construct an adjusted RAL expansion of θ̂DRSS and

hence provide an asymptotic normality with an adjusted asymptotic variance.

2.4.1 Offset logistic regression

In this section, we propose a parametric logistic model for extremely unbalanced

outcomes, i.e., πN = P (R = 1)→ 0 as N →∞, where we let

πN(X) = πN
exp(
−→
XTγ0)

1 + πN exp(
−→
XTγ0)

=
exp{
−→
XTγ0 + log(πN)}

1 + exp{
−→
XTγ0 + log(πN)}

, (2.16)

where
−→
X := (1,XT )T and the parameter γ0 ∈ Rp+1 possibly depends on N with ‖γ0‖2 < C

for some constant C > 0. This model is fairly natural and allows for a general way to

incorporate the decaying nature of the labeling fraction. At the same time, it ensures that

the dependence of πN(X) on X is not distorted by the decaying nature of πN . Model (2.16)

could also be viewed as a logistic model with log(πN) (a diverging negative intercept) as an

offset. If a standard logistic model is used [Owe07,Wan20] instead, i.e., we let

πN(X) = g(
−→
XTβ), where g(u) :=

exp(u)

1 + exp(u)
, (2.17)

then under some standard conditions whenever an extreme imbalance exists, exp(−β(1)) �

π−1
N → ∞ whenever N → ∞; see Remark 2.11 for further details. This provides a clear

justification for our offset model (2.16) where we precisely extract out log (πN) as an offset
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to be estimated separately and plugged in apriori to the likelihood equation. In this way,

we are able to treat the auxiliary intercept and the slope as well-behaved, i.e., finite and

independent or bounded in N .

Remark 2.10 (Connections with density ratio estimation). There is an intricate connection

between the offset model (2.16) and a model for density ratios usually used in the covariate

shift literature where Ris are treated as fixed (or conditioned on) and PX 6= PX|R=1 is allowed

[KK13, LZC20]. Observe that

logit{πN(X)} = log(πN)− log(1− πN)− log{ΛN(X)},

where ΛN(X) := f(X|R = 0)/f(X|R = 1) and f(·|R = ·) is the conditional density of X

given R. However, direct estimation of density ratios is often arduous. The above represen-

tation, however, suggests that the same model can be fitted by a simple logistic regression of

R|X, and further using log{πN/(1 − πN)} as an offset. Therefore, missing data literature

related to density ratios can now be enriched with an effective estimation of the decaying PS;

see Section 4 of [KM20] where semi-parametric efficiency is established but no estimator is

discussed. In some sense, such a density ratio estimator is also optimal [Qin98].

Remark 2.11 (Rationale behind the offset model (2.16) and its connections with a diverging

intercept model). Instead of an offset based model as in (2.16), let us now directly consider

a standard logistic model for P (R = 1|X) = πN(X) but allowing (necessarily) for a diverging

intercept, given by:

πN(X) = g(
−→
XTβ) =

exp(
−→
XTβ)

1 + exp(XTβ)
, where (2.18)
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β = (β(1),β(−1)T )T ∈ Rp+1 is a vector allowed to depend on N ; e.g., see [Owe07] and

[Wan20]. For further simplification, let us assume that the slope β(−1), while allowed to

depend on N , is finite, i.e., ‖β(−1)‖2 < C <∞ for some C independent of N .

Under the model (2.18), the following holds. Let MGFX(v) := E{exp(vTX)} denote

the moment generating function (MGF) of X at v ∈ Rp and assume MGFX(v) exists (i.e.,

finite) at v = β(−1) and v = −β(−1). Then, the following holds for the intercept β(1):

1

πN

1− πN
MGFX(−β(−1))

≤ exp(−β(1)) ≤ 1

πN
MGFX(β(−1)), and consequently, (2.19)

1

πN

1− πN
E{exp(‖β(−1)‖2‖X‖2)}

≤ exp(−β(1)) ≤ 1

πN
E{exp(‖β(−1)‖2‖X‖2)}. (2.20)

For the special case of a Gaussian X, i.e., X ∼ Np(0,Σ),

MGFX(−β(−1)) = MGFX(β(−1)) ≤ exp{‖β(−1)‖2
2λmax(Σ)}.

Hence, as long as ‖β(−1)‖2
2 < C <∞ and λmax(Σ) <∞, then using (2.19), exp(−β(1)) �

π−1
N → ∞. More generally, if ‖β(−1)‖2

2 < C < ∞ and E{exp(C‖X‖2)} < ∞ (e.g., if X is

sub-Gaussian), then using (2.20), we will have exp(−β(1)) � π−1
N →∞.

Rationale for the offset model (2.16). The result clearly shows that the intercept β(1)

diverges to −∞ and does so precisely at a rate of log(πN), i.e., c1 + log (πN) ≤ β(1) ≤

C1 + log (πN). This provides a clear justification for our offset based model (2.16) where

we precisely extract out this log (πN) as an offset (to be estimated separately and plugged

in apriori to the sample likelihood equation), and then treat the intercept α0 and the slope

parameter β0 to be well-behaved, i.e., finite and independent of N (or at least bounded in

N).
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This makes the parameter space more amenable to theoretical analysis where it is

common practice to assume that the truths (the true unconstrained minimizers) lie as interior

points of some compact set. Such assumptions are commonplace in most of empirical process

and M-estimation theory, and these results won’t be applicable without this assumption,

something that has clear justification under the offset model but not under the diverging

intercept model.

Remark 2.12 (Connections with density ratio estimation). It is interesting (though ele-

mentary) to note that the PS is also related to the density ratio of X (given R = 0 or 1), in

that

ΛN(X) :=
f(X|R = 0)

f(X|R = 1)
=

P (R = 0|X)P (R = 1)

P (R = 1|X)P (R = 0)
=
{1− πN(X)}πN
πN(X)(1− πN)

,

where f(·|R = ·) is the conditional density function of X given R. The density ratio is

usually used in the so-called “covariate shift” setting in semi-supervised learning (SSL) and

missing data, where Ri’s are treated as fixed (or conditioned on) and PX 6= PX|R=1 is allowed;

see for example [KK13], [LZC20], and Section 4 of [KM20].

Here, we discuss a simple and fairly obvious connection of the offset model (2.16) to

a corresponding model for density ratio estimation. The analysis here can actually be seen

to be model-free and non-parametric. Observe that

logit{πN(X)} = log(πN)− log(1− πN)− log{ΛN(X)}.

The standard approach to modeling the density ratio is to model log{ΛN(X)} through basis

function expansion based on some basis functions {φj(X)}dj=1 (e.g., the linear bases will lead

to standard parametric forms). But this in general can be difficult to implement in practice.

However, the above representation suggests that the same model can be fitted by simply using
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a logistic regression model for R|X with covariates as the same basis functions, and further

using log{πN/(1 − πN)} as an offset (which can be estimated separately and plugged in

apriori into the likelihood equation). This provides a simple and flexible regression modelling

approach to estimate the density ratio. Our offset based model (2.16) precisely implements

such a model (albeit we had different motivations to consider it), and therefore provides a way

to estimate the density ratio as well. This is a key quantity involved (as a nuisance function)

in the semi-parametric efficiency bound for our parameter; see Theorem 4.1 of [KM20].

Our approach provides an automated and agnostic way of bypassing its estimation through a

theoretically equivalent but practically more flexible regression modeling approach.

A discussion similar to above can be found in Section 1 of [Qin98] who further proves

that the estimation approach as above corresponds to an optimal choice of the estimating

equation for estimating the density ratio among the class of all such equations. It is also

interesting to note that the semi-supervised (SS) setting actually bears a very close relation

to so-called case-control study designs (which are retrospective designs, as opposed to the

prospective cohort studies that we usually consider), since here the labeling indicator R is

typically treated as non-random (or conditioned), which is similar in spirit to case-control

designs (with R being replaced by case/control status). For statistical analyses of these kind

of studies, density ratio estimation models are often required and an estimation strategy via

a logistic regression model of the PS, similar as above, is often employed; see Section 1

of [Qin98] for more discussions.

Remark 2.13 (Connection with the maximum likelihood estimate (MLE) of the model

(2.18)). In fact, there is an one-one correspondence between γ̂ (we suppress the dependence
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on k for a moment) and the MLE of the model (2.18): if (β̂(1), β̂(−1)) denotes a sample

MLE, i.e., a solution (assuming it exists) to the (sample) likelihood equation for the model

(2.18), then γ̂ = (β̂(1)− log π̂N , β̂(−1)) is a sample MLE for the model (2.16). Conversely,

if γ̂ is a sample MLE for the model (2.16), then (β̂(1), β̂(−1)) = (γ̂(1) + log(π̂N), γ̂(−1)) is

a sample MLE for the model (2.18). All these claims are straightforward to show by means

of direct verification.

Remark 2.14 (Existence and uniqueness of γ̂). The uniqueness of γ̂ is a direct consequence

of the convexity of the sample log-likelihood. As for the existence, we appeal to the one-one

correspondence between γ̂ and the sample MLE of the model (2.18). We further use the

results of [Owe07] who demonstrated the existence of the sample MLE for the model (2.18)

under a fairly mild (sample) overlap condition; see Lemma 5 therein. Note that [Owe07]

shows this result for a slightly modified version of the log-likelihood wherein the empirical

average over unlabeled data is replaced by an expectation (assuming N is very large). But the

same proof technique could be applied to the actual log-likelihood along with a corresponding

appropriate modification of the (sample) overlap condition to conclude the existence of the

sample MLE for model (2.18). Consequently, this also establishes the existence of the sample

MLE for the offset model (2.16).

Remark 2.15 (Comparison with alternative estimators based on under-sampling). Under

the decaying PS model, a possible alternative to our offset logistic model based estimator

could be the “under-sampled” estimators of [Wan20]. Such estimators are constructed based

on an under-sampling of the (large sized) unlabeled data. Since the under-sampled data is

biased (as the under-sampling is done only for one group, i.e., the unlabeled group), addi-
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tional bias correction or weight adjustment is needed. One can improve the computational

efficiency and reduce the storage requirement by considering the under-sampled estimators.

However, as discussed in Remarks 3 and 4 of [Wan20], asymptotically, the under-sampled

estimators suffer from a loss of efficiency unless the remaining unlabeled data size (after

under-sampling) still dominates the labeled data size, which essentially brings us back to the

original decaying PS issue. Additionally, the under-sampled estimators have only been dis-

cussed in low dimensions, and their high-dimensional alternatives still need to be properly

studied.

2.4.2 Low-dimensional offset logistic regression

Let’s consider the case of p < ∞. We propose a PS estimator π̂N(·) for the offset

model (2.16), based on the full sample S and use its cross-fitted version (based on a subsample

S−k) to construct the DR mean estimator θ̂DRSS.

We construct π̂N(·) based on an apriori chosen estimate π̂N := N−1
∑N

i=1Ri. Let γ̂

be the minimizer of `N(γ; π̂N), where

`N(γ; a) := −N−1

N∑
i=1

[
Ri

−→
XT
i γ − log{1 + a exp(

−→
XT
i γ)}

]
, (2.21)

where recall that
−→
X = (1,X)T . Then, the PS estimate , π̂N(·), can be obtained by plugging

π̂N into (2.16), as follows:

π̂N(X) :=
π̂N exp(

−→
XT γ̂)

1 + π̂N exp(
−→
XT γ̂)

. (2.22)

Here, for any a ∈ (0, 1], `N(γ; a) is the negative log-likelihood under the offset based model,

up to a term −N−1
∑N

i=1 Ri log(a) that is independent of γ. Existence and uniqueness of

γ̂ has been discussed in detail in Remark 2.14. It is worth mentioning that the results
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of [Owe07] showcasing the existence of the MLE for the model (2.17) can be extended to

guarantee the existence of γ̂ as well.

The following theorem provides asymptotic results for γ̂ and π̂N(·), as well as an

adjusted RAL expansion of the DRSS estimator θ̂DRSS in low-dimensional setting with p being

fixed and when m(·) is possibly misspecified. For this result alone we consider the following

conditions on the design: E{exp(t‖X‖2)} <∞ for any t > 0, λmin

[
E{
−→
X
−→
XT ġ(

−→
XTγ0)}

]
> 0,

where g(·) was defined in (2.17) and ġ(·) = g(·){1− g(·)} is the derivative of g(·).

Theorem 2.4. Let NπN → ∞ as N → ∞, and ‖γ0‖2 < C < ∞ where γ0 was defined in

(2.16). Suppose that ‖[E{ġ(
−→
XTγ0)

−→
X
−→
XT}]−1‖2 < C with some constant C > 0. Then, as

N →∞,

γ̂ − γ0 = N−1

N∑
i=1

IFγ(Zi) + RN , with ‖RN‖2 = op
(
(NπN)−1/2

)
,

IFγ(Z) := J −1(γ0, πN){Ri − g(
−→
XTγ0 + log(πN))}

−→
X − (π−1

N R− 1)e1,

where e1 := (1, 0, . . . , 0)T ∈ Rp+1, J (γ0, πN) := E{
−→
X
−→
XT ġ(

−→
XTγ0 + log(πN))}, and ‖γ̂ −

γ0‖2 = Op((NπN)−1/2). Further, we also have the following error rates:

‖π−1
N (X)‖r,PX

� π−1
N ∀r > 0, and hence aN � πN ,∥∥∥∥1− πN(X)

π̂N(X)

∥∥∥∥
2,PX

= Op

(
(NπN)−1/2

)
, (2.23)

EX

[
aN

πN(X)

{
1− πN(X)

π̂N(X)

}2
]

= Op

(
(NπN)−1

)
= op(1). (2.24)

If we further assume that ‖m(·) − µ(·)‖2+c,PX
< ∞, then we have a RAL expansion of the
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term ∆̂N defined in (2.11) as follows:

∆̂N := N−1

N∑
i=1

IFπ(Zi) + op
(
(NπN)−1/2

)
, where (2.25)

IFπ(Z) := E
[
{1− πN(X)}{µ(X)−m(X)}

−→
XT
]
J −1(γ0, πN)

−→
X{R− πN(X)}. (2.26)

Moreover, if we assume ‖m̂(·) − µ(·)‖2+c,PX
= op(1) (we suppressed the dependency of m̂(·)

on k as in Theorem 2.2), then we have the following rate:

EX

[
aN

πN(X)
{m̂(X)− µ(X)}2

]
= op(1), (2.27)

and with it a RAL expansion of θ̂DRSS as:

θ̂DRSS − θ0 = N−1

N∑
i=1

Ψ(Zi) + op

(
1√
NπN

)
, where Ψ(Z) := ψµ,π(Z) + IFπ(Z), (2.28)

and ψµ,π(Z) is defined in (2.3). Lastly, E{Ψ(Z)} = 0, E{Ψ2(Z)} = O(π−1
N ).

The displays (2.23), (2.24) and (2.27) are the conditions we need to guarantee the

assumptions of Theorem 2.2, while the result (2.25) on ∆̂N helps characterize the full RAL

expansion of θ̂DRSS under misspecification of m̂(·). Lastly, notice that we do not assume

πN(X)/πN to be bounded bellow a.s., which is a condition required in [KM20].

Remark 2.16 (Necessity of the RAL expansion’s modification). When πN → 0, we observe

that part of the additional IF, IFπ(Z), in (2.26) has the following property:

E
[
{1− πN(X)}{µ(X)−m(X)}

−→
X
]

= E
[
{µ(X)−m(X)}

−→
X
]

+Op(πN).

If the outcome model is fitted by a linear model whose limit has a linear form µ(X) =
−→
XTβ∗,

with β∗ := {E(
−→
X
−→
XT )}−1E(

−→
XY ), then,

E
[
{µ(X)−m(X)}

−→
X
]

= β∗TE(
−→
X
−→
XT )− E(

−→
XY ) = 0,
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indicating that the RAL expansion’s modification is unnecessary when πN → 0 and m̂(·)

converges to the linear projection µ(·). Here, µ(·) 6= m(·).The same argument holds if one

performs a linear transformation on some basis function {φj(X)}dj=1 with a fixed d < ∞.

However, when d grows with N in that d/N → c ∈ (0, 1), a least squares estimator leads to a

latent misspecification i.e., the limit µ(·) 6= m(·) even if m(·) is indeed linear on {φj(X)}dj=1.

Hence, an adjusted RAL would be more appropriate if the outcome model is linear with a

growing degree of freedom; see Section 2.6.4 for corresponding simulation results.

A possible alternative to our offset logistic regression model based estimators could be

the so called “under-sampled” estimators as studied by [Wan20], where the observations from

the large unlabeled data are under-sampled in some way to create a more “balanced” setting.

However, such an approach may have several disadvantages; see Remark 2.15 for comparisons

and a more detailed discussion of this approach. Moreover, [Wan20] only considered such

estimators in low dimensions; whereas, we provide a thorough analysis of our model in both

low and high dimensional settings (as in Section 2.4.3 next). The results for the latter case, in

particular, are fairly interesting and non-trivial, and possibly the first such results extending

existing results on high-dimensional logistic regression.

2.4.3 High-dimensional offset logistic regression

Next, we consider a high-dimensional setting with p → ∞. The problem here is

challenging as together with p → ∞, the labels are extremely imbalanced in that πN =

P (R = 1) → 0. Unlike before, an adjusted RAL expansion for the case when m(·) is

misspecified is now not available, as we are no longer able to obtain a parametric rate for
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the PS estimation. In this section, we provide the consistency rate re,N in (2.9) for an offset,

sparse, logistic PS model and establish asymptotic results for θ̂DRSS when both m(·) and

πN(·) are correctly specified.

Consider the same parametric offset model (2.16), except here we allow p → ∞ as

N → ∞. In this subsection, we assume the parameter γ0 to be sparse with s := ‖γ0‖0

denoting its sparsity level. Let π̂N := N−1
∑N

i=1Ri and for every γ ∈ Rp+1 and a ∈ (0, 1],

recall `N(γ; a) defined in (2.21). Let γ̂ be a minimizer of the convex program:

arg min
γ∈Rp+1

{`N(γ; π̂N) + λN‖γ‖1} , (2.29)

with a sequence λN > 0. Then, πN(X) can be estimated similarly as in (2.22) by π̂N(X) :=

g(
−→
XT γ̂ + log(π̂N)). We establish the theoretical properties of our estimators γ̂ and π̂N(·) in

3 parts: 1) establish a restricted strong convexity (RSC) property; 2) control the l∞ norm

of the gradient of the loss at the true parameter, i.e., ‖∇γ`N(γ0; π̂N)‖∞; and 3) obtain the

final probabilistic bounds on the error rates of our estimator.

RSC property for the offset logistic model We first analyze the RSC property of our

high dimensional offset logistic model. Under our imbalanced treatment setting, we show

that the RSC condition holds with a parameter of the order of πN → 0 (rather than a

constant bounded away from 0), once the RSC condition holds for a balanced logistic model

with some constant κ > 0. For any ∆,γ ∈ Rp+1, define the following:

δ`(∆; a;γ) := `N(γ + ∆; a)− `N(γ; a)−∆T∇γ`N(γ; a). (2.30)
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We say the restricted strong convexity (RSC) property holds for δ`(∆; a;γ0) with parameter

κ on a given set A if

δ`(∆; a;γ0) ≥ κ‖∆‖2
2, for all ∆ ∈ A. (2.31)

We have the following deterministic result.

Lemma 2.1. For any a ∈ (0, 1],

δ`(∆; a;γ0) ≥ aδ`(∆; 1;γ0).

Hence, for a given set A and for any given realization of the data, if the RSC property

holds for δ`(∆; 1;γ0) with parameter κ on a set A, then the RSC property also holds for

δ`(∆; a;γ0) with parameter aκ on A.

Notice that

δ`(∆; 1;γ0) = `N(γ0 + ∆; 1)− `N(γ0; 1)−∆T∇γ`N(γ0; 1)

= `bal
N (γ0 + ∆)− `bal

N (γ0)−∆T∇γ`bal
N (γ0), where

`bal
N (γ) := −N−1

N∑
i=1

[R∗i
−→
XTγ − log{1 + exp(

−→
XTγ)}], ∀γ ∈ Rp+1,

with (R∗i )
N
i=1 being i.i.d. random variables generated from Bernoulli(g(

−→
XTγ0)). Here, `bal

N (γ)

is the negative log-likelihood function under a balanced logistic model with the true parameter

γ0. By Lemma 2.1, we relate the RSC property of our imbalanced model to a standard

balanced logistic model. The RSC property for a balanced logistic model has been studied

in [NRWY10], among others. We also present a more general version in this chapter; see

Lemma 2.3.
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Gradient control Now, we control the l∞ norm of the gradient, ‖∇γ`N(γ0; π̂N)‖∞, and the

following lemma demonstrates that the rate of ‖∇γ`N(γ0; π̂N)‖∞ = Op({N−1πN log(p)}1/2).

Lemma 2.2. Let
−→
XTγ0 be a sub-Gaussian random variable and

−→
X a marginal sub-Gaussian

random vector, in that ‖
−→
XTγ0‖ψ2 ≤ σγ0 < ∞ and max1≤j≤p+1 ‖

−→
X(j)‖ψ2 ≤ σ < ∞, respec-

tively. Then, for any t1, t2 ≥ 0 and t2 < NπN/9,

‖∇γ`N(γ0; π̂N)‖∞ ≤ C1(πN + π
1/2
N )

√
{t1 + log(p+ 1)}

N
+ C4

{√
t2πN
N

+
t2
N

}

+ (C2 + C3πN)

√
log(2N){t1 + log(p+ 1)}

N
,

with probability at least 1− 6 exp(−t1)− 2 exp(−t2). The constants C1, C2, C3, C4 > 0 inde-

pendent of N are defined through equations (2.113)-(2.114).

Define S := {j ≤ p+ 1 : γ0(j) 6= 0}, s = |S| and the cone set :

Cδ(S; 3) := {∆ ∈ Rp+1 : ‖∆Sc‖1 ≤ 3‖∆S‖1, ‖∆‖2 = δ}, (2.32)

where ∆S = {∆(j)}j∈S and ∆Sc = {∆(j)}j 6∈S. Define the critical tolerance:

δN := inf
{
δ > 0 : δ ≥ 2λNs

1/2κ̃−1, RSC holds for `N(·; π̂N) with κ̃ over Cδ(S; 3)
}
.

Then, any optimal solution γ̂ = γ̂λN to the convex program (2.29) satisfies ‖γ̂ − γ0‖2 ≤ δN .

Probabilistic bounds Finally, we now obtain the probabilistic bounds and convergence

rates for γ̂, and subsequently π̂N(·), in the following result.

Theorem 2.5. Assume log(p) log(N) = O(NπN) and s log(p) = o(NπN) as N, p → ∞,

where s := ‖γ0‖0. Assume conditions in Lemma 2.2. Suppose the RSC property holds
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for δ`(∆; 1;γ0) with parameter κ > 0 on the set C(S; 3) := {∆ ∈ Rp+1 : ‖∆Sc‖1 ≤

3‖∆S‖1, ‖∆‖2 ≤ 1}, with probability at least 1− αN , where αN = o(1). Let

MN := C5

√
πN log(p+ 1)

N
+ C6

√
log(2N) log(p+ 1)

N
,

with some constants C5, C6 > 0. For any λN satisfying 2(1 + c)MN ≤ λN ≤ 9κπNs
−1/2 with

c > 0, whenever NπN > 9c log(p+ 1),

‖γ̂ − γ0‖2 ≤
1

9
λNs

1/2π−1
N κ−1, with probability at least 1− 8(p+ 1)−c − αN .

Further assume that ‖
−→
XTv‖ψ2 ≤ σ‖v‖2 for any v ∈ Rp+1. Then, for any r > 0, with some

λN �
√
πN log(p)/N ,

‖π−1
N (X)‖r,PX

� π−1
N ∀r > 0, and hence aN � πN ,∥∥∥∥1− πN(·)

π̂N(·)

∥∥∥∥
r,PX

= Op

√s log(p)

NπN

 ∀r > 0, (2.33)

EX

[
aN

πN(X)

{
1− πN(X)

π̂N(X)

}2
]

= Op

(
s log(p)

NπN

)
= op(1). (2.34)

Moreover, if ‖m̂(·)−m(·)‖2+c,PX
= op(1) with constant c > 0, then,

EX

[
aN

πN(X)
{m̂(X)−m(X)}2

]
= op(1).

Remark 2.17 (Non-standard rates). The implication of Theorem 2.5 is that for some λN �

{N−1πN log(p)}1/2,

‖γ̂ − γ0‖2 = Op

√s log(p)

NπN

 . (2.35)

As long as πN → 0, the rate λN � {N−1πN log(p)}1/2, is faster than the usual rate of

{N−1 log(p)}1/2 used for tuning parameter choice in a standard (i.e., balanced) `1-penalized

logistic regression. This in turn implies slower than usual rate of convergence in (2.35), as
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NaN is much smaller than N . This is also reflected in the error rates of the conditional

propensity score, in (2.33). The “effective sample size” here is NaN rather than N , thus

leading to non-standard rates. The results above may therefore be seen as a generalization

of standard high-dimensional logistic regression models (i.e., where positivity holds) to the

case of a decaying PS. To our knowledge, these rates are novel for high-dimensional settings.

Remark 2.18 (Marginal versus “Joint” sub-Gaussianity). In Theorem 2.5, we obtained a

non-asymptotic upper bound for ‖γ̂ − γ0‖2 that only requires a marginal sub-Gaussianity of

−→
X, that is max1≤j≤p+1 ‖

−→
X(j)‖ψ2 ≤ σ < ∞. Unfortunately, to show (2.33) and (2.34), we

do require a “joint” sub-Gaussianity of
−→
X in that ‖

−→
XTv‖ψ2 ≤ σ‖v‖2 for any v ∈ Rp+1. In

high-dimensions, the joint sub-Gaussianity is stronger than the marginal sub-Gaussianity in

that the latter enforces a weaker dependency among the covariates; see Section 4 of [KC18]

for more details.

Note that in Theorem 2.5, we only assume the RSC property for a classical balanced

logistic regression model, which is standard in the high-dimensional regression (and clas-

sification) literature. As shown in Proposition 2 of [NRWY10], with probability at least

1− 2 exp(−c1N),

δ`(∆; 1;γ0) = `bal
N (γ0 + ∆)− `bal

N (γ0)−∆T∇γ`bal
N (γ0)

≥ c2‖∆‖2

{
‖∆‖2 − c3

√
log(p+ 1)

N
‖∆‖1

}
, ∀‖∆‖2 ≤ 1, (2.36)

with some constants c1, c2, c3 > 0, and hence, the RSC property holds for δ`(∆; 1;γ0) with

some κ > 0 on the set C(S; 3). The conditions required in [NRWY10] essentially amount

to: s log(p) = o(N), the intercept term γ0(1) = 0, X is a jointly sub-Gaussian with mean
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zero, and λmin{Cov(X)} ≥ c > 0. Similar conditions are also required in Example 9.17

and Theorem 9.36 of [Wai19]. In the following Lemma 2.3, we propose a user-friendly

version of RSC condition results for a balanced logistic regression problem that only re-

quire a marginal sub-Gaussianity of X and an additional (2 + c)-th moment condition

sup‖v‖2≤1 ‖
−→
XTv‖2+c,PX

≤ M < ∞. In addition, we do not enforce a mean zero X, and

we do not require a zero intercept term in the logistic model either.

Lemma 2.3. Assume the smallest eigenvalue λmin{E(
−→
X
−→
XT )} ≥ κl > 0, a (2+c)-th moment

condition sup‖v‖2≤1 ‖
−→
XTv‖2+c,PX

≤ M < ∞, a c-th moment condition ‖
−→
XTγ0‖c,PX

≤ µc <

∞ and the marginal sub-Gaussianity sup1≤j≤p+1 ‖
−→
X(j)‖ψ2 ≤ σ <∞. Then, with probability

at least 1 − 2 exp(−c1N), (2.36) holds, with constants c1, c2, c3 > 0. If we further assume

that s log(p) = o(N), then, for large enough N , there exists a constant κ > 0 such that, with

probability at least 1− 2 exp(−c1N),

δ`(∆; 1;γ0) ≥ κ‖∆‖2
2, ∀∆ ∈ C(S; 3). (2.37)

Although Lemma 2.3 is based on the logistic loss function, it in fact applies to any

loss function `bal
N (·) based on the maximum likelihood of a balanced generalized linear model.

2.4.4 Stratified labeling

We consider here a stratified labeling mechanism. Here, the labeling indicator R de-

pends on X, but does so only through an intermediate stratification in X. Such mechanisms

are often of practical relevance in biomedical studies when prior information is available

on stratification through another observed variable. Specifically, let δ ∈ {0, 1} denote an

observed random stratum indicator and assume that R ⊥⊥ X|δ. Note that nothing changes
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if we were to move from binary to finitely many strata, and while we stick to a binary δ

here for simplicity, our work can be easily extended to a multiple-stratum situation. Let

πj,N := P (R = 1|δ = j,X) ≡ P (R = 1|δ = j) for each j = 0, 1. We assume δ is a “well

behaved” indicator whose distribution is independent of N and itself satisfies the overlap

condition

c < pδ(x) := P (δ = 1|x) < 1− c, for all x ∈ X ,

with a constant 0 < c < 1/2 independent of N . Then, we have:

πN(X) = π1,Npδ(X) + π0,N{1− pδ(X)}.

As long as δ is observed, then πj,N for each j can be estimated very easily and at a rate

Op((NπN)−1/2). Moreover, when πN → 0 as N →∞, pδ(X) can be estimated at a parametric

N−1/2 rate if the model is parametric, or at a rate slower than N−1/2 but still as a function

of N (rather than NπN) if a non-parametric estimator is performed. Therefore, we will

continue to have a fast enough rate for π̂N(·) under this setting, so that the error term ∆̂N

in (2.11) can potentially have a rate:

∆̂N = Op(re,N) = Op

(
(NπN)−1/2

)
.

In this section, we propose a PS estimator based on the stratified labeling model above, and

provide a full characterization of its properties as well as a RAL expansion for the error ∆̂N .

With a slight abuse of notation, we define Zi = (Ri, RiYi, δi,Xi) in this section, and

let S, S−k be defined accordingly. Suppose p̂δ(·) is an estimator of pδ(·), and let p̂δ(Xi) :=

p̂δ(Xi;S−k(i)) be a corresponding cross-fitted version of this estimator.

Define π̂−k1 =:
∑

i 6∈Ik δiRi/
∑

i 6∈Ik δi and π̂−k0 :=
∑

i 6∈Ik(1 − δi)Ri/
∑

i 6∈Ik(1 − δi) to be
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the cross-fitted estimators of π1,N and π0,N , respectively. The PS πN(·) is then estimated by:

π̂N(Xi) := π̂
−k(i)
1 p̂δ(Xi) + π̂

−k(i)
0 {1− p̂δ(Xi)}.

Theorem 2.6. Assume πN → 0 and NπN →∞ as N →∞. Suppose

‖p̂δ(·)− pδ(·)‖2,PX
= Op(rδ,N), for some sequence rδ,N = o(1). (2.38)

Then, for each k ≤ K,

EX

{
1− πN(X)

π̂N(X)

}2

= Op

(
r2
δ,N +NπN

)
.

Besides, assume ‖µ(·)−m(·)‖∞,PX
<∞ and (2.8). Then, the overall RAL expansion of our

DRSS estimator θ̂DRSS under a stratified labeling model as above is:

θ̂DRSS − θ0 = N−1

N∑
i=1

Ψ(Zi) +Op

(
(NπN)−1 +N−1/2 + rµ,N(NπN)−1/2 + rδ,N

)
,

where Ψ(Z) := ψµ,π(Z) + IFπ(Z) and E{Ψ(Z)} = 0 with ψµ,π(Z) as defined in (2.3) and

IFπ(Z) :=

{
δR

pδ
− π1,N

}
EX

[
pδ(X)

πN(X)
{µ(X)−m(X)}

]
+

{
(1− δ)R

1− pδ
− π0,N

}
EX

[
1− pδ(X)

πN(X)
{µ(X)−m(X)}

]
,

where pδ = E{pδ(X)} = E(δ). If we further assume rδ,N = o((NπN)−1/2), then

θ̂DRSS − θ0 = N−1

N∑
i=1

Ψ(Zi) + op
(
(NπN)−1/2

)
. (2.39)

Note that Theorem 2.6 still holds if π1 and π0 are estimated without cross-fitting in

that π̂1 :=
∑N

i=1 δiRi/
∑N

i=1 δi and π̂0 :=
∑N

i=1(1− δi)Ri/
∑N

i=1(1− δi).

Example 2.2. Here we illustrate a simple logistic model for pδ(·) and investigate the con-

ditions we need for rδ,N to be op((NπN)−1/2), so that the RAL expansion (2.39) holds. For
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a fixed dimensional X, let p̂δ(·) be the MLE of the logistic model. Then rδ,N = O(N−1/2) =

o((NπN)−1/2) as long as πN → 0. As for a high-dimensional X, consider a sparse logis-

tic model for pδ(·), and let p̂δ(·) be the logistic estimator based on a Lasso penalty. Then,

rδ,N = O((sδ log(p)/N)1/2), where sδ is the sparsity level of the logistic models parameter.

Hence, rδ,N = op((NπN)−1/2) if sδπN log(p) = o(1) as N →∞.

Remark 2.19 (Comparisons with other works). We note that similar, yet different, prob-

lems are studied in [GLTC20] and [HLL20]. They both work on decaying stratified labeling

propensity score models, but with different types of stratified labeling mechanisms and pa-

rameters of interest compared to our setting. [HLL20] assume a deterministic δ given X.

Essentially, they require Y ⊥⊥ R|δ, so that δ can be seen as a univariate confounder with a

finite support. On the other hand, both [GLTC20] and our work allow additional randomness

in δ. Besides, [HLL20] work on a “finite-population” ATE estimation problem, where the

treatment assignment is the only source of randomness. [GLTC20] focus on the estimation

of the regression parameters and prediction performance measures, for low-dimensional co-

variates and a binary outcome problem; and we are mainly working on the estimation of the

mean response while allowing for high-dimensional covariates and real valued outcomes.

2.4.5 Missing completely at random (MCAR)

Apart from the offset based model and the stratified labeling model discussed in

Sections 2.4.1-2.4.4, a simple but commonly used PS model would be a MCAR mechanism.

In this section, we consider this special MCAR mechanism with πN(·) ≡ πN , and derive the

properties of θ̂DRSS including an adjusted regular and asymptotically linear (RAL) expansion
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allowing for misspecification of m̂(·). In this case, a cross-fitted estimator of the PS is

proposed as π̂N(Xi) = N−1
−k
∑

i∈I−k Ri for any i ∈ Ik, where N−k := |I−k| and I−k := I \ Ik.

Based on such a MCAR PS estimator, we have the following result on the conditions and

conclusions in Theorem 2.2.

Theorem 2.7. Assume πN(X) ≡ πN , NπN → ∞ as N → ∞, ‖m(·) − µ(·)‖2,P < ∞ and

‖m̂(·)− µ(·)‖2,P = op(1). Then, aN = πN and

E

[
aN

πN(X)

{
1− πN(X)

π̂N(X)

}2
]

= E

{
1− πN(X)

π̂N(X)

}2

= Op

(
(NπN)−1

)
.

Furthermore,

θ̂DRSS − θ0 = N−1

N∑
i=1

Ψ(Zi) + op
(
(NaN)−1/2

)
, where Ψ(Z) := ψµ(Z) + IFπ(Z),

ψµ(Z) =
R

πN
{Y − µ(X)}+ µ(X)− θ0,

IFπ(Z) :=

(
R− πN
πN

)
∆µ, ∆µ := E{µ(X)−m(X)}.

Note that Theorem 2.7 still holds if the PS is estimated without cross-fitting that

π̂N(X) ≡ π̂N = n/N , where n =
∑N

i=1 Ri.

Remark 2.20. The modification on the RAL expansion of the mean estimator is needed

only when ∆µ = E{µ(X) −m(X)} 6= 0. Recall Remark 2.16; if the outcome model is fitted

by a linear model that µ(X) =
−→
XTβ∗, where

−→
X = (1,XT )T , β∗ = arg minβ∈Rp+1 E{(Y −

−→
XTβ)2} = {E(

−→
X
−→
XT )}−1E(

−→
XY ) is the optimal population slope. Then, we have ∆µ =

E{µ(X) − m(X)} = E(
−→
XT ){E(

−→
X
−→
XT )}−1E(

−→
XY ) − E(Y ) = 0. This suggests that, the

RAL modification is unnecessary when m̂(·) converges to the linear projection. In other

words, for such cases, the original asymptotic normality (2.10) still holds even if µ(·) 6=
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m(·) and it coincides with the results in [ZBC19]. Classical examples for such m̂(·) include

least squares (LS) estimator and regularized least squares such as Lasso and ridge under

appropriate conditions.

Reconciliation with “traditional” SS inference literature under MCAR Now,

we consider the “traditional” SS setting where all the Ri’s are considered deterministic

(or conditioned) apart from an underlying MCAR assumption. Under this SS setting, we

consider the SS mean estimator proposed in [ZB21]. In fact, their estimator is a special

case of our double robust SS (DRSS) mean estimator θ̂DRSS except that the PS is estimated

without cross-fitting, i.e., π̂N(X) ≡ π̂N = n/N . Under this SS setting, we have the following

RAL expansion for θ̂DRSS:

θ̂DRSS − θ0 = N−1

N∑
i=1

ψµ,SS(Zi) + op(n
−1/2), where

ψµ,SS(Z) =
NRi

n
[Yi − µ(Xi)] + µ(Xi)− θ0.

Here, conditional on Ri’s, {ψµ,SS(Zi)}Ni=1 are independent and identically distributed, with

mean zero.

Now we compare the asymptotic variances for the following three cases: a) Ri’s are

considered as random (MCAR), πN is known, and the mean estimator, defined as (2.2), is

based on the true PS πN ; b) Ri’s are considered as random (MCAR), the mean estimator,

defined as (2.5) and studied in Theorem 2.7, is based on the cross-fitted constant estimate

that π̂N(Xi) = |S−k|−1
∑

i 6∈Ik Ri for i ∈ Ik; c) Ri’s are considered as fixed (SS) and the mean

estimator is as defined in [ZB21].
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For the above three cases, we have the following asymptotic variances:

Var{ψµ,π(Z)} =
E{Y − µ(X)}2

πN
−∆2

µ + Var{µ(X)}+ 2Cov{Y − µ(X), µ(X)},

Var{Ψ(Z)} =
E{Y − µ(X)}2

πN
−

∆2
µ

πN
+ Var{µ(X)}+ 2Cov{Y − µ(X), µ(X)},

Var{ψµ,SS(Z)|RI} =
E{Y − µ(X)}2

π̂N
−

∆2
µ

π̂N
+ Var{µ(X)}+ 2Cov{Y − µ(X), µ(X)}.

We can see that, Var{ψµ(Z)} = Var{Ψ(Z)} + (π−1
N − 1)∆2

µ ≥ Var{Ψ(Z)}. It suggests that,

under the MCAR setting, even if πN is known, it is still worth estimating πN instead of

directly plugging in the true value πN as long as ∆µ 6= 0. As for the asymptotic variance

under the SS setting, notice the fact that

πN
π̂N
− 1 = Op

(
(NπN)−1/2

)
.

Hence, Var{ψµ,SS(Z)|RI} = Var{Ψ(Z)}{1 +Op((NπN)−1/2)} = Var{Ψ(Z)}{1 + op(1)}.

2.5 Average treatment effect estimation with imbal-

anced treatment groups

One important application of our proposed method of Section 2.3 is the popular causal

inference problem of ATE estimation and hypothesis testing. Our method is particularly

suited when extremely imbalanced treatment groups occur. The causal inference literature

typically accesses ATE inference by imposing an overlap condition by which P (c < E(R|X) <

1 − c) = 1 for some constant c > 0. Here, R ∈ {0, 1} is a binary treatment indicator. In

contrast, we show that our method identifies and performs inference about the ATE without

requiring an overlap condition. We extend our results for the MAR-SS setting of Section
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2.3 to a causal inference setting while allowing a decaying PS in that πN := E(R) → 0 (or

alternatively, πN → 1) as N → ∞. To the best of our knowledge, no previous work has

addressed such an extremely imbalanced treatment groups setting in the context of ATE

estimation.

We formulate the problem setup first. Suppose we have samples S := (Ri, Yi,Xi)
N
i=1

with (R, Y,X) being an independent copy of (Ri, Yi,Xi). Here, R = RN ∈ {0, 1} is a

treatment indicator that, similarly as in Section 2.3, is allowed to depend on N , i.e., R = RN .

As before, X ∈ Rp denotes the covariate vector while Y = Y(R) now denotes the observed

potential outcome. Here, Y(1) denotes the potential outcome if the individual have been

treated and Y(0) denotes the potential outcome if the individual haven’t been treated. For

each individual, only one of the potential outcomes Y(R) is observable. Consistency of the

potential outcomes is assumed throughout: Y = Y(R) = RY(1) + (1−R)Y(0); see [Rub74]

and [IR15b].

Now we define the parameter of interest, θATE := θ1 − θ0 to be the ATE of R on Y ,

where with a slight abuse of notation we denote with θ1 := E{Y(1)} and θ0 := E{Y(0)}.

Moving forward we assume the usual unconfoundedness condition [Imb04,Tsi07]:

{Y(0),Y(1)} ⊥⊥ R | X.

Then, θ1 = E{m1(X)} and θ0 = E{m0(X)}, where mr(X) := E(Y |R = r,X)≡ E{Y (r)|X}

denotes the conditional outcome model, and r ∈ {0, 1}. With extremely imbalanced groups,

without loss of generality, we assume πN = P (R = 1) → 0, i.e., most of the individuals are

likely to be in the control group.

The estimation of θ1 is the same as the mean estimation problem in the MAR-SS
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setting, if we set Zis to be (Ri, RiYi,Xi). Similarly, θ0 can be identified as a mean with Zis

being (1−Ri, (1−Ri)Yi,Xi). Now, as in (2.5), θ1 and θ0 can be estimated by:

θ̂1 := N−1

N∑
i=1

[
m̂1(Xi) +

Ri

π̂N(Xi)
{Yi − m̂1(Xi)}

]
,

θ̂0 := N−1

N∑
i=1

[
m̂0(Xi) +

1−Ri

1− π̂N(Xi)
{Yi − m̂0(Xi)}

]
, (2.40)

where, for each k ≤ K and i ∈ Sk, m̂1(Xi) = m̂1(Xi;S−k), m̂0(Xi) = m̂0(Xi;S−k), and

π̂N(Xi) = π̂N(Xi;S−k) are cross-fitted estimators of m1(Xi), m0(Xi), and πN(Xi), respec-

tively. Here, S−k = {Zi : i ∈ I\Ik} is defined analogously as discussed below (2.2) in Section

2.3.1, and for r ∈ {0, 1}, m̂r(·) is constructed based on {Zi : i ∈ S−k, Ri = r}. Hence, θATE

can be estimated by the DRSS ATE estimator :

θ̂ATE := θ̂1 − θ̂0. (2.41)

The asymptotic properties of θ̂1 follow directly from Theorem 2.2. The following theorem

provides the asymptotic results for θ̂0. For the sake of a better interpretability, in the

following theorem, we suppose cπN < πN(X) with some constant c > 0 and hence we have

aN � πN .

Theorem 2.8. Assume N → ∞, πN → 0 and NπN → ∞. Suppose for all x ∈ X ,

cπN < πN(x), eN(x) < CπN , for some c, C > 0. Let ε := Y − Rm1(X) − (1 − R)m0(X),

assume ‖ε‖2,P <∞, ‖m0(·)− µ0(·)‖2,PX
< C <∞, Var{m0(X)} <∞ as well as

‖m̂0(·)− µ0(·)‖2,PX = Op(rµ,0,N), sup
x∈X

∣∣∣∣ π̂N(x)− eN(x)

πN

∣∣∣∣ = Op(re,N), (2.42)
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for a sequence of positive numbers rµ,0,N = o(1) and re,N = o(1). Then,

θ̂0 − θ0 = N−1

N∑
i=1

ψ0(Zi) +Op(N
−1/2π

1/2
N rµ,0,N +N−1/2πNre,N + πNre,Nrµ,0,N)

+ 1{m0(·) 6= µ0(·)}Op(πNre,N) + 1{eN(·) 6= πN(·)}Op(πNrµ,0,N),

where

ψ0(Z) := µ0(X)− θ0 +
1−R

1− eN(X)
{Y − µ0(X)} (2.43)

=
eN(X)−R
1− eN(X)

{m0(X)− µ0(X)}+m0(X)− θ0 +
ε(1−R)

1− eN(X)
,

with E{ψ0(Z)} = 1{eN(·) 6= πN(·), µ(·) 6= m(·)}Op(πN) and Var{ψ0(Z)} = Op(N
−1).

Hence,

θ̂0 − θ0 = N−1

N∑
i=1

ψ0(Zi) + op(N
−1/2), with E{ψ0(Z)} = 0,

once πNre,Nrµ,0,N = o(N−1/2), πNre,N = o(N−1/2) if m(·) is misspecified, πNrµ,0,N = o(N−1/2)

if πN(·) is misspecified and at least one of m(·) and πN(·) is correctly specified. If both m(·)

and πN(·) are misspecified, then we have θ̂0 − θ0 = Op(πN +N−1/2).

Remark 2.21 (Comparison with the naive estimator). Now we consider the comparison

of the doubly robust estimator θ̂0 with the empirical average of the response over the control

group Ȳ0 :=
∑N

i=1(1−Ri)Yi/
∑N

i=1(1−Ri). The empirical average Ȳ0 can be seen as a special

case of the estimator (2.40) (without cross-fitting) in that π̂N(X) = N−1
∑N

i=1(1 − Ri) and

m̂0(X) = 0. Notice that when πN → 0,

Ȳ0 = E{m0(X)|R = 0}+Op(N
−1/2), with

θ0 − E{m0(X)|R = 0} = [E{m0(X)|R = 1} − E{m0(X)|R = 0}]πN = O(πN),
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and hence Ȳ0− θ0 = Op(πN +N−1/2), which coincides with the case that both m(·) and πN(·)

are misspecified in Theorem 2.8.

Corollary 2.1. Let the assumptions of Theorem 2.8 hold. Assume that at least one of

eN(·) = πN(·) and µ1(·) = m1(·) holds, and let

‖m̂1(X;S−k)− µ1(·)‖2,PX
= Op(rµ,1,N), with rµ,1,N = o(1).

Then,

θ̂ATE − θATE = N−1

N∑
i=1

ψ1(Zi) + ∆̂N +Op(re,Nrµ,1,N + πNre,Nrµ,0,N)

+ 1{m0(·) 6= µ0(·)}Op(πNre,N) + 1{eN(·) 6= πN(·)}Op(πNrµ,0,N)

+ 1{eN(·) 6= πN(·), µ(·) 6= m(·)}Op(πN) + op
(
(NπN)−1/2

)
,

where

ψ1(Z) := µ1(X)− θ1 +
R

eN(X)
{Y − µ1(X)},

with E{ψ1(Z)} = 0, E{ψ2
1(Z)} � π−1

N , and

∆̂N :=
1

N

N∑
i=1

{
Ri

πN(Xi)
− Ri

π̂N(Xi)

}
{µ1(Xi)−m1(Xi)} = Op(re,N) if eN(·) = πN(·),

∆̂N :=
1

N

N∑
i=1

{
Ri

πN(Xi)
− Ri

eN(Xi)

}
{m̂1(Xi)−m1(Xi)} = Op(rµ,1,N) if µ1(·) = m1(·).

Moreover, if re,Nrµ,1,N = op((NπN)−1/2),

θ̂ATE − θATE = N−1

N∑
i=1

ψ1(Zi) + op
(
(NπN)−1/2

)
+ ∆̂N ,

when one of the following holds: (a) both m(·) and πN(·) are correctly specified, re,Nrµ,0,N =

o(N−1/2π
−3/2
N ); (b) πN(·) is correctly specified, m(·) is misspecified, re,N = o(N−1/2π

−3/2
N );

(c) m(·) is correctly specified, πN(·) is misspecified, rµ,0,N = o(N−1/2π
−3/2
N ); (d) both m(·)

and πN(·) are misspecified, Nπ3
N = o(1).
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2.6 Simulation studies

We illustrate the performance of our DRSS estimators through extensive simulations

under various data generating processes (DGPs). We first provide our main simulation results

in Section 2.6.1, where the double robustness (in the sense of consistency or inference) shows

up in different misspecification settings. Then, in Section 2.6.2, we show the simulation

results under a special stratified labeling PS model that was discussed in Section 2.4.4. We

further focus on sparse linear models in high dimensions, and provide results under different

sparsity levels in Section 2.6.3. In Section 2.6.4, we further consider the adjusted confidence

interval constructed based on the RAL expansion in Remark 2.9.

2.6.1 Main simulation results

We consider the following choices of parameters p, N and πN :

p ∈ {10, 500}, (N, πN) ∈ {(10000, 0.01), (50000, 0.01), (10000, 0.1)}.

We generate i.i.d. Gaussian covariates Xi ∼iid Np(0, Ip) and residuals εi ∼iid N(0, 1). Given

Xi, we generate Ri|Xi ∼ Bernoulli(πN(Xi)), with the following PS models:

P1. (Constant PS) πN(·) ≡ πN .

P2. (Offset logistic PS) πN(x) = g(−→x Tγ0 + log(πN)), where g(·) is defined in (2.17).

We consider the following outcome models for Yi given Xi:

O1. (Linear outcome) Yi =
−→
XT
i β0 + εi.

O2. (Quadratic outcome) Yi =
−→
XT
i β0 +

∑p+1
j=1 α0(j)

−→
X i(j)

2 + εi.
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The parameter values are chosen as:

β0 = (−0.5, 1, 1, 1,01×(p−3))
T , γ0 = (γ0(1), 1,01×(p−1))

T , α0 = (0, 1, 1, 1,01×(p−3))
T ,

where γ0(1) is chosen so that E(R) = πN for each πN . The following DGPs are considered:

Setting a: P1+O1, Setting b: P1+O2, Setting c: P2+O1, and Setting d: P2+O2. For each

DGP, we compare the performance of the following estimators: (1) A naive mean estimator

over the labeled samples Ȳlabeled :=
∑N

i=1RiYi/
∑N

i=1 Ri; (2) An oracle case of the mean

estimator θ̂DRSS in (2.5) with πN(·) and m(·) treated as known; (3) The proposed DRSS

mean estimator θ̂DRSS in (2.5), with K = 5.

We consider several different choices on the outcome and propensity estimators. In

low dimensions (p = 10), we consider two parametric outcome model estimators: least

squares (LS) linear regression and a polynomial (poly) regression with degree 2 (without

interaction terms), and two non-parametric outcome estimators: random forest (RF) and

reproducing kernel Hilbert space (RKHS) regression using a Gaussian kernel. In high dimen-

sions (p = 500), we consider two `1-regularized parametric outcome model estimators: Lasso

and a degree-2 polynomial regression with a Lasso-type penalty (poly-Lasso). As for the

PS estimators, we consider a constant estimator that essentially corresponds to a MCAR

estimator, and an offset based logistic estimator (or it’s `1-regularized version, log-Lasso,

when p = 500). The tuning parameters in the regularized estimators are chosen via 5-fold

cross-validation. The hyperparameters in the RF are chosen by minimizing the out-of-bag

(OOB) error. The bandwidth parameter for the Gaussian kernel in RKHS regression is set

to be p.

The simulations are repeated for 500 times and the results are presented in Tables 2.1-
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Table 2.1: Simulation setting a with p = 10. Bias: empirical bias; RMSE: root mean square
error; Length: average length of the 95% confidence intervals; Coverage: average coverage of
the 95% confidence intervals; ESD: empirical standard deviation; ASD: average of estimated
standard deviations. The blue color in the tables denotes the “smallest” and correctly
specified parametric model for each of the settings.

π̂N(·) m̂(·) Bias RMSE Length Coverage ESD ASD

N = 10000, πN = 0.01 (NπN = 100)

Ȳlabeled 0.013 0.204 0.789 0.932 0.203 0.201

oracle 0.003 0.106 0.397 0.942 0.106 0.101

constant

LS 0.003 0.115 0.436 0.938 0.115 0.111

poly 0.002 0.127 0.482 0.934 0.127 0.123

RF 0.008 0.155 0.604 0.926 0.155 0.154

RKHS 0.009 0.145 0.547 0.936 0.145 0.139

logistic

LS 0.005 0.127 0.534 0.972 0.127 0.136

poly 0.003 0.144 0.600 0.972 0.144 0.153

RF 0.003 0.152 0.762 0.990 0.152 0.194

RKHS 0.007 0.161 0.698 0.976 0.161 0.178

N = 50000, πN = 0.01 (NπN = 500)

Ȳlabeled 0.008 0.092 0.352 0.950 0.092 0.090

oracle 0.002 0.045 0.179 0.948 0.045 0.046

constant

LS 0.003 0.045 0.182 0.956 0.045 0.046

poly 0.003 0.046 0.185 0.952 0.046 0.047

RF 0.004 0.056 0.218 0.942 0.056 0.056

RKHS 0.003 0.056 0.213 0.942 0.056 0.054

logistic

LS 0.003 0.046 0.189 0.960 0.046 0.048

poly 0.003 0.047 0.192 0.962 0.046 0.049

RF 0.002 0.052 0.227 0.974 0.052 0.058

RKHS 0.001 0.054 0.223 0.960 0.054 0.057
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Table 2.2: Simulation setting b with p = 10. The rest of the caption details remain the same
as those in Table 2.1.

π̂N(·) m̂(·) Bias RMSE Length Coverage ESD ASD

N = 10000, πN = 0.01 (NπN = 100)

Ȳlabeled 0.008 0.334 1.251 0.936 0.334 0.319

oracle 0.001 0.103 0.410 0.946 0.103 0.105

constant

LS 0.009 0.311 1.167 0.938 0.311 0.298

poly 0.002 0.124 0.496 0.950 0.125 0.127

RF 0.002 0.253 0.939 0.934 0.253 0.239

RKHS 0.004 0.245 0.930 0.928 0.245 0.237

logistic

LS 0.154 0.420 1.540 0.950 0.391 0.393

poly 0.001 0.143 0.615 0.968 0.144 0.157

RF 0.075 0.319 1.222 0.960 0.310 0.312

RKHS 0.107 0.327 1.216 0.950 0.310 0.310

N = 50000, πN = 0.01 (NπN = 500)

Ȳlabeled 0.005 0.138 0.558 0.958 0.138 0.142

oracle 0.001 0.046 0.184 0.952 0.046 0.047

constant

LS 0.008 0.119 0.478 0.952 0.119 0.122

poly 0.000 0.047 0.189 0.952 0.047 0.048

RF 0.001 0.076 0.304 0.942 0.076 0.077

RKHS 0.001 0.076 0.306 0.952 0.076 0.078

logistic

LS 0.032 0.128 0.505 0.954 0.124 0.129

poly 0.000 0.048 0.196 0.956 0.048 0.050

RF 0.009 0.079 0.320 0.958 0.079 0.082

RKHS 0.014 0.080 0.324 0.960 0.079 0.083

N = 10000, πN = 0.1 (NπN = 1000)

Ȳlabeled 0.001 0.107 0.411 0.944 0.107 0.105

oracle 0.000 0.045 0.176 0.946 0.045 0.045

constant

LS 0.000 0.091 0.353 0.958 0.091 0.090

poly 0.000 0.045 0.177 0.944 0.046 0.045

RF -0.001 0.057 0.228 0.952 0.057 0.058

RKHS -0.001 0.058 0.232 0.952 0.058 0.059

logistic

LS 0.012 0.093 0.363 0.958 0.092 0.093

poly 0.000 0.046 0.179 0.944 0.046 0.046

RF 0.003 0.058 0.233 0.956 0.058 0.059

RKHS -0.005 0.058 0.237 0.956 0.058 0.061
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Table 2.3: Simulation setting c with p = 10. The rest of the caption details remain the same
as those in Table 2.1.

π̂N(·) m̂(·) Bias RMSE Length Coverage ESD ASD

N = 10000, πN = 0.01 (NπN = 100)

Ȳlabeled 0.980 0.999 0.783 0.002 0.194 0.200

oracle 0.003 0.106 0.397 0.942 0.106 0.101

constant

LS 0.005 0.151 0.434 0.850 0.151 0.111

poly -0.004 0.194 0.480 0.792 0.194 0.122

RF 0.570 0.610 0.596 0.108 0.218 0.152

RKHS 0.403 0.439 0.543 0.210 0.175 0.139

logistic

LS 0.015 0.234 0.884 0.952 0.234 0.226

poly -0.002 0.365 1.083 0.922 0.365 0.276

RF -0.171 0.705 1.708 0.950 0.685 0.436

RKHS -0.140 0.675 1.525 0.938 0.661 0.389

N = 50000, πN = 0.01 (NπN = 500)

Ȳlabeled 0.968 0.972 0.350 0.000 0.090 0.089

oracle 0.000 0.070 0.281 0.968 0.070 0.072

constant

LS 0.001 0.063 0.181 0.868 0.063 0.046

poly 0.001 0.070 0.183 0.812 0.070 0.047

RF 0.341 0.351 0.215 0.004 0.085 0.055

RKHS 0.240 0.251 0.211 0.028 0.072 0.054

logistic

LS 0.000 0.072 0.297 0.964 0.073 0.076

poly 0.000 0.076 0.307 0.956 0.076 0.078

RF -0.016 0.121 0.491 0.956 0.120 0.125

RKHS -0.015 0.123 0.464 0.938 0.122 0.118

N = 10000, πN = 0.1 (NπN = 1000)

Ȳlabeled 0.820 0.822 0.244 0.000 0.063 0.062

oracle 0.001 0.052 0.200 0.946 0.052 0.051

constant

LS 0.001 0.046 0.142 0.868 0.046 0.036

poly 0.001 0.051 0.143 0.864 0.051 0.036

RF 0.241 0.248 0.156 0.006 0.058 0.040

RKHS 0.149 0.158 0.154 0.102 0.053 0.039

logistic

LS 0.001 0.052 0.203 0.936 0.052 0.052

poly 0.001 0.053 0.206 0.930 0.053 0.053

RF -0.009 0.070 0.294 0.970 0.069 0.075

RKHS -0.005 0.069 0.277 0.942 0.069 0.071
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Table 2.4: Simulation setting d with p = 10. The rest of the caption details remain the same
as those in Table 2.1.

π̂N(·) m̂(·) Bias RMSE Length Coverage ESD ASD

N = 10000, πN = 0.01 (NπN = 100)

Ȳlabeled 1.885 1.934 1.617 0.002 0.432 0.412

oracle 0.008 0.168 0.625 0.952 0.168 0.160

constant

LS -0.929 1.040 1.148 0.226 0.469 0.293

poly 0.002 0.189 0.492 0.808 0.189 0.125

RF 0.317 0.443 1.033 0.752 0.309 0.264

RKHS 0.392 0.472 1.022 0.664 0.263 0.261

logistic

LS 0.378 1.386 3.996 0.910 1.335 1.019

poly 0.012 0.255 1.011 0.932 0.255 0.258

RF 0.026 0.573 1.828 0.954 0.573 0.466

RKHS -0.014 0.570 1.727 0.950 0.570 0.441

N = 50000, πN = 0.01 (NπN = 500)

Ȳlabeled 1.901 1.910 0.728 0.000 0.192 0.186

oracle -0.002 0.074 0.287 0.944 0.074 0.073

constant

LS -0.951 0.972 0.473 0.000 0.202 0.121

poly -0.002 0.076 0.189 0.798 0.076 0.048

RF 0.074 0.123 0.323 0.816 0.099 0.082

RKHS 0.163 0.191 0.328 0.500 0.100 0.084

logistic

LS 0.078 0.485 1.661 0.924 0.479 0.424

poly -0.002 0.082 0.318 0.940 0.082 0.081

RF 0.002 0.181 0.594 0.924 0.181 0.152

RKHS 0.003 0.178 0.557 0.936 0.178 0.142

N = 10000, πN = 0.1 (NπN = 1000)

Ȳlabeled 1.371 1.377 0.471 0.000 0.120 0.120

oracle -0.001 0.053 0.225 0.980 0.053 0.057

constant

LS -0.746 0.756 0.342 0.000 0.122 0.087

poly -0.001 0.052 0.172 0.914 0.052 0.044

RF 0.010 0.065 0.227 0.924 0.064 0.058

RKHS 0.053 0.084 0.231 0.838 0.065 0.059

logistic

LS 0.019 0.234 0.951 0.944 0.233 0.243

poly -0.001 0.054 0.226 0.976 0.054 0.058

RF -0.005 0.100 0.379 0.940 0.099 0.097

RKHS 0.000 0.094 0.358 0.940 0.094 0.091
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Table 2.5: Simulation setting a with p = 500. The rest of the caption details remain the
same as those in Table 2.1.

π̂N(·) m̂(·) Bias RMSE Length Coverage ESD ASD

N = 10000, πN = 0.01 (NπN = 100)

Ȳlabeled -0.003 0.195 0.788 0.960 0.195 0.201

oracle -0.001 0.103 0.400 0.954 0.103 0.102

constant
Lasso 0.000 0.119 0.478 0.950 0.119 0.122

poly-Lasso -0.002 0.120 0.493 0.950 0.120 0.126

log-Lasso
Lasso 0.000 0.120 0.487 0.960 0.120 0.124

poly-Lasso -0.002 0.121 0.502 0.952 0.121 0.128

N = 50000, πN = 0.01 (NπN = 500)

Ȳlabeled 0.003 0.093 0.352 0.944 0.093 0.090

oracle 0.001 0.044 0.178 0.948 0.044 0.046

constant
Lasso 0.001 0.046 0.184 0.952 0.046 0.047

poly-Lasso 0.001 0.046 0.185 0.952 0.046 0.047

log-Lasso
Lasso 0.001 0.046 0.185 0.948 0.046 0.047

poly-Lasso 0.001 0.046 0.186 0.952 0.046 0.047

N = 10000, πN = 0.1 (NπN = 1000)

Ȳlabeled -0.003 0.063 0.260 0.958 0.063 0.066

oracle -0.002 0.037 0.147 0.956 0.037 0.037

constant
Lasso -0.002 0.038 0.149 0.960 0.038 0.038

poly-Lasso -0.002 0.038 0.149 0.960 0.038 0.038

log-Lasso
Lasso -0.002 0.038 0.149 0.956 0.038 0.038

poly-Lasso -0.002 0.038 0.149 0.960 0.038 0.038

2.8. We report the bias, the root mean square error (RMSE), the average length and average

coverage of the 95% confidence intervals, the empirical standard error and the averaged

estimated standard error for all settings. The blue color in the tables denotes the “smallest”

(i.e., most parsimonious) and correctly specified parametric model for each of the settings.

We first check the proposed estimator’s double robustness in terms of inference. As

per Theorem 2.2, the asymptotic normality results hold when the product rate condition is
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Table 2.6: Simulation setting b with p = 500. The rest of the caption details remain the
same as those in Table 2.1.

π̂N(·) m̂(·) Bias RMSE Length Coverage ESD ASD

N = 10000, πN = 0.01 (NπN = 100)

Ȳlabeled 0.003 0.306 1.244 0.948 0.306 0.317

oracle -0.003 0.107 0.411 0.934 0.107 0.105

constant
Lasso 0.004 0.296 1.220 0.966 0.296 0.311

poly-Lasso 0.000 0.174 0.668 0.954 0.175 0.171

log-Lasso
Lasso 0.008 0.297 1.241 0.966 0.298 0.317

poly-Lasso 0.002 0.175 0.680 0.954 0.175 0.173

N = 50000, πN = 0.01 (NπN = 500)

Ȳlabeled -0.004 0.147 0.554 0.926 0.147 0.141

oracle -0.002 0.054 0.215 0.954 0.054 0.055

constant
Lasso -0.005 0.129 0.483 0.928 0.129 0.123

poly-Lasso -0.002 0.051 0.195 0.934 0.051 0.050

log-Lasso
Lasso -0.004 0.129 0.484 0.926 0.129 0.124

poly-Lasso -0.002 0.051 0.196 0.936 0.051 0.050

N = 10000, πN = 0.1 (NπN = 1000)

Ȳlabeled -0.001 0.104 0.411 0.948 0.104 0.105

oracle 0.001 0.042 0.175 0.964 0.043 0.045

constant
Lasso -0.001 0.091 0.357 0.944 0.092 0.091

poly-Lasso 0.001 0.043 0.178 0.960 0.043 0.046

log-Lasso
Lasso -0.001 0.091 0.357 0.948 0.091 0.091

poly-Lasso 0.001 0.043 0.179 0.962 0.043 0.046

satisfied and when both of πN(·) and m(·) are correct, in which case, the proposed estimator

is (NπN)1/2-consistent with the asymptotic efficiency matching that of the oracle estimator.

In low dimensions (p = 10), the product rate condition always holds since π̂N(·) has an

estimation error of rate (NπN)−1/2 and m̂(·) (parametric or non-parametric) is consistent.

As in Tables 2.1-2.4, the coverage of θ̂DRSS based on correct πN(·) and m(·) is close to 95%

even with a small NπN = 100. In high dimensions (p = 500), the product rate condition
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Table 2.7: Simulation setting c with p = 500. The rest of the caption details remain the
same as those in Table 2.1.

π̂N(·) m̂(·) Bias RMSE Length Coverage ESD ASD

N = 10000, πN = 0.01 (NπN = 100)

Ȳlabeled 0.977 0.997 0.782 0.006 0.198 0.199

oracle -0.003 0.160 0.612 0.970 0.160 0.156

constant
Lasso 0.275 0.320 0.480 0.412 0.164 0.123

poly-Lasso 0.324 0.368 0.496 0.320 0.173 0.127

log-Lasso
Lasso 0.099 0.210 0.563 0.782 0.186 0.144

poly-Lasso 0.117 0.229 0.602 0.778 0.197 0.154

N = 50000, πN = 0.01 (NπN = 500)

Ȳlabeled 0.975 0.979 0.350 0.000 0.087 0.089

oracle -0.003 0.071 0.282 0.956 0.071 0.072

constant
Lasso 0.115 0.132 0.184 0.370 0.065 0.047

poly-Lasso 0.130 0.146 0.185 0.306 0.067 0.047

log-Lasso
Lasso 0.022 0.072 0.241 0.884 0.069 0.061

poly-Lasso 0.026 0.075 0.243 0.886 0.070 0.062

N = 10000, πN = 0.1 (NπN = 1000)

Ȳlabeled 0.822 0.824 0.245 0.000 0.065 0.062

oracle 0.005 0.051 0.198 0.958 0.050 0.050

constant
Lasso 0.077 0.090 0.143 0.438 0.047 0.036

poly-Lasso 0.086 0.098 0.143 0.386 0.047 0.036

log-Lasso
Lasso 0.019 0.053 0.173 0.894 0.049 0.044

poly-Lasso 0.021 0.054 0.174 0.896 0.050 0.044

depends on the true PS model. When the true PS model is P1 (MCAR), the corresponding

π̂N(·) still has an estimation error of rate (NπN)−1/2 and hence the product rate condition

holds; see Tables 2.5 and 2.6. When the true PS model is P2 (offset logistic), the product

rate condition requires smsπ = o(NπN{log(p)}−2), where sm := ‖β0‖0 and sπ := ‖γ0‖0. We

can see the coverages are slowly growing towards 95% as NπN increases in Tables 2.7 and

2.8. More results with different sparsity levels in the high dimensions can be found in Section
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Table 2.8: Simulation setting d with p = 500. The rest of the caption details remain the
same as those in Table 2.1.

π̂N(·) m̂(·) Bias RMSE Length Coverage ESD ASD

N = 10000, πN = 0.01 (NπN = 100)

Ȳlabeled 1.875 1.917 1.620 0.000 0.401 0.413

oracle -0.002 0.157 0.613 0.970 0.157 0.156

constant
Lasso -0.183 0.535 1.225 0.756 0.503 0.313

poly-Lasso 0.273 0.360 0.625 0.566 0.235 0.160

log-Lasso
Lasso -0.229 0.621 1.511 0.736 0.578 0.386

poly-Lasso 0.090 0.263 0.708 0.824 0.247 0.181

N = 50000, πN = 0.01 (NπN = 500)

Ȳlabeled 1.890 1.900 0.731 0.000 0.191 0.187

oracle -0.006 0.074 0.286 0.954 0.074 0.073

constant
Lasso -0.657 0.686 0.481 0.020 0.200 0.123

poly-Lasso 0.086 0.113 0.194 0.562 0.074 0.049

log-Lasso
Lasso -0.254 0.377 0.968 0.684 0.279 0.247

poly-Lasso 0.010 0.076 0.247 0.888 0.075 0.063

N = 10000, πN = 0.1 (NπN = 1000)

Ȳlabeled 1.355 1.360 0.470 0.000 0.118 0.120

oracle 0.000 0.058 0.224 0.964 0.058 0.057

constant
Lasso -0.551 0.566 0.343 0.002 0.128 0.088

poly-Lasso 0.055 0.080 0.175 0.706 0.057 0.045

log-Lasso
Lasso -0.179 0.250 0.649 0.706 0.175 0.165

poly-Lasso 0.008 0.058 0.198 0.910 0.058 0.051

2.6.3. Here, in Tables 2.2, 2.4, and 2.6, we can see fairly good coverages even if the outcome

model is misspecified and the confidence interval is constructed without a modification. This

coincides with the Remarks 2.16 and 2.20; see more details in Section 2.6.4.

Regarding efficiency, as in Tables 2.1-2.8, we observe that the proposed estimators

based on correct parametric models provide “optimal” RMSEs that are close to the oracle

estimator. In Tables 2.1-2.4, the RMSEs based on non-parametric (RF and RKHS) m̂(·) are
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worse than those based on (correctly specified) parametric models with the difference arising

from the product rate of the estimation errors of π̂N(·) and m̂(·). For a (correctly specified)

πN(·) with an estimation error Op((NπN)−1/2), such a difference is not significant and the

RMSE is first order insensitive to estimation error of m̂(·).

We also check the double robustness in terms of consistency of the proposed esti-

mators, when only one of πN(·) and m(·) is correct. As seen in Tables 2.3-2.6, the naive

mean estimator, Ȳlabeled, is not consistent when the selection bias occurs, i.e., the PS is not

a constant. Nevertheless, as suggested by Theorem 2.2, the proposed DRSS estimator is

still consistent, and it’s consistency rate depends on the estimation error rate of the correct

one among π̂N(·) and m̂(·). The proposed θ̂DRSS can still be (NπN)1/2-consistent when the

correct estimator has an estimation error of rate (NπN)−1/2, which is typically true when

the correct model is a low dimensional parametric model: see Tables 2.2, 2.4, and 2.6 for

correct πN(·); see Tables 2.3 and 2.4 for correct m(·). If the correct estimator is linear (offset

logistic) in high dimensions, θ̂DRSS − θ0 is of the order Op({(NπN)−1s log(p)}1/2), where s is

the sparsity of the correct model; see results in Tables 2.7 and 2.8. If the correct estimator is

non-parametric, we would expect a non-parametric rate on the proposed estimator, matching

results in Tables 2.3 and 2.4.

2.6.2 Results under the stratified labeling model

Now we work on a special PS model, that of stratified labeling, as discussed in Section

2.4.4:

P3. (Stratified PS) Suppose we further observe the stratum indicators δi ∈ {0, 1}, with the
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following model: δi|Xi ∼ Bernoulli(pδ(Xi)) and Ri|δi ∼ Bernoulli(0.5πNδi + 1.5πN(1−

δi)), where pδ(x) = g(x(1)) and g(u) = exp(u)/{1 + exp(u)}.

We consider the same choices of p, N , and πN as in Section 2.6.1, and we focus on the

following DGP of Setting e, i.e., P3+O2. Furthermore, we consider an additional PS esti-

mator based on the stratified labeling of Section 2.4.4, where pδ(·) is estimated by a logistic

regression (with a Lasso-type regularization when p = 500). The results are shown in Tables

2.9 and 2.10 for the case p = 10 and p = 500, respectively.

By Theorem 2.2, the estimators based on a correctly specified πN(·) (stratified) and

m(·) (poly/RF/RKHS) provide (NπN)1/2-consistent estimations and valid asymptotic con-

fidence intervals. Additionally, when πN(·) is correctly specified (stratified) and m(·) is mis-

specified (linear), the proposed DRSS mean estimator has a consistency rate Op((NπN)−1/2+

rδ,N), with rδ,N , defined in (2.38), satisfying rδ,N = O(N−1/2) in low dimensions and rδ,N =

O({sδ log(p)}1/2N−1/2), in high dimensions, as discussed in Example 2.2. The simulation

results in Tables 2.9 and 2.10 support our theoretical arguments: we can see the strat-

ified+poly/RF/RKHS estimators provide coverages close to 95%, and all the estimators

based on a stratified π̂N(·) provide RMSEs of a similar magnitude.

2.6.3 Results for high dimensional sparse models: Investigating

performance under varying sparsity levels

Here we focus on the high dimensional case (p = 500) with different sparsity levels.

We consider the following PS and outcome models:

P2’. (Offset logistic PS with different sparsity levels) Let πN(x) = g(−→x Tγsπ + log(πN)) and
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Table 2.9: Simulation setting e with p = 10. The rest of the caption details remain the same
as those in Table 2.1.

π̂N(·) m̂(·) Bias RMSE Length Coverage ESD ASD

N = 10000, πN = 0.01 (NπN = 100)

Ȳlabeled -0.205 0.360 1.203 0.876 0.297 0.307

oracle -0.002 0.101 0.415 0.964 0.101 0.106

constant

LS -0.082 0.318 1.149 0.916 0.308 0.293

poly -0.009 0.125 0.493 0.954 0.125 0.126

RF -0.100 0.259 0.919 0.908 0.239 0.234

RKHS -0.087 0.248 0.909 0.918 0.232 0.232

logistic

LS 0.129 0.419 1.639 0.960 0.399 0.418

poly -0.011 0.146 0.633 0.976 0.146 0.162

RF 0.075 0.328 1.346 0.960 0.320 0.343

RKHS 0.109 0.341 1.337 0.974 0.323 0.341

stratified

LS 0.009 0.324 1.256 0.948 0.324 0.320

poly -0.010 0.126 0.510 0.958 0.126 0.130

RF 0.021 0.268 1.062 0.956 0.268 0.271

RKHS 0.016 0.262 1.042 0.960 0.262 0.266

N = 50000, πN = 0.01 (NπN = 500)

Ȳlabeled -0.210 0.251 0.532 0.652 0.138 0.136

oracle -0.001 0.048 0.187 0.970 0.048 0.048

constant

LS -0.078 0.150 0.469 0.882 0.128 0.120

poly -0.001 0.050 0.188 0.942 0.050 0.048

RF -0.053 0.101 0.296 0.832 0.086 0.075

RKHS -0.053 0.098 0.299 0.866 0.083 0.076

logistic

LS -0.014 0.135 0.531 0.952 0.135 0.135

poly -0.001 0.051 0.199 0.946 0.051 0.051

RF -0.011 0.091 0.349 0.944 0.090 0.089

RKHS -0.002 0.090 0.353 0.942 0.090 0.090

stratified

LS -0.001 0.132 0.508 0.950 0.132 0.130

poly -0.001 0.050 0.193 0.944 0.050 0.049

RF -0.006 0.089 0.333 0.956 0.089 0.085

RKHS -0.005 0.088 0.336 0.940 0.088 0.086
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Table 2.10: Simulation setting e with p = 500. The rest of the caption details remain the
same as those in Table 2.1.

π̂N(·) m̂(·) Bias RMSE Length Coverage ESD ASD

N = 10000, πN = 0.01 (NπN = 100)

Ȳlabeled -0.189 0.363 1.193 0.880 0.311 0.304

oracle 0.005 0.098 0.417 0.960 0.098 0.106

constant
Lasso -0.167 0.352 1.186 0.888 0.310 0.303

poly-Lasso -0.103 0.220 0.696 0.894 0.195 0.178

log-Lasso
Lasso -0.160 0.351 1.215 0.904 0.312 0.310

poly-Lasso -0.096 0.218 0.717 0.894 0.196 0.183

stratified
Lasso 0.005 0.339 1.318 0.926 0.339 0.336

poly-Lasso 0.010 0.200 0.780 0.948 0.200 0.199

N = 50000, πN = 0.01 (NπN = 500)

Ȳlabeled -0.196 0.239 0.535 0.702 0.136 0.136

oracle 0.000 0.048 0.187 0.950 0.048 0.048

constant
Lasso -0.134 0.187 0.478 0.776 0.130 0.122

poly-Lasso -0.032 0.061 0.195 0.896 0.052 0.050

log-Lasso
Lasso -0.101 0.163 0.491 0.844 0.128 0.125

poly-Lasso -0.022 0.056 0.196 0.914 0.052 0.050

stratified
Lasso 0.001 0.137 0.530 0.946 0.137 0.135

poly-Lasso 0.000 0.052 0.202 0.944 0.052 0.051

N = 10000, πN = 0.1 (NπN = 1000)

Ȳlabeled -0.205 0.226 0.377 0.428 0.095 0.096

oracle -0.001 0.044 0.173 0.944 0.044 0.044

constant
Lasso -0.124 0.151 0.335 0.688 0.087 0.086

poly-Lasso -0.024 0.051 0.173 0.900 0.045 0.044

log-Lasso
Lasso -0.082 0.119 0.347 0.854 0.087 0.088

poly-Lasso -0.013 0.047 0.174 0.928 0.045 0.044

stratified
Lasso -0.013 0.090 0.367 0.956 0.089 0.094

poly-Lasso -0.002 0.045 0.176 0.948 0.045 0.045

Ri|Xi ∼ Bernoulli(πN(Xi)), where g(u) = exp(u)/{1 + exp(u)}.

O1’. (Linear outcome with different sparsity levels) Let Yi =
−→
XT
i βsm + εi.
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The parameter values are:

βsm = (−0.5,
√

3/sm11×sm ,01×(p−sm))
T and γsπ = (γ0(1),

√
1/sπ11×sπ ,01×(p−sπ))

T .

We consider a DGP, Setting c’: P2’+O1’, with the following choices of p, N , πN , sm and sπ:

p = 500, N ∈ {50000, 200000}, πN = 0.01, (sm, sπ) ∈ {(3, 15), (15, 3)}.

We illustrate the performance of the same estimators that we considered in Section 2.6.1 (for

p = 500); the results are presented in Table 2.11.

In Table 2.11, we observe that the RMSEs of θ̂DRSS based on log-Lasso PS estimators

are smaller than those based on constant PS estimators. This coincides with our Remark 2.6,

as well as Theorems 2.2 and 2.5 - if both of the nuisance functions are correctly specified,

we have θ̂DRSS − θ0 = Op((NπN)−1/2 +
√
smsπ log(p)/(NπN)); if only the outcome model

is correctly specified, we have a slower upper bound θ̂DRSS − θ0 = Op(
√
sm log(p)/(NπN)).

For the DRSS estimators based on log-Lasso PS estimators, we can see that the biases of

the estimators, originating from the product rate
√
smsπ log(p)/(NπN), are non-ignorable

compared to the RMSEs, especially for smaller N . As N grows, however, the coverages of

the confidence intervals start getting closer to the desired 95% level. This also coincides

with our Remark 2.6 that we expect a valid inference result when smsπ log(p) = o(NπN) for

correctly specified models.

2.6.4 Inference results based on adjusted confidence intervals

In Sections 2.6.1-2.6.3, we illustrated the simulation performance of the proposed

confidence interval (2.15), which requires both the outcome and PS models to be correctly
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Table 2.11: Simulation setting c’ with p = 500. The rest of the caption details remain the
same as those in Table 2.1.

π̂N(·) m̂(·) Bias RMSE Length Coverage ESD ASD

sm = 3, sπ = 15, N = 50000, πN = 0.01 (NπN = 500)

Ȳlabeled 0.755 0.760 0.351 0.000 0.090 0.090

oracle 0.000 0.074 0.284 0.944 0.074 0.072

constant
Lasso 0.089 0.103 0.184 0.522 0.052 0.047

poly-Lasso 0.098 0.111 0.185 0.458 0.052 0.047

log-Lasso
Lasso 0.038 0.071 0.203 0.860 0.060 0.052

poly-Lasso 0.042 0.073 0.204 0.848 0.060 0.052

sm = 3, sπ = 15, N = 200000, πN = 0.01 (NπN = 2000)

Ȳlabeled 0.754 0.756 0.175 0.000 0.045 0.045

oracle 0.000 0.035 0.143 0.960 0.035 0.037

constant
Lasso 0.044 0.051 0.090 0.506 0.025 0.023

poly-Lasso 0.049 0.055 0.090 0.430 0.025 0.023

log-Lasso
Lasso 0.012 0.032 0.111 0.914 0.030 0.028

poly-Lasso 0.013 0.033 0.111 0.914 0.030 0.028

sm = 15, sπ = 3, N = 50000, πN = 0.01 (NπN = 500)

Ȳlabeled 0.752 0.757 0.349 0.000 0.085 0.089

oracle 0.001 0.068 0.283 0.966 0.068 0.072

constant
Lasso 0.155 0.169 0.196 0.200 0.068 0.050

poly-Lasso 0.184 0.197 0.201 0.118 0.070 0.051

log-Lasso
Lasso 0.049 0.086 0.237 0.824 0.071 0.060

poly-Lasso 0.058 0.094 0.245 0.794 0.074 0.063

sm = 15, sπ = 3, N = 200000, πN = 0.01 (NπN = 2000)

Ȳlabeled 0.753 0.754 0.175 0.000 0.044 0.045

oracle 0.000 0.036 0.144 0.964 0.036 0.037

constant
Lasso 0.076 0.082 0.091 0.172 0.032 0.023

poly-Lasso 0.089 0.094 0.091 0.094 0.032 0.023

log-Lasso
Lasso 0.013 0.037 0.124 0.912 0.034 0.032

poly-Lasso 0.015 0.038 0.125 0.904 0.035 0.032

specified, as in part (a) of Theorem 2.2. In this section, we compare (2.15) with an adjusted

version based on the asymptotic expansion in part (b) of Theorem 2.2 and the RAL expansion
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in Remark 2.9. The adjusted confidence interval allows inference via θ̂DRSS even under

misspecified outcome models, and the adjusted RAL expansions based on different PS models

are provided in Theorems 2.4, 2.6, and 2.7. Here, we only focus on the results for the skewed

offset logistic PS model as discussed in Theorem 2.4, and we present numerical results to

validate the inference provided by the adjusted RAL expansion (2.28) of θ̂DRSS given therein.

Apart from the settings c and d in Section 2.6.1, an additional DGP, Setting f: P2+O3,

is considered. Here, P2 is the offset logistic PS model as in Section 2.6.1, and O3 is a cubic

outcome model defined as follows:

O3. (Cubic outcome) Yi =
−→
XT
i β0 +

∑p+1
j=1 α0(j)

−→
X i(j)

2 +
∑p+1

j=1 ζ0(j)
−→
X i(j)

3 + εi.

The parameter value is defined as:

ζ0 = (0, 0.2, 0.2, 0.2,01×(p−3))
T .

We illustrate the behavior of the original confidence interval (2.15) and the adjusted

confidence interval based on the RAL expansion (2.28). We consider the Settings c, d, and

f, where the outcome models are polynomial (without interaction) with degrees 1, 2, and

3, respectively. Apart from the empirical estimator Ȳlabeled and the oracle estimator as in

Section 2.6.1, we also consider the proposed mean estimators θ̂DRSS based on an offset logistic

model based PS estimator, and polynomial model based outcome regression estimators with

degrees 1, 2, and 3. The simulation results are presented in Table 2.12.

We can clearly see the improvement of the coverage based on the adjusted confidence

intervals, especially for polynomial estimators m̂(·) with degrees 2 and 3. As mentioned in

Remark 2.16, a latent misspecification arises here since the effective sample size NπN = 100

is comparable with the dimension of the working model: for polynomial regression with
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degrees 2 and 3, the dimensions of the design matrix are 21 and 31, respectively. Under such

a circumstance, m̂(·) tends to be a biased estimate and a (latent) misspecification arises, in

that its (effective) target (or limit) becomes some µ(·) 6= m(·).

Such an example suggests that, the adjusted confidence intervals, when πN(·) is cor-

rectly specified, allow us to better capture the model complexity of m̂(·) and improve the

efficiency of the DRSS estimator. The modified confidence intervals can still provide valid

inference even when a degree of freedom of the model becomes comparable with the effective

sample size.

In Table 2.12, one can see that neither of the averages of the estimated standard

deviations (ASDs) or the adjusted ASDs are close to the empirical standard deviations

(ESDs) for the DRSS mean estimators based on polynomial regressions with degrees 2 and

3, while we can still achieve fairly acceptable coverages for the confidence intervals. This is

not contradicted with our theory: we only obtain asymptotic results in terms of convergence

in distribution or probability, whereas ASD = ESD + o(1) requires a convergence in mean

(i.e., L1 convergence). Such a difference is possibly related to the instability of the LS-type

outcome estimator, when the dimension of the working model is comparable with the sample

size.

2.7 Application to the NHEFS data

We now apply our imbalanced ATE estimator proposed in Section 2.5 to assess the

effect of smoking and alcohol drinking on weight gain, using a subset of data from the

National Health and Nutrition Examination Survey Data I Epidemiologic Follow-up Study
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Table 2.12: Simulations under Settings c, d and f, with p = 10, N = 10000 and πN =
0.01 (NπN = 100). Bias: empirical bias; RMSE: root mean square error; Length: average
length of the 95% confidence intervals; Coverage: average coverage of the 95% confidence
intervals; ESD: empirical standard deviation; ASD: average of estimated standard deviations.
The results for adjusted (adj) confidence intervals based on the RAL expansion (2.28) in
Theorem 2.4 are provided in parentheses.

π̂N(·) m̂(·) Bias RMSE Length(adj) Coverage(adj) ESD ASD(adj)

Setting c

Ȳlabeled 0.979 0.998 0.784 0.002 0.197 0.200

oracle -0.007 0.164 0.607 0.972 0.164 0.155

logistic

poly1(LS) -0.009 0.227 0.865(0.881) 0.952(0.964) 0.227 0.221(0.225)

poly2 0.002 0.277 1.017(1.039) 0.940(0.964) 0.277 0.260(0.265)

poly3 -0.013 0.491 1.436(1.465) 0.922(0.956) 0.492 0.366(0.374)

Setting d

Ȳlabeled 1.923 1.968 1.628 0.002 0.418 0.415

oracle 0.011 0.158 0.615 0.960 0.158 0.157

logistic

poly1(LS) 0.493 1.638 4.352(4.202) 0.908(0.936) 1.564 1.110(1.072)

poly2 -0.006 0.401 1.058(1.080) 0.916(0.954) 0.401 0.270(0.275)

poly3 -0.013 0.562 1.457(1.483) 0.918(0.942) 0.563 0.372(0.378)

Setting f

Ȳlabeled 2.613 2.670 2.182 0.000 0.549 0.557

oracle -0.003 0.164 0.623 0.966 0.164 0.159

logistic

poly1(LS) 0.302 1.267 4.406(4.163) 0.914(0.918) 1.232 1.124(1.062)

poly2 -0.018 0.584 1.752(1.800) 0.862(0.900) 0.584 0.447(0.459)

poly3 -0.005 0.410 1.279(1.316) 0.894(0.926) 0.410 0.326(0.336)

(NHEFS). As per [HR10], the NHEFS was jointly initiated by the National Center for Health

Statistics and the National Institute on Aging in collaboration with other agencies of the

United States Public Health Service. The NHEFS dataset has been studied by [HR10]

and [EHvdL20]. The subset of the NHEFS data we consider consists of N = 1561 cigarette

smokers aged 25− 74 years, who had a baseline visit and a follow-up visit approximately 10

years later. We consider two types of product (joint) treatment indicators R
(1)
1 , R

(2)
1 ∈ {0, 1}:

R(1) = 1 denotes that the individual has not quit smoking before the follow-up visit and has

not drunk alcohol before the baseline visit, and R(1) = 0 otherwise; R(2) = 1 denotes that
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the individual has quit smoking before the follow-up visit and has not drunk alcohol before

the baseline visit, and R(2) = 0 otherwise. We omit 5 individuals whose alcohol drinking

information was missing. The weight gain (in kg), Y ∈ R, was measured as the body

weight at the follow-up visit minus the body weight at the baseline visit. Same as in [HR10]

and [EHvdL20], the following 9 confounding variables, X are considered: sex (0: male, 1:

female), age (in years), race (0: white, 1: other), education (5 categories), intensity and

duration of smoking (number of cigarettes per day and years of smoking), physical activity

in daily life (3 categories), recreational exercise (3 categories), and weight (in kg).

We estimate the ATE of the product (joint) treatments R(1) and R(2) on weight

gain. The ATE estimators θ̂
(1)
ATE and θ̂

(2)
ATE are constructed using (2.41), based on samples

S(1) := (Yi, R
(1)
i ,Xi)

N
i=1 and S(2) := (Yi, R

(2)
i ,Xi)

N
i=1, respectively. Recall that the sample

size is N = 1561, and the dimension (after converting categorical variables) is p = 12.

The estimated proportions of the treated groups are π̂
(1)
N := N−1

∑N
i=1R

(1)
i = 0.088 and

π̂
(2)
N := N−1

∑N
i=1R

(2)
i = 0.037. We consider three PS estimators: a constant estimator, an

offset based logistic estimator with a Lasso-type penalty (log-Lasso), and a random forest

(RF). We consider four outcome models: a Lasso estimator, a degree-2 polynomial estimator

without interactions and with a Lasso-type penalty (poly-Lasso), a random forest (RF), and

a reproducing kernel Hilbert space (RKHS) estimator. We compare the proposed estimators

with naive empirical difference (empdiff) estimators, (
∑N

i=1R
(j)
i )−1

∑N
i=1R

(j)
i Yi−{

∑N
i=1(1−

R
(j)
i )}−1

∑N
i=1(1 − R(j)

i )Yi, for j = 1, 2. To reduce the randomness coming from the sample

splitting, we repeat the sample splitting for B = 10 times and report the median of the ATE

estimators based on each split. The asymptotic variance is then estimated by a plugged-in

version using the mean estimators as well as the asymptotic variance estimators based on
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each split; see more details of this technique in Definition 3.3 of [CCD+18].

We report the ATE estimators, the corresponding 95% confidence intervals, and the

length of the confidence intervals in the Table 2.13. We can see negative estimated ATEs

for θ
(1)
ATE and positive estimated ATEs for θ

(2)
ATE. Moreover, our proposed ATE estimators

are close to each other and fairly different from the empirical difference estimator, especially

for θ
(2)
ATE. Therein, all our confidence intervals do not include 0 while the one based on

the empirical difference does. The difference between our proposed ATE estimators and

the empirical difference estimator seems to suggest presence of substantial confounding via

X, and a significant causal effect of the treatment on the response after adjusting for the

confounding.

Table 2.13: Real data analysis: estimation and inference of θ
(1)
ATE and θ

(2)
ATE. We compare

a naive empirical difference (empdiff) estimator with our proposed estimators based on
various choices of nuisance estimators. ATE: the estimated average treatment effect; CI: a
95% confidence interval; Length: length of the 95% confidence interval.

θ
(1)
ATE θ

(2)
ATE

π̂N(·) m̂(·) ATE CI Length ATE CI Length

empdiff -2.003 (-3.282,-0.725) 2.558 1.867 (-0.642,4.377) 5.019

constant

Lasso -1.935 (-3.219,-0.651) 2.568 4.209 (1.743,6.676) 4.933

poly-Lasso -1.865 (-3.152,-0.578) 2.574 3.291 (0.719,5.864) 5.145

RF -1.729 (-2.992,-0.466) 2.526 3.095 (0.607,5.584) 4.977

RHKS -1.941 (-3.227,-0.655) 2.573 3.183 (0.642,5.723) 5.081

log-Lasso

Lasso -1.967 (-3.518,-0.416) 3.102 4.780 (1.954,7.605) 5.650

poly-Lasso -1.717 (-3.321,-0.113) 3.207 3.890 (0.804,6.976) 6.172

RF -1.873 (-3.424,-0.322) 3.102 3.890 (0.955,6.825) 5.870

RHKS -2.051 (-3.663,-0.440) 3.223 4.221 (1.068,7.375) 6.307

RF

Lasso -1.727 (-2.970,-0.484) 2.486 4.932 (1.518,8.345) 6.827

poly-Lasso -1.612 (-2.878,-0.346) 2.532 4.693 (0.763,8.622) 6.827

RF -1.608 (-2.845,-0.371) 2.474 4.456 (0.942,7.970) 7.027

RHKS -1.772 (-3.016,-0.528) 2.487 4.411 (0.621,8.200) 7.579
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2.8 Discussion

In this chapter, we study the mean estimation problem in the semi-supervised setting

with a decaying PS while allowing for selection bias in the labeling mechanism. To our

knowledge this is one of the first full-hearted attempts in extending the SS inference literature

to the case of selection bias, and that too in a very general way, as well as the MAR literature

to the case of a (uniformly) decaying PS. The proposed DRSS mean estimator is based

on estimators of the outcome and the decaying PS models. We establish estimation and

inference results under different cases of the correctness of the models, while allowing flexible

model choices, including high-dimensional and non-parametric methods. The subtleties of

the problem setting and the non-standard asymptotics, among others, make the method

and its analyses challenging and our results reveal several novel insights in the process.

In particular, we find that the consistency rate of the proposed estimator depends on the

(expected) size of the labeled sample and the tail of the PS distribution. Throughout the

chapter, NaN (recall that aN = [E{π−1
N (X)}]−1) is a crucial value, in that it serves as the

“effective sample size” in our MAR-SS setting with a decaying PS. This chapter provides

details as to why this happens.

As a necessary component of analyzing the MAR-SS setting, we further propose

estimators of the decaying PS under three different models: MCAR, stratified labeling, and

a novel offset logistic model, under both high and low dimensional settings. The consistency

rates of the PS models are established, which are of independent interest. We also extend

our methods to an ATE estimation problem where the treatment groups can be extremely

imbalanced. We provide extensive numerical studies to illustrate our results in finite-sample
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simulations, as well as a real data analysis using the NHEFS data.

The semi-supervised decaying PS setting is an interesting scenario that occurs in

numerous applications in the modern era, and yet has been largely under-studied so far. We

provide a detailed analysis of the mean estimation problem under such setting. We hope it

serves as a start towards understanding this practically very relevant, and yet technically

challenging, scenario in all its subtleties, therefore opening doors to many new questions

where inferential results need to be adjusted for the “effective sample size”.

2.9 Proofs of main results

Notation Constants c, C > 0, independent of N and p, may change values from one

line to the other. For any S̃ ⊆ S = (Zi)
N
i=1, define PS̃ as the joint distribution of S̃ and

ES̃(f) =
∫
fdPS̃. For any r > 0, let ‖f(·)‖r,P := {E|f(Z)|r}1/r. We abbreviate “with

probability approaching one” and “almost surely” by “w.p.a. 1” and “a.s.”, respectively.

2.9.1 Auxiliary lemmas

The following Lemmas will be useful in the proofs.

Lemma 2.4. Let (XN)N≥1, (YN)N≥1 be sequences of random variables. If E(|XN |r|YN) =

Op(1) for any r ≥ 1, then XN = Op(1).

Proof of Lemma 2.4. For any c > 0, there exists C > 0 such that, for large enough N ,

P
{
E
(
Xr
N

∣∣YN) > C
}

< c/2.
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Let δ = (2C/c)1/r, then

P(|XN | > δ) = E
(
E
[
1{|XN | > δ}

∣∣YN])
= E

[
1{E(|XN |r

∣∣YN) ≤ C}E
(
1{|XN | > δ}

∣∣YN)]
+ E

[
1{E(|XN |r

∣∣YN) > C}E
(
1{|XN | > δ}

∣∣YN)]
≤ E

[
1{E(|XN |r

∣∣YN) ≤ C}E
(
δ−r|XN |r

∣∣YN)]+ E
(
1{E(|XN |r

∣∣YN) > C}
)

= δ−rE
[
1{E(|XN |r

∣∣YN) ≤ C}E
(
|XN |r

∣∣YN)]+ P
[
E(|XN |r

∣∣YN) > C
]

≤ c/2 + c/2 = c.

That is, XN = Op(1).

Lemma 2.5 (Lemma 6.1 of [CCD+18]). Let (XN)N≥1 and (YN)N≥1 be sequences of random

variables in R. If for any c > 0, P(|XN | > c|YN) = op(1), then XN = op(1).

In particular, Lemma 2.5 occurs if E(|XN |q|YN) = op(1) for some q ≥ 1. A typical

example we used in our proofs is XN =
∑N

i=1 ZN,i/N , where (ZN,i)N≥1,i≤N is a row-wise

independent and identically distributed triangular array with E(|ZN,i||YN) = op(1).

Lemma 2.6. Let (ZN,i)N≥1,i≤N be a row-wise independent and identical distributed triangular

array, suppose there exists a sequence bN such that N−rb−1−r
N E (|ZN,1|1+r) = o(1) with 0 <

r < 1 and bN > 0. Then,

N−1

N∑
i=1

ZN,i − E(ZN,1) = op(bN).
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Proof of Lemma 2.6. Let YN,i = ZN,i1{|ZN,i| ≤ NbN)}. For any c > 0,

P

(∣∣∣∣∣N−1

N∑
i=1

ZN,i − E(YN,1)

∣∣∣∣∣ ≥ cbN

)

≤ P

(
∪Ni=1[ZN,i 6= YN,i] ∪

[∣∣∣∣∣
N∑
i=1

YN,i − E(YN,1)

∣∣∣∣∣ ≥ NcbN

])

≤ P
(
∪Ni=1[ZN,i 6= YN,i]

)
+ P

(∣∣∣∣∣
N∑
i=1

YN,i − E(YN,1)

∣∣∣∣∣ ≥ NcbN

)
,

where with a slight abuse of notation, here P denotes the joint distribution of (ZN,i)N≥1,i≤N .

By Markov’s inequality,

P
(
∪Ni=1[ZN,i 6= YN,i]

)
≤ NP (ZN,1 6= YN,1) = NP (|ZN,1| > NbN)

≤ N(NbN)−1−rE
(
|ZN,1|1+r

)
= N−rb−1−r

N E
(
|ZN,1|1+r

)
= o(1),

where the last equality follows from the assumptions. Moreover, by Chebyshev’s inequality

P

(∣∣∣∣∣
N∑
i=1

YN,i − E(YN,1)

∣∣∣∣∣ ≥ NcbN

)
≤ (NcbN)−2E


∣∣∣∣∣
N∑
i=1

YN,i − E(YN,1)

∣∣∣∣∣
2


= c−2N−1b−2
N E{YN,i − E(YN,i)}2 ≤ c−2N−1b−2

N E(Y 2
N,i)

= c−2N−1b−2
N E[Z2

N,11{|ZN,1| ≤ NbN}] ≤ c−2N−1b−2
N (NbN)1−rE

(
|ZN,1|1+r

)
= c−2N−rb−1−r

N E
(
|ZN,1|1+r

)
= o(1),

where in the second to last inequality we used Markov’s inequality on ZN,1s. Hence,

N−1

N∑
i=1

ZN,i − E(YN,1) = op(bN).

In addition, by similar arguments

E(ZN,1)− E(YN,1) = E [ZN,11{|ZN,1| > NbN}] = E
[
|ZN,1|1+r|ZN,1|−r1{|ZN,1| > NbN}

]
≤ (NbN)−rE

(
|ZN,1|1+r

)
= bNN

−rb−1−r
N E

(
|ZN,1|1+r

)
= o(bN).
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Therefore,

N−1

N∑
i=1

ZN,i − E(ZN,1) = N−1

N∑
i=1

ZN,i − E(ZN,1) + E(ZN,1)− E(YN,1) = op(bN).

Lemma 2.7. For any function g(·) and θ ∈ R, define

ψ(Z, θ) := g(Z)− θ.

Let θ0 := E{g(Z)}. Assume

E{ψ2(Z, θ0)} � b−1
N , N−rbr+1

N E{|ψ(Z, θ0)|2+2r|} = o(1), (2.44)

for some sequence bN and 0 < r < 1. Moreover, let θ̂ ∈ R be such that θ̂−θ0 = op(b
−1/2
N ). Ad-

ditionally, for k ≤ K, and some (possibly random) function g−k(·) ⊥⊥ Sk, define ψ−k(Z, θ) :=

g−k(Z)− θ and suppose that

E{ψ−k(Z, θ0)− ψ(Z, θ0)}2 = op(b
−1
N ).

Then, as N →∞, we have

N−1

K∑
k=1

∑
i∈Ik

ψ2
−k(Zi, θ̂) = E{ψ2(Z, θ0)}{1 + op(1)}.

Proof of Lemma 2.7. By Young’s inequality with (a+ b)2 ≤ 2a2 + 2b2,

|Ik|−1
∑
i∈Ik

{ψ−k(Zi, θ̂)− ψ(Zi, θ
0)}2

≤ 2(θ̂ − θ0)2 + 2|Ik|−1
∑
i∈Ik

{ψ−k(Zi, θ
0)− ψ(Zi, θ

0)}2 = op(b
−1
N ). (2.45)

In what follows we will use the following equality which is a consequence of Lemma 2.6 and

the condition in (2.44):

|Ik|−1
∑
i∈Ik

{ψ−k(Zi, θ
0)− ψ(Zi, θ

0)}2 = op(b
−1
N ). (2.46)
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Using the fact that a2 − b2 = (a + b)(a − b) = (a − b)2 + 2b(a − b), and using the triangle

and then Cauchy-Schwarz inequality∣∣∣∣∣|Ik|−1
∑
i∈Ik

ψ2
−k(Zi, θ̂)− |Ik|−1

∑
i∈Ik

ψ2(Zi, θ
0)

∣∣∣∣∣
=
∣∣|Ik|−1

∑
i∈Ik

{ψ−k(Zi, θ̂)− ψ(Zi, θ
0)}2 + 2|Ik|−1

∑
i∈Ik

{ψ−k(Zi, θ̂)− ψ(Zi, θ
0)}ψ(Zi, θ

0)
∣∣

≤ |Ik|−1
∑
i∈Ik

{ψ−k(Zi, θ̂)− ψ(Zi, θ
0)}2

+ 2|Ik|−1

[∑
i∈Ik

{ψ−k(Zi, θ̂)− ψ(Zi, θ
0)}2

∑
i∈Ik

ψ2(Zi, θ
0)

]1/2

(i)
= op(a

−1
N ) + op(a

−1/2
N )[E{ψ2(Z, θ0)}{1 + op(1)}]1/2 (ii)

= op(a
−1
N ),

where (i) follows by (2.45) and (2.46), and in (ii), we utilized the assumption E{ψ2(Z, θ0)} �

a−1
N to conclude the asymptotic order of the quantities of interest. Then, by utilizing the

result of Lemma 2.6, i.e., (2.46), we have

N−1

K∑
k=1

∑
i∈Ik

ψ2
−k(Zi, θ̂) = |Ik|−1

∑
i∈Ik

ψ2(Zi, θ
0) + op(a

−1
N )

= E{ψ2(Z, θ0)}{1 + op(1)}+ op(a
−1
N ) = E{ψ2(Z, θ0)}{1 + op(1)},

since E{ψ2(Z, θ0)} � a−1
N by assumption.

Lemma 2.8. The following are some useful properties regarding sub-Gaussian variables.

(a) If |X| ≤ |Y | a.s., then ‖X‖ψ2 ≤ ‖Y ‖ψ2. If |X| ≤ M a.s. for some constant M , then

‖X‖ψ2 ≤ {log(2)}−1/2M .

(b) If ‖X‖ψ2 ≤ σ, then E(|X|m) ≤ 2σmΓ(m/2 + 1), for all m ≥ 1, where Γ(a) :=∫∞
0
xa−1 exp(−x)dx denotes the Gamma function. As a result, E(|X|) ≤ σ

√
π and

E(|X|m) ≤ 2σm(m/2)m/2 for m ≥ 2.

151



(c) If ‖X − E(X)‖ψ2 ≤ σ, then E(exp[t{X − E(X)}]) ≤ exp(2σ2t2), for all t ∈ R.

(d) Let X ∈ Rp be a random vector with sup1≤j≤p ‖X(j)‖ψ2 ≤ σ. Then, ‖‖X‖∞‖ψ2 ≤

σ{log(p) + 2}1/2.

(e) Let (Xi)
N
i=1 be independent random variables with means (µi)

N
i=1 such that ‖Xi−µi‖ψ2 ≤

σ. Then, ‖N−1
∑N

i=1(Xi − µi)‖ψ2 ≤ 4σN−1/2.

Lemma 2.8 is a simple consequence of Lemmas D.1 and D.2 of [CLCL19].

Lemma 2.9. Assume (Xi)
N
i=1 are independent and identically distributed, λmin{E(

−→
X i

−→
XT
i ) ≥

c > 0 and sup‖v‖2=1E{(
−→
XT
i v)4} < C < ∞, with constants c and C. Assume γ0 ∈ Rp+1

satisfyes‖γ0‖2 < C < ∞,
−→
XT
i γ0 is a sub-Gaussian random variable, and Xi is a marginal

sub-Gaussian random vector with

‖
−→
XT
i γ0‖ψ2 = inf

{
t > 0 : E[exp{t−2(

−→
XT
i γ0)2}] ≤ 2

}
< ∞, (2.47)

sup
1≤j≤p

‖Xi(j)‖ψ2 = inf
{
t > 0 : E[exp{t−2X2

i (j)}] ≤ 2
}

< ∞. (2.48)

Recall that

`balN (γ) = −N−1

N∑
i=1

[R∗i
−→
XT
i γ − log{1 + exp(

−→
XT
i γ)}] ∀ γ ∈ Rp+1,

δ`(∆; 1;γ) = `balN (γ + ∆)− `balN (γ)−∆T∇γ`
bal
N (γ) ∀ γ,∆ ∈ Rp+1.

where (R∗i )
N
i=1 are i.i.d. pseudo binary random variables satisfying P (R∗i = 1|X) = g(

−→
XTγ0).

Then, for some constants c1, c2, c3, c4 > 0,

δ`(∆; 1;γ0) ≥ c1‖∆‖2

{
‖∆‖2 − c2

√
log(p+ 1)

N
‖∆‖1

}
∀∆ ∈ Rp+1, ‖∆‖2 ≤ 1,

with probability at least 1− c3 exp(−c4N).
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Lemma 2.9 is a slightly more general version of Proposition 2 of [NRWY10]: instead

of assuming X to be joint sub-Gaussian with mean zero, one can repeat their proof by only

requiring X to be a marginal sub-Gaussian vector and
−→
XTγ0 be a sub-Gaussian variable, as

well as an additional 4-th moment condition that sup‖v‖2=1E{(
−→
XTv)4} < C < ∞. Unlike

[NRWY10], the intercept term is also considered here: since we do not require zero-mean

covariates, the intercept term
−→
X(1) = 1 can be seen as a sub-gaussian variable.

Lemma 2.10. (Theorem 3.26 of [Wai19]) Let F be a class of functions of the form f :

X → R, and let (X1, . . . ,XN) be drawn from a product distribution P =
⊗N

i=1 Pi, where

each Pi is supported on some set Xi ⊆ X . For each f ∈ F and i = 1, . . . , N , as-

sume that there are real numbers ai,f ≤ bi,f such that f(x) ∈ [ai,f , bi,f ] for all x ∈ Xi.

Let Z = supf∈F

{
N−1

∑N
i=1 f(Xi)

}
. Then for all t ≥ 0, we have P{Z ≥ E(Z) +

t} ≤ exp (−Nt2/4L2) , where L2 := supf∈F{N−1
∑N

i=1(bi,f − ai,f )2}.

2.9.2 Proofs of the Main Statements

Proof of Theorem 2.1. We prove Theorem 2.1 by decomposing the estimation error into two

terms: N−1
∑N

i=1 ψµ,π(Zi) and ∆̂N,1,k defined below in (2.49). We use Lemma 2.4 and the

Lindeberg-Feller theorem for self-normalized partial sums. Observe that

θ̃ − θ0 =N−1

N∑
i=1

{
Ri − πN(Xi)

πN(Xi)
[Yi − m̂(Xi)] + Yi − θ0

}
= N−1

N∑
i=1

ψµ,π(Zi) +
K∑
k=1

∆̂N,1,k,

(2.49)

where

∆̂N,1,k = −N−1
∑
i∈Ik

{
R

πN(Xi)
− 1

}
{m̂(Xi;S−k)− µ(Xi)}. (2.50)
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Consider the remainder term ∆̂N,1,k. For each k ≤ K, notice that ∆̂N,1,k is a summation of

independent random variables conditional on the training sample S−k:

∆̂N,1,k = −N−1
∑
i∈Ik

ξi, ξi =

{
Ri

πN(Xi)
− 1

}
{m̂(Xi;S−k)− µ(Xi)},

with ξi ⊥ ξj|S−k for i, j ∈ Ik. Hence, with

ξ =

{
R

πN(X)
− 1

}
{m̂(X;S−k)− µ(X)},

and recall that ESk denotes the expectation with respect to (w.r.t.) the samples in the k-th

fold,

ESk(∆̂N,1,k) =−N−1|Ik|E
{
E
(
ξ
∣∣X)} = 0, (2.51)

ESk(∆̂
2
N,1,k) =N−2|Ik|E

(
E

[{
R

πN(X)
− 1

}2

{m̂(X;S−k)− µ(X)}2
∣∣X]) (2.52)

=N−2|Ik|E
{[

1

πN(X)
− 1

]
[m̂(X;S−k)− µ(X)]2

}
(2.53)

=Op((NaN)−1c2
µ,N), (2.54)

In the above equations, (2.51) and (2.52) used the fact that ξi ⊥ ξj|S−k for i, j ∈ Ik; (2.53)

used the fact that R2 = R; (2.54) used the fact that |Ik| < N and the definition of cµ,N ;

the definition E(R|X) = πN(X) is also used in (2.51) and (2.53). These techniques will be

used for multiple times throughout the proof, and we will not emphasis them in again in the

following proofs.

By Lemma 2.4,

∆̂N,1,k = Op((NaN)−1/2cµ,N). (2.55)
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As for the influence function N−1
∑N

i=1 ψµ,π(Zi),

ES

[
N−1

N∑
i=1

ψµ,π(Zi)

]
= E

(
E

{
µ(X)− θ0 +

R[Y − µ(X)]

πN(X)

∣∣X}) = 0,

ES

[
N−1

N∑
i=1

ψµ,π(Zi)

]2

= N−1E

[
E

({
µ(X)− θ0 +

R[Y − µ(X)]

πN(X)

}2∣∣X)] = N−1VN(µ),

where

VN(µ) = E

[
µ(X)− θ0 +

R{Y − µ(X)}
πN(X)

]2

= E

[
{R− πN(X)}{Y − µ(X)}

πN(X)
+ Y − θ0

]2

= E

[{
1− πN(X)

πN(X)

}2

{Y − µ(X)}2

]
+ Var(Y ).

To control the order of VN(µ), we enforce uniform lower and upper bounds for E[{Y −

µ(X)}2|X] and Var(Y ). Under Assumption 2.2,

E[{Y −m(X)}2|X] ≥ σ2
ζ,1, E[{Y − µ(X)}2|X] ≤ σ2

ζ,2, Var(Y ) ≤ σ2
ζ,2.

Additionally, we have the following lower bounds as m(X) = E(Y |X),

E[{Y − µ(X)}2|X] = E[{Y −m(X)}2|X] + E[{m− µ(X)}2|X] ≥ σ2
ζ,1,

Var(Y ) = E
(
E[{Y −m(X)}2|X] + E[{m(X)− θ0}2|X]

)
≥ σ2

ζ,1.

Recall that by definition, aN = E{π−1
N (X)}. Therefore,

aNVN(µ) ≥ aN

{
σ2
ξ,1E

[
1− πN(X)

πN(X)

]
+ σ2

ξ,1

}
= σ2

ξ,1 > 0, (2.56)

aNVN(µ) ≤ aN

{
σ2
ξ,2E

[
1− πN(X)

πN(X)

]
+ σ2

ξ,2

}
= σ2

ξ,2 <∞, (2.57)

and VN(µ) � a−1
N . Since

E

{
(NaN)1/2N−1

N∑
i=1

ψµ,π(Zi)

}2

= aNVN(µ) = O(1), (2.58)
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by Lemma 2.4, N−1
∑N

i=1 ψµ,π(Zi) = Op((NaN)−1/2). Therefore,

θ̂DRSS − θ0 = Op((NaN)−1/2).

In addition, under Assumption 2.3, for any c > 0,

N−1

N∑
i=1

E[V −1
N (µ)ψ2

µ,π(Zi)1{V −1/2
N (µ)|ψµ,π(Zi)| > cN1/2}] = o(1).

By Proposition 2.27 (Lindeberg-Feller theorem) of [VdV00],

V
−1/2
N (µ)N−1/2

N∑
i=1

ψµ,π(Zi)→ N(0, 1). (2.59)

Recall that

N1/2V
−1/2
N (µ)(θ̃ − θ0) = V

−1/2
N (µ)N−1/2

N∑
i=1

ψµ,π(Zi) +N1/2V
−1/2
N (µ)

K∑
k=1

∆̂N,1,k

= V
−1/2
N (µ)N−1/2

N∑
i=1

ψµ,π(Zi) +Op(N
1/2a

1/2
N (NaN)−1/2cµ,N)

= V
−1/2
N (µ)N−1/2

N∑
i=1

ψµ,π(Zi) +Op(cµ,N) = V
−1/2
N (µ)N−1/2

N∑
i=1

ψµ,π(Zi) + op(1).

By Lemma 2.8 (Slutsky) of [VdV00],

N1/2V
−1/2
N (µ)(θ̃ − θ0)→ N(0, 1).

Proof of Theorem 2.2. We prove Theorem 2.2 by considering two cases: (a) the nuisance

models are both correctly specified, and (b) only one of the nuisance models is correctly

specified. For case (a), we design a suitable decomposition, (2.60), and apply Lemma 2.4

and the Lindeberg-Feller theorem for self-normalized sums to obtain asymptotic normality.

For case (b), we design two different decompositions of the estimation error: one suitable
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for the case when PS model is correct (2.68) and the other suitable for the case when the

outcome model is correct (2.69).

Case (a): µ(·) = m(·) and eN(·) = πN(·). Observe that

θ̂DRSS − θ0 = N−1

N∑
i=1

[
Ri − π̂N(Xi; S−k)
π̂N(Xi;S−k)

{Yi − m̂(Xi;S−k)}+ Yi − θ0

]

= N−1

N∑
i=1

ψµ,e(Zi) +
K∑
k=1

(∆̂N,1,k + ∆̂N,2,k + ∆̂N,3,k), (2.60)

where ∆̂N,1,k is defined as (2.50) and we further define

∆̂N,2,k = N−1
∑
i∈Ik

{
Ri

π̂N(Xi;S−k)
− Ri

eN(Xi)

}
{Yi −m(Xi)}, (2.61)

∆̂N,3,k = −N−1
∑
i∈Ik

{
Ri

π̂N(Xi;S−k)
− Ri

eN(Xi)

}
{m̂(Xi;S−k)− µ(Xi)}. (2.62)

Recall from (2.55), ∆̂N,1,k = Op((NaN)−1/2cµ,N). As for the remainder term ∆̂N,2,k,

ESk(∆̂N,2,k) =N−1|Ik|E
(
E

[{
R

π̂N(X;S−k)
− R

eN(X)

}
{Y −m(X)}

∣∣X]) = 0,

ESk(∆̂
2
N,2,k) =N−2|Ik|E

(
E

[{
R

π̂N(X;S−k)
− R

eN(X)

}2

{Y −m(X)}2
∣∣X])

=N−2|Ik|E

[
πN(X)

e2
N(X)

{
1− eN(X)

π̂N(X;S−k)

}2

{Y −m(X)}2

]
(2.63)

(i)

≤N−1σ2
ξ,2c

2
e,Na

−1
N = Op((NaN)−1c2

e,N), (2.64)

where (i) holds under the Assumption 2.2 and the condition in (2.9) with eN(·) = πN(·) and

also noting the fact that |Ik| ≤ N . By Lemma 2.4,

∆̂N,2,k = Op((NaN)−1/2ce,N). (2.65)

Now, consider the last remainder term ∆̂N,3,k, by the triangular inequality and the tower
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rule,

ESk(|∆̂N,3,k|) ≤N−1|Ik|E
[
E

{∣∣∣∣ R

π̂N(X;S−k)
− R

eN(X)

∣∣∣∣ |m̂(Xi;S−k)− µ(X)|
∣∣X}]

=N−1|Ik|E
{∣∣∣∣1− eN(X)

π̂N(X;S−k)

∣∣∣∣ |m̂(Xi;S−k)− µ(X)|
}

= Op(rµ,Nre,N).

By Lemma 2.4,

∆̂N,3,k = Op(rµ,Nre,N). (2.66)

Lastly, for the influence function N−1
∑N

i=1 ψµ,e(Zi),

ES

{
N−1

N∑
i=1

ψµ,e(Zi)

}
= E

(
E

[
µ(X)− θ0 +

R{Y −m(X)}
πN(X)

∣∣X]) = 0,

ES

{
N−1

N∑
i=1

ψµ,e(Zi)

}2

= N−1E

{
E

([
µ(X)− θ0 +

R{Y −m(X)}
πN(X)

]2∣∣X)}

= N−1VN(µ, e).

Now we control the rate of the variance, VN(µ, e). Under Assumption 2.2, Var(Y ) ≥ E[{Y −

m(X)}2|X] ≥ σ2
ζ,1, E[{Y −m(X)}2|X] ≤ σ2

ζ,2 and Var(Y ) ≤ σ2
ζ,2. Hence,

aNVN(µ, e) ≥ aN

[
σ2
ξ,1E

{
1− πN(X)

πN(X)

}
+ σ2

ξ,1

]
≥ σ2

ζ,1 > 0,

aNVN(µ, e) ≤ aN

[
σ2
ξ,2E

{
1− πN(X)

πN(X)

}
+ σ2

ξ,2

]
≤ σ2

ζ,2 <∞.

It follows that VN(µ, e) � a−1
N .

Recall the definition of ψµ,e in (2.6). By Lemma 2.4,

N−1

N∑
i=1

ψµ,e(Zi) = Op((NaN)−1/2).

Therefore, θ̂DRSS − θ0 = Op((NaN)−1/2). Moreover, by Proposition 2.27 (Lindeberg-Feller

theorem) of [VdV00],

N1/2V
1/2
N (µ, e)N−1

N∑
i=1

ψµ,e(Zi)→ N(0, 1). (2.67)
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By Lemma 2.8 (Slutsky) of [VdV00],

N1/2V
−1/2
N (µ, e)(θ̂DRSS − θ0)→ N(0, 1).

Case (b.i): eN(·) = πN(·). Observe that

θ̂DRSS − θ0 = N−1

N∑
i=1

ψµ,e(Zi) +
K∑
k=1

(∆̂N,1,k + ∆̂N,2,k + ∆̂N,3,k + ∆̂N,4,k), (2.68)

where ∆̂N,1,k, ∆̂N,2,k, and ∆̂N,3,k are defined as (2.50), (2.61), and (2.62), respectively, and

we further define

∆̂N,4,k = N−1
∑
i∈Ik

{
Ri

π̂N(Xi;S−k)
− Ri

eN(Xi)

}
{m(Xi)− µ(Xi)}.

As shown in (2.55), (2.65), and (2.66), we have ∆̂N,1,k = Op((NaN)−1/2cµ,N), ∆̂N,2,k =

Op((NaN)−1/2ce,N) and ∆̂N,2,k = Op(rµ,Nre,N). In addition, for the remainder term ∆̂N,4,k,

ESk(|∆̂N,4,k|) ≤ N−1|Ik|E
[
E

{∣∣∣∣ R

π̂N(X;S−k)
− R

eN(X)

∣∣∣∣ |m(Xi)− µ(X)|
∣∣X}]

= N−1|Ik|E
{∣∣∣∣1− eN(X)

π̂N(X;S−k)

∣∣∣∣ |m(Xi)− µ(X)|
}

≤
∥∥∥∥1− eN(·)

π̂N(·)

∥∥∥∥
2,PX

‖m(·)− µ(·)‖2,PX
= Op(re,N).

By Lemma 2.4,

∆̂N,4,k = Op(re,N).

Lastly, for the influence function N−1
∑N

i=1 ψµ,e(Zi), similarly as in (2.58) and by Lemma

2.4,

N−1

N∑
i=1

ψµ,e(Zi) = Op((NaN)−1/2).

Case (b.ii): µ(·) = m(·). Observe that

θ̂DRSS − θ0 = N−1

N∑
i=1

ψµ,e(Zi) +
K∑
k=1

(∆̂N,1,k + ∆̂N,2,k + ∆̂N,3,k + ∆̂N,4,k), (2.69)
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where ∆̂N,1,k, ∆̂N,2,k, and ∆̂N,3,k are defined as (2.50), (2.61), and (2.62), respectively, and

we further define

∆̂N,5,k = N−1
∑
i∈Ik

{
Ri

πN(Xi)
− Ri

eN(Xi)

}
{m̂(Xi; S−k)− µ(Xi)}.

Similarly as shown in (2.55), (2.65), and (2.66), we have ∆̂N,1,k = Op((NaN)−1/2cµ,N),

∆̂N,2,k = Op((NaN)−1/2ce,N) and ∆̂N,2,k = Op(rµ,Nre,N). Here, the only difference from

the previous proofs is that, in (2.63), instead of obtaining πN(X)/e2
N(X) = π−1

N (X) us-

ing eN(·) = πN(·), here we bound πN(X)/e2
N(X) ≤ c−2π−1

N (X) by assuming that, a.s.,

πN(X)/eN(X) ≥ c . For the remainder term ∆̂N,5,k,

ESk(|∆̂N,5,k|) ≤ N−1|Ik|E
[
E

{∣∣∣∣ R

πN(X)
− R

eN(X)

∣∣∣∣ |m̂(Xi;S−k)− µ(X)|
∣∣X}]

= N−1|Ik|E
{∣∣∣∣1− πN(X)

eN(X)

∣∣∣∣ |m̂(Xi;S−k)− µ(X)|
}

≤ ‖1− πN(·)/eN(·)‖2,PX
‖m̂(·)− µ(·)‖2,PX

= Op(rµ,N).

By Lemma 2.4,

∆̂N,5,k = Op(rµ,N).

Lastly, for the influence function N−1
∑N

i=1 ψµ,e(Zi), we have

ES

{
N−1

N∑
i=1

ψµ,e(Zi)

}
= E

(
E

[
m(X)− θ0 +

R{Y −m(X)}
eN(X)

∣∣X]) = 0,

ES

{
N−1

N∑
i=1

ψµ,e(Zi)

}2

= N−1E

{
E

([
m(X)− θ0 +

R{Y −m(X)}
eN(X)

]2∣∣X)}

= N−1VN(µ, e).
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Here,

VN(µ, e) = Var{m(X)}+ E{πN(X){Y −m(X)}2/{πN(X)}2}

≤ σ2
ζ,2(1 + E[πN(X)/{πN(X)}2]) ≤ σ2

ζ,2(1 + C2a−1
N ) = O(a−1

N ).

By Lemma 2.4,

N−1

N∑
i=1

ψµ,e(Zi) = Op((NaN)−1/2).

Proof of Theorem 2.3. We prove the consistency results of the asymptotic variance estima-

tors for the two cases (known PS and unknown PS). The results follows from Lemma 2.7

after we validate the conditions therein.

Case (a). By Lemma 2.7, it is sufficient to show aNE(δ2
N,1,k) = op(1), where

δN,1,k = −
{

R

πN(X)
− 1

}
{m̂(X;S−k)− µ(X)}.

Recall from (2.54), we have

aNE(δ̂2
N,1,k) = Op(c

2
µ,N) = op(1).

Case (b). By Lemma 2.7, it is sufficient to show aNE(δN,1,k+δN,2,k+δN,3,k)
2 = op(1),

where

δN,1,k = −
{

R

πN(X)
− 1

}
{m̂(X;S−k)− µ(X)},

δN,2,k =

{
R

π̂N(X;S−k)
− R

eN(X)

}
{Y −m(X)},

δN,3,k = −
{

R

π̂N(X;S−k)
− R

eN(X)

}
{m̂(X;S−k)− µ(X)}.
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Recall (2.54) and (2.64), we have

aNE(δ̂2
N,1,k) = Op(c

2
µ,N) = op(1), aNE(δ̂2

N,2,k) = Op(c
2
e,N) = op(1).

Besides, by the condition (2.14),

aNE(δ̂2
N,3,k) = E

[
aN

πN(X)

{
1− πN(X)

π̂(X; S−k)

}2

{m̂(X;S−k)−m(X)}2

]
= op(1).

Therefore,

aNE(∆̂N,1,k + ∆̂N,2,k + ∆̂N,3,k)
2 ≤ 3aNE(∆̂2

N,1,k + ∆̂2
N,2,k + ∆̂2

N,3,k) = op(1).

Proof of Theorem 2.4. In the proof of Theorem 2.4, we work directly on the cross-fitted

version of γ̂. The results for a non cross-fitted γ̂ can be obtained analogously by repeating

the procedure using the full sample S. Here, we first obtain an RAL expansion of the offset

logistic regression estimator. Then, we establish the RAL expansion of the DRSS estimator.

For any k ≤ K, a ∈ (0, 1], and γ ∈ Rp+1, let

`N(γ; a) = −N−1
−k

∑
i∈I−k

[
Ri

−→
XT
i γ − log{1 + a exp(

−→
XT
i γ)}

]
.

Define g(u) = exp(u)/{1 + exp(u)}, then ġ(u) = g(u){1 − g(u)} and g̈(u) = g(u){1 −

g(u)}{1− 2g(u)}. We have

g(u+ log(a)) =
a exp(u)

1 + a exp(u)
≥ a exp(u)

1 + exp(u)
= ag(u), ∀u ∈ R, a ∈ (0, 1], (2.70)

g(u) ≤ exp(u), ġ(u) ≤ g(u) ≤ exp(u), |g̈(u)| ≤ g(u) ≤ exp(u), ∀u ∈ R. (2.71)

For any u ∈ Rp+1, define

`N(u) = N−k
{
`N(γ0 + (N−kπN)−1/2u, π̂N)− `N(γ0, πN)

}
−N−1

−k

∑
i∈I−k

Ri log(π̂N/πN).
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Since γ = γ̂ minimizes `N(γ; π̂N), the terms `N(γ0, πN) and N−1
−k
∑

i∈I−k Ri log(π̂N/πN) are

both independent of γ, we know that uN = (N−kπN)1/2(γ̂ − γ0) minimizes `N(u). Here,

π̂N = N−1
−k
∑

i∈I−k Ri is the cross-fitted estimate of πN . By Taylor’s Theorem,where some

(γ̃1, log(π̃N,1)) lies between (γ0, log(πN)) and (γ0 + (N−kπN)−1/2u, log(π̂N)),

`N(u) =
1

2
uTAN(γ̃1, π̃N,1)u + BT

N,1(γ̃1, π̃N,1)u + CN(γ̃1, π̃N,1),

where

AN(γ̃1, π̃N,1) = (N−kπN)−1
∑
i∈I−k

ġ(
−→
XT
i γ̃1 + log(π̃N,1))

−→
X i

−→
XT
i ,

BN,1(γ̃1, π̃N,1) = −(N−kπN)−1/2
∑
i∈I−k

{
Ri − g(

−→
XT
i γ0 + log(πN))

− ġ(
−→
XT
i γ̃1 + log(π̃N,1)) log(π̂N/πN)

}
−→
X i,

CN(γ̃1, π̃N,1) =
1

2

∑
i∈I−k

{
ġ(
−→
XT
i γ̃1 + log(π̃N,1))− ġ(

−→
XT
i γ0 + log(πN))

}
{log(π̂N/πN)}2 .

Define

J (γ0, πN) = E
{−→

X
−→
XT ġ(

−→
XTγ0 + log(πN))

}
,

BN,2 = −(N−kπN)−1/2
∑
i∈I−k

{
Ri − g(

−→
XT
i γ0 + log(πN))

− ġ(
−→
XT
i γ0 + log(πN)) log(π̂N/πN)

}
−→
X i,

ζN = (N−kπN)1/2J −1(γ0, πN)N−1
−k

∑
i∈I−k

{
Ri − g(

−→
XT
i γ0 + log(πN))

− ġ(
−→
XT
i γ0 + log(πN)) log(π̂N/πN)

}
−→
X i. (2.72)

Then, ζN is the unique minimizer of

ZN(u) = uTπ−1
N J (γ0, πN)u/2 + BT

N,2u.
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By Lemma 2 of [HP11], for each δ > 0,

PS−k(‖uN − ζN‖2 ≥ δ) ≤ P

{
∆N(δ) ≥ 1

2
hN(δ)

}
,

where S−k = S \ Sk and

∆N(δ) = sup
‖u−ζN‖2≤δ

|`N(u)− ZN(u)|, hN(δ) = inf
‖u−ζN‖2=δ

ZN(u)− ZN(ζN).

Hence, to prove

∥∥γ̂ − γ0 − (N−kπN)−1/2ζN
∥∥

2
= (N−kπN)−1/2‖uN − ζN‖2 = op

(
(NπN)−1/2

)
, (2.73)

it suffices to show that, for each δ > 0, ∆N(δ) = op(1) and hN(δ) > c(δ) with some constant

c(δ) > 0 independent of N . First notice that

hN(δ) = inf
‖u−ζN‖2=δ

1

2
(u− ζN)Tπ−1

N J (γ0, πN)(u− ζN)

≥ 1

2
δ2π−1

N λmin{J (γ0, πN)} ≥ 1

2
δ2λmin

[
E{
−→
X
−→
XT ġ(

−→
XTγ0)}

]
.

Now, it remains to show ∆N(δ) = op(1). A sufficient condition we would like to show is the

following:

sup
‖u−ζN‖2≤δ

∣∣uT{AN(γ̃1, π̃N,1)− π−1
N J (γ0, πN)}u

∣∣ = op(1), (2.74)

sup
‖u−ζN‖2≤δ

∣∣(BN,1(γ̃1, π̃N,1)−BN,2)Tu
∣∣ = op(1), (2.75)

|CN(γ̃1, π̃N,1)| = op(1). (2.76)

To prove (2.74)-(2.76), we first analyze some basic properties of π̃N,1 and ζN . With (2.122),

we have

π̃N = πN
{

1 +Op

(
(NπN)−1/2

)}
, for any π̃N lies between πN and π̂N . (2.77)
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In addition, by the fact that log(u) ≤ 1− u for all u > 0 and (2.77) we have

| log(π̃N/πN)| ≤ |1− π̃N/πN | = Op

(
(NπN)−1/2

)
, for any π̃N lies between πN and π̂N .

(2.78)

For any t <∞ and r <∞,

E
{

exp(t‖
−→
X‖2)‖

−→
X‖r2

}
≤ r!E

[
exp{(t+ 1)‖

−→
X‖2}

]
≤ r! exp(t+ 1)E [exp{(t+ 1)‖X‖2}] <∞. (2.79)

Now, to control the supremum over ‖u−ζN‖2 ≤ δ in (2.74) and (2.75), we analyse asymptotic

properties for ζN defined in (2.72). We consider the following representation:

ζN = ζN,1 − ζN,2, where (2.80)

ζN,1 = (N−kπN)1/2J −1(γ0, πN)N−1
−k

∑
i∈I−k

{
Ri − g(

−→
XT
i γ0 + log(πN))

}−→
X i, (2.81)

ζN,2 = log(π̂N/πN)(N−kπN)1/2J −1(γ0, πN)N−1
−k

∑
i∈I−k

ġ(
−→
XT
i γ0 + log(πN))

−→
X i. (2.82)

Moreover, define

ζN,3 = log(π̂N/πN)(N−kπN)1/2J −1(γ0, πN)E
{
ġ(
−→
XTγ0 + log(πN))

−→
X
}

= (N−kπN)1/2 log(π̂N/πN)e1. (2.83)

In the above we used J −1(γ0, πN)E{ġ(
−→
XTγ0 + log(πN))

−→
X} = e1. Note that,

ġ(
−→
XTγ0 + log(πN)) =

πN exp(
−→
XTγ0)

{1 + πN exp(
−→
XTγ0)}2

≥ πN exp(
−→
XTγ0)

{1 + exp(
−→
XTγ0)}2

= πN ġ(
−→
XTγ0).

Hence,

‖J −1(γ0, πN)‖2 ≤ π−1
N

∥∥∥∥[E{ġ(
−→
XTγ0)

−→
X
−→
XT}

]−1
∥∥∥∥

2

= O(π−1
N ). (2.84)
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Then,

ES−k‖ζN,1‖2
2

(i)
= πNE

{
ġ(
−→
XTγ0 + log(πN))‖J −1(γ0, πN)

−→
X‖2

2

}
(ii)

≤ πN‖J −1(γ0, πN)‖2
2E
{
ġ(
−→
XTγ0 + log(πN))‖

−→
X‖2

2

}
(iii)

≤ π2
N‖J −1(γ0, πN)‖2

2E
{

exp(‖
−→
X‖2‖γ0‖2)‖

−→
X‖2

2

}
(iv)
= O(1),

where (i) holds by the tower rule with the fact E[{R−g(
−→
XTγ0 +log(πN))}2|X] = ġ(

−→
XTγ0 +

log(πN)), (ii) holds by the fact that |Aa| ≤ ‖A‖2‖a‖2 for any a ∈ Rp+1 andA ∈ R(p+1)×(p+1),

(iii) follows by the fact that ġ(
−→
XTγ0+log(πN)) ≤ g(

−→
XTγ0+log(πN)) ≤ πN exp(‖

−→
X‖2‖γ0‖2),

and (iv) holds holds by (2.79) and (2.84). Besides,

ES−k

∥∥{log(π̂N/πN)}−1(ζN,2 − ζN,3)
∥∥2

2
= πNVar

{
ġ(
−→
XTγ0 + log(πN))‖J −1(γ0, πN)

−→
X‖2

}
≤ πNE

{
ġ2(
−→
XTγ0 + log(πN))‖J −1(γ0, πN)

−→
X‖2

2

}
(i)

≤ πN‖J −1(γ0, πN)‖2
2E
{
ġ2(
−→
XTγ0 + log(πN))‖

−→
X‖2

2

}
(ii)

≤ π3
N‖J −1(γ0, πN)‖2

2E
{

exp(2‖
−→
X‖2‖γ0‖2)‖

−→
X‖2

2

}
(iii)
= O(πN),

where (i) holds by the fact that |Aa| ≤ ‖A‖2‖a‖2 for any a ∈ Rp+1 and A ∈ R(p+1)×(p+1),

(ii) follows by the fact that ġ(
−→
XTγ0 + log(πN)) ≤ πN exp(‖

−→
X‖2‖γ0‖2), and (iii) holds holds

by (2.79) and (2.84). By Chebyshev’s Inequality,

‖ζN,1‖ = Op(1),
∥∥{log(π̂N/πN)}−1(ζN,2 − ζN,3)

∥∥
2

= Op(π
1/2
N ).

Hence, by (2.78),

‖(ζN,2 − ζN,3)‖2 = {log(π̂N/πN)}Op(π
1/2
N ) = Op(N

−1/2), (2.85)

with

‖ζN,3‖2 ≤ | log(π̂N/πN)|(N−kπN)1/2‖J −1(γ0, πN)‖2πNE
{

exp(‖
−→
X‖2‖γ0‖2)‖

−→
X‖2

}
= Op(1).
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Therefore,

‖ζN‖2 ≤ ‖ζN,1‖2 + ‖ζN,2 − ζN,3‖2 + ‖ζN,3‖2 = Op(1).

It follows that,

sup
‖u−ζN‖2≤δ

‖u‖2 ≤ sup
‖u−ζN‖2≤δ

‖u− ζN‖2 + ‖ζN‖2 ≤ δ + ‖ζN‖2 = Op(1), (2.86)

sup
‖u−ζN‖2≤δ

‖γ̃1 − γ0‖2 ≤ sup
‖u−ζN‖2≤δ

(N−kπN)−1/2‖u‖2 = Op

(
(N−kπN)−1/2

)
, (2.87)

sup
‖u−ζN‖2≤δ

‖γ̃1‖2 ≤ sup
‖u−ζN‖2≤δ

‖γ̃1 − γ0‖2 + ‖γ0‖2 < M, w.p.a. 1, (2.88)

where M > 0 is a constant independent of N .

Now, we prove (2.74). For any u satisfying ‖u− ζN‖2 ≤ δ,

∣∣uT{AN(γ̃1, π̃N,1)− π−1
N J (γ0, πN)}u

∣∣
≤

∣∣∣∣∣∣(N−kπN)−1‖u‖2
2

∑
i∈I−k

ġ(
−→
XT
i γ̃1 + log(π̃N,1))− ġ(

−→
XT
i γ0 + log(πN))‖

−→
X i‖2

2

∣∣∣∣∣∣
+ ‖u‖2

2

∥∥∥∥∥∥(N−kπN)−1
∑
i∈I−k

ġ(
−→
XT
i γ0 + log(πN))

−→
X i

−→
XT
i − π−1

N J (γ0, πN)

∥∥∥∥∥∥
2

.

By Taylor’s Theorem, with some (γ̃2, π̃N,2) lies between (γ0, πN) and (γ̃1, π̃N,1), uniformly

on ‖u− ζN‖2 ≤ δ,∣∣∣∣∣∣N−1
−k

∑
i∈I−k

ġ(
−→
XT
i γ̃1 + log(π̃N,1))‖

−→
X i‖2

2 −N−1
−k

∑
i∈I−k

ġ(
−→
XT
i γ0 + log(πN))‖

−→
X i‖2

2

∣∣∣∣∣∣
(i)
=

∣∣∣∣∣∣N−1
−k

∑
i∈I−k

g̈(
−→
XT
i γ̃2 + log(π̃N,2))

{−→
XT
i (γ̃1 − γ0) + log(π̃N,1/πN)

}
‖
−→
X i‖2

2

∣∣∣∣∣∣
(ii)

≤ π̃N,2N
−1
−k

∑
i∈I−k

exp(
−→
XT
i γ̃2)

∣∣∣−→XT
i (γ̃1 − γ0) + log(π̃N,1/πN)

∣∣∣ ‖−→X i‖2
2

(iii)

≤ π̃N,2N
−1
−k

∑
i∈I−k

exp(‖
−→
X i‖2M)

{
‖
−→
X i‖2‖γ̃1 − γ0‖2 + | log(π̃N,1/πN)|

}
‖
−→
X i‖2

2, (2.89)
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with probability approaching 1. Here, (i) holds by Taylor’s Theorem, (ii) holds by (2.71),

(iii) holds by (2.88). Recall (2.79), by Markov’s Inequality,

N−1
−k

∑
i∈I−k

exp(‖
−→
X i‖2M)‖

−→
X i‖r2 = Op(1). (2.90)

Hence,

sup
‖u−ζN‖2≤δ

(N−kπN)−1‖u‖2
2

∑
i∈I−k

∣∣∣ġ(
−→
XT
i γ̃1 + log(π̃N,1))− ġ(

−→
XT
i γ0 + log(πN))

∣∣∣ ‖−→X i‖2
2

(i)

≤ sup
‖u−ζN‖2≤δ

π−1
N ‖u‖

2
2π̃N,2 {‖γ̃1 − γ0‖2Op(1) + | log(π̃N,1/πN)|Op(1)}

(ii)
= Op

(
(NπN)−1/2

)
= op(1). (2.91)

where (i) holds by (2.89) and (2.90), (ii) holds by (2.77), (2.78), (2.86) and (2.87). Notice

that

E{ġ(
−→
XTγ0 + log(πN))‖

−→
X‖2

2} ≤ πNE{exp(
−→
XTγ0)‖

−→
X‖2

2}.

‖J (γ0, πN)‖2 ≤ πN‖E{exp(
−→
XTγ0)

−→
X
−→
XT}‖2 ≤ πNE

{
exp(
−→
XTγ0)‖

−→
X‖2

2

}
.

Recall that p is fixed, by Theorem 5.48 of [Ver10], with some constant C > 0,

ES−k

∥∥∥∥∥∥N−1
−k

∑
i∈I−k

ġ(
−→
XT
i γ0 + log(πN))

−→
X i

−→
XT
i − J (γ0, πN)

∥∥∥∥∥∥
2

≤ max

[
‖J (γ0, πN)‖1/2

2 C

√
πN log{min(N, p+ 1)}

N
,
C2πN log{min(N, p+ 1)}

N

]

= O
(
max

(
N−1/2πN , N

−1πN
))

= O
(
N−1/2πN

)
.

By Markov’s Inequality,∥∥∥∥∥∥N−1
−k

∑
i∈I−k

ġ(
−→
XT
i γ0 + log(πN))

−→
X i

−→
XT
i − J (γ0, πN)

∥∥∥∥∥∥
2

= Op

(
N−1/2πN

)
.
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It follows that

sup
‖u−ζN‖2≤δ

‖u‖2
2

∥∥∥∥∥∥(N−kπN)−1
∑
i∈I−k

ġ(
−→
XT
i γ0 + log(πN))

−→
X i

−→
XT
i − π−1

N J (γ0, πN)

∥∥∥∥∥∥
2

= Op

(
(NπN)−1/2

)
= op(1). (2.92)

Hence, by (2.91) and (2.92),

sup
‖u−ζN‖2≤δ

∣∣uT{AN − π−1
N J (γ0, πN)}u

∣∣ = Op

(
(NπN)−1/2

)
= op(1). (2.93)

Now, we show (2.75). By Taylor’s Theorem, where some (γ̃3, π̃N,3) lies between

(γ0, πN) and (γ̃1, π̃N,1),

|(BN,1 −BN,2)Tu|

(i)
=

∣∣∣∣ log

(
π̂N
πN

)
(N−kπN)−1/2

∑
i∈I−k

g̈(
−→
XT
i γ̃3 + log(π̃N,3))

{
−→
XT
i (γ̃1 − γ0) + log

(
π̃N,1
πN

)}
−→
XT
i u

∣∣∣∣
(ii)

≤
∣∣∣∣log

(
π̃N,1
πN

)∣∣∣∣ (N−kπN)−1/2π̃N,3
∑
i∈I−k

exp(‖
−→
X i‖2M)‖

−→
X i‖2

2‖γ̃1 − γ0‖2‖u‖2

+

∣∣∣∣log

(
π̃N,1
πN

)∣∣∣∣ (N−kπN)−1/2π̃N,3
∑
i∈I−k

exp(‖
−→
X i‖2M)

∣∣∣∣log

(
π̃N,1
πN

)∣∣∣∣ ‖−→X i‖2‖u‖2 w.p.a. 1

(iii)

≤
∣∣∣∣log

(
π̂N
πN

)∣∣∣∣N1/2
−k π

−1/2
N ‖u‖2π̃N,3

{
‖γ̃1 − γ0‖2Op(1) +

∣∣∣∣log

(
π̃N,1
πN

)∣∣∣∣Op(1)

}
w.p.a. 1

(iv)
= Op

(
(NπN)−1/2

)
= op(1), uniformly on ‖u− ζN‖2 ≤ δ, (2.94)

where (i) holds by Taylor’s Theorem, (ii) holds by (2.71) and (2.88), (iii) holds by (2.90),

(iv) holds by (2.77), (2.78) (2.86) and (2.87).

As for (2.76), by Taylor’s Theorem, with some (γ̃4, π̃N,4) lies between (γ0, πN) and
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(γ̃1, π̃N,1),

|CN(γ̃1, π̃N,1)| (2.95)

(i)
=

∣∣∣∣∣∣12
∑
i∈I−k

g̈(
−→
XT
i γ̃4 + log(π̃N,4))

{
−→
XT (γ̃1 − γ0) + log

(
π̃N,1
πN

)}{
log

(
π̂N
πN

)}2

∣∣∣∣∣∣
(ii)

≤ 1

2
π̃N,4

∑
i∈I−k

exp(‖
−→
X i‖M)

{
‖
−→
X‖2‖γ̃1 − γ0‖2 +

∣∣∣∣log

(
π̃N,1
πN

)∣∣∣∣}{log

(
π̂N
πN

)}2

w.p.a. 1

(iii)

≤ 1

2

∣∣∣∣log

(
π̂N
πN

)∣∣∣∣2 π̃N,4N−k {‖γ̃1 − γ0‖2Op(1) +

∣∣∣∣log

(
π̃N,1
πN

)∣∣∣∣Op(1)

}
w.p.a. 1

(iv)
= Op

(
(NπN)−1/2

)
= op(1). (2.96)

where (i) holds by Taylor’s Theorem, (ii) holds by (2.71) and (2.88), (iii) holds by (2.90),

(iv) holds by (2.77), (2.78) (2.86) and (2.87).

Combining (2.93), (2.94) and (2.96), we have

∆N(δ) = op(1), for any δ > 0,

and hence (2.73) holds. Recall the definition of ζN,3 in (2.83), we have∥∥∥∥∥∥ζN,3 −N−1/2
−k π

1/2
N

∑
i∈I−k

(π−1
N Ri − 1)e1

∥∥∥∥∥∥
2

=

∥∥∥∥ζN,3 − (N−kπN)1/2 π̂N − πN
πN

e1

∥∥∥∥
2

(i)
=

∥∥∥∥∥(N−kπN)1/2 (π̂N − πN)2

π̃2
N,5

e1

∥∥∥∥∥
2

= (N−kπN)1/2 (π̂N − πN)2

π̃2
N,5

= Op

(
(NπN)−1/2

)
= op(1).

where (i) follows from the Taylor’s Theorem with some π̃N,5 lying between πN and π̂N .
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Hence, with IFγ(Z) = J −1(γ0, πN){R− g(
−→
XTγ0 + log(πN))}

−→
X − (π−1

N R− 1)e1,∥∥∥∥∥∥γ̂ − γ0 −N−1
−k

∑
i∈I−k

IFγ(Zi)

∥∥∥∥∥∥
2

= (N−kπN)−1/2

∥∥∥∥∥∥ζN −N−1/2
−k π

1/2
N

∑
i∈I−k

IFγ(Zi)

∥∥∥∥∥∥
2

= (N−kπN)−1/2

∥∥∥∥∥∥N−1/2
−k π

1/2
N

∑
i∈I−k

(π−1
N Ri − 1)e1 − ζN,3 + (ζN,3 − ζN,2)

∥∥∥∥∥∥
2

≤ (N−kπN)−1/2

∥∥∥∥∥∥N−1/2
−k π

1/2
N

∑
i∈I−k

(π−1
N Ri − 1)e1 − ζN,3

∥∥∥∥∥∥
2

+ (N−kπN)−1/2 ‖ζN,3 − ζN,2‖2

= (N−kπN)−1/2Op

(
(NπN)−1/2 +N−1/2

)
= op

(
(N−kπN)−1/2

)
.

Now, it remains to analyze the IF of the PS π̂N(X) = g(
−→
XT γ̂ + log(π̂N)). For this, define

β̂ = γ̂ + log(π̂N)e1, β0 = γ0 + log(πN)e1, (2.97)

IFβ(Z) = J −1(γ0, πN){R− g(
−→
XTγ0 + log(πN))}

−→
X. (2.98)

Then,∥∥∥∥∥∥β̂ − β0 −N−1
−k

∑
i∈I−k

IFβ(Zi)

∥∥∥∥∥∥
2

(i)
=
∥∥γ̂ − γ0 + log(π̂N/πN)e1 − (N−kπN)−1/2ζN,1

∥∥
2

(ii)
=
∥∥γ̂ − γ0 − (N−kπN)−1/2ζN + (N−kπN)−1/2(ζN,3 − ζN,1 − ζN)

∥∥
2

(iii)

≤
∥∥γ̂ − γ0 − (N−kπN)−1/2ζN

∥∥
2

+ (N−kπN)−1/2 ‖ζN,3 − ζN,2‖2

(iv)
= op

(
(NπN)−1/2

)
+ (N−kπN)−1/2Op(N

−1/2) = op
(
(NπN)−1/2

)
, (2.99)

where (i) holds by (2.81), (4.13) and (2.98), (ii) holds by (2.83), (iii) holds by (2.80) and

the triangular inequality, (iv) holds by (2.73) and (2.85). It follows that

∥∥∥β̂ − β0

∥∥∥
2

(i)

≤

∥∥∥∥∥∥β̂ − β0 −N−1
−k

∑
i∈I−k

IFβ(Zi)

∥∥∥∥∥∥
2

+ (N−kπN)−1/2 ‖ζN,1‖2

(ii)
= op

(
(NπN)−1/2

)
+Op

(
(NπN)−1/2

)
= Op

(
(NπN)−1/2

)
,
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where (i) holds by (2.81) and the triangular inequality, (ii) holds by (2.99) and (2.85).

Furthermore,

‖γ̂ − γ0‖2 ≤
∥∥γ̂ − γ0 − (N−kπN)−1/2ζN

∥∥
2

+ (N−kπN)−1/2 ‖ζN‖2

= op
(
(NπN)−1/2

)
+Op

(
(NπN)−1/2

)
= Op

(
(NπN)−1/2

)
= op(1),

and hence ‖γ̂ − γ0‖2 < 1 w.p.a. 1. By Taylor’s Theorem, for any x ∈ X , where some

(γ̃6, π̃N,6) (depending on x) lies between (γ0, πN) and (γ̂, π̂N) and β̃ = γ̃6 + log(π̃N,6)e1,

1− g(−→x Tγ0 + log(πN))

g(−→x T γ̂ + log(π̂N))
−
{

1− g(−→x Tβ0)
}

(β̂ − β0)T−→x

= g(−→x Tβ0)
{
g−1(−→x T β̃)− 1

}{
(β̂ − β0)T−→x

}2

= g(−→x Tβ0) exp(−−→x T β̃)
{

(β̂ − β0)T−→x
}2

= π̃−1
N,6g(−→x Tβ0) exp(−−→x T γ̃)

{
(β̂ − β0)T−→x

}2

≤ max(π−1
N , π̂−1

N )g(−→x Tβ0) exp
{
‖−→x ‖2(‖γ0‖2 + ‖γ̃ − γ0‖2)

}{
(β̂ − β0)T−→x

}2

≤ max(π−1
N , π̂−1

N )g(−→x Tβ0) exp
{
‖−→x ‖2(‖γ0‖2 + ‖γ̂ − γ0‖2)

}{
(β̂ − β0)T−→x

}2

.

Therefore, for any fixed r > 0, with X independent of γ̂ and π̂N ,∥∥∥∥∥1− g(
−→
XTβ0)

g(
−→
XT β̂)

−
{

1− g(
−→
XTβ0)

}
(β̂ − β0)T

−→
X

∥∥∥∥∥
r,P

≤ max(π−1
N , π̂−1

N )

∥∥∥∥g(
−→
XTβ0) exp

{
‖
−→
X‖2(‖γ0‖2 + ‖γ̂ − γ0‖2)

}{
(β̂ − β0)T

−→
X
}2
∥∥∥∥
r,P

≤ max(π−1
N , π̂−1

N )

∥∥∥∥g(
−→
XTβ0) exp

{
‖
−→
X‖2(‖γ0‖2 + 1)

}{
(β̂ − β0)T

−→
X
}2
∥∥∥∥
r,P

w.p.a. 1

≤ max(1, πN π̂
−1
N )‖β̂ − β0‖2

2

∥∥∥exp
{
‖
−→
X‖2(2‖γ0‖2 + 1)

}
‖
−→
X‖2

2

∥∥∥
r,P

w.p.a. 1

= {1 + op(1)}Op

(
(NπN)−1

)
O(1) = Op

(
(NπN)−1

)
= op

(
(NπN)−1/2

)
. (2.100)
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Define

IFπ(Z;S−k) =
{

1− g(
−→
XTβ0)

}−→
XTN−1

−k

∑
i∈Ik

IFβ(Zi), (2.101)

where Z is independent of (Zi)i∈Ik . Then,

∥∥∥{1− g(
−→
XTβ0)

}
(β̂ − β0)T

−→
X − IFπ(Z;S−k)

∥∥∥
r,P

≤
∥∥∥‖−→X‖2

∥∥∥
r,P

∥∥∥∥∥∥β̂ − β0 −N−1
−k

∑
i∈I−k

IFβ(Zi)

∥∥∥∥∥∥
2

= op
(
(NπN)−1/2

)
, (2.102)

and

∥∥∥{1− g(
−→
XTβ0)

}
(β̂ − β0)T

−→
X
∥∥∥
r,P
≤ ‖β̂ − β0‖2

∥∥∥‖−→X‖2

∥∥∥
r,P

= Op

(
(NπN)−1/2

)
.

Hence, ∥∥∥∥∥1− g(
−→
XTβ0)

g(
−→
XT β̂)

∥∥∥∥∥
r,P

= Op

(
(NπN)−1/2

)
.

For any fixed r > 0,

∥∥π−1
N (X)

∥∥
r,P

=
∥∥∥1 + π−1

N exp(−
−→
XTγ0)

∥∥∥
r,P
≤ 1 + π−1

N

∥∥∥exp(‖
−→
X‖2‖γ0‖2)

∥∥∥
r,P

= O(π−1
N ).

Additionally, by Jensen’s Inequality,

∥∥π−1
N (X)

∥∥
r,P

=
[
E{π−rN (X)}

]1/r ≥ E{π−1
N (X)} = π−1

N , (2.103)

and hence
∥∥π−1

N (X)
∥∥
r,P
� π−1

N , which implies that aN � πN . It follows that, with r, s > 0

satisfying 1/r + 1/s = 1 and 2s = 2 + c,

E

[
aN

πN(X)
{m̂(X)− µ(X)}2

]
≤ aN

∥∥π−1
N (X)

∥∥
r,P
‖m̂(·)− µ(·)‖2

2s,P = op(1), (2.104)

E

[
aN

πN(X)

{
1− πN(X)

π̂N(X)

}2
]
≤ aN

∥∥π−1
N (X)

∥∥
r,P

∥∥∥∥∥1− g(
−→
XTβ0)

g(
−→
XT β̂)

∥∥∥∥∥
2

2s,P

(2.105)

= Op

(
(NπN)−1

)
= op(1),
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where (2.104) requires an additional assumption that ‖m̂(·)− µ(·)‖2+c,P = op(1).

Now, we analyze θ̂DRSS − θ0, where we further assume that ‖m(·)− µ(·)‖2+c,P <∞.

Applying part (b) of Theorem 2.2, we have

(θ̂DRSS − θ0) =
1

N

N∑
i=1

ψµ(Zi) + op
(
(NπN)−1/2

)
+ ∆̂N ,

where ψµ,e(Z) = µ(X)− θ0 +R/πN(X){Y − µ(X)} and

∆̂N = N−1

K∑
k=1

∑
i∈Ik

Ri

πN(Xi)

{
1− πN(Xi)

π̂N(Xi)

}
{µ(Xi)−m(Xi)}

= N−1

K∑
k=1

∑
i∈Ik

Ri

πN(Xi)
{µ(Xi)−m(Xi)}IFπ(Z;S−k)

+N−1

K∑
k=1

∑
i∈Ik

Ri

πN(Xi)
{µ(Xi)−m(Xi)}

{
1− g(

−→
XT
i β0)

g(
−→
XT
i β̂)

− IFπ(Z;S−k)

}
.

For each k ≤ K,

ESk

∣∣∣∣∣|Ik|−1
∑
i∈Ik

Ri

πN(Xi)
{µ(Xi)−m(Xi)}

{
1− g(

−→
XT
i β0)

g(
−→
XT
i β̂)

− IFπ(Z;S−k)

}∣∣∣∣∣
≤ E

∣∣∣∣∣{µ(X)−m(X)}

{
1− g(

−→
XTβ0)

g(
−→
XT β̂)

− IFπ(Z;S−k)

}∣∣∣∣∣
≤ ‖µ(·)−m(·)‖2,P

∥∥∥∥∥1− g(
−→
XTβ0)

g(
−→
XT β̂)

− IFπ(Z;S−k)

∥∥∥∥∥
2,P

(i)
= op

(
(NπN)−1/2

)
,

where (i) holds by (2.100) and (2.102). By Lemma 2.5,

|Ik|−1
∑
i∈Ik

Ri

πN(Xi)
{µ(Xi)−m(Xi)}

{
1− g(

−→
XT
i β0)

g(
−→
XT
i β̂)

− IFπ(Zi;S−k)

}
= op

(
(NπN)−1/2

)
,

and hence

N−1

K∑
k=1

∑
i∈Ik

Ri

πN(Xi)
{µ(Xi)−m(Xi)}

{
1− g(

−→
XT
i β0)

g(
−→
XT
i β̂)

− IFπ(Zi;S−k)

}
= op

(
(NπN)−1/2

)
.
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Besides, for each k ≤ K, with r, s > 0 satisfying 1/r+ 1/s = 1 and 2s = 2 + c, and recalling

the definition of IFπ(Z;S−k) in (2.101), we have

VarSk

[
|Ik|−1

∑
i∈Ik

Ri

πN(Xi)
{µ(Xi)−m(Xi)}IFπ(Zi;S−k)

]

(i)

≤ |Ik|−1
∥∥∥E [π−1

N (X){µ(X)−m(X)}2‖
−→
X‖2

]∥∥∥
2

∥∥∥∥∥∥N−1
−k

∑
j∈I−k

IFβ(Zj)

∥∥∥∥∥∥
2

2

≤ |Ik|−1‖π−1
N (X)‖2r,P‖µ(X)−m(X)‖2

2s,P

∥∥∥‖−→X‖2

∥∥∥
2r,P

(N−kπN)−1 ‖ζN,1‖2
2

= O
(
(NπN)−2

)
.

By Lemma 2.4 and recalling the definition (2.101),

|Ik|−1
∑
i∈Ik

Ri

πN(Xi)
{µ(Xi)−m(Xi)}IFπ(Zi;S−k)

= EX [{µ(X)−m(X)}IFπ(Z;S−k)] +Op

(
(NπN)−1

)
= N−1

−k

∑
j∈I−k

IFπ(Zj) +Op

(
(NπN)−1

)
= N−1

−k

∑
j∈I−k

IFπ(Zj) + op
(
(NπN)−1/2

)
,

where IFπ(Z) = E
[
{1− πN(X)}{µ(X)−m(X)}

−→
XT
]
J−1(πN ,γ0)

−→
X{R − πN(X)}. There-

fore,

∆̂N = K−1

K∑
k=1

N−1
−k

∑
j∈I−k

IFπ(Zj) + op
(
(NπN)−1/2

)
= N−1

N∑
i=1

IFπ(Zi) + op
(
(NπN)−1/2

)
.

Proof of Lemma 2.1. For any a ∈ (0, 1], we have the corresponding Jacobian (or Hessian)

matrices of `N(γ; a) and `N(γ, 1) w.r.t. γ ∈ Rp+1 satisfy the following (analytical) inequality:

∂2

∂γ∂γT
{`N(γ; a)} = N−1

N∑
i=1

ġ(
−→
XT
i γ + log(a))

−→
X i

−→
XT
i

� aN−1

N∑
i=1

ġ(
−→
XT
i γ)
−→
X i

−→
XT
i = a

∂2

∂γ∂γT
{`N(γ; 1)},
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since for any a ∈ (0, 1] and u ∈ R,

ġ(u+ log(a)) =
a exp(u)

{1 + a exp(u)}2
≥ a exp(u)

{1 + exp(u)}2
= aġ(u).

Let G(γ; a) := `N(γ; a)− a`(γ; 1). Then,

∂2

∂γ∂γT
{G(γ; a)} � 0, ∀ γ ∈ Rp+1.

That is, the function G(γ, a) is convex in γ ∈ Rp+1, and hence by the basic properties of

convex functions, we have: for any γ,∆ ∈ Rp+1,

G(γ + ∆; a)− G(γ; a)−∆T{∇γG(γ; a)} ≥ 0

and hence

δ`(∆; a;γ) = `N(γ + ∆; a)− `N(γ; a)−∆T{∇γ`N(γ; a)}

≥ a
[
`N(γ + ∆; 1)− `N(γ; 1)−∆T{∇γ`N(γ; 1)}

]
= a {δ`(∆; 1;γ)} .

Therefore,

δ`(∆; a;γ) ≥ aκ‖∆‖2
2, ∀∆ ∈ A,

if δ`(∆; 1;γ) ≥ κ‖∆‖2
2 for all ∆ ∈ A.

Proof of Lemma 2.2. We first derive the following useful properties: define µγ0 = E(
−→
XTγ0),
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then by Lemma 2.8 and some calculation, for all t ∈ R, j ≤ p+ 1, and r ≥ 1,

|µγ0 | ≤ E(|
−→
XTγ0|) ≤ σγ0

√
π < 2σγ0 ,

‖
−→
XTγ0 − µγ0‖ψ2 ≤ ‖

−→
XTγ0‖ψ2 + ‖µγ0‖ψ2 ≤ σγ0 + {log(2)}−1/2|µγ0| < 4σγ0 ,

E{exp(t
−→
XTγ0)} = exp(tµγ0)E[exp{t(

−→
XTγ0 − µγ0)}] ≤ exp{2σγ0|t|+ 20σ2

γ0
t2},

(2.106)

‖
−→
X(j)− E{

−→
X(j)}‖ψ2 ≤ ‖

−→
X(j)‖ψ,2 + ‖E{

−→
X(j)}‖ψ2 ≤ σ + {log(2)}−1/2

√
πσ,

max
1≤j≤p+1

E{|
−→
X(j)|r} ≤ r! max

1≤j≤p+1
E[exp{|

−→
X(j)|}] ≤ r! exp(20σ2).

Notice that ‖| · |‖ψ2 is a monotone increasing function leading to ‖X2‖ψ2 ≥ ‖X1‖ψ2 if |X2| ≥

|X1|. Hence,

max
1≤j≤p+1

‖{Ri − πN(Xi)}
−→
X ij‖ψ2 ≤ max

1≤j≤p+1
‖
−→
X ij‖ψ2 ≤ σ.

In addition,

max
1≤j≤p+1

E
[
{R− πN(X)}2−→X2(j)

]
= max

1≤j≤p+1
E
[
πN(X){1− πN(X)}

−→
X2(j)

]
≤ max

1≤j≤p+1
πNE

{
exp(
−→
XTγ0)

−→
X2(j)

}
≤ πN

[
E{exp(2

−→
XTγ0)} max

1≤j≤p+1
E{
−→
X4(j)}

]1/2

≤ 2 exp(2σγ0 + 40σ2
γ0

+ 10σ2)πN .

Now, apply Theorem 3.4 of [KC18], for any t1 ≥ 0, with probability at least 1− 3 exp(−t1),

‖∇γ`N(γ0; πN)‖∞ =

∥∥∥∥∥∥N−k
∑
i∈I−k

{Ri − πN(Xi)}
−→
X i

∥∥∥∥∥∥
∞

≤ 7

√
2 exp(2σγ0 + 40σ2

γ0
+ 10σ2)πN{t1 + log(p+ 1)}

N
(2.107)

+
c6σ
√

log(2N){t1 + log(p+ 1)}
N

, (2.108)

with some constant c6 independent of N . Define B = B(t1) to be an event that (2.108) holds,

then P (B) ≥ 1− 3 exp(−t1).
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Now, we consider the error that originated from the first step estimation π̂N . By

Taylor’s Theorem, for each i ≤ N , there exists π′N (depends on i) lies between πN and π̂N ,

such that

∣∣∣g(
−→
XT
i γ0 + log(π̂N))− g(

−→
XT
i γ0 + log(πN))

∣∣∣ =
|π̂N − πN |

π′N
|φ(
−→
XT
i γ + log(π′N))| (2.109)

≤ |π̂N − πN |
π′N

g(
−→
XT
i γ + log(π′N)) ≤ |π̂N − πN |

min(πN , π̂N)
g(
−→
XT
i γ + log(max{πN , π̂N})),

(2.110)

since function g(·) is monotone increasing. Observe that, for each r ≥ 2,

E|R− πN |r = E [|1− πN |rπN(X) + | − πN |r{1− πN(X)}]

= (1− πN)rπN + πrN(1− πN) ≤ 2πN ≤
r!

2
1r−2 · 2πN .

By Theorem 1 of [vdGL13], for any t2 > 0,

PS

(
|π̂N − πN | ≥ 2

√
t2πN
N

+
t2
N

)
≤ 2 exp(−t2).

Define event

A = A(t2) := {|π̂N − πN | < 2
√
t2πN/N + t2/N}. (2.111)

Then, PS(A) ≥ 1− 2 exp(−t2). Define

πN,min = πN − 2
√
t2πN/N − t2/N, πN,max = πN + 2

√
t2πN/N + t2/N.

Suppose t2 < NπN/9, then 2
√
t2πN/N + t2/N < 7πN/9, πN,min > 2πN/9 > 0 and πN,max <

16πN/9 < 16/9. Recall (2.110), on event A, we have for each i ≤ N ,

∣∣∣g(
−→
XT
i γ0 + log(π̂N))− g(

−→
XT
i γ0 + log(πN))

∣∣∣ ≤ |π̂N − πN |
πN,min

g(
−→
XT
i γ0 + log(πN,max)),
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and

‖∇γ`N(γ0; π̂N)−∇γ`N(γ0; πN)‖∞

=

∥∥∥∥∥N−1

N∑
i=1

{g(
−→
XT
i γ0 + log(π̂N))− g(

−→
XT
i γ0 + log(πN))}

−→
X i

∥∥∥∥∥
∞

≤ π̂N − πN
πN,min

∥∥∥∥∥N−1

N∑
i=1

g(
−→
XT
i γ0 + log(πN,max))

−→
X i

∥∥∥∥∥
∞

≤ π̂N − πN
πN,min

∥∥∥∥∥N−1

N∑
i=1

Vi

∥∥∥∥∥
∞

+
π̂N − πN
πN,min

∥∥∥E {g(
−→
XTγ0 + log(πN,max))

−→
X
}∥∥∥
∞
,

where

Vi = g(
−→
XT
i γ0 + log(πN,max))

−→
X i − E

{
g(
−→
XTγ0 + log(πN,max))

−→
X
}
.

For any vector v, let v(j) denotes the j-th element of the vector v. Notice that, on event A,

max
1≤j≤p+1

∣∣∣E {g(
−→
XTγ0 + log(πN,max))

−→
X(j)

}∣∣∣ ≤ max
1≤j≤p+1

πN,maxE{exp(
−→
XTγ0)|

−→
X(j)|}

≤ πN,max

[
E{exp(2

−→
XTγ0)} max

1≤j≤p+1
E{
−→
X2(j)}

]1/2

≤ πN,max

√
2 exp(2σγ0 + 40σ2

γ0
+ 10σ2),

and hence

max
1≤j≤p+1

‖V(j)‖ψ2 ≤ max
1≤j≤p+1

∥∥∥g(
−→
XT
i γ0 + log(πN,max))

−→
X i(j)

∥∥∥
ψ2

+ max
1≤j≤p+1

∥∥∥E {g(
−→
XTγ0 + log(πN,max))

−→
X(j)

}∥∥∥
ψ2

≤ max
1≤j≤p+1

∥∥∥−→X i(j)
∥∥∥
ψ2

+ πN,max

√
2 exp(2σγ0 + 40σ2

γ0
+ 10σ2)

≤ σ +
16πN

9

√
2 exp(2σγ0 + 40σ2

γ0
+ 10σ2).
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Additionally,

max
1≤j≤p+1

E(V2
i ) ≤ max

1≤j≤p+1
E
{
g2(
−→
XTγ0 + log(πN,max))

−→
X2(j)

}
≤ π2

N,max max
1≤j≤p+1

E
{

exp(2
−→
XTγ0)

−→
X2(j)

}
≤ π2

N,max

[
E{exp(4

−→
XTγ0)} max

1≤j≤p+1
E{
−→
X4(j)}

]1/2

≤ π2
N,max2 exp(4σγ0 + 160σ2

γ0
+ 10σ2).

Define

C =

{∥∥∥∥∥N−1

N∑
i=1

Vi

∥∥∥∥∥
∞

≤ 7c8πN,max

√
t1 + log(p+ 1)

N
+
c9

√
log(2N){t1 + log(p+ 1)}

N

}
,

(2.112)

where c8 =
√

2 exp(2σγ0 + 80σ2
γ0

+ 5σ2), c9 = c6{σ + 16πN exp(2σγ0 + 40σ2
γ0

+ 10σ2)/9}. By

Theorem 3.4 of [KC18], P (C) ≥ 1− 3 exp(−t1). It follows that, on events A and C,

‖∇γ`N(γ0; π̂N)−∇γ`N(γ0; πN)‖∞

≤ |π̂N − πN |
πN,min

∥∥∥∥∥N
N∑
i=1

Vi

∥∥∥∥∥
∞

+
|π̂N − πN |
πN,min

∥∥∥E {g(
−→
XTγ0 + log(πN,max))

−→
X
}∥∥∥
∞

≤
2
√
t2πN/N + t2/N

πN,min

{
7c8πN,max

√
t1 + log(p+ 1)

N
+
c9

√
log(2N){t1 + log(p+ 1)}

N

}

+
2
√
t2πN/N + t2/N

πN,min

πN,max

√
2 exp(2σγ0 + 40σ2

γ0
+ 10σ2).

Recall that, when t2 < NπN/9,

2
√
t2πN/N + t2/N

πN,min

<
7

2
, πN,min >

2

9
πN , πN,max <

16

9
πN .
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Hence, when t2 < NπN/9, on events A, B and C,

‖∇γ`N(γ0; π̂N)‖∞ ≤ ‖∇γ`N(γ0; πN)‖∞ + ‖∇γ`N(γ0; π̂N)−∇γ`N(γ0; πN)‖∞

≤ 7

√
2 exp(2σγ0 + 40σ2

γ0
+ 10σ2)πN{t1 + log(p+ 1)}

N
+
c6σ
√

log(2N){t1 + log(p+ 1)}
N

+
2
√
t2πN/N + t2/N

πN,min

{
7c8πN,max

√
t1 + log(p+ 1)

N
+
c9

√
log(2N){t1 + log(p+ 1)}

N

}

+
2
√
t2πN/N + t2/N

πN,min

πN,max

√
2 exp(2σγ0 + 40σ2

γ0
+ 10σ2)

≤ C1(πN + π
1/2
N )

√
{t1 + log(p+ 1)}

N
+ (C2 + C3πN)

√
log(2N){t1 + log(p+ 1)}

N

+ C4

{√
t2πN
N

+
t2
N

}
.

where PS(A ∩ B ∩ C) ≥ 1− 6 exp(−t1)− 2 exp(−t2),

C1 = 62 exp(2σγ0 + 80σ2
γ0

+ 5σ2), C2 =
9

2
c6σ, (2.113)

C3 =
56

9
exp(2σγ0 + 40σ2

γ0
+ 10σ2), C4 = 16

√
2 exp(2σγ0 + 40σ2

γ0
+ 10σ2). (2.114)

Proof of Theorem 2.5. Here, we establish a non-asymptotic property of the offset logistic

regression estimator based on the full sample S. The result follows from the Lemmas 2.1

and 2.2, where we obtained the RSC property and controlled the gradient ‖∇γ`N(γ0; π̂N)‖∞,

respectively. After that, we validate the conditions required in Theorem 2.2 for the proposed

offset logistic PS estimator.

For any t ∈ R, set t1 = t2 = t log(p+ 1). By Lemma 2.2, on events A, B and C, with
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PS(A ∩ B ∩ C) ≥ 1− 8(p+ 1)−t,

‖∇γ`N(γ0; π̂N)‖∞

≤ (t+ 1)

{
C1(πN + π

1/2
N )

√
log(p+ 1)

N
+ (C2 + C3πN)

√
log(2N) log(p+ 1)

N

}

+ C4t
1/2π

1/2
N

√
log(p+ 1)

N
+ C4t

log(p+ 1)

N

≤ (t+ 1)

{
(C1 + C4)(πN + π

1/2
N )

√
log(p+ 1)

N
+ (C2 + C4 + C3πN)

√
log(2N) log(p+ 1)

N

}

≤ (t+ 1)MN ,

where

MN = 2(C1 + C4)π
1/2
N

√
log(p+ 1)

N
+ (C2 + C3 + C4)

√
log(2N) log(p+ 1)

N
.

Hence, for any λN ≥ 2(1 + c)MN with constant c > 0,

2 ‖∇γ`N(γ0; π̂N)‖∞ ≤ λN , on events A,B and C.

Define event

D :=
{
δ`(∆; π̂N ;γ) ≥ π̂Nκ‖∆‖2

2, ∀∆ ∈ Cδ(S; 3) and δ ≤ 1
}
. (2.115)

By Lemma 2.1, P (D) ≥ 1 − αN . Let δ∗N = 2λNs
1/2(π̂Nκ)−1. Then, the RSC condition

holds for `N(·; π̂N) with parameter π̂Nκ over Cδ∗N
(S; 3). By Theorem 1 of [NRWY10], when

λN ≥ 2 ‖∇γ`N(γ0; π̂N)‖∞, 2λNs
1/2(π̂Nκ)−1 ≤ 1 and on event D,

‖γ̂ − γ0‖2 ≤ δ∗N ≤ 2λNs
1/2(π̂Nκ)−1.

Recall (2.111), for any t > 0, on event A = A(t),

π̂N ≥ πN − 2

√
t log(p+ 1)πN

N
− t log(p+ 1)

N
≥ 2

9
πN ,

2λNs
1/2(π̂Nκ)−1 ≤ 1

9
λNs

1/2π−1
N κ−1 ≤ 1,
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when t < NπN{log(p+ 1)}−1/9 and λN ≤ 9κπNs
−1/2. Hence, if NπN > 9c log(p+ 1),

‖γ̂ − γ0‖2 ≤
1

9
λNs

1/2π−1
N κ−1, on events A, B, C and D,

where PS(A ∩ B ∩ C ∩ D) ≥ 1− 8(p+ 1)−c − αN .

Now, consider the asymptotic performance that as N →∞, log(p) log(N) = O(NπN)

and s log(p) = o(NπN). Then,

MN � π
1/2
N

√
log(p)

N
.

Hence, with some λN � {N−1πN log(p)}1/2,

‖γ̂ − γ0‖2 = Op

√s log(p)

NπN

 = op(1). (2.116)

Now we analyze the consistency rate of the PS estimator π̂N(·). For any r > 0,∥∥∥∥1− πN(·)
π̂N(·)

∥∥∥∥
r,P

≤ ‖π̂N(·)− πN(·)‖2r,P ‖π̂
−1
N (·)‖2r,P .

Let u0 = −→x Tγ0 + log(πN) and ∆u = −→x T γ̂ + log(π̂N) − {−→x Tγ0 + log(πN)}. By mean value

theorem, and notice that g′(u) = g(u){1− g(u)}, for some v′ ∈ (0, 1),

|g(u0 + ∆u)− g(u0)| = g′(u0 + v′∆u)|∆u| ≤ g(u0 + v′∆u)|∆u|

≤ max{g(u0), g(u0 + ∆u)}|∆u| ≤ {g(u0) + g(u0 + ∆u)}|∆u|,

since the function g(·) > 0 is monotone increasing. Besides, notice that, on A and E :=

{‖γ̂ − γ0‖2 ≤ 1},

| log(π̂N)− log(πN)| ≤ |π̂N − πN |
min(π̂N , πN)

≤
2
√
t2πN/N + t2/N

2πN/9
≤ 21

2

√
t2

NπN
,

g(u0) =
πN exp(−−→x Tγ0)

1 + πN exp(−−→x Tγ0)
≤ πN exp(−−→x Tγ0),

g(u0 + ∆u) =
π̂N exp(−−→x T γ̂)

1 + π̂N exp(−−→x T γ̂)
≤ π̂N exp(−−→x T γ̂) ≤ 16

9
πN exp(−−→x T γ̂),
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when t2 < NπN/9. Hence, on A ∩ E ,

‖π̂N(·)− πN(·)‖2r,P

≤ πN

∥∥∥∥{exp(−
−→
XTγ0) +

16

9
exp(−

−→
XT γ̂)

}{
|
−→
XT (γ̂ − γ0)|+ 21

2

√
t2

NπN

}∥∥∥∥
2r,P

≤
[∥∥∥exp(−

−→
XTγ0)

∥∥∥
4r,P

+
16

9

∥∥∥exp(−
−→
XTγ0)

∥∥∥
8r,P

∥∥∥exp{−
−→
XT (γ̂ − γ0)}

∥∥∥
8r,P

]
·
{∥∥∥−→XT (γ̂ − γ0)

∥∥∥
4r,P

+
21

2

√
t2

NπN

}
≤ C

{
‖γ̂ − γ0‖2 +

√
t2

NπN

}
,

with some constant C > 0. Here, P (A) ≥ 1− exp(−t2) and recall (2.116). Hence,

‖π̂N(·)− πN(·)‖2r,P = Op

√s log(p)

NπN

 . (2.117)

Additionally, observe that

‖π̂−1
N (·)‖2r,P = ‖1 + π̂−1

N exp(−
−→
XT γ̂)‖2r,P ≤ 1 + π̂−1

N ‖ exp(−
−→
XT γ̂)‖2r,P

≤ 1 + π̂−1
N ‖ exp(−

−→
XTγ0)‖4r,P‖ exp(−U)‖4r,P .

By (2.106), ‖ exp(−
−→
XTγ0)‖4r,P = O(1). By (2.122), π̂−1

N = π−1
N {1 + op(1)}. By Lemma part

(b) of 2.8,

|E(U)| ≤ E(|U |) ≤ σ
√
π‖γ̂ − γ0‖2.

Hence, by triangular inequality and part (a) of 2.8,

‖U − E(U)‖ψ2 ≤ ‖U‖ψ2 + ‖E(U)‖ψ2 ≤ {1 +
√
π/ log(2)}σ‖γ̃ − γ‖2 ≤ 4σ‖γ̂ − γ0‖2.

By part (c) of Lemma 2.8,

‖ exp{−U + E(U)}‖4r,P = (E exp[−4r{U − E(U)}])1/(4r) ≤ exp
(
128rσ2‖γ̂ − γ0‖2

2

)
.
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Hence,

‖ exp(−U)‖4r,P = ‖ exp{−U + E(U)}‖4r,P exp{−E(U)}

≤ exp
(
128rσ2‖γ̂ − γ0‖2

2

)
exp(σ

√
π‖γ̂ − γ0‖2) = 1 + op(1).

It follows that

‖π̂−1
N (·)‖2r,P ≤ 1 + π−1

N {1 + op(1)} ·O(1) · {1 + op(1)} = Op(π
−1
N ). (2.118)

Therefore, by (2.117) and (2.118),

∥∥∥∥1− πN(·)
π̂N(·)

∥∥∥∥
r,P

≤ ‖π̂N(·)− πN(·)‖2r,P ‖π̂
−1
N (·)‖2r,P = Op

√s log(p)

NπN

 .

Besides, recall (2.103) and notice that

‖π−1
N (X)‖r,P ≤ 1 + π−1

N ‖ exp(−
−→
XTγ0)‖r,P ≤ 1 + π−1

N exp(2σγ0 + 20σγ0r) = O(π−1
N ).

Therefore,

E

[
aN

πN(X)

{
1− πN(X)

π̂N(X)

}2
]
≤ aN

∥∥π−1
N (X)

∥∥
2,P

∥∥∥∥1− πN(·)
π̂N(·)

∥∥∥∥2

4,P

= Op

(
s log(p)

NπN

)
.

If further assume ‖m̂(·)−m(·)‖2+c,P = op(1), then

E

[
aN

πN(X)
{m̂(X)−m(X)}2

]
≤ aN

∥∥π−1
N (X)

∥∥
1+c/2,P

‖m̂(·)−m(·)‖2
2+c,P = op(1).

Proof of Lemma 2.3. The proof of Lemma 2.3 is based on the proof of Proposition 2 in

[NRWY10]. Here, we only provide the details that are different from their proof and we will

use our notations in the folloing proof. As a reminder, N denotes the number of samples,

−→
X ∈ Rp+1 is the covariate containing the intercept term and γ0 ∈ Rp+1 is the coefficient
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of the balanced logistic model (the dimension p in their proof will be replaced by p + 1

everywhere because of the usage of the intercept term).

The proof consists of 3 main steps: 1) show that (71) of [NRWY10] holds under our

assumptions and the parameter K3 we choose, 2) prove a slightly different version of (72)

in [NRWY10], 3) conclude the RSC property result.

Step 1. For the inequality (71), similarly as in their proof, we have E{(
−→
XT∆)2} ≥

κl‖∆‖2
2 = κl for any ‖∆‖2 = 1. Hence, it suffices to show their inequality (73). Instead

of assuming
−→
X to be a zero-mean jointly sub-Gaussian random vector (which is not ture

since we have the intercept term here), we only assume a (2 + c)-th moment condition that

sup‖v‖2≤1 ‖
−→
XTv‖2+c,P ≤ M < ∞ and a c-th moment condition that ‖

−→
XTγ0‖c,P ≤ µc < ∞,

with our choice on the constant K3. We have

sup
‖∆‖2≤1

P (|
−→
XT∆| ≥ τ/2) ≤ (τ/2)−2−c sup

‖v‖2≤1

E|
−→
XT∆|2+c ≤M2+c(τ/2)−2−c,

P (|
−→
XTγ0| ≥ T ) ≤ E|

−→
XTγ0|cT−c = µccT

−c.

Hence, by Hölder’s Inequality, for any ‖∆‖2 ≤ 1,

E
{

(
−→
XT∆)21|−→XTγ0|≥T

}
≤ ‖
−→
XT∆‖2

2+c,P{P (|
−→
XTγ0| ≥ T )}

c
2+c ≤M2µ

c2

2+c
c T−

c2

2+c ,

E
{

(
−→
XT∆)21|−→XT∆|≥τ/2

}
≤ ‖
−→
XT∆‖2

2+c,P{P (|
−→
XT∆| ≥ τ/2)}

c
2+c ≤M2+c(τ/2)−c.

It follows that, for τ 2 = T 2 = K3 ≥ 1,

E
{

(
−→
XT∆)2 − g∆(X)

}
≤ E

{
(
−→
XT∆)21|−→XTγ0|≥T

}
+ E

{
(
−→
XT∆)21|−→XT∆|≥τ/2

}
≤M2µ

c2

2+c
c T−

c2

2+c +M2+c(τ/2)−c ≤ (M2µ
c2

2+c
c +M2+c2c)K

− c2

4+2c

3 .
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Hence, (73) of [NRWY10] holds when we set

K3 = max

[
1,

{
2κ−1

l (M2µ
c2

2+c
c +M2+c2c)

} 4+2c
c

]
.

Step 2. We will demonstrate a slightly different version of (72) in [NRWY10] that

PS

{
Z(t) ≥ κl

4
+ 66K3σ

√
log(p+ 1)

N
t

}
≤ exp

{
− Nκ2

l

64K2
3

− σ2t2 log(p+ 1)

}
. (2.119)

Set z∗(t) = κl/4 + 2K3σ
√

log(p+ 1)/Nt and let

F := {±f(·) : f(u) = g∆(u)− E{g∆(X)}, ‖∆‖2 = 1, ‖∆‖1 = t}.

Since 0 ≤ g∆(u) ≤ K3 for all u, we have |f(Xi)| ≤ K3 for all f ∈ F . By Lemma 2.10, we

have a slightly different version of their (76):

PS[Z(t) ≥ E{Z(t)}+ z∗(t)] ≤ exp

[
−N{z

∗(t)}2

4K2
3

]
≤ exp

{
− Nκ2

l

64K2
3

− σ2t2 log(p+ 1)

}
.

(2.120)

Now, we need to obtain an upper bound for ES‖N−1
∑N

i=1 εiui‖∞ only using the marginal

sub-Gaussianity of
−→
X. Firstly, since |εiui(j)| ≤ |Xi(j)|, by part (a) of Lemma 2.8,

sup
1≤j≤p+1

‖εiui(j)‖ψ2 ≤ sup
1≤j≤p+1

‖
−→
X i(j)‖ψ2 ≤ σ.

Notice that E(εu) = 0 since ε is independent with u and E(ε) = 0, by part (e) of Lemma

2.8, for any 1 ≤ j ≤ p+ 1, ∥∥∥∥∥N−1

N∑
i=1

εiui(j)

∥∥∥∥∥
ψ2

≤ 4σ/
√
N.

By part (d) of Lemma 2.8,∥∥∥∥∥
∥∥∥∥∥N−1

N∑
i=1

εiui

∥∥∥∥∥
∞

∥∥∥∥∥
ψ2

≤ 4{log(p+ 1) + 2}1/2σ/
√
N ≤ 8{log(p+ 1)}1/2σ/

√
N,
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for any p ≥ 1. Hence, by part (b) of Lemma 2.8,

ES

∥∥∥∥∥N−1

N∑
i=1

εiui

∥∥∥∥∥
∞

≤ 8
√
πσ

√
log(p+ 1)

N
.

Combining the upper bound with (78) of [NRWY10], we have a slightly different version of

their inequality (77):

ES{Z(t)} ≤ 64K3t
√
πσ

√
log(p+ 1)

N
.

and recall (2.120), hence (2.119) follows. Notice that the statements in Step 2 are all inde-

pendent of the choice of K3, so our choice on the constant K3 does not affect the validity of

the resutlts.

Step 3. By inequality (71) of [NRWY10] and our (2.119), we conclude that: for any

t > 0,

PS

[
ÊN{g∆(X)} < κl

4
− 66K3σ

√
log(p+ 1)

N
t, ∃∆ ∈ Rp+1, with ‖∆‖1 = t, ‖∆‖2 = 1

]

≤ exp

{
− Nκ2

l

64K2
3

− σ2t2 log(p+ 1)

}
.

Let S(1, t) = {∆ ∈ Rp+1 : ‖∆‖2 ≤ 1, ‖∆‖1/‖∆‖2 = t}. By their inequality (66) and the

technique in (69),

PS

[
δ`(∆; 1;γ0) < Lψ(K

1/2
3 )

{
κl
4
‖∆‖2

2 − 66K3σ

√
log(p+ 1)

N
‖∆‖2t

}
, ∃∆ ∈ S(1, t)

]

≤ exp

{
− Nκ2

l

64K2
3

− σ2t2 log(p+ 1)

}
,

where for a logistic model, Lψ(K
1/2
3 ) = ġ(2K

1/2
3 ) > 0.

By a peeling argument as in [RWY10], (2.36) holds. If further assume that s log(p) =

o(N). For any ∆ ∈ C(S, 3),

‖∆‖1 = ‖∆S‖1 + ‖∆Sc‖1 ≤ 4‖∆S‖1 ≤ 4
√
s‖∆S‖2 ≤ 4

√
s‖∆‖2.
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and hence (2.37) holds.

Proof of Theorem 2.6. We establish the asymptotic properties of the stratified PS estimator

and the DRSS estimator based on the stratified PS estimator.

Let πN = E(R), then π1,N + π0,N ∈ (πN/(1 − C), πN/C) and π(X) ∈ (CπN/(1 −

C), (1−C)πN/C) for all X ∈ X . Let N1 =
∑

i∈I−k δi and N0 =
∑

i∈I−k(1−δi). Similarly as in

(2.122), for j ∈ {0, 1}, N−1
j = Op(N

−1), π̂j(S−k)−πj,N = Op(
√
πN/N) and 1−πj,N/π̂j(S−k) =

Op(1/
√
NπN). Hence, π̂−1

j (S−k) = π−1
j,N{1+Op(1/

√
NπN)}. It follows that there exists c > 0

such that

PS−k(π̂j(S−k) > cπN)→ 1, for j ∈ {0, 1}.

Hence, with probability approaching 1,

π̂N(X;S−k) = π̂1(S−k)p̂δ(X;S−k) + π̂0(S−k){1− p̂δ(X;S−k)}

≥ cπN p̂δ(X;S−k) + cπN{1− p̂δ(X;S−k)} = cπN .

Observe that

π̂N(X;S−k)− πN(X) = {π̂1(S−k)− π̂0(S−k)}{p̂δ(X;S−k)− pδ(X)}

+ {π̂1(S−k)− π1,N}pδ(X) + {π̂0(S−k)− π0,N}{1− pδ(X)}.

Hence, ∥∥∥∥ π̂N(·;S−k)− πN(·)
πN(·)

∥∥∥∥
2,PX

= Op

(
rpδ,N + (NπN)−1/2

)
,∥∥∥∥ π̂N(·;S−k)− πN(·)

π̂N(·;S−k)

∥∥∥∥
2,PX

= Op

(
rpδ,N + (NπN)−1/2

)
.

Following the case (b) in Theorem 2.2 that πN(·) = eN(·) being correctly specified,

θ̂DRSS − θ0 =
1

N

N∑
i=1

ψµ,e(Zi) + ∆̂N +Op

(
cµ,N√
NaN

+
ce,N√
NaN

+ rπ,m.N

)
,
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where ψµ,e(Z) = µ(X)− θ0 +R/πN(X)[Y − µ(X)], ∆̂N =
∑K

k=1 ∆̂N,k and

∆̂N,k = N−1
∑
i∈Ik

Ri

πN(Xi)

{
1− πN(Xi)

π̂N(Xi;S−k)

}
{µ(Xi)−m(Xi)}.

With a slight abuse of notation, let Z = (δ, R,X), Zi = (δi, Ri,Xi) and Sk = {Zi : i ∈ Ik}.

Then,

VarSk(∆̂N,k) = N−2|Ik|Var

[
R

πN(X)

{
1− πN(X)

π̂N(X;S−k)

}
{µ(X)−m(X)}

]
≤ N−1E

[
1

πN(X)

{
1− πN(X)

π̂N(X; S−k)

}2

{µ(X)−m(X)}2

]

≤ 1− C
C

(NπN)−1

∥∥∥∥ π̂N(·;S−k)− πN(·)
π̂N(·;S−k)

∥∥∥∥2

2,PX

‖µ(·)−m(·)‖2
∞,PX

= Op

(
(NπN)−1r2

pδ,N
+ (NπN)−2

)
,

and by Lemma 2.4,

∆̂N,k = ESk(∆̂N,k) +Op

(
(NπN)−1/2rpδ,N + (NπN)−1

)
.

In addition,

N |Ik|−1ESk(∆̂N,k) = E

[
R

πN(X)

{
1− πN(X)

π̂N(X; S−k)

}
{µ(X)−m(X)}

]
= E

[{
1− πN(X)

π̂N(X; S−k)

}
{µ(X)−m(X)}

]
= E

[
π̂N(X;S−k)− πN(X)

πN(X)
{µ(X)−m(X)}

]
− E

[
π̂N(X;S−k)− πN(X)

πN(X)
· π̂N(X; S−k)− πN(X)

π̂N(X;S−k)
{µ(X)−m(X)}

]
= E

[
π̂N(X;S−k)− πN(X)

πN(X)
{µ(X)−m(X)}

]
+Op

(∥∥∥∥ π̂N(·;S−k)− πN(·)
πN(·)

∥∥∥∥
2,PX

∥∥∥∥ π̂N(·;S−k)− πN(·)
π̂N(·;S−k)

∥∥∥∥
2,PX

‖µ(·)−m(·)‖∞

)

= E

[
π̂N(X;S−k)− πN(X)

πN(X)
{µ(X)−m(X)}

]
+Op

(
‖p̂δ(·)− pδ(·)‖2

2,PX
+ (NπN)−1

)
.
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Let π̃N(·;S−k) = π̂1(S−k)pδ(·) + π̂0(S−k){1− pδ(·)}. Then,

E

[
π̂N(X;S−k)− πN(X)

πN(X)
{µ(X)−m(X)}

]
= E

[
π̃N(X;S−k)− πN(X)

πN(X)
{µ(X)−m(X)}

]
+ E

[
π̂N(X; S−k)− π̃N(X;S−k)

πN(X)
{µ(X)−m(X)}

]
= E

[
π̃N(X;S−k)− πN(X)

πN(X)
{µ(X)−m(X)}

]
+Op (rpδ,N‖µ(·)−m(·)‖2,PX

)

= {π̂1(S−k)− π1,N}E
[
pδ(X)

πN(X)
{µ(X)−m(X)}

]
+ {π̂0(S−k)− π0,N}E

[
1− pδ(X)

πN(X)
{µ(X)−m(X)}

]
+Op (rpδ,N) .

Let p̂δ(S−k) = N−1
−k
∑

i∈I−k δi and pδ = E[pδ(X)]. Then, similarly as (2.122), p̂−1
δ (S−k) =

p−1
δ {1 +Op(1/

√
N)}. Hence,

π̂1(S−k)− π1,N = N−1
−k

∑
i∈I−k

δiRi

p̂δ(S−k)
− π1,N

= N−1
−k

∑
i∈I−k

δiRi

pδ
− π1,N +Op(N

−1/2)N−1
−k

∑
i∈I−k

δiRi

pδ

= N−1
−k

∑
i∈I−k

δiRi

pδ
− π1,N +Op(N

−1/2πN).

Similarly,

π̂0(S−k)− π0,N = N−1
−k

∑
i∈I−k

(1− δi)Ri

1− pδ
− π0,N +Op(N

−1/2πN).

Let

IFπ(Z) =

{
δR

pδ
− π1,N

}
E

[
pδ(X)

πN(X)
{µ(X)−m(X)}

]
+

{
(1− δ)R

1− pδ
− π0,N

}
E

[
1− pδ(X)

πN(X)
{µ(X)−m(X)}

]
.
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Then,

E

[
π̂N(X; S−k)− πN(X)

πN(X)
{µ(X)−m(X)}

]
= N−1

−k

∑
i∈I−k

IFπ(Zi) +Op

(
N−1/2

)
.

Hence,

∆̂N =
K∑
k=1

∆̂N,k = (KN−k)−1

K∑
k=1

∑
i∈I−k

IFπ(Zi) +Op

(
‖p̂δ(·)− pδ(·)‖2

2,PX
+ (NπN)−1

)
+Op (rpδ,N) +Op

(
N−1/2

)
+Op

(
(NπN)−1/2rpδ,N + (NπN)−1

)
= N−1

N∑
i=1

IFπ(Zi) +Op

(
rpδ,N + (NπN)−1 +N−1/2

)
.

By part (b) of Theorem 2.2,

θ̂DRSS − θ0 =
1

N

N∑
i=1

Ψ(Zi) +Op

(
rpδ,N + (NπN)−1 +N−1/2

)
+Op

(
rµ,N(NπN)−1/2 +

{
rpδ,N + (NπN)−1/2

}{
(NπN)−1/2 + rµ,N

})
,

=
1

N

N∑
i=1

Ψ(Zi) +Op

(
(NπN)−1 +N−1/2 + rµ,N(NπN)−1/2 + rpδ,N

)
,

where Ψ(Z) := ψµ(Z) + IFπ(Z) and E{Ψ(Z)} = 0 with

ψµ(Z) =
R

πN(X)
{Y − µ(X)}+ µ(X)− θ0,

IFπ(Z) =

{
δR

pδ
− π1,N

}
E

[
pδ(X)

πN(X)
{µ(X)−m(X)}

]
+

{
(1− δ)R

1− pδ
− π0,N

}
E

[
1− pδ(X)

πN(X)
{µ(X)−m(X)}

]
.

If further rpδ,N = op((NπN)−1/2),

θ̂DRSS − θ0 =
1

N

N∑
i=1

Ψ(Zi) + op
(
(NπN)−1/2

)
.
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Proof of Theorem 2.7. Here we provide asymptotic results of the DRSS estimator based on

a MCAR PS.

Under MCAR, neither πN(X) ≡ πN nor π̂N(X;S−k) ≡ π̂N(S−k) depend on X, and

we recall that πN = P (R = 1). For each k ≤ K, π̂N(S−k) = N−1
−k
∑

i∈I−k Ri, where N−k =

N −N/K. Notice that

ES−k

[{
π̂N(S−k)− πN

πN

}2
]

= π−2
N N−1

−kE(R− πN)2 = N−1
−kπ

−1
N (1− πN) = O

(
(NπN)−1

)
.

By Lemma 2.4,

π̂N(S−k)− πN
πN

= Op

(
(NπN)−1/2

)
. (2.121)

By the fact that

π̂N(S−k)− πN
π̂N(S−k)

{
1 +

π̂N(S−k)− πN
πN

}
=
π̂N(S−k)− πN

πN
,

we have

π̂N(S−k)− πN
π̂N(S−k)

=

{
1 +

π̂N(S−k)− πN
πN

}−1
π̂N(S−k)− πN

πN
= Op

(
(NπN)−1/2

)
. (2.122)

Hence,

π̂N(S−k)− πN
π̂N(S−k)

− π̂N(S−k)− πN
πN

=
π̂N(S−k)− πN

πN
· π̂N(S−k)− πN

π̂N(S−k)
= Op

(
(NπN)−1

)
.

Additionally, notice that

ESk

[
|Ik|−1

∑
i∈Ik

Ri

πN
{µ(Xi)−m(Xi)}

]
= E{µ(X)−m(X)},

ESk

[
|Ik|−1

∑
i∈Ik

Ri

πN
{µ(Xi)−m(Xi)}

]2

= |Ik|−1π−1
N E

[
{µ(X)−m(X)}2

]
= O

(
(NπN)−1

)
.

Let ∆µ = E{µ(X)−m(X)}. By Lemma 2.4,

|Ik|−1
∑
i∈Ik

Ri

πN
{µ(Xi)−m(Xi)} −∆µ = Op

(
(NπN)−1/2

)
. (2.123)
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Using the definition of ∆̂N from Theorem 2.2 and adapting it to the MCAR setting,

∆̂N = N−1

N∑
i=1

Ri

πN(Xi)

{
π̂N(S−k)− πN
π̂N(S−k)

}
{µ(Xi)−m(Xi)}

= K−1

K∑
k=1

π̂N(S−k)− πN
π̂N(S−k)

[
|Ik|−1

∑
i∈Ik

Ri

πN
{µ(Xi)−m(Xi)}

]
.

Recall (2.122) and (2.123), since K <∞ is a fixed number, we have

sup
k≤K

∣∣∣∣ π̂N(S−k)− πN
π̂N(S−k)

∣∣∣∣ = Op

(
(NπN)−1/2

)
,

sup
k≤K

∣∣∣∣∣|Ik|−1
∑
i∈Ik

Ri

πN
{µ(Xi)−m(Xi)} −∆µ

∣∣∣∣∣ = Op

(
(NπN)−1/2

)
.

Hence, ∣∣∣∣∣∆̂N −K−1

K∑
k=1

π̂N(S−k)− πN
π̂N(S−k)

∆µ

∣∣∣∣∣
≤ sup

k≤K

∣∣∣∣ π̂N(S−k)− πN
π̂N(S−k)

∣∣∣∣ sup
k≤K

∣∣∣∣∣|Ik|−1
∑
i∈Ik

Ri

πN
{µ(Xi)−m(Xi)} −∆µ

∣∣∣∣∣
= Op

(
(NπN)−1

)
.

It follows that,

∆̂N = K−1

K∑
k=1

(
π̂N(S−k)− πN

πN

)
∆µ +Op

(
(NπN)−1

)
(i)
= K−1

K∑
k=1

N−1
−k

∑
i∈I−k

Ri − πN
πN

∆µ +Op

(
(NπN)−1

)
= K−1

K∑
k=1

N−1
−k

(
N∑
i=1

Ri − πN
πN

−
∑
i∈Ik

Ri − πN
πN

)
∆µ +Op

(
(NπN)−1

)
=
{
N−1
−k − (KN−k)−1

} N∑
i=1

Ri − πN
πN

∆µ +Op

(
(NπN)−1

)
(ii)
= N−1

N∑
i=1

IFπ(Zi) +Op

(
(NπN)−1

)
,

where IFπ(Z) = (π−1
N R− 1)∆µ. Here, (i) holds by definition that π̂N(S−k) = N−1

−k
∑

i∈I−k Ri

and (ii) follows by the fact that N−1
−k−(KN−k)−1 = K/{(K−1)N}−1/{(K−1)N} = N−1.
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Proof of Theorem 2.8. Since πN(X) > cπN , we have

aN = 1/E{π−1
N (X)} ≥ c−1πN .

Additionally, by Jensen’s inequality, aN ≤ πN . Hence, aN � πN . For each k ≤ K, define the

following event

E−k := {π̂N(x;S−k) < 2CπN , ∀x ∈ X}.

Then, under conditions eN(X) < CπN for all x ∈ X , (2.42), and re,N = o(1), we have

PS−k(E−k) ≥ P

(
sup
x∈X

∣∣∣∣ π̂N(x;S−k)− eN(X)

πN

∣∣∣∣ > C

)
= 1− o(1). (2.124)

Recall that ε = Y −Rm1(X)− (1−R)m0(X). We have E(ε|R,X) = 0. Observe that

θ̂0 − θ0 = N−1

N∑
i=1

ψ0(Zi) +
K∑
k=1

(∆̂′N,1,k + ∆̂′N,2,k + ∆̂′N,3,k + ∆̂′N,4,k + ∆̂′N,5,k),

where

ψ0(Z) = µ0(X)− θ0 +
1−R

1− eN(X)
{Y − µ0(X)}

=
eN(X)−R
1− eN(X)

{m0(X)− µ0(X)}+m0(X)− θ0 +
ε(1−R)

1− eN(X)
,

∆̂′N,1,k = −N−1
∑
i∈Ik

{
1−Ri

1− πN(Xi)
− 1

}
{m̂0(Xi;S−k)− µ0(Xi)},

∆̂′N,2,k = N−1
∑
i∈Ik

{
1−Ri

1− π̂N(Xi;S−k)
− 1−Ri

1− eN(Xi)

}
{Yi −m0(Xi)},

∆̂′N,3,k = −N−1
∑
i∈Ik

{
1−Ri

1− π̂N(Xi;S−k)
− 1−Ri

1− eN(Xi)

}
{m̂0(Xi;S−k)− µ0(Xi)},

∆̂′N,4,k = N−1
∑
i∈Ik

{
1−Ri

1− π̂N(Xi;S−k)
− 1−Ri

1− eN(Xi)

}
{m0(Xi)− µ0(Xi)},

∆̂′N,5,k = N−1
∑
i∈Ik

{
1−Ri

1− πN(Xi)
− 1−Ri

1− eN(Xi)

}
{m̂0(Xi;S−k)− µ0(Xi)}.
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We first obtain the rates for the terms N−1
∑N

i=1 ψ0(Zi), ∆̂′N,1,k, and ∆̂′N,2,k for each k ≤ K.

Observe the following properties for the first moments:

E{ψ0(Z)} = E

[
eN(X)− πN(X)

1− eN(X)
{m0(X)− µ0(X)}

]
= 1{eN(·) 6= πN(·), µ(·) 6= m(·)}Op(πN),

ESk(∆̂
′
N,1,k) = ESk(∆̂

′
N,2,k) = 0.

For the second moments, we have

Var{ψ0(Z)} = Var

[
{eN(X)−R}{m0(X)− µ0(X)}

1− eN(X)
+m0(X)− θ0 +

ε(1−R)

1− eN(X)

]
(i)
= Var

[
{eN(X)−R}{m0(X)− µ0(X)}

1− eN(X)
+m0(X)− θ0

]
+ Var

{
ε(1−R)

1− eN(X)

}
≤
∥∥∥∥{eN(X)−R}{m0(X)− µ0(X)}

1− eN(X)
+m0(X)− θ0

∥∥∥∥2

2,P

+

∥∥∥∥ ε(1−R)

1− eN(X)

∥∥∥∥2

2,P

≤ 2

∥∥∥∥{eN(X)−R}{m0(X)− µ0(X)}
1− eN(X)

∥∥∥∥
2,P

+ 2 ‖m0(X)− θ0‖2
2,P +

∥∥∥∥ ε(1−R)

1− eN(X)

∥∥∥∥2

2,P

(ii)
= 2E

(
[{eN(X)− πN(X)}2 + πN(X){1− πN(X)}]{m0(X)− µ0(X)}2

{1− eN(X)}2

)
+ 2 ‖m0(X)− θ0‖2

2,P +

∥∥∥∥ ε(1−R)

1− eN(X)

∥∥∥∥2

2,P

(iii)

≤ 2
[
(1− CπN)−2{(2CπN)2 + CπN}+ 1

]
‖m0(X)− θ0‖2

2,P + (1− CπN)−2‖ε‖2
2,P

= O(1).

where (i) holds by the fact that E(ε|R,X) = 0, (ii) holds by the tower rule with E(R|X) =

πN(X), and (iii) follows by the assumption that πN(x), eN(x) < CπN for all x ∈ X . Besides,

ESk(∆̂
′2
N,1,k) = N−2|Ik|E

[{
πN(X)−R
1− πN(X)

}2

{m̂0(X;S−k)− µ0(X)}2

]

= N−2|Ik|E
[

πN(X)

1− πN(X)
{m̂0(X;S−k)− µ0(X)}2

]
(i)

≤ N−1(1− CπN)−1CπN‖m̂0(·;S−k)− µ0(·)‖2
2,PX

= Op(N
−1πNr

2
µ,0,N),
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where (i) holds by the fact that πN(x) < CπN for all x ∈ X . On the event E−k, with (2.124),

we have

ESk(∆̂
′2
N,2,k) = N−2|Ik|E

[{
1−R

1− π̂N(X;S−k)
− 1−R

1− eN(X)

}2

{Y −m0(X)}2

]

= N−2|Ik|E
[
{1− πN(X)}{π̂N(X;S−k)− eN(X)}2ε2

{1− eN(X)}2{1− π̂N(X; S−k)}2

]
(i)

≤ N−1(1− 2CπN)−4(1− cπN)π2
N sup

x∈X

∣∣∣∣ π̂N(x;S−k)− eN(x)

πN

∣∣∣∣2 ‖ε‖2
2,P = Op(N

−1π2
Nr

2
e,N),

where (i) holds by the fact that cπN < πN(x), eN(x) < CπN and π̂N(x;S−k) < 2CπN for

all x ∈ X on E−k. Here, if we fix (or conditional on) S−k, on the event E−k, the inequality

π̂N(x; S−k) < 2CπN holds almost surely, w.r.t. the probability measure P ; if S−k is treated as

random, recall (2.124), the inequality holds w.p.a. 1 , w.r.t. the joint probability measre of

P and PS−k . As a result, we have ESk(∆̂
′2
N,2,k) = Op(N

−1π2
Nr

2
e,N) w.r.t. the joint probability

measure of P and PS−k . By Lemma 2.4,

N−1

N∑
i=1

ψ0(Zi) = 1{eN(·) 6= πN(·), µ(·) 6= m(·)}Op(πN) +Op(N
−1/2),

∆̂′N,1,k = Op(N
−1/2π

1/2
N rµ,0,N),

∆̂′N,2,k = Op(N
−1/2πNre,N).

Now we consider the terms ∆̂N,3,k, ∆̂N,4,k, and ∆̂N,5,k. On the event E−k, we have

ESk |∆̂N,3,k|
(i)

≤ N−1|Ik|E
{∣∣∣∣ 1−R

1− π̂N(X;S−k)
− 1−R

1− eN(X)

∣∣∣∣ |m̂0(X; S−k)− µ0(X)|
}

(ii)
= N−1|Ik|E

{
{1− πN(X)}|π̂N(X;S−k)− eN(X)|
{1− π̂N(X;S−k)} {1− eN(X)}

|m̂0(X;S−k)− µ0(X)|
}

(iii)

≤ 1− cπN
(1− 2CπN)2

πN sup
x∈X

∣∣∣∣ π̂N(x;S−k)− eN(x)

πN

∣∣∣∣ ‖m̂0(·;S−k)− µ0(·)‖2,PX

= Op(πNre,Nrµ,0,N),
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where (i) holds by the triangular inequality, (ii) follows by the tower rule with the fact

that E(R|X) = πN(X), and (iii) holds by the fact that cπN < πN(x), eN(x) < CπN and

π̂N(x; S−k) < 2CπN for all x ∈ X on E−k. Similarly, on the event E−k,

ESk |∆̂N,4,k| ≤ N−1|Ik|E
{∣∣∣∣ 1−R

1− π̂N(X;S−k)
− 1−R

1− πN(X)

∣∣∣∣ |m0(X)− µ0(X)|
}

= N−1|Ik|E
{
{1− πN(X)}|π̂N(X;S−k)− πN(X)|
{1− π̂N(X; S−k)}{1− eN(X)}

|m0(X)− µ0(X)|
}

(i)

≤ 1− cπN
(1− 2CπN)2

πN sup
x∈X

∣∣∣∣ π̂N(x;S−k)− eN(x)

πN

∣∣∣∣ ‖m0(·)− µ0(·)‖2,PX

= 1{m0(·) 6= µ0(·)}Op(πNre,N),

where (i) holds by the assumption that cπN < πN(x), eN(x) < CπN and π̂N(x;S−k) < 2CπN

for all x ∈ X on E−k. Additionally, we also have

ESk |∆̂N,5,k| ≤ N−1|Ik|E
{∣∣∣∣ 1−R

1− πN(X;S−k)
− 1−R

1− πN(X)

∣∣∣∣ |m̂0(X;S−k)− µ0(X)|
}

= N−1|Ik|E
{
|πN(X)− eN(X)|

1− eN(X)
|m̂0(X;S−k)− µ0(X)|

}
≤ (1− CπN)−1 sup

x∈X
|πN(x)− eN(x)| ‖m̂0(·;S−k)− µ0(·)‖2,PX

= 1{eN(·) 6= πN(·)}Op(πNrµ,0,N),

since πN(x), eN(x) < CπN for all x ∈ X by assumption. By Lemma 2.4,

∆̂′N,3,k = Op(πNre,Nrµ,N),

∆̂′N,4,k = 1{m0(·) 6= µ0(·)}Op(πNre,N),

∆̂′N,5,k = 1{eN(·) 6= πN(·)}Op(πNrµ,0,N).
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Therefore,

θ̂0
DRSS − θ0 = N−1

N∑
i=1

ψ0(Zi) +Op(N
−1/2π

1/2
N rµ,0,N +N−1/2πNre,N + πNre,Nrµ,0,N)

+ 1{m0(·) 6= µ0(·)}Op(πNre,N) + 1{eN(·) 6= πN(·)}Op(πNrµ,0,N).

Corollary 2.1 is a direct consequence of Theorems 2.2 and 2.8.
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Chapter 3

High-dimensional inference for

dynamic treatment effects

3.1 Introduction

The complexity of a certain disease or economic policy is often reflected by the di-

versity and the size of the personal characteristics of each individual or economy at hand,

consequently inducing strong heterogeneity in the observations. On the other hand, access

to randomized control trials, especially over time, has become overly restrictive, often due to

various costs or ethical concerns. Access to time-varying observational studies has, however,

exploded recently. Data-driven decisions span daily life or almost every individual: from con-

tinuous measurements of individuals’ health on mobile devices and medical decisions made

as a result of that to the monitoring of individuals’ online presence or daily measuring of

the economic and social policies introduced to better the public health of each individual.

Studying the true treatment or policy effect has therefore become that much more compli-
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cated. This chapter brings to the literature a way to construct confidence intervals about

dynamic treatment effects in the presence of high-dimensional observations.

Given a sequence of binary treatment assignments or policy interventions, A1, A2, . . . ,

and an outcome of interest, Y ∈ R, a collection of possibly high-dimensional, sequential (pre-

treatment) covariates S1,S2, . . . is also observed. We seek to estimate how these covariates

regulate and modify the effect of the multiple time-varying treatments on the outcome of

interest. Covariates, collected over multiple exposure times, are not required to have the same

variables observed at each exposure: S1 ∈ Rd1 ,S2 ∈ Rd2 , . . . . Potential or counterfactual

outcomes, Y (a1, a2, . . . ), denote participant’s outcome had he or she followed a specific

treatment (sequence), a1, a2, . . . , which is possibly different from the treatment he or she was

observed with. For a given treatment path of interest a = (a1, a2, . . . ) and its corresponding

control a′ = (a′1, a
′
2, . . . ), we are interested in understanding E[Y (a)− Y (a′)].

Average treatment effects (ATE) in the presence of multiple exposure times have been

a longstanding problem of interest. Difficulties with studying treatment effects over time are

numerous. Previous treatments may affect the distribution of future confounders, mediators,

and treatment choices. In these settings, more traditional approaches, such as generalized

estimating equations or random effects models, are not guaranteed to lead to a consistent

estimation. Here, adjustment for confounders may have no causal interpretation, even if all

confounders are measured, and the regression is correctly specified; see, e.g., [DCDS+13].

Mimicking sequential [?] and sequential multiple randomized control trials (SMART, e.g.,

see [CM14]) became the gold standard; see, e.g., [HSHD+16]. [CRL+10] exemplified the need

for inverse probability weighting (IPW) even if treatment probabilities are constants; the

effects of the past treatment probabilities needed to be accounted for. Structural nested
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mean (SNM) models and marginal structural mean (MSM) models have been developed to

handle these particular challenges, see, e.g., [Rob97] and [MvdLRG01] among others. G-

computation [Rob86] has been used for the estimation and a vast literature has contributed

to this topic; see, e.g., [HBR01,JYF10,vdLPJ05,VG03].

In this chapter, we focus on MSM models with continuous outcomes, binary treat-

ments, and continuous covariates. Binary covariates are also possible, albeit their presence

would indicate that one or more of the models are misspecified; see, e.g., the discussion in

Section 4 of [BRR19]. We work under the sequential ignorability assumption and formal-

ize the problem of a root-N confidence interval construction for identifying the presence of

ATE for multi-stage observational experiments with time-varying treatment assignments and

high-dimensional covariates. Here, due to the high-dimensional nature of the problem, unbi-

ased estimation of the effects of the confounders at the root-N rate is not possible. Despite

that, we are able to achieve a root-N consistent and asymptotically normal estimation of the

average treatment effect where we would allow for Lasso shrinkage effects but do not assume

standard asymptotics, i.e., the number of samples, N is much smaller than the number of

the confounders (at any given time or in total).

We achieve this result by establishing a new, dynamic rate double robustness (RDR)

suitable for dynamic treatment effects. RDR weakens reliance on stringent sparsity assump-

tions by offering an opportunity to avoid committing to two extremely sparse modeling

assumptions – assumptions restricting the sparsity to be at a root-N level. This is, for a

single treatment, reflected in a “product-rate” condition that is sufficient condition for guar-

anteeing asymptotic normality with high-dimensional confounding; see, e.g., Theorem 3.1

of [CCD+18] or Theorem 1 of [SRR19]. For a setting with two exposure times, we iden-
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tify two product rate conditions, each ensuring the RDR property of a single time period.

This, in turn, results in three product rate conditions for the sparsity parameter of our high-

dimensional models. The first two products correspond to the products of the sparsity of the

outcome and its matching propensity at the same exposure time, whereas the third product

considers the cross product between the exposures: sparsity of the propensity at the first

exposure and sparsity of the outcome at the second exposure. More generally, if t denotes

the exposure time and so,t and sp,t denote the sparsity of the outcome and propensity model

at the exposure time t, our product rate conditions are so,tsp,t = o(N/ log2(d)) and for every

1 ≤ k ≤ t− 1,
∑t

j=k so,jsp,k = o(N/ log2(d)).

The dynamic treatment effect estimation with MSM models has also been studied

recently in [BHL20]. They proposed a general RDR estimator, which requires three product

rate conditions for the nuisance estimators. In contrast, we identify that only two of those

are sufficient. Moreover, they did not provide any valid nuisance estimators, nor did they

verify when their required consistency conditions hold. In fact, the estimation of one of the

nuisance models, the outcome at the first exposure, is a non-trivial problem; see Remark

3.1. The theoretical advancements in this work hinder upon developing new estimation error

bounds of independent interest for a Lasso estimator with imputed outcomes. We allow the

imputation error to be dependent on the covariates and to be dependent across individuals.

Some results on imputed Lasso have appeared previously [SFSL18, ZZS19]; however, with

more restrictive settings and vastly different conditions. These results apply broadly across

many different problems; see Section Theorem 3.1. Additionally, [LS20] provided estimators

for the counterfactual mean (3.1) by relying on SNM models and g-estimation. However,

the authors require the blip functions to be correctly specified at all times. Even when the
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blip functions are linear, the authors therein obtain valid inference only in low dimensions.

In contrast, Theorem 3.2 provides inference guarantees with high-dimensional confounders;

Theorems 3.3 and 3.5 provide consistency as long as one, and not necessarily both, of the

nuisance models is correctly specified at each time spot.

3.1.1 Related work

Our work fits into a growing literature on static average treatment effect estimation

and inference, including but not limited to [CCD+18,Tan20a,BWZ19,SRR19,DV20,DAV20].

Dynamic treatments should not be confused with static ones. The most common method of

handling confounders of treatment effect is to adjust for them or by including all the variables

in a regression model. In single-time treatment studies, such an adjustment may have causal

interpretation in the absence of unmeasured confounding. In multiple time treatment studies

(dynamic settings), the treatment changes over time, possibly in response to a change in the

observed confounders. Here, regression adjustment will no longer have causal interpretation

even if all confounders are observed, and the regression model is correctly specified. In

addition, if one adjusts for the covariates by including them in traditional one-time models,

even causal ones, the resulting estimate of the causal effect of treatment will not include the

component of the causal effect mediated by the dynamic changes.

MSMs of [Rob97] emerged as a powerful tool in addressing the above concerns. The-

oretical advancements of MSMs with low-dimensional confounders culminated in a seminal

work of [TS12]. However, in the presence of high-dimensional covariates, inferential double

robust questions are yet to be studied to the best of our knowledge. Some approaches towards
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covariate balancing in MSMs have been discussed in [ZW20,VB21,RS19]. However, the ap-

proach strongly depends on the validity of the sequential mean models that we specifically

relax in this work. We should also mention the IPW approaches of [BS19,BRS21].

A closely related literature is that of optimal treatment allocation and methods based

on Q, A, or R -learning, including [Mur03, Rob04, ORR10, ZTD+12, CZW21]. These ap-

proaches are helpful when dealing with dynamic treatments, however, the authors’ primary

concern is not confidence interval construction or efficient estimation of the treatment effect

itself. Confidence intervals on the selected treatment rule have also been considered; see,

e.g., [CMS10,LLQ+14]. A form of a doubly robust property has been studied in the context

of A-learning; see, e.g., [SFSL18]. The contrast function’s estimator is consistent as long as

either the baseline mean or the propensity score function is correctly specified. However, to

consistently estimate the first-stage contrast, the second-stage contrast needs to be correctly

specified – such a condition is not required in our work.

Lastly, our work has a connection to the ever-expanding work on high-dimensional

inference; see, e.g., [ZZ14,VdGBRD14,BCK15,RWG19,ZB18]. Although they bare similarity

in treating sparsity and regularization, the authors estimate a very different parameter of

interest – a coefficient in the regression model. To that end, they utilize distinct approaches

to resolve the bias issue induced by the regularization and nominal shrinkage effects.

3.1.2 Notation

For any α > 0, let ψα(·) denote the function given by ψα(x) := exp(α2)− 1, ∀x > 0.

Then, the ψα-Orlicz norm ‖ · ‖ψα of a random variable X is defined as ‖X‖ψα := inf{c >
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0 : E[ψα(|X|/c)] ≤ 1}. Two special cases of finite ψα−Orlicz norm are given by ψ2(x) =

exp(x2)− 1 and ψ1(x) = exp(x)− 1, which correspond to sub-Gaussian and sub-exponential

random variables, respectively. The notation aN � bN denotes aN = o(bN), and aN � bN

denotes bN � aN as N →∞. The notation aN � bN denotes cbN ≤ aN ≤ CbN for all N ≥ 1

and with some constants c, C > 0. The notation X[j] denotes the j-th element of vector X.

3.2 Causal effects in the interactive model

3.2.1 Model setting

Suppose that we have access toN i.i.d. observations {Wi}Ni=1 = (Yi, A1i, A2i,S1i,S2i)
N
i=1

following a distribution P . Let W = (Y,A1, A2,S1,S2) be an independent copy of Wi; if

{Wi}Ni=1 are training data, then W is a single, new test data. Let St ∈ Rdt denote the co-

variates of the subject at the exposure time t, and At ∈ {0, 1} denote the binary treatment

taken at time t. At any time t, we assume that any treatment-specific variable can only be

affected by the past treatments or past covariates; and not the future. This is sometimes

called temporal ordering. Due to notational complications, we exemplify our ideas and re-

sults for two-stage trials, with observables (S1, A1,S2, A2, Y ), although the same theory and

methods developed herein apply more broadly to multiple-stage trials.

A dynamic treatment assignment, denoted with a = (a1, a2), a1, a2 ∈ {0, 1} is a

sequence of treatment rules applied to each treatment exposure time. We use the potential

outcome framework to define the causal effect. Y (a1, a2) denotes the potential outcome

we would have obtained if the individual was exposed to the treatment sequence (a1, a2).
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Throughout this work, we assume a “no interference” setting.

Our parameter of interest θ = E[Y (a)]− E[Y (a′)]], with a 6= a′ and

θa = E[Y (a)], (3.1)

resulting in θ = θa − θa′ , is characterized by two population means and would have been

identified had we observed both the outcome under treatment a as well as the one under

treatment a′. In order to identify causal effects above, we make the standard assumptions

of sequential ignorability, consistency, and overlap; see, e.g., [IR15a, LM05, Mur03, Rob00a,

Rob87].

Assumption 3.1. (i) (Sequential Ignorability) Y (a1, a2) ⊥⊥ A1 | S1 and Y (a1, a2) ⊥⊥ A2 |

S1,S2, A1 = a1. (ii) (Consistency of potential outcomes) Y = Y (A1, A2). (iii) (Overlap) Let

c0 ∈ (0, 1) be a positive constant, such that

P (c0 ≤ π(S1) ≤ 1− c0) = 1, P (c0 ≤ ρa(S1,S2) ≤ 1− c0) = 1,

where the treatment assignments (propensity scores) are defined as

π(s1) := P [A1 = a1|S1 = s1], (3.2)

ρa(s1, s2) := P [A2 = a2|S1 = s1,S2 = s2, A1 = a1]. (3.3)

Assumption 3.1 (i) is also known as “exchangeability” or “sequential randomization”

or “no unmeasured confounding”. It states that the observed treatment at time t is inde-

pendent of the potential outcomes given all the data observed prior to the exposure time t.

Assumptions are standard and sufficient to identify the parameter of interest based on the

observed data. Under Assumption 3.1 (i) and (ii), we have

θa = E

[
1{A1=a1,A2=a2}Y

π(S1)ρa(S1,S2)

]
.
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3.2.2 Doubly Robust Estimator

We estimate θa = E[Y (a)], (3.1), by utilizing a doubly robust score ψa(·; ·) defined as

ψa(W ; ηa) := µa(S1) + τa(S1)
(
νa(S1,S2)− µa(S1)

)
+ωa(S1,S2)

(
Y − νa(S1,S2)

)
, (3.4)

as seen in, e.g., [NBW21, TYWK+19, vdLG11, ORR10, MvdLRG01]. With a slight abuse

of notation, we denote with ηa(·) := (µa(·), νa(·), π(·), ρa(·)) the true nuisance parameters.

Additionally, τa(s1) and ωa(s1, s2) denote the population inverse probability weights, where

τa(s1) := 1{A1=a1}π
−1(s1), ωa(s1, s2) := 1{A1=a1,A2=a2}π

−1(s1)ρ−1
a (s1, s2). (3.5)

Double robust representation θa = E[ψa(W ; ηa)] hinders upon two outcome models,

νa(s1, s2) := E[Y |S1 = s1,S2 = s2, A1 = a1, A2 = a2], (3.6)

µa(s1) := E[νa(S1,S2)|S1 = s1, A1 = a1]. (3.7)

Here, νa(s1, s2) represents the conditional mean outcome model at the second exposure time,

and µa(s1) is a nested conditional mean outcome model at the first exposure time. It follows

from Theorem 3.2 of [Rob97] that, under the Sequential Ignorability and Consistency of the

potential outcomes ( see Assumption 3.1) the above nested outcome models can be identified

as

νa(s1, s2) = E[Y (a1, a2)|S1 = s1,S2 = s2, A1 = a1], µa(s1) = E[Y (a1, a2)|S1 = s1].

The idea of nested models is not new; see, e.g., [BRR19] for a review. With θa = E[ψa(W ; ηa)],

we estimate θa as

θ̂a :=
1

N

N∑
i=1

[µ̂a(S1i) + τ̂a(S1i) (ν̂a(S1i,S2i)− µ̂a(S1i)) + ω̂a(S1i,S2i) (Yi − ν̂a(S1i,S2i))] ,
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Algorithm 1 Dynamic ATE

Require: Observations {Yi,S1i, A1i,S2i, A2i}Ni=1.

Require: Treatment path a = (a1, a2) and a control path a′ = (a′1, a
′
2).

1: For any fixed integer K ≥ 2, split the indices I = {1, 2, ..., N} into K equal-sized parts

{Ik}Kk=1 randomly, such that the size of each fold Ik is n := N/K. Define I−k := I\Ik.

2: for c ∈ {a, a′} do

3: for k ∈ {1, · · · , K} do

4: Let I be a subset of indices of I−k with the same treatment path as c = (c1, c2).

5: Let I1 be a subset of indices of I−k with the same treatment path as c1 only;

6: Construct ν̂c using I samples. . Outcome for time two

7: Construct µ̂c using I1 samples. . Outcome for time one

8: Construct ρ̂c using I1 samples. . Propensity for time two

9: Construct π̂ using I−k samples. . Propensity for time one

10: Let η̂c := (µ̂c, ν̂c, π̂, ρ̂c), τ̂c = 1{A1=a1}π̂
−1, and ω̂c = 1{A1=a1,A2=a2}π̂

−1ρ̂−1
c .

11: For ψc(W ; ηc), (3.4), construct a cross-fitted estimator θ̌
(k)
c as θ̌

(k)
c =

1
n

∑
i∈Ik ψc

(
Wi; η̂c

)
.

12: end for

13: θ̂c =
∑K

k=1 θ̌
(k)
c /K.

14: end for

return The dynamic treatment effect estimator θ̂ = θ̂a − θ̂a′ .

where ν̂a(·), µ̂a(·), τ̂a(·), ω̂a(·) are estimators of νa(·), µa(·), τa(·), ωa(·) as defined in (3.6),

(3.7), and (3.5), respectively.

The above equation avoids complicated notations needed for a cross-fitting procedure
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we propose; see Algorithm 1 for more details. The above estimator is an innate generalization

of the augmented inverse propensity score estimator of [RRZ94] for the static case. In this

chapter, we study its properties in the presence of high-dimensional confounders.

3.3 Dynamic Treatment Lasso (DTL)

To simplify the exposition, we begin by listing some shorthand notations used through-

out the following sections of the chapter. We define the dimension of all of the observed

covariates at the second exposure time with d, i.e., d := d1 + d2. We let U := (1,ST1 ,S
T
2 )T

denote (d + 1)-dimensional observed covariates collecting both time one and time two. We

denote with V := (1,ST1 )T (d1 + 1)-dimensional observed covariates of the first exposure

time. In the following it is important to follow the individuals with pre-specified treatment

plan. For that purpose we introduce the following shorthand notation: Ỹa := Y 1{(A1,A2)=a},

Ũa := U1{(A1,A2)=a} denote the outcome and the covariates of those individuals which have

taken the treatment path a, i.e., whose (A1, A2) = a. Additionally, we use Ȳ := Y 1{A1=a1},

Ūa := U1{A1=a1}, V̄a := V1{A1=a1} to denote the outcome and the covariates at time two

and time one, respectively, of those individuals which have taken the treatment a1, i.e.,

whose A1 = a1 , regardless of which treatment they have received in the second time period.

Where possible, we suppress the sub-index a.

3.3.1 Outcome Models

Below we discuss estimation of the two outcome models νa, (3.6), and µa, (3.7), and

we proceed sequentially; estimation at the latter exposure time, νa, is discussed first and
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later used for the estimation at the earlier exposure, µa.

A linear working model is used to estimate νa, (3.6), i.e., E[Y |S1,S2, A1 = a1, A2 =

a2]. The best linear working model, or the best linear approximation, is denoted with

ν∗a(s1, s2) = uTα∗a, (3.8)

where, for any s1 ∈ Rd1 , s2 ∈ Rd2 , u = (1, sT1 , s
T
2 )T . To motivate the proposed working

model, we define

α∗a := arg min
α∈Rd+1

E
[
Ỹ − ŨTα

]2

=
[
E[ŨŨT ]

]−1

E[ŨỸ ]. (3.9)

The corresponding population residual, ζa, can be defined as

ζa := Ỹ − ŨTα∗. (3.10)

It should be noted that, under the misspecified setting, there is no independence assumption

between Ũ and ζa, and E(ζa|Ũ) 6= 0 is allowed.

Similarly, a linear working model is used to estimate the nested mean µa, (3.7). First,

we observe that µa(S1) = E[ŪTα∗a|S1] and henceforth denote the best linear model for µa

as

µ∗a(s1) = vTβ∗a, (3.11)

where for any s1 ∈ Rd1 , v = (1, sT1 )T . To motivate the proposed working model, we define

β∗a = arg min
β∈Rd1+1

E[ŪTα∗a − V̄Tβ]2 = [E[V̄V̄T ]]−1E[V̄ŪT ]α∗a (3.12)

as the best population slope for E[ŪTα∗a|V̄]. Note that the definition of β∗a only depends

on a1, and is independent of a2. To simplify the notation, we use β∗a instead of β∗a1 . See
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Remark 3.1 below on the reasons why we cannot use Ȳ and V̄ directly to estimate µa. The

corresponding population residual εa can be defined as

εa := ŪTα∗a − V̄Tβ∗a. (3.13)

Lastly, under model misspecification, we consider the case of E[εa|V̄] 6= 0.

Identification As nested models may be difficult to interpret, we provide a set of examples

and discussions illustrating their correctness and identification. More has been said about

this throughout the literature; see, e.g., [BRR19].

Remark 3.1 (Estimation of µa). To estimate the nuisance function µa(S1) = E[Y (a)|S1],

the most natural method would be to regress Y (a) on S1 for those observed Y (a) whose

(A1, A2) = a. However, under the Sequential Ignorability of Assumption 3.1,

E[Y (A1, A2)|S1, A1 = a1, A2 = a2] = E[Y (a)|S1, A1 = a1, A2 = a2] 6= E[Y (a)|S1],

since in general, Y (a) 6⊥⊥ A2|S1.

Remark 3.2 (Model Misspecification). We illustrate when will the two working outcome

models, ν∗a(·) and µ∗a(·), be correctly specified. If model ν∗a(·) is misspecified, then the model

µ∗a(·) is also very likely to be misspecified, but there are no guarantees either way. A few

comments are in order as the relationship between the two nested models is often masked.

The following four cases are of potential interest.

(i) If we assume that the true outcome model, νa(·) is linear in that

νa(S1,S2) = E[Y (a)|S1,S2, A1 = a1, A2 = a2] = UTαa (3.14)
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holds for some vector αa ∈ Rd+1, then it follows that α∗a = αa and hence ν∗a(·) = νa(·),

i.e., ν∗a(·) is correctly specified.

(ii) Otherwise, if we assume that (only) the true outcome model, µa(·), is linear in that

µa(S1) = E[Y (a)|S1, A1 = a1] = VTβa (3.15)

holds for some vector βa ∈ Rd1+1, then it is possible that the working model is still not

linear, i.e., µ∗a(·) 6= µa(·) making µ∗a(·) potentially misspecified.

(iii) Now, if the true outcome model (3.15) holds and in addition α∗a, (3.9), is equal to ᾱ∗a,

with ᾱ∗a defined as

ᾱ∗a := arg min
α∈Rd+1

E
[
(Y (a)−UTα)2|A1 = a1

]
=
[
E[ŪŪT ]

]−1
E[ŪY (a)],

then, we have β∗a = βa and µ∗a(·) = µa(·), i.e., µ∗a(·) is correctly specified.

(iv) Lastly, if both of the true outcome models are linear, i.e., (3.14) and (3.15) hold simul-

taneously, then, both ν∗a(·) and µ∗a(·) are correctly specified. Case (iv) is equivalent to

requiring E(ST2αa,2|S1) to be linear in S1; here, αa = (αa,1,αa,2)T where αa,1 ∈ Rd1+1

and αa,2 ∈ Rd2. This, in turn, occurs for any closed class of spherical distributions,

including normal and Student-t distributions, or any linear time-series models of co-

variate dependence.

Some discussions are provided below. We can see that the correctness of the model

µ∗a(·) also depends on α∗a, the slope parameter of ν∗a(·). A true linear outcome model µa(·)

does not guarantee a correctly specified µ∗a(·); however, if the true outcome model νa(·) is also

linear, then µ∗a(·) is correctly specified. Moreover, a linear νa(·) and µa(·) are sufficient for a
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correctly specified ν∗a(·), but they are not required. Case (iii) provides an illustration where a

correctly specified µ∗a(·) does not require a correctly specified ν∗a(·). This occurs, for example,

whenever α∗a = ᾱ∗a.

For an illustration, consider a = (1, 1) and S1, S2, Z ∼iid Unif(−1, 1) with a nonlinear

outcome model νa(·), Y (1, 1) = S1 + S3
2 + Z. Let the treatment assignments satisfy

π(s1) = |s1|, and ρa(s1, s2) = exp(s1 + s2)/{1 + exp(s1 + s2)},

for all s1, s2 ∈ R. Then, α∗a = ᾱ∗a and therefore guaranteeing correctness of the linear

working model µ∗a(·). Here, π∗(·) and ν∗a(·) are misspecified, ρ∗a(·) and µ∗a(·) are correctly

specified.

Justifications Below are the justifications of the cases (i)-(iv) in Remark 3.2.

(i) Under Assumption 1 and by the law of iterated expectations, we have

α∗a =
[
E[ŨŨT ]

]−1

E[ŨỸ ] =
[
E[ŨŨT ]

]−1

E
[
1{A1=a1,A2=a2}UY (a)

]
=
[
E[ŨŨT ]

]−1

E [UE [Y (a)|U, A1 = a1, A2 = a2]P [A1 = a1, A2 = a2|U]]

=
[
E[ŨŨT ]

]−1

E
[
UUTαaE

[
1{A1=a1,A2=a2}|U

]]
=
[
E[ŨŨT ]

]−1

E[ŨŨT ]αa = αa.

It follows that

νa(S) = UTαa = UTα∗a = ν∗a(S).

Therefore, if the model (3.14) holds, the model for ν∗a(S) is correctly specified.

(ii) It suffices to prove a counterexample. We refer to example M10 in the Simulation

Experiments; see Section 6.2.
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(iii) If we assume that ᾱ∗a = α∗a, under Assumption 1 and by the law of iterated expecta-

tions, we have

β∗a = [E[V̄V̄T ]]−1E[V̄ŪT ]α∗a = [E[V̄V̄T ]]−1E[V̄ŪT ]ᾱ∗a

= [E[V̄V̄T ]]−1E[V̄ŪT ][E[ŪŪT ]]−1E[ŪY (a)] = [E[V̄V̄T ]]−1E[V̄Y (a)] (3.16)

= [E[V̄V̄T ]]−1E
[
1{A1=a1}VY (a)

]
= [E[V̄V̄T ]]−1E

[
VE [Y (a)|V, A1 = a1]E

[
1{A1=a1}|V

]]
= [E[V̄V̄T ]]−1E

[
1{A1=a1}VVTβa

]
= βa.

In (3.16), we used the fact that U = (VT ,ST2 )T , i.e.,

V = QU where Q =

(
Id1+1 0(d1+1)×d2

)
, (3.17)

and hence V̄ = QŪ, which implies that

E[V̄ŪT ][E[ŪŪT ]]−1E[ŪY (a)] = QE[ŪŪT ][E[ŪŪT ]]−1E[ŪY (a)]

= QE[ŪY (a)] = E[V̄Y (a)].

(iv) Based on the results in (i), we have α∗a = αa. Under Assumption 1 and (3.14), we

have

νa(S) = E [Y (a)|S, A1 = a1, A2 = a2] = UTαa.

Hence, we also have

ᾱ∗a =
[
E[ŪŪT ]

]−1
E[ŪY (a)] =

[
E[ŪŪT ]

]−1
E
[
1{A1=a1}UY (a)

]
=
[
E[ŪŪT ]

]−1
E [UE [Y (a)|U, A1 = a1]P [A1 = a1|U]]

=
[
E[ŪŪT ]

]−1
E
[
UUTαaE

[
1{A1=a1}|U

]]
=
[
E[ŪŪT ]

]−1
E[ŪŪT ]αa = αa.
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Therefore,

α∗a = ᾱ∗a = αa.

Together with the results in (iii), we conclude that µ∗a(·) is correctly specified.

Estimation Estimation of the linear working models in the presence of high-dimensional

covariates can be achieved with many regularizations. Throughout this work, we focus on

Lasso regularization, albeit the theoretical developments apply more broadly. Recall the

notation of I−k introduced in the Dynamic ATE Algorithm 1.

The estimation is performed sequentially backward in time. We first obtain an esti-

mator of (3.9) and, with it, an estimator of ν∗a and νa, (3.6). We do so by regressing Ỹ onto

Ũ while utilizing a sparsity regularizing penalty, Lasso. That is, the Lasso estimator α̂a is

defined as

α̂a := arg min
α∈Rd+1

 1

|I−k|
∑
i∈I−k

(
Ỹi − ŨT

i α
)2

+λ̃α‖α‖1

 , (3.18)

where λ̃α = λ̃αa > 0 is some tuning parameter. In the above, we are considering a Lasso

regularized regression among the individuals with the treatment plan a. For example, for θ =

E[Y (a)]−E[Y (a′)], we are interested in a = (1, 1) or a′ = (0, 0) only. Let the corresponding

estimators be named α̂1 and α̂0, respectively.

The second step is to regress ŪT α̂a onto V̄, in order to obtain an estimator of µ∗a

and, with it, µa, (3.7). Recall that Ū = U1{A1=a1} and that now we have to consider

a ∈ {(1, 0), (1, 1)} corresponding to α̂1 and similarly a ∈ {(0, 0), (0, 1)} corresponding to α̂0.

In other words, we need to consider individuals following the treatment paths of {(1, 0), (1, 1)}

when estimating β̂1 and individuals following the treatment paths {(0, 0), (0, 1)} when esti-
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mating β̂0. Notice that each of these estimators are an imputed, high-dimensional estimators,

as the correct outcome for the problem should be ŪTα∗a. In other words, we define a Lasso

estimator β̂a as

β̂a := arg min
β∈Rd1+1

 1

|I−k|
∑
i∈I−k

(
ŪT
i α̂a − V̄T

i β
)2

+λ̄β‖β‖1

 (3.19)

= arg min
β∈Rd1+1

 1

|I−k|
∑

i∈I−k,A1i=a1,A2i∈{0,1}

(
UT
i α̂a −VT

i β
)2

+λ̄β‖β‖1

 ,

where λ̄β = λ̄βa > 0 is a tuning parameter. For convience of expression, we use β̂1 to denote

β̂a for a = (1, 1) and similarly β̂0 for a = (0, 0). See Figure 3.1 for a representation.

Now, based on the estimated parameters, α̂a and β̂a, we propose corresponding nui-

sance function estimators as

ν̂a(S1,S2) = UT α̂a, (3.20)

µ̂a(S1) = VT β̂a. (3.21)

Since the above is done for each individual in the sample, notice that we are, in turn,

therefore, estimating the counterfactual outcomes for all those individuals not following the

treatment path a.

3.3.2 Propensity Models

The estimation of the propensity models is also characterized by their working model

class. We consider logistic regression model as a working model for both the propensity score

at time one, π(S1) as well as the one at time two, ρa(S1,S2). Naturally, the logistic regression

model is a particular case of generalized linear model, based on the binary response variable
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a1 = 0

a1 = 1

a1 = 0, a2 = 1

a1 = 0, a2 = 0

a1 = 1, a2 = 0

a1 = 1, a2 = 1 α̂1

β̂1

α̂0

β̂0

Figure 3.1: Treatment path utilization for the estimation of the nuisances. Each observation
belongs to one of the four treatment paths depending on the treatment assignment in the
first and the second exposure time. Gray boxes denote which treatment paths and, therefore,
which samples are utilized to estimate the corresponding parameter.

A1 and the link function φ(u) = log(1 + exp(u)). The population minimizer of the loss

function for the logistic model (3.2) is defined as

γ∗ := arg min
γ∈Rd1+1

E
[
−A1V

Tγ + log
(
1 + exp(VTγ)

)]
. (3.22)

We define π∗(s1) as

π∗(s1) =
exp(vTγ∗)

1 + exp(vTγ∗)
, (3.23)

where for any s1 ∈ Rd1 , v = (1, sT1 )T . Here, π∗(s1) is a proxy of π(s1), (3.2). We use the

sample I−k to construct the estimator π̂(S1) as

π̂(S1) =
exp(VT γ̂)

1 + exp(VT γ̂)
, (3.24)

where γ̂ is defined as

γ̂ := arg min
γ∈Rd1+1

 1

|I−k|
∑
i∈I−k

[
−A1iV

T
i γ + log(1 + exp(VT

i γ))
]
+λγ‖γ‖1

 , (3.25)
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Algorithm 2 Dynamic Treatment Lasso (DTL)

Require: Observations {Yi,S1i, A1i,S2i, A2i}Ni=1. Treatment path a = (1, 1), a′ = (0, 0).

1: For any fixed integer K ≥ 2, split the indices I = {1, 2, ..., N} into K equal-sized parts

{Ik}Kk=1 randomly such that the size of each fold Ik is n := N/K. Define I−k := I\Ik.

2: for k = 1, 2, ..., K do

3: while in I−k do

4: for c ∈ {a, a′} do

5: Set ν̂c(S1,S2) = UT α̂c with α̂c as in (3.18), using samples from the “small

boxes” of Figure 3.1. Set µ̂c(S1) = VT β̂c with β̂c as in (3.19), using samples from the

“large boxes” of Figure 3.1.

6: Construct estimators of π(S1) and ρc(S1,S2), using (3.25) and (3.29).

7: end for

8: end while

9: Compute θ̌(k) as

θ̌(k) =
1

n

∑
i∈Ik

[
VT
i (β̂a − β̂a′) +

A1i

π̂(S1i)
(UT

i α̂a −VT
i β̂a)−

1− A1i

1− π̂(S1i)
(UT

i α̂a′ −VT
i β̂a′)

+
A1iA2i

π̂(S1i)ρ̂a(S1i,S2i)
(Yi −UT

i α̂a)−
(1− A1i)(1− A2i)

(1− π̂(S1i))(1− ρ̂a′(S1i,S2i))
(Yi −UT

i α̂a′)

]
.

10: end for

return The final estimator is obtained as

θ̂ =
1

K

K∑
k=1

θ̌(k). (3.26)
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with some tuning parameter λγ > 0. Observe that, for this estimator, we utilize all of the

observations at hand, regardless of its treatment path.

The population minimizer of the loss function for the logistic model (3.3) is defined

as

δ∗ := arg min
δ∈Rd+1

E[−A2Ū
Tδ + log(1 + exp(ŪTδ))]. (3.27)

With it, we define ρ∗a(s1, s2) as

ρ∗a(s1, s2) =
exp(uTδ∗a)

1 + exp(uTδ∗a)
, (3.28)

where, for any s1 ∈ Rd1 , s2 ∈ Rd2 , u = (1, sT1 , s
T
2 )T . We use the sample I−k to construct the

estimator δ̂a as follows

δ̂a := arg min
δ∈Rd+1

 1

|I−k|
∑
i∈I−k

[
−A2iŪ

T
i δ + log(1 + exp(ŪT

i δ))
]
+λ̄δ‖δ‖1

 , (3.29)

where λ̄δ = λ̄δa > 0 is some tuning parameter. In contrast to γ̂, we are now utilizing only

observations whose treatment path matches a1 regardless of what is a2; in Figure 3.1, it

corresponds to the samples of β̂a. Then, the propensity score at the second time point can

be naturally defined as

ρ̂a(S1,S2) =
exp(UT δ̂a)

1 + exp(UT δ̂a)
. (3.30)

3.3.3 Doubly Robust Lasso Estimator

From the previous subsection, we know the expressions for the estimators ν̂a(S1,S2),

µ̂a(S1), π̂(S1), and ρ̂a(S1,S2) are (3.20), (3.21), (3.24), and (3.30) respectively. The corre-

sponding estimators α̂a, β̂a, γ̂, and δ̂a are constructed based on the sample I−k for each
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k = 1, 2, ..., K. The final estimator is obtained as an average over Ik samples. Here, we

only focus on the treatment paths a = (1, 1) and a′ = (0, 0). Let η := (ηa, ηa′). For binary

treatments, θ = E[Y (1, 1)− Y (0, 0)] = E[ψ(W ; η)] and the score is defined as

ψ(W ; η) = ψa(W ; ηa)− ψa′(W ; ηa′), (3.31)

where we recall the definitions of ηa and ψa(·; ·) from (3.4). Details are presented in the

Dynamic Treatment Lasso (DTL) Algorithm 2.

3.4 Theoretical characteristics of DTL

Before we discuss our main theoretical findings, we introduce a sequence of assump-

tions necessary for our analysis. These are related to the distribution of covariates U as well

as errors ζ and ε defined below.

Assumption 3.2. Let U be a sub-Gaussian vector that ‖xTU‖ψ2 ≤ σu‖x‖2 for any vector

x ∈ Rd+1, with some constant σu > 0. In addition, let the smallest eigenvalue of the matrix

E[UUT ] satisfies λmin(E[UUT
1{A1=a1}]) ≥ κl for each a1 ∈ {0, 1}, with some constant

κl > 0.

Assumption 3.2 is standard and general in the literature. We note that it also contains

an upper bound on the largest eigenvalue of E[UUT ], as

λmax(E[UUT ]) = max
‖x‖2=1

E[(xTU)2] ≤ max
‖x‖2=1

2σ2
u‖x‖2

2 = 2σ2
u <∞.

Recall the definition of the true score function, ψa(W ; ηa) from (3.4). Recall the

definition of the estimands collected as η∗a(·) := (µ∗a(·), ν∗a(·), π∗(·), ρ∗a(·)), where the working
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models are defined in (3.8), (3.11), (3.23) and (3.28), respectively. Let η∗ := (η∗a, η
∗
a′). With

that in mind, we define the “working” score as

ψ(W ; η∗) = ψa(W ; η∗a)− ψa′(W ; η∗a′),

where similar to (3.31),

ψa(W ; η∗a) := µ∗a(S1) + τ ∗a (S1)
(
ν∗a(S1,S2)− µ∗a(S1)

)
+ω∗a(S1,S2)

(
Y − ν∗a(S1,S2)

)
.

In the above, we have used inverse weights τ ∗a (s1) := 1{A1=a1}{π∗}−1(s1), ω∗a(s1, s2) :=

1{A1=a1,A2=a2}{ρ∗a}−1(s1, s2). Let

σ2 := E[ψ(W ; η∗)− θ]2. (3.32)

By Lemma 3.8, we know θ = E[ψ(W ; η∗)] when at least one of µ∗a(S1) and π∗(S1) is correctly

specified, and at least one of ν∗a(S) and ρ∗a(S) is correctly specified. Then, σ2 := E[ψ(W ; η∗)−

θ]2 = Var[ψ(W ; η∗)] denotes the variance of the “working score”.

Assumption 3.3. Define ζ := ζa + ζa′ and ε := εa + εa′ , where ζa and εa are defined in

(3.10) and (3.13), respectively. There exist some positive σζ < ∞ and σε < ∞, such that ζ

and ε are sub-Gaussian, with ‖ζ‖ψ2 ≤ σσζ and ‖ε‖ψ2 ≤ σσε.

Assumption 3.3 is fairly general even among the high-dimensional literature. As the

number of samples N tends to infinity, N →∞, we allow the ψ2-norm bound of ζ and ε to

diverge or to shrink to zero. Consider treatment paths a = (1, 1) and a′ = (0, 0). When all

the nuisance models are correctly specified, under the overlap condition in Assumption 3.1,

we have

σ2 � E[ζ2] + E[ε2] + E[ξ2] ≥ max{E[ζ2], E[ε2]}.

222



where ξ := µ1(S1) − µ0(S1) − θ. Hence, a sufficient condition for Assumption 3.3, while

Assumption 3.1 holds, is ‖ζ/
√
E[ζ2]‖ψ2 ≤ σζ and ‖ε/

√
E[ε2]‖ψ2 ≤ σε, i.e., the “normalized”

residuals have constant ‖·‖ψ2 norms. Note that, we allow σ = σN to be dependent on N with

assuming σζ and σε to be constants independent of N ; σ → 0 and σ →∞ are both allowed

as N →∞. Besides, the variances E[ζ2], E[ε2], and Var[UT (β∗a−β∗a′)] � ‖β∗a−β∗a′‖2
2, E[ξ2],

are all allowed to dependent on N and they are NOT necessarily of the same order; see more

discussions in Remark 3.6.

3.4.1 Convergence rates of the nuisance parameters

The major difficulty in obtaining error of estimation regarding the outcome model

estimates arises from the non-i.i.d. structure of the imputed outcomes used in the construc-

tion of β̂a. Here, we provide a general theory which establishes error bounds for the imputed

least-squares Lasso estimators: estimators of the form (3.33), where Ŷi can be seen as an

approximation of some Yi or its conditional mean E(Yi|Xi).

Imputed Lasso estimator Suppose S := (Y ∗i ,Xi)
M
i=1 are i.i.d. observations and let

(Y ∗,X) be an independent copy of S, with Y ∗ ∈ R and X ∈ Rd. Suppose there exists,

possibly random, Ŷi ∈ R (i = 1, . . . ,M). With a little abuse in notation, the true population

slope as if all of the outcomes Y ∗ have been observed, is defined as

β∗ := argminβ∈RdE
[
Y ∗ −XTβ

]2
.

Then, its estimator is

β̂ := argminβ∈Rd

{
M−1

M∑
i=1

[Ŷi −XT
i β]2 + λM‖β‖1

}
, (3.33)
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for λM > 0. Note that for some, and possibly all observations, outcomes Y ∗ are imputed,

i.e., estimated using Ŷi. The following result delineates property of such imputed-Lasso, β̂

estimator.

Theorem 3.1. Let εi := Y ∗i −XT
i β
∗ with s = ‖β∗‖0. Suppose that ‖aTX‖ψ2 ≤ σX‖a‖2 for

a ∈ Rd, λmin(E[XXT ]) > λX, and ‖ε‖ψ2 ≤ σ with some constants σX, λX > 0 and a positive

σ = σM > 0 potentially dependent on M . For some δM > 0, define

E1 :=
{
M−1

M∑
i=1

[Ŷi − Y ∗i ]2 < δ2
M

}
.

For any t > 0, let λM := 16σσX(
√

log(d)/M + t). Then, on the event E1, when M >

max{log(d), 100κ2
2s log(d)}, we have

‖β̂ − β∗‖2 ≤ max

(
5κ2δ

2
M

4σσX

+ 4κ
−1/2
1 δM , 8κ

−1
1

√
sλM

)
,

‖β̂ − β∗‖1 ≤ max
(
20λ−1

M δ2
M , 40κ−1

1 sλM
)
,

1

M

M∑
i=1

[XT
i (β̂ − β∗)]2 ≤ max

(
16δ2

M , 32κ−1
1 sλ2

M

)
,

with probability at least 1 − 2 exp(− 4Mt2

1+2t+
√

2t
) − c1 exp(−c2M), wher κ1, κ2, c1, c2 > 0 are

some constants independent of M and d. Moreover, if δM = o(σ), P (E1) = 1 − o(1), and

M � s log(d), then, with some λM � σ
√

log(d)
M

, as M →∞,

‖β̂ − β∗‖2 = Op

(
σ

√
s log(d)

M
+ δM

)
, ‖β̂ − β∗‖1 = Op

(
σs

√
log(d)

M
+ σ−1δ2

M

√
M

log(d)

)
,

1

M

M∑
i=1

[XT
i (β̂ − β∗)]2 = Op

(
δ2
M + σ2 s log(d)

M

)
.

A few comments are essential. The above result contributes to the literature in three

specific aspects: 1) The “imputation error”, Ŷi − Y ∗i , is dependent on and even possibly
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correlated with covariates Xi; 2) We allow Ŷi, ∀i ∈ {1, . . . ,M}, to be fitted using the same

set of observations (Xi, Yi)
M
i=1, i.e., Ŷis are also possibly dependent on each other; 3) The

tuning parameter λM is of the same order as the one chosen for the fully observed data and

is independent of any sparsity parameter. As a result, Theorem 3.1 leads to better rates of

estimation. [ZZS19] require rate of o(n/ log(p)) on the product of sparsities at the time of

exposures. Our results rely on the sum instead; see Corrolary 3.2 below.

The result requires developing new techniques: the standard Lasso inequality followed

by the cone-set reduction are not valid in this instance. In fact, the error vector, β̂ − β∗,

no longer belongs to the accustomed cone set, C(S, 4) := {∆ ∈ Rd : ‖∆Sc‖1 ≤ 4‖∆S‖1}.

We identify a new cone set, C̃(S, 4, 1) = {∆ ∈ Rd : ‖∆Sc‖1 ≤ 16λ−1
M δ2

M , ‖∆S‖1 ≤ 4λ−1
M δ2

M},

and show that the error vector belongs to the union of the above two sets. As shown in

Theorem 3.1, the rate of ‖β̂ − β∗‖2 consists of two components: 1) the standard (non-

imputed) estimation rate σ
√
s log(d)/M ; 2) the imputation error δM . When there is no

imputation, i.e., δM = 0, our results reaches the standard consistency rate in the high-

dimensional statistics literature, e.g., [BRT09,NRWY12,Wai19].

Nuisance estimation Based on Theorem 3.1, we provide theoretical properties of our

nuisance parameters in the following Corollaries. As is typical in high-dimensional models,

our analysis will rely on certain sparsity assumptions of the underlying models. In fact, only

the approximate models will be considered. To that end, we let Sαa = {j : α∗a[j] 6= 0}

and Sβa = {j : β∗a[j] 6= 0} be the sets of nonzero coordinates of α∗a, (3.9) and β∗a, (3.12),

respectively. Let sαa = |Sαa| and sβa = |Sβa | denote the numbers of nonzero coordinates of

α∗a and β∗a. Let Sγ = {j : γ∗[j] 6= 0} be the set of nonzero coordinates of γ∗, (3.22) and let
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sγ = |Sγ | denote the number of nonzero coordinates of γ∗. Similarly, Sδa = {j : δ∗a[j] 6= 0}

be the set of nonzero coordinates of δ∗a, (3.27), and sδa = |Sδa| be the number of nonzero

coordinates of δ∗a. Throughout this section we denote with M the size of the set I−k, i.e.,

M = |I−k| = (K−1)N
K

with K denoting the number of folds used in Algorithm 1.

Corollary 3.1. Let Assumptions 3.1, 3.2, and 3.3 hold. For any t > 0, let λ̃α := 32σσuσζ(t+√
log(d+1)

M
). Let M > max{log(d+ 1), 100κ2

2sαa log(d+ 1)}. Then, α̂a, (3.18), satisfies

‖α̂a −α∗a‖2 ≤ 8κ−1
1 λ̃α

√
sαa , ‖α̂a −α∗a‖1 ≤ 40κ−1

1 λ̃αsαa ,

1

M

M∑
i=1

[ŨT
i (α̂a −α∗a)]2 ≤ 32κ−1

1 λ̃2
αsαa , (3.34)

with probability at least 1−2 exp(− 4Mt2

1+2t+
√

2t
)− c1 exp(−c2M) and constants c1, c2, κ1, κ2 > 0.

Therefore, if N � sαa log(d), then with some λ̃α � σ
√

log(d)
N

, as N →∞,

‖α̂a −α∗a‖2 = Op

(
σ

√
sαa log(d)

N

)
, ‖α̂a −α∗a‖1 = Op

(
σsαa

√
log(d)

N

)
, (3.35)

E[ν̂a(S1,S2)− ν∗a(S1,S2)]2 = Op

(
σ2 sαa log(d)

N

)
. (3.36)

In the above, the left-hand side of (3.36) is denoting expectation with respect to the

distribution of the new observation’s covariates S1,S2. The results in Corollary 3.1 can be

seen as a special (degenerate) case of Theorem 3.1. The asymptotic results in (3.35) coincide

with the high-dimensional linear regression literature, e.g., [NRWY12] and [Wai19].

Now we discuss the results for the estimation of β∗a. The estimator β̂a proposed in

(3.19) is constructed based on α̂a and hence we need to first control the estimation error of

α̂a. Note that, α̂a and β̂a in (3.18) and (3.19) are actually obtained based on overlapping

but different sample groups. For α̂a, we only utilize the samples satisfying A1i = a1 and
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A2i = a2; as for β̂a, we are using the samples such that A1i = a1 and there is no constraint

on A2i. As a result, the in-sample error (3.34) is not enough for our analysis. Instead, we

require an upper bound for a “partially in-sample” error. We show the prerequisite results

in the following lemma.

Lemma 3.1. Let Assumptions of Corollary 3.1 hold. In addition, let M ≥ max{log(d +

1), (c3 + 100κ2
2)sαa log(d+ 1)}, with some constant c3 > 0. Then,

1

M

M∑
i=1

[ŪT
i (α̂a −α∗a)]2 ≤ 288σuκ

−2
1 λ̃2

αsαa ,

with probability at least 1− 2 exp(− 4Mt2

1+2t+
√

2t
)− c1 exp(−c2M)− 2 exp(−c4M) and constants

c1, c2, c4 > 0.

Now, based on Theorem 3.1 and Lemma 3.1, we are ready to obtain the estimation

and prediction quality of the estimator β̂a.

Corollary 3.2. Let Assumptions 3.1-3.3 hold. Define β̂a as in (3.19). For any t > 0,

let λ̃α := 32σσuσζ(
√

log(d+1)
M

+ t) and λ̄β := 32σσuσε(
√

log(d1+1)
M

+ t). Suppose that M ≥

max{log(d+ 1), (c3 + 100κ2
2)sαa log(d+ 1), 100κ2

2sβa log(d1 + 1)}. Let δ2
M = 288σuκ

−2
1 λ̃2

αsαa.

Then,

‖β̂a − β∗a‖2 ≤ max

(
5κ2δ

2
M

8σσuσε
+ 4κ

−1/2
1 δM , 8κ

−1
1 λ̄β

√
sβa

)
,

‖β̂a − β∗a‖1 ≤ max
(
20λ̄−1

β δ2
M , 40κ−1

1 λ̄βsβa
)
,

1

M

M∑
i=1

[V̄T
i (β̂a − β∗a)]2 ≤ max

(
16δ2

M , 32κ−1
1 λ̄2

βsβa
)
,

with probability at least 1−4 exp(− 4Mt2

1+2t+
√

2t
)−2c1 exp(−c2M)−2 exp(−c4M) and some con-

stants c1, c2, c3, c4, κ1, κ2 > 0. Moreover, assume N � max{sαa log(d), sβa log(d1)}. Then,
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with some λ̃α � σ
√

log(d)
N

and λ̄β � σ
√

log(d1)
N

, as N →∞,

‖β̂a − β∗a‖2 = Op

(
σ

√
sαa log(d) + sβa log(d1)

N

)
,

‖β̂a − β∗a‖1 = Op

σ
√
s2
αa log2(d)

N log(d1)
+ σ

√
s2
βa

log(d1)

N

 ,

1

M

M∑
i=1

[V̄T
i (β̂a − β∗a)]2 = Op

(
σ2 sαa log(d) + sβa log(d1)

N

)
,

and it follows that E[µ̂a(S1)− µ∗a(S1)]2 = Op

(
σ2 sαa log(d)+sβa log(d1)

N

)
.

Note that the left-hand side of the very last equation is considering an expectation

with respect to a distribution of a new, test data, i.e., its covariate S1, only.

Remark 3.3 (Model misspecifications). In the estimation of µa(·), we allow two types of

model misspecifications: ν∗a(·) 6= νa(·) and/ or µ∗a(·) 6= µa(·). When the model is misspecified,

in that µa(·) is non-linear, the estimator µ̂a(·) converges to some µ∗a(·) 6= µa(·). Here, the

target function µ∗a(·) can be seen as an “optimal” linear function approximating µa(·) and

the target parameter β∗a can be seen as an “optimal” linear slope in the population level. The

nuisance function, νa(·), is also allowed to be misspecified, although the estimation of µa(·)

does depend on the estimator ν̂a(·). The results in Corollary 3.2 are valid as long as the

assumptions in Corollary 3.1 hold: α̂a estimates well the target “optimal” slope, α∗a.

When misspecification occurs in the propensity score models, we need an extra “over-

lap condition” for the “target” propensity score functions:

Assumption 3.4. Let c be fixed positive constant. π∗(S1) and ρ∗a(S1,S2) satisfy the following

conditions for a ∈ {0, 1}:

P (c0 ≤ π∗(S1) ≤ 1− c0) = 1, P (c0 ≤ ρ∗a(S1,S2) ≤ 1− c0) = 1.
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Lemma 3.2. Let Assumptions 3.1-3.4 hold. Assume N � max{sαa log(d), sβa log(d1)}.

Then, with some λ̃α � σ
√

log(d)
N

and λ̄β � σ
√

log(d1)
N

, as N →∞, we obtain

{E|ν̂a(S1,S2)− ν∗a(S1,S2)|r}1/r = Op

(
σ
√
sαa log(d)/N

)
,

{E|µ̂a(S1)− µ∗a(S1)|r}1/r = Op

(
σ
√
sαa log(d) + sβa log(d1)/N

)
.

Additionally, let N � max{sγ log(d1), sδa log(d)}. Consider some λγ �
√

log(d1)
N

and λ̄δ �√
log(d)
N

. Define the event A := {‖γ̂ − γ∗‖2 ≤ 1}. Then, as N → ∞, P (A) = 1 − o(1).

Moreover, on the event A, as N → ∞, {E|π̂(S1)|−r} 1
r and {E|ρ̂a(S1,S2)|−r} 1

r are both

bounded uniformly by some constants independent of N and for r > 2,

{
E
∣∣π̂−1(S1)− π∗−1(S1)

∣∣r}1/r
= Op

(√sγ log(d1)

N

)
,

{
E
∣∣ρ̂−1
a (S1,S2)− ρ∗a

−1(S1,S2)
∣∣r}1/r

= Op

(√sδa log(d)

N

)
,

{
E
∣∣π̂−1(S1)ρ̂−1

a (S1,S2)− π∗−1(S1)ρ∗a
−1(S1,S2)

∣∣r}1/r
= Op

(√sγ log(d1) + sδa log(d)

N

)
.

In the above, the left-hand side of the first equation denotes the expectation w.r.t.

the distribution of the new observation’s covariate at time 1, S1. The left-hand sides of the

last two equations denote the expectation w.r.t. the distribution of the new observation’s

covariates at both times, S1,S2.

3.4.2 Dynamic Treatment: Estimation and Inference

To provide valid inference result, we assume the following conditions on the sparsity

levels:
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Assumption 3.5. Let max{sαa , sβa , sγ , sδa} log(d) = o(N) together with the following prod-

uct rate condition

max{sγsαa , sγsβa , sδasαa} log2(d) = o(N), (3.37)

where, for the sake of simplicity, let d1 � d2 � d.

The first of the above two conditions is a simple condition requiring consistency of

estimation of the nuisance parameters. The second of the two conditions, (3.37), is an

equivalent of a product-rate condition required for double-robust estimation, but now it is in

the context of dynamic treatment. Instead of one product rate, the above condition requires

three product rate conditions to hold.

Theorem 3.2 (Rate double robustness). Suppose that the models ν∗a(S1,S2), µ∗a(S1), π∗(S1)

and ρ∗a(S1,S2) are all correctly specified. Let Assumptions 3.1-3.3 and 3.5 be satisfied. Then,

as N →∞, θ̂, (3.26), is asymptotically normal with

σ−1
√
N(θ̂ − θ)→ N(0, 1),

where σ2 is defined in (3.32). The result continues to hold if σ2 is replaced by σ̂2 :=

1
N

∑K
k=1

∑
i∈Ik [ψ(Wi; η̂)− θ̂]2, with η̂ := (η̂a, η̂a′).

Remark 3.4. We compare the sparsity conditions of Assumption 3.5 with the double robust

static ATE estimation literature. The ATE estimation problem can be seen as a special

(degenerate) case of the dynamic ATE estimation, where we assume S1 and A1 are completely

random. In other words, the nuisance functions µa(·) and π(·) are both constants, and hence

can be estimated with a root-N rate. Then, Assumption 3.5 requires sαa +sδa = o(N/ log(d))
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and sαasδa = o(N/ log2(d)) coinciding with the sparsity conditions in [CCD+18,SRR19] and

being weaker than [Far15, Tan20a, DV20, DAV20, AV21].

We also provide the following Theorem that characterizes the consistency rate of the

proposed estimator, θ̂, in the presence of model misspecifications.

Table 3.1: Consistency rate of θ̂ under various misspecification settings under Theorem 3.3.
Misspecified and well-specified models are denoted with 7 and 3, respectively.

Nuisance model correctness
Consistency rate of θ̂

ρ∗a(·) π∗(·) µ∗a(·) ν∗a(·)
3 3 3 3 Op

(
σ√
N

(
1 +

max{√sαasγ ,
√
sαasδa ,

√
sβasγ} log(d)√

N

))
7 3 3 3 Op

(
σmax

{
√
sβasγ log(d)

N
,
√

sαa log(d)
N

})
3 7 3 3 Op

(
σ
√

max{sαa ,sβa} log(d)

N

)
3 3 7 3 Op

(
σmax

{
√
sαasδa log(d)

N
,
√

sγ log(d)

N

})
3 3 3 7 Op

(
σmax

{
√
sαasγ log(d)

N
,
√
sβasγ log(d)

N
,
√

sδa log(d)

N

})
7 7 3 3 Op

(
σ
√

max{sαa ,sβa} log(d)

N

)
7 3 7 3 Op

(
σ
√

max{sαa ,sγ} log(d)

N

)
3 7 3 7 Op

(
σ
√

max{sαa ,sβa ,sδa} log(d)

N

)
3 3 7 7 Op

(
σ
√

max{sγ ,sδa} log(d)

N

)

Theorem 3.3 (Consistency rate). Suppose that one of the models µ∗a(S1) and π∗(S1) is

correctly specified, and one of the models ν∗a(S1,S2) and ρ∗a(S1,S2) is correctly specified. Let

Assumptions 3.1-3.4 hold. Let max{sαa , sβa , sγ , sδa} log(d) = o(N). Then, with some tuning

parameters λ̃α � λ̄β � σ
√

log(d)
N

and λγ � λ̄δ �
√

log(d)
N

, as N →∞, the estimator θ̂, (3.26),
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satisfies

θ̂ − θ = Op

(
σ
s1 log(d)

N
+ σ

√
s2 log(d)

N
+

1√
N
σ

)
, (3.38)

with s1 := max{√sαasγ ,
√
sαasδa ,

√
sβasγ} and

s2 := max
{
sαa1{π∗(·)6=π(·) or ρ∗a(·)6=ρa(·)}, sβa1{π∗(·)6=π(·)}, sγ1{µ∗a(·) 6=µa(·)}, sδa1{ν∗a(·)6=νa(·)}

}
.

Remark 3.5 (Consistency rate under various misspecification settings). Below we dis-

cuss the consistency rate of θ̂ under different misspecification settings. Therefore, when

all the nuisance functions are correctly specified, we have s2 = 0 and hence θ̂ − θ =

Op

(
σ
(

1 + s1 log(d)/
√
N
)
/
√
N
)
. However, when one of the models is misspecified at each

exposure time, we have θ̂ − θ = Op

(
σ
√
s2 log(d)/N

)
. More specifically, in Table 3.1, we

illustrate the consistency rate of θ̂ under all the considered model misspecification cases. We

observe that, the consistency rate is asymmetric w.r.t. the sparsity levels. For instance,

when all the models are correctly specified, the consistency rate of θ̂ depends on three product

rates: sαasγ, sαasδa, and sβasγ. We can see that the sparsity levels sαa and sγ seem to be

more “important” than sβa and sδa: both sαa and sγ appear twice in the three product rates,

whereas sβa and sδa only appear once. We can see that the consistency rate of θ̂ depends on

σ. Note that, we allow the dependency of σ = σN on N ; σ → 0 and σ →∞ are both allowed

as N →∞.

3.5 Inference with general high-dimensional nuisances

Consider the general dynamic treatment effect estimator θ̂ proposed in Algorithm 1.

Let µ̂a, ν̂a, π̂, and ρ̂a denote any reasonable machine learning or nonparametric estimators
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of the nuisance parameters η. Here, model misspecification is allowed. Let µ∗a, ν
∗
a , π∗, and

ρ∗a denote the ‘target’ functions of µ̂a, ν̂a, π̂, and ρ̂a respectively. In this Section, unless

specified differently, E denotes an expectation only with respect to a probability measure of

a new, test observation W .

Assumption 3.6. There exist µ∗a(S1), ν∗a(S1,S2), π∗(S1), and ρ∗a(S1,S2) such that µ̂a(S1),

ν̂a(S1,S2), π̂(S1), and ρ̂a(S1,S2), computed on a subset I−k obey the following conditions

for all a = (a1, a2) and a1, a2 ∈ {0, 1}. (i) Consistency for µ∗a and ν∗a: E[ν̂a(S1,S2) −

ν∗a(S1,S2)]2 = Op(a
2
N), E[µ̂a(S1) − µ∗a(S1)]2 = Op(b

2
N), with sequences aN = o(σ) and

bN = o(σ). (ii) Consistency for π∗ and ρ∗a: E[π̂(S1) − π∗(S1)]2 = Op(c
2
N), E[ρ̂a(S1,S2) −

ρ∗a(S1,S2)]2 = Op(d
2
N), with sequences cN = o(1) and dN = o(1).

Assumption 3.7. Let c0 be a fixed positive constant. Suppose that π̂(S1) and ρ̂a(S1,S2)

satisfy P (c0 ≤ π̂(S1) ≤ 1 − c0) = 1, P (c0 ≤ ρ̂a(S1,S2) ≤ 1 − c0) = 1, for a ∈ {0, 1}, with

probability approaching one.

With a little abuse of notation, in this section, we define ζ := ζ1 + ζ0 and ε := ε1 + ε0,

where for any general treatment path a,

ζa := 1{A1=a1,A2=a2} (Y (a)− ν∗a(S1,S2)) , εa := 1{A1=a1} (ν∗a(S1,S2)− µ∗a(S1)) . (3.39)

We also define, ξ := µ1(S1) − µ0(S1) − θ = E[Y (1, 1) − Y (0, 0)|S1] − E[Y (1, 1) − Y (0, 0)]

as the centered conditional dynamic treatment effect at the first exposure. We impose the

following assumptions on the distribution of ζ, ε, and ξ.

Assumption 3.8. Suppose that, there exists some fixed constants C > 0 and q > 2,

such that max

{
E|ζ|q

[E|ζ|2]
q
2
, E|ε|q

[E|ε|2]
q
2
, E|ξ|q

[E|ξ|2]
q
2

}
≤ C as well as P (E[ζ2|S1,S2] ≤ CE[ζ2]) = 1 and

P (E[ε2|S1] ≤ CE[ε2]) = 1.
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The max condition above is a moment condition that controls the tails of the dis-

tributions of ζ, ε, and ξ. For example, this condition holds if ζ, ε, and ξ are sub-Gaussian

random variables. The last two conditions require that the “normalized” conditional second

moments are almost surely bounded, assumed only for the interpretability of the obtained

results. One can also replace these with some moment conditions on ζ and ε; however, we

would then need to require upper bounds on higher moments on the estimation error rates

instead of the second moments as used in Assumption 3.6.

3.5.1 Main results

The main result is presented below. We establish asymptotic normality of the gen-

eral dynamic treatment effect estimator θ̂ proposed in Algorithm 1, when all the nuisance

functions are correctly specified but estimated using high-dimensional, machine learning or

modern nonparametrics estimators.

Theorem 3.4. (Rate double robustness) Assume that the models ν∗a(S1,S2), µ∗a(S1), π∗(S1),

and ρ∗a(S1,S2) are all correctly specified. Let Assumptions 3.1, and 3.6 - 3.8 hold. Moreover,

assume that the rates of estimation satisfy the following product condition

bNcN = o(σN−1/2), aNdN = o(σN−1/2). (3.40)

Then, the estimator θ̂ is approximately unbiased and normally distributed

σ−1
√
N(θ̂ − θ)→ N(0, 1),

with σ defined in (3.32). The result continues to hold when σ2 is replaced with σ̂2 as defined

in Theorem 3.2.
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The notion of rate double robustness, although previously established in earlier works,

has been named in [SRR19]. It stands to illustrate conditions termed “product rate condi-

tions ” needed when the models are correctly specified but the estimators of the nuisance

parameters are not root-N consistent; see, e.g., Theorem 5.1 in [CCD+18]. To the best of

our knowledge, for the case of multiple time exposures, product rate conditions as identified

in (3.40) are new. For a special case of one-time exposure, the above result matches those

obtained in [CCD+18].

Remark 3.6 (Signal-to-noise ratios). Suppose all the nuisance models are correctly specified

and let Assumption 3.1 holds. For each a, we introduce the signal-to-noise ratios (SNRs) of

the models, (3.39), as

SNRν,a :=
Var[1{A1=a1,A2=a2}νa(S1,S2)]

E[ζ2
a ]

�
E[ε2] + Var[1{A1=a1,A2=a2}µa(S1)]

E[ζ2]
,

SNRµ,a :=
Var[1{A1=a1}µa(S1)]

E[ε2
a]

�
Var[1{A1=a1}µa(S1)]

E[ε2]
,

under the overlap condition in Assumption 3.1. In our Theorem 3.2, both SNRν,a and SNRµ,a

are allowed shrink to zero or diverge, as N →∞.

Remark 3.7 (Rate double robustness). Rate double robustness in the presence of multiple

exposures is discussed in [BHL20], however, the authors therein require three product rate

conditions. In addition to the two product rates (3.40), they require aNcN = o(N−1/2); see

Assumption 4 therein. Therefore, the case of high aN and cN is not permitted, although, our

setting allows it. An example where aN � N−1/10, bN � N−2/5, cN � N−1/10 and dN �

N−2/5 satisfies (3.40) but violates aNcN = o(N−1/2) of [BHL20]. We introduce some specific

nonparametric examples that satisfy such conditions for aN and cN . In low dimensions, if the
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multilayer perceptrons are utilized for the estimation of ν̂a(·) and π̂(·), Theorem 1 of [FLM21]

guarantees aN � N−1/10 and cN � N−1/10 as long as βν > d/4 and βπ > d/4, for ν(·) and

π(·) lying in the Hölder ball with smoothness βν and βπ, respectively. In high dimensional

sparse settings, the guess-and-check forests proposed by [WW15] also achieve the desirable

rates for aN and cN as long as the outcome Y is only dependent on at most 4 covariates; see

Theorem 4 therein.

Remark 3.8 (Comparison with low-dimensional DR dynamic ATE estimators). DR dy-

namic ATE estimation with low-dimensional parametric nuisance models has been studied

by [Rob00b, MvdLRG01, BR05, YvdL06]. Their proposed estimators for the dynamic ATE

are consistent and asymptotically normal (CAN) when either 1) all the OR models are cor-

rectly specified or 2) all the PS models are correctly specified. Recently, [BRR19] proposed

a new multiple robust (MR) estimator that further allows another model misspecification

situation that only the OR model at time one and the PS model at time two are correctly

specified. However, all of the mentioned work requires parametric nuisance estimators with

low-dimensional covariates. Such nuisance estimators are
√
N-consistent.

In this chapter, we allow 1) non-parametric nuisance models and 2) high-dimensional

parametric nuisance models. For low and moderate dimensional covariates, we allow non-

parametric nuisance estimators. Such nuisance estimators are known to be consistent to

the true nuisance functions under some mild smoothness conditions. In other words, all the

nuisance models can be seen as correctly specified. Unlike the previously mentioned work, no

parametric assumption is needed for all the nuisance models, and our results are much more

robust in the sense of model correctness.
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Remark 3.9 (Comparison with an “oracle” IPW estimator). Suppose all the nuisance func-

tions are correctly specified and all the other assumptions of Theorem 1. We compare the

proposed DR estimator, θ̂, with an “oracle” IPW estimator defined as follows:

θ̂IPW := N−1

N∑
i=1

ω1(S1i,S2i)Yi −N−1

N∑
i=1

ω0(S1i,S2i)Yi,

where recall that ω1(·) defined in (3.5) is based on the true propensity score functions. Under

mild conditions, we have σ−1
IPW

√
N(θ̂IPW − θ) → N(0, 1) and the same asymptotic normal-

ity also holds for an “oracle” IPW estimator. When all the nuisance models are correctly

specified, we can see that σ2
IPW := Var

[
A1A2Y

π(S1)ρa(S1,S2)
− (1−A1)(1−A2)Y

(1−π(S1))(1−ρa′ (S1,S2))

]
satisfies

σ2
IPW = σ2 + E

[
A1

π2(S1)

(
1− A2

ρa(S1,S2)

)2

ν2
a(S1,S2)

]

+ E

[
1− A1

(1− π(S1))2

(
1− 1− A2

1− ρa′(S1,S2)

)2

ν2
a′(S1,S2)

]

+ E

[(
1− A1

π(S1)

)
µa(S1)−

(
1− 1− A1

1− π(S1)

)
µa′(S1)

]2

≥ σ2.

That is, θ̂ is asymptotically more efficient than the “oracle” IPW estimator. This seems to

be an important corollary in itself: estimating unknown outcome models is beneficial for the

inferential guarantees when comparing the size of the asymptotic variance.

We also provide the following consistency result that allows model misspecifications.

Theorem 3.5. (Consistency rate) Suppose that one of the models µ∗a(S1) and π∗(S1) is

correctly specified, and one of the models ν∗a(S1,S2) and ρ∗a(S1,S2) is correctly specified.

Let Assumptions 3.1, 3.4, 3.6, 3.7 hold. Additionally, assume that E[1{A1=a1}(µa(S1) −
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µ∗a(S1))2] ≤ Cµσ
2, with some constant Cµ > 0. Then, the estimator θ̂ satisfies

θ̂ − θ = Op

(
bNcN + aNdN + bN1{π∗(·)6=π(·)} + aN1{ρ∗a(·) 6=ρa(·)} (3.41)

+ cNσ1{µ∗a(·)6=µa(·)} + dNσ1{ν∗a(·)6=νa(·)} +
1√
N
σ

)
.

From Theorem 3.5, we can further conclude that θ̂− θ = op(σ) following Assumption

3.6. That is, θ̂ is a consistent estimator as long as σ = O(1) and at least one of the nuisance

models is correctly specified at each exposure time. If all the nuisance models are correctly

specified, we have θ̂ − θ = Op(bNcN + aNdN + σN−1/2). Hence, θ̂ is
√
N -consistent as long

as bNcN + aNdN = O(N−1/2) and σ = O(1).

Model misspecification presents here with asymmetric form in terms of the rates of

estimation: (3.41) is symmetric in the rates themselves, but as bN potentially depends on

aN , it leads to inherent asymmetries. Similar asymmetries, albeit in the low-dimensional

inferential context, appear in the recent work [BRR19], where the authors allow µ∗a(·) and

ρ∗a(·) to be misspecified simultaneously, but do not allow ν∗a(·) and π∗(·) being misspecified

simultaneously; Theorem 3.5, however, allows for such case.

If only one of the nuisance functions is misspecified, then the consistency rate of

θ̂ mainly depends on 1) the estimation rate of the other nuisance function at the same

time spot and 2) the product estimation rates at the other time spot. For instance, if

only π∗(·) is misspecified and all the other models are correctly specified, we have θ̂ − θ =

Op(bN + aNdN + σN−1/2).

If two of the nuisance functions are misspecified at two different time spots, then

the consistency rate of θ̂ mainly depends on the estimation rates of the other two correctly

specified nuisance models. For instance, if only π∗(·) and ν∗a(·) are misspecified, we have
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θ̂ − θ = Op(bN + dNσ + σN−1/2).

3.6 Numerical Experiments

We illustrate the finite sample properties of the introduced estimator on a number

of simulated experiments. We focus on the estimation of θ = θa − θa′ where a = (1, 1) and

a′ = (0, 0). We first consider data generating processes (DGPs) where all the models are

correctly specified; see Section 3.6.1. Then, in Section 3.6.2, we consider DGPs where one

of the nuisance functions is possibly misspecified.

3.6.1 Correctly specified models

We consider models that all the nuisance functions are correctly specified. Generate

covariates at time t = 1: for each i ≤ N ,

S1i ∼iid Nd1(0, Id1).

The treatment indicators at time t = 1 are generated as

A1i|S1i ∼ Bernoulli(π(S1i)), with π(S1i) = g(VT
i γ)

and g(u) = exp(u)/{1 + exp(u)} is the logistic function. The noise variables are δ1i ∼iid

N(0, 1), δ1i ∼iid Nd1(0, Id1) and δ2i ∼iid Nd2(0, Id2). The following models on S2i|(S1i, A1i)

are considered.

M1. (Shifting model) S2i = S1i + A1i(1 + δ1i)1d1×1 + δ1i, where 1d1×1 = (1, . . . , 1)T .

M2. (Sparse linear) S2i = Ws(A1i)S1i + A1i(1 + δ1i)1d2×1 + δ2i.
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M3. (Dense linear) S2i = Wd(A1i)S1i + A1i(1 + δ1i)1d2×1 + δ2i.

M4. (Dense quadratic) S2i = 0.5W̃d(A1i)(S
2
1i − 1) + Wd(A1i)S1i + A1i(1 + δ1i)1d2×1 + δ2i,

where S2
1i ∈ Rd1 is the coordinate-wise square of S1i.

For each c = (c1, c2) ∈ {a, a′}, the matrices Ws(c),Wd(c), W̃d(c) ∈ Rd2×d1 are defined as the

following: for each i ≤ d2 and j ≤ d1,

{Ws(a)}i,j = 0.8|i−j|1{|i− j| ≤ 1}, {Wd(a)}i,j = 0.8|i−j|,

{Ws(a
′)}i,j = 0.7|i−j|1{|i− j| ≤ 2}, {Wd(a

′)}i,j = 0.7|i−j|,

{W̃d(c)}i,j = {Wd(c)}i,j1{j > 3} for each c ∈ {a, a′}.

The treatment indicators at time t = 2 are generated as

A2i|(S1i,S2i, A1i = c1) ∼ Bernoulli(ρc(S1i,S2i)), with

ρc(S1i,S2i) = g(c1U
T
i ηa + (1− c1)UT

i ηa′), for each c = (c1, c2) ∈ {a, a′}.

The outcome variables are generated as

Yi(c) = UT
i αc + ζi, for each c ∈ {a, a′}, where ζi ∼iid N(0, 1),

Yi = A1iA2iYi(a) + (1− A1i)(1− A2i)Yi(a
′).

Let 0q := (0, . . . , 0) ∈ Rq for any q ≥ 1. The parameter values are αc = (αTc,1,α
T
c,2)T ,

for each c ∈ {a, a′}, where αa,1 = (−1,−1, 1,−1,0(d1−3))
T , αa,2 = (−1,−1, 1,0(d2−3))

T ,

αa′,1 = (1, 1, 1,−1,0(d1−3))
T , αa′,2 = (1, 1, 1,0(d2−3))

T . Additionally, γ = (0, 1, 1, 1,0(d1−3))
T ,

ηa = (0, 1, 1,0(d1−2), 1,−1,0(d2−2))
T , and ηa′ = (0, 0.5, 0,−0.5, 0(d1−3), 0.5, 0, 0.5,0(d2−3))

T ,
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Under the above DGPs, we have the following nuisance functions: for each c ∈ {a, a′},

νc(S1,S2) = E[Y (c)|S1,S2, A1 = c1] = UTαc, (3.42)

µc(S1) = E[Y (c)|S1, A1 = c1] = VTαc,1 + E[ST2αc,2|S1, A1 = c1] = VTβc, (3.43)

where βc varies for different models on S2i|(S1i, A1i) as follows:

M1. βc = αc,1 + (
∑d2

j=1αa′,21{c = a′},αTc,2)T with ‖βc‖0 = 4.

M2. βc = αc,1 + (
∑d2

j=1αa′,21{c = a′}, (Ws(c)αc,2)T )T with ‖βa‖0 = 4 and ‖βa′‖0 = 5.

M3-4. βc = αc,1 + (
∑d2

j=1αa′,21{c = a′}, (Wd(c)αc,2)T )T is weakly sparse in that ‖βa‖0 =

‖βa′‖0 = d1 + 1, ‖βa‖1 < 5.23, and ‖βa′‖1 < 7.24.

In addition, we consider another DGP:

M5. (Dense νa(·) and π(·)) Everything is the same as in M1-M4, except the following:

{S1i,j}i≤N,j≤d1 ∼iid Uniform(−1, 1), {δi,j}i≤N,j≤d2 ∼iid Uniform(−1, 1),

S2i,1 = δi1 + 3A1iS1i,1 − 2(1− A1i)S1i,1 for 1 ≤ i ≤ N, and

S2i,j = δi,j for 1 ≤ i ≤ N and 2 ≤ j ≤ d2,

with αa = (−1, a3,0(d1−3), a20,0(d2−20))
T , αa′ = (1,−a3,0(d1−3), a20,0(d2−20))

T , γ =

(0, a20,0(d1−20))
T , ηa = (0, a3,0(d1−3), a3,0(d2−3))

T , ηa′ = −(0, a3,0(d1−3), a3,0(d2−3))
T ,

where a3 := 1√
3
(1, 1, 1) ∈ R3 and a20 := 1√

20
(1, . . . , 1) ∈ R20. Under M5, we have the

nuisance functions (3.42) and (3.43) with

βa =

(
−1,

4√
3
,

1√
3
,

1√
3
,0(d1−3)

)T
and βa′ =

(
1,− 3√

3
,− 1√

3
,− 1√

3
,0(d1−3)

)T
.
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Table 3.2: Simulation under M1. Bias: empirical bias; RMSE: root mean square error;
Length: average length of the 95% confidence intervals; Coverage: average coverage of the
95% confidence intervals; ESD: empirical standard deviation; ASD: average of estimated
standard deviations. All the reported values (except Coverage) are based on robust (median-
type) estimates. Denote N1 and N0 as the expected number of observations in the treatment
groups (1, 1) and (0, 0), respectively.

ρ̂a(·) µ̂a(·) Bias RMSE Length Coverage ESD ASD

N = 1000, N1 = 294, N0 = 282, d1 = 100, d2 = 100

empdiff 0.734 0.734 0.957 0.138 0.234 0.244

oracle 0.003 0.220 1.091 0.954 0.325 0.278

log-Lasso

Lasso 0.130 0.203 0.882 0.882 0.264 0.225

gLasso 0.128 0.197 0.876 0.890 0.265 0.224

elasticnet 0.152 0.208 0.881 0.868 0.268 0.225

log-gLasso

Lasso 0.130 0.202 0.868 0.888 0.264 0.221

gLasso 0.124 0.196 0.860 0.890 0.261 0.219

elasticnet 0.152 0.206 0.867 0.864 0.267 0.221

log-elasticnet

Lasso 0.136 0.200 0.878 0.886 0.262 0.224

gLasso 0.137 0.197 0.869 0.888 0.260 0.222

elasticnet 0.157 0.212 0.874 0.868 0.260 0.223

N = 4000, N1 = 1178, N0 = 1128, d1 = 100, d2 = 100

empdiff 0.731 0.731 0.478 0.000 0.111 0.122

oracle -0.006 0.121 0.602 0.956 0.178 0.153

log-Lasso

Lasso 0.035 0.097 0.490 0.932 0.139 0.125

gLasso 0.036 0.098 0.489 0.928 0.136 0.125

elasticnet 0.041 0.096 0.490 0.926 0.139 0.125

log-gLasso

Lasso 0.038 0.095 0.485 0.928 0.136 0.124

gLasso 0.037 0.095 0.484 0.924 0.133 0.123

elasticnet 0.042 0.095 0.484 0.924 0.136 0.123

log-elasticnet

Lasso 0.036 0.096 0.487 0.930 0.138 0.124

gLasso 0.038 0.097 0.485 0.928 0.137 0.124

elasticnet 0.041 0.094 0.486 0.926 0.138 0.124
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Table 3.3: Simulation under M2. The rest of the caption details remain the same as those
in Table 3.2.

ρ̂a(·) µ̂a(·) Bias RMSE Length Coverage ESD ASD

N = 1000, N1 = 279, N2 = 312, d1 = 100, d2 = 50

empdiff 2.485 2.485 1.258 0.000 0.318 0.321

oracle -0.035 0.243 1.305 0.972 0.350 0.333

log-Lasso

Lasso 0.063 0.218 1.121 0.934 0.326 0.286

gLasso 0.093 0.215 1.114 0.928 0.322 0.284

elasticnet 0.094 0.223 1.118 0.920 0.316 0.285

log-gLasso

Lasso 0.083 0.220 1.131 0.936 0.324 0.289

gLasso 0.093 0.219 1.127 0.936 0.333 0.288

elasticnet 0.100 0.224 1.132 0.924 0.331 0.289

log-elasticnet

Lasso 0.063 0.220 1.118 0.930 0.322 0.285

gLasso 0.092 0.214 1.111 0.924 0.319 0.283

elasticnet 0.094 0.219 1.116 0.920 0.307 0.285

N = 4000, N1 = 1115, N0 = 1248, d1 = 100, d2 = 50

empdiff 2.484 2.484 0.627 0.000 0.162 0.160

oracle 0.003 0.125 0.706 0.946 0.185 0.180

log-Lasso

Lasso 0.029 0.119 0.600 0.928 0.171 0.153

gLasso 0.032 0.122 0.599 0.922 0.170 0.153

elasticnet 0.038 0.122 0.600 0.926 0.171 0.153

log-gLasso

Lasso 0.030 0.122 0.606 0.930 0.173 0.155

gLasso 0.033 0.123 0.604 0.922 0.176 0.154

elasticnet 0.040 0.122 0.605 0.930 0.174 0.154

log-elasticnet

Lasso 0.029 0.119 0.597 0.924 0.167 0.152

gLasso 0.031 0.121 0.596 0.924 0.170 0.152

elasticnet 0.038 0.121 0.597 0.928 0.172 0.152
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Notice that, in M4, although E(S2|S1, A1 = c1) is quadratic in S1, E(ST2 αc,2|S1, A1 =

c1) is still linear on S1 and hence the linear model µ∗a(·) is correctly specified. The following

choices of parameters are implemented: (N, d1) ∈ {(1000, 100), (4000, 100)}. For M1, we set

d2 = d1 = 100; for the other models (M2-M5), we set d2 = d1/2 = 50. For each of the DGPs,

we repeat the simulation for 500 times. For each replication, we construct the proposed

estimator θ̂ based on the following estimators: for ν̂a(·) and π̂(·), we use a Lasso and a

logistic estimator with a Lasso penalty (log-Lasso), respectively; for ρ̂a(·), we consider logistic

estimators with a Lasso penalty (log-Lasso), a grouped Lasso penalty (log-gLasso), and an

elasticnet penalty (log-elasticnet); for µ̂a(·), we consider Lasso, grouped Lasso (gLasso), and

elasticnet. The regularization parameters are chosen from 10-fold cross validations, the α

parameter for elasticnet is chosen as 0.7. For comparison purposes, we also consider a naive

empirical difference estimator (empdiff), θ̂empdiff =
∑N

i=1 A1iA2iYi/
∑N

i=1 A1iA2i −
∑N

i=1(1 −

A1i)(1 − A2i)Yi/
∑N

i=1(1 − A1i)(1 − A2i), as well as an oracle estimator, θ̂oracle, which is

constructed based on the correct nuisance functions. The results are reported in Tables

3.2-3.5.

In this section, we consider DGPs M1-M5, where the DGPs M1-M4 only different on

the procedure of generating S2 based on S1 and A1. In M1, we consider a simple shifting

model that S2 and S1 can be understood as a same set of features evaluated at different

time points. In M2, we consider a sparse linear dependence that S2 is linearly dependent

on S1 through a sparse and dense matrix operator, where the corresponding coefficient βa

is a sparse vector. In M3, we consider a dense linear dependence that the corresponding

coefficient βa is only weakly sparse that it’s ‖ · ‖1 norm is bounded. In M4, we consider

a dense quadratic dependence between S2 and S1 but the nuisance function µa(S1) is still
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linear - we can see that the nuisance function can be linear even when S2 is not linearly

dependent on S1. As for in M5, we consider relatively dense models for νa(·) and pi(·): the

density levels of µa(·), νa(·), π(·), and ρa(·) are 4, 24, 20, and 6, respectively.

We first consider the inference results. As demonstrated in Theorem 3.2, we should

expect good coverages when max{sγsβa , sδasαa} log2(d)/N is small enough. Indeed, as shown

in Tables 3.2, 3.3, and 3.6, the coverages are relatively acceptable when N = 4000. The

coverages in Tables 3.2 and 3.6 with N = 1000 are relatively poor. Note that, we have

d = 201 and d = 151 for models M1 and M5, respectively; the expected sample sizes for

estimating νa(·) and µa(·) are 0.4Na1 , where a = (a1, a2) and a1 = a2 ∈ {0, 1}. In addition,

we can also see relatively good covarages in Tables 3.4 and 3.5, where βa is only weakly

sparse.

As for the estimation performance, as illustrated in Tables 3.2-3.6, all the proposed

estimators provide RMSEs close to (or even slightly better than) the RMSE of the oracle

estimators. This observation coincides with our Theorems 3.2-3.5, when all the nuisance

functions are correctly specified, we expect that our estimators should provide
√
N -consistent

estimations when N is large enough that the product rate conditions are satisfied. On the

other hand, the naive empirical difference estimator, θ̂empdiff , is not even consistent because

of the appearance of confounders.

3.6.2 Misspecified models

Now, we consider misspecified nuisance functions, π∗(·), ρ∗c(·), ν∗c (·), and µ∗c(·) for

each c ∈ {a, a′}. The following DGPs are considered:
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Table 3.4: Simulation under M3. The rest of the caption details remain the same as those
in Table 3.2.

ρ̂a(·) µ̂a(·) Bias RMSE Length Coverage ESD ASD

N = 1000, N1 = 296, N0 = 310, d1 = 100, d2 = 50

empdiff 2.921 2.921 1.239 0.000 0.317 0.316

oracle 0.002 0.245 1.346 0.962 0.364 0.343

log-Lasso

Lasso 0.084 0.219 1.139 0.920 0.322 0.291

gLasso 0.084 0.227 1.137 0.920 0.315 0.290

elasticnet 0.102 0.226 1.136 0.912 0.336 0.290

log-gLasso

Lasso 0.083 0.226 1.142 0.916 0.322 0.291

gLasso 0.090 0.223 1.139 0.922 0.318 0.291

elasticnet 0.105 0.220 1.140 0.914 0.320 0.291

log-elasticnet

Lasso 0.092 0.223 1.135 0.916 0.318 0.290

gLasso 0.093 0.221 1.132 0.920 0.318 0.289

elasticnet 0.114 0.226 1.132 0.914 0.320 0.289

N = 4000, N1 = 1184, N0 = 1240, d1 = 100, d2 = 50

empdiff 2.922 2.922 0.619 0.000 0.159 0.158

oracle -0.006 0.137 0.710 0.946 0.202 0.181

log-Lasso

Lasso 0.019 0.113 0.608 0.934 0.166 0.155

gLasso 0.026 0.114 0.607 0.930 0.166 0.155

elasticnet 0.028 0.114 0.609 0.930 0.165 0.155

log-gLasso

Lasso 0.016 0.114 0.610 0.940 0.165 0.156

gLasso 0.026 0.116 0.609 0.934 0.164 0.155

elasticnet 0.030 0.115 0.610 0.934 0.166 0.156

log-elasticnet

Lasso 0.019 0.114 0.607 0.934 0.164 0.155

gLasso 0.023 0.112 0.605 0.930 0.162 0.154

elasticnet 0.029 0.113 0.607 0.930 0.162 0.155
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Table 3.5: Simulation under M4. The rest of the caption details remain the same as those
in Table 3.2.

ρ̂a(·) µ̂a(·) Bias RMSE Length Coverage ESD ASD

N = 1000, N1 = 296, N0 = 310, d1 = 100, d2 = 50

empdiff 2.921 2.921 1.239 0.000 0.317 0.316

oracle 0.002 0.245 1.346 0.962 0.364 0.343

log-Lasso

Lasso 0.083 0.225 1.141 0.924 0.318 0.291

gLasso 0.098 0.229 1.136 0.918 0.324 0.290

elasticnet 0.102 0.226 1.139 0.916 0.321 0.291

log-gLasso

Lasso 0.081 0.222 1.144 0.918 0.326 0.292

gLasso 0.088 0.228 1.143 0.926 0.322 0.292

elasticnet 0.103 0.227 1.145 0.918 0.323 0.292

log-elasticnet

Lasso 0.087 0.215 1.136 0.924 0.312 0.290

gLasso 0.098 0.232 1.135 0.922 0.318 0.290

elasticnet 0.107 0.223 1.137 0.914 0.324 0.290

N = 4000, N1 = 1184, N0 = 1240, d1 = 100, d2 = 50

empdiff 2.922 2.922 0.619 0.000 0.159 0.158

oracle -0.006 0.137 0.710 0.946 0.202 0.181

log-Lasso

Lasso 0.019 0.114 0.610 0.936 0.166 0.156

gLasso 0.025 0.114 0.609 0.932 0.166 0.155

elasticnet 0.030 0.113 0.609 0.932 0.164 0.155

log-gLasso

Lasso 0.017 0.113 0.611 0.934 0.164 0.156

gLasso 0.023 0.115 0.609 0.930 0.166 0.155

elasticnet 0.027 0.116 0.611 0.930 0.164 0.156

log-elasticnet

Lasso 0.017 0.112 0.608 0.934 0.163 0.155

gLasso 0.025 0.115 0.607 0.930 0.164 0.155

elasticnet 0.030 0.112 0.608 0.930 0.161 0.155
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Table 3.6: Simulation under M5. The rest of the caption details remain the same as those
in Table 3.2.

ρ̂a(·) µ̂a(·) Bias RMSE Length Coverage ESD ASD

N = 1000, N1 = 296, N0 = 310, d1 = 100, d2 = 50

empdiff 0.418 0.418 0.475 0.072 0.114 0.121

oracle 0.004 0.096 0.500 0.952 0.144 0.128

log-Lasso

Lasso 0.065 0.106 0.487 0.900 0.139 0.124

gLasso 0.059 0.102 0.489 0.910 0.139 0.125

elasticnet 0.057 0.105 0.490 0.928 0.136 0.125

log-gLasso

Lasso 0.080 0.114 0.500 0.890 0.140 0.128

gLasso 0.065 0.107 0.505 0.910 0.143 0.129

elasticnet 0.067 0.106 0.505 0.908 0.142 0.129

log-elasticnet

Lasso 0.066 0.105 0.482 0.904 0.141 0.123

gLasso 0.057 0.105 0.485 0.912 0.140 0.124

elasticnet 0.056 0.107 0.485 0.918 0.136 0.124

N = 4000, N1 = 1184, N0 = 1240, d1 = 100, d2 = 50

empdiff 0.416 0.416 0.237 0.000 0.059 0.061

oracle -0.001 0.041 0.258 0.946 0.061 0.066

log-Lasso

Lasso 0.015 0.043 0.239 0.934 0.066 0.061

gLasso 0.012 0.042 0.239 0.928 0.064 0.061

elasticnet 0.012 0.042 0.239 0.932 0.065 0.061

log-gLasso

Lasso 0.016 0.043 0.243 0.936 0.068 0.062

gLasso 0.012 0.043 0.244 0.940 0.066 0.062

elasticnet 0.011 0.043 0.244 0.942 0.065 0.062

log-elasticnet

Lasso 0.015 0.043 0.237 0.928 0.066 0.061

gLasso 0.013 0.042 0.238 0.930 0.064 0.061

elasticnet 0.013 0.042 0.238 0.930 0.065 0.061
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M6. Non-logistic π(·) and ρc(·). Let π(S1i) = g̃(VT
i γ) and ρc(S1i,S2i) = g̃(c1U

T
i ηa + (1 −

c1)UT
i ηa′), where g̃(u) = (|u + 1| + 0.1)/(|u + 1| + 1). All the other processes are the

same as in M2 in Section 3.6.1.

M7. Non-linear µc(·) and νc(·). Let Yi(c) = UT
i αc + 0.5(ST1iαc,1[−1])2 + ζi, where αc,1 =

(αc,1[1],αc,1[−1]T )T . All the other processes are the same as in M2 in Section 3.6.1. It

follows that

νc(S1,S2) = E[Y (c)|S1,S2, A1 = c1] = UTαc + 0.5(ST1αc,1[−1])2,

µc(S1) = E[Y (c)|S1] = VTβc + 0.5(ST1αc,1[−1])2.

M8. Non-linear µc(·) and νc(·) with some bivariate features. Generate W2i = Ws(A1i)S1i +

A1i1d2×1, S2i[j]|W2i ∼ Bernoulli(g(W2i[j])) for each j ≤ 2, and S2i[j] = W2i[j] +

A1iδ1i1d2×1+δ2i for each j ≥ 3. Let Yi(c) = αc,1[1]+(2S2i[1]−1)ST1iαc,1[−1]+ST2iαc,2+ζi.

All the other processes are the same as in M2 in Section 3.6.1. It follows that

νc(S1,S2) = E[Y (c)|S1,S2, A1 = c1] = αc,1[1] + (2S2i[1]− 1)ST1iαc,1[−1] + ST2iαc,2,

µc(S1) = E[Y (c)|S1] = αc,1[1] +
(
2g(ST1iWs,1(c) + c1)− 1

)
ST1iαc,1[−1]

+
2∑
j=1

αc,2[j]g(ST1iWs,j(c) + c1) +

d2∑
j=3

αc,2[j]
(
ST1iWs,j(c) + c1

)
,

where Ws,j(c) is the j-th row of the matrix Ws(c).

M9. Non-linear µc(·) and non-logistic ρc(·). Let ρc(S1i,S2i) = g̃(c1U
T
i ηa + (1 − c1)UT

i ηa′)

and generate S2i = 0.5Ws(A1i)(S
2
1i − 1) + Ws(A1i)S1i + A1i(1 + δ1i)1d2×1 + δ2i, where

S2
1i ∈ Rd1 is the coordinate-wise square of S1i. All the other processes are the same as

in Section 3.6.1.
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M10. Non-linear νc(·) and non-logistic π(·). Let π(S1i) = g̃(VT
i γ) and generate W2i =

S1i + A1i(1 + δ1i)1d2×1 + δ2i and S2i[j] = sgn(W2i[j])|W2i[j]|1/2 for each j ≤ d2. Let

Yi(c) = VT
i αc,1 +

∑d2
j=1 αc,2[j]sgn(S2i[j])S

2
2i[j]+ζi. All the other processes are the same

as in Section 3.6.1. It follows that

νc(S1,S2) = E[Y (a)|S1,S2, A1 = c1] = VTαc,1 +

d2∑
j=1

αc,2[j]sgn(S2[j])S2
2[j],

µc(S1) = E[Y (a)|S1] = VTβc, where βc = αc,1 + (

d2∑
j=1

αa′,21{c = a′},αTc,2)T .

For M6-M9, we set d1 = 100, d2 = 50; for M10, we set d1 = d2 = 100. The sample size

N varies from {1000, 2000, 4000, 8000}. We repeat the simulation 500 times for each of the

DGPs. For each replication, we construct the proposed estimator θ̂ based on the following

estimators: a Lasso based estimator that all the nuisance functions are estimated using a

linear (or logistic) regression with a Lasso penalty; an elasticnet-based estimator that all

the nuisance functions are estimated using a linear (or logistic) regression with an elasticnet

penalty, where α = 0.7; an oracle estimator that all the nuisance functions are based on the

true nuisance functions. We also implement IPW-based estimators for comparison purposes,

which are special types of our proposed DR estimator with the outcome nuisance functions

forced to be zeros. We report the root mean squared errors (RMSEs) of the estimators as

N varies; see Figure 3.2.

All the DGPs M6-M10 are under the situation that two nuisance functions are cor-

rectly specified, and the other two nuisance functions are misspecified. Based on Theorem

3.5, we should expect that our proposed DR estimators to have consistency rates at most

Op(σ
√
s log(d)/N), where the sparsity level s ≤ 3 under our DGPs. Such an upper bound

is, in general, slower than the consistency rate of the DR-oracle estimator, Op(σ/
√
N). For
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Figure 3.2: The root mean square errors of the proposed estimators in M6-M10 as N varies.

the WIPW-lasso and IPW-elasticnet estimators, in M6, M9, and M10, where at least one

of the propensity score models is misspecified, we do not expect a consistent result; in M7
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and M9, where both the propensity score models are correctly specified, we should expect

consistent results with rates Op(σWIPW

√
s log(d)/N), where σWIPW ≥ σ is defined in (3.9).

Lastly, we expect the WIPW-oracle estimator to be consistent with rate Op(σWIPW/
√
N),

as discussed in Remark 3.9.

3.7 Discussion

This work breaks new ground in understanding the intricate details of double ro-

bust estimation in the presence of multiple time exposures. We identify new conditions for

achieving rate double robustness using Lasso type estimators for evaluating the nuisance

components. We showcase that three product rate conditions are necessary to guarantee

root-n inference with high-dimensional confounders. When interested in using more general

nuisance estimators, we identify two global conditions needed for rate double robustness:

product rates between propensity and outcome at different time exposures need to be con-

trolled at the correct rate.

This chapter identifies new theoretical ingredients leading to the new study of the

robustness of dynamical treatments. Unlike classical results, we see the impact of imputation

is significant and leads to certain asymmetries in the obtained results. Naturally, this leads

to a need to understand whether imputation itself can be avoided or altered in a way to

remove some of the undesired effects.

Our results facilitate the theory of any Lasso-type estimators with imputed outcomes;

see Theorem 3.1. Typical examples appear in high-dimensional optimal dynamic treatment

regimes and policy learning, e.g., [SFSL18, ZZS19, NBW21]. We develop new techniques to
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show the estimators’ consistency with tuning parameters of the rate
√

log(d)/N , which is

standard for non-imputed lasso in the high-dimensional statistics literature. Additionally,

our work also potentially promotes the development of new theoretical foundations of non-

stationary reinforcement learning. Our results suggest that if the reward model varies across

time, the estimation error accumulates among the time periods.

Inferential questions allowing model misspecification are now understood to be sig-

nificantly different in low and high-dimensional settings. Naturally, further open questions

remain unanswered: can model misspecification be allowed in high-dimensional inferential

tasks? Our results would imply that possibly a new type of nuisance estimators would be

required. Lastly, we would like to further understand the impact of sparsity on inference

with multiple exposures.

3.8 Proofs of main results

3.8.1 Convergence rates for nuisance parameters

The following lemmas will be helpful in our proofs.

Lemma 3.3. Let X ∈ R be a random variable. If E(|X|2k) ≤ 2σ2kΓ(k + 1) for any k ∈ N,

then ‖X‖ψ2 ≤ 2σ. Here, Γ(a) :=
∫∞

0
xa−1 exp(−x)dx ∀a > 0 denotes the Gamma function.

The following lemma provides the same type of results as used in the Assumption 3.2

but now for covariates at different exposure time and different treatment paths.

Lemma 3.4. Let Assumption 3.2 and the overlap conditions of Assumption 3.1 hold. Con-

sider the constants c0, κl, σu defined as in Assumptions 3.1 and 3.2. Then, the following
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statements hold:

a) 0 < c0κl ≤ λmin(E[ŨŨT ]) ≤ λmax(E[ŨŨT ]) ≤ 2σ2
u < ∞ and Ũ is sub-Gaussian

with ‖xT Ũ‖ψ2 ≤ 2σu‖x‖2 for any x ∈ Rd+1;

b) 0 < κl ≤ λmin(E[ŪŪT ]) ≤ λmax(E[ŪŪT ]) ≤ 2σ2
u <∞ and Ū is sub-Gaussian with

‖xT Ū‖ψ2 ≤ 2σu‖x‖2 for any x ∈ Rd+1;

c) 0 < κl ≤ λmin(E[V̄V̄T ]) ≤ λmax(E[V̄V̄T ]) ≤ 2σ2
u <∞ and V̄ is sub-Gaussian with

‖xT V̄‖ψ2 ≤ 2σu‖x‖2 for any x ∈ Rd1+1;

d) 0 < κl ≤ λmin(E[VVT ]) ≤ λmax(E[VVT ]) ≤ 2σ2
u <∞ and V is sub-Gaussian with

‖xTV‖ψ2 ≤ 2σu‖x‖2 for any x ∈ Rd1+1.

The following lemma provides an asymptotic upper bounds on the estimation errors

of the propensity score models, π∗(·) and ρ∗a(·).

Lemma 3.5. Let Assumption 3.2 holds and the overlap conditions of Assumption 3.1 hold.

Let the sample size be such that N � max{sγ log(d1), sδa log(d)}. Then, as N →∞, a) the

logistic Lasso (3.25) with λγ �
√

log(d1)
N

satisfies

‖γ̂ − γ∗‖2 = Op

(√
sγ log(d1)

N

)
, (3.44)

E[π̂(S1)− π∗(S1)]2 = Op

(
sγ log(d1)

N

)
, (3.45)

whereas b) the logistic Lasso (3.29) with λ̄δ �
√

log(d)
N

satisfies

‖δ̂a − δ∗a‖2 = Op

(√
sδa log(d)

N

)
, (3.46)

E[ρ̂a(S)− ρ∗a(S)]2 = Op

(
sδa log(d)

N

)
. (3.47)

In the left-hand side of (3.45) and (3.47), the expectations are only taken w.r.t. the distri-

bution of the new observations S1 and (S1,S2), respectively.

254



Proof of Theorem 3.1. By definition of β̂, we have

1

M

M∑
i=1

[Ŷi −XT
i β̂]2 + λM‖β̂‖1 ≤

1

M

M∑
i=1

[Ŷi −XT
i β
∗]2 + λM‖β∗‖1,

or, expanding and rearranging,

1

M

M∑
i=1

[XT
i (β̂ − β∗)]2 + λM‖β̂‖1

≤ 2

M

M∑
i=1

[Ŷi −XT
i β
∗]XT

i (β̂ − β∗) + λM‖β∗‖1

=
2

M

M∑
i=1

εiX
T
i (β̂ − β∗) +

2

M

M∑
i=1

[Ŷi − Y ∗i ]XT
i (β̂ − β∗) + λM‖β∗‖1. (3.48)

For any t > 0, let λM := 16σσX(
√

log(d)
M

+ t). Define the event

E2 :=

{
max
1≤j≤d

∣∣∣∣∣ 1

M

M∑
i=1

Xi,jεi

∣∣∣∣∣ ≤ λM
4

}
,

where Xi,j represents the j-th component of Xi. Note that

P

(
max
1≤j≤d

∣∣∣∣∣ 1

M

M∑
i=1

Xi,jεi

∣∣∣∣∣ ≥ λM
4

)
= P

(
d⋃
j=1

{∣∣∣∣∣ 1

M

M∑
i=1

Xi,jεi

∣∣∣∣∣ ≥ λM
4

})

≤
d∑
j=1

P

(∣∣∣∣∣ 1

M

M∑
i=1

Xi,jεi

∣∣∣∣∣ ≥ λM
4

)
. (3.49)

Let ej ∈ Rd be the vector whose j-th element is 1 and other elements are 0s, for each

1 ≤ j ≤ d. Since ‖eTj X‖ψ2 ≤ σX and ‖ε‖ ≤ σ, by Lemma D.1 (v) of [CLCL19],

‖eTj Xε‖ψ1 ≤ ‖eTj X‖ψ2 · ‖ε‖ψ2 ≤ σσX.

Note that, here we do not make any assumption on the sample gram matrix Σ̂ :=

M−1
∑M

i=1 XiX
T
i , e.g., sup1≤j≤d Σ̂j,j ≤ 1 as required in [Wai19, NRWY12]. Instead, we

consider eTj Xε as a sub-exponential random variable, and the Bernstein’s inequality is applied
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in the following to control (3.49). Recall the definition of β∗, we have E[Xε] = 0. By Lemma

D.4 of [CLCL19], for each 1 ≤ j ≤ d,

P

(∣∣∣∣∣ 1

M

M∑
i=1

Xi,jεi

∣∣∣∣∣ ≥ 2σσXε+ σσXε
2

)
≤ 2 exp

(
−Mε2

)
, for any ε > 0. (3.50)

Set ε =
√

log(d)
M

+
√

1+8t−1
2

for any t > 0. When M > log(d), we have

2ε+ ε2 ≤ 2

√
log(d)

M
+
√

1 + 8t− 1 +

(√
log(d)

M
+

√
1 + 8t− 1

2

)2

≤ 2

√
log(d)

M
+
√

1 + 8t− 1 +
2 log(d)

M
+ 2

(√
1 + 8t− 1

2

)2

= 2

√
log(d)

M
+
√

1 + 8t− 1 + 2

√
log(d)

M
·
√

log(d)

M
+ 1 + 4t−

√
1 + 8t

≤ 4

√
log(d)

M
+ 4t,

and hence

2σσXε+ σσXε
2 ≤ 4σσX

(√
log(d)

M
+ t

)
=
λM
4
. (3.51)

Additionally, we also have

ε2 =

(√
log(d)

M
+

√
1 + 8t− 1

2

)2

≥ log(d)

M
+

1 + 4t−
√

1 + 8t

2

=
log(d)

M
+

8t2

1 + 4t+
√

1 + 8t
≥ log(d)

M
+

4t2

1 + 2t+
√

2t

Together with (3.50) and (3.51), we have, for each 1 ≤ j ≤ d,

P

(∣∣∣∣∣ 1

M

M∑
i=1

Xi,jεi

∣∣∣∣∣ ≥ λM
4

)
≤ P

(∣∣∣∣∣ 1

M

M∑
i=1

Xi,jεi

∣∣∣∣∣ ≥ 2σσXε+ σσXε
2

)

≤ 2 exp
(
−Mε2

)
≤ 2

d
exp

(
− 4Mt2

1 + 2t+
√

2t

)
.

Together with (3.49),

P (E2) = P

(
max
1≤j≤d

∣∣∣∣∣ 1

M

M∑
i=1

Xi,jεi

∣∣∣∣∣ ≤ λM
4

)
≥ 1− 2 exp

(
− 4Mt2

1 + 2t+
√

2t

)
. (3.52)
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On the event E2, we have∣∣∣∣∣ 2

M

M∑
i=1

εiX
T
i (β̂ − β∗)

∣∣∣∣∣ ≤ 2‖β̂ − β∗‖1 max
1≤j≤d

∣∣∣∣∣ 1

M

M∑
i=1

Xi,jεi

∣∣∣∣∣ ≤ λM‖β̂ − β∗‖1/2. (3.53)

As for the second term of (3.48), by the fact that 2ab ≤ a2 + b2 for any a, b ∈ R, and we set

a =
√

2[Ŷi − Y ∗i ], b = XT
i (β̂ − β∗)/

√
2, we have∣∣∣∣∣ 2

M

M∑
i=1

[Ŷi − Y ∗i ]XT
i (β̂ − β∗)

∣∣∣∣∣ ≤ 2

M

M∑
i=1

[Ŷi − Y ∗i ]2 +
1

2M

M∑
i=1

[
XT
i (β̂ − β∗)

]2

≤ 2δ2
M +

1

2M

M∑
i=1

[
XT
i (β̂ − β∗)

]2

, (3.54)

on the event E1 = {M−1
∑M

i=1[Ŷi−Y ∗i ]2 < δ2
M}. Multiplying the left-hand side and right-hand

side of (3.48) by 2, we have

2

M

M∑
i=1

[XT
i (β̂ − β∗)]2 + 2λM‖β̂‖1

≤ 4

M

M∑
i=1

εiX
T
i (β̂ − β∗) +

4

M

M∑
i=1

[Ŷi − Y ∗i ]XT
i (β̂ − β∗) + 2λM‖β∗‖1.

Together with (3.53) and (3.54), on the event E1 ∩ E2, we have

2

M

M∑
i=1

[XT
i (β̂ − β∗)]2 + 2λM‖β̂‖1

≤ λM‖β̂ − β∗‖1 +
1

M

M∑
i=1

[XT
i (β̂ − β∗)]2 + 4δ2

M + 2λM‖β∗‖1.

Hence,

1

M

M∑
i=1

[XT
i (β̂ − β∗)]2 + 2λM‖β̂‖1 ≤ λM‖β̂ − β∗‖1 + 2λM‖β∗‖1 + 4δ2

M

= λM‖β̂S − β∗S‖1 + λM‖β̂Sc‖1 + 2λM‖β∗S‖1 + 4δ2
M , (3.55)

where S := {j ≤ d : β∗j 6= 0} and note that s = |S|, ‖β̂−β∗‖1 = ‖β̂S−β∗S‖1+‖β̂Sc−β∗Sc‖1 =

‖β̂S − β∗S‖1 + ‖β̂Sc‖1, and ‖β∗‖1 = ‖β∗S‖1. By the triangle inequality,

‖β̂‖1 = ‖β̂S‖1 + ‖β̂Sc‖1 ≥ ‖β∗S‖1 − ‖β̂S − β∗S‖1 + ‖β̂Sc‖1. (3.56)
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By (3.55) and (3.56), on the event E1 ∩ E2, we get that

1

M

M∑
i=1

[XT
i (β̂ − β∗)]2 + λM‖β̂Sc‖1 ≤ 3λM‖β̂S − β∗S‖1 + 4δ2

M . (3.57)

By Lemma 4.5 of [ZCB21] there exist constants κ1, κ2 > 0, such that

1

M

M∑
i=1

(XT
i ∆)2 ≥ κ1‖∆‖2

{
‖∆‖2 − κ2

√
log(d)

M
‖∆‖1

}
for all ‖∆‖2 ≤ 1, (3.58)

with probability at least 1 − c1 exp(−c2M) and some constants c1, c2 > 0. Lemma 4.5

of [ZCB21] discusses logistic loss but applies more broadly and does include the least squares

loss as well.

Let δ = β̂ − β∗ and define

E3 :=

{
1

M

M∑
i=1

(XT
i δ)2 ≥ κ1‖δ‖2

2 − κ1κ2

√
log(d)

M
‖δ‖1‖δ‖2

}
. (3.59)

Let ∆ = δ/‖δ‖2. Then, ‖∆‖2 = 1 and hence by (3.58),

P (E3) ≥ 1− c1 exp(−c2M).

We now condition on the event E1 ∩ E2 ∩ E3 and introduce two cases need to be separately

analyzed.

Case 1. Case of ‖δS‖1 < 4λ−1
M δ2

M . Then, by (3.57),

‖δSc‖1 ≤ 3‖δS‖1 + 4λ−1
M δ2

M ≤ 16λ−1
M δ2

M .

Hence,

‖δ‖1 = ‖δS‖1 + ‖δSc‖1 ≤ 20λ−1
M δ2

M ,

and

1

M

M∑
i=1

(XT
i δ)2 ≤ 3λM‖δS‖1 + 4δ2

M ≤ 16δ2
M .
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In addition, on the event E3,

κ1‖δ‖2
2 − κ1κ2

√
log(d)

M
‖δ‖1‖δ‖2 ≤

1

M

M∑
i=1

(XT
i δ)2 ≤ 16δ2

M .

It follows that,

‖δ‖2 ≤
κ1κ2

√
log(d)
M
‖δ‖1 +

√
κ2

1κ
2
2

log(d)
M
‖δ‖2

1 + 64κ1δ2
M

2κ1

≤ κ2

√
log(d)

M
‖δ‖1 + 4κ

−1/2
1 δM ≤ 20κ2

√
log(d)

M
λ−1
M δ2

M + 4κ
−1/2
1 δM

≤ 5κ2δ
2
M

4σσX

+ 4κ
−1/2
1 δM ,

since λM = 16σσX(
√

log(d)
M

+ t) ≥ 16σσX

√
log(d)
M

.

Case 2. Case of ‖δS‖1 ≥ 4λ−1
M δ2

M . Then, by (3.57),

1

M

M∑
i=1

(XT
i δ)2 + λM‖δSc‖1 ≤ λM(3‖δS‖1 + 4λ−1

M δ2
M) ≤ 4λM‖δS‖1, (3.60)

and hence

‖δSc‖1 ≤ 4‖δS‖1. (3.61)

Notice that, ‖δS‖1 ≤
√
s‖δS‖2. It follows that

‖δ‖1 = ‖δS‖1 + ‖δSc‖1 ≤ 5‖δS‖1 ≤ 5
√
s‖δS‖2 ≤ 5

√
s‖δ‖2.

Hence, under the event E3, when M > 100κ2
2s log(d),

1

M

M∑
i=1

(XT
i δ)2 ≥ κ1‖δ‖2

2 − 5κ1κ2

√
s log(d)

M
‖δ‖2

2

≥ κ1

2
‖δ‖2

2 ≥
κ1

2
‖δS‖2

2 ≥
κ1

2s
‖δS‖2

1. (3.62)

Together with (3.60), we have

κ1

2s
‖δS‖2

1 ≤
1

M

M∑
i=1

(XT
i δ)2 ≤ 4λM‖δS‖1.
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Hence, on the event E1 ∩ E2 ∩ E3,

‖δS‖1 ≤ 8κ−1
1 sλM . (3.63)

By (3.61),

‖δ‖1 ≤ ‖δS‖1 + ‖δSc‖1 ≤ 5‖δS‖1 ≤ 40κ−1
1 sλM .

Besides, by (3.60) and (3.63),

1

M

M∑
i=1

(XT
i δ)2 ≤ 4λM‖δS‖1 ≤ 32κ−1

1 sλ2
M .

Additionally, by (3.62), when M > 100κ2
2s log(d),

‖δ‖2 ≤

√√√√ 2

κ1M

M∑
i=1

(XT
i δ)2 ≤ 8κ−1

1

√
sλM .

To sum up, on the event E1 ∩ E2 ∩ E3 and when M > max{log(d), 100κ2
2s log(d)},

‖β̂ − β∗‖2 ≤ max

(
5κ2δ

2
M

4σσX

+ 4κ
−1/2
1 δM , 8κ

−1
1

√
sλM

)
, (3.64)

‖β̂ − β∗‖1 ≤ max
(
20λ−1

M δ2
M , 40κ−1

1 sλM
)
, (3.65)

1

M

M∑
i=1

(XT
i δ)2 ≤ max

(
16δ2

M , 32κ−1
1 sλ2

M

)
. (3.66)

Here,

P (E2 ∩ E3) ≥ 1− P (Ec2)− P (Ec3) = 1− 2 exp

(
− 4Mt2

1 + 2t+
√

2t

)
− c1 exp(−c2M).

The remaining claims follow by noticing that for some λM � σ
√

log(d)
M

and δM = o(σ),

P (E1) = 1− o(1), and with M � s log(d) as M →∞,

P (E1 ∩ E2 ∩ E3) ≥ 1− 2 exp

(
− 4Mt2

1 + 2t+
√

2t

)
− c1 exp(−c2M)− o(1).
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Proof of Corollary 3.1. Now, we consider the Lasso estimator α̂a defined as (3.18), which is

constructed using the outcome Ỹ , covariates Ũ and training samples I−k. Note that α̂a is a

special case of β̂, (3.33).

Let Ŷ = Y ∗ = Ỹ , X = Ũ, S = (Xi)i∈J , M = (K−1)N
K

, and δM = 0. By Lemma 3.4,

λmin(E[ŨŨT ]) ≥ c0κl and Ũ is sub-Gaussian with ‖xT Ũ‖ψ2 ≤ 2σu‖x‖2, for any x ∈ Rd+1.

Additionally, under Assumption 3.3, ‖ζ‖ψ2 ≤ σσζ . Here, c0, κl, σu, σζ , and σ, defined in

Assumptions 3.1-3.3 and (3.32), are positive constants independent of N and d. Hence, the

estimation rates of α̂a in Corollary 3.1 follows from Theorem 3.1. To show the estimation

rate of ν̂a(·), (3.36), by Lemma D (iv) of [CLCL19],

E[ν̂a(S)− ν∗a(S)]2 = E[UT (α̂a −α∗a)]2 ≤ 2σ2
u‖α̂a −α∗a‖2

2 = Op

(
σ2 sαa log(d)

N

)
,

since ‖UT (α̂a − α∗a)‖ψ2 ≤ σu‖α̂a − α∗a‖2 under Assumption 3.2. Here, the expectation is

only taken w.r.t. the joint distribution of the new observations (S1,S2).

Proof of Lemma 3.1. Let Ŷ = Y ∗ = Ỹ , X = Ũ, S = (Xi)i∈J , M = (K−1)N
K

, and δM = 0.

Following the proof of Theorem 3.1, since δM = 0, we have ‖δS‖1 ≥ 4λ−1δ2
M . That is, we are

under Case 2. Hence, δ is in the cone set as in (3.61). By Lemma 3.4, ‖aT Ū‖ψ2 ≤ 2σu‖a‖2

for any a ∈ Rd+1 and λmin(E[ŪŪT ]) ≥ κl. Here, σu and κl, defined in Assumption 3.2, are

positive constants independent of N and d. By Theorem 15 of [RZ12], with some constants

c3, c4 > 0, when M ≥ c3sαa log(d+ 1),

1

M

M∑
i=1

{
ŪT
i (α̂a −α∗a)

}2 ≤ 1.52λmax(E[ŪŪT ])‖α̂a −α∗a‖2
2 ≤ 4.5σu‖α̂a −α∗a‖2

2,
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with probability at least 1− 2 exp(−c4M). In addition, by Corollary 3.1, we have

‖α̂a −α∗a‖2 ≤ 8κ−1
1 λ̃α

√
sαa ,

with probability at least 1− 2 exp(− 4Mt2

1+2t+
√

2t
)− c1 exp(−c2M). Therefore, with probability

at least 1− 2 exp(− 4Mt2

1+2t+
√

2t
)− c1 exp(−c2M)− 2 exp(−c4M),

1

M

M∑
i=1

[ŪT
i (α̂a −α∗a)]2 ≤ 288σuκ

−2
1 λ̃2

αsαa .

Proof of Corollary 3.2. Let Ŷ = ŪT α̂a, Y
∗ = ŪTα∗a, X = V̄, S = (V̄i)i∈J , M = (K−1)N

K
,

and δ2
M = 288σuκ

−2
1 λ̃2

αsαa . Now, for the event E1 := {M−1
∑M

i=1[Ŷi−Y ∗i ]2 < δ2
M}, by Lemma

3.1, we have

P (E1) ≥ 1− 2 exp

(
− 4Mt2

1 + 2t+
√

2t

)
− c1 exp(−c2M)− 2 exp(−c4M).

By Lemma 3.4, λmin(E[V̄V̄T ]) ≥ κl and V̄ is sub-Gaussian with ‖xT V̄‖ψ2 ≤ 2σu‖x‖2, for

any x ∈ Rd1+1. Additionally, under Assumption 3.3, ‖ε‖ψ2 ≤ σσε. Here, κl, σu, σε, and σ,

defined in Assumptions 3.2, 3.3, and (3.32), are positive constants independent of N and d.

Hence, the estimation rates of β̂a in Corollary 3.2 follow from Theorem 3.1. To show the

esitmation rate of µ̂a(·), by Lemma D (iv) of [CLCL19],

E[µ̂a(S1)− µ∗a(S1)]2 = E[VT (β̂a − β∗a)]2 ≤ 2σ2
u‖β̂a − β∗a‖2

2

= Op

(
σ2 sαa log(d) + sβa log(d1)

N

)
,

since ‖VT (β̂a−β∗a)‖ψ2 ≤ σu‖β̂a−β∗a‖2 under Assumption 3.2. Here, the expectation is only

taken w.r.t. the distribution of the new observation S1.
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Proof of Lemma 3.2. In this proof, the expectations are only taken w.r.t. the distribution of

the new observations S1,S2 (or only S1 if S2 is not involved). By Assumption 3.2, we have

‖UT (α̂a −α∗a)‖ψ2 ≤ σu‖α̂a −α∗a‖2. Together with (3.17),

‖VT (β̂a − β∗a)‖ψ2 = ‖UTQT (β̂a − β∗a)‖ψ2 ≤ σu‖QT (β̂a − β∗a)‖2 = σu‖β̂a − β∗a‖2. (3.67)

Note that, the ψ2 norm here is defined through the expectation taken w.r.t. the distribution

of the new observations S1,S2 (or only S1). It follows that, for any constant r > 2,

{E|ν̂a(S)− ν∗a(S)|r}
1
r = {E|UT (α̂a −α∗a)|r}

1
r ,≤ 21/r(r/2)1/2σu‖α̂a −α∗a‖2,

{E|µ̂a(S1)− µ∗a(S1)|r}
1
r = {E|VT (β̂a − β∗a)|r}

1
r ≤ 21/r(r/2)1/2σu‖β̂a − β∗a‖2,

which follows from Lemma D.1 (iv) of [CLCL19]. From Corollary 3.1 and 3.2, we obtain

that

{E|ν̂a(S)− ν∗a(S)|r}
1
r = Op

(
σ

√
sαa log(d)

N

)
,

{E|µ̂a(S1)− µ∗a(S1)|r}
1
r = Op

(
σ

√
sαa log(d) + sβa log(d1)

N

)
.

Recall the definition A := {‖γ̂ − γ∗‖2 ≤ 1}. By Lemma 3.5, we have P (A) = 1− o(1). By

Minkowski’s inequality, we have

{E|π̂(S1)|−r}
1
r = {E|1 + exp(−VT γ̂)|r}

1
r ≤ 1 + {E| exp(−VT γ̂)|r}

1
r .

Under Assumption 3.4, we know that

P

(
c0

1− c0

≤ exp(−VTγ∗) ≤ 1− c0

c0

)
= 1. (3.68)

which implies that

{E| exp(−VT γ̂)|r}
1
r = {E| exp(−VTγ∗) exp(−VT (γ̂ − γ∗))|r}

1
r

≤ 1− c0

c0

{E| exp(−VT (γ̂ − γ∗))|r}
1
r .
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Hence, to prove {E|π̂(S1)|−r} 1
r is bounded uniformly, i.e., bounded by a constant independent

of N , it suffices to show {E| exp(−rVT (γ̂ − γ∗))|} 1
r is bounded uniformly.

Let µ = E[VT (γ̂ − γ∗)]. By Assumption 3.2 and (3.17), similarly as in (3.67), we

have

‖VT (γ̂ − γ)‖ψ2 ≤ σu‖γ̂ − γ‖2. (3.69)

Now, conditional on the event A, we have

µ ≤
√
πσu, ‖µ‖ψ2 ≤ (log 2)−1/2

√
πσu, (3.70)

which follows from Lemma D.1 (iv) and (ii) of [CLCL19]. Note that, in the above, the ψ2-

norm is defined through the probability measure of a new observation S1. By basic properties

of Orlicz norm ‖X + Y ‖ψ2 ≤ ‖X‖ψ2 + ‖Y ‖ψ2 , we have

‖VT (γ̂ − γ∗)− µ‖ψ2 ≤ ‖VT (γ̂ − γ∗)‖ψ2 + ‖µ‖ψ2 ≤ [1 + (log 2)−1/2
√
π]σu.

Then it follows Lemma D.1 (vii) of [CLCL19] that

E[exp{−r(VT (γ̂ − γ∗)− µ)}] ≤ exp{2r2[1 + (log 2)−1/2
√
π]2σ2

u}.

Using (3.70), we get that

{E| exp(−rVT (γ̂ − γ∗))|}
1
r ≤ exp{−

√
πσu + 2r[1 + (log 2)−1/2

√
π]2σ2

u}, (3.71)

which is bounded and hence {E|π̂(S1)|−r} 1
r is bounded uniformly. Repeating the same

procedure above, we can obtain that {E|π̂(S1)|−2r} 1
2r is also bounded uniformly, which will

be used later on in the proof. By (3.68), we have{
E

∣∣∣∣ 1

π̂(S1)
− 1

π∗(S1)

∣∣∣∣r} 1
r

= {E| exp(−VTγ∗)[exp(−VT (γ̂ − γ∗))− 1]|r}
1
r

≤ 1− c0

c0

{E| exp(−VT (γ̂ − γ∗))− 1|r}
1
r . (3.72)
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For any u ∈ R, by Taylor’s Theorem, exp(u) = 1 + exp(tu)u with some t ∈ (0, 1). Hence,

with some t ∈ (0, 1)

| exp(−VT (γ̂ − γ∗))− 1| = exp(−tVT (γ̂ − γ∗))|VT (γ̂ − γ∗)|

(i)

≤ [1 + exp(−VT (γ̂ − γ∗))]|VT (γ̂ − γ∗)|, (3.73)

where (i) holds since for any t ∈ (0, 1) and u ∈ R, exp(tu) ≤ exp(u) when u > 0 and

exp(tu) ≤ exp(0) = 1 when u ≤ 0, and it follows that exp(tu) ≤ 1 + exp(u).

Combining (3.72) and (3.73), we have

{
E

∣∣∣∣ 1

π̂(S1)
− 1

π∗(S1)

∣∣∣∣r} 1
r

≤ 1− c0

c0

{E| exp(−VT (γ̂ − γ∗))− 1|r}
1
r

≤ 1− c0

c0

{
E
∣∣[1 + exp(−VT (γ̂ − γ∗))]VT (γ̂ − γ∗)

∣∣r} 1
r

(i)

≤ 1− c0

c0

{
E
∣∣VT (γ̂ − γ∗)

∣∣r} 1
r +

1− c0

c0

{
E
∣∣exp(−VT (γ̂ − γ∗))VT (γ̂ − γ∗)

∣∣r} 1
r

(ii)

≤ 1− c0

c0

{
E
∣∣VT (γ̂ − γ∗)

∣∣r} 1
r

+
1− c0

c0

{
E
∣∣exp(−VT (γ̂ − γ∗))

∣∣2r} 1
2r
{
E
∣∣VT (γ̂ − γ∗)

∣∣2r} 1
2r
,

where (i) holds by the Minkowski inequality; (ii) holds by the Hölder’s inequality.

Recall the equation (3.71), we know that {E| exp(−VT (γ̂ − γ∗))|2r} 1
2r is bounded

uniformly. In addition, recall the equation (3.69), by Lemma D.1 (iv) of [CLCL19], we have

{E|VT (γ̂ − γ∗)|r}
1
r ≤ 21/r(r/2)1/2σu‖γ̂ − γ∗‖2 = Op

(√
sγ log(d1)

N

)
.

Therefore, we obtain that

{
E

∣∣∣∣ 1

π̂(S1)
− 1

π∗(S1)

∣∣∣∣r} 1
r

= Op

(√
sγ log(d1)

N

)
. (3.74)
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Repeating the same procedure, we obtain that {E|ρ̂a(S)|−r} 1
r is bounded uniformly and{

E

∣∣∣∣ 1

ρ̂a(S)
− 1

ρ∗a(S)

∣∣∣∣r} 1
r

= Op

(√
sδa log(d)

N

)
. (3.75)

Therefore,{
E

∣∣∣∣ 1

π̂(S1)ρ̂a(S)
− 1

π∗(S1)ρ∗a(S)

∣∣∣∣r} 1
r

(i)

≤
{
E

∣∣∣∣ 1

π̂(S1)

(
1

ρ̂a(S)
− 1

ρ∗a(S)

)∣∣∣∣r} 1
r

+

{
E

∣∣∣∣ 1

ρ∗a(S)

(
1

π̂(S1)
− 1

π∗(S1)

)∣∣∣∣r} 1
r

(ii)

≤ {E|π̂(S1)|−2r}
1
2r

{
E

∣∣∣∣ 1

ρ̂a(S)
− 1

ρ∗a(S)

∣∣∣∣2r
} 1

2r

+
1

c0

{
E

∣∣∣∣ 1

π̂(S1)
− 1

π∗(S1)

∣∣∣∣r} 1
r

(iii)
= Op

(√
sγ log(d1) + sδa log(d)

N

)
.

where (i) holds by the Minkowski inequality; (ii) holds by the Hölder’s inequality; (iii) holds

by (3.74), (3.75), and the fact that {E|π̂(S1)|−2r} 1
2r is bounded uniformly.

3.8.2 Asymptotic theory for Dynamic Treatment Lasso (DTL)

Below we introduce some shorthand notations that increase the readability of the

proofs. We only focus on the treatment paths a = (1, 1) and a′ = (0, 0). Let η̂ := (η̂a, η̂a′),

where η̂c = (µ̂c, ν̂c, π̂, ρ̂c) for each c ∈ {a, a′}. Here, η̂ = η̂({Wi}i∈I−k}) are the cross-fitted

nuisance estimators. Define θ̌(k) := θ̌
(k)
a − θ̌

(k)
a′ and ψ(Wi; η̂) := ψa(Wi; η̂a) − ψa′(Wi; η̂a′),

where ψc(W ; ηc) is defined as (3.4). Then,

θ̌(k) =
1

n

∑
i∈Ik

ψ(Wi; η̂), θ̂ =
1

K

K∑
k=1

θ̌(k),

where n := N/K = |Ik| for each k ≤ K. Let η∗ := (η∗a, η
∗
a′) and η := (ηa, ηa′), where

η∗c := (µ∗c(·), ν∗c (·), π∗(·), ρ∗c(·)) and ηc := (µc(·), νc(·), π(·), ρc(·)) for each c ∈ {a, a′}. When

possible, we abbreviate the subscripts (1, 1) and (0, 0) by 1 and 0. For instance, η1(·) = η1,1(·).
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For each k = 1, ..., K, we divide θ̌(k) − θ into four terms T1, T2, T3, T4,

θ̌(k) − θ =
1

n

∑
i∈Ik

ψ(Wi; η̂)− θ := T1 + T2 + T3 + T4, (3.76)

where

T1 := E[ψ(W ; η∗)]− θ, (3.77)

T2 := T
(k)
2 := E[ψ(W ; η̂)− ψ(W ; η∗)], (3.78)

T3 := T
(k)
3 :=

1

n

∑
i∈Ik

ψ(Wi; η
∗)− E[ψ(W ; η∗)], (3.79)

T4 := T
(k)
4 :=

1

n

∑
i∈Ik

[ψ(Wi; η̂)− ψ(Wi; η
∗)]− E[ψ(W ; η̂)− ψ(W ; η∗)]. (3.80)

We suppress the dependence on k when possible.

In this section, we consider the following nuisance estimators: ν̂a(S), µ̂a(S1), π̂(S1)

and ρ̂a(S), defined as (3.20), (3.21), (3.24) and (3.30), respectively. Consider the following

target nuisance functions: ν∗a(S), µ∗a(S1), π∗(S1), ρ∗a(S), defined as (3.8), (3.11), (3.23) and

(3.28), respectively.

Lemma 3.6. a) Suppose that one of µ∗a(S1) and π∗(S1) is correctly specified, and one of

ν∗a(S) and ρ∗a(S) is correctly specified. Let the Assumptions in Lemma 3.2 hold. Then,

T2 = Op

(
σ
s1 log(d)

N
+ σ

√
s2 log(d)

N

)
, (3.81)

where T2 is defined as (3.78) and

s1 := max{√sαasγ ,
√
sαasδa ,

√
sβasγ},

s2 := max{sαa(1{π∗(·)6=π(·)} + 1{ρ∗a(·)6=ρa(·)}), sβa1{π∗(·)6=π(·)},

sγ1{µ∗a(·)6=µa(·)}, sδa1{ν∗a(·)6=νa(·)}}.
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b) Further, assume that all the nuisance models are correctly specified. Then, we have

T2 = Op

(
σ
s1 log(d)

N

)
. (3.82)

Lemma 3.7. Suppose that one of µ∗a(S1) and π∗(S1) is correctly specified, and one of ν∗a(S)

and ρ∗a(S) is correctly specified. Let the assumptions in Lemma 3.2 hold. Then,

[E(ψ(W ; η̂)− ψ(W ; η∗))2]
1
2 = Op

(
σ

√
max{sαa , sβa , sγ , sδa} log(d)

N

)
, (3.83)

T4 = Op

(
σ

√
max{sαa , sβa , sγ , sδa} log(d)

N

)
, (3.84)

where T4 is defined as (3.80).

Proof of Theorem 3.2. In this theorem, we consider the setting where all the nuisance models

are correctly specified, i.e., η∗ = η. Note that, Assumption 3.4 is implied by Assumption 3.1

when all the nuisance models are correct.

Consistency Let ξ := µ1(S1) − µ0(S1) − θ. Recall the representation (3.76), by Lemmas

3.8, 3.6, 3.10, and 3.7 in that order we have

T1 = 0,

T
(k)
2 = Op

(
σ
s1 log(d)

N

)
,

T
(k)
3 = Op

(
1√
N

[√
E[ζ2] +

√
E[ε2] +

√
E[ξ2]

])
,

T
(k)
4 = Op

(
σ

√
max{sαa , sβa , sγ , sδa} log(d)

N

)
.

for each k ≤ K. Therefore, by Lemma 3.13 and under Assumption 3.5, we obtain that

θ̂ − θ = K−1

K∑
k=1

(T1 + T
(k)
2 + T

(k)
3 + T

(k)
4 ) = Op

(
1√
N
σ

)
(3.85)
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Asymptotic Normality By Assumption 3.5, we have s1 log(d) = o(
√
N), s2 log(d) =

o(N) and max{sαa , sβa , sγ , sδa} log(d) = o(N). Together with Lemmas 3.6, 3.7 and 3.8, we

have

√
nσ−1(T1 + T

(k)
2 + T

(k)
4 ) = op(1)

for each k ≤ K. Hence, to demonstrate

√
Nσ−1(θ̂ − θ) =

√
Nσ−1K−1

K∑
k=1

(T1 + T
(k)
2 + T

(k)
3 + T

(k)
4 ) ; N(0, 1),

we need to show

√
Nσ−1K−1

K∑
k=1

T
(k)
3 =

√
N

(
N−1

N∑
i=1

ψ(Wi; η)− θ

)
; N(0, 1),

where T
(k)
3 is defined as (3.79). Here, ψN,i := ψ(Wi, η) is possibly dependent with N since

both Wi and η potentially depend on (d1, d2), and (d1, d2) = (d1,N , d2,N) are allowed to grow

with N . Hence, {ψN,i}N,i forms a triangular array. By Lyapunov’s central limit theorem, it

suffices to show that, for some t > 0, the following Lyapunov’s condition holds:

lim
n→∞

E|ψ(W ; η)− θ|2+t

n
t
2σ2+t

= 0. (3.86)

Step 1 In order to check Lyapunov’s condition, we show that for some constant C ′,

E|ψ(W ; η)− θ|2+t

σ2+t
< C ′. (3.87)

By Lemma 3.13, we have, for some constants t > 0 and Ct > 0,

E|ψ(W ; η)− θ|2+t

σ2+t
≤ 2Ct

c4+2t
0

(
E[|ζ|2+t

σ2+t
+
E[|ε|2+t]

σ2+t
+

E|ξ|2+t

[E|ξ|2]1+ t
2

)
.

Let e1 = (1,01×d1)
T , then we write ξ = µ1(S1) − µ0(S1) − θ = VT (β∗1 − β∗0 − e1θ). By

Assumption 3.2 and (3.17), similarly as in (3.67), we have

‖ξ‖ψ2 = ‖(β∗1 − β∗0 − e1θ)
TV‖ψ2 ≤ σu‖β∗1 − β∗0 − e1θ‖2.
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It follows from Lemma D.1 (iv) of [CLCL19] that

E[|ξ|2+t] ≤ 2σ2+t
u ‖β∗1 − β∗0 − e1θ‖2+t

2 Γ(2 + t/2). (3.88)

Similarly, by Assumption 3.3, we have

E[|ζ|2+t] ≤ 2σ2+tσ2+t
ζ Γ(2 + t/2), (3.89)

E[|ε|2+t] ≤ 2σ2+tσ2+t
ε Γ(2 + t/2). (3.90)

By Assumption 3.2 and (3.17), we also have

E[|ξ|2] = E[|VT (β∗1 − β∗0 − e1θ)|2] ≥ ‖β∗1 − β∗0 − e1θ‖2
2 · λmin(E[VVT ]) (3.91)

≥ κl‖β∗1 − β∗0 − e1θ‖2
2.

Using (3.88) and (3.91), we get that

E|ξ|2+t

[E|ξ|2]1+ t
2

≤ 2σ2+t
u ‖β∗1 − β∗0 − e1θ‖2+t

2 Γ(2 + t/2)

κ
1+t/2
l ‖β∗1 − β∗0 − e1θ‖2+t

2

=
2σ2+t

u Γ(2 + t/2)

κ
1+t/2
l

. (3.92)

Using (3.89), (3.90) and (3.92), then we obtain that

E|ψ(W ; η)− θ|2+t

σ2+t
≤ 2Ct

c4+2t
0

(
2σ2+t

ζ Γ(2 + t/2) + 2σ2+t
ε Γ(2 + t/2) +

2σ2+t
u Γ(2 + t/2)

κ
1+t/2
l

)

Taking C ′ = 2Ct
c4+2t
0

(
2σ2+t

ζ Γ(2+t/2)+2σ2+t
ε Γ(2+t/2)+ 2σ2+t

u Γ(2+t/2)

κ
1+t/2
l

)
, we get (3.87) and hence

the Lyapunov’s condition is satisfied.

Step 2 In this step, the expecations are taken w.r.t. the joint distribution of (Wi)i∈Ik .

By (3.85), we have θ̂ − θ = Op(σ/
√
N). Then, we show, for each k ≤ K,[

1

n

∑
i∈Ik

|ψ(Wi; η̂)− ψ(Wi; η)|2
] 1

2

= op(σ). (3.93)
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It follows from Jensen’s inequality that

E

[
1

n

∑
i∈Ik

|ψ(Wi; η̂)− ψ(Wi; η)|2
] 1

2

≤
{
E

[
1

n

∑
i∈Ik

|ψ(Wi; η̂)− ψ(Wi; η)|2
]} 1

2

= [E|ψ(W ; η̂)− ψ(W ; η)|2]
1
2 = Op

(
σ

√
max{sαa , sβa , sγ , sδa} log(d)

N

)
,

where the last assertion follows from (3.83) in Lemma 3.7 with correctly specified nuisance

models η = η∗. By Markov’s inequality, we have[
1

n

∑
i∈Ik

|ψ(Wi; η̂)− ψ(Wi; η)|2
] 1

2

= Op

(
σ

√
max{sαa , sβa , sγ , sδa} log(d)

N

)
= op(σ).

Therefore, using (3.85), (3.87) and (3.93), we get σ̂2 − σ2 = op(σ
2) by Lemma 3.14.

Proof of Theorem 3.3. Now, we consider the case that model misspecification is allowed

potentially. Suppose one of µ∗a(S1) and π∗(S1) is correctly specified, and one of ν∗a(S) and

ρ∗a(S) is correctly specified. Recall the representation (3.76). By Lemmas 3.8, 3.6, 3.10, and

3.7, we have

T1 = 0,

T
(k)
2 = Op

(
σ
s1 log(d)

N
+ σ

√
s2 log(d)

N

)
,

T
(k)
3 = Op

(
1√
N

[√
E[ζ2] +

√
E[ε2] +

√
E[ξ2]

])
,

T
(k)
4 = Op

(
σ

√
max{sαa , sβa , sγ , sδa} log(d)

N

)
.

for each k ≤ K. Therefore, by Lemma 3.12, we obtain that

θ̂ − θ = K−1

K∑
k=1

(T1 + T
(k)
2 + T

(k)
3 + T

(k)
4 )

= Op

(
σ
s1 log(d)

N
+ σ

√
s2 log(d)

N
+

1√
N
σ

)
,
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where

s1 := max{√sγsαa ,
√
sαasδa ,

√
sβasγ},

s2 := max{sαa(1{π∗(S1) 6=π(S1)} + 1{ρ∗a(S1,S2)6=ρa(S1,S2)}), sβa1{π∗(S1)6=π(S1)},

sγ1{µ∗a(S1)6=µa(S1)}, sδa1{ν∗a(·)6=νa(·)}}.

3.8.3 Asymptotic theory for general dynamic treatment effect

In this section, we consider general nuisance estimators and general working models.

Lemma 3.8. Suppose that at least one of µ∗a(S1) and π∗(S1) is correctly specified, and at

least one of ν∗a(S) and ρ∗a(S) is correctly specified. Let Assumption 3.1 hold. Then,

T1 = 0, (3.94)

where T1 is defined as (3.77).

Lemma 3.9. a) Suppose that one of µ∗a(S1) and π∗(S1) is correctly specified, and one of

ν∗a(S) and ρ∗a(S) is correctly specified. Let Assumptions 3.1, 3.4, 3.6 and 3.7 hold. Then,

T2 = Op

(
bNcN + bNdN + bN1{π∗(·)6=π(·)} + aN1{ρ∗a(·)6=ρa(·)} (3.95)

+ cN
√
E[ζ2 + ε2]1{µ∗a(·)6=µa(·)} + dN

√
E[ζ2]1{ν∗a(·)6=νa(·)}

)
,

where T2 is defined as (3.78).

b) Suppose all the nuisance models are correctly specified and Assumptions 3.1, 3.6

and 3.7 hold, then we have

T2 = Op (bNcN + aNdN) , (3.96)
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Lemma 3.10. a) Suppose that one of µ∗a(S1) and π∗(S1) is correctly specified, and one of

ν∗a(S) and ρ∗a(S) is correctly specified. Let Assumptions 3.1, 3.4 hold. Then,

T3 = Op

(
1√
N

[√
E[ζ2] +

√
E[ε2] +

√
E[ξ2]

])
, (3.97)

where ξ := µ1(S1)− µ0(S1)− θ and T3 is defined as (3.79).

b) Suppose all the models are correctly specified and Assumption 3.1 holds, then we

also have (3.97).

Lemma 3.11. a) Suppose that one of µ∗a(S1) and π∗(S1) is correctly specified, and one of

ν∗a(S) and ρ∗a(S) is correctly specified. Let Assumptions 3.1, 3.4, 3.6 and 3.7 hold. Then,

T4 = Op

(
1√
N

[
aN + bN +

√
E[ζ2] +

√
E[ε2]

])
, (3.98)

where T4 is defined as (3.80).

b) Suppose all the models are correctly specified and and Assumptions 3.1, 3.6, 3.7

and 3.8 hold, then we have

T4 = Op

(
1√
N

(aN + bN + cN(
√
E[ζ2] +

√
E[ε2]) + dN

√
E[ζ2])

)
. (3.99)

Lemma 3.12. Suppose that one of µ∗a(S1) and π∗(S1) is correctly specified, and one of ν∗a(S)

and ρ∗a(S) is correctly specified. Let Assumption 3.1 holds. Then,

ψ(W ; η∗)− θ =
8∑
i=1

Oi, and σ2 := E(ψ(W ; η∗)− θ)2 =
8∑
i=1

E[O2
i ],

where {Oi}8
i=1 are defined as (3.171)-(3.178).

a) Assume that E[1{A1=a1}(µa(S1) − µ∗a(S1))2] ≤ Cµσ
2, with some constant Cµ > 0.

Then,

E[ζ2] + E[ε2] + E[ξ2] ≤
(

4

c2
0

+ 6Cµ

)
σ2,
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where σ2 := E(ψ(W ; η∗)− θ)2.

b) Let Assumption 3.3 holds. Then,

E[ζ2] + E[ε2] + E[ξ2] ≤
(

1

c2
0

+ 2σ2
ε

)
σ2.

Lemma 3.13. Suppose all the models are correctly specified that η∗ = η and let Assumption

3.1 holds, then we have for some constants t > 0 and Ct > 0 possibly dependent with t, such

that

σ2 := E(ψ(W ; η∗)− θ)2 = E(ψ(W ; η)− θ)2 ≥ E[ζ2] + E[ε2] + E[ξ2], (3.100)

E|ψ(W ; η)− θ|2+t ≤ 2Ct

c4+2t
0

E

[
|ζ|2+t + |ε|2+t + |ξ|2+t

]
. (3.101)

Lemma 3.14. Suppose all the nuisance models are correctly specified that η∗ = η and let

Assumption 3.1 holds. Define σ̂2
k := 1

n

∑
i∈Ik(ψ(Wi; η̂) − θ̂)2 and σ̂2 = 1

K

∑K
k=1 σ̂

2
k. Let

σ2 := E(ψ(W ; η∗)− θ)2 = E(ψ(W ; η)− θ)2. If

θ̂ − θ = Op(σ/
√
N), [

1

n

∑
i∈Ik

|ψ(Wi; η̂)− ψ(Wi; η)|2]
1
2 = op(σ)

for each k ≤ K, and [E|(ψ(W ; η)− θ)|2+t]
2

2+t < Cσ2 for some constant C, we have

σ̂2 − σ2 = op(σ
2). (3.102)

Proof of Theorem 3.4. In this theorem, we consider correctly specified nuisance models, in

that η∗ = η.
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Consistency Recall the representation (3.76), by Lemmas 3.8, 3.9, 3.10, and 3.11, we have

T1 = 0, (3.103)

T
(k)
2 = Op (bNcN + aNdN) , (3.104)

T
(k)
3 = Op

(
1√
N

[√
E[ζ2] +

√
E[ε2] +

√
E[ξ2]

])
,

T
(k)
4 = Op

(
1√
N

(aN + bN + cN(
√
E[ζ2] +

√
E[ε2]) + dN

√
E[ζ2])

)
. (3.105)

By assumption, bNcN + aNdN = o(σN−1/2). Together with Lemma 3.13, we obtain that

θ̂ − θ = K−1

K∑
k=1

(T1 + T
(k)
2 + T

(k)
3 + T

(k)
4 )

= Op

(
1√
N

[√
E[ζ2] +

√
E[ε2] +

√
E[ξ2]

]
+ bNcN + aNdN

)
(3.106)

+Op

(
1√
N

(aN + bN + cN(
√
E[ζ2] +

√
E[ε2]) + dN

√
E[ζ2])

)
= Op

(
1√
N
σ

)
. (3.107)

Asymptotic Normality Now, we demonstrate that
√
Nσ−1(θ̂−θ) ; N(0, 1). By (3.103),

(3.104), and (3.105), under Assumption 3.6 and bNcN + aNdN = o(σN−1/2), we have

√
nσ−1(T1 + T

(k)
2 + T

(k)
3 + T

(k)
4 ) = op(1)

for each k ≤ K. Hence, we only need to show

√
Nσ−1K−1

K∑
k=1

T
(k)
3 =

√
N

(
N−1

N∑
i=1

ψ(Wi; η)− θ

)
; N(0, 1),

where T
(k)
3 is defined as (3.79). By Lyapunov’s central limit theorem, it suffices to show the

following Lyapunov’s condition holds: with some t > 0,

lim
n→∞

E|ψ(W ; η)− θ|2+t

n
t
2σ2+t

= 0. (3.108)
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Step 1 To check Lyapunov’s condition, it suffices to show that for some constant C ′ > 0,

E|ψ(W ; η)− θ|2+t

σ2+t
< C ′. (3.109)

By Lemma 3.13, we have, for some constants t > 0 and Ct > 0,

E|ψ(W ; η)− θ|2+t

σ2+t
≤ 2Ct

c4+2t
0

E[|ζ|2+t + |ε|2+t + |ξ|2+t]

(E[ζ2] + E[ε2] + E[ξ2])1+ t
2

≤ 2Ct

c4+2t
0

(
E[|ζ|2+t]

(E[ζ2])1+ t
2

+
E[|ε|2+t]

(E[ε2])1+ t
2

+
E[|ξ|2+t]

(E[ξ2])1+ t
2

)
≤ 2CCt

c4+2t
0

, (3.110)

where the last inequality follows from Assumption 3.8. Taking C ′ = 2CCt
c4+2t
0

, we get (3.108) so

that Lyapunov’s condition is satisfied.

Step 2 By (3.107), we have θ̂ − θ = Op(σ/
√
N). Here, we show that, for each k ≤ K,[

1

n

∑
i∈Ik

|ψ(Wi; η̂)− ψ(Wi; η)|2
] 1

2

= op(σ). (3.111)

Note that

E

[
1

n

∑
i∈Ik

|ψ(Wi; η̂)− ψ(Wi; η)|2
] 1

2 (i)

≤
{
E

[
1

n

∑
i∈Ik

|ψ(Wi; η̂)− ψ(Wi; η)|2
]} 1

2

(3.112)

(ii)
= [E|ψ(W ; η̂)− ψ(W ; η)|2]

1
2 (3.113)

(iii)
= Op

(
aN + bN + cN(

√
E[ζ2] +

√
E[ε2]) + dN

√
E[ζ2]

)
,

where in (3.112), the expectations are taken w.r.t. the joint distribution of (Wi)i∈Ik ; in

(3.113), the expectation is taken w.r.t. the joint distribution of a new W . In the above, (i)

holds by Jensen’s inequality; (ii) holds since η̂ is independent of {Wi}i∈Ik based on cross-

fitting, {Wi}i∈Ik are i.i.d. distributed and W is an independent copy of them; (iii) holds by
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Lemma 3.11. By Markov’s inequality, we have[
1

n

∑
i∈Ik

|ψ(Wi; η̂)− ψ(Wi; η)|2
] 1

2

= Op

(
aN + bN + cN(

√
E[ζ2] +

√
E[ε2]) + dN

√
E[ζ2]

)
= op(σ).

Together with (3.107), (3.108), (3.111), and Lemma 3.14, we conclude that

σ̂2 − σ2 = op(σ
2).

Proof of Theorem 3.5. Recall the representation (3.76). By Lemmas 3.8, 3.9, 3.10, and 3.11,

we have

T1 = 0,

T
(k)
2 = Op

(
bNcN + bNdN + bN1{π∗(·)6=π(·)} + aN1{ρ∗a(·) 6=ρa(·)}

+ cN
√
E[ζ2 + ε2]1{µ∗a(·) 6=µa(·)} + dN

√
E[ζ2]1{ν∗a(·)6=νa(·)}

)
,

T
(k)
3 = Op

(
1√
N

[√
E[ζ2] +

√
E[ε2] +

√
E[ξ2]

])
,

T
(k)
4 = Op

(
1√
N

[
aN + bN +

√
E[ζ2] +

√
E[ε2]

])
.

Together with Lemma 3.12 and further assume that E(µ∗a(S1)−µa(S1))2 ≤ Cµσ
2 with some

constant Cµ > 0, we obtain

θ̂ − θ = K−1

K∑
k=1

(T1 + T
(k)
2 + T

(k)
3 + T

(k)
4 )

= Op

(
bNcN + aNdN + bN1{π∗(·)6=π(·)} + aN1{ρ∗a(·)6=ρa(·)}

+ cNσ1{µ∗a(·)6=µa(·)} + dNσ1{ν∗a(·)6=νa(·)} +
1√
N
σ

)
.
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3.8.4 Proofs of Auxiliary Lemmas

Proof of Lemma 3.3. By the definition of ‖X‖ψ2 = inf{c > 0 : E[exp(X2/c2)] ≤ 2} and

E

[
exp

(
X2

4σ2

)]
= E

[ ∞∑
k=0

X2k

k!(4σ2)k

]
≤

∞∑
k=0

2kσ2kΓ(k + 1)

k!(4σ2)k
=
∞∑
k=0

1

2k
= 2,

therefore, leading to ‖X‖ψ2 ≤ 2σ.

Proof of Lemma 3.4. a) we observe that

λmin(E[ŨŨT ]) = min
x∈Rd+1:‖x‖2=1

xTE[UUT
1{A1=a1,A2=a2}]x

= min
x∈Rd+1:‖x‖2=1

E[E[(UTx)2
1{A1=a1,A2=a2}|U, A1 = a1]P [A1 = a1|U]]

= min
x∈Rd+1:‖x‖2=1

E[(UTx)2 · P [A2 = a2|U, A1 = a1]E[1{A1=a1}|U]]

= min
x∈Rd+1:‖x‖2=1

E[(UTx)2
1{A1=a1} · P [A2 = a2|U, A1 = a1]]. (3.114)

Under the overlap conditions of Assumption 3.1,

P (c0 ≤ P [A2 = a2|U, A1 = a1] ≤ 1− c0) = 1.

Together with (3.114), under Assumption 3.2, we obtain

λmin(E[ŨŨT ]) ≥ c0 min
x∈Rd+1:‖x‖2=1

E[(UTx)2
1{A1=a1}] ≥ c0κl > 0.

Additionally, we also have

λmax(E[ŨŨT ]) = max
x∈Rd+1:‖x‖2=1

xTE[UUT
1{A1=a1,A2=a2}]x

≤ max
x∈Rd+1:‖x‖2=1

xTE[UUT ]x = λmax(E[UUT ])
(i)

≤ 2σ2
u,

where (i) holds since, by Lemma D.1 (iv) of [CLCL19],

λmax(E[UUT ]) = max
‖x‖2=1

E[(xTU)2] ≤ max
‖x‖2=1

2σ2
u‖x‖2

2 = 2σ2
u. (3.115)
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Besides, for any x ∈ Rd+1 and k ∈ N,

E[|xT Ũ|2k] = E[|xTU|2k1{A1=a1,A2=a2}] ≤ E[|xTU|2k]
(i)

≤ 2(σu‖x‖2)2kΓ(k + 1),

where (i) holds by Lemma D.1 (iv) of [CLCL19]. By Lemma 3.3, we have

‖xT Ũ‖ψ2 ≤ 2σu‖x‖2, for any x ∈ Rd+1.

b) Under Assumption 3.2, we also have

λmin(E[ŪŪT ]) = min
x∈Rd+1:‖x‖2=1

E[(UTx)2
1{A1=a1}] ≥ κl > 0, (3.116)

and by (3.115),

λmax(E[ŪŪT ]) = max
x∈Rd+1:‖x‖2=1

xTE[UUT
1{A1=a1}]x

≤ max
x∈Rd+1:‖x‖2=1

xTE[UUT ]x ≤ 2σ2
u <∞. (3.117)

In addition, for any x ∈ Rd+1 and k ∈ N,

E[|xT Ū|2k] = E[|xTU|2k1{A1=a1}] ≤ E[|xTU|2k]
(i)

≤ 2(σu‖x‖2)2kΓ(k + 1), (3.118)

where (i) holds by Lemma D.1 (iv) of [CLCL19]. By Lemma 3.3, we have

‖xT Ū‖ψ2 ≤ 2σu‖x‖2, for any x ∈ Rd+1.

c) Recall the representation (3.17), we also have

λmin(E[V̄V̄T ]) = min
x∈Rd1+1:‖x‖2=1

xTE[VVT
1{A1=a1}]x

= min
x∈Rd1+1:‖x‖2=1

xTE[QUUTQT
1{A1=a1}]x

≥ min
x∈Rd+1:‖x‖2=1

xTE[UUT
1{A1=a1}]x = λmin(E[ŪŪT ])

(i)

≥ κl, (3.119)
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where (i) follows from (3.116). Similarly,

λmax(E[V̄V̄T ]) = max
x∈Rd1+1:‖x‖2=1

xTE[VVT
1{A1=a1}]x

= max
x∈Rd1+1:‖x‖2=1

xTE[QUUTQT
1{A1=a1}]x

≤ max
x∈Rd+1:‖x‖2=1

xTE[UUT
1{A1=a1}]x = λmax(E[ŪŪT ])

(i)

≤ 2σ2
u,

where (i) follows from (3.117). In addition, for any k ∈ N,

sup
x∈Rd1+1:‖x‖2=1

E[|xT V̄|2k] = sup
x∈Rd1+1:‖x‖2=1

E[|xTQŪ|2k]

(i)

≤ sup
x∈Rd+1:‖x‖2=1

E[|xT Ū|2k]
(ii)

≤ 2σ2k
u Γ(k + 1),

where (i) holds since, for every ‖x‖2 = 1 and x ∈ Rd1+1, QTx = (xT , 0, . . . , 0)T ∈ Rd+1 and

hence ‖QTx‖2 = ‖x‖2 = 1 ; (ii) follows from (3.118). Hence, for any x ∈ Rd+1 and k ∈ N,

E[|xT V̄|2k] ≤ 2(σu‖x‖2)2kΓ(k + 1).

By Lemma 3.3, we have V̄ is sub-Gaussian with

‖xT V̄‖ψ2 ≤ 2σu‖x‖2, for any x ∈ Rd1+1.

d) Lastly, note that

λmin(E[VVT ]) = min
x∈Rd1+1:‖x‖2=1

xTE[VVT ]x

≥ min
x∈Rd1+1:‖x‖2=1

xTE[VVT
1{A1=a1}]x = λmin(E[V̄V̄T ])

(i)

≥ κl,

where (i) holds by (3.119). Besides,

λmax(E[VVT ]) = max
x∈Rd1+1:‖x‖2=1

xTE[VVT ]x = max
x∈Rd1+1:‖x‖2=1

xTE[QUUTQT ]x

≤ max
x∈Rd+1:‖x‖2=1

xTE[UUT ]x = λmax(E[UUT ])
(i)

≤ 2σ2
u,
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where (i) follows from (3.117). In addition, for any k ∈ N,

sup
x∈Rd1+1:‖x‖2=1

E[|xTV|2k] = sup
x∈Rd1+1:‖x‖2=1

E[|xTQU|2k]

(i)

≤ sup
x∈Rd+1:‖x‖2=1

E[|xTU|2k]
(ii)

≤ 2σ2k
u Γ(k + 1),

where (i) holds since, for every ‖x‖2 = 1 and x ∈ Rd1+1, ‖QTx‖2 = ‖x‖2 = 1 ; (ii) follows

from (3.118). Hence, for any x ∈ Rd+1 and k ∈ N,

E[|xTV|2k] ≤ 2(σu‖x‖2)2kΓ(k + 1).

By Lemma 3.3, we have V is also sub-Gaussian with

‖xTV‖ψ2 ≤ 2σu‖x‖2, for any x ∈ Rd1+1.

Proof of Lemma 3.5. In this Lemma, we provide estimation rates for γ̂, π̂(·), δ̂a, and ρ̂a(·).

We allow model misspecifications that π∗(·) 6= π(·) and ρ∗a(·) 6= ρa(·). Note that, classical re-

sults for generalized linear models only consider correrctly specified cases; see, e.g., Corollary

9.26 of [Wai19] and Section 4.4 of [NRWY12].

a) We first show (3.44) and (3.45). In part a), the expectations are only taken w.r.t.

the distribution of the new observation S1.

Consider the link function Ψ(u) = log(1 + exp(u)), we have

Ψ′′(VTγ∗) =
exp(VTγ∗)

(1 + exp(VTγ∗))2
= π(S1)(1− π(S1)).

Under Assumption 3.4, we have P (c2
0 ≤ Ψ′′(VTγ∗) ≤ (1− c0)2) = 1. By Lemma 3.4,

λmin(E[VVT ]) ≥ κl > 0, λmax(E[VVT ]) ≤ 2σ2
u <∞, (3.120)
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and V is sub-Gaussian with ‖xTV‖ψ2 ≤ 2σu‖x‖2 for any x ∈ Rd1+1.

Next, we control the gradient at the potentially misspecified location: recall that the

underlying model may be misspecified and π∗(·) not necessarily equal to π(·); The true γ

may not exists such that π̂(·) has a logistic form Below we ensure and discuss the Restricted

Strong Convexity (RSC) as well as the properties of the gradient.

We first consider the RSC property. Note that, the RSC property (3.122) below only

depends on the distribution of S1 and does not depend on the distribution of A1|S1. This is

because δ`M(∆,γ∗) defined in (3.121) can be written as

δ`M(∆,γ∗) = M−1
∑
i∈I−k

[
Ψ(VT

i (γ∗ + ∆))−Ψ(VT
i γ
∗)−∆TViΨ

′(VT
i γ
∗)
]
,

which is function of S1is, and A1is are not involved above. As a result, the model misspeci-

fication for π(S1) = E(A1|S1) does not affect the RSC property. In below, we consider the

RSC property studied by [ZCB21].

For any γ,∆ ∈ Rd1+1, define

`M(γ) := M−1
∑
i∈I−k

[
−A1iV

T
i γ + log(1 + exp(VT

i γ))
]
,

δ`M(∆,γ∗) := `M(γ∗ + ∆)− `M(γ∗)−∆T∇`M(γ∗). (3.121)

By Lemma 4.5 of [ZCB21], we have the following RSC property holds:

δ`M(∆,γ∗) ≥ κ1‖∆‖2

{
‖∆‖2 − κ2

√
log(d1 + 1)

M
‖∆‖1

}

≥ κ1

2
‖∆‖2

2 −
κ1κ

2
2 log(d1 + 1)

2M
‖∆‖2

1 for all ‖∆‖2 ≤ 1, (3.122)

with probability at least 1− c1 exp(−c2M), where c1, c2, κ1, κ2 > 0 are some constants.

Additionally, the gradient ‖∇`M(γ∗)‖∞ is controlled in the following. We allow a

possibly misspecified model that π∗(·) 6= π(·). Note that, even under model misspecification,
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we still have (3.124) below. Hence, ‖∇`M(γ∗)‖∞ is the maximum of zero-mean random

variables.

By the union bound, we have

P

(
‖∇`M(γ∗)‖∞ ≥

λγ
2

)
= P

 max
1≤j≤d1+1

∣∣∣∣∣∣M−1
∑
i∈I−k

(f(VT
i γ
∗)− A1i)Vi,j

∣∣∣∣∣∣ ≥ λγ
2


≤

d1+1∑
j=1

P

∣∣∣∣∣∣M−1
∑
i∈I−k

(f(VT
i γ
∗)− A1i)Vi,j

∣∣∣∣∣∣ ≥ λγ
2

 , (3.123)

where f(u) = exp(u)
1+exp(u)

is the logistic function. By definition, γ∗ = arg minγ∈Rd1+1 E[`(γ)],

where for any γ ∈ Rd1+1,

`(γ) := E
[
−A1V

Tγ + log(1 + exp(VTγ))
]
.

By the first-order optimality condition, we know that

∇E[`(γ∗)] = E
[
(f(VTγ∗)− A1)V

]
= 0 ∈ Rd1+1. (3.124)

Additionally, since |f(VTγ∗)−A1| ≤ 1, by Lemma D.1 (ii) of [CLCL19] and under Assump-

tion 3.2, for any i ∈ I−k and j ≤ d1 + 1,

‖(f(VT
i γ
∗)− A1i)Vi,j‖ψ2 ≤ ‖Vi,j‖ψ2 ≤ σu.

That is, (f(VT
i γ
∗) − A1i)Vi,j is a zero-mean sub-Gaussian random variable. Hence, by

Lemma D.2 of [CLCL19], for each j ≤ d1 + 1,

P

∣∣∣∣∣∣M−1
∑
i∈I−k

(f(VT
i γ
∗)− A1i)Vi,j

∣∣∣∣∣∣ ≥ λγ
2

 ≤ 2 exp

(−Mλ2
γ

32σ2
u

)

≤ 2 exp

(−Mλ2
γ

32σ2
u

)
≤ 2 exp

(
− log(d1 + 1)−Mt2

)
=

2 exp(−Mt2)

d1 + 1
,
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where for any t > 0, we set λγ := 4
√

2σu(
√

log(d1+1)
M

+ t). Together with (3.123), it follows

that

P

(
‖`M(γ∗)‖∞ ≤

λγ
2

)
≤ 1− 2 exp(−Mt2).

Together with (3.122), when M ≥ 64κ2
2sγ log(d1 + 1) and 9sγλ

2
γ ≤ κ2

1, by Corollary 9.20

of [Wai19], we conclude that

‖γ̂ − γ∗‖2 ≤
3
√
sγλγ

κ1

, ‖γ̂ − γ∗‖1 ≤
6sγλγ
κ1

,

with probability at least 1 − 2 exp(−Mt2) − c1 exp(−c2M). Hence, when M � sγ log(d1),

with some λM �
√

log(d1)
M

,

‖γ̂ − γ∗‖2
2 = Op

(
sγ log(d1)

N

)
. (3.125)

Now, we show the estimation rate for π̂(·). In the following, we will use Taylor’s Theorem

to control the estimation error of π̂(·) by the estimation error of γ̂ as in (3.127). Then, we

apply the estimation rate (3.125) proved above to obtain the rate for π̂(·).

Let f(u) := exp(u)
1+exp(u)

= Ψ′(u) for any u ∈ R. Note that, for any u∗,∆ ∈ R,

d(f(u∗ + t∆)− f(u∗))2

dt
= 2(f(u∗ + t∆)− f(u∗))f ′(u∗ + t∆)∆,

d2(f(u∗ + t∆)− f(u∗))2

dt2
= 2(f ′(u∗ + t∆))2∆2 + 2(f(u∗ + t∆)− f(u∗))f ′′(u∗ + t∆)∆2,

where, for any u ∈ R, since f(u) ∈ (0, 1), we have

f ′(u) = f(u)(1− f(u)) ∈ (0, 1), f ′′(u) = f(u)(1− f(u))(1− 2f(u)) ∈ (−1, 1). (3.126)

284



Set u∗ = VTγ∗ and ∆ = VT (γ̂ − γ∗). By Taylor’s Theorem, with some t̃ ∈ (0, 1),

E[f(VT γ̂)− f(VTγ∗)]2 = E[f(u∗ + 1 ·∆)− f(u∗)]2

= E[f(u∗ + 0 ·∆)− f(u∗)]2 +
dE(f(u∗ + t∆)− f(u∗))2

dt

∣∣∣∣
t=0

· 1

+
d2E(f(u∗ + t∆)− f(u∗))2

2dt2

∣∣∣∣
t=t̃

· 12

= 0 + E [2(f(u∗ + 0 ·∆)− f(u∗))f ′(u∗ + 0 ·∆)∆]

+ E
[
(f ′(u∗ + t̃∆))2∆2 + (f(u∗ + t̃∆)− f(u∗))f ′′(u∗ + t̃∆)∆2

]
= E

[
(f ′(u∗ + t̃∆))2∆2 + (f(u∗ + t̃∆)− f(u∗))f ′′(u∗ + t̃∆)∆2

]
(i)

≤ 2E[∆2] = 2E[VT (γ̂ − γ∗)]2,

where (i) holds since, by (3.126), (f ′(u∗+ t̃∆))2 ≤ 1 and (f(u∗+ t̃∆)−f(u∗))f ′′(u∗+ t̃∆) ≤ 1.

Hence,

E[π̂(S1)− π∗(S1)]2 = E[f(VT γ̂)− f(VTγ∗)]2 ≤ 2E[VT (γ̂ − γ∗)]2. (3.127)

Then, from (3.120) and (3.125), we have

E[π̂(S1)− π∗(S1)]2 ≤ 2‖E[VVT ]‖2‖γ̂ − γ∗‖2
2 = Op

(
sγ log(d1)

N

)
. (3.128)

b) Now, we show (3.46) and (3.47). In part b), the expectations are only taken w.r.t.

the distribution of the new observations S1,S2.

By Lemma 3.4, we know that the minimum and maximum eigenvalues of covariance

matrix E[ŪŪT ] satisfy

λmin(E[ŪŪT ]) ≥ κl > 0, λmax(E[ŪŪT ]) ≤ 2σ2
u <∞,

and Ū is sub-Gaussian with ‖xT Ū‖ψ2 ≤ 2σu‖x‖2 for any x ∈ Rd+1. Additionally, we also

have P (c2
0 ≤ Ψ′′(ŪTδa) ≤ (1 − c0)2) = 1. Repeating the same procedure as in part a), we
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also have

‖δ̂a − δ∗a‖2
2 = Op

(
sδa log(d)

N

)
,

and

E[ρ̂a(S)− ρ∗a(S)]2 = E[f(ŪT δ̂a)− f(ŪTδ∗a)]
2 ≤ 2E[ŪT (δ̂a − δ∗a)]2

≤ 2‖E[ŪŪT ]‖2‖δ̂a − δ∗a‖2
2 = Op

(
sδa log(d)

N

)
.

Proof of Lemma 3.6. In this proof, the expectations are taken w.r.t. the distribution of a

new observation W . We only focus on the treatment paths a = (1, 1) and a′ = (0, 0). Hence,

when possible, we abbreviate the subscripts (1, 1) and (0, 0) by 1 and 0. For instance,

ρ1(·) = ρ1,1(·), ρ∗1(·) = ρ∗1,1(·) and ρ̂1(·) = ρ̂1,1(·).

We begin by decomposing T2, (3.78), as a sum of six terms

ψ(W ; η̂)− ψ(W ; η∗) =
6∑
i=1

Qi, (3.129)
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where

Q1 :=
A1A2

π̂(S1)ρ̂1(S)
(Y − ν̂1(S))− A1A2

π∗(S1)ρ∗1(S)
(Y − ν∗1(S)), (3.130)

Q2 :=
A1

π̂(S1)
(ν̂1(S)− µ̂1(S1))− A1

π∗(S1)
(ν∗1(S)− µ∗1(S1)), (3.131)

Q3 := µ̂1(S1)− µ∗1(S1), (3.132)

Q4 := − (1− A1)(1− A2)

(1− π̂(S1))(1− ρ̂0(S))
(Y − ν̂0(S))

+
(1− A1)(1− A2)

(1− π∗(S1))(1− ρ∗0(S))
(Y − ν∗0(S)), (3.133)

Q5 := − 1− A1

1− π̂(S1)
(ν̂0(S)− µ̂0(S1)) +

1− A1

1− π∗(S1)
(ν∗0(S)− µ∗0(S1)), (3.134)

Q6 := −µ̂0(S1) + µ∗0(S1). (3.135)

Hence, we have the following representation for T2:

T2 = E[ψ(W ; η̂)− ψ(W ; η∗)] =
6∑
i=1

E[Qi], (3.136)

where the expecatations are only taken w.r.t. the distribution of the new obseravtion W .

a) Recall the representation (3.136). Here, we first obtain an upper bound for E[Q1 +

Q2 +Q3]. By the law of iterated expectations,

E[Q1] = E

[
A1ρ1(S)

π̂(S1)ρ̂1(S)
(ν1(S)− ν̂1(S))− A1ρ1(S)

π∗(S1)ρ∗1(S)
(ν1(S)− ν∗1(S))

]
.

Through rearranging, we have the following representation:

E[Q1 +Q2 +Q3] =
8∑
i=1

Ri, (3.137)
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where

R1 :=E

[
A1ρ

∗
1(S)(ν̂1(S)− ν∗1(S))

π̂(S1)

(
1

ρ∗1(S)
− 1

ρ̂1(S)

)]
, (3.138)

R2 :=E

[
π∗(S1)(µ̂1(S1)− µ∗1(S1))

(
1

π∗(S1)
− 1

π̂(S1)

)]
, (3.139)

R3 :=E

[
A1(ρ∗1(S)− ρ1(S))(ν̂1(S)− ν∗1(S))

π̂(S1)ρ̂1(S)

]
, (3.140)

R4 :=E

[
(π∗(S1)− A1)(µ̂1(S1)− µ∗1(S1))

π̂(S1)

]
(i)
=E

[
(π∗(S1)− π(S1))(µ̂1(S1)− µ∗1(S1))

π̂(S1)

]
, (3.141)

R5 :=E

[
A1ρ

∗
1(S)(ν∗1(S)− ν1(S))

π̂(S1)

(
1

ρ∗1(S)
− 1

ρ̂1(S)

)]
, (3.142)

R6 :=E

[
A1(µ∗1(S1)− µ1(S1))

(
1

π∗(S1)
− 1

π̂(S1)

)]
, (3.143)

R7 :=E

[(
A1

π̂(S1)ρ̂1(S)
− A1

π∗(S1)ρ∗1(S)

)
(ρ∗1(S)− ρ1(S))(ν∗1(S)− ν1(S))

]
(ii)
= 0, (3.144)

R8 :=E

[
A1(π̂(S1)− π∗(S1))(µ1(S1)− ν1(S))

π̂(S1)π∗(S1)

]
(iii)
= 0. (3.145)

Here, (i) holds by the law of iterated expectations; (ii) holds since either ρ∗1(·) = ρ1(·) or

µ∗1(·) = µ1(·) by assumption; (iii) holds by the law of iterated expectations and the fact that,

under Assumption 3.1,

E[ν1(S)|S1, A1 = 1] = E[E[Y |S1,S2, A1 = 1, A2 = 1]|S1, A1 = 1]

= E[E[Y (1, 1)|S1,S2, A1 = 1, A2 = 1]|S1, A1 = 1]

= E[E[Y (1, 1)|S1,S2, A1 = 1]|S1, A1 = 1]

= E[Y (1, 1)|S1, A1 = 1] = µ1(S1). (3.146)

Now, we obtain an upper bound for Ri (i ∈ {1, . . . , 6}). For R1 + R2, since |A1| ≤ 1,

288



|π∗(S1)| ≤ 1 and |ρ∗1(S)| ≤ 1, we have

R1 +R2

(i)

≤ {E|π̂(S1)|−3}
1
3

{
E

∣∣∣∣ 1

ρ̂1(S)
− 1

ρ∗1(S)

∣∣∣∣3
} 1

3

{E|ν̂1(S)− ν∗1(S)|3}
1
3

+

{
E

∣∣∣∣ 1

π̂(S1)
− 1

π∗(S1)

∣∣∣∣2
} 1

2

{E|µ̂1(S1)− µ∗1(S1)|2}
1
2

(ii)
= Op

(
σ
s1 log(d)

N

)
,

where (i) holds by Hölder’s inequality; (ii) follows from Lemma 3.2. Similarly, for R3 + R4,

since |A1| ≤ 1, |ρ∗1(S)− ρ1(S)| ≤ 1, |π∗(S1)− π(S1)| ≤ 1, and together with Lemma 3.2,

R3 +R4 ≤{E|π̂(S1)|−3}
1
3{E|ρ̂1(S)|−3}

1
3{E|ν̂1(S)− ν∗1(S)|3}

1
31{ρ∗a(·)6=ρa(·)}

+ {E|π̂(S1)|−2}
1
2{E|µ̂1(S1)− µ∗1(S1)|2}

1
21{π∗(·)6=π(·)}

=Op

(
σ

√
(sαa + sβa) log(d)

N
1{π∗(·)6=π(·)} + σ

√
sαa log(d)

N
1{ρ∗a(·)6=ρa(·)}

)
.

For R5 +R6, since |ρ∗1(S)| ≤ 1,

R5 +R6 ≤ {E|π̂(S1)|−4}
1
4

{
E

∣∣∣∣ 1

ρ̂1(S)
− 1

ρ∗1(S)

∣∣∣∣4
} 1

4

{E[A1|ν∗1(S)− ν1(S)|2]}
1
2

+

{
E

∣∣∣∣ 1

π̂(S1)
− 1

π∗(S1)

∣∣∣∣2
} 1

2

{E[A1|µ∗1(S1)− µ1(S1)|2]}
1
2

= Op

(
σ

√
sγ log(d)

N
1{µ∗a(·) 6=µa(·)} + σ

√
sδa log(d)

N
1{ν∗a(·) 6=νa(·)}

)
.

where the last assertion follows from Lemma 3.2, (3.156), (3.158), and Lemma 3.12.

Combining all the previous results, we have

E[Q1 +Q2 +Q3] =
6∑
i=1

Ri = Op

(
σ
s1 log(d)

N
+ σ

√
s2 log(d)

N

)
.

Analogously to E[Q1 +Q2 +Q3], we have the same result for E[Q4 +Q5 +Q6]. Theorefore,

(3.81) follows.
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b) When all the models are correctly specified, we have s2 = 0. Hence, by part a),

(3.82) holds.

Proof of Lemma 3.7. In this proof, the expecations are taken w.r.t. a new observation W ,

unless stated otherwise.

We first show that (3.83) holds. Recall the representation (3.129), by Minkowski

inequality, we have

[E(ψ(W ; η̂)− ψ(W ; η∗))2]
1
2 ≤

6∑
i=1

[E(Q2
i )]

1
2 , (3.147)

where Qi (i ∈ {1, . . . , 6}) are defined as(3.130)-(3.135). In the following, we show that

6∑
i=1

[E(Q2
i )]

1
2 = Op

(
σ

√
max{sαa , sβa , sγ , sδa} log(d)

N

)
.

By Minkowski’s inequality,

[E(Q2
1)]

1
2 ≤

{
E

[
A1A2

π̂(S1)ρ̂1(S)
(ν̂1(S)− ν∗1(S))

]2} 1
2

+

{
E

[(
A1A2

π̂(S1)ρ̂1(S)
− A1A2

π∗(S1)ρ∗1(S)

)
(Y − ν∗1(S))

]2} 1
2

(i)

≤
{
E

[
1

π̂(S1)ρ̂1(S)
(ν̂1(S)− ν∗1(S))

]2} 1
2

+

{
E

[(
1

π̂(S1)ρ̂1(S)
− 1

π∗(S1)ρ∗1(S)

)
ζ

]2} 1
2

(ii)

≤ {E|π̂(S1)|−6}
1
6{E|ρ̂1(S)|−6}

1
6{E|ν̂1(S)− ν∗1(S)|6}

1
6

+ {E|ζ|4}
1
4

{
E

∣∣∣∣ 1

π̂(S1)ρ̂a(S)
− 1

π∗(S1)ρ∗a(S)

∣∣∣∣4
} 1

4

(iii)
= Op

(
σ

√
max{sαa , sγ , sδa} log(d)

N

)
,

where (i) holds by the fact that |A1| ≤ 1, |A2| ≤ 1 and A1A2ζ = ζ1 = A1A2(Y − ν∗1(S));

(ii) holds byHölder’s inequality; (iii) follows from Lemma 3.2, and under Assumption 3.3, by
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Lemma D.1 (iv) of [CLCL19],

E[|ζ|4] ≤ 8σ4σ4
ζ , E[|ε|4] ≤ 8σ4σ4

ε . (3.148)

Then, similarly as above, we obtain

[E(Q2
2)]

1
2 ≤

{
E

[
A1

π̂(S1)
(ν̂1(S)− ν∗1(S))

]2} 1
2

+

{
E

[
A1

π̂(S1)
(µ̂1(S1)− µ∗1(S1))

]2} 1
2

+

{
E

[(
A1

π̂(S1)
− A1

π∗(S1)

)
(ν∗1(S)− µ∗1(S1))

]2} 1
2

≤
{
E

[
1

π̂(S1)
(ν̂1(S)− ν∗1(S))

]2} 1
2

+

{
E

[
1

π̂(S1)
(µ̂1(S1)− µ∗1(S1))

]2} 1
2

+

{
E

[(
1

π̂(S1)
− 1

π∗(S1)

)
ε

]2} 1
2

≤ {E|π̂(S1)|−4}
1
4{E|ν̂1(S)− ν∗1(S)|4}

1
4 +

{
E

∣∣∣∣ 1

π̂(S1)
− 1

π∗(S1)

∣∣∣∣4
} 1

4

{E|ε|4}
1
4

+ {E|π̂(S1)|−4}
1
4{E|µ̂1(S1)− µ∗1(S1)|4}

1
4

= Op

(
σ

√
max{sαa , sβa , sγ} log(d)

N

)
,

where the last assertion follows from the Lemma 3.2 and (3.148). Also, by Lemma 3.2,

[E(Q2
3)]

1
2 = Op

(
σ

√
max{sαa , sβa} log(d)

N

)
.

Hence, we have

[E(Q2
1)]

1
2 + [E(Q2

2)]
1
2 + [E(Q2

3)]
1
2 = Op

(
σ

√
max{sαa , sβa , sγ , sδa} log(d)

N

)
.

Repeating the procedure above, we obtain the same result for [E(Q2
4)]

1
2 +[E(Q2

5)]
1
2 +[E(Q2

6)]
1
2 .

Therefore, (3.83) holds.

Now, we show (3.84). Recall the definition (3.80), by Chebyshev’s inequality, we have

291



for any t > 0,

P (|T4| > t) ≤ 1

t2
Var

[
1

n

∑
i∈Ik

(ψ(Wi; η̂)− ψ(Wi; η
∗))

]
(3.149)

≤ 1

nt2
E[ψ(W ; η̂)− ψ(W ; η∗)]2.

In the righ-hand side of (3.149), the variance is taken over the joint distribution of (Wi)i∈Ik .

Note that, based on the sample-splitting, η̂ is independent of (Wi)i∈Ik . Together with (3.83),

we conclude that (3.84) holds.

Proof of Lemma 3.8. Recall the definition (3.77). Since θ = E[µa(S1)− µa′(S1)], we have

T1 = E[ψa(W ; η∗a)− µa(S1)]− E[ψa′(W ; η∗a′)− µa′(S1)].

It suffices to show E[ψc(W ; η∗c )−µc(S1)] = 0 for each c ∈ {a, a′}. Without loss of generality,

we consider c = a = (1, 1). Observe that,

E[ψa(W ; η∗a)− µa(S1)]

= E

[
A1A2(Y − ν∗1(S))

π∗(S1)ρ∗1(S)
+
A1(ν∗1(S)− µ∗1(S1))

π∗(S1)
+ µ∗1(S1)− µ1(S1)

]
(i)
= E

[
A1ρ1(S)(ν1(S)− ν∗1(S))

π∗(S1)ρ∗1(S)
+
A1(ν∗1(S)− µ∗1(S1))

π∗(S1)
+ µ∗1(S1)− µ1(S1)

]
(ii)
= T1,1 + T1,2 + T1,3,

where

T1,1 :=E

[
A1(ν∗1(S)− ν1(S))

π∗(S1)

(
1− ρ1(S)

ρ∗1(S)

)]
,

T1,2 :=E

[
(µ∗1(S1)− µ1(S1))

(
1− A1

π∗(S1)

)]
,

T1,3 :=E

[
A1(ν1(S)− µ1(S1))

π∗(S1)

]
.
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In the above, (i) holds by the law of iterated expectations and under Assumption 3.1 since

E

[
A1A2(Y − ν∗1(S))

π∗(S1)ρ∗1(S)

]
= E

[
E

[
A1A2(Y (1, 1)− ν∗1(S))

π∗(S1)ρ∗1(S)
|S, A1 = 1

]
P (A1 = 1|S)

]
= E

[
E[A2|S, A1 = 1](E[Y (1, 1)|S, A1 = 1]− ν∗1(S))

π∗(S1)ρ∗1(S)
E[A1|S]

]
= E

[
ρ1(S)(ν1(S)− ν∗1(S))

π∗(S1)ρ∗1(S)
E[A1|S]

]
= E

[
A1ρ1(S)(ν1(S)− ν∗1(S))

π∗(S1)ρ∗1(S)

]
.

Additionally, (ii) holds by rearranging the terms after the following decomposition

(ν∗1(S)− µ∗1(S1)) = (ν∗1(S)− ν1(S)) + (ν1(S)− µ1(S1)) + (µ1(S)− µ∗1(S1)).

By assumption, either ν∗1(·) = ν1(·) or ρ∗1(·) = ρ1(·). Hence, T1,1 = 0. By the law of

iterated expectations, under Assumption 3.1,

T1,2 = E

[
(µ1(S1)− µ∗1(S1))

(
1− π(S1)

π∗(S1)

)]
= 0,

since, by assumption, either µ∗1(·) = µ1(·) or π∗(·) = π(·). Besides, as in (3.146), we have

E[ν1(S)|S1, A1 = 1] = µ1(S1). Hence, by the law of iterated expectations,

T1,3 = E

[
E

[
A1(ν1(S)− µ1(S1))

π∗(S1)
|S1, A1 = 1

]
P (A1 = 1|S1)

]
= E

[
π(S1)

π∗(S1)
[E [ν1(S)|S1, A1 = 1]− µ1(S1)]

]
= 0.

Combining the previous results, we have

E[ψa(W ; η∗a)− µa(S1)] = T1,1 + T1,2 + T1,3 = 0.

Repeating the same procedure, we also have E[ψa′(W ; η∗a′)− µa′(S1)] = 0, and hence (3.94)

follows.
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Proof of Lemma 3.9. In this proof, the expectations are taken w.r.t. the distribution of new

observations S1,S2 (or only S1 if S2 is not involved). We condition on the following event

E4 := {P (c0 ≤ π̂(S1) ≤ 1− c0) = 1, P (c0 ≤ ρ̂1(S) ≤ 1− c0) = 1} . (3.150)

Under Assumption 3.7, the event E4 occurs with probability approaching one.

Recall the representation (3.136). Here, we first upper bound E[Q1 +Q2 +Q3]. Same

as in the proof of Lemma 3.6, we also have (3.137) holds, with Ris defined in (3.138)-(3.145).

Same as in (3.144) and (3.145), we have R7 = R8 = 0. In the following, we use Cauchy-

Schwarz inequality to upper bound Ri (i ∈ {1, . . . , 6}). For R1 + R2, on the event E4, we

have

R1 +R2 ≤
1

c2
0

[E(ρ̂1(S)− ρ∗1(S))2]
1
2 [E(ν̂1(S)− ν∗1(S))2]

1
2

+
1

c0

[E(π̂(S1)− π∗(S1))2]
1
2 [E(µ̂1(S1)− µ∗1(S1))2]

1
2

= Op (bNcN + aNdN) , (3.151)

under Assumption 3.6. For R3 +R4, on the event E4, we have

R3 +R4 ≤
1

c2
0

[E(ρ∗1(S)− ρ1(S))2]
1
2 [E(ν̂1(S)− ν∗1(S))2]

1
2

+
1

c0

[E(π∗(S1)− π(S1))2]
1
2 [E(µ̂1(S1)− µ∗1(S1))2]

1
2

≤
1{ρ∗a(·) 6=ρa(·)}

c2
0

[E(ν̂1(S)− ν∗1(S))2]
1
2 +

1{π∗(·)6=π(·)}

c0

[E(µ̂1(S1)− µ∗1(S1))2]
1
2 ,

since

E(ρ∗1(S)− ρ1(S))2 = 1{ρ∗a(·)6=ρa(·)}E(ρ∗1(S)− ρ1(S))2
(i)

≤ 1{ρ∗a(·)6=ρa(·)},

E(π∗(S1)− π(S1))2 = 1{π∗(·) 6=π(·)}E(π∗(S1)− π(S1))2
(ii)

≤ 1{π∗(·)6=π(·)},
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where (i) and (ii) hold because ρ1(S) = E(A2|S, A1 = 1) ∈ (0, 1), π(S1) = E(A1|S1) ∈

(0, 1), and, under Assumption 3.4, ρ1(S), π∗(S1) ∈ (0, 1) with probability one. Hence, under

Assumption 3.6, we have

R3 +R4 = Op

(
bN1{π∗(·)6=π(·)} + aN1{ρ∗a(·) 6=ρa(·)}

)
. (3.152)

As for R5 +R6, similarly, we have

R5 +R6 ≤
1

c2
0

[E(ρ̂1(S)− ρ∗1(S))2]
1
2

[
E[A1(ν∗1(S)− ν1(S))2]

] 1
2

+
1

c2
0

[E(π̂(S1)− π∗(S1))2]
1
2

[
E[A1(µ∗1(S1)− µ1(S1))2]

] 1
2 (3.153)

Here, we need upper bound for [E[A1(ν∗1(S)− ν1(S))2]]
1
2 and [E[A1(µ∗1(S1)−µ1(S1))2]]

1
2 . By

definition,

ζ = ζ1 + ζ0, ε = ε1 + ε0, Y = Y (1, 1)A1A2 + Y (0, 0)(1− A1)(1− A2),

where

ζ1 = A1A2 (Y (1, 1)− ν∗1(S)) , ε1 = A1 (ν∗1(S)− µ∗1(S1)) .

Hence, we have

E[ζ2] ≥ E[A1A2ζ
2] = E[ζ2

1 ] = E[A1A2(Y − ν∗1(S))2] (3.154)

Note that

E[A1A2(Y − ν1(S))(ν1(S)− ν∗1(S))]

(i)
= E[E[A1A2(Y (1, 1)− ν1(S))(ν1(S)− ν∗1(S))|S, A1 = 1]P (A1 = 1|S)]

(ii)
= E[E[A2|S, A1 = 1](E[Y (1, 1)|S, A1 = 1]− ν1(S))(ν1(S)− ν∗1(S))P (A1 = 1|S)]

(iii)
= 0,
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where (i) holds by the law of iterated expectations and the fact that A1A2Y = A1A2Y (1, 1);

(ii) holds under Assumption 3.1; (iii) holds since ν1(S) = E[Y (1, 1)|S, A1 = 1, A2 = 1] =

E[Y (1, 1)|S, A1 = 1] under Assumption 3.1. Therefore,

E[A1A2(Y − ν∗1(S))2] = E[A1A2[(Y − ν1(S))2 + (ν1(S)− ν∗1(S))2]] (3.155)

≥ E[A1A2(ν∗1(S)− ν1(S))2] = E[A1ρ1(S)(ν∗1(S)− ν1(S))2]

≥ c0E[A1(ν∗1(S)− ν1(S))2],

under Assumption 3.1. Together with (3.154), we have

E[A1(ν∗1(S)− ν1(S))2] ≤ 1

c0

E[ζ2]. (3.156)

Besides, note that

E[A1(ν1(S)− µ1(S1))(µ1(S1)− µ∗1(S1))]

= E[(µ1(S1)− µ∗1(S1))E[(ν1(S)− µ1(S1))|S1, A1 = 1]P (A1 = 1|S)] = 0,

since E[ν1(S)|S1, A1 = 1] = µ1(S1) as shown in (3.146). Therefore, we have

E[A1(ν1(S)− µ∗1(S1))2] = E[A1(ν1(S)− µ1(S1))2] + E[A1(µ1(S1)− µ∗1(S1))2]

≥ E[A1(µ1(S1)− µ∗1(S1))2]. (3.157)

Additionally, observe that

E[A1(ν1(S)− µ∗1(S1))2] ≤ 2E[A1(ν∗1(S)− ν1(S))2] + 2E[ε2
1]

(i)

≤ 2

c0

E[ζ2] + 2E[A1ε
2] ≤ 2

c0

E[ζ2] + 2E[ε2],

where (i) holds by (3.156) and the fact that ε2
1 = A1ε

2. Together with (3.157), we obtain

E[A1(µ∗1(S1)− µ1(S1))2] ≤ 2

c0

E[ζ2] + 2E[ε2]. (3.158)
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Therefore, under Assumption 3.6,

R5 +R6 ≤
1

c2
0

[E(ρ̂1(S)− ρ∗1(S))2]
1
2 [E[A1(ν∗1(S)− ν1(S))2]]

1
2

+
1

c2
0

[E(π̂(S1)− π∗(S1))2]
1
2 [E[A1(µ∗1(S1)− µ1(S1))2]]

1
2

= Op

(
cN
√
E[ζ2 + ε2]1{µ∗a(·)6=µa(·)} + dN

√
E[ζ2]1{ν∗a(·)6=νa(·)}

)
. (3.159)

Pluging (3.144), (3.145), (3.151),(3.152), and (3.159) into (3.137), we obtain

E[Q1 +Q2 +Q3] =Op

(
bNcN + aNdN + bN1{π∗(·)6=π(·)} + aN1{ρ∗a(·) 6=ρa(·)}

+ cN
√
E[ζ2 + ε2]1{µ∗a(·)6=µa(·)} + dN

√
E[ζ2]1{ν∗a(·) 6=νa(·)}

)
.

By repeating all the previous steps, we can obtain the same result for E[Q4 + Q5 + Q6].

Therefore, (3.95) follows.

b) When all the nuisance models are correct, Assumption 3.4 holds under Assumption

3.1. Hence, by part a), we also have (3.95). Since all the nuisance models are correct, we

further conclude that (3.96) holds.

Proof of Lemma 3.10. a) Recall the definition (3.79). By Chebyshev’s inequality, we have

for any t > 0,

P (|T3| > t) ≤ 1

t2
Var

(
1

n

∑
i∈Ik

ψ(Wi; η
∗)

)
=

1

nt2
E[ψ(W ; η∗)]2,

where n = N/K = |Ik|. To prove (3.97), we only need to show [E(ψ(W ; η∗))2]
1
2 =

O(
√
E[ζ2] +

√
E[ε2] +

√
E[ξ2]). By Minkowski inequality, we have

[E(ψ(W ; η∗))2]
1
2 ≤

5∑
i=1

T3,i, (3.160)
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where

T3,1 :=

[
E

(
A1A2

π∗(S1)ρ∗1(S)
(Y − ν∗1(S))

)2
] 1

2

,

T3,2 :=

[
E

(
A1

π∗(S1)
(ν∗1(S)− µ∗1(S1))

)2
] 1

2

,

T3,3 :=

[
E

(
(1− A1)(1− A2)

(1− π∗(S1))(1− ρ∗0(S))
(Y − ν∗0(S))

)2
] 1

2

,

T3,4 :=

[
E

(
1− A1

1− π∗(S1)
(ν∗0(S)− µ∗0(S1))

)2
] 1

2

,

T3,5 :=
[
E (µ∗1(S1)− µ∗0(S1)− θ)2] 1

2 .

We bound each of the above terms in turn. Under Assumption 3.4 and recall the equation

(3.154), we have

T3,1 ≤
1

c2
0

[E(A1A2(Y − ν∗1(S))2)]
1
2 ≤ 1

c2
0

√
E[ζ2]. (3.161)

Similarly, since E[ε2] ≥ E[A1ε
2] = E[ε2

1] = E[A1(ν∗1(S)− µ∗1(S1))2], we have

T3,2 ≤
1

c0

[E(A1(ν∗1(S)− µ∗1(S1))2)]
1
2 ≤ 1

c0

√
E[ε2]. (3.162)

Repeating the same process for T3,3 and T3,4, we also have

T3,3 ≤
1

c2
0

√
E[ζ2], T3,4 ≤

1

c0

√
E[ε2]. (3.163)

Additionally,

2

c0

E[ζ2] + 2E[ε2]
(i)

≥ E[A1(µ∗1(S1)− µ1(S1))2]
(ii)
= E[π(S1)(µ∗1(S1)− µ1(S1))2]

(iii)

≥ c0E[(µ∗1(S1)− µ1(S1))2],
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where (i) holds by (3.158); (ii) holds by the law of iterated expectations; (iii) holds under

Assumption 3.1. Similarly, we also have

2

c0

E[ζ2] + 2E[ε2] ≥ c0E[(µ∗0(S1)− µ0(S1))2].

By Minkowski inequality,

T3,5 ≤ [E(µ∗1(S1)− µ1(S1))2]
1
2 + [E(µ∗0(S1)− µ0(S1))2]

1
2 + [E[ξ2]]

1
2

≤ 2

√
2

c2
0

E[ζ2] +
2

c0

E[ε2] +
√
E[ξ2] ≤ 2

√
2

c0

√
E[ζ2] +

2
√

2
√
c0

√
E[ε2] +

√
E[ξ2]. (3.164)

Plugging (3.161)-(3.164) into (3.160), we have

[E(ψ(W ; η∗))2]
1
2 = O

(√
E[ζ2] +

√
E[ε2] +

√
E[ξ2]

)
.

b) When all the models are correctly specified, Assumption 3.1 implies Assumption

3.4. Hence, by part a), we also have (3.97).

Proof of Lemma 3.11. In this proof, the expectations are taken w.r.t. the distribution of

new observations S1,S2 (or only S1 if S2 is not involved). Additionally, we condition on the

event E4, defined as (3.150). Under Assumption 3.7, such an event occurs with probability

approaching one.

a) We first show (3.98). Same as in the proof of Lemma 3.7, we also have (3.147)

here. Then, by Chebyshev’s inequality, it suffices to show

6∑
i=1

[E(Q2
i )]

1
2 = Op

(
aN + bN +

√
E[ζ2] +

√
E[ε2]

)
,

where Qi (i ∈ {1, . . . , 6}) are defined as (3.130)-(3.135). Additionally, under Assumption

3.4, we also have

P (c0 ≤ π∗(S1) ≤ 1− c0) = 1, P (c0 ≤ ρ∗1(S) ≤ 1− c0) = 1.
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For the first term [E(Q2
1)]

1
2 , under Assumptions 3.4 and on the event E4,

[E(Q2
1)]

1
2

≤ 1

c4
0

{E[A1A2π
∗(S1)ρ∗1(S)(Y − ν̂1(S))− A1A2π̂(S1)ρ̂1(S)(Y − ν∗1(S))]2}

1
2

(i)

≤ 1

c4
0

{E[π∗(S1)ρ∗1(S)(ν∗1(S) + ζ − ν̂1(S))− π̂(S1)ρ̂1(S)ζ]2}
1
2

(ii)

≤ 1

c4
0

{E[ν̂1(S)− ν∗1(S)]2}
1
2 +

1

c4
0

{E[(π̂(S1)ρ̂1(S)− π∗(S1)ρ∗1(S))ζ]2}
1
2 , (3.165)

where (i) holds by the fact that |A1| ≤ 1, |A2| ≤ 1 and A1A2Y = A1A2ν
∗
1(S) + A1A2ζ;

(ii) holds from Minkowski inequality and the fact that P (π∗(S1)ρ∗1(S) ≤ 1) = 1. Since

P (0 ≤ π∗(S1)ρ∗1(S) ≤ 1) = 1 and P (0 ≤ π̂(S1)ρ̂1(S) ≤ 1) = 1 under E4, we have

[E(Q2
1)]

1
2 ≤ 1

c4
0

[E(ν̂1(S)− ν∗1(S))2]
1
2 +

1

c4
0

[E(ζ2)]
1
2 = Op

(
bN +

√
E[ζ2]

)
. (3.166)

Similarly, for the second term [E(Q2
2)]

1
2 , under Assumptions 3.4 and on the event E4,

[E(Q2
2)]

1
2 ≤ 1

c2
0

{E[A1π
∗(S1)(ν̂1(S)− µ̂1(S1))− A1π̂(S1)(ν∗1(S)− µ∗1(S1))]2}

1
2

(i)

≤ 1

c2
0

{E[π∗(S1)(ν̂1(S)− µ̂1(S1))− π̂(S1)ε]2}
1
2

(ii)

≤ 1

c2
0

[E(ν̂1(S)− ν∗1(S))2]
1
2 +

1

c2
0

[E(µ̂1(S1)− µ∗1(S1))2]
1
2

+
1

c2
0

{E[(π̂(S1)− π∗(S1))ε]2}
1
2 (3.167)

(iii)

≤ 1

c2
0

[E(ν̂1(S)− ν∗1(S))2]
1
2 +

1

c2
0

[E(µ̂1(S1)− µ∗1(S1))2]
1
2 +

1

c2
0

{E[ε2]}
1
2

= Op

(
aN + bN +

√
E[ε2]

)
, (3.168)

where (i) holds from the fact that |A1| ≤ 1 and A1ν
∗
1(S) = A1µ

∗
1(S1) + A1ε; (ii) holds from

Minkowski inequality and P (π∗(S1) ≤ 1) = 1; (iii) holds by the fact that P (0 ≤ π∗(S1) ≤
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1) = 1 and P (0 ≤ π̂(S1) ≤ 1) = 1 on E4. For the third term [E(Q2
3)]

1
2 , we have

[E(Q2
3)]

1
2 = Op (bN) , (3.169)

under Assumption 3.6. Combining (3.166), (3.168) and (3.169), we obtain that

[E(Q2
1)]

1
2 + [E(Q2

2)]
1
2 + [E(Q2

3)]
1
2 = Op

(
aN + bN +

√
E[ζ2] +

√
E[ε2]

)
.

Repeating the same procedure above, we also have the same result for [E(Q2
4)]

1
2 +[E(Q2

5)]
1
2 +

[E(Q2
6)]

1
2 . Then, (3.98) follows.

b) Now, we show (3.99). By (3.165), under Assumption 3.8, we have

[E(Q2
1)]

1
2 ≤ 1

c4
0

[E(ν̂1(S)− ν1(S))2]
1
2

+
1

c4
0

{E[ζ2|S]}
1
2{E[(π̂(S1)ρ̂1(S)− π(S1)ρ1(S))]2}

1
2

≤ 1

c4
0

[E(ν̂1(S)− ν1(S))2]
1
2 +

√
CE[ζ2]

c4
0

{E[(π̂(S1)ρ̂1(S)− π(S1)ρ1(S))]2}
1
2

By Minkowski inequality and under E4, we have

{E[π̂(S1)ρ̂1(S)− π(S1)ρ1(S)]2}
1
2

≤ {E[(π̂(S1)− π(S1))ρ̂1(S)]2}
1
2 + {E[π(S1)(ρ̂1(S)− ρ1(S))]2}

1
2

≤ [E(π̂(S1)− π(S1))2]
1
2 + [E(ρ̂1(S)− ρ1(S))2]

1
2 = Op (cN + dN) .

Hence,

[E(Q2
1)]

1
2 = Op

(
aN + (cN + dN)

√
E[ζ2]

)
.
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In addition, by (3.167), we have

[E(Q2
2)]

1
2 ≤ 1

c2
0

[E(ν̂1(S)− ν1(S))2]
1
2 +

1

c2
0

[E(µ̂1(S1)− µ1(S1)]2]
1
2

+
1

c2
0

{E[ε2|S1]}
1
2{E[(π̂(S1)− π(S1))]2}

1
2

≤ 1

c2
0

[E(ν̂1(S)− ν1(S))2]
1
2 +

1

c2
0

[E(µ̂1(S1)− µ1(S1)]2]
1
2

+

√
CE[ε2]

c2
0

{E[(π̂(S1)− π(S1))]2}
1
2

= Op

(
aN + bN + cN

√
E[ε2]

)
.

Besides, by Assumption 3.6,

[E(Q2
3)]

1
2 = Op (bN) .

Repeating the same procedure above, we also have

[E(Q2
4)]

1
2 =Op

(
aN + (cN + dN)

√
E[ζ2]

)
,

[E(Q2
5)]

1
2 =Op

(
aN + bN + cN

√
E[ε2]

)
,

[E(Q2
6)]

1
2 =Op (bN) .

Now, we have

[E(ψ(W ; η̂)− ψ(W ; η))2]
1
2 = OP

(
aN + bN + cN(

√
E[ζ2] +

√
E[ε2]) + dN

√
E[ζ2]

)
.

By Chebyshev’s inequality, we conclude that (3.99) holds.

Proof of Lemma 3.12. a) We notice the following representation:

ψ(W ; η∗)− θ =
8∑
i=1

Oi, (3.170)
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where

O1 :=
A1A2(Y − ν1(S))

π∗(S1)ρ∗1(S)
, (3.171)

O2 :=
A1

π∗(S1)

(
1− A2

ρ∗1(S)

)
(ν∗1(S)− ν1(S)), (3.172)

O3 :=
A1(ν1(S)− µ1(S1))

π∗(S1)
, (3.173)

O4 := −(1− A1)(1− A2)(Y − ν0(S))

(1− π∗(S1))(1− ρ∗0(S))
, (3.174)

O5 := − 1− A1

1− π∗(S1)

(
1− 1− A2

1− ρ∗0(S)

)
(ν∗0(S)− ν0(S)), (3.175)

O6 := −(1− A1)(ν0(S)− µ0(S))

1− π∗(S1)
, (3.176)

O7 :=

(
1− A1

π∗(S1)

)
(µ∗1(S1)− µ1(S1))

−
(

1− 1− A1

1− π∗(S1)

)
(µ∗0(S1)− µ0(S1)), (3.177)

O8 := µ1(S1)− µ0(S1)− θ = ξ. (3.178)

In the following, we demonstrate that

σ2 = E(ψ(W ; η∗)− θ)2 =
8∑
i=1

E[O2
i ]. (3.179)

It suffices to show that E[OiOj] = 0 for all i 6= j. Firstly, since A1(1− A1) = 0, we have

OiOj = 0, for each i ∈ {1, 2, 3}, and j ∈ {4, 5, 6}. (3.180)

Step 1 We show E[O1Oi] = 0 for each i ≥ 2. By (3.180), we know that O1Oi = 0 for

i ∈ {4, 5, 6}. Note that, O3, O7, O8 are all functions of (S, A1). Hence, for each i ∈ {3, 7, 8},

E[O1Oi] = E[OiE[O1|S, A1 = 1]P (A1 = 1|S)] = 0,

since

E[O1|S, A1 = 1]
(i)
=
E[A2|S, A1 = 1]E[Y (1, 1)− µ1(S1)|S, A1 = 1]

π∗(S1)ρ∗1(S)

(ii)
= 0,
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where (i) holds under Assumption 3.1; (ii) holds because E[Y (1, 1)|S, A1 = 1] = µ1(S1).

Besides, we note that

E[O1O2] = E

[
A1A2(Y − ν1(S))(ν∗1(S)− ν1(S))(ρ∗1(S)− 1)

(π∗(S1)ρ∗1(S))2

]
(i)
= E

[
E[A2(Y (1, 1)− ν1(S))|S, A1 = 1](ν∗1(S)− ν1(S))(ρ∗1(S)− 1)

(π∗(S1)ρ∗1(S))2
P (A1 = 1|S)

]
(ii)
= E

[
ρ1(S)E[Y (1, 1)− ν1(S)|S, A1 = 1](ν∗1(S)− ν1(S))(ρ∗1(S)− 1)

(π∗(S1)ρ∗1(S))2
P (A1 = 1|S)

]
(iii)
= 0,

where (i) holds by the law of iterated expectations; (ii) holds under Assumption 3.1; (iii)

holds because E[Y (1, 1)|S, A1 = 1] = µ1(S1).

Step 2 We show E[O2Oi] = 0 for each i ≥ 3. By (3.180), we know that O2Oi = 0 for

i ∈ {4, 5, 6}. Since O3, O7, O8 are all functions of (S, A1), it follows that, for each i ∈ {3, 7, 8},

E[O2Oi] = E[OiE[O2|S, A1 = 1]P (A1 = 1|S)] = 0,

since

E[O2|S, A1 = 1] =
ν∗1(S)− ν1(S)

π∗(S1)

(
1− E[A2|S, A1 = 1]

ρ∗1(S)

)
=
ν∗1(S)− ν1(S)

π∗(S1)

(
1− ρ1(S)

ρ∗1(S)

)
(i)
= 0,

where (i) holds because either ν∗1(·) = ν1(·) or ρ∗1(·) = ρ1(·) by assumption.

Step 3 We show E[O3Oi] = 0 for each i ≥ 4. By (3.180), we know that O3Oi = 0 for

i ∈ {4, 5, 6}. Since O7, O8 are all functions of (S1, A1), it follows that, for each i ∈ {7, 8},

E[O3Oi] = E[OiE[O3|S1, A1 = 1]P (A1 = 1|S1)] = 0,
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since

E[O3|S1, A1 = 1] =
E[ν1(S)|S1, A1 = 1]− µ1(S1)

π∗(S1)

(i)
= 0,

where (i) holds because E[ν1(S)|S1, A1 = 1] = µ1(S1) as shown in (3.146).

Step 4 By repeating the same procedure as in Steps 1-3, we also have E[OiOj] = 0 for

each i ∈ {4, 5, 6} and j ≥ i+ 1.

Step 5 We show E[O7O8] = 0. Since O8 is a function of S1, we have

E[O7O8] = E[O8E[O7|S1]] = 0,

since

E[O7|S1] =

(
1− π(S)

π∗(S1)

)
(µ∗1(S1)− µ1(S1))−

(
1− 1− π(S)

1− π∗(S1)

)
(µ∗0(S1)− µ0(S1))

(i)
= 0,

where (i) holds because, by assumption, 1) either π∗(·) = π(·) or µ∗1(·) = µ1(·), and 2) either

π∗(·) = π(·) or µ∗0(·) = µ0(·).

Based on all Steps 1-5, we conclude that (3.179) holds. Now, note that

E[O2
1] ≥ E[A1A2(Y (1, 1)− ν1(S))2],

E[O2
2] = E

[
A1((ρ∗1(S))2 − 2A2ρ

∗
1(S) + A2)

(π∗(S1)ρ∗1(S))2
(ν∗1(S)− ν1(S))2

]
= E

[
A1((ρ∗1(S)− ρ1(S))2 + ρ1(S)(1− ρ1(S)))

(π∗(S1)ρ∗1(S))2
(ν∗1(S)− ν1(S))2

]
≥ c2

0E[A1(ν∗1(S)− ν1(S))2],

E[O2
3] = E

[
A1(ν1(S)− µ1(S1))2

(π∗(S1))2

]
≥ E[A1(ν1(S)− µ1(S1))2]
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Hence,

E[A1A2ζ
2] = E[ζ2

1 ] = E[A1A2(Y (1, 1)− ν∗1(S))2]

(i)
= E[A1A2((Y (1, 1)− ν1(S))2 + (ν1(S)− ν∗1(S))2)] ≤ E[O2

1] +
1

c2
0

E[O2
2], (3.181)

where (i) holds as in (3.155). Additionally,

E[A1ε
2] = E[ε2

1] = E[A1(ν∗1(S)− µ∗1(S1))2]

≤ 3
[
E[A1(ν∗1(S)− ν1(S))2] + E[A1(ν1(S)− µ1(S1))2] + E[A1(µ1(S1)− µ∗1(S1))2]

]
≤ 3

c2
0

E[O2
2] + 3E[O2

3] + 3Cµσ
2.

Repeating the process above, we also have

E[(1− A1)(1− A2)ζ2] ≤ E[O2
4] +

1

c2
0

E[O2
5], (3.182)

E[(1− A1)ε2] ≤ 3

c2
0

E[O2
5] + 3E[O2

6] + 3Cµσ
2.

Besides, we also have

E[ξ2] = E[O2
8]. (3.183)

Therefore, we conclude that

E[ζ2] + E[ε2] + E[ξ2]

= E[A1A2ζ
2] + E[(1− A1)(1− A2)ζ2] + E[A1ε

2] + E[(1− A1)ε2] + E[ξ2]

≤ E[O2
1 +

4

c2
0

O2
2 + 3O2

3 +O2
4 +

4

c2
0

O2
5 + 3O2

6 +O2
8] + 6Cµσ

2 ≤
(

4

c2
0

+ 6Cµ

)
σ2,

since c < 1 and (3.179) holds.

b) Now, we assume Assumption 3.3 holds. Same as in part a), we also have (3.179),

(3.181), (3.182), and (3.183) hold. Additionally, under Assumption 3.3, by Lemma D.1 (iv)
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of [CLCL19], we also have

E[ε2] ≤ 2σ2
εσ

2.

Therefore,

E[ζ2] + E[ε2] + E[ξ2]

= E[A1A2ζ
2] + E[(1− A1)(1− A2)ζ2] + E[ε2] + E[ξ2]

≤ E[O2
1 +

1

c2
0

O2
2 +O2

4 +
1

c2
0

O2
5 +O2

8] + 2σ2
εσ

2 ≤
(

1

c2
0

+ 2σ2
ε

)
σ2.

Proof of Lemma 3.13. We first show that (3.100) holds. By Lemma 3.12, we have

ψ(W ; η∗)− θ =
8∑
i=1

Oi, σ2 = E(ψ(W ; η∗)− θ)2 =
8∑
i=1

E[O2
i ],

where {Oi}8
i=1 are defined as (3.171)-(3.178). Since now we assume η∗ = η that all the

models are correctly specified, we have Oi = 0 for i ∈ {2, 5, 7} and hence

ψ(W ; η∗)− θ = O1 +O3 +O4 +O6 +O8, (3.184)

σ2 = E[O2
1] + E[O2

3] + E[O2
4] + E[O2

6] + E[O2
8] =

5∑
i=1

Vi,

where

V1 :=E

[(
A1A2

π(S1)ρ1(S)
(Y − ν1(S))

)2
]
,

V2 :=E

[(
A1

π(S1)
(ν1(S)− µ1(S1))

)2
]
,

V3 :=E

[(
(1− A1)(1− A2)

(1− π(S1))(1− ρ0(S))
(Y − ν0(S))

)2
]
,

V4 :=E

[(
1− A1

1− π(S1)
(ν0(S)− µ0(S1))

)2
]
,

V5 :=E
[
(µ1(S1)− µ0(S1)− θ)2] .
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We lower bound each terms above:

V1
(i)
= E

[(
ζ1

π(S1)ρ1(S)

)2
]

(ii)
= E

[(
A1A2

π(S1)ρ1(S)
ζ

)2
]

(iii)

≥ E[A1A2ζ
2],

V2
(iv)
= E

[(
ε1

π(S1)

)2
]

(v)
= E

[(
A1

π(S1)
ε

)2
]

(vi)

≥ E[A1ε
2],

where (i) and (iv) hold since ν∗1(·) = ν1(·) and µ∗1(·) = µ1(·); (ii) and (v) hold since ζ1 = A1A2ζ

and ε1 = A1ε; (iii) and (vi) hold since A1, A2 ∈ {0, 1}, π(S1) ≤ 1 and ρ1(S) ≤ 1 with

probability 1 under Assumption 3.1. Similarly,

V3 ≥ E[(1− A1)(1− A2)ζ2], V4 ≥ E[(1− A1)ε2].

Additionally, by definition, ξ = µ1(S1)− µ0(S1)− θ. Hence,

V5 = E[ξ2].

Combining all the previous results, we have

σ2 : = E[ψ(W ; η∗)− θ]2 = E[ψ(W ; η)− θ]2

≥ E[A1A2ζ
2 + (1− A1)(1− A2)ζ2] + E[A1ε

2 + (1− A1)ε2] + E[ξ2]

= E[ζ2] + E[ε2] + E[ξ2].

Next, we show that (3.101) holds. Recall the representation (3.184). By the finite form of

Jensen’s inequality, and note that the function u 7→ |u|2+t is convex for any t > 0, we have

∣∣∣∣ψ(W ; η)− θ
5

∣∣∣∣2+t

=

∣∣∣∣O1 +O3 +O4 +O6 +O8

5

∣∣∣∣2+t

≤ |O1|2+t + |O3|2+t + |O4|2+t + |O6|2+t + |O8|2+t

5
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Therefore,

E|ψ(W ; η)− θ|2+t ≤ 51+tE[|O1|2+t + |O3|2+t + |O4|2+t + |O6|2+t + |O8|2+t]

= Ct

5∑
i=1

V ′i ,

where Ct = 51+t and

V ′1 :=E

[∣∣∣∣ A1A2

π(S1)ρ1(S)
(Y − ν1(S))

∣∣∣∣2+t
]
,

V ′2 :=E

[∣∣∣∣ A1

π(S1)
(ν1(S)− µ1(S1))

∣∣∣∣2+t
]
,

V ′3 :=E

[∣∣∣∣ (1− A1)(1− A2)

(1− π(S1))(1− ρ0(S))
(Y − ν0(S))

∣∣∣∣2+t
]
,

V ′4 :=E

[∣∣∣∣ 1− A1

1− π(S1)
(ν0(S)− µ0(S1))

∣∣∣∣2+t
]
,

V ′5 :=E
[
|µ1(S1)− µ0(S1)− θ|2+t] .

Now, we upper bound each of the terms above.

V ′1
(i)
=E

[∣∣∣∣ ζ1

π(S1)ρ1(S)

∣∣∣∣2+t
]

(ii)
= E

[∣∣∣∣ A1A2

π(S1)ρ1(S)
ζ

∣∣∣∣2+t
]

(iii)

≤ 1

c4+2t
0

E[|ζ|2+t],

V ′2
(iv)
=E

[∣∣∣∣ ε1

π(S1)

∣∣∣∣2+t
]

(v)
= E

[∣∣∣∣ A1

π(S1)
ε

∣∣∣∣2+t
]

(vi)

≤ 1

c4+2t
0

E[|ε|2+t],

where (i) and (iv) hold since ν∗1(·) = ν1(·) and µ∗1(·) = µ1(·); (ii) and (v) hold since ζ1 = A1A2ζ

and ε1 = A1ε; (iii) and (vi) hold since A1, A2 ∈ {0, 1}, π(S1), ρ1(S) ∈ [c0, 1 − c0] with

probability 1 under Assumption 3.1. Similarly, we also have

V ′3 ≤
1

c4+2t
0

E[|ζ|2+t], V ′4 ≤
1

c2+t
0

E[|ε|2+t].

In addition, by definition, ξ = µ1(S1)− µ0(S1)− θ. Hence,

V ′5 = E[|ξ|2+t].
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Therefore, we conclude that

E|ψ(W ; η)− θ|2+t ≤ Ct

[
2

c4+2t
0

E[|ζ|2+t] +
2

c2+t
0

E[|ε|2+t] + E[|ξ|2+t]

]
≤ 2Ct

c4+2t
0

E[|ζ|2+t + |ε|2+t + |ξ|2+t],

since 0 < c < 1 and t > 0.

Proof of Lemma 3.14. We show that for each k = 1, ..., K,

1

n

∑
i∈Ik

(ψ(Wi; η)− θ)2 − σ2 = op(σ
2), (3.185)

1

n

∑
i∈Ik

(ψ(Wi; η̂)− θ̂)2 − 1

n

∑
i∈Ik

(ψ(Wi; η)− θ)2 = op(σ
2), (3.186)

We first show (3.185). Let ZN,i := σ−1(ψ(Wi; η) − θ)2 − 1, note that both Wi and

η are possibly dependent with (d1, d2) = (dN,1, dN,2). Hence, (ZN,i)N,i forms a row-wise

independent and identically distributed triangular array, and (3.185) is equivalent to

1

n

∑
i∈Ik

Zi = o(1).

By Lemma 3 of [ZB21], it suffices to show that E(Zd,1) = 0 and E|Zd,1|q < C ′ with some

constants q > 1 and C ′ > 0. By definition,

E(Zd,1) = E

[
(ψ(W ; η)− θ)2

σ2
− 1

]
=
σ2

σ2
− 1 = 0.

In addition, by Minkowski inequality,[
E

∣∣∣∣(ψ(W ; η)− θ)2

σ2
− 1

∣∣∣∣ 2+t2

] 2
2+t

≤
[
E|(ψ(W ; η)− θ)|2+t

σ2+t

] 2
2+t

+ 1 < C + 1.

It follows that

E|Zd,1|
2+t
2 = E

∣∣∣∣(ψ(W ; η)− θ)2

σ2
− 1

∣∣∣∣ 2+t2

< (C + 1)
2+t
2 ,
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with (2 + t)/2 > 1. Therefore, by Lemma 3 of [ZB21], we conclude that (3.185) holds.

Next, we show (3.186). Let ai = ψ(Wi; η̂)−ψ(Wi; η)− (θ̂− θ) and bi = ψ(Wi; η)− θ.

Then, it follows from the triangle inequality that∣∣∣∣∣ 1n∑
i∈Ik

(ψ(Wi; η̂)− θ̂)2 − 1

n

∑
i∈Ik

(ψ(Wi; η)− θ)2

∣∣∣∣∣
≤ 1

n

∑
i∈Ik

|ai| · |ai + 2bi|
(i)

≤

[
1

n

∑
i∈Ik

a2
i

] 1
2

·

[
1

n

∑
i∈Ik

(ai + 2bi)
2

] 1
2

(ii)

≤

[
1

n

∑
i∈Ik

a2
i

] 1
2

·

( 1

n

∑
i∈Ik

a2
i

) 1
2

+ 2

(
1

n

∑
i∈Ik

b2
i

) 1
2

 ,
where (i) follows from Cauchy-Schwarz inequality; (ii) follows from Minkowski inequality.

Recall the equation (3.185), we have

1

n

∑
i∈Ik

b2
i =

1

n

∑
i∈Ik

(ψ(Wi; η)− θ)2 = σ2(1 + op(1)).

Since, by assumption, θ̂− θ = Op(σ/
√
N) and [ 1

n

∑
i∈Ik |ψ(Wi; η̂)− ψ(Wi; η)|2]

1
2 = op(σ), we

have [
1

n

∑
i∈Ik

a2
i

] 1
2

≤

[
1

n

∑
i∈Ik

|ψ(Wi; η̂)− ψ(Wi; η)|2
] 1

2

+ |θ̂ − θ| = op(σ).

Therefore, ∣∣∣∣∣ 1n∑
i∈Ik

(ψ(Wi; η̂)− θ̂)2 − 1

n

∑
i∈Ik

(ψ(Wi; η)− θ)2

∣∣∣∣∣
= op(σ) · [op(σ) + σ(1 + op(1))] = op(σ

2).
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Now, by (3.185) and (3.186), we have

σ̂2 − σ2 =
1

K

K∑
k=1

1

n

∑
i∈Ik

(ψ(Wi; η̂)− θ̂)2 − σ

=
1

K

K∑
k=1

(
1

n

∑
i∈Ik

(ψ(Wi; η̂)− θ̂)2 − (ψ(Wi; η)− θ)2 + (ψ(Wi; η)− θ)2 − σ

)

= op(σ
2).
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Chapter 4

Dynamic treatment effects:

high-dimensional inference under

model misspecification

4.1 Introduction

Statistical inference and estimation for causal relationships has a long tradition and

has attracted significant attention as the emerging of large and complex datasets and the need

for new statistical tools to handle such challenging datasets. In many applications, data is

collected dynamically over time, and individuals are exposed to treatments at multiple stages.

Typical examples include mobile health datasets, electronic health records, and many other

biomedical studies and political science datasets. This work considers statistical inference

of causal effects for longitudinal and observational data with high-dimensional covariates

(confounders). We aim to establish valid statistical inference for dynamic treatment effects
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under possible model misspecifications.

For the sake of simplicity, we consider dynamic settings with two exposure times. Sup-

pose that we collect independent and identically distributed (i.i.d.) samples S := (Wi)
N
i=1 :=

(Yi, A1i, A2i,S1i,S2i)
N
i=1, and let W := (Y,A1, A2,S1,S2) be an independent copy of Wi.

Here, Y ∈ R denotes the observed outcome variable at the final stage, Y (a1, a2) is the (un-

observable) potential outcome for a1, a2 ∈ {0, 1}, and we assume the standard consistency

condition Y = Y (A1, A2) throughout; A1, A2 ∈ {0, 1} denote the treatment indicator vari-

able at time 1 and time 2, respectively; S1 ∈ Rd1 and S2 ∈ Rd2 denote the covariate (or

confounder) variables at time 1 and time 2, respectively. Suppose the first coordinate of S1

is 1. Let S̄2i := (ST1i,S
T
2i)

T , S̄2 := (ST1 ,S
T
2 )T , d := d1 + d2, and possibly, d� N as N →∞.

Define the following counterfactual mean parameters:

θa1,a2 := E{Y (a1, a2)}, for any a1, a2 ∈ {0, 1}.

The dynamic treatment effect of the given a treatment sequence (a1, a2) compared with the

control sequence (a′1, a
′
2) can then be defined as the difference: DTE := θa1,a2 − θa′1,a′2 . To

estimate the dynamic treatment effect, it suffices to estimate θa1,a2 and θa′1,a′2 seperately.

Without loss of generality, we focus on the inference of the counterfactual mean θ1,1. Similar

results also hold analogously for θ0,0, θ0,1, θ1,0, and statistical inference for the dynamic

treatment effect can be further provided by combining the results for the two counterfactual

means.

To identify the parameter of interest under dynamic settings, we consider the marginal

structural mean (MSM) models. Three different approaches are studied under the MSM

models: the inverse probability weighting (IPW) method, the covariate balancing method,
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and the doubly robust method. The IPW method has been well-studied by, e.g., [Rob86,

Rob00a, HBR01, Rob04, BAWM18]. The consistencies of IPW estimators require correctly

specified propensity score (PS) models and statistical inference is usually only valid in low

dimensions. In addition, [ZW18, KS18, YS18, VB21] proposed covariate balancing dynamic

treatment effect estimators, where correctly specified outcome regression (OR) models are

required. To achieve
√
N -inference in high dimensions, they also need very strong sparsity

conditions for the OR models’ parameters, e.g., with a sparsity level o(N1/8 log−3/4(Nd)) as

in [VB21]. The doubly robust method is studied using a doubly robust representation for

the parameter of interest, which involves both the PS and the OR models [IR15a, LM05,

Mur03, Rob00a, Rob87]. With the presence of high-dimensional covariates, doubly robust

estimators for the dynamic treatment effects have been recently studied by [BHL20,BJZ21],

and
√
N -inference is provided when all the nuisance models are correctly specified.

We consider the doubly robust approach, but with carefully constructed “moment

targeted” nuisance estimators. Based on such nuisance estimators, we achieve
√
N inference

for the parameter of interest even model misspecification occurs. This is the first result

establishing statistical inference for dynamic treatment effects under high-dimensional set-

tings that allows model misspecifications. Specifically, our proposed estimator is sequentially

doubly robust. That is, the estimator is consistent and asymptotically normal (CAN) as long
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as one of the following cases occurs:

The OR models at time 1 and 2 are correctly specified; (4.1)

The PS models at time 1 and 2 are correctly specified; (4.2)

The OR model at time 1 and the PS model at time 2 are correctly specified; (4.3)

The OR model at time 2 and the PS model at time 1 are correctly specified. (4.4)

In other words, we require at least one of the models to be correctly specified at each time

spot; see results in Theorem 4.1 and Assumption 4.2 required therein. We reach the best

model robustness so far, even containing the existing results in low dimensions.

In low-dimensional settings, doubly robust estimators for dynamic treatment effects

have been studied by [Rob00b, MvdLRG01, BR05, YvdL06]. Their proposed estimators are

CAN when either (4.1) or (4.2) holds, but (4.3) and (4.4) are not allowed. Recently, [BRR19]

proposed a “multiple robust” estimator (also in low-dimensions), which reaches the best

model robustness so far in the existing literature. Their estimator is CAN when any of

(4.1), (4.2), or (4.3) holds, but case (4.4) is not allowed. Additionally, our estimator is also

more robust than the IPW and covariate balancing estimators. The IPW estimators always

require correctly specified PS models, and the covariate balancing estimators always require

correctly specified OR models. Whereas we do not enforce any single model to be correctly

specified, and hence weaker conditions on the model correctness are assumed in our work.

Apart from the MSM models, the dynamic treatment effect can also be identified

through the structural nested mean (SNM) models, and G-computation has been used to

estimate the parameter of interest [Rob86]. Recently, [LS20] proposed estimators for some

“blip functions” under SNM models in high dimensions. However, they always require cor-
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rectly specified blip functions, and they provided statistical inference for the counterfactual

mean estimator only in low dimensions.

Furthermore, even when all the models are correctly specified, we require weaker

sparsity conditions than the existing doubly robust literature in high dimensions [BHL20,

BJZ21], where three “product sparsity” conditions are required. Whereas, we only need

two “product sparsity” conditions; see Theorem 4.2 and comparisons in Remark 4.8. This

is because, based on a special “doubly robust type” estimator for the OR model at time

1, we can achieve a better consistency rate and hence result in a weaker condition on the

counterfactual mean estimator; see discussion in Remark 4.12.

The average treatment effect estimation problem is closely related to the dynamic

treatment effect estimation problem – it can be seen as a special (degenerated) problem with

non-longitudinal data. The average treatment effect estimation has a long tradition [Rub74],

and it has attracted a significant amount of recent attention with the appearance of high-

dimensional covariates; e.g., [Far15, AIW18, CCD+18, SRR19, BWZ19, Tan20a]. Statistical

inference for the average treatment effect under model misspecifications has been studied

by [SRR19, Tan20a, DV20, DAV20, AV21]. They have proposed “model doubly robust” es-

timators, which are shown to be CAN as long as either the OR model or the PS model is

correctly specified. Their estimators are constructed based on a doubly robust representa-

tion for the average treatment effect and some special nuisance estimators. Among these

work, [SRR19] required the weakest sparsity conditions, and our results reach the same con-

ditions if a degenerated non-longitudinal case is considered; see discussion in Remark 4.7.

In addition, [BWZ19] also proposed another average treatment effect estimator based on the

same type of nuisance estimators but with a special type of cross-fitting. They only focused
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on correctly specified models, and CAN has been achieved requiring sparsity conditions

different from the literature; see more details in Remark 4.8.

The optimal dynamic treatment regime [Mur03] is another related field, where their

goal is to provide optimal individualized treatments over time under dynamic settings. Es-

timators for the optimal dynamic treatment regime have been proposed using reinforcement

learning algorithms, such as Q-learning [Wat89, WD92, Mur05, CMS10, MR10, SWZK15,

LLL+19, FWXY20], A-learning [Mur03, BMZ04, Rob04, SFSL18], and some other recent

methods, e.g., IQ-learning [LLS14,LLS17] and V-learning [LLK+20]. In addition, [NBW21]

also tackled another related problem recently, where their purpose is to learn when a treat-

ment should perform if the treatment is only allowed to act once.

Notation We use the following notation throughout. Let P (·) and E(·) denote the proba-

bility measure and expectation characterizing the joint distribution of the underlying random

vector W := ({Y (a1, a2)}a1,a2∈{0,1}, A1, A2,S1,S2), respectively. For any α > 0, let ψα(·) de-

note the function given by ψα(x) := exp(α2) − 1, ∀x > 0. The ψα-Orlicz norm ‖ · ‖ψα of a

random variable X ∈ R is defined as ‖X‖ψα := inf{c > 0 : E[ψα(|X|/c)] ≤ 1}. Two special

cases of finite ψα−Orlicz norm are given by ψ2(x) = exp(x2) − 1 and ψ1(x) = exp(x) − 1,

which correspond to sub-Gaussian and sub-exponential random variables, respectively. The

notation aN � bN denotes cbN ≤ aN ≤ CbN for all N ≥ 1 and with some constants c, C > 0.

For any S̃ ⊆ S = (Zi)
N
i=1, define PS̃ as the joint distribution of S̃ and ES̃(f) =

∫
fdPS̃. For

r ≥ 1, define the lr-norm of a vector z with ‖z‖r := (
∑p

j=1 |z(j)|r)1/r, ‖z‖0 := |{j : z(j) 6= 0}|,

and ‖z‖∞ := maxj |z(j)|.
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4.2 Doubly robust representation and working models

In Section 4.2.1, we first introduce a doubly robust representation for the counter-

factual mean, θ1,1. Such a representation has already been studied by the literature and

is constructed based on a doubly robust score, (4.11), satisfying the “Neyman orthogonal-

ity” [CCD+18]. Estimators based on doubly robust scores are known to be asymptotically

normal when all nuisance models are correctly specified, and some product rate conditions

are satisfied. Such a property is also known as “rate double robustness” in non-dynamic

settings; see, e.g., [SRR19]. However, when model misspecification occurs, the doubly ro-

bust score does not guarantee a
√
N -inference. To reduce the bias originating from model

misspecification, we propose novel working models for the nuisance functions based on spe-

cial loss functions in Section 4.2.2. Further discussions about the model correctness of the

proposed working nuisance models are then provided in Section 4.2.3.

4.2.1 A doubly robust representation in dynamic settings

To identify the counterfactual mean θ1,1, we assume the standard sequential ignora-

bility, consistency, and overlap conditions; see, e.g., [IR15a,LM05,Mur03,Rob00a,Rob87].

Assumption 4.1 (Basic assumptions). (a) Sequential ignorability: for each a ∈ {0, 1},

Y (a1, a2) ⊥⊥ A1 | S1, Y (a1, a2) ⊥⊥ A2 | (S1,S2, A1 = a1).

(b) Consistency:

Y = Y (A1, A2).
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(c) Overlap: define the (true) PS functions at time 1 and time 2 as

π(s1) := E(A1 | S1 = s1), ρ(s̄2) := E(A2 | S̄2 = s̄2, A1 = 1), ∀s1 ∈ Rd1 , s̄2 ∈ Rd, (4.5)

respectively. Let

P (c0 < π(S1) < 1− c0) = 1, P (c0 < ρ(S̄2) < 1− c0) = 1, (4.6)

with some constant c0 ∈ (0, 1). Additionally, let π∗(·) and ρ∗(·) be some functions satisfying

P (c0 < π∗(S1) < 1− c0) = 1, P (c0 < ρ∗(S̄2) < 1− c0) = 1. (4.7)

Here, π∗(·) and ρ∗(·) are the working models for the true PS functions π(·) and ρ(·),

respectively. We consider possible model misspecifications that π∗(·) 6= π(·) and ρ∗(·) 6= ρ(·)

are allowed. The condition (4.7) is an overlap condition for the working PS models, which

reaches the usual overlap condition (4.6) when the PS models are correctly specified.

In addition, we denote the (true) OR functions as

µ(s1) := E{Y (1, 1) | S1 = s1}, ν(s̄2) := E{Y (1, 1) | S̄2 = s̄2, A1 = 1}, ∀s1 ∈ Rd1 , s̄2 ∈ Rd.

Similarly, let µ∗(·) and ν∗(·) be the working models for the true OR functions µ(·) and ν(·),

respectively, and misspecified OR models are also allowed.

We let the following condition holds:

Assumption 4.2 (Sequential model double robustness). Let (a) either π(·) = π∗(·) or

µ(·) = µ∗(·) holds, but not necessarily both; and (b) either ρ(·) = ρ∗(·) or ν(·) = ν∗(·), but

not necessarily both.

Under Assumptions 4.1 and 4.2, the following doubly robust representation holds:

θ1,1 = E

[
µ∗(S1) +

A1{ν∗(S̄2)− µ∗(S1))

π∗(S1)
+
A1A2(Y − ν∗(S̄2))

π∗(S1)ρ∗(S̄2)

]
. (4.8)
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The above doubly robust representation has been also studied by, e.g., [NBW21,TYWK+19,

vdLG11,ORR10,MvdLRG01,BHL20,BJZ21].

With the presence of high-dimensional covariates, [BHL20, BJZ21] proposed mean

estimators based on the doubly robust representation (4.8). Their proposed estimators are

asymptotically normally distributed when all the nuisance models are correctly specified.

However, when model misspecification occurs, their estimators are only shown to be consis-

tent under Assumption 4.2, and statistical inference is not valid under such scenarios.

In this chapter, we also consider the standard doubly robust representation (4.8).

However, as discussed in the following Section 4.2.2, using carefully chosen nuisance param-

eters, we can achieve asymptotic normality and hence construct valid inference even when

model misspecification occurs.

4.2.2 Construction of the sequential model double robustness

In this chapter, we consider linear working models for the OR functions and logistic

working models for the PS functions: for any s1 ∈ Rd1 and s̄2 ∈ Rd, let

π∗(s1) := g(sT1 γ
∗), ρ∗(s̄2) := g(s̄T2 δ

∗), ν∗(s̄2) := s̄T2α
∗, µ∗(s1) := sT1 β

∗, (4.9)

where η∗T := (γ∗T , δ∗T ,α∗T ,β∗T )T are some carefully chosen population nuisance parame-

ters defined later in (4.12)-(4.15), and g(·) is the logistic function that

g(u) =
exp(u)

1 + exp(u)
=

1

1 + exp(−u)
, for all u ∈ R. (4.10)
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Based on the doubly robust representation (4.8) with linear and logistic working models, we

consider the following (uncentered) doubly robust score function:

ψ(W;η) := ST1 β +
A1(S̄T2α− ST1 β)

g(ST1 γ)
+
A1A2(Y − S̄T2α)

g(ST1 γ)g(S̄T2 δ)
, (4.11)

for any arbitrary η := (γT , δT ,αT ,βT )T . Then, under Assumptions 4.1 and 4.2, we have

E{ψ(W;η∗)} = θ1,1. Let η̂ := (γ̂T , δ̂T , α̂T , β̂T )T be an estimate of η∗. Then, a doubly

robust mean estimator has the following form:

θ̂1,1 = N−1

N∑
i=1

ψ(Wi; η̂).

For the sake of simplicity, let η̂ ⊥⊥ (Wi)
N
i=1. Then, by Taylor’s theorem, we have the following

expression for the bias:

E(θ̂1,1)− θ1,1 =E{ψ(W; η̂)− ψ(W;η∗)} = ∆1 + ∆2, where

∆1 :=E{∇ηψ(W;η∗)}T (η̂ − η∗),

and ∆2 is some remainder term potentially of the order o(N−1/2). Since the score function

(4.11) satisfies the ”Neyman orthogonality” [CCD+18], we have E{∇ηψ(W;η∗)} = 0 and

hence ∆1 = 0 when all the nuisance models are correctly specified. Such a fact is only

originated from the construction of the score (4.11) and is independent of the choice of the

target nuisance paramters, η∗. However, when model misspecification occurs, the ”Neyman

orthogonality” does not guarantee that E{∇ηψ(W;η∗)} = 0 and the bias term ∆1 is unig-

norable since, in high dimensions, the convergence rate of η̂−η∗ is typically slower than the

paramteric rate N−1/2.

To reduce the bias, we construct the target population nuisance parameters η∗ in a
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way such that E{∇ηψ(W;η∗)} = 0 always holds even when misspecification occurs: define

γ∗ := arg min
γ∈Rd1

E{`1(W;γ)}, (4.12)

δ∗ := arg min
δ∈Rd

E{`2(W;γ∗, δ)}, (4.13)

α∗ := arg min
α∈Rd

E{`3(W;γ∗, δ∗,α)}, (4.14)

β∗ := arg min
β∈Rd1

E{`4(W;γ∗, δ∗,α∗,β)}, (4.15)

where, for any β,γ ∈ Rd1 and α, δ ∈ Rd, the loss functions are defined as

`1(W;γ) := (1− A1)ST1 γ + A1 exp(−ST1 γ), (4.16)

`2(W;γ, δ) :=
A1

g(ST1 γ)

{
(1− A2)S̄T2 δ + A2 exp(−S̄T2 δ)

}
, (4.17)

`3(W;γ, δ,α) :=
A1A2 exp(−S̄T2 δ)

g(ST1 γ)
(Y − S̄T2α)2, (4.18)

`4(W;γ, δ,α,β) := A1 exp(−ST1 γ)

{
S̄T2α+

A2(Y − S̄T2α)

g(S̄T2 δ)
− ST1 β

}2

. (4.19)

The loss functions (4.16)-(4.19) are carefully chosen such that

E {∇γψ(W;η∗)} = −E
[
A1 exp(−ST1 γ

∗)

{
S̄T2α

∗ +
A2(Y − S̄T2α

∗)

g(S̄T2 δ
∗)

− ST1 β
∗
}

S1

]
= ∇βE{`4(W;γ∗, δ∗,α∗,β∗)}/2,

E {∇δψ(W;η∗)} = −E
[
A1A2 exp(−S̄T2 δ

∗)

g(ST1 γ
∗)

(Y − S̄T2α
∗)S̄2

]
= ∇αE{`3(W;γ∗, δ∗,α∗)}/2,

E {∇αψ(W;η∗)} = E

[
A1

g(ST1 γ
∗)

{
1− A2

g(S̄T2 δ
∗)

}
S̄2

]
= ∇δE{`2(W;γ∗, δ∗)},

E {∇βψ(W;η∗)} = E

[{
1− A1

g(ST1 γ
∗)

}
S1

]
= ∇γE{`1(W;γ∗)}.

By the constructions (4.12)-(4.15) and the first-order optimality conditions, the left-hand

sides of every equalities above are all zero vectors, and hence E{∇ηψ(W;η∗)} = 0 is guar-

323



anteed even when the nuisance models are misspecified. Now, it follows that ∆1 = 0 and,

when ∆2 is small enough, the bias is ignorable. Hence, valid
√
N -inference is possible under

model misspecifications.

Remark 4.1 (Discussion for the loss functions). The loss function designed for the PS

model at time 1, (4.16), coincides with the PS model’s loss function studied by [SRR19,

Tan20a, AV21, BWZ19], where non-longitudinal data was considered therein. The second

loss function, (4.17), can be seen as a weighted version of (4.16). The loss function for

the OR model at time 2, (4.18), is a weighted squre loss, and it can also be viewed as a

weighted version of the OR model’s loss function in [SRR19,Tan20a,AV21,BWZ19]. Lastly,

the loss function (4.19) can also be seen as a weighted square loss, with a “doubly robust”

type outcome S̄T2α
∗ + A2g

−1(S̄T2 δ
∗)(Y (1, 1)− S̄T2α

∗); see more discussion in Remark 4.3.

4.2.3 Correctness of the nuisance models

The nested models are hard to interpret, especially the OR model at time spot 1, µ(·).

Such difficulty has been discussed by, e.g., [BRR19]. In below, we also provide discussion

and illustrations on the correctness of the carefully designed nuisance models, (4.9).

Remark 4.2 (Model correctness). We discuss when will the two PS models, π∗(·) and ρ∗(·),

and the two OR models, ν∗(·) and µ∗(·) be correctly specified.

(a) We say π∗(·) is correctly specified when π∗(·) = π(·), which occurs if and only if there

exists some γ0 ∈ Rd1, such that π(s1) = g(sT1 γ
0) holds. Additionally, we have γ∗ = γ0.

(b) We say ρ∗(·) is correctly specified when ρ∗(·) = ρ(·), which occurs if and only if there

exists some δ0 ∈ Rd, such that ρ(s̄2) = g(s̄T2 δ
0) holds. Additionally, we have δ∗ = δ0.
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(c) We say ν∗(·) is correctly specified when ν∗(·) = ν(·), which occurs if and only if there

exists some α0 ∈ Rd, such that ν(s̄2) = s̄T2α
0 holds. Additionally, we have α∗ = α0.

(d) We say µ∗(·) is correctly specified when µ∗(·) = µ(·), which occurs if there exists some

β0 ∈ Rd, such that µ(s1) = sT1 β
0 and, furthermore, either case (b) or (c) holds.

Additionally, we have β∗ = β0.

Note that, δ∗, (4.13), is constructed based on γ∗. However, from the case (b), we can

see that the correctness of ρ∗(·) does not depend on γ∗. That is, whether the model π∗(·)

is correctly specified does not affect the correctness of ρ∗(·). Analogous result for ν∗(·) can

be found in case (c). From the cases (a)-(c), we conclude that the correctness of the three

models π∗(·), ρ∗(·) and ν∗(·) has no effects on each other.

However, unlike in cases (a)-(c), µ(·) is linear that µ(s1) = sT1 β
0 with some β0 ∈ Rd1

does not imply µ∗(·) is correctly specified, since β∗ defined in (4.15) may not reach the true

parameter β0. As in case (d), we can see that µ∗(·) is correctly specified if we additionally

assume either ρ∗(·) or ν∗(·) is (or both are) correctly specified. Such a condition is always

assumed throughout the chapter (as in in Assumption 4.2), since it is also required in the

doubly robust representation (4.8).

Based on the results in cases (a)-(d), to estimate the counterfactual mean θ1,1, the

required Assumption 4.2 is equivalent to the following: (a) either π(s1) = g(sT1 γ
0) with some

γ0 ∈ Rd1 or µ(s1) = sT1 β
0 with some β0 ∈ Rd1, but not necessarily both; and (b) either

ρ(s̄2) = g(s̄T2 δ
0) with some δ0 ∈ Rd or ν(s̄2) = s̄T2α

0 with some α0 ∈ Rd, but not necessarily

both.

Justifications Below are the justifications of the cases (a)-(d) of Remark 1.
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By the construction of γ∗, δ∗,α∗,β∗, we have

E
[
{1− A1g

−1(ST1 γ
∗)}S1

]
= 0 ∈ Rd1 ,

E
[
A1g

−1(ST1 γ
∗){1− A2g

−1(S̄T2 δ
∗)}S̄2

]
= 0 ∈ Rd,

E
{
A1A2g

−1(ST1 γ
∗) exp(−S̄T2 δ

∗)(Y − S̄T2α
∗)S̄2

}
= 0 ∈ Rd,

E
[
A1 exp(−ST1 γ

∗)
{
S̄T2α

∗ − ST1 β
∗ + A2g

−1(S̄T2 δ
∗)(Y − S̄T2α

∗)
}

S1

]
= 0 ∈ Rd1 .

For (a), (b) and (c), by the tower rule and the corresponding model E(A1|S1) = g(ST1 γ
0),

E(A2 | S̄2, A1 = 1) = g(S̄T2 δ
0) and E{Y (1, 1) | S̄2, A1 = 1} = S̄T2α

0, we have

E
[
{1− A1g

−1(ST1 γ
0)}S1

]
= 0 ∈ Rd1 ,

E
[
A1g

−1(ST1 γ
∗){1− A2g

−1(S̄T2 δ
0)}S̄2

]
= 0 ∈ Rd,

E
{
A1A2g

−1(ST1 γ
∗) exp(−S̄T2 δ

∗)(Y − S̄T2α
0)S̄2

}
= 0 ∈ Rd,

which implies γ∗ = γ0, δ∗ = δ0 and α∗ = α0.

For (d), if we assume that E{Y (1, 1) | S̄2, A1 = 1} = S̄T2α
0 and E{Y (1, 1) | S1} = ST1 β

0, we

have

E
[
A1A2 exp(−ST1 γ

∗)g−1(S̄T2 δ
∗)(Y − S̄T2α

∗)S1

]
(i)
= E

[
E
[
A1A2 exp(−ST1 γ

∗)g−1(S̄T2 δ
∗)(Y (1, 1)− S̄T2α

∗)S1 | S̄2, A1 = 1
]
· P (A1 = 1 | S̄2)

]
(ii)
= E

[
A1 exp(−ST1 γ

∗)ρ(S̄2)g−1(S̄T2 δ
∗)(E[Y (1, 1) | S̄2, A1 = 1]− S̄T2α

∗)S1

]
(iii)
= 0 ∈ Rd1

where (i) holds by the tower rule and A1A2Y = A1A2Y (1, 1); (ii) holds by Assumption

4.1(a); (iii) holds by E{Y (1, 1) | S̄2, A1 = 1} = S̄T2α
0 = S̄T2α

∗, since α∗ = α0 by (c). Also,
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by the tower rule, we have

E
[
A1 exp(−ST1 γ

∗)
{
S̄T2α

∗ − ST1 β
0
}

S1

]
= E

[
E
[
A1 exp(−ST1 γ

∗)
{
S̄T2α

∗ − ST1 β
0
}

S1 | S1, A1 = 1
]
π(S1)

]
(i)
= E[exp(−ST1 γ

∗)π(S1)
{
E(S̄T2α

0 | S1, A1 = 1)− ST1 β
0
}

S1] = 0 ∈ Rd1 ,

where (i) holds by E[E{Y (1, 1) | S̄2, A1 = 1} | S1, A1 = 1] = E{Y (1, 1) | S1}. Hence,

E
[
A1 exp(−ST1 γ

∗)
{
S̄T2α

∗ − ST1 β
0 + A2g

−1(S̄T2 δ
∗)(Y − S̄T2α

∗)
}

S1

]
= 0 ∈ Rd1 ,

which implies β∗ = β0.

If we assume that E(A2 | S̄2, A1 = 1) = g(S̄T2 δ
0) and E{Y (1, 1) | S1} = ST1 β

0, we have

E
[
A1A2 exp(−ST1 γ

∗)g−1(S̄T2 δ
∗)(Y − S̄T2α

∗)S1

]
(i)
= E

[
E
[
A1A2 exp(−ST1 γ

∗)g−1(S̄T2 δ
∗)(Y (1, 1)− S̄T2α

∗)S1 | S̄2, A1 = 1
]
· P (A1 = 1 | S̄2)

]
(ii)
= E

[
A1 exp(−ST1 γ

∗)E[A2 | S̄2, A1 = 1]g−1(S̄T2 δ
∗)(E[Y (1, 1) | S̄2, A1 = 1]− S̄T2α

∗)S1

]
(iii)
= E

[
A1 exp(−ST1 γ

∗)(ν(S̄2)− S̄T2α
∗)S1

]
where (i) holds by the tower rule and A1A2Y = A1A2Y (1, 1); (ii) holds by Assumption 4.1(a);

(iii) holds by E{Y (1, 1) | S̄2, A1 = 1} = ν(S̄2) and E(A2 | S̄2, A1 = 1) = g(S̄T2 δ
0) = g(S̄T2 δ

∗),

since δ∗ = δ0 by (b). Hence, by the tower rule,

E
[
A1 exp(−ST1 γ

∗)
{
S̄T2α

∗ − ST1 β
0 + A2g

−1(S̄T2 δ
∗)(Y − S̄T2α

∗)
}

S1

]
= E

[
A1 exp(−ST1 γ

∗)
{
ν(S̄2)− µ(S1)

}
S1

]
= 0 ∈ Rd1 ,

which implies β∗ = β0.
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Remark 4.3 (Nuisance parameters comparison with [BJZ21]). Here, we compare the nui-

sance parameters γ∗, δ∗, α∗, and β∗ with the nuisance parameters γ∗1 , δ∗1, α∗1, and β∗1

proposed therein:

γ∗1 := arg min
γ∈Rd1

E
[
−A1S

T
1 γ + log{1 + exp(ST1 γ)}

]
, (4.20)

δ∗1 := arg min
δ∈Rd

E
(
A1

[
−A2S̄

T
2 δ + log{1 + exp(S̄T2 δ)}

])
, (4.21)

α∗1 := arg min
α∈Rd

E
{
A1A2(Y − S̄T2α)2

}
, (4.22)

β∗1 := arg min
β∈Rd

E
{
A1(S̄T2α

∗
1 − ST1 β)2

}
. (4.23)

In general, the nuisance parameters proposed in (4.12)-(4.15) are not the same as the

above nuisance parameters (4.20)-(4.23). However, we have γ∗ = γ0 = γ∗1 under case (a) of

Remark 4.2; δ∗ = δ0 = δ∗1 under case (b); and α∗ = α0 = α∗1 under case (c). In addition,

any of π∗(·), ρ∗(·), ν∗(·) is correctly specified if and only if the corresponding nuisance model

of [BJZ21] is also correctly specified.

Now, we compare β∗ with β∗1 and discuss the conditions required for the correctness

of µ∗(·). Let µ(s1) = sT1 β
0 holds with some β0 ∈ Rd1. Then, observe that

β0 = arg min
β∈Rd1

E[A1{µ(S1)− ST1 β}2] = arg min
β∈Rd1

E[A1{ν(S̄2)− ST1 β}2].

Hence, β∗1, (4.23), can be seen as an approximate of β0 where ν(S̄2) is approximated by a

“regression” representation S̄T2α
∗
1. As discussed in Remark 2 of [BJZ21], β∗1 = β0 requires

additional restrictive constraint on α∗1 (the OR working model at time 2), which is typically

satisfied when case (c) holds.
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On the other hand, when µ(s1) = sT1 β
0, we also have

β0 = arg min
β∈Rd1

E[A1 exp(−ST1 γ
∗){µ(S1)− ST1 β}2]

= arg min
β∈Rd1

E[A1 exp(−ST1 γ
∗){ν(S̄2)− ST1 β}2].

Recall the definitions (4.15) and (4.19), β∗ can be seen as an approximate of β0 where ν(S̄2)

is approximated by a doubly robust representation S̄T2α
∗ + A2g

−1(S̄T2 δ
∗)(Y (1, 1) − S̄T2α

∗).

Note that,

ν(S̄2) = E
{
S̄T2α

∗ + A2g
−1(S̄T2 δ

∗)(Y (1, 1)− S̄T2α
∗) | S̄2, A1 = 1

}
, (4.24)

as long as either ρ∗(·) or ν∗(·) is correctly specified, which is a condition always required to

ensure the doubly robust representation (4.8). Then, as in case (d) of Remark 4.2, µ∗(·) is

correctly specified as long as we further assume that µ(·) is truly linear. Based on the doubly

robust representation, we can see that there is no need for any additional constraint on the

OR working model at time 2. Our nuisance model µ∗(·) constructed based on β∗ is more

likely to be correctly specified.

4.3 Sequential model doubly robust estimation

Now we propose estimators for the working nuisance models’ parameters introduced

in Section 4.2.2 and develop a novel sequential model doubly robust estimator for θ1,1; see

Section 4.3.1. The asymptotic properties are provided in Section 4.3.2, where we show that

√
N -inference is possible even under model misspecifications.
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4.3.1 Construction of the sequential model doubly robust estima-

tor

Targeted bias reducing nuisance estimators We introduce estimators for each of the

nuisance parameters defined in (4.12)-(4.15). Let Sγ , Sδ, Sα,Sβ be disjoint subsets of S with

equal sizesM � N , indexed by Iγ , Iδ, Iα, Iβ, respectively. For any γ,β ∈ Rd1 and δ,α ∈ Rd,

define

¯̀
1(γ) := M−1

∑
i∈Iγ

`(Wi;γ), ¯̀
2(γ, δ) := M−1

∑
i∈Iδ

`(Wi;γ, δ),

¯̀
3(γ, δ,α) := M−1

∑
i∈Iα

`(Wi;γ, δ,α), ¯̀
4(γ, δ,α,β) := M−1

∑
i∈Iβ

`(Wi;γ, δ,α,β),

where the loss functions are defined as (4.16)-(4.19). We propose the following moment

targeted nuisance estimators :

γ̂ := arg min
γ∈Rd1

{
¯̀
1(γ) + λγ‖γ‖1

}
, (4.25)

δ̂ := arg min
δ∈Rd

{
¯̀
2(γ̂, δ) + λδ‖δ‖1

}
, (4.26)

α̂ := arg min
α∈Rd

{
¯̀
3(γ̂, δ̂,α) + λα‖α‖1

}
, (4.27)

β̂ := arg min
β∈Rd1

{
¯̀
4(γ̂, δ̂, α̂,β) + λβ‖β‖1

}
. (4.28)

Remark 4.4 (Comparison with the nuisance estimators of [BRR19]). Similarly as discussed

in Remarks 4.1 and 4.3, β̂ itself is also constructed based on a doubly robust representation.

Another doubly robust estimator for the first OR model, µ(·), has been studied by [BRR19],

where low-dimensional covariates are considered. They used the usual maximum likelihood

estimators for the PS models. They did not consider the doubly robust representation for

ν(S̄2), (4.24). Instead, they achieved the double robustness for the estimation of µ(·) using
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Algorithm 3 Sequential model doubly robust counterfactual mean estimator

Require: Observations S = (Wi)
N
i=1 = (Yi, A1i, A2i,S1i,S2i)

N
i=1 and the treatment path of

interest (a1, a2) = (1, 1).

1: Split the sample S into K ≥ 2 folds that S = ∪Kk=1Sk, indexed by (Ik)Kk=1 and with equal

sizes n := N/K.

2: for k = 1, 2, ...,K do

3: Define I−k := I \Ik and S−k := (Wi)i∈I−k . Let (Sγ ,Sδ,Sα,Sβ) be a disjoint partition

of S−k with equal sizes M = |I−k|/4 = N(K− 1)/(4K).

4: Construct γ̂−k, (4.25), using the sub-sample Sγ . . Propensity for time one

5: Construct δ̂−k, (4.26), using γ̂−k and the sub-sample Sδ. . Propensity for time two

6: Construct α̂−k, (4.27), using γ̂−k, δ̂−k, and the sub-sample Sα. . Outcome for time

two

7: Construct β̂−k, (4.28), using γ̂−k, δ̂−k, α̂−k, and the sub-sample Sβ. . Outcome for

time one

8: end for

9: return The sequential model doubly robust counterfactual mean estimator is proposed

as

θ̂1,1 = N−1

K∑
k=1

∑
i∈Ik

ψ(Wi; η̂−k), (4.29)

where ψ(·; ·) is defined as (4.11) and let η̂−k := (γ̂T−k, δ̂
T
−k, α̂

T
−k, β̂

T
−k)

T for each k ≤ K.

some weighted least squares estimators for the OR models, where the weights are different

from ours in (4.18) and (4.19). However, they only considered low-dimensional settings, and

they required stronger model correctness conditions to achieve CAN for the counterfactual
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mean estimator than us, as discussed in Section 4.1 and Remark 4.6.

Bias-reduced doubly robust counterfactual mean estimator Based on the moment

targeted nuisance estimators, we propose a sequential model doubly robust estimator for the

counterfactual mean θ1,1 = E{Y (1, 1)}. We consider the doubly robust score (4.11) and

cross-fitted versions of the moment targeted nuisance estimators; see details in Algorithm 3.

4.3.2 Inference under model misspecification

We study the asymptotic properties of the proposed counterfactual mean estimator

θ̂1,1. The results in this section are based on the nuisance estimators’ theoretical properties

studied later in Section 4.4.

We first make the following mild assumption on the population nuisance parameters’

sparsity levels:

Assumption 4.3 (Sparse signals). Let the sparsity levels of the population nuisance param-

eters γ∗, δ∗, α∗ and β∗ satisfy

sγ + sβ = o

(
N

log d1

)
, sδ + sα = o

(
N

log d

)
, sγ + sδ + sα = O

(
N

log d1 log d

)
.

The sparsity conditions of the type s = o (N/ log d) is very common in the high-

dimensional Statistics literature. Here we also need a slightly stonger additional condition

sγ + sδ + sα = O(N/(log d1 log d)).

Remark 4.5 (Bounded covariates). Similarly as later discussed in Remark 4.10, if we further

assume that ‖S̄2‖∞ < C, which is a condition assumed in, e.g., [BWZ19], [Tan20a], and
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[SRR19], then, the condition sγ + sδ + sα = O(N/(log d1 log d)) in Assumption 4.3 is no

longer needed.

We establish the following asymptotic results for the proposed sequential model dou-

bly robust counterfactual mean estimator under possible model misspecification.

Theorem 4.1 (Inference under model misspecifications). Let Assumptions 4.2-4.3 hold.

Choose some λγ , λδ, λα, λβ > 0 with λγ �
√

log d1
N

, λδ �
√

log d
N

, λα �
√

log d
N

, λβ �
√

log d1
N

.

Let the following product sparsity conditions hold

sγsβ = o

(
N

(log d1)2

)
, sδsα = o

(
N

(log d)2

)
. (4.30)

We assume the following additional conditions if model misspecification occurs:

if ρ(·) 6= ρ∗(·), further let sγsα = o

(
N

log d1 log d

)
; (4.31)

if ν(·) 6= ν∗(·), further let sγsδ = o

(
N

log d1 log d

)
, sδ = o

(√
N

log d

)
; (4.32)

if µ(·) 6= µ∗(·), further let sγ = o

( √
N

log d1

)
, sγsδ + sγsα = o

(
N

log d1 log d

)
. (4.33)

Then, as N →∞,

σ−1N−1/2(θ̂1,1 − θ1,1) → N (0, 1)

in distribution, where

σ2 := E {ψ(W;η∗)− θ1,1}2 . (4.34)

In addition, define

σ̂2 := N−1

K∑
k=1

∑
i∈Ik

{
ψ(Wi; η̂−k)− θ̂1,1

}2

. (4.35)

Then, as N →∞, σ̂2 = σ2{1 + op(1)}.
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Remark 4.6 (Sequential model double robustness). In Theorem 4.1, we demonstrate the

“sequential model double robustness” of our proposed estimator:
√
N-inference is provided as

long as at least one nuisance model is correctly specified at each time spot; see Assumption

4.2. In the sense of model robustness, our results outperform all the existing results, even

containing those who only considered low-dimensional covariates.

In the presence of high-dimensional covariates, the regularized nuisance estimators are

known to be biased and with a consistency rate slower than N−1/2. Hence, valid inference

results are more difficult to obtain than in low dimensions. We are the first to establish sta-

tistical inference for the dynamic counterfactual mean (and hence dynamic treatment efect)

when any model misspecification occurs.

Among the literature who considered low-dimensional covariates, the recent work of

[BRR19] provided the best results so far on model robustness. Their proposed estimator is

CAN when either (4.1), (4.2) or (4.3) holds. However, as in Assumption 4.2, we allow an

additional case (4.4), which is not considered in [BRR19].

The model double robustness for average treatment effect estimation without dynamic

settings has been studied recently by [SRR19, Tan20a, AV21]. They provided valid inference

as long as one of the nuisance models is correctly specified, and their results can be seen as

special cases of ours where only one exposure time is considered.

Remark 4.7 (Required sparsity conditions under model misspecification). Here we discuss

the sparsity conditions required in Theorem 4.1 for
√
N-inference. We can see that the

correctness of π∗(·) does not affect the sparsity conditions; in addition, the more model mis-

specification occurs among ρ∗(·), ν∗(·), and µ∗(·), the more sparsity conditions we require.
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When ρ∗(·), ν∗(·), and µ∗(·) are all correctly specified, we require Assumption 4.3 and (4.30).

Whenever a model at time t ∈ {1, 2} is misspecified, we require a product condition between

1) the sparsity level of the other (correctly specified) model at the same time t and 2) the sum-

mation of sparsity levels corresponds to all the nuisance estimators that such a misspecified

estimator is constracted based on. Recall that we constrct the nuisance estimators sequentally

in the order: γ̂ → δ̂ → α̂→ β̂. For instance, when µ∗(·) is misspecified, as shown in (4.33),

we need a product condition between 1) sγ and 2) sγ + sδ + sα. Moreover, consider the cases

that the OR model at time t is misspecified. Since the OR estimators are constructed after

the PS estimators, based on the pattern we discussed above, we always require an ultra-sparse

PS parameter at time t. More details for the required sparsity conditions are listed in Table

4.1.

In addition, consider the degenerated case that only the first exposure time is involved.

Then, we require sγsβ = o(N/(log d1)2) when ν(·) = ν∗(·); or, sγsβ = o(N/(log d1)2) and

sγ = o(
√
N/ log d1) when ν(·) 6= ν∗(·). Such conditions coincide with [SRR19] and are

weaker than the sparsity conditions in [Tan20a, AV21], where both sγ = o(
√
N/ log d1) and

sβ = o(
√
N/ log d1) are required since cross-fitting was not performed therein.

If all the nuisance models are correctly specified, we have the following result:

Theorem 4.2 (Inference under correctly specified models). Suppose all the nuisance models

are correctly specified. Let Assumptions 4.1-4.3 and the product sparsity conditions (4.30)

hold. Choose some λγ , λδ, λα, λβ > 0 with λγ �
√

log d1
N

, λδ �
√

log d
N

, λα �
√

log d
N

, λβ �√
log d1
N

. Then, as N →∞,

σ−1N−1/2(θ̂1,1 − θ1,1) → N (0, 1)
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Table 4.1: Let ‖S̄2‖∞ < C, d1 � d, and sγ + sδ + sα + sβ = o(N/ log d). Sparsity condi-
tions required for the sequential model doubly robust counterfactual mean estimator to be
consistent and asymptotically normal

Model correctness
Required sparsity conditions

π∗(·) ρ∗(·) ν∗(·) µ∗(·)
3 3 3 3 sγsβ + sδsα = o

(
N

(log d)2

)
3 3 3 7 sγ = o

( √
N

log d

)
, sγsδ + sγsα + sγsβ + sδsα = o

(
N

(log d)2

)
3 3 7 3 sδ = o

( √
N

log d

)
, sγsδ + sγsβ + sδsα = o

(
N

(log d)2

)
3 3 7 3 sγsα + sγsβ + sδsα = o

(
N

(log d)2

)
7 3 3 3 sγsβ + sδsα = o

(
N

(log d)2

)
3 3 7 7 sγ + sδ = o

( √
N

log d

)
, sγsα + sγsβ + sδsα = o

(
N

(log d)2

)
3 7 7 3 sγ = o

( √
N

log d

)
, sγsδ + sγsα + sγsβ + sδsα = o

(
N

(log d)2

)
7 3 7 3 sδ = o

( √
N

log d

)
, sγsδ + sγsβ + sδsα = o

(
N

(log d)2

)
7 7 3 3 sγsα + sγsβ + sδsα = o

(
N

(log d)2

)

in distribution, where σ2 is defined in (4.34). In addition, define σ̂2 as in (4.35). Then, as

N →∞, σ̂2 = σ2{1 + op(1)}.

Remark 4.8 (Sequential rate double robustness). Consider the case that all the nuisance

models are correctly specified. Then, as shown in Theorem 4.2,
√
N-inference requires two

product sparsity conditions, (4.30). We name such a property as “sequential rate double

robustness”. Note that, we only require product sparsity conditions between the nuisance

paramters’ sparsity levels at each time spot. Such conditions are weaker than [BHL20,

BJZ21], where they require an additional product sparsity condition sγsα = o( N
log d1 log d

).

For instance, when sγ � N0.8, sδ � N0.1, sα � N0.8, sβ � N0.1, our Assumption 4.3 and

(4.30) holds but sγsα = o( N
log d1 log d

) fails (omitting the logarithmic terms). We are able to

provide
√
N-inference under weaker sparsity conditions since we achieve better consistency
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result for the estimation of β∗; see Remark 4.12.

Besides, similarly as discussed in Remark 4.7, consider the degenerated case that

only the first exposure time is involved. Then, we require sγsβ = o(N/(log d1)2). Such a

condition coincides with the “rate double robustness” of [CCD+18, SRR19] and is weaker

than the sparsity conditions in [Far15, Tan20a, AV21] since cross-fitting was not performed

therein. In addition, based on a special type of cross-fitting, [BWZ19] imposed either 1) sβ =

o(
√
N/ log d1) and sγ = o(N/ log d1) or 2) sβ = o(N3/4/ log d1) and sγ = o(

√
N/ log d1).

Such a condition is different from (not stronger nor weaker than) the “rate double robustness”

condition sγsβ = o(N/(log d1)2).

4.4 Theoretical results for the nuisance estimators

We develop theoretical properties of the proposed moment targeted nuisance estima-

tors. In Section 4.4.1, we demonstrate the consistency of the nuisance estimators allowing

all the models to be misspecified. In Section 4.4.2, we provide faster consistency rates for

the nuisance estimators assuming correctly specified models.

4.4.1 Results with misspecified models

Define sγ := ‖γ∗‖0, sδ := ‖δ∗‖0, sα := ‖α∗‖0, and sβ := ‖β∗‖0 as the sparsity levels

of the population nuisance parameters. The following assumption imposes some standard

moment conditions:

Assumption 4.4 (Sub-Gaussianity). Let S̄2 be a sub-Gaussian random vector, i.e., for all

v ∈ Rd, ‖vT S̄2‖ψ2 ≤ σS‖v‖2. Define ε := Y (1, 1) − S̄T2α
∗ and ζ := S̄T2α

∗ − ST1 β
∗. Let
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ε and ζ be sub-Gaussian random variables, i.e., ‖ε‖ψ2 ≤ σε and ‖ζ‖ψ2 ≤ σζ. In addition,

let Var{Y (1, 1)} > cY and the smallest eigenvalue of E(A1S̄2S̄
T
2 ) is bounded bellow by cmin.

Here, σS, σε, σζ , cY , cmin are some positive constants.

Furthermore, for any γ,β,∆ ∈ Rd1 and α, δ ∈ Rd, define

δ ¯̀
1(γ,∆) := ¯̀

1(γ + ∆)− ¯̀
1(γ)−∇γ ¯̀

1(γ)T∆, (4.36)

δ ¯̀
4(γ, δ,α,β,∆) := ¯̀

4(γ, δ,α,β + ∆)− ¯̀
4(γ, δ,α,β)−∇β ¯̀

4(γ, δ,α,β)T∆. (4.37)

Similarly, for any γ ∈ Rd1 and α, δ,∆ ∈ Rd, define

δ ¯̀
2(γ, δ,∆) := ¯̀

2(γ, δ + ∆)− ¯̀
2(γ, δ)−∇δ ¯̀

2(γ, δ)T∆, (4.38)

δ ¯̀
3(γ, δ,α,∆) := ¯̀

3(γ, δ,α+ ∆)− ¯̀
3(γ, δ,α)−∇α ¯̀

3(γ, δ,α)T∆. (4.39)

We begin by demonstrating the following restricted strong convexity (RSC) condi-

tions. Note that, the nuisance estimators are constructed based on different samples, and

the probability measures in (4.41)-(4.43) are also different.

Lemma 4.1. Let Assumptions 4.1 and 4.4 hold. Define fM,d1(∆) := κ1‖∆‖2
2−κ2

log d1
M
‖∆‖2

1

for any ∆ ∈ Rd1 and fM,d(∆) := κ1‖∆‖2
2 − κ2

log d
M
‖∆‖2

1 for any ∆ ∈ Rd. Then, with some

constants κ1, κ2, c1, c2 > 0 and recall that M � N , we have

PSγ
(
δ ¯̀

1(γ∗,∆) ≥ fM,d1(∆), ∀‖∆‖2 ≤ 1
)
≥ 1− c1 exp(−c2M). (4.40)

Further, let ‖γ̂ − γ∗‖2 ≤ 1. Then,

PSδ
(
δ ¯̀

2(γ̂, δ∗,∆) ≥ fM,d(∆), ∀‖∆‖2 ≤ 1
)
≥ 1− c1 exp(−c2M), (4.41)

PSβ

(
δ ¯̀

4(γ̂, δ̂, α̂,β∗,∆) ≥ fM,d1(∆), ∀∆ ∈ Rd1
)
≥ 1− c1 exp(−c2M). (4.42)

338



Note that, in (4.41), we only consider the randomness in Sδ, and γ̂ is treated as fixed (or

conditional on). Similarly, in (4.43), γ̂, δ̂, and α̂ are all treated as fixed.

Moreover, let ‖δ̂ − δ∗‖2 ≤ 1. Then,

PSα

(
δ ¯̀

3(γ̂, δ̂,α∗,∆) ≥ fM,d(∆), ∀∆ ∈ Rd
)
≥ 1− c1 exp(−c2M), (4.43)

where γ̂ and δ̂ are treated as fixed.

Additionally, we upper bound the gradients of the loss functions evaluated at the

target population parameter values. By construction, the gradients are averages of i.i.d.

random vectors with zero means even under model misspecifications. Hence, we can use the

union bound techniques to control the infinite norms by the usual rate Op(
√

log d/M) or

Op(
√

log d1/M).

Lemma 4.2. Let Assumption 4.4 holds. Let σγ , σδ, σα, σβ > 0 be some constants and recall

that M � N . Then, for any t > 0,

PSγ

(∥∥∇γ ¯̀
1(γ∗)

∥∥
∞ ≤ σγ

√
t+ log d

M

)
≥ 1− 2 exp(−t).

Further, let the Assumption 4.1 holds. Then, for any t > 0,

PSδ

(∥∥∇δ ¯̀
2(γ∗, δ∗)

∥∥
∞ ≤ σδ

√
t+ log d

M

)
≥ 1− 2 exp(−t),

PSα

(∥∥∇α ¯̀
3(γ∗, δ∗,α∗)

∥∥
∞ ≤ σα

(
2

√
t+ log d

M
+
t+ log d

M

))
≥ 1− 2 exp(−t),

PSβ

(∥∥∇β ¯̀
4(γ∗, δ∗,α∗,β∗)

∥∥
∞ ≤ σβ

(
2

√
t+ log d1

M
+
t+ log d1

M

))
≥ 1− 2 exp(−t).

We then demonstrate the asymptotic results for the moment targeted nuisance esti-

mators when all the nuisance models are possibly misspecified. Note that the estimators δ̂,
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α̂, and β̂ are constructed based on some previous nuisance estimators, we carefully control

the errors originated from the previous steps’ estimation. Among the results in Theorem 4.3,

part (b) is the most challenging to show. This is because δ̂ is constructed based on γ̂ and the

loss function ¯̀
2 is not constructed based on a (weighted) square loss. Instead of considering

the usual cone set C(S, k) := {∆ ∈ Rd : ‖∆Sc‖1 ≤ k‖∆S‖1}, we show that δ̂−δ∗ belongs to

another cone set C̃(s, k) := {∆ ∈ Rd : ‖∆‖1 ≤ k
√
s‖∆‖2} with high probability and some

constant k > 0, as well as some s > 0 depending on both sγ and sδ; see details in Lemma

4.12.

Theorem 4.3. Let Assumptions 4.1 and 4.4 hold.

(a) Let sγ = o( N
log d1

). Choose some λγ > 0 with λγ �
√

log d1
N

. Then, as N →∞,

‖γ̂ − γ∗‖2 = Op

(√
sγ log d1

N

)
, ‖γ̂ − γ∗‖1 = Op

(
sγ

√
log d1

N

)
.

(b) In addition to part (a), let sδ = o( N
log d

). Choose some λδ > 0 with λδ �
√

log d
N

. Then,

as N →∞,

‖δ̂ − δ∗‖2 =Op

(√
sγ log d1 + sδ log d

N

)
,

‖δ̂ − δ∗‖1 =Op

(
sγ

√
(log d1)2

N log d
+ sδ

√
log d

N

)
.

(c) In addition to parts (a) and (b), let sα = o( N
log d

). Choose some λα > 0 with λα �√
log d
N

. Then, as N →∞,

‖α̂−α∗‖2 =Op

(√
sγ log d1 + sδ log d+ sα log d

N

)
,

‖α̂−α∗‖1 =Op

(
sγ

√
(log d1)2

N log d
+ sδ

√
log d

N
+ sα

√
log d

N

)
.

340



(d) In addition to parts (a), (b), and (c), let sβ = o( N
log d1

). Choose some λβ > 0 with

λβ �
√

log d1
N

. Then, as N →∞,

‖β̂ − β∗‖2 =Op

(√
sγ log d1 + sδ log d+ sα log d+ sβ log d1

N

)
,

‖β̂ − β∗‖1 =Op

(
sγ

√
log d1

N
+ sδ

√
(log d)2

N log d1

+ sα

√
(log d)2

N log d1

+ sβ

√
log d1

N

)
.

Remark 4.9 (Consistency of the nuisance estimators under model misspecification). By

Theorem 4.3, we can see that the nuisance estimators are consistent even when the models

are misspecified. Since the nuisance estimators γ̂, δ̂, α̂, β̂ are constructed sequentially that the

later estimators depend on all the previous estimators, the estimation errors of the nuisance

parameters are cumulative. That is, the consistency rate of a nuisance estimator depends on

the sparsity levels of all the nuisance parameters up to the current one.

4.4.2 Results with correctly specified models

In Theorem 4.3, we have provided consistency results under model misspecifications.

In fact, if we have additional information that some of the nuisance models are correctly

specified, we are able to achieve better consistency results than Theorem 4.3.

Assuming correctly specified models, we control the gradients in Lemma 4.3 below

(approximately) by the usual rate Op(
√

log d/N) or Op(
√

log d1/N). Note that, different

from Lemma 4.2, we can upper bound the gradients involving the estimated nuisance pa-

rameters. For instance, in part (a) of Lemma 4.3 below, we can control ‖∇δ ¯̀
2(γ̂, δ∗)‖∞ and

the estimation error of γ̂ is ignorable as long as sγ = Op(N/(log d1 log d)).

Lemma 4.3. (a) Let ρ(·) = ρ∗(·). Let the assumptions in part (a) of Theorem 4.3 hold.
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Then, as N →∞,

∥∥∇δ ¯̀
2(γ̂, δ∗)

∥∥
∞ = Op

((
1 +

√
sγ log d1 log d

N

)√
log d

N

)
.

(b) Let ν(·) = ν∗(·). Let the assumptions in part (b) of Theorem 4.3 hold. Then, as N →∞,

∥∥∥∇α ¯̀
3(γ̂, δ̂,α∗)

∥∥∥
∞

= Op

((
1 +

√
(sγ log d1 + sδ log d) log d

N

)√
log d

N

)
.

(c) Let ν(·) = ν∗(·) and µ(·) = µ∗(·). Let the assumptions in part (c) of Theorem 4.3 hold.

Then, as N →∞,

∥∥∥∇β ¯̀
4(γ̂, δ̂,α∗,β∗)

∥∥∥
∞

= Op

((
1 +

√
(sγ log d1 + sδ log d) log d1

N

)√
log d1

N

)
.

(d) Let ρ(·) = ρ∗(·) and µ(·) = µ∗(·). Let the assumptions in part (c) of Theorem 4.3 hold.

Then, as N →∞,

∥∥∇β ¯̀
4(γ̂, δ∗, α̂,β∗)

∥∥
∞

= Op

((
1 +

√
(sγ log d1 + sδ log d+ sα log d) log d1

N

)√
log d1

N

)
.

(e) Let ρ(·) = ρ∗(·), ν(·) = ν∗(·), and µ(·) = µ∗(·). Let the assumptions in part (c) of

Theorem 4.3 hold. Then, as N →∞,

∥∥∇β ¯̀
4(γ̂, δ∗,α∗,β∗)

∥∥
∞ = Op

((
1 +

√
sγ(log d1)2

N

)√
log d1

N

)
.

Then, with additional assumptions on the model correctness, we provide better con-

sistency results for the moment targeted nuisance estimators than in Theorem 4.3.

Theorem 4.4. (a) Let ρ(·) = ρ∗(·). Let the assumptions in part (b) of Theorem 4.3 hold.

Additionally, let sγ = O( N
log d1 log d

). Then, as N →∞,

‖δ̂ − δ∗‖2 = Op

(√
sδ log d

N

)
, ‖δ̂ − δ∗‖1 = Op

(
sδ

√
log d

N

)
.
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(b) Let ν(·) = ν∗(·). Let the assumptions in part (c) of Theorem 4.3 hold. Additionally, let

sγ = O( N
log d1 log d

) and sδ = O( N
(log d)2

). Then, as N →∞,

‖α̂−α∗‖2 = Op

(√
sα log d

N

)
, ‖α̂−α∗‖1 = Op

(
sα

√
log d

N

)
.

(c) Let ν(·) = ν∗(·) and µ(·) = µ∗(·). Let the assumptions in part (d) of Theorem 4.3 hold.

Additionally, let sγ = O( N
log d1 log d

) and sδ = O( N
(log d)2

). Then, as N →∞,

‖β̂ − β∗‖2 = Op

(√
sα log d+ sβ log d1

N

)
,

‖β̂ − β∗‖1 = Op

(
sγ

√
(log d)2

N log d1

+ sβ

√
log d1

N

)
.

(d) Let ρ(·) = ρ∗(·) and µ(·) = µ∗(·). Let the assumptions in part (d) of Theorem 4.3 hold.

Additionally, let sγ + sδ + sα = O( N
log d1 log d

). Then, as N →∞,

‖β̂ − β∗‖2 = Op

(√
sδ log d+ sβ log d1

N

)
,

‖β̂ − β∗‖1 = Op

(
sδ

√
(log d)2

N log d1

+ sβ

√
log d1

N

)
.

(e) Let ρ(·) = ρ∗(·), ν(·) = ν∗(·), and µ(·) = µ∗(·). Let the assumptions in part (d)

of Theorem 4.3 hold. Additionally, let sγ = O( N
log d1 log d

) and sδ = O( N
(log d)2

). Then, as

N →∞,

‖β̂ − β∗‖2 = Op

(√
sδsα log d

N
+

√
sβ log d1

N

)
,

‖β̂ − β∗‖1 = Op

(
sδsα log d

N

√
(log d)2

N log d1

+ sβ

√
log d1

N

)
.

Further, let sδsα = o( N
(log d)2

). Then, as N →∞,

‖β̂ − β∗‖2 = Op

(√
sβ log d1

N

)
.
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Remark 4.10 (Bounded covariates). If we further assume that ‖S̄2‖∞ < C <∞, then, the

following conditions can be omitted: sγ = O( N
log d1 log d

) in case (a); sγ = O( N
log d1 log d

) and

sδ = O( N
(log d)2

) in cases (b), (c), and (e); sγ + sδ + sα = O( N
log d1 log d

) in case (d).

Remark 4.11 (Consistency of the nuisance estimators with correctly specified models). Here

we summarize the `2 convergence rates of the nuisance estimators when the corresponding

models are correctly specified:

• For the “first” nuisance estimator γ̂, as shown in case (a) of Theorem 4.3, we have

‖γ̂ − γ∗‖2 = Op(
√
sγ log d1/N) no matter whether π∗(·) is correctly specified or not.

• When ρ∗(·) is correctly specified, the convergence rate of δ̂ depends only on sδ as shown

in cases (a) of Theorem 4.4. This is different from part (b) of Theorem 4.3 and Remark

4.9, where ρ∗(·) is possibly misspecified.

• When ν∗(·) is correctly specified, the convergence rate of α̂ depends only on sα as

shown in cases (b) of Theorem 4.4. This is different from part (c) of Theorem 4.3 and

Remark 4.9, where ν∗(·) is possibly misspecified.

• As for the convergence rate of β̂, apart from µ∗(·), it also depends on the correctness

of ρ∗(·) and ν∗(·). If only one of ρ∗(·) and ν∗(·) is correctly specified, as shown in cases

(c) and (d), the consistency rate of β̂ depends on sβ and also the nuisance paramter’s

sparsity level of the correct model among ρ∗(·) and ν∗(·). If both of ρ∗(·) and ν∗(·) are

correctly specified, as in case (e), the consistency rate of β̂ depends on sβ and a product

sparsity sδsα. When a product sparsity condition, sδsα = o( N
(log d)2

), is assumed as in

(4.30) of Theorem 4.1, the product sparsity sδsα can also be omitted.
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Remark 4.12 (Comparison of nuisance estimators’ consistency rates with [BJZ21]). We

compare the consistency rates of γ̂, δ̂, α̂, β̂ with some γ̂1, δ̂1, α̂1, β̂1, the nuisance parameters

proposed therein. Note that, it is only reasonable to do such comparisons when the target

nuisance parameters are the same. As discussed in Remarks 4.2 and 4.3, we have (a) γ∗ = γ∗1

when π(S1) = g(ST1 γ
0); (b) δ∗ = δ∗1 when ρ(S1) = g(S̄T2 δ

0); (c) α∗ = α∗1 when ν(S̄2) =

S̄T2α
0; (d) β∗ = β∗1 when ν(S̄2) = S̄T2α

0 and µ(S1) = ST1 β
0. Under each case of (a)-(d),

we can see that both our proposed nuisance estimator and the estimator proposed by [BJZ21]

converges to the true (and the same) nuisance parameter.

By Theorems 4.3 and 4.4, we can see that γ̂, δ̂, α̂ reach the same consistency rates as

γ̂1, δ̂1, α̂1 shown in [BJZ21], under cases (a), (b), (c), respectively. As for the consistency

rates of β̂ and β̂1, we can see that they also have the same consistency rate under case (d).

However, if we further assume case (b) also happens simultaneously, i.e., ρ∗(·), ν∗(·), and

µ∗(·) are all correctly specified, we have ‖β̂ − β∗‖2 = Op(
√

sα log d
N

√
sδ log d
N

+
√

sβ log d1
N

) as

shown in Theorem 4.4. Whereas, β̂1 only satisfies ‖β̂1 − β∗‖2 = Op(
√

sα log d
N

+
√

sβ log d1
N

).

Since sδ = o(N/ log d), we can see that β̂ outperforms β̂1 in the sence of `2-consistency

rates. Because of the better consistency rate we obtain, we require weaker sparsity conditions

to establish statistical inference for θ1,1 as discussed in Remark 4.8.

4.5 Proof of the main results

4.5.1 Auxiliary lemmas

The following Lemmas will be useful in the proofs.
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Lemma 4.4 (Lemma S4.1 of [ZCB21]). Let (XN)N≥1 and (YN)N≥1 be sequences of random

variables in R. If E(|XN |r|YN) = Op(1) for any r ≥ 1, then XN = Op(1).

Lemma 4.5 (Lemma S.2 of [BJZ21]). Let Assumptions 4.1 and 4.4 hold. Then, the small-

est eigenvalues of E(A1S1S
T
1 ) and E(A1A2S̄2S̄

T
2 ) are both lower bounded by some constant

c′min > 0. Additionally, ‖vTS1‖ψ2 ≤ σ′S‖v‖2, ‖A1v
TS1‖ψ2 ≤ σ′S‖v‖2 for all v ∈ Rd1 and

‖A1A2v
T S̄2‖ψ2 ≤ σ′S‖v‖2 for all v ∈ Rd, with some constant σ′S > 0.

Lemma 4.6 (Lemma D.1 (iv) and (vi) of [CLCL19]). Let X ∈ R be a random vari-

able. If ‖X‖ψ2 ≤ σ, then E(X) ≤ σ
√
π and E(|X|m) ≤ 2σm(m/2)m/2 ∀ m ≥ 2. Let

{Xi}ni=1(n > 1) be random variables (possibly dependent) with max1≤i≤n ‖Xi‖ψ2 ≤ σ. Then

‖max1≤i≤n |Xi|‖ψ2 ≤ σ(log n+ 2)1/2.

Lemma 4.7 (Corollary 2.3 of [DVDGVW10]). Let {Xi}ni=1(n > 1) be identically distributed,

then

E

[
‖n−1

n∑
i=1

Xi‖2
∞

]
≤ n−1(2e log d− e)E

[
‖Xi‖2

∞
]

Lemma 4.8. Suppose that S′ = (Ui)i∈J are independent and identically distributed (i.i.d.)

sub-Gaussian random vectors, i.e., ‖aTU‖ψ2 ≤ σU‖a‖2 for all a ∈ Rd with some constant

σU > 0. Additionally, suppose the smallest eigenvalue of E(UUT ) is bounded bellow by some

constant λU > 0. Let M = |J |. For any continuous function φ : R → (0,∞), v ∈ [0, 1],

and η ∈ Rd satisfying E{|UTη|c} < C with some constants c, C > 0, there exists constants

κ1, κ2, c1, c2 > 0, such that

PS′

(
M−1

∑
i∈J

φ(UT
i (η + v∆))(UT

i ∆)2 ≥ κ1‖∆‖2
2 − κ2

log d

M
‖∆‖2

1, ∀‖∆‖2 ≤ 1

)

≥ 1− c1 exp(−c2M). (4.44)
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Lemma 4.8 follows directly by repeating the proof of Lemma 4.5 of [ZCB21]; see also

for other slightly different versions in Proposition 2 of [NRWY10] and Theorem 9.36 and

Example 9.17 of [Wai19]. Note that, instead of (4.44), the lower bound in [ZCB21] is

κ′1‖∆‖2
2 − κ′2

√
log d

M
‖∆‖2‖∆‖1,

with some constants κ′1, κ
′
2 > 0. Here, by the fact that 2ab ≤ a2 + b2, we get

κ′1‖∆‖2
2 − κ′2

√
log d

M
‖∆‖2‖∆‖1 = κ′1‖∆‖2

2 −
√
κ′1‖∆‖2 ·

1√
κ′1
κ′2

√
log d

M
‖∆‖1

≥ κ′1‖∆‖2
2 −

κ′1
2
‖∆‖2

2 −
κ′2

2

2κ′1

log d

M
‖∆‖2

1 =
κ′1
2
‖∆‖2

2 −
κ′2

2

2κ′1

log d

M
‖∆‖2

1.

Lemma 4.9. Suppose (Xi)
m
i=1 are i.i.d. sub-Gaussian random vectors in Rd and X is an

independent copy of Xi. Let S ⊆ {1, . . . , d1} and s = |S|. Then, as m→∞,

sup
∆∈{∆Sc=0,‖∆‖2=1}

∣∣∣∣∣m−1

m∑
i=1

(XT
i ∆)2 − E{(XT∆)2}

∣∣∣∣∣ = Op

(√
s

m

)
.

If we further assume that S ⊂ {1, . . . , d}. Then, as m→∞,

sup
∆∈C(S,3)∩‖∆‖2=1

∣∣∣∣∣m−1

m∑
i=1

(XT
i ∆)2 − E{(XT∆)2}

∣∣∣∣∣ = Op

(√
s

m

)
.

Lemma 4.9 is an analog of Lemmas 15 and 16 of [BWZ19]. It can be shown by

repeating the proof of [BWZ19], with replacing X̃iX̃
T
i therein by E(XXT ).

Lemma 4.10. Suppose (Xi)
m
i=1 are i.i.d. sub-Gaussian random vectors. Then, for any

(possibly random) ∆ ∈ Rd, as m→∞,

sup
∆∈Rd/{0}

m−1
∑m

i=1(XT
i ∆)2

m−1‖∆‖2
1 + ‖∆‖2

2

= Op(1).

For any s, k > 0, define C̃(s, k) := {∆ ∈ Rd : ‖∆‖1 ≤ k
√
s‖∆‖2} and K̃(s, k, 1) :=

C̃(s, k) ∩ {∆ ∈ Rd : ‖∆‖2 = 1}. For any ∆ ∈ Rd, define

F(∆) := δ ¯̀
2(γ̂, δ∗,∆) + λδ‖δ∗ + ∆‖1 +∇δ ¯̀

2(γ̂, δ∗)T∆− λδ‖δ∗‖1.
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The following Lemmas 4.11 and 4.13 are anologs of Lemma 9.21 and the proof of Theorem

9.19 of [Wai19], respectively. By Lemma 4.12, we can see that ∆δ ∈ C̃(s̄δ, k0) with high

probability. Instead of the usual cone set C(S, k) = {‖∆ ∈ Rd : ‖∆Sc‖1 ≤ k‖∆S‖1}, we

work on another cone set C̃(s, k) (and K̃(s, k, 1)) defined above.

Lemma 4.11. Let Assumptions 4.1 and 4.4 hold, λγ �
√

log d1
N

, λδ �
√

log d
N

, sγ = o( N
log d1

),

and sδ = o( N
log d

). For any t > 0, suppose that λδ > 2σδ

√
t+log d
M

. Define

A1 :={‖∇δ ¯̀
2(γ∗, δ∗)‖∞ ≤ λδ/2}, (4.45)

A2 :=

{
|R1(∆)| ≤ c

√
sγ log d1

N

(
‖∆‖1√
N

+ ‖∆‖2

)
, ∀∆ ∈ Rd

}
, (4.46)

A3 :=

{
δ ¯̀

2(γ̂, δ∗,∆) ≥ κ1‖∆‖2
2 − κ2

log d

M
‖∆‖2

1, ∀∆ ∈ Rd : ‖∆‖2 ≤ 1

}
, (4.47)

where R1(∆) :=
{
∇δ ¯̀

2(γ̂, δ∗)−∇δ ¯̀
2(γ∗, δ∗)

}T
∆ and c > 0 is some constant. Let s̄δ :=

sγ log d1
log d

+ sδ. Then, on the event A1 ∩A2 ∩A3, for all ∆ ∈ K̃(s̄δ, k0, 1), we have F(∆) > 0,

when N > N1 with some constant N1 > 0, and PSγ∪Sδ(A1 ∩ A2) ≥ 1− t− 2 exp(−t).

Lemma 4.12. Let Assumptions 4.1 and 4.4 hold and sγ = o( N
log d1

). Define ∆δ := δ̂ − δ∗.

Let λγ �
√

log d1
N

, λδ �
√

log d
N

. For any t > 0, suppose that λδ > 2σδ

√
t+log d
M

. Events A1

and A2 are defined in (4.45) and (4.46). Then, on the event A1 ∩ A2, when N > N0,

4δ ¯̀
2(γ̂, δ∗,∆δ) + λδ‖∆δ‖1 ≤

(
8λδ
√
sδ + 4c

√
sγ log d1

N

)
‖∆δ‖2,

‖∆δ‖1 ≤k0

√
s̄δ‖∆δ‖2,

where N0, k0 and c > 0 are some constants and s̄δ := sγ log d1
log d

+ sδ.

Lemma 4.13. Let the assumptions in Lemma 4.11 hold and also that ∆δ ∈ C̃(s̄δ, k0). Then,

on the event A1 ∩ A2 ∩ A3, we have ‖∆δ‖2 ≤ 1.
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Lemma 4.14. Suppose a, b, c, x ∈ R, a > 0, and b, c > 0. Let ax2 − bx− c ≤ 0. Then,

x ≤ b

a
+

√
c

a
.

Lemma 4.15. Let the assumptions in part (a) of Theorem 4.3 hold. Let r > 0 be any

positive constant. Then, as N →∞,

∥∥ST1 (γ̂ − γ∗)
∥∥
P,r

= O (‖γ̂ − γ∗‖2) = Op

(√
sγ log d1

N

)
,

and

∥∥exp(−ST1 γ̂)− exp(−ST1 γ
∗)
∥∥
P,r

=
∥∥g−1(ST1 γ̂)− g−1(ST1 γ

∗)
∥∥
P,r

= O (‖γ̂ − γ∗‖2) = Op

(√
sγ log d1

N

)
. (4.48)

Define

E1 :=

{
‖γ̂ − γ∗‖2 ≤ 1 and

∥∥g−1(ST1 γ)
∥∥
P,12
≤ C, ∀γ ∈ {wγ∗ + (1− w)γ̂ : w ∈ [0, 1]}

}
.

(4.49)

Then, as N →∞,

PSγ (E1) = 1− o(1).

On the event E1, for any r′ ∈ [1, 12] and γ ∈ {wγ∗ + (1− w)γ̂ : w ∈ [0, 1]}, we also have

∥∥g−1(ST1 γ)
∥∥
P,r′
≤ C,

∥∥exp(−ST1 γ)
∥∥
P,r′
≤ C,

∥∥exp(ST1 γ)
∥∥
P,r′
≤ C ′,

with some constant C ′ > 0.

Lemma 4.16. Let r > 0 be any positive constant.
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(a) Let the assumptions in part (b) of Theorem 4.3 hold. Then, as N →∞,

∥∥∥S̄T2 (δ̂ − δ∗)
∥∥∥
P,r

= O
(
‖δ̂ − δ∗‖2

)
= Op

(√
sγ log d1 + sδ log d

N

)
,

and

∥∥∥exp(−S̄T2 δ̂)− exp(−S̄T2 δ
∗)
∥∥∥
P,r

=
∥∥∥g−1(S̄T2 δ̂)− g−1(S̄T2 δ

∗)
∥∥∥
P,r

= O
(
‖δ̂ − δ∗‖2

)
= Op

(√
sγ log d1 + sδ log d

N

)
. (4.50)

(b) Let the assumptions in part (a) of Theorem 4.4 hold. Then, as N →∞,

∥∥∥S̄T2 (δ̂ − δ∗)
∥∥∥
P,r

= O
(
‖δ̂ − δ∗‖2

)
= Op

(√
sδ log d

N

)
,

and

∥∥∥exp(−S̄T2 δ̂)− exp(−S̄T2 δ
∗)
∥∥∥
P,r

=
∥∥∥g−1(S̄T2 δ̂)− g−1(S̄T2 δ

∗)
∥∥∥
P,r

= O
(
‖δ̂ − δ∗‖2

)
= Op

(√
sδ log d

N

)
. (4.51)

Let either (a) or (b) holds. Let C > 0 be some constant, define

E2 :=

{
‖δ̂ − δ∗‖2 ≤ 1 and

∥∥g−1(S̄T2 δ)
∥∥
P,6
≤ C, ∀δ ∈

{
wδ∗ + (1− w)δ̂ : w ∈ [0, 1]

}}
.

(4.52)

Then, as N →∞,

PSγ∪Sδ(E2) = 1− o(1).

On the event E2, for any r′ ∈ [1, 12] and δ ∈ {wδ∗ + (1− w)δ̂ : w ∈ [0, 1]}, we also have

∥∥g−1(S̄T2 δ)
∥∥
P,r′
≤ C,

∥∥exp(−S̄T2 δ)
∥∥
P,r′
≤ C,

∥∥exp(S̄T2 δ)
∥∥
P,r′
≤ C ′,

with some constant C ′ > 0.

Lemma 4.17. Let r > 0 be any positive constant.
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(a) Let the assumptions in part (c) of Theorem 4.3 hold. Then, as N →∞,

∥∥S̄T2 (α̂−α∗)
∥∥
P,r

= O (‖α̂−α∗‖2) = Op

(√
sγ log d1 + sδ log d+ sα log d

N

)
.

(b) Let the assumptions in part (b) of Theorem 4.4 hold. Then, as N →∞,

∥∥S̄T2 (α̂−α∗)
∥∥
P,r

= O (‖α̂−α∗‖2) = Op

(√
sα log d

N

)
.

Let either (a) or (b) holds. For any v1 ∈ [0, 1], let α̃ = v1α
∗ + (1 − v1)α̂. Define

ε̃ := Y (1, 1)− S̄T2 α̃. Then, for any constant r > 0, ‖ε̃‖P,r = Op(1).

Lemma 4.18. Let r > 0 be any positive constant.

(a) Let the assumptions in part (d) of Theorem 4.3 hold. Then, as N →∞,

∥∥∥ST1 (β̂ − β∗)
∥∥∥
P,r

= O
(
‖β̂ − β∗‖2

)
= Op

(√
(sγ + sβ) log d1 + (sδ + sα) log d

N

)
.

(b) Let the assumptions in part (c) or part (d) or part (e) of Theorem 4.4 hold. Then, as

N →∞, ∥∥∥ST1 (β̂ − β∗)
∥∥∥
P,r

= O
(
‖β̂ − β∗‖2

)
Let either (a) or (b) holds, and let either (a) or (b) of 4.17 holds. For any v1, v2 ∈

[0, 1], let α̃ = v1α
∗ + (1− v1)α̂ and β̃ = v1β

∗ + (1− v1)β̂. Define ζ̃ := S̄T2 α̃− ST1 β̃. Then,

for any constant r > 0, ‖ζ̃‖P,r = Op(1).
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4.5.2 Proof of the main theorems

Proof of Theorem 4.1. Recall the definition of the score function, (4.11). Observe that

∇γψ(W;η) =− A1 exp(−ST1 γ)

{
A2(Y − S̄T2α)

g(S̄T2 δ)
+ S̄T2α− ST1 β

}
S1,

∇δψ(W;η) =− A1A2 exp(−S̄T2 δ)(Y − S̄T2α)

g(ST1 γ)
S̄2,

∇αψ(W;η) =
A1

g(ST1 γ)

{
1− A2

g(S̄T2 δ)

}
S̄2,

∇βψ(W;η) =

{
1− A1

g(ST1 γ)

}
S1.

By the constructions in (4.12)-(4.15), we have

E {∇γψ(W;η∗)} = −E
[
A1 exp(−ST1 γ

∗)

{
A2(Y − S̄T2α

∗)

g(S̄T2 δ
∗)

+ S̄T2α
∗ − ST1 β

∗
}

S1

]
= 0 ∈ Rd1 , (4.53)

E {∇δψ(W;η∗)} = −E
[
A1A2 exp(−S̄T2 δ

∗)(Y − S̄T2α
∗)

g(ST1 γ
∗)

S̄2

]
= 0 ∈ Rd, (4.54)

E {∇αψ(W;η∗)} = E

[
A1

g(ST1 γ
∗)

{
1− A2

g(S̄T2 δ
∗)

}
S̄2

]
= 0 ∈ Rd, (4.55)

E {∇βψ(W;η∗)} = E

[{
1− A1

g(ST1 γ
∗)

}
S1

]
= 0 ∈ Rd1 , (4.56)

Note that,

θ̂1,1 − θ1,1 = N−1

K∑
k=1

∑
i∈Ik

ψ(Wi; η̂−k)− θ1,1

= K−1

K∑
k=1

n−1
∑
i∈Ik

{ψ(Wi; η̂−k)− ψ(Wi;η
∗)}+N−1

N∑
i=1

ψ(Wi;η
∗)− θ1,1

= N−1

N∑
i=1

ψ(Wi;η
∗)− θ1,1 + K−1

K∑
k=1

(∆k,1 + ∆k,2),
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where

∆k,1 = n−1
∑
i∈Ik

{ψ(Wi; η̂−k)− ψ(Wi;η
∗)} − E {ψ(W; η̂−k)− ψ(W;η∗)} ,

∆k,2 = E {ψ(W; η̂−k)− ψ(W;η∗)} .

Step 1 We demonstrate that

E{ψ(W;η∗)} − θ1,1 = 0. (4.57)

Here, (4.57) can be shown under the Assumption 4.2:

E{ψ(W;η∗)} − θ1,1 = E

[{
1− A1

g(ST1 γ
∗)

}
{ST1 β∗ − Y (1, 1)}

]
+ E

[
A1

g(ST1 γ
∗)

{
1− A2

g(S̄T2 δ
∗)

}
{S̄T2α∗ − Y (1, 1)}

]
(i)
= E

[{
1− π(S1)

g(ST1 γ
∗)

}
{ST1 β∗ − µ(S1)}

]
+ E

[
π(S1)

g(ST1 γ
∗)

{
1− ρ(S̄2)

g(S̄T2 δ
∗)

}
{S̄T2α∗ − ν(S̄2)}

]
(ii)
= 0,

where (i) holds by the tower rule, (ii) holds under the Assumption 4.2.

Step 2 We demonstrate that, for each k ≤ K and any θ ∈ R, as N →∞,

∆k,2 = op(N
−1/2). (4.58)

Note that,

∆k,2 = ∆k,3 + ∆k,4 + ∆k,5 + ∆k,6 + ∆k,7 + ∆k,8 + ∆k,9,
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where

∆k,3 = E

[
A1

g(ST1 γ̂−k)

{
1− g(S̄T2 δ

∗)

g(S̄T2 δ̂−k)

}
S̄T2 (α̂−k −α∗)

]
,

∆k,4 = E

[{
1− g(ST1 γ

∗)

g(ST1 γ̂−k)

}
ST1 (β̂−k − β∗)

]
,

∆k,5 = E

[
1

g(ST1 γ̂−k)

{
g(ST1 γ

∗)− A1

}
ST1 (β̂−k − β∗)

]
,

∆k,6 = E

[
A1

g(ST1 γ̂−k)g(S̄T2 δ̂−k)

{
g(S̄T2 δ

∗)− A2

}
S̄T2 (α̂−k −α∗)

]
,

∆k,7 = E

[
A1

g(ST1 γ̂−k)

{
A2

g(S̄T2 δ̂−k)
− B

g(S̄T2 δ
∗)

}
{Y (1, 1)− S̄T2α

∗}

]
,

∆k,8 = E

[{
A1

g(ST1 γ̂−k)
− A2

g(ST1 γ
∗)

}
{Y (1, 1)− ST1 β

∗}
]
,

∆k,9 = E

[{
A1

g(ST1 γ̂−k)
− A2

g(ST1 γ
∗)

}{
A2

g(S̄T2 δ
∗)
− 1

}
{Y (1, 1)− S̄T2α

∗}
]
.

By the tower rule, ∆k,5 = 0 when π(S1) = π∗(S1) := g(ST1 γ
∗); ∆k,6 = 0 when ρ(·) = ρ∗(·) :=

g(S̄T2 δ
∗); ∆k,7 = 0 when ν(·) = ν∗(·) := S̄T2α

∗; ∆k,8 = 0 when µ(·) = µ∗(·) := ST1 β
∗; ∆k,9 = 0

since either ρ(·) = ρ∗(·) or ν(·) = ν∗(·). Hence,

∆k,2 = ∆k,3 + ∆k,4 + ∆k,51π 6=π∗ + ∆k,61ρ 6=ρ∗ + ∆k,71ν 6=ν∗ + ∆k,81µ 6=µ∗ ,

Now, we condition on the event E1 ∩ E2, where E1 and E2 are defined as (4.49) and (4.52),

respectively. By Lemmas 4.15 and 4.16, E1 ∩ E2 occurs with probability 1− o(1). Then, by

Lemmas 4.16 and 4.17,

|∆k,3| ≤
∥∥g−1(ST1 γ̂−k)

∥∥
P,4

∥∥∥g−1(S̄T2 δ̂−k)
∥∥∥
P,4

∥∥∥g−1(S̄T2 δ̂−k)− g−1(S̄T2 δ
∗)
∥∥∥
P,4

·
∥∥S̄T2 (α̂−k −α∗)

∥∥
P,4

= Op

(
‖δ̂−k − δ∗‖2‖α̂−k − γ∗‖2

)
.
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Similarly, by Lemmas 4.15 and 4.18,

|∆k,4| ≤
∥∥g−1(ST1 γ̂−k)

∥∥
P,4

∥∥g−1(ST1 γ̂−k)− g−1(ST1 γ
∗)
∥∥
P,4

∥∥∥ST1 (β̂−k − β∗)
∥∥∥
P,2

= Op

(
‖γ̂−k − γ∗‖2‖β̂−k − β∗‖2

)
.

In addition, recall (4.56), we have

|∆k,5| =
∣∣∣∣E [{ 1

g(ST1 γ̂−k)
− 1

g(ST1 γ
∗)

}{
g(ST1 γ

∗)− A
}

ST1 (β̂−k − β∗)
]∣∣∣∣

≤
∥∥g−1(ST1 γ̂−k)− g−1(ST1 γ

∗)
∥∥
P,2

∥∥∥ST1 (β̂−k − β∗)
∥∥∥
P,2

= Op

(
‖γ̂−k − γ∗‖2‖β̂−k − β∗‖2

)
,

by Lemmas 4.15 and 4.18. Recall (4.55), we have

|∆k,6| =

∣∣∣∣∣E
([

A1

{
g(S̄T2 δ

∗)− A2

}
g(ST1 γ̂−k)g(S̄T2 δ̂−k)

−
A1

{
g(S̄T2 δ

∗)− A2

}
g(ST1 γ

∗)g(S̄T2 δ
∗)

]
S̄T2 (α̂−k −α∗)

)∣∣∣∣∣
≤
∥∥∥g−1(ST1 γ̂−k)g

−1(S̄T2 δ̂−k)− g−1(ST1 γ
∗)g−1(S̄T2 δ

∗)
∥∥∥
P,2

·
∥∥S̄T2 (α̂−k −α∗)

∥∥
P,2

(i)
= Op

((
‖γ̂−k − γ∗‖2 + ‖δ̂−k − δ∗‖2

)
‖α̂−k − γ∗‖2

)
,
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where (i) holds by Lemma 4.17 and also note that, using Lemmas 4.15 and 4.16, we have

∥∥∥g−1(ST1 γ̂−k)g
−1(S̄T2 δ̂−k)− g−1(ST1 γ

∗)g−1(S̄T2 δ
∗)
∥∥∥
P,2

≤
∥∥∥g−1(ST1 γ̂−k)

{
g−1(S̄T2 δ̂−k)− g−1(S̄T2 δ

∗)
}∥∥∥

P,2

+
∥∥g−1(S̄T2 δ

∗)
{
g−1(ST1 γ̂−k)− g−1(ST1 γ

∗)
}∥∥

P,2

+
∥∥∥{g−1(ST1 γ̂−k)− g−1(ST1 γ

∗)
}{

g−1(S̄T2 δ̂−k)− g−1(S̄T2 δ
∗)
}∥∥∥

P,2

≤
∥∥g−1(ST1 γ̂−k)

∥∥
P,4

∥∥g−1(ST1 γ̂−k)− g−1(ST1 γ
∗)
∥∥
P,4

+
∥∥g−1(ST1 γ

∗)
∥∥
P,4

∥∥∥g−1(S̄T2 δ̂−k)− g−1(S̄T2 δ
∗)
∥∥∥
P,4

= Op

(
‖γ̂−k − γ∗‖2 + ‖δ̂−k − δ∗‖2

)
.

With some γ̃1 lies between γ∗ and γ̂−k, some δ̃ lies between δ∗ and δ̂−k, we have

|∆k,7|
(i)
=

∣∣∣∣∣E
[

A2

g(ST1 γ̂−k)

{
A1

g(S̄T2 δ̂−k)
− A1

g(S̄T2 δ
∗)

}
ε

]∣∣∣∣∣
(ii)

≤
∣∣∣∣E { A1A2

g(ST1 γ
∗)

exp(−S̄T2 δ
∗)εS̄T2

}
(δ̂−k − δ∗)

∣∣∣∣
+
∣∣∣E {A1A2 exp(−ST1 γ̃1) exp(−S̄T2 δ̃)εS̄T2 (δ̂−k − δ∗)ST1 (γ̂−k − γ∗)

}∣∣∣
+

∣∣∣∣E [ A1A2

g(ST1 γ̃1)
exp(−S̄T2 δ̃)ε

{
S̄T2 (δ̂−k − δ∗)

}2
]∣∣∣∣

(iii)

≤
∥∥exp(−ST1 γ̃1)

∥∥
P,4

∥∥∥exp(−S̄T2 δ̃)
∥∥∥
P,4
‖ε‖P,4

∥∥∥S̄T2 (δ̂−k − δ∗)
∥∥∥
P,8

∥∥ST1 (γ̂−k − γ∗)
∥∥
P,8

+
∥∥g−1(ST1 γ̃1)

∥∥
P,4

∥∥∥exp(−S̄T2 δ̃)
∥∥∥
P,4
‖ε‖P,4

∥∥∥S̄T2 (δ̂−k − δ∗)
∥∥∥2

P,8

(iv)
= Op

(
‖γ̂−k − γ∗‖2‖δ̂−k − δ∗‖2 + ‖δ̂−k − δ∗‖2

2

)
,

where (i) holds since either ρ(·) = ρ∗(·) or ν(·) = ν∗(·); (ii) holds by Taylor’s theorem; (iii)

holds by (4.54) and Hölder’s inequality; (iv) holds by Lemmas 4.15 and 4.16. Similarly, by
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Taylor’s theorem, with some γ̃2 lies between γ∗ and γ̂−k, we have

|∆k,8| ≤
∣∣E [A1 exp(−ST1 γ

∗){Y (1, 1)− ST1 β
∗}ST1 (γ̂−k − γ∗)

]∣∣
+
∣∣∣E [A1 exp(−ST1 γ̃2){Y (1, 1)− ST1 β

∗}
{
ST1 (γ̂−k − γ∗)

}2
]∣∣∣

(i)
=

∣∣∣∣E [A1 exp(−ST1 γ
∗)

{
A2(Y − S̄T2α

∗)

g(S̄T2 δ
∗)

+ S̄T2α
∗ − ST1 β

∗
}

ST1 (γ̂−k − γ∗)
]∣∣∣∣

+
∣∣∣E [A1 exp(−ST1 γ̃2)(ε+ ζ)

{
ST1 (γ̂−k − γ∗)

}2
]∣∣∣

(ii)

≤ 0 +
∥∥exp(−ST1 γ̃2)

∥∥
P,4
‖ε+ ζ‖P,4

∥∥ST1 (γ̂−k − γ∗)
∥∥2

P,4

(iii)
= Op

(
‖γ̂−k − γ∗‖2

2

)
,

where (i) holds since either ρ(·) = ρ∗(·) or ν(·) = ν∗(·); (ii) holds by (4.53) and Hölder’s

inequality; (iii) holds by Lemma 4.15.

To sum up, we have

∆k,2 = Op

(
‖γ̂−k − γ∗‖2‖β̂−k − β∗‖2 + ‖δ̂−k − δ∗‖2‖α̂−k − γ∗‖2

)
+ 1ρ6=ρ∗Op (‖γ̂−k − γ∗‖2‖α̂−k − γ∗‖2)

+ 1ν 6=ν∗Op

(
‖γ̂−k − γ∗‖2‖δ̂−k − δ∗‖2 + ‖δ̂−k − δ∗‖2

2

)
+ 1µ6=µ∗Op

(
‖γ̂−k − γ∗‖2

2

)
.

Define

rγ :=

√
sγ log d1

N
, rδ :=

√
sδ log d

N
, rγ :=

√
sγ log d

N
, rβ :=

√
sβ log d1

N
.

By Theorems 4.3 and 4.4,

‖γ̂−k − γ∗‖2 = Op (rγ) ,

‖δ̂−k − δ∗‖2 = ‖δ̂−k − δ∗‖21ρ=ρ∗ + ‖δ̂−k − δ∗‖21ρ6=ρ∗ = Op (rδ + rγ1ρ 6=ρ∗) ,

‖α̂−k − γ∗‖2 = ‖α̂−k − γ∗‖21ν=ν∗ + ‖α̂−k − γ∗‖21ν 6=ν∗ = Op (rγ + (rγ + rδ)1ν 6=ν∗) .
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Additionally, note that either ρ(·) = ρ∗(·) or ν(·) = ν∗(·) (or both) holds. By Theorems 4.3

and 4.4, we have

‖β̂−k − β∗‖2 = ‖β̂−k − β∗‖21ρ=ρ∗,ν=ν∗,µ=µ∗ + ‖β̂−k − β∗‖21ρ=ρ∗,ν 6=ν∗,µ=µ∗

+ ‖β̂−k − β∗‖21ρ6=ρ∗,ν=ν∗,µ=µ∗ + ‖β̂−k − β∗‖21µ6=µ∗

= Op (rβ + rδ1ν 6=ν∗ + rα1ρ6=ρ∗ + (rγ + rδ + rα)1µ 6=µ∗) .

Therefore, we have

∆k,2 = Op (rγ {rβ + rδ1ν 6=ν∗ + rα1ρ6=ρ∗ + (rγ + rδ + rα)1µ6=µ∗})

+Op ((rδ + rγ1ρ 6=ρ∗) (rγ + (rγ + rδ)1ν 6=ν∗))

+ 1ρ 6=ρ∗Op (rγ {rγ + (rγ + rδ)1ν 6=ν∗})

+ 1ν 6=ν∗Op ((rγ + rδ + rγ1ρ 6=ρ∗) (rδ + rγ1ρ 6=ρ∗)) + 1µ 6=µ∗Op

(
r2
γ

)
(i)
= Op (rγrβ + rγrδ1ν 6=ν∗ + rγrα1ρ 6=ρ∗ + rγ(rγ + rδ + rα)1µ 6=µ∗)

+Op (rδrγ + rγrγ1ρ 6=ρ∗ + rδ(rγ + rδ)1ν 6=ν∗)

+ 1ρ 6=ρ∗Op(rγrγ) + 1ν 6=ν∗Op ((rγ + rδ) rδ) + 1µ 6=µ∗Op

(
r2
γ

)
= Op(rγrβ + rδrγ) + 1ρ6=ρ∗Op(rγrα) + 1ν 6=ν∗Op(rγrδ + r2

δ)

+ 1µ 6=µ∗Op(r
2
γ + rγrδ + rγrα).

where (i) holds since 1ρ6=ρ∗1ν 6=ν∗ = 0 that either ρ(·) = ρ∗(·) or ν(·) = ν∗(·) (or both) holds.

Note that when all the nuisance models are correctly specified,

rγrβ + rδrγ =

√
sγsβ log d1

N
+

√
sδsα log d

N
= o(N−1/2),

and (a) when ρ(·) 6= ρ∗(·),

rγrγ =

√
sγsα log d1 log d

N
= o(N−1/2),
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b) when ν(·) 6= ν∗(·),

rγrδ + r2
δ =

√
sδ log d(sγ log d1 + sδ log d)

N
= o(N−1/2),

c) when µ(·) 6= µ∗(·),

r2
γ + rγrδ + rγrα =

√
sγ log d1(sγ log d1 + sδ log d+ sα log d)

N
= o(N−1/2).

Hence, we conclude that

∆k,2 = o(N−1/2).

Step 3 We demonstrate that, for each k ≤ K and any θ ∈ R, as N →∞,

∆k,1 = oP (N−1/2).

By construction, we have

ESk(∆k,1) = 0.

By Taylor’s theorem, with some η̃ = (γ̃T , δ̃T , α̃T , β̃T )T lies between η∗ and η̂−k,

ESk(∆
2
k,1) = n−1E

[
{ψ(W; η̂−k)− ψ(W;η∗)}2]

= 2n−1E
[
{ψ(W; η̃)− ψ(W;η∗)}∇ηψ(W; η̃)T (η̂−k − η∗)

]
≤ 2n−1

{∥∥ψ(W; η̃)− ST1 β
∗∥∥

P,2
+
∥∥ψ(W;η∗)− ST1 β

∗∥∥
P,2

}∥∥∇ηψ(W; η̃)T (η̂−k − η∗)
∥∥
P,2
.

Note that, with probability 1,

∥∥ψ(W;η∗)− ST1 β
∗∥∥

P,2
≤ c−1 ‖ζ‖P,2 + c−2 ‖ε‖P,2 = O(1).

Define

ε̃ := Y (1, 1)− S̄T2 α̃, ζ̃ := S̄T2 α̃− ST1 β̃.

359



Condition on the event E1 ∩ E2. By Lemmas 4.17 and 4.18, we also have

∥∥ψ(W; η̃)− ST1 β
∗∥∥

P,2

≤
∥∥g−1(ST1 γ̃)

∥∥
P,4

∥∥∥ζ̃∥∥∥
P,4

+
∥∥g−1(ST1 γ̃)

∥∥
P,6

∥∥∥g−1(S̄T2 δ̃)
∥∥∥
P,6
‖ε̃‖P,6 +

∥∥∥ST1 (β̃ − β∗)
∥∥∥
P,2

= Op

(
1 + ‖β̃ − β∗‖2

)
= Op

(
1 + ‖β̂−k − β∗‖2

)
= Op(1).

In addition,

∥∥∇ηψ(W; η̃)T (η̂−k − η∗)
∥∥
P,2

≤
∥∥∇γψ(W; η̃)T (γ̂−k − γ∗)

∥∥
P,2

+
∥∥∥∇δψ(W; η̃)T (δ̂−k − δ∗)

∥∥∥
P,2

+
∥∥∇αψ(W; η̃)T (α̂−k −α∗)

∥∥
P,2

+
∥∥∥∇βψ(W; η̃)T (β̂−k − β∗)

∥∥∥
P,2
.

Here, by Lemma 4.15,

∥∥∇γψ(W; η̃)T (γ̂−k − γ∗)
∥∥
P,2

≤
∥∥exp(−ST1 γ̃)

∥∥
P,6

{∥∥∥g−1(S̄T2 δ̃)
∥∥∥
P,6
‖ε̂‖P,6 +

∥∥∥ζ̂∥∥∥
P,3

}∥∥ST1 (γ̂−k − γ∗)
∥∥
P,6

= Op (‖γ̂−k − γ∗‖2) .

Similarly, for the second term, by Lemmas 4.16 and 4.17,

∥∥∥∇δψ(W; η̃)T (δ̂−k − δ∗)
∥∥∥
P,2

≤
∥∥g−1(ST1 γ̃)

∥∥
P,6

∥∥∥exp(−S̄T2 δ̃)
∥∥∥
P,6
‖ε̃‖P,12

∥∥∥S̄T2 (δ̂−k − δ∗)
∥∥∥
P,12

= Op

(
‖δ̂−k − δ∗‖2

)
.
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For the third term, by Lemma 4.17,

∥∥∇αψ(W; η̃)T (α̂−k −α∗)
∥∥
P,2

≤
∥∥g−1(ST1 γ̃)

∥∥
P,6

{
1 +

∥∥∥g−1(S̄T2 δ̃)
∥∥∥
P,6

}∥∥S̄T2 (α̂−k −α∗)
∥∥
P,6

= Op (‖α̂−k −α∗‖2) .

Lastly, by Lemma 4.18,

∥∥∥∇βψ(W; η̃)T (β̂−k − β∗)
∥∥∥
P,2

≤
{

1 +
∥∥g−1(ST1 γ̃)

∥∥
P,4

}∥∥∥ST1 (β̂−k − β∗)
∥∥∥
P,4

= Op

(
‖β̂−k − β∗‖2

)
.

Therefore, we have

∥∥∇ηψ(W; η̃)T (η̂−k − η∗)
∥∥
P,2

= Op

(
‖γ̂−k − γ∗‖2 + ‖δ̂−k − δ∗‖2 + ‖α̂−k −α∗‖2 + ‖β̂−k − β∗‖2

)
.

It follows that

ESk(∆
2
k,1) = n−1E

[
{ψ(W; η̂−k)− ψ(W;η∗)}2]

= N−1Op

(
‖γ̂−k − γ∗‖2 + ‖δ̂−k − δ∗‖2 + ‖α̂−k −α∗‖2 + ‖β̂−k − β∗‖2

)
. (4.59)

By Lemma 4.4,

∆k,1 = Op

(
N−1/2

√
‖γ̂−k − γ∗‖2 + ‖δ̂−k − δ∗‖2 + ‖α̂−k −α∗‖2 + ‖β̂−k − β∗‖2

)
= op(N

−1/2).
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Step 4 We show that, as N →∞,

σ−1N−1/2

N∑
i=1

ψ(Wi;η
∗)− θ1,1 → N (0, 1). (4.60)

By Lyapunov’s central limit theorem, it suffices to show that, for some t > 2,

σ−tE
{
|ψ(W;η∗)− θ1,1|t

}
< C, (4.61)

with some constant C > 0. Note that

σ2 = E [{Y (1, 1)− θ1,1}]2 + E

([{
1− A1

g(ST1 γ
∗)

}
{ST1 β∗ − Y (1, 1)}

]2
)

+ E

([
A1

g(ST1 γ
∗)

{
1− A2

g(S̄T2 δ
∗)

}
{S̄T2α∗ − Y (1, 1)}

]2
)

≥ E
[
{Y (1, 1)− θ1,1}2

] (i)

≥ E
[
{Y (1, 1)− θ1,1}2

]
/2 + E[{µ(S1)− θ1,1}2]/2

(ii)

≥ cY /2 + c0(1− c0)−1E[A1 exp(−ST1 γ
∗){µ(S1)− θ1,1}2]/2,

where (i) holds since E [{Y (1, 1)− θ1,1}2] = E [{Y (1, 1)− µ(S1)}2] +E [{µ(S1)− θ1,1}2]; (ii)

holds since exp(ST1 γ
∗) > c0(1− c0)−1 under Assumption 4.1, E[{Y (1, 1)− θ1,1}]2 ≥ cY under

Assumption 4.4, and A1 ≤ 1. Based on the construction of β∗ as in (4.15), and since either

ρ∗(·) or ν∗(·) is correctly specified, we have

β∗ = arg min
β∈Rd1

E
[
A1 exp(−ST1 γ

∗)
{
ν(S̄2)− ST1 β

}2
]

= arg min
β∈Rd1

E
[
A1 exp(−ST1 γ

∗)
{
µ(S1)− ST1 β

}2
]
,

which implies

E
[
A1 exp(−ST1 γ

∗)
{
µ(S1)− ST1 β

∗}S1

]
= 0 ∈ Rd1 .
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Under Assumptions 4.1 and 4.4, it follows that

E[A1 exp(−ST1 γ
∗){µ(S1)− θ1,1}2]

(i)
= E[A1 exp(−ST1 γ

∗){µ(S1)− ST1 β
∗}2] + E[A1 exp(−ST1 γ

∗){ST1 β∗ − θ1,1}2]

≥ E[A1 exp(−ST1 γ
∗){ST1 β∗ − θ1,1}2] = E[π(S1) exp(−ST1 γ

∗){ST1 β∗ − θ1,1}2]

≥ c0(c−1
0 − 1)E[{ST1 β∗ − θ1,1}2] ≥ (1− c0)cmin‖β∗‖2

2,

where (i) holds since

E[A1 exp(−ST1 γ
∗){µ(S1)− ST1 β

∗}{ST1 β∗ − θ1,1}]

= E[A1 exp(−ST1 γ
∗){µ(S1)− ST1 β

∗}ST1 {β∗ − θ1,1e1}] = 0.

Therefore, we have

σ2 ≥ cY /2 + c0cmin‖β∗‖2
2/2.

Additionally, for any r > 0,

‖ψ(W;η∗)− θ1,1‖P,r

≤ ‖Y (1, 1)− θ1,1‖P,r +

∥∥∥∥{1− A1

g(ST1 γ
∗)

}
{ST1 β∗ − Y (1, 1)}

∥∥∥∥
P,r

+

∥∥∥∥ A1

g(ST1 γ
∗)

{
1− A2

g(S̄T2 δ
∗)

}
{S̄T2α∗ − Y (1, 1)}

∥∥∥∥
P,r

≤ ‖ST1 β∗‖P,r + ‖ε‖P,r + ‖ζ‖P,r + |θ1,1|+ (1 + c−1
0 ) ‖ε+ ζ‖P,r

+ c−1
0 (1 + c−1

0 ) ‖ε‖P,r

(i)
= O (‖β∗‖2 + 1) .

where (i) holds by |θ1,1| = |E(ST1 β
∗)| ≤ ‖ST1 β∗‖P,1. Therefore,

σ � ‖β∗‖2 + 1, (4.62)
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and

σ−tE
{
|ψ(W;η∗)− θ1,1|t

}
=

{
‖ψ(W;η∗)− θ1,1‖P,t

σ

}t

= O

(
‖β∗‖2 + 1

cY /2 + cmin‖β∗‖2
2/2

)
= O(1),

and (4.61) follows.

Step 5 Finally, we prove that, as N →∞,

σ̂2 = σ2{1 + op(1)}. (4.63)

Note that

ES

{N−1

N∑
i=1

ψ(Wi;η
∗)− θ1,1

}2
 = N−1σ2 � ‖β

∗‖2
2 + 1

N
.

By Lemma 4.4,

N−1

N∑
i=1

ψ(Wi;η
∗)− θ1,1 = Op

(
‖β∗‖2 + 1√

N

)
.

By (4.59), (4.61), (4.62), and Lemma S4.4 of [ZCB21], we have (4.63) holds.

Proof of Theorem 4.2. Theorem 4.2 follows directly from Theorem 4.1.

Proof of Lemma 4.1. We show that, with high probability, the RSC property holds for each

of the loss functions. By Taylor’s theorem, with some v1, v2 ∈ (0, 1),

δ ¯̀
1(γ∗,∆) = (2M)−1

∑
i∈Iγ

A1i exp{−ST1i(γ
∗ + v1∆)}(ST1i∆)2,

δ ¯̀
2(γ̂, δ∗,∆) = (2M)−1

∑
i∈Iδ

A1iA2ig
−1(ST1iγ̂) exp{−S̄T2i(δ

∗ + v2∆)}(S̄T2i∆)2, (4.64)

δ ¯̀
3(γ̂, δ̂,α∗,∆) = M−1

∑
i∈Iα

A1iA2ig
−1(ST1iγ̂) exp(−S̄T2iδ̂)(S̄T2i∆)2, (4.65)

δ ¯̀
4(γ̂, δ̂, α̂,β∗,∆) = M−1

∑
i∈Iβ

A1i exp(−ST1iγ̂)(ST1i∆)2. (4.66)
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Part 1 Let U = A1S1, S′ = (A1iS1i)i∈Iγ , φ(u) = exp(−u), v = v1, and η = γ∗. Under

Assumption 4.1, |UTη| ≤ |ST1 γ∗| < C with some constant C > 0. By Lemmas 4.5 and 4.8,

we have (4.40) holds.

Part 2 Now we treat γ̂ as fixed (or conditional on) and suppose that ‖γ̂−γ∗‖2 ≤ 1. Note

that g−1(u) = 1 + exp(−u) and S = (ST1 ,S
T
2 )T . Hence,

δ ¯̀
2(γ̂, δ∗,∆) = (2M)−1

∑
i∈Iδ

A1iA2i exp{−S̄T2i(δ
∗ + v2∆)}(S̄T2i∆)2

+ (2M)−1
∑
i∈Iδ

A1iA2i exp{−S̄T2i(δ
∗ + γ̌ + v2∆)}(S̄T2i∆)2,

where γ̌ = (γ̂T , 0, . . . , 0)T ∈ Rd. Let U = A1A2S, S′ = (A1iA2iS̄2i)i∈Iδ , φ(u) = exp(−u),

v = v2, and η = δ∗. Note that, under Assumption 4.1, we have |UTη| ≤ |S̄T2 δ∗| < C with

some constant C > 0. By Lemmas 4.5 and 4.8, we have

(2M)−1
∑
i∈Iδ

A1iA2i exp{−S̄T2i(δ
∗ + v2∆)}(S̄T2i∆)2

≥ κ′1‖∆‖2
2 − κ′2

log d

M
‖∆‖2

1, ∀‖∆‖2 ≤ 1, (4.67)

with probability PSδ at least 1− c′1 exp(−c′2M) and some constants κ′1, κ
′
2, c
′
1, c
′
2 > 0.

Similarly, let U = A1A2S, S′ = (A1iA2iS̄2i)i∈Iδ , φ(u) = exp(−u), v = v2, and η =

δ∗ + γ̌. On the event ‖γ̂ − γ∗‖2 ≤ 1, under Assumptions 4.1 and 4.4, we have E{|UTη|} ≤

E(|ST1 γ∗|) + E(|S̄T2 δ∗|) + E{|ST1 (γ̂ − γ∗)|} < C with some constant C > 0. By Lemmas 4.5

and 4.8, we have

(2M)−1
∑
i∈Iδ

A1iA2i exp{−S̄T2i(δ
∗ + γ̌ + v2∆)}(S̄T2i∆)2

≥ κ′1‖∆‖2
2 − κ′2

log d

M
‖∆‖2

1, ∀‖∆‖2 ≤ 1, (4.68)
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with probability PSδ at least 1− c′1 exp(−c′2M). Hence, (4.41) follows from (4.67) and (4.68).

Part 3 We treat both γ̂ and δ̂ as fixed (or conditional on) and suppose that ‖γ̂−γ∗‖2 ≤ 1,

‖δ̂ − δ∗‖2 ≤ 1. Note that

δ ¯̀
3(γ̂, δ̂,α∗,∆) = M−1

∑
i∈Iα

A1iA2i exp(−S̄T2iδ̂)(S̄T2i∆)2

+M−1
∑
i∈Iα

A1iA2i exp{−S̄T2i(δ̂ + γ̌)}(S̄T2i∆)2. (4.69)

Let U = A1A2S, S′ = (A1iA2iS̄2i)i∈Iα , φ(u) = exp(−u), v = 0, and η = δ̂. Here, E(|UTη|) ≤

E(|S̄T2 δ∗|) + E{|S̄T2 (δ̂ − δ∗)|} < C with some constant C > 0. By Lemmas 4.5 and 4.8, we

have

M−1
∑
i∈Iα

A1iA2i exp(−S̄T2iδ̂)(S̄T2i∆)2 ≥ κ′1‖∆‖2
2 − κ′2

log d

M
‖∆‖2

1, ∀‖∆‖2 ≤ 1, (4.70)

with probability PSα at least 1− c′1 exp(−c′2M).

Similarly, let U = A1A2S, S′ = (A1iA2iS̄2i)i∈Iα , φ(u) = exp(−u), v = 0, and η =

δ̂+ γ̌. Then, E(|UTη|) ≤ E(|ST1 γ∗|) +E(|S̄T2 δ∗|) +E{|ST1 (γ̂−γ∗)|}+E{|S̄T2 (δ̂− δ∗)|} < C

with some constant C > 0. By Lemmas 4.5 and 4.8, we have

M−1
∑
i∈Iα

A1iA2i exp{−S̄T2i(δ̂ + γ̌)}(S̄T2i∆)2 ≥ κ′1‖∆‖2
2 − κ′2

log d

M
‖∆‖2

1, ∀‖∆‖2 ≤ 1, (4.71)

with probability PSα at least 1− c′1 exp(−c′2M). Note that, the function δ`N(γ̂, δ̂,α∗,∆) is

based on a weighted squared loss, and hence the lower bounds in (4.70) and (4.71) can be

extended to any ∆ ∈ Rd. For any ∆′ ∈ Rd, we let ∆ = ∆′/‖∆′‖2. Then, ‖∆‖2 = 1. The

lower bounds in (4.70) and (4.71) hold if we multiply the LHS and RHS by a factor ‖∆′‖2
2.

Therefore, (4.43) holds by combining the lower bounds with (4.69) .

366



Part 4 Lastly, treat γ̂ as fixed (or conditional on) and suppose that ‖γ̂ − γ∗‖2 ≤ 1.

Let U = A1S1, S′ = (A1iS1i)i∈Iβ , φ(u) = exp(−u), v = 0, and η = γ̂. Here, E{|UTη|} ≤

E(|ST1 γ∗|)+E{|ST1 (γ̂−γ∗)|} < C with some constant C > 0. Then, (4.42) holds by Lemmas

4.5 and 4.8. Here, similarly as in part 3, the lower bound can be extended to any ∆ ∈ Rd,

since δ`N(γ̂, δ̂, α̂,β∗,∆) is also constructed based on a weighted squared loss.

Proof of Lemma 4.2. Now, we control the gradients of the loss functions.

Part 1 Note that

∇γ ¯̀
1(γ∗) = M−1

∑
i∈Iγ

{1− A1ig
−1(ST1iγ

∗)}S1i.

By the construction of γ∗, we have

E
[
{1− A1g

−1(ST1 γ
∗)}S1

]
= 0 ∈ Rd1 .

Also, for each 1 ≤ j ≤ d1, |{1−A1g
−1(ST1 γ

∗)}ST1 ej| ≤ (1 + c−1
0 )|ST1 ej| and hence, by Lemma

D.1 (ii) of [CLCL19],

‖{1− A1g
−1(ST1 γ

∗)}ST1 ej‖ψ2 ≤ (1 + c−1
0 )‖ST1 ej‖ψ2 ≤ (1 + c−1

0 )σS.

Let σγ :=
√

8(1 + c−1
0 )σS. By Lemma D.2 of [CLCL19], for each 1 ≤ j ≤ d1 and any t > 0,

PSγ

(∣∣∇γ ¯̀
1(γ∗)Tej

∣∣ > σγ

√
t+ log d1

M

)
≤ 2 exp(−t− log d1).

It follows that,

PSγ

(∥∥∇γ ¯̀
1(γ∗)

∥∥
∞ > σγ

√
t+ log d1

M

)
≤

d1∑
j=1

PSγ

(∣∣∇γ ¯̀
1(γ∗)Tej

∣∣ > σγ

√
t+ log d1

M

)

≤ 2d1 exp(−t− log d1) = 2 exp(−t).
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Part 2 Note that

∇δ ¯̀
2(γ∗, δ∗) = M−1

∑
i∈Iδ

A1ig
−1(ST1iγ

∗){1− A2ig
−1(S̄T2iδ

∗)}S̄2i.

By the construction of δ∗, we have

E
[
A1g

−1(ST1 γ
∗){1− A2g

−1(S̄T2 δ
∗)}S̄2

]
= 0 ∈ Rd.

Under Assumption 4.1, we have

|A1g
−1(ST1 γ

∗){1− A2g
−1(S̄T2 δ

∗)}S̄T2 ej| ≤ c−1
0 (1 + c−1

0 )|S̄T2 ej|,

for each 1 ≤ j ≤ d. By Lemma D.1 (i) and (ii),

‖A1g
−1(ST1 γ

∗){1− A2g
−1(S̄T2 δ

∗)}S̄T2 ej‖ψ2 ≤ (c−2
0 + c−1

0 )‖S̄T2 ej‖ψ2 ≤ (c−2
0 + c−1

0 )σS.

Let σδ :=
√

8(c−2
0 + c−1

0 )σS. By Lemma D.2 of [CLCL19], for each 1 ≤ j ≤ d and any t > 0,

PSδ

(∣∣∇δ ¯̀
2(γ∗, δ∗)Tej

∣∣ > σδ

√
t+ log d

M

)
≤ 2 exp(−t− log d).

It follows that,

PSδ

(∥∥∇δ ¯̀
2(γ∗, δ∗)

∥∥
∞ > σδ

√
t+ log d

M

)
≤

d∑
j=1

PSδ

(∣∣∇δ ¯̀
2(γ∗, δ∗)Tej

∣∣ > σδ

√
t+ log d

M

)

≤ 2d exp(−t− log d) = 2 exp(−t).

Part 3 Note that

∇α ¯̀
3(γ∗, δ∗,α∗) = −2M−1

∑
i∈Iα

A1iA2ig
−1(ST1iγ

∗) exp(−S̄T2iδ
∗)εiS̄2i.

By the construction of α∗, we have

E
{
−2A1A2g

−1(ST1 γ
∗) exp(−S̄T2 δ

∗)εS̄2

}
= 0 ∈ Rd.
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Under Assumption 4.1, we have

| − 2A1A2g
−1(ST1 γ

∗) exp(−S̄T2 δ
∗)εS̄T2 ej| ≤ 2c−1

0 (c−1
0 − 1)|εS̄T2 ej|,

for each 1 ≤ j ≤ d. By Lemma D.1 (i), (ii), and (v),

‖ − 2A1A2g
−1(ST1 γ

∗) exp(−S̄T2 δ
∗)εS̄T2 ej‖ψ1

≤ 2c−1
0 (c−1

0 − 1)‖ε‖ψ2‖S̄T2 ej‖ψ2 ≤ 2c−1
0 (c−1

0 − 1)σεσS.

Let

σα := 2c−1
0 (c−1

0 − 1)σεσS.

By Lemmas D.1 (iv) and D.4 of [CLCL19], for each 1 ≤ j ≤ d and any t > 0,

PSα

(∣∣∇α ¯̀
3(γ∗, δ∗,α∗)Tej

∣∣ > σα

(
2

√
t+ log d

M
+
t+ log d

M

))
≤ 2 exp(−t− log d).

It follows that,

PSα

(∥∥∇α ¯̀
3(γ∗, δ∗,α∗)

∥∥
∞ > σα

(
2

√
t+ log d

M
+
t+ log d

M

))

≤
d∑
j=1

PSα

(∣∣∇α ¯̀
3(γ∗, δ∗,α∗)Tej

∣∣ > σα

(
2

√
t+ log d

M
+
t+ log d

M

))

≤ 2d exp(−t− log d) = 2 exp(−t).

Part 4 Note that

∇β ¯̀
4(γ∗, δ∗,α∗,β∗) = −2M−1

∑
i∈Iβ

A1i exp(−ST1iγ
∗)
{
ζi + A2ig

−1(S̄T2iδ
∗)εi
}

S1i.

By the construction of β∗, we have

E
[
−2A1 exp(−ST1 γ

∗)
{
ζ + A2g

−1(S̄T2 δ
∗)ε
}

S1

]
= 0 ∈ Rd1 .

369



Under Assumption 4.1, we have | − 2A1 exp(−ST1 γ
∗)
{
ζ + A2g

−1(S̄T2 δ
∗)ε
}

ST1 ej| ≤ 2(c−1
0 −

1)(|ζ|+ c−1
0 |ε|)|ST1 ej| for each 1 ≤ j ≤ d. By Lemma D.1 (i), (ii), and (v),

‖ − 2A1 exp(−ST1 γ
∗)
{
ζ + A2g

−1(S̄T2 δ
∗)ε
}

ST1 ej‖ψ1

≤ 2(c−1
0 − 1)(‖ζ‖ψ2 + c−1

0 ‖ε‖ψ2)‖ST1 ej‖ψ2 ≤ 2(c−1
0 − 1)(σζ + c−1

0 σε)σS.

Let σβ := 2(c−1
0 − 1)(σζ + c−1

0 σε)σS. By Lemmas D.1 (iv) and D.4 of [CLCL19], for each

1 ≤ j ≤ d1 and any t > 0,

PSβ

(∣∣∇β ¯̀
4(γ∗, δ∗,α∗,β∗)Tej

∣∣ > σβ

(
2

√
t+ log d1

M
+
t+ log d1

M

))

≤ 2 exp(−t− log d1).

It follows that,

PSβ

(∥∥∇β ¯̀
4(γ∗, δ∗,α∗,β∗)

∥∥
∞ > σβ

(
2

√
t+ log d1

M
+
t+ log d1

M

))

≤
d1∑
j=1

PSβ

(∣∣∇β ¯̀
4(γ∗, δ∗,α∗,β∗)Tej

∣∣ > σβ

(
2

√
t+ log d1

M
+
t+ log d1

M

))

≤ 2d1 exp(−t− log d1) = 2 exp(−t).

Proof of Theorem 4.3. We proof the consistency rates of the nuisance parameter estimators

when the models are possibly misspecified.

(a) By Lemmas 4.1 and 4.2, as well as Corollary 9.20 of [Wai19], we have

‖γ̂ − γ∗‖2 = Op

(√
sγ log d1

M

)
, ‖γ̂ − γ∗‖1 = Op

(
sγ

√
log d1

M

)
.
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(b) By Lemma 4.11, PSγ∪Sδ(A1 ∩ A2) ≥ 1 − t − 2 exp(−t), where A1 and A2 are defined

in (4.45) and (4.46), respectively. By Lemma 4.12, condition on A1 ∩ A2, we have ∆δ =

δ̂ − δ∗ ∈ C̃(s̄δ, k0) = {∆ ∈ Rd : ‖∆‖1 ≤ k0

√
s̄δ‖∆‖2}, where s̄δ =

√
sγ log d1

log d
+ sδ and

k0 > 0 is a constant. Additionally, by Lemma 4.13, we also have ‖∆δ‖2 ≤ 1. By (a),

we have PSγ ({‖γ̂ − γ∗‖2 ≤ 1}) = 1 − o(1). Then, by (4.41) in Lemma 4.1, PSγ∪Sδ(A3) ≥

1 − o(1) − c1 exp(−c2M) = 1 − o(1), where A3 is defined in (4.47). Now, also condition on

A3. Then, we have, for large enough N ,(
2λδ
√
sδ + c

√
sγ log d1

N

)
‖∆δ‖2

(i)

≥ δ ¯̀
2(γ̂, δ∗,∆δ) +

λδ
4
‖∆δ‖1

(ii)

≥ κ1‖∆δ‖2
2 − κ2

log d

M
‖∆δ‖2

1 +
λδ
4
‖∆δ‖1

(iii)

≥
(
κ1 − κ2k

2
0

s̄δ log d

M

)
‖∆δ‖2

2

(iv)

≥ κ1

2
‖∆δ‖2

2,

where (i) holds by Lemma 4.12; (ii) holds by the construction of A3 and also that ‖∆δ‖2 ≤ 1;

(iii) holds since ∆δ ∈ C̃(s̄δ, k0) and λδ
4
‖∆δ‖1 ≥ 0; (iv) holds for large enough N , since

s̄δ log d
M

= sγ log d1
M

+ sδ log d
M

= o(1). Therefore, condition on A1 ∩ A2 ∩ A3,

‖∆δ‖2 ≤
4λδ
√
sδ

κ1

+
2c

κ1

√
sγ log d1

N
= O

(√
sγ log d1 + sδ log d

N

)
,

and since ∆δ ∈ C̃(s̄δ, k0), it follows that

‖∆δ‖1 ≤ k0

√
s̄δ‖∆δ‖2 = O

(
sγ

√
(log d1)2

N log d
+ sδ

√
log d

N

)
.

Therefore, we conclude that

‖δ̂ − δ∗‖2 =Op

(√
sγ log d1 + sδ log d

N

)
,

‖δ̂ − δ∗‖1 =Op

(
sγ

√
(log d1)2

N log d
+ sδ

√
log d

N

)
.
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(c) For any t > 0, with some λγ �
√

log d1
N

, λδ �
√

log d
N

and λα �
√

log d
N

, define

A4 :={‖∇α ¯̀
3(γ∗, δ∗,α∗)‖∞ ≤ λα/2}, (4.72)

A5 :=

{
δ ¯̀

3(γ̂, δ̂,α∗,∆) ≥ κ1‖∆‖2
2 − κ2

log d

M
‖∆‖2

1, ∀∆ ∈ Rd

}
. (4.73)

Let λα > 2σα

(
2
√

t+log d
M

+ t+log d
M

)
with some t > 0. By Lemma 4.2, we have PSα(A4) ≥

1 − 2 exp(−t). Let ∆ = α̂ − α∗. Similar to the proof of Lemma 4.12 for obtaining (4.96),

we have, on the event A4,

2δ ¯̀
3(γ̂, δ̂,α∗,∆) + λα‖∆‖1 ≤ 4λα‖∆Sα‖1 + 2|R2|. (4.74)

where

R2 =
{
∇α ¯̀

3(γ̂, δ̂,α∗)−∇α ¯̀
3(γ∗, δ∗,α∗)

}T
∆

= 2M−1
∑
i∈Iα

A1iA2i

{
g−1(ST1iγ̂) exp(−S̄T2iδ̂)− g−1(ST1iγ

∗) exp(−S̄T2iδ
∗))
}
εiS̄

T
2i∆.

By the fact that 2ab ≤ 1
2
a2 + 2b2,

|R2| ≤
1

2
δ ¯̀

3(γ̂, δ̂,α∗,∆) + 2R3,

where

R3 = M−1
∑
i∈Iα

(
exp(−S̄T2iδ̂)

g(ST1iγ̂)
− exp(−S̄T2iδ

∗)

g(ST1iγ
∗)

)2
g(ST1iγ̂)

exp(−S̄T2iδ̂)
ε2
i .

By (a) and (b) of Theorem 4.3, we have PSγ∪Sδ({‖γ̂ − γ∗‖2 ≤ 1, ‖δ̂− δ∗‖2 ≤ 1}) = 1− o(1).

Note that

ESα [R3] = E

(exp(−S̄T2 δ̂)

g(ST1 γ̂)
− exp(−S̄T2 δ

∗)

g(ST1 γ
∗)

)2
g(ST1 γ̂)

exp(−S̄T2 δ̂)
ε2


≤

∥∥∥∥∥exp(−S̄T2 δ̂)

g(ST1 γ̂)
− exp(−S̄T2 δ

∗)

g(ST1 γ
∗)

∥∥∥∥∥
2

P,6

∥∥∥∥∥ g(ST1iγ̂)

exp(−S̄T2iδ̂)

∥∥∥∥∥
P,3

‖ε‖2
P,6

(i)
= Op

(
sγ log d1 + sδ log d

N

)
.
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where (i) holds by Lemma D.1 (iv) of [CLCL19], as well as the fact that∥∥∥∥∥exp(−S̄T2 δ̂)

g(ST1 γ̂)
− exp(−S̄T2 δ

∗)

g(ST1 γ
∗)

∥∥∥∥∥
P,6

≤
∥∥∥g−1(ST1 γ

∗)
{

exp(−S̄T2 δ̂)− exp(−S̄T2 δ
∗)
}∥∥∥

P,6

+
∥∥exp(−S̄T2 δ

∗)
{
g−1(−ST1 γ̂)− g−1(−ST1 γ

∗)
}∥∥

P,6

+
∥∥∥exp(−S̄T2 δ̂)− exp(−S̄T2 δ

∗)
∥∥∥
P,12

∥∥g−1(−ST1 γ̂)− g−1(−ST1 γ
∗)
∥∥
P,12

= Op

(√
sγ log d1 + sδ log d

N

)
(4.75)

using Lemmas 4.15 and 4.16. Hence,

R3 = Op

(
sγ log d1 + sδ log d

N

)
. (4.76)

Recall (4.74), we have

δ ¯̀
3(γ̂, δ̂,α∗,∆) + λα‖∆‖1 ≤ 4λα‖∆Sα‖1 + 2R3.

Note that ‖∆Sα‖1 ≤
√
sα‖∆Sα‖2 ≤

√
sα‖∆‖2. Hence,

δ ¯̀
3(γ̂, δ̂,α∗,∆) + λα‖∆‖1 ≤ 4λα

√
sα‖∆‖2 + 2R3.

Recall (4.65), we have δ ¯̀
3(γ̂, δ̂,α∗,∆) ≥ 0. Then,

‖∆‖1 ≤ 4
√
sα‖∆‖2 +

2R3

λα
(4.77)

Then, by Lemma 4.1, PSγ∪Sδ∪Sα(A5) ≥ 1 − o(1) − c1 exp(−c2M) = 1 − o(1), where A5 is

defined in (4.73). Now, condition on A4 ∩ A5, for large enough N ,

4λα
√
sα‖∆‖2 + 2R3

(i)

≥ δ ¯̀
3(γ̂, δ̂,α∗,∆)

(ii)

≥ κ1‖∆‖2
2 − κ2

log d

M
‖∆‖2

1

(iii)

≥ κ1‖∆‖2
2 − 2κ2

log d

M

(
16sα‖∆‖2

2 +
4R2

3

λ2
α

)
(iv)

≥ κ1

2
‖∆‖2

2 − 8κ2R
2
3

log d

Mλ2
α
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where (i) holds by ‖∆‖1 ≥ 0; (ii) holds by the construction of A5; (iii) holds by (4.77) and

the fact that (a+ b)2 ≤ 2a2 + 2b2; (iv) holds for large enough N , since sα log d
M

= o(1). Hence,

on the event A4 ∩ A5, for large enough N ,

κ1‖∆‖2
2 − 8λα

√
sα‖∆‖2 − 16κ2R

2
3

log d

Mλ2
α

− 4R3 ≤ 0.

It follows from Lemma 4.14 that

‖∆‖2 ≤
8λα
√
sα

κ1

+

√
16R2

3

κ2 log d

κ1Mλ2
α

+
4R3

κ1

(i)
= Op

(√
sα log d

N
+
sγ log d1 + sδ log d

N
+

√
sγ log d1 + sδ log d

N

)

= Op

(√
sγ log d1 + sδ log d+ sα log d

N

)

where (i) holds by λα
√
sα �

√
sα log d
N

and (4.76). Recall (4.77), we have

‖∆‖1 = Op

(
sγ

√
(log d1)2

N log d
+ sδ

√
log d

N
+ sα

√
log d

N

)
.

(d) For any t > 0, with some λγ �
√

log d1
N

, λδ �
√

log d
N

, λα �
√

log d
N

and λβ �
√

log d
N

,

define

A6 :=
{∥∥∇β ¯̀

4(γ∗, δ∗,α∗,β∗)
∥∥
∞ ≤ λβ/2

}
, (4.78)

A7 :=

{
δ ¯̀

4(γ̂, δ̂, α̂,β∗,∆) ≥ κ1‖∆‖2
2 − κ2

log d1

M
‖∆‖2

1, ∀∆ ∈ Rd1

}
. (4.79)

Let λβ > 2σβ

(
2
√

t+log d1
M

+ t+log d1
M

)
with some t > 0. By Lemma 4.2, we have

PSα(A6) ≥ 1−2 exp(−t). Let ∆ = β̂−β∗. Similar to the proof of Lemma 4.12 for obtaining

(4.96), we have, on the event A6,

2δ ¯̀
4(γ̂, δ̂, α̂,β∗,∆) + λβ‖∆‖1 ≤ 4λβ‖∆Sβ

‖1 + 2|R4|. (4.80)
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where

R4 =
{
∇β ¯̀

4(γ̂, δ̂, α̂,β∗)−∇β ¯̀
4(γ∗, δ∗,α∗,β∗)

}T
∆

= 2M−1
∑
i∈Iβ

A1i

{
exp(−ST1iγ̂)

(
S̄T2iα̂− ST1iβ

∗ +
A2i(Yi − S̄T2iα̂)

g(S̄T2iδ̂)

)

− exp(−ST1iγ
∗)

(
S̄T2iα

∗ − ST1iβ
∗ +

A2i(Yi − S̄T2iα
∗)

g(S̄T2iδ
∗)

)}
ST1i∆.

By the fact that 2ab ≤ 1
2
a2 + 2b2,

|R4| ≤
1

2
δ ¯̀

4(γ̂, δ̂, α̂,β∗,∆) + 2R5,

where

R5 = M−1
∑
i∈Iβ

1

exp(−ST1iγ̂)

{
exp(−ST1iγ̂)

(
S̄T2iα̂− ST1iβ

∗ +
A2i(Yi − S̄T2iα̂)

g(S̄T2iδ̂)

)

− exp(−ST1iγ
∗)

(
S̄T2iα

∗ − ST1iβ
∗ +

A2i(Yi − S̄T2iα
∗)

g(S̄T2iδ
∗)

)}2

Note that

ESβ [R5] = E

[
1

exp(−ST1 γ̂)
(Q1 +Q2 +Q3)2

]
where

Q1 = exp(−ST1 γ̂)

(
1− A2

g(S̄T2 δ̂)

)
S̄T2 (α̂−α∗),

Q2 =
{

exp(−ST1 γ̂)− exp(−ST1 γ
∗)
}
ζ,

Q3 = B

{
exp(−S̄T2 γ̂)

g(ST1 δ̂)
− exp(−S̄T2 γ

∗)

g(ST1 δ
∗)

}
ε.

By (a) and (b) of Theorem 4.3, we have PSγ∪Sδ({‖γ̂ − γ∗‖2 ≤ 1, ‖δ̂− δ∗‖2 ≤ 1}) = 1− o(1).

Then by Hölder’s inequality,

ESβ [R5] ≤
∥∥∥∥ 1

exp(−ST1 γ̂)

∥∥∥∥
P,2

(‖Q1‖P,4 + ‖Q2‖P,4 + ‖Q3‖P,4)2
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and

‖Q1‖P,4 ≤
∥∥exp(−ST1 γ̂)

∥∥
P,12

∥∥∥∥∥
(

1− B

g(S̄T2 δ̂)

)∥∥∥∥∥
P,12

∥∥S̄T2 (α̂−α∗)
∥∥
P,12

(i)
= Op

(√
sγ log d1 + sδ log d+ sα log d

N

)
,

‖Q2‖P,4 ≤
∥∥{exp(−ST1 γ̂)− exp(−ST1 γ

∗)
}∥∥

P,8
‖ζ‖P,8

(ii)
= Op

(√
sγ log d1

N

)
,

‖Q3‖P,4 ≤

∥∥∥∥∥exp(−S̄T2 γ̂)

g(ST1 δ̂)
− exp(−S̄T2 γ

∗)

g(ST1 δ
∗)

∥∥∥∥∥
P,8

‖ε‖P,8
(iii)
= Op

(√
sγ log d1 + sδ log d

N

)
,

where (i) and (ii) hold by Lemmas 4.15, 4.16, 4.17 and Lemma 4.6; (iii) holds analogously

as in (4.75). Hence,

R5 = Op

(
sγ log d1 + sδ log d+ sα log d

N

)
(4.81)

Recall (4.80), we have

δ ¯̀
4(γ̂, δ̂, α̂,β∗,∆) + λβ‖∆‖1 ≤ 4λβ‖∆Sβ

‖1 + 2R5.

Note that ‖∆Sβ
‖1 ≤

√
sβ‖∆Sβ

‖2 ≤
√
sβ‖∆‖2. Hence,

δ ¯̀
4(γ̂, δ̂, α̂,β∗,∆) + λβ‖∆‖1 ≤ 4λβ

√
sβ‖∆Sβ

‖1 + 2|R5|.

Recall (4.66), we have δ ¯̀
4(γ̂, δ̂, α̂,β∗,∆) ≥ 0. Then,

‖∆‖1 ≤ 4
√
sβ‖∆‖2 +

2R3

λβ
(4.82)

Then, by Lemma 4.1, PSγ∪Sδ∪Sβ(A7) ≥ 1 − o(1) − c1 exp(−c2M) = 1 − o(1), where A7 is

defined in (4.79). The remaining parts of the proof can be shown analogously as (c) of

Theorem 4.3. Now, condition on A6 ∩ A7, for large enough N ,

‖∆‖2 ≤
8λβ
√
sβ

κ1

+

√
16R2

3

κ2 log d1

κ1Mλ2
β

+
4R3

κ1

= Op

(√
sγ log d1 + sδ log d+ sα log d+ sβ log d1

N

)
.
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Recall (4.82), we have

‖∆‖1 = Op

(
sγ

√
log d1

N
+ sδ

√
(log d)2

N log d1

+ sα

√
(log d)2

N log d1

+ sβ

√
log d1

N

)
.

Proof of Lemma 4.3. By Lemma 4.2, we have

∥∥∇δ ¯̀
2(γ∗, δ∗)

∥∥
∞ =Op

(√
log d

N

)
, (4.83)

∥∥∇α ¯̀
3(γ∗, δ∗,α∗)

∥∥
∞ =Op

(√
log d

N

)
, (4.84)

∥∥∇β ¯̀
4(γ∗, δ∗,α∗,β∗)

∥∥
∞ =Op

(√
log d1

N

)
. (4.85)

(a) Let ρ(·) = ρ∗(·). Note that

∇δ ¯̀
2(γ̂, δ∗)−∇δ ¯̀

2(γ∗, δ∗) = M−1
∑
i∈Iδ

Wδ,i,

where

Wδ,i := A1i{g−1(ST1iγ̂)− g−1(ST1iγ
∗)}{1− A2ig

−1(S̄T2iδ
∗)}S̄2i.

Let Wδ be an indepenent copy of Wδ,i. Then, by the tower rule,

E(Wδ) = 0 ∈ Rd.

By Corollary 2.3 of Lemma 4.7, we have

ESδ

∥∥∥∥∥M−1
∑
i∈Iδ

Wδ,i

∥∥∥∥∥
2

∞

 ≤M−1(2e log d− e)E(‖Wδ‖2
∞)

≤ (1 + c−1
0 )M−1(2e log d− e)E

{∣∣g−1(ST1 γ̂)− g−1(ST1 γ
∗)
∣∣2 ‖S̄2‖2

∞

}
≤ (1 + c−1

0 )M−1(2e log d− e)
∥∥g−1(ST1 γ̂)− g−1(ST1 γ

∗)
∥∥2

P,4

∥∥‖S̄2‖∞
∥∥2

P,4

(i)
= Op

(
sγ log d1(log d)2

N2

)
,
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where (i) holds by Lemma 4.15 and Lemma 4.6. By Lemma 4.4,

∥∥∇δ ¯̀
2(γ̂, δ∗)−∇δ ¯̀

2(γ∗, δ∗)
∥∥
∞ =

∥∥∥∥∥M−1
∑
i∈Iδ

Wδ,i

∥∥∥∥∥
∞

= Op

(√
sγ log d1 log d

N

)
.

Together with (4.83), we have

∥∥∇δ ¯̀
2(γ̂, δ∗)

∥∥
∞ = Op

((
1 +

√
sγ log d1 log d

N

)√
log d

N

)
.

The remaining parts of the proof can be shown analogously as in (a).

(b) Let ν(·) = ν∗(·). Note that

∇α ¯̀
3(γ̂, δ̂,α∗)−∇α ¯̀

3(γ∗, δ∗,α∗) = M−1
∑
i∈Iα

Wα,i,

where

Wα,i := −2A1iA2i{g−1(ST1iγ̂) exp(−S̄T2iδ̂)− g−1(ST1iγ
∗) exp(−S̄T2iδ

∗)}εiS̄2i.

Let Wα be an indepenent copy of Wα,i. Then, by the tower rule,

E(Wα) = 0 ∈ Rd.

By Lemma 4.7, we have

ESα

∥∥∥∥∥M−1
∑
i∈Iα

Wα,i

∥∥∥∥∥
2

∞

 ≤M−1(2e log d− e)E(‖Wα‖2
∞)

≤ 2M−1(2e log d− e)E


∣∣∣∣∣exp(−S̄T2 δ̂)

g(ST1 γ̂)
− exp(−S̄T2 δ

∗)

g(ST1 γ
∗)

∣∣∣∣∣
2

ε2‖S̄2‖2
∞


≤ 2M−1(2e log d− e)

∥∥∥∥∥exp(−S̄T2 δ̂)

g(ST1 γ̂)
− exp(−S̄T2 δ

∗)

g(ST1 γ
∗)

∥∥∥∥∥
2

P,6

∥∥ε‖2
P,6‖‖S̄2‖∞

∥∥2

P,6

(i)
= Op

(
(sγ log d1 + sδ log d)(log d)2

N2

)
,
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where (i) holds by Lemma 4.6 and (4.75). By Lemma 4.4,

∥∥∥∇α ¯̀
3(γ̂, δ̂,α∗)−∇δ ¯̀

3(γ∗, δ∗,α∗)
∥∥∥
∞

= Op

(√
sγ log d1 log d

N

)
.

Together with (4.84), we have

∥∥∥∇α ¯̀
3(γ̂, δ̂,α∗)

∥∥∥
∞

= Op

((
1 +

√
(sγ log d1 + sδ log d) log d

N

)√
log d

N

)
.

(c) Let ν(·) = ν∗(·) and µ(·) = µ∗(·). Note that

∇β ¯̀
4(γ̂, δ̂,α∗,β∗)−∇β ¯̀

4(γ∗, δ∗,α∗,β∗) = M−1
∑
i∈Iβ

(Wβ,1,i + Wβ,2,i),

where

Wβ,1,i :=− 2A1i{exp(−ST1iγ̂)− exp(−ST1iγ
∗)}ζiS1i,

Wβ,2,i :=− 2A1iA2i{exp(−ST1iγ̂)g−1(S̄T2iδ̂)− exp(−ST1iγ
∗)g−1(S̄T2iδ

∗)}εiS1i.

Let Wβ,1 and Wβ,2 be indepenent copies of Wβ,1,i and Wβ,1,i, respectively. Then, by the

tower rule,

E(Wβ,1) = E(Wβ,2) = 0 ∈ Rd1 .

By Lemma 4.7, we have

ESβ

∥∥∥∥∥∥M−1
∑
i∈Iβ

Wβ,1,i

∥∥∥∥∥∥
2

∞

 ≤M−1(2e log d1 − e)E(‖Wβ,1‖2
∞)

≤ 4M−1(2e log d1 − e)E
{∣∣exp(−ST1 γ̂)− exp(ST1 γ

∗)
∣∣2 ζ2‖S1‖2

∞

}
≤ 4M−1(2e log d1 − e)

∥∥exp(−ST1 γ̂)− exp(ST1 γ
∗)
∥∥2

P,6

∥∥ζ‖2
P,6‖‖S1‖∞

∥∥2

P,6

(i)
= Op

(
sγ log d1(log d1)2

N2

)
,
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where (i) holds by Lemma 4.15 and Lemma 4.6. Similarly, we also have

ESβ

∥∥∥∥∥∥M−1
∑
i∈Iβ

Wβ,2,i

∥∥∥∥∥∥
2

∞

 ≤M−1(2e log d1 − e)E(‖Wβ,2‖2
∞)

≤ 4M−1(2e log d1 − e)E


∣∣∣∣∣exp(−ST1 γ̂)

g(S̄T2 δ̂)
− exp(−ST1 γ

∗)

g(S̄T2 δ
∗)

∣∣∣∣∣
2

ε2‖S1‖2
∞


≤ 4M−1(2e log d1 − e)

∥∥∥∥∥exp(−ST1 γ̂)

g(S̄T2 δ̂)
− exp(−ST1 γ

∗)

g(S̄T2 δ
∗)

∥∥∥∥∥
2

P,6

∥∥ε‖2
P,6‖‖S1‖∞

∥∥2

P,6

(i)
= Op

(
(sγ log d1 + sδ log d)(log d1)2

N2

)
,

where (i) holds by Lemma 4.6, and analogously as in (4.75),∥∥∥∥∥exp(−ST1 γ̂)

g(S̄T2 δ̂)
− exp(−ST1 γ

∗)

g(S̄T2 δ
∗)

∥∥∥∥∥
P,6

= Op

(√
sγ log d1 + sδ log d

N

)
.

Hence, it follows that

ESβ

{∥∥∥∇β ¯̀
4(γ̂, δ̂,α∗,β∗)−∇α ¯̀

4(γ∗, δ∗,α∗,β∗)
∥∥∥2

∞

}
= Op

(
(sγ log d1 + sδ log d)(log d1)2

N2

)
.

By Lemma 4.4,

∥∥∥∇β ¯̀
4(γ̂, δ̂,α∗,β∗)−∇β ¯̀

4(γ∗, δ∗,α∗,β∗)
∥∥∥
∞

= Op

(√
sγ log d1 + sδ log d log d1

N

)
.

Together with (4.85), we have

∥∥∥∇β ¯̀
4(γ̂, δ̂,α∗,β∗)

∥∥∥
∞

= Op

((
1 +

√
(sγ log d1 + sδ log d) log d1

N

)√
log d1

N

)
.

(d) Let ρ(·) = ρ∗(·) and µ(·) = µ∗(·). Note that

∇β ¯̀
4(γ̂, δ∗, α̂,β∗)−∇β ¯̀

4(γ∗, δ∗,α∗,β∗) = M−1
∑
i∈Iβ

(Wβ,3,i + Wβ,4,i),
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where

Wβ,3,i := −2A1i exp(−ST1iγ̂)

{
1− A2i

g(S̄T2iδ
∗)

}
S̄T2i(α̂−α∗)S1i,

Wβ,4,i := −2A1i{exp(−ST1iγ̂)− exp(−ST1iγ
∗)}
{

A2i

g(S̄T2iδ
∗)
εi + ζi

}
S1i. (4.86)

Let Wβ,3 and Wβ,4 be independent copies of Wβ,3,i and Wβ,4,i, respectively. Then,

by the tower rule,

E(Wβ,3) = E(Wβ,4) = 0 ∈ Rd1 .

By Lemma 4.7, we have

ESβ

∥∥∥∥∥∥M−1
∑
i∈Iβ

Wβ,3,i

∥∥∥∥∥∥
2

∞

 ≤M−1(2e log d1 − e)E(‖Wβ,3‖2
∞)

≤ 4M−1(2e log d1 − e)(1 + c−1
0 )2E

{
exp(ST1 γ̂)

{
S̄T2 (α̂−α∗)

}2 ‖S1‖2
∞

}
≤ 4M−1(2e log d1 − e)(1 + c−1

0 )2
∥∥exp(ST1 γ̂)

∥∥2

P,3

∥∥S̄T2 (α̂−α∗)
∥∥2

P,6
‖‖S1‖∞‖2

P,6

(i)
= Op

(
(sγ log d1 + sδ log d+ sα log d)(log d1)2

N2

)
,

where (i) holds by Lemmas 4.15, 4.17 and Lemma 4.6. Similarly, we also have

ESβ

∥∥∥∥∥∥M−1
∑
i∈Iβ

Wβ,4,i

∥∥∥∥∥∥
2

∞

 ≤M−1(2e log d1 − e)E(‖Wβ,4‖2
∞)

≤ 4M−1(2e log d1 − e)E
[{

exp(ST1 γ̂)− exp(ST1 γ
∗)
}2 (

c−1
0 |ε|+ |ζ|

)2 ‖S1‖2
∞

]
≤ 8M−1(2e log d1 − e)

∥∥exp(ST1 γ̂)− exp(ST1 γ
∗)
∥∥2

P,6

·
(
c−2

0 ‖ε‖2
P,6 + ‖ζ‖2

P,6

)
‖‖S1‖∞‖2

P,6

(i)
= Op

(
sγ log d1(log d1)2

N2

)
, (4.87)
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where (i) holds by Lemmas 4.15 and Lemma 4.6. Hence, it follows that

ESβ

{∥∥∇β ¯̀
4(γ̂, δ∗, α̂,β∗)−∇β ¯̀

4(γ∗, δ∗,α∗,β∗)
∥∥2

∞

}
= Op

(
(sγ log d1 + sδ log d+ sα log d)(log d1)2

N2

)
.

By Lemma 4.4,

∥∥∇β ¯̀
4(γ̂, δ∗, α̂,β∗)−∇β ¯̀

4(γ∗, δ∗,α∗,β∗)
∥∥
∞

= Op

(√
sγ log d1 + sδ log d+ sα log d log d1

N

)
.

Together with (4.85), we have

∥∥∇β ¯̀
4(γ̂, δ∗, α̂,β∗)

∥∥
∞

= Op

((
1 +

√
(sγ log d1 + sδ log d+ sα log d) log d1

N

)√
log d1

N

)
.

(e) Let ρ(·) = ρ∗(·), ν(·) = ν∗(·), and µ(·) = µ∗(·). Note that

∇β ¯̀
4(γ̂, δ∗,α∗,β∗)−∇β ¯̀

4(γ∗, δ∗,α∗,β∗) = M−1
∑
i∈Iβ

Wβ,4,i,

where Wβ,4,i is defined in (4.86). By (4.87) and Lemma 4.4,

∥∥∇β ¯̀
4(γ̂, δ∗,α∗,β∗)−∇β ¯̀

4(γ∗, δ∗,α∗,β∗)
∥∥
∞ = Op

(√
sγ log d1 log d1

N

)
.

Together with (4.85), we have

∥∥∇β ¯̀
4(γ̂, δ∗, α̂,β∗)

∥∥
∞ = Op

((
1 +

√
sγ(log d1)2

N

)√
log d1

N

)
.

Proof of Theorem 4.4. We show the consistency rate of the nuisance estimators under cor-

rectly specified models.
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(a) Let ρ(·) = ρ∗(·). Then, by Lemma 4.3, when sγ = O( N
log d1 log d

),

∥∥∇δ ¯̀
2(γ̂, δ∗)

∥∥
∞ = Op

(√
log d

N

)
.

By Lemma 4.1, we have (4.41) when ‖γ̂ − γ∗‖2 ≤ 1. In addition, by Lemma 4.15, we also

have PSγ (‖γ̂ − γ∗‖2 ≤ 1) = 1− o(1). By Corollary 9.20 of [Wai19], we have

‖δ̂ − δ∗‖2 = Op

(√
sδ log d

N

)
, ‖δ̂ − δ∗‖1 = Op

(
sδ

√
log d

N

)
.

(b) Let ν(·) = ν∗(·). Then, by Lemma 4.3, when sγ = O( N
log d1 log d

) and sδ = O( N
(log d)2

),

∥∥∥∇α ¯̀
3(γ̂, δ̂,α∗)

∥∥∥
∞

= Op

(√
log d

N

)
.

By Lemma 4.1, we have (4.43) when ‖γ̂ − γ∗‖2 ≤ 1 and ‖δ̂ − δ∗‖2 ≤ 1. In addition, by

Lemmas 4.15 and 4.16, we also have PSγ∪Sδ(‖γ̂ − γ∗‖2 ≤ 1 ∩ ‖δ̂ − δ∗‖2 ≤ 1) = 1− o(1). By

Corollary 9.20 of [Wai19], we have

‖α̂−α∗‖2 = Op

(√
sα log d

N

)
, ‖α̂−α∗‖1 = Op

(
sα

√
log d

N

)
.

(c) Let ν(·) = ν∗(·) and µ(S1) = ST1 β. Then, by Lemma 4.3, when sγ = O( N
(log d1)2

) and

sδ = O( N
log d1 log d

), ∥∥∥∇β ¯̀
4(γ̂, δ̂,α∗,β∗)

∥∥∥
∞

= Op

(√
log d1

N

)
.

That is, for any t > 0, there exists some λ3 �
√

log d1
N

, such that E3 := {‖∇β ¯̀
4(γ̂, δ̂,α∗,β∗)‖∞ ≤

λ3} holds with probability at least 1 − t. Condition on the event E3, and choose some

λβ > 2λ3. By the construction of β, we have

¯̀
4(γ̂, δ̂, α̂, β̂) + λβ‖β̂‖1 ≤ ¯̀

4(γ̂, δ̂, α̂,β∗) + λβ‖β∗‖1.
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Let ∆ = α̂−α∗ and S = {j ∈ {1, . . . , d1} : β∗j 6= 0}. Note that,

δ ¯̀
4(γ̂, δ̂, α̂,β∗,∆) = ¯̀

4(γ̂, δ̂, α̂, β̂)− ¯̀
4(γ̂, δ̂, α̂,β∗)−∇β ¯̀

4(γ̂, δ̂, α̂,β∗)T∆.

Hence,

δ ¯̀
4(γ̂, δ̂, α̂,β∗,∆) + λβ‖β̂‖1 ≤ −∇β ¯̀

4(γ̂, δ̂, α̂,β∗)T∆ + λβ‖β∗‖1

≤
∥∥∥∇β ¯̀

4(γ̂, δ̂,α∗,β∗)
∥∥∥
∞
‖∆‖1 + λβ‖β∗‖1 + |R6| ≤ λβ‖∆‖1/2 + λβ‖β∗‖1 + |R6|,

where

R6 :=
{
∇β ¯̀

4(γ̂, δ̂, α̂,β∗)−∇β ¯̀
4(γ̂, δ̂,α∗,β∗)

}T
∆.

Note that ‖β∗‖1 = ‖β∗S‖1 ≤ ‖β̂S‖1 + ‖∆S‖1, ‖β̂‖1 = ‖β̂S‖1 + ‖β̂Sc‖1 = ‖β̂S‖1 + ‖∆Sc‖1,

and ‖∆‖1 = ‖∆S‖1 + ‖∆Sc‖1. Hence, we have

2δ ¯̀
4(γ̂, δ̂, α̂,β∗,∆) + λβ‖∆Sc‖1 ≤ 3λβ‖∆S‖1 + 2|R6|.

Observe that

|R6| =

∣∣∣∣∣∣2M−1
∑
i∈Iβ

A1i exp(−ST1iγ̂)

{
1− A2i

g(S̄T2iδ̂)

}
S̄T2i(α̂−α∗)ST1i∆

∣∣∣∣∣∣
≤ δ ¯̀

4(γ̂, δ̂, α̂,β∗,∆)

2
+R7,

where δ ¯̀
4(γ̂, δ̂, α̂,β∗,∆) = M−1

∑
i∈Iβ A1i exp(−ST1iγ̂)(ST1i∆)2 and

R7 := 2M−1
∑
i∈Iβ

exp(−ST1iγ̂)

{
1− A2i

g(S̄T2iδ̂)

}2 {
S̄T2i(α̂−α∗)

}2
.

It follows that

δ ¯̀
4(γ̂, δ̂, α̂,β∗,∆) + λβ‖∆Sc‖1 ≤ 3λβ‖∆S‖1 + 2R7. (4.88)
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Condition on ‖γ̂ − γ∗‖2 ≤ 1, where by Lemma 4.15, ‖γ̂ − γ∗‖2 ≤ 1 holds with

probability 1− o(1). Also, condition on the event that

δ ¯̀
4(γ̂, δ̂, α̂,β∗,∆) ≥ κ1‖∆‖2

2 − κ2
log d1

M
‖∆‖2

1, (4.89)

which, by Lemma 4.1, holds with probability 1 − o(1). Since δ ¯̀
4(γ̂, δ̂, α̂,β∗,∆) ≥ 0, by

(4.88), we have

‖∆‖1 ≤ 4‖∆S‖1 + 2λ−1
β R7. (4.90)

Note that ‖∆S‖1 ≤
√
sβ‖∆S‖2 ≤

√
sβ‖∆‖2. Together with (4.88) and (4.89),

3λβ
√
sβ‖∆‖2 + 2R7 ≥ 3λβ‖∆S‖1 + 2R7 ≥ δ ¯̀

4(γ̂, δ̂, α̂,β∗,∆)

≥ κ1‖∆‖2
2 − κ2

log d1

M
‖∆‖2

1 ≥ κ1‖∆‖2
2 − κ2

log d1

M

(
4‖∆S‖1 + 2λ−1

β R7

)2

≥ κ1‖∆‖2
2 − 4κ2

log d1

M

(
4‖∆S‖2

1 + λ−2
β R2

7

)
≥ κ1‖∆‖2

2 − 4κ2
log d1

M

(
4sβ‖∆‖2

2 + λ−2
β R2

7

)
≥ κ1

2
‖∆‖2

2 −
4κ2 log d1

λ2
βM

R2
7,

when M > 32κ2sβ log d1/κ1. By Lemma 4.14,

‖∆‖2 ≤
6λβ
√
sβ

κ1

+

√
8κ2R2

7 log d1

κ1λ2
βM

+
4R7

κ1

. (4.91)

Now, we upper bound the term R7. Observe that

ESβ(R7) = 2E

exp(−ST1 γ̂)

{
1− A2

g(S̄T2 δ̂)

}2 {
S̄T2 (α̂−α∗)

}2


≤ 2

∥∥exp(−ST1 γ̂)
∥∥
P,3

∥∥∥∥∥1− A2

g(S̄T2 δ̂)

∥∥∥∥∥
2

P,6

∥∥S̄T2 (α̂−α∗)
∥∥2

P,6

≤ 2
∥∥exp(−ST1 γ̂)

∥∥
P,3

{
1 +

∥∥∥g−1(S̄T2 δ̂)
∥∥∥
P,6

}2 ∥∥S̄T2 (α̂−α∗)
∥∥2

P,6

(i)
= Op

(
sα log d

N

)
,
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where (i) holds by Lemmas 4.15, 4.16, and 4.17. By Lemma 4.4,

R7 = Op

(
sα log d

N

)
.

By (4.91) and λβ �
√

log d1
N

, we have

‖∆‖2 = Op

(√
sβ log d1

N
+
sα log d

N
+

√
sα log d

N

)
= Op

(√
sα log d+ sβ log d1

N

)
.

By (4.90),

‖∆‖1 ≤ 4
√
sβ‖∆‖2 + 2λ−1

β R7 = Op

(
sβ

√
log d1

N
+ sγ

√
(log d)2

N log d1

)
.

(d) Let ρ(·) = ρ∗(·) and µ(·) = µ∗(·). Then, by Lemma 4.3, when sγ = o( N
(log d1)2

),

sδ = o( N
log d1 log d

), and sα = o( N
log d1 log d

),

∥∥∇β ¯̀
4(γ̂, δ∗, α̂,β∗)

∥∥
∞ = Op

(√
log d1

N

)
.

That is, for any t > 0, there exists some λ4 �
√

log d1
N

, such that

E4 := {‖∇β ¯̀
4(γ̂, δ∗, α̂,β∗)‖∞ ≤ λ4}

holds with probability at least 1− t. Condition on the event E4, and choose some λβ > 2λ4.

Similarly as in part (c), we obtain

2δ ¯̀
4(γ̂, δ̂, α̂,β∗,∆) + λβ‖∆Sc‖1 ≤ 3λβ‖∆S‖1 + 2|R8|,

where

|R8| =
∣∣∣∣{∇β ¯̀

4(γ̂, δ̂, α̂,β∗)−∇β ¯̀
4(γ̂, δ∗, α̂,β∗)

}T
∆

∣∣∣∣
=

∣∣∣∣∣∣2M−1
∑
i∈Iβ

A1iA2i exp(−ST1iγ̂)
{
g−1(S̄T2iδ̂)− g−1(S̄T2iδ

∗)
}
ε̂iS

T
1i∆

∣∣∣∣∣∣
≤ δ ¯̀

4(γ̂, δ̂, α̂,β∗,∆)

2
+R9.
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Here, ε̂i := Yi(1, 1)− S̄T2iα̂,

δ ¯̀
4(γ̂, δ̂, α̂,β∗,∆) =M−1

∑
i∈Iβ

A1i exp(−ST1iγ̂)(ST1i∆)2,

R9 :=2M−1
∑
i∈Iβ

A2i exp(−ST1iγ̂)
{
g−1(S̄T2iδ̂)− g−1(S̄T2iδ

∗)
}2

ε̂2
i .

Observe that

ESβ(R9) = 2E

[
A2 exp(−ST1 γ̂)

{
g−1(S̄T2 δ̂)− g−1(S̄T2 δ

∗)
}2

ε̂2

]
≤ 2

∥∥exp(−ST1 γ̂)
∥∥
P,3

∥∥∥g−1(S̄T2 δ̂)− g−1(S̄T2 δ
∗)
∥∥∥2

P,6
‖ε̂‖2

P,6

(i)
= Op

(
sδ log d

N

)
,

where (i) holds by Lemmas 4.15, 4.16, and 4.17. By Lemma 4.4,

R9 = Op

(
sδ log d

N

)
.

Repeat the same procedure as in part (c), we have

‖∆‖2 ≤
6λβ
√
sβ

κ1

+

√
8κ2R2

9 log d1

κ1λ2
βM

+
4R9

κ1

,

‖∆‖1 ≤ 4
√
sβ‖∆‖2 + 2λ−1

β R9,

with probability at least 1− t− o(1). Hence,

‖∆‖2 = Op

(√
sδ log d+ sβ log d1

N

)
,

‖∆‖1 = Op

(
sδ

√
(log d)2

N log d1

+ sβ

√
log d1

N

)
.
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(e) Let ρ(·) = ρ∗(·), ν(·) = ν∗(·), and µ(·) = µ∗(·). Then, by Lemma 4.3, when sγ =

o( N
(log d1)2

), sδ = o( N
log d1 log d

), and sα = o( N
log d1 log d

),

∥∥∥∇β ¯̀
4(γ̂, δ̂,α∗,β∗)

∥∥∥
∞

= Op

(√
log d1

N

)
,

∥∥∇β ¯̀
4(γ̂, δ∗, α̂,β∗)

∥∥
∞ = Op

(√
log d1

N

)
,

∥∥∇β ¯̀
4(γ̂, δ∗,α∗,β∗)

∥∥
∞ = Op

(√
log d1

N

)
.

Define

a := ∇β ¯̀
4(γ̂, δ̂,α∗,β∗) +∇β ¯̀

4(γ̂, δ∗, α̂,β∗)−∇β ¯̀
4(γ̂, δ∗,α∗,β∗).

Then, ‖a‖∞ = Op(
√

log d1
N

). Hence, for any t > 0, there exists some λ5 �
√

log d1
N

, such that

E5 := {‖a‖∞ ≤ λ5} holds with probability at least 1 − t. Condition on the event E5, and

choose some λβ > 2λ5. Similarly as in parts (c) and (d), we obtain

2δ ¯̀
4(γ̂, δ̂, α̂,β∗,∆) + λβ‖∆Sc‖1 ≤ 3λβ‖∆S‖1 + 2|R10|,

where

R10 =
{
∇β ¯̀

4(γ̂, δ̂, α̂,β∗)− a
}T

∆

=
{
∇β ¯̀

4(γ̂, δ̂, α̂,β∗)−∇β ¯̀
4(γ̂, δ̂,α∗,β∗)

}T
∆

−
{
∇β ¯̀

4(γ̂, δ∗, α̂,β∗)−∇β ¯̀
4(γ̂, δ∗,α∗,β∗)

}T
∆

= 2M−1
∑
i∈Iβ

A1iA2i exp(−ST1iγ̂)
{
g−1(S̄T2iδ̂)− g−1(S̄T2iδ

∗)
}

S̄T2i(α̂−α∗)ST1i∆.

By Young’s inequality for products,

|R10| ≤
δ ¯̀

4(γ̂, δ̂, α̂,β∗,∆)

2
+R11,
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where δ ¯̀
4(γ̂, δ̂, α̂,β∗,∆) = M−1

∑
i∈Iβ A1i exp(−ST1iγ̂)(ST1i∆)2 and

R11 := 2M−1
∑
i∈Iβ

A2i exp(−ST1iγ̂)
{
g−1(S̄T2iδ̂)− g−1(S̄T2iδ

∗)
}2 {

S̄T2i(α̂−α∗)
}2
.

Observe that

ESβ(R11) = 2E

[
A2 exp(−ST1 γ̂)

{
g−1(S̄T2 δ̂)− g−1(S̄T2 δ

∗)
}2 {

S̄T2 (α̂−α∗)
}2
]

≤ 2
∥∥exp(−ST1 γ̂)

∥∥
P,3

∥∥∥g−1(S̄T2 δ̂)− g−1(S̄T2 δ
∗)
∥∥∥2

P,6

∥∥S̄T2 (α̂−α∗)
∥∥2

P,6

(i)
= Op

(
sδsα(log d)2

N2

)
,

where (i) holds by Lemmas 4.15, 4.16, and 4.17. By Lemma 4.4,

R11 = Op

(
sδsα(log d)2

N2

)
.

Repeat the same procedure as in parts (c) and (d), we have

‖∆‖2 ≤
6λβ
√
sβ

κ1

+

√
8κ2R2

11 log d1

κ1λ2
βM

+
4R11

κ1

,

‖∆‖1 ≤ 4
√
sβ‖∆‖2 + 2λ−1

β R11,

with probability at least 1− t− o(1). Hence,

‖∆‖2 = Op

(√
sδsα log d

N
+

√
sβ log d1

N

)
,

‖∆‖1 = Op

(
sδsα log d

N

√
(log d)2

N log d1

+ sβ

√
log d1

N

)
.

4.5.3 Proof of auxiliary lemmas

Proof of Lemma 4.10. We prove the lemma by considering two cases separately.
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(a) If d ≤ m. Choose S = {1, . . . , d}. Since X is a sub-Gaussian vector, we have

sup
‖β‖2=1

E{(XTβ)2} = O(1). (4.92)

For any ∆ ∈ Rd, by triangle inequality, we have

m−1

m∑
i=1

(XT
i ∆)2 ≤ ‖∆‖2

2 sup
‖β‖2=1

m−1

m∑
i=1

(XT
i β)2

(i)

≤ ‖∆‖2
2

[
sup
‖β‖2=1

E{(XTβ)2}+ sup
‖β‖2=1

∣∣∣∣∣m−1

m∑
i=1

(XT
i β)2 − E{(XTβ)2}

∣∣∣∣∣
]

It follows that

sup
∆∈Rd/{0}

m−1
∑m

i=1(XT
i ∆)2

‖∆‖2
2

≤

[
sup
‖β‖2=1

E{(XTβ)2}+ sup
‖β‖2=1

∣∣∣∣∣m−1

m∑
i=1

(XT
i β)2 − E{(XTβ)2}

∣∣∣∣∣
]

By Lemma 4.9 and (4.92), we have, as m→∞,

sup
∆∈Rd/{0}

m−1
∑m

i=1(XT
i ∆)2

‖∆‖2
2

= Op

(
1 +

d

m

)
(i)
= Op(1)

where (i) holds since d ≤ m. Hence,

sup
∆∈Rd/{0}

m−1
∑m

i=1(XT
i ∆)2

m−1‖∆‖2
1 + ‖∆‖2

2

≤ sup
∆∈Rd/{0}

m−1
∑m

i=1(XT
i ∆)2

‖∆‖2
2

= Op(1)

(b) If m > d. Choose any set S ⊆ {1, . . . , d} such that s := |S| � m. For any ∆ ∈ Rd,

define ∆̃ = (∆̃T
S , ∆̃

T
Sc)

T ∈ Rd such that

∆̃S = s−1‖∆‖1(1, . . . , 1)T ∈ Rs, ∆̃Sc = ∆Sc ∈ Rd−s.

Then,

‖∆̃Sc‖1 = ‖∆Sc‖1 ≤ ‖∆‖1 = ‖∆̃S‖1.
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Hence, ∆̃ ∈ C(S, 3) := {∆ ∈ Rd : ‖∆Sc‖1 ≤ 3‖∆S‖1}. In addition, since (∆̃−∆)Sc = 0 ∈

Rd−s, we also have ∆̃ −∆ ∈ C(S, 3). Therefore, by the fact that (a + b)2 ≤ 2a2 + 2b2, we

have

m−1

m∑
i=1

(XT
i ∆)2 ≤ 2m−1

m∑
i=1

(XT
i ∆̃)2 + 2m−1

m∑
i=1

{
XT
i (∆̃−∆)

}2

≤ 2
(
‖∆̃‖2

2 + ‖∆̃−∆‖2
2

)
sup

β∈C(S,3)∩‖β‖2=1

m−1

m∑
i=1

(XT
i β)2.

Now, we observe that

‖∆̃‖2
2 = ‖∆̃S‖2

2 + ‖∆̃Sc‖2
2 = s−1‖∆‖2

1 + ‖∆Sc‖2
2,

‖∆̃−∆‖2
2 = ‖∆̃S −∆S‖2

2 ≤ 2‖∆̃S‖2
2 + 2‖∆S‖2

2 = 2s−1‖∆‖2
1 + 2‖∆S‖2

2.

Hence, we have

m−1

m∑
i=1

(XT
i ∆)2 ≤ 2

(
3s−1‖∆‖2

1 + 2‖∆‖2
2

)
sup

β∈C(S,3)∩‖β‖2=1

m−1

m∑
i=1

(XT
i β)2, ∀∆ ∈ Rd,

since ‖∆̃‖2
2 + ‖∆̃−∆‖2

2 ≤ 3s−1‖∆‖2
1 + 2‖∆‖2

2. It follows that

sup
∆∈Rd/{0}

m−1
∑m

i=1(XT
i ∆)2

6s−1‖∆‖2
1 + 4‖∆‖2

2

≤ sup
β∈C(S,3)∩‖β‖2=1

m−1

m∑
i=1

(XT
i β)2,

By Lemma 4.9 and (4.92), as m→∞,

sup
∆∈Rd/{0}

m−1
∑m

i=1(XT
i ∆)2

s−1‖∆‖2
1 + ‖∆‖2

2

= Op

(
1 +

√
s

m

)
.

Besides, note that s � m and hence 1 +
√
s/m = O(1). It follows that

sup
∆∈Rd/{0}

m−1
∑m

i=1(XT
i ∆)2

m−1‖∆‖2
1 + ‖∆‖2

2

= Op(1).
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Proof of Lemma 4.11. Note that

F(∆) :=δ ¯̀
2(γ̂, δ∗,∆) + λδ‖δ∗ + ∆‖1 +∇δ ¯̀

2(γ̂, δ∗)T∆− λδ‖δ∗‖1

=δ ¯̀
2(γ̂, δ∗,∆) + λδ‖δ∗ + ∆‖1 +∇δ ¯̀

2(γ∗, δ∗)T∆ +R1(∆)− λδ‖δ∗‖1, (4.93)

where

R1(∆) : =
{
∇δ ¯̀

2(γ̂, δ∗)−∇δ ¯̀
2(γ∗, δ∗)

}T
∆

= M−1
∑
i∈Iδ

A1i

{
g−1(ST1iγ̂)− g−1(ST1iγ

∗)
}{

1− A2ig
−1(S̄T2iδ

∗)
}

S̄T2i∆.

Let λδ > 2σδ

√
t+log d
M

with some t > 0. By Lemma 4.2, we have PSδ(A1) ≥ 1 − 2 exp(−t).

On the event A1, we have |∇δ ¯̀
2(γ∗, δ∗)T∆| ≤ λδ‖∆‖1/2. Note that ‖δ∗‖1 = ‖δ∗Sδ

‖1 ≤

‖δ∗Sδ
+∆Sδ

‖1 +‖∆Sδ
‖1, ‖∆‖1 = ‖∆Sδ

‖1 +‖∆Scδ
‖1, and ‖δ∗+∆‖1 = ‖δ∗Sδ

+∆Sδ
‖1 +‖∆Scδ

‖1.

Recall (4.93), it follows that

2F(∆) ≥ 2δ ¯̀
2(γ̂, δ∗,∆) + λδ‖∆Scδ

‖1 − 3λδ‖∆Sδ
‖1 − 2|R1(∆)|.

Hence,

2F(∆) ≥ 2δ ¯̀
2(γ̂, δ∗,∆) + λδ‖∆‖1 − 4λδ‖∆Sδ

‖1 − 2|R1(∆)|. (4.94)

Under the overlap condition in Assumption 4.1 and since |A1| ≤ 1,

|R1(∆)| ≤ (1 + c−1
0 )M−1

∑
i∈Iδ

A1i

{
g−1(ST1iγ̂)− g−1(ST1iγ

∗)
}

S̄T2i∆

(i)

≤ (1 + c−1
0 )

√
M−1

∑
i∈Iδ

{g−1(ST1iγ̂)− g−1(ST1iγ
∗)}2

√
M−1

∑
i∈Iδ

(S̄T2i∆)2,

where (i) holds by the Cauchy–Schwarz inequality. It follows that

sup
∆∈Rd/{0}

|R1(∆)|
‖∆‖1/

√
N + ‖∆‖2

≤ (1 + c−1
0 )

√
M−1

∑
i∈Iδ

{g−1(ST1iγ̂)− g−1(ST1iγ
∗)}2

√
sup

∆∈Rd/{0}

M−1
∑

i∈Iδ(S̄T2i∆)2

N−1‖∆‖2
1 + ‖∆‖2

2

,
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since (‖∆‖1/
√
N + ‖∆‖2)2 > N−1‖∆‖2

1 + ‖∆‖2
2. Note that

ESδ

[
M−1

∑
i∈Iδ

{
g−1(ST1iγ̂)− g−1(ST1iγ

∗)
}2

]
= E

[{
g−1(ST1 γ̂)− g−1(ST1 γ

∗)
}2
]

(i)
= Op

(
sγ log d1

N

)
,

where (i) holds by Lemma 4.15. By Lemma 4.4,

M−1
∑
i∈Iδ

{
g−1(ST1iγ̂)− g−1(ST1iγ

∗)
}2

= Op

(
sγ log d1

N

)
.

Besides, by Lemma 4.10, we also have

sup
∆∈Rd/{0}

M−1
∑

i∈Iδ(S̄T2i∆)2

N−1‖∆‖2
1 + ‖∆‖2

2

= Op(1).

Hence,

sup
∆∈Rd/{0}

|R1(∆)|
‖∆‖1/

√
N + ‖∆‖2

= Op

(√
sγ log d1

N

)
.

That is, with any t > 0, there exists some constant c > 0, such that PSγ∪Sδ(A2) ≥ 1 − t.

Hence,

PSγ∪Sδ(A1 ∩ A2) ≥ 1− t− 2 exp(−t).

Now, condition on A1 ∩ A2, we have

2F(∆) ≥ 2δ ¯̀
2(γ̂, δ∗,∆) + λδ‖∆‖1 − 4λδ‖∆Sδ

‖1 − 2c

√
sγ log d1

N

(
‖∆‖1√
N

+ ‖∆‖2

)
.

With some λδ �
√

log d
N

, since d1 ≤ d and sγ = o(N), we have
√

sγ log d1
N2 = o(λδ). Hence,

with some N0 > 0, when N > N0, we have 4c
√

sγ log d1
N2 ≤ λδ. It follows that

4F(∆) ≥ 4δ ¯̀
2(γ̂, δ∗,∆) + λδ‖∆‖1 − 8λδ‖∆Sδ

‖1 − 4c

√
sγ log d1

N
‖∆‖2.
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Note that ‖∆Sδ
‖1 ≤

√
sδ‖∆Sδ

‖2 ≤
√
sδ‖∆‖2. Hence,

4F(∆) ≥ 4δ ¯̀
2(γ̂, δ∗,∆) + λδ‖∆‖1 −

(
8λδ
√
sδ + 4c

√
sγ log d1

N

)
‖∆‖2. (4.95)

For any ∆ ∈ K̃(s̄δ, k0, 1), we have

4F(∆) ≥ 4δ ¯̀
2(γ̂, δ∗,∆) + λδ‖∆‖1 −

(
8λδ
√
sδ + 4c

√
sγ log d1

N

)
,

on the event A1 ∩ A2 and when N > N0. Here, on the event A3, we have

δ ¯̀
2(γ̂, δ∗,∆) ≥ κ1‖∆‖2

2 − κ2
log d

M
‖∆‖2

1

(i)

≥ κ1 − κ2k
2
0

s̄δ log d

M
,

where (i) holds since ∆ ∈ K̃(s̄δ, k0, 1). Therefore, condition on the event A1 ∩ A2 ∩ A3,

F(∆) ≥ κ1 − κ2k
2
0

s̄δ log d

M
− 2λδ

√
sδ −

c

2

√
sγ log d1

N
≥ κ1/2,

when N > N1 with some constant N1 > 0, since s̄δ log d
M

= sγ log d1
M

+ sδ log d
M

= o(1), λδ
√
sδ �√

sδ log d
N

= o(1), and
√

sγ log d1
N

= o(1).

Proof of Lemma 4.12. Based on the construction of δ̂, we have

¯̀
2(γ̂, δ̂) + λδ‖δ̂‖1 ≤ ¯̀

2(γ̂, δ∗) + λδ‖δ∗‖1.

By definition (4.38), we have δ ¯̀
2(γ̂, δ∗,∆δ) = ¯̀

2(γ̂, δ̂) − ¯̀
2(γ̂, δ∗) − ∇δ ¯̀

2(γ̂, δ∗)T∆δ. It

follows that

F(∆δ) = δ ¯̀
2(γ̂, δ∗,∆δ) + λδ‖δ̂‖1 +∇δ ¯̀

2(γ̂, δ∗)T∆δ − λδ‖δ∗‖1

= δ ¯̀
2(γ̂, δ∗,∆δ) + λδ‖δ∗ + ∆δ‖1 +∇δ ¯̀

2(γ∗, δ∗)T∆δ +R1(∆δ)− λδ‖δ∗‖1 ≤ 0,

where

R1(∆δ) =
{
∇δ ¯̀

2(γ̂, δ∗)−∇δ ¯̀
2(γ∗, δ∗)

}T
∆δ

= M−1
∑
i∈Iδ

A1i

{
g−1(ST1iγ̂)− g−1(ST1iγ

∗)
}{

1− A2ig
−1(S̄T2iδ

∗)
}

S̄T2i∆δ.
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Repeat the same procedure in the proof of Lemma 4.12 for obtaining (4.94) and (4.95).

Then, condition on A1, we have

0 ≥ 2F(∆δ) ≥ 2δ ¯̀
2(γ̂, δ∗,∆δ) + λδ‖∆δ‖1 − 4λδ‖∆δ,Sδ

‖1 − 2|R1(∆δ)|. (4.96)

Condition on A1 ∩ A2, we further have

0 ≥ 4F(∆δ) ≥ 4δ ¯̀
2(γ̂, δ∗,∆δ) + λδ‖∆δ‖1 −

(
8λδ
√
sδ + 4c

√
sγ log d1

N

)
‖∆δ‖2.

Hence,

4δ ¯̀
2(γ̂, δ∗,∆δ) + λδ‖∆δ‖1 ≤

(
8λδ
√
sδ + 4c

√
sγ log d1

N

)
‖∆δ‖2.

Recall (4.64), we have δ ¯̀
2(γ̂, δ∗,∆δ) ≥ 0. Therefore, with some λδ �

√
log d
N

, there exists

some constant k0 > 0, such that

‖∆δ‖1 ≤ k0

√
sγ log d1

log d
+ sδ‖∆δ‖2 = k0

√
s̄δ‖∆δ‖2,

on A1 ∩ A2 and when N > N0.

Proof of Lemma 4.13. We prove by contradiction. Suppose that ‖∆δ‖2 > 1. Let ∆̃ =

∆δ/‖∆δ‖2. Then, ‖∆̃‖2 = 1. When ∆δ ∈ C̃(s̄δ, k0), we have

‖∆̃‖1 = ‖∆δ‖1/‖∆δ‖2 ≤ k0

√
s̄δ = k0

√
s̄δ‖∆̃‖2.

That is, ∆̃ ∈ C̃(s̄δ, k0), and hence ∆̃ ∈ K̃(s̄δ, k0, 1). Let u = ‖∆δ‖−1
2 . Then, 0 < u < 1.

Note that F(·) is a convex function. Hence, when N > N1,

F(∆̃) = F(u∆δ + (1− u)0) ≤ uF(∆δ) + (1− u)F(0)
(i)
= uF(∆δ)

(ii)

≤ 0,

where (i) holds since F(0) = 0 by construction of F(·); (ii) holds by the construction of δ̂.

However, by Lemma 4.11, F(∆̃) > 0. Thus, we conclude that ‖∆δ‖2 ≤ 1.
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Proof of Lemma 4.14.

x ≤ b+
√
b2 + 4ac

2a
≤ b+

√
b2 +

√
4ac

2a
=
b

a
+

√
c

a
.

Proof of Lemma 4.15. Let X the support of S1. Under Assumption 4.1, for all S1 ∈ X , there

exists some constant c > 0 such that

exp(ST1 γ
∗) ≤ c, exp(−ST1 γ

∗) < g−1(ST1 γ
∗) ≤ c.

By Theorem 4.3,

‖γ̂ − γ∗‖2 = Op

(√
sγ log d1

N

)
.

Since S1 is a sub-Gaussian random vector under Assumption 4.4, by Theorem 2.6 of [Wai19],

∥∥ST1 (γ̂ − γ∗)
∥∥
P,r

= O (‖γ̂ − γ∗‖2) = Op

(√
sγ log d1

N

)
.

Additionally, note that sγ = o( N
log d1

). It follows that

PSγ (‖γ̂ − γ∗‖2 ≤ 1) = 1− o(1).

For any γ ∈ {wγ∗ + (1− w)γ̂ : w ∈ [0, 1]}, we have

∥∥g−1(ST1 γ)− g−1(ST1 γ
∗)
∥∥
P,r

=
∥∥exp(−ST1 γ

∗)
[
exp

{
−ST1 (γ − γ∗)

}
− 1
]∥∥

P,r

≤ c
∥∥exp

{
−ST1 (γ − γ∗)

}
− 1
∥∥
P,r

By Taylor’s Thorem, for any S1 ∈ X , with some v ∈ (0, 1),

∣∣exp
{
−ST1 (γ − γ∗)

}
− 1
∣∣ = exp

{
−vST1 (γ − γ∗)

} ∣∣ST1 (γ − γ∗)
∣∣

≤
[
1 + exp

{
−ST1 (γ − γ∗)

}] ∣∣ST1 (γ − γ∗)
∣∣ .
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Condition on the event ‖γ̂−γ∗‖2 ≤ 1. Note that γ−γ∗ = (1−w)(γ̂−γ∗) and 1−w ∈ [0, 1],

we have

∥∥g−1(ST1 γ)− g−1(ST1 γ
∗)
∥∥
P,r

≤ c
∥∥[1 + exp

{
−ST1 (γ − γ∗)

}]
ST1 (γ − γ∗)

∥∥
P,r

≤ c
∥∥ST1 (γ − γ∗)

∥∥
P,r

+ c
∥∥exp

{
−ST1 (γ − γ∗)

}∥∥
P,2r

∥∥ST1 (γ − γ∗)
∥∥
P,2r

= O (‖γ̂ − γ∗‖2) = Op

(√
sγ log d1

N

)
, (4.97)

using Assumption 4.4 and Theorem 2.6 of [Wai19]. It follows that,

∥∥g−1(ST1 γ)
∥∥
P,r
≤
∥∥g−1(ST1 γ

∗)
∥∥
P,r

+O (‖γ̂ − γ∗‖2) ≤ C,

with some constant C > 0, since ‖γ̂ − γ∗‖2 ≤ 1. Therefore, we conclude that PSγ (E1) =

1− o(1). Moreover, by the fact that exp(−u) = g−1(u)− 1 < g−1(u) and ‖X‖P,r′ ≤ ‖X‖P,12

for any X ∈ R and 1 ≤ r′ ≤ 12, we have

∥∥g−1(ST1 γ)
∥∥
P,r′
≤ C,

∥∥exp(−ST1 γ)
∥∥
P,r′
≤ C.

Moreoever, we have (4.48), since γ̂ ∈ {wγ∗ + (1−w)γ̂ : w ∈ [0, 1]}, PSγ (E1) = 1− o(1), and

(4.97) holds. Besides, note that

∥∥exp(ST1 γ)− exp(ST1 γ
∗)
∥∥
P,r′
≤ c

∥∥exp{ST1 (γ − γ∗)} − 1
∥∥
P,r′

≤ c
[∥∥exp{ST1 (γ − γ∗)}

∥∥
P,r′

+ 1
]

= O(1),

since S1 is sub-Gaussian and ‖γ − γ∗‖2 ≤ 1. Therefore,

∥∥exp(ST1 γ)
∥∥
P,r′
≤
∥∥exp(ST1 γ

∗)
∥∥
P,r′

+
∥∥exp(ST1 γ)− exp(ST1 γ

∗)
∥∥
P,r′

≤ c+O(1) = O(1).
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Proof of Lemma 4.16. Let S the support of S̄2. Under Assumption 4.1, there exists some

constant c > 0, such that, for all S̄2 ∈ S,

exp(S̄T2 δ
∗) ≤ c, exp(−S̄T2 δ

∗) < g−1(S̄T2 δ
∗) ≤ c.

(a) By Theorem 4.3,

‖δ̂ − δ∗‖2 = Op

(√
sγ log d1 + sδ log d

N

)
= op(1).

By Assumption 4.4 and Theorem 2.6 of [Wai19],

∥∥∥S̄T2 (δ̂ − δ∗)
∥∥∥
P,r

= O
(
‖δ̂ − δ∗‖2

)
= Op

(√
sγ log d1 + sδ log d

N

)
.

(b) By Theorem 4.4,

‖δ̂ − δ∗‖2 = Op

(√
sδ log d

N

)
= op(1).

Similarly, by Assumption 4.4 and Theorem 2.6 of [Wai19],

∥∥∥S̄T2 (δ̂ − δ∗)
∥∥∥
P,r

= O
(
‖δ̂ − δ∗‖2

)
= Op

(√
sδ log d

N

)
.

The remaining proof is an analog of the proof of Lemma 4.15. Let either (a) or (b)

holds. Then, we have ‖δ̂ − δ∗‖2 = op(1). Hence,

PSγ∪Sδ(‖δ̂ − δ∗‖2 ≤ 1) = 1− o(1).

For any δ ∈ {wδ∗ + (1− w)δ̂ : w ∈ [0, 1]}, we have

∥∥g−1(S̄T2 δ)− g−1(S̄T2 δ
∗)
∥∥
P,r

=
∥∥exp(−S̄T2 δ

∗)
[
exp

{
−S̄T2 (δ − δ∗)

}
− 1
]∥∥

P,r

≤ c
∥∥exp

{
−S̄T2 (δ − δ∗)

}
− 1
∥∥
P,r
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By Taylor’s Thorem, for any S̄2 ∈ S, with some v ∈ (0, 1),

∣∣exp
{
−S̄T2 (δ − δ∗)

}
− 1
∣∣ = exp

{
−vS̄T2 (δ − δ∗)

} ∣∣S̄T2 (δ − δ∗)
∣∣

≤
[
1 + exp

{
−S̄T2 (δ − δ∗)

}] ∣∣S̄T2 (δ − δ∗)
∣∣ .

Condition on the event ‖δ̂−δ∗‖2 ≤ 1. Note that δ−δ∗ = (1−w)(δ̂−δ∗) and 1−w ∈ [0, 1],

we have

∥∥g−1(S̄T2 δ)− g−1(S̄T2 δ
∗)
∥∥
P,r

≤ c
∥∥[1 + exp

{
−S̄T2 (δ − δ∗)

}]
S̄T2 (δ − δ∗)

∥∥
P,r

≤ c
∥∥S̄T2 (δ − δ∗)

∥∥
P,r

+ c
∥∥exp

{
−S̄T2 (δ − δ∗)

}∥∥
P,2r

∥∥S̄T2 (δ − δ∗)
∥∥
P,2r

= O
(
‖δ̂ − δ∗‖2

)
= O(1), (4.98)

using Assumption 4.4 and Theorem 2.6 of [Wai19]. It follows that,

∥∥g−1(S̄T2 δ)
∥∥
P,r
≤
∥∥g−1(S̄T2 δ

∗)
∥∥
P,r

+O(1) ≤ C,

with some constant C > 0. Therefore, we conclude that PSγ∪Sδ(E2) = 1 − o(1). Moreover,

by the fact that exp(−u) = g−1(u)− 1 < g−1(u) and ‖X‖P,r′ ≤ ‖X‖P,12 for any X ∈ R and

1 ≤ r′ ≤ 12, we have

∥∥g−1(S̄T2 δ)
∥∥
P,r′
≤ C,

∥∥exp(−S̄T2 δ)
∥∥
P,r′
≤ C.

Moreoever, we have (4.50) and (4.51), since δ̂ ∈ {wδ∗ + (1− w)δ̂ : w ∈ [0, 1]}, PSγ∩Sδ(E2) =

1− o(1), and (4.98) holds. Besides, note that

∥∥exp(S̄T2 δ)− exp(S̄T2 δ
∗)
∥∥
P,r′
≤ c

∥∥exp{S̄T2 (δ − δ∗)} − 1
∥∥
P,r′

≤ c
[∥∥exp{S̄T2 (δ − δ∗)}

∥∥
P,r′

+ 1
]

= O(1),
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since S̄2 is sub-Gaussian and ‖δ − δ∗‖2 ≤ 1. Therefore,

∥∥exp(S̄T2 δ)
∥∥
P,r′
≤
∥∥exp(S̄T2 δ

∗)
∥∥
P,r′

+
∥∥exp(S̄T2 δ)− exp(S̄T2 δ

∗)
∥∥
P,r′

≤ c+O(1) = O(1).

Proof of Lemma 4.17. The upper bounds for ‖S̄T2 (α̂ − α∗)‖P,r follow directly by Theorems

4.3, 4.4, Theorem 2.6 of [Wai19], and the sub-Gaussianity of S̄2 assumed in Assumption

4.4. Let either (a) or (b) holds. Then, we have ‖S̄T2 (α̂ − α∗)‖P,r = op(1). Note that,

α̃−α∗ = (1− v1)(α̂−α∗). Therefore,

‖ε̃‖P,r ≤ ‖ε‖P,r + ‖S̄T2 (α̃−α∗)‖P,r = ‖ε‖P,r + (1− v1)‖S̄T2 (α̂−α∗)‖P,r

= O(1) + op(1) = Op(1).

Proof of Lemma 4.18. The upper bounds for
∥∥∥ST1 (β̂ − β∗)

∥∥∥
P,r

follow directly by Theorems

4.3, 4.4, Theorem 2.6 of [Wai19], and the sub-Gaussianity of S1 assumed in Assumption 4.4.

Let either (a) or (b) of Lemma 4.18 holds, and let either (a) or (b) of 4.17 holds. Then,

we have ‖ST1 (β̂ − β∗)‖P,r = op(1) and ‖S̄T2 (α̂ − α∗)‖P,r = op(1). Note that, α̃ − α∗ =

(1− v1)(α̂−α∗) and β̃ − β∗ = (1− v2)(β̂ − β∗). Therefore,

‖ζ̃‖P,r ≤ ‖ζ‖P,r + ‖ST1 (β̃ − β∗)‖P,r + ‖S̄T2 (α̃−α∗)‖P,r

= ‖ζ‖P,r + (1− v1)‖ST1 (β̂ − β∗)‖P,r + (1− v2)‖S̄T2 (α̂−α∗)‖P,r

= O(1) + op(1) = Op(1).
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