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ABSTRACT OF THE DISSERTATION 
 

 

 

 

Lung Motion Model Validation Experiments, Free-Breathing Tissue Densitometry and 

Ventilation Mapping using Fast Helical CT Imaging 

 

 

by  

 

 

Hsiang-Tai Dou 

 

 

Doctor of Philosophy in Biomedical Physics 

University of California, Los Angeles, 2016 

Professor Daniel Abraham Low, Chair 

 

 
The uncertainties due to respiratory motion present significant challenges to accurate 

characterization of cancerous tissues both in terms of imaging and treatment.  Currently 

available clinical lung imaging techniques are subject to inferior image quality and 

incorrect motion estimation, with consequences that can systematically impact the 

downstream treatment delivery and outcome.  The main objective of this thesis is the 

development of the techniques of fast helical computed tomography (CT) imaging and 

deformable image registration for the radiotherapy applications in accurate breathing 

motion modeling, lung tissue density modeling and ventilation imaging. 

Fast helical CT scanning was performed on 64-slice CT scanner using the shortest 

available gantry rotation time and largest pitch value such that scanning of the thorax 
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region amounts to just two seconds, which is less than typical breathing cycle in humans.  

The scanning was conducted under free breathing condition.  Any portion of the lung 

anatomy undergoing such scanning protocol would be irradiated for only a quarter 

second, effectively removing any motion induced image artifacts. .The resulting CT data 

were pristine volumetric images that record the lung tissue position and density in a 

fraction of the breathing cycle.  Following our developed protocol, multiple fast helical CT 

scans were acquired to sample the tissue positions in different breathing states.  To 

measure the tissue displacement, deformable image registration was performed that 

registers the non-reference images to the reference one. 

In modeling breathing motion, external breathing surrogate signal was recorded 

synchronously with the CT image slices.  This allowed for the tissue-specific displacement 

to be modeled as parametrization of the recorded breathing signal using the 5D lung 

motion model.  To assess the accuracy of the motion model in describing tissue position 

change, the model was used to simulate the original high-pitch helical CT scan geometries, 

employed as ground truth data.  Image similarity between the simulated and ground truth 

scans was evaluated.  The model validation experiments were conducted in a patient 

cohort of seventeen patients to assess the model robustness and inter-patient variation.  

The model error averaged over multiple tracked positions from several breathing cycles 

was found to be on the order of one millimeter. 

In modeling the density change under free breathing condition, the determinant of 

Jacobian matrix from the registration-derived deformation vector field yielded volume 

change information of the lung tissues.  Correlation of the Jacobian values to the 

corresponding voxel Housfield units (HU) reveals that the density variation for the 
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majority of lung tissues can be very well described by mass conservation relationship.  

Different tissue types were identified and separately modeled.  Large trials of validation 

experiments were performed. The averaged deviation between the modeled and the 

reference lung density was 30 HU, which was estimated to be the background CT noise 

level. 

In characterizing the lung ventilation function, a novel method was developed to determine 

the extent of lung tissue volume change.  Information on volume change was derived 

from the deformable image registration of the fast helical CT images in terms of Jacobian 

values with respect to a reference image.  Assuming the multiple volume change 

measurements are independently and identically distributed, statistical formulation was 

derived to model ventilation distribution of each lung voxels and empirical minimum and 

maximum probability distribution of the Jacobian values was computed.  Ventilation 

characteristic was evaluated as the difference of the expectation value from these 

extremal distributions.  The resulting ventilation map was compared with an 

independently obtained ventilation image derived directly from the lung intensities and 

good correlation was found using statistical test.  In addition, dynamic ventilation 

characterization was investigated by estimating the voxel-specific ventilation distribution.  

Ventilation maps were generated at different percentile levels using the tissue volume 

expansion metrics. 
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Chapter 1 

Introduction 

 
Lung diseases, such as COPD and lung cancer, are aggressive forms of disease that claim 

high mortality rates.  COPD, which includes chronic bronchitis and emphysema, affected 

more than 8 million people in the US and was ranked 3rd as cause of death of all diseases 

behind cancer and heart disease.    Lung cancer is another form of serious lung disease that 

accounts for the largest fraction of cancer-related deaths both in the US and worldwide [1]. 

The disease often poses a serious challenge for the clinicians due to the spread of large 

tumor volumes in the chest, often invading critical vital organs such as the lungs, the large 

blood vessels, and the esophagus. Radiation therapy (RT) is a promising treatment option 

for lung cancer because it can be delivered noninvasively and bears curative potential.  

Recent advances in high-dose conformal radiation therapy have resulted in significant gains 

in tumor control and overall survival [2, 3].   

 

1.1 Overview of radiation therapy 

Radiation therapy is a form of cancer treatment that applies high energy radiation to locally 

eradicate malignant cells and has also been used in combination with surgery and 

chemotherapy.  Depending on the tumor type, location, stage, and patient health condition, 

radiation may be administered with curative, adjuvant, neoadjuvant, or palliative intent.  

Radiation therapy accomplishes tumor control through the ionizing radiation, which 

generate free radicals and reactive oxygen species.  These highly active agents tend to 
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interact with and damage the DNA molecules, leading to cell death and tumor shrinkage.  

Radiation therapy can be delivered using external sources, such as linear accelerator, or 

internal sources, such as brachytherapy. 

In order to achieve the desired therapeutic effect that maximizes the radiation delivered to 

the tumor area while minimizing the radiation exposure to the normal healthy tissues, a 

general workflow has been established to simulate the realistic treatment conditions while 

taking into account the various treatment delivery uncertainties.  The first step of this 

workflow involves obtaining the patient anatomy through computed tomography (CT) 

scanning.  CT scans delineate the target area in relation to the surround organs and contain 

the electron density information, which is essential to the treatment planning process.  In 

the treatment planning stage, the target and neighboring organs are first contoured, and the 

dose is prescribed to the target area.  The planning software computes the optimal dose 

distribution, taking into account the dose conformality to the target region, the patient 

positioning uncertainties, the beam angle sequence and the priorities of normal organs to 

spare.  In the treatment delivery phase of the workflow, the patient is carefully positioned 

under the treatment gantry either through stereotactic fixtures or cone beam CT image 

guidance, where the patient position is adjusted until it matches that from the planning 

session.  Once the positioning is complete, the radiation beam is delivered according to the 

treatment plan. 

Advances in intensity modulated radiation therapy have enabled conformal radiation 

delivery with great targeting precision.  These conformal techniques facilitate target dose 

escalation with the aim of improving survival and normal tissue sparing.  The accuracy of 

the conformal techniques is, however, limited by the uncertainties in patient positioning 
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and internal motion.  Sources of internal motion can be divided into intrafraction and 

interfraction components.  Four dimensional computed tomography (4DCT) imaging 

technologies have shown that significant organ motion can occur during radiation treatment 

[4, 5].   If left uncompensated, such motion may lead to significant dose delivery errors, as 

shown in many recent investigations.  Sources of uncertainties may result from any of the 

aforementioned stages in the radiotherapy workflow.  In the simulation stage, motion-

induced uncertainties manifest themselves most prominently in the image artifacts, which 

adversely affect the dose computation accuracy.  In treatment planning, the coverage of the 

tumor volume is limited by the accuracy in the margin definition.  The spatial extent of 

tumor under respiratory motion is accounted for using the planning target volume (PTV).  

Over-estimated PTV would result in surrounding healthy tissues receiving more dose while 

under-estimating the motion range would result in under-irradiation of the gross tumor 

volume (GTV).  In terms of radiation delivery, motion can lead to dose blurring around the 

edge of the target volume.  In case of IMRT treatments, where the multileaf collimator 

(MLC) constantly shifts, interplay effects can also occur.  Further dose error can include 

dose deformation effects that take place along the boundary of the tissue interface, where 

high density difference occurs.  

 

1.2 Treatment strategies for mobile tumors 

 Various techniques have been designed to address motion-induced uncertainties during 

radiation therapy.  These methods range from motion-inclusive margin treatment, to target 

immobilization, gated radiation delivery, and finally real-time radiation beam tracking the 

moving tumor.  The following sections provide a brief survey of these techniques. 
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1.2.1 ITV  

Respiratory motion increases the apparent size of the tumor and necessitates larger aperture 

size.  Traditionally, a safety margin is added to the CTV to create the planning target 

volume (PTV).  The larger treatment margin leads to the irradiation of normal lung tissues.  

The size of the margin has to be chosen carefully; it should be large enough to ensure the 

delivery of the prescribed dose to a moving target and small enough to keep the normal 

tissue complications to an acceptable level.  In the following, we review a number of 

strategies for treatment delivery under free breathing condition.   

Accounting for tumor motion is crucial in patients undergoing radiation therapy under free-

breathing condition.  Tumor motion amplitude depends on its anatomical location and can 

be large towards the diaphragm.  To account for the uncertainties in the size, shape and 

position of the clinical target volume, the International Commission on Radiation Units and 

Measurements has devised the concept of an internal target volume (ITV) to provide an 

envelope for target motion in Report 83 [6].  More specifically, ITV was defined to 

encompass the geometrical locations of the GTV in all of the breathing phases.  The 

delineation of the ITV can be performed through manual or automatic contouring of the 

GTV in each phase of the 4DCT image set.  Alternative method was proposed that creates 

an image of maximal intensity projection through combining the set of 4DCT images from 

the whole breathing cycle [7-9].  Such approach was found to be equivalent to the 

composite contour generated from the individual breathing phases [10].   

ITV delineation is subject to the risks of both geographic miss and irradiation of healthy 

tissues.  Multiple studies have investigated the uncertainties in ITV quantification due to 
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different imaging and post-processing techniques [11-13].  In [9], the authors reported that 

the median and range of the ITV for 20 stage I SBRT patients were 7.6 (1.1–35.6), 10.2 

(1.9–43.7), and 9.0 (1.3–37.3) cm3 from helical-, MIP-, and average intensity define ITV.  

These studies found that MIP-based ITV can most effectively capture the tumor excursion 

[9, 14].  However, caution needs to be exercised as commercial clinical 4DCT imaging 

might not capture the full extent of tumor motion since the axial scanning in CT imaging 

takes much longer than the breathing cycle and each image slice contains breathing 

information only from one or two breathing cycles.  ITV generation using CBCT imaging 

has been investigated in [15].  Adopting PET defined dynamic tumor volume was explored 

in [16]. 

 

1.2.2 Breath hold 

Controlling tumor motion can potentially remove the motion uncertainty, which was 

observed to be larger than setup uncertainties [17].  Moreover, lung tissues are susceptible 

to late radiation response, such as pneumotitis and fibrosis [18] and these effects are related 

to the irradiated lung volume [19, 20].  In [21-23], the authors at MSKCC presented deep 

inhalation breath hold (DIBH) technique where the patients were coached into deep 

inspiration and breath holding, with the lung inflation level monitored by spirometer and 

the diaphragm position recorded by fluroscopy.  The DIBH technique was motivated by the 

benefits of decreased lung density and the potential for treatment margin reduction, both of 

which facilitate target dose escalation and normal tissue sparing.  In the 5 patients of this 

study, the range of comfortable breath hold duration was reported to be 12-16 s.  The 

average centroid position of the GTV was found to be 0.2±1.4 mm for diaphragm 
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displacements of -1.0±4.0 mm from CT scans.  Barnes et al [24] showed a significant 

reduction in the percent lung volume receiving ≥ 20 Gy at DIBH compared to free 

breathing condition.  Disadvantages to the DIBH technique include patient intolerability of 

the maneuver and poor reproducibility due to residual tumor movement.  

 

1.2.3 Beam gating 

Gated radiation delivery aims at target motion reduction during irradiation.  A radiation 

beam gating methodology was first presented by Ohara et al [25], where the signal from an 

implanted gold marker was used to control the linear accelerator in real time.  Respiration 

gate was also employed at the Proton Research Medical Center of the Tsukuba University 

in Japan, where a strain gauge detector was used to trigger the proton accelerator [26].  

Later, at the University of California, Davis, signals from video camera were used to switch 

the radiation beam on and off [27, 28].  The respiratory gating device has since been made 

commercially available as the real-time position management respiratory gating system 

(RPM), for which clinical studies can be found in [29, 30].  Compared to breath hold 

techniques, gated treatments require less patient effort.   

When considering employing breathing gating, the gating window was typically selected to 

be near the full exhalation phase, which reflects the most reproducible portion of the 

breathing cycle.  For respiratory gated radiotherapy, the internal margin is determined 

using the target displacement within the gating window (e.g. 50% phase ± 10%).  Gating 

can be performed using specific amplitude level of the breathing signal and the pre-defined 

gating window.  It was found that tumor motion correlated well with external fiducial 

marker in the thorax and abdomen [31, 32].  In spite of generally good external-to-internal 
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correlation, large residual tumor motion can occur relative to the measured surrogate signal 

[31, 32].  In addition, in gating for an irregular breathing patient, phase gating is susceptible 

to larger residual error due to significant cycle-to-cycle variability or slow drift in target 

position or breathing signal.  To improve treatment efficiency, more robust gating 

techniques have been proposed, including the hybrid gating method involving high 

frequency external surrogate sampling and intermittent internal marker update [33], and 

markerless template matching techniques using fluoroscopic imaging [34-37]  In addition, 

irregular breathing pattern compromises gated treatment accuracy, as was found in a 

simulation study comparing phase-binned 4DCT and dynamic MRI images by Cai et al 

[38].  The problems in gated radiation therapy lead to the development of treatment 

delivery systems that integrate real time imaging devices.   

 

1.2.4 Beam tracking 

The next level of target motion compensation can be performed by synchronizing the 

radiation beam to the motion of the target.  Such technique affords therapeutic benefit of 

margin reduction similar to beam gating methods, but with continuous irradiation it can do 

so without prolonging the treatment time.  Beam tracking was first proposed by Keall et al 

for motion adaptive photon therapy [39].  As a commercial solution, a dynamic tracking 

technique has been implemented in Cyberknife Synchrony [40], where the correlation 

between the LED markers placed on the patient chest wall and internal tumor position 

(based on the position of implanted markers) is used to construct a correspondence model.  

During the therapy session, the LED markers monitor the patient breathing, and the signal 

is fed into the correspondence model for predicting the tumor position.  The tumor position 
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prediction is verified from time to time using x-ray imaging.  The Synchrony technology 

builds into the possibility of updating the correspondence model or completely re-construct 

the correspondence model. 

The ultimate goal of image-guided radiation therapy is the capability of tracking target 

motion in real-time.  Compared to existing tumor tracking techniques, magnetic resonance 

imaging (MRI) features ionization-radiation-free imaging and superior soft tissue contrast 

compared to CT modalities such that its integration into the radiation treatment machine 

allows for real-time visualization of the organ movement during treatment.  In addition, 

similar to CBCT, pre-treatment MR imaging also holds the potential to improve patient 

positioning accuracy. Such MRI-guided radiation delivery devices have been proposed for 

a Cobalt60 source [41] and linear accelerator [42, 43] delivery systems.  The integration of 

dynamic real time MLC unit into the MRI-guided radiation delivery would enable ideal 

target dosimetric conformality.   

 

 

1.3 Four dimensional computed tomography 

 In the last decade, 4DCT or respiration-correlated CT has become the indispensable 

clinical tool that provides patient breathing model for radiation therapy.  4DCT provides 

the 3D anatomical information for each phase in the respiratory cycle, from which patient 

breathing pattern and tumor motion range can be extracted. 

 Treatment planning for respiratory gated radiotherapy was motivated by the cardiac 

gating on diagnostic CT scanners.  Modern 4DCT techniques were launched following the 

works by Vedam et al [44] and Ford et al [45].  The implementation of these techniques 
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assumes the periodicity of patient breathing pattern and assigns the continuously acquired 

images to the pre-defined breathing phases, which are measured quantities from external 

surrogates.  Low et al [46] proposed an alternative 4DCT technique that acquires images in 

cine mode with the simultaneous recording of the patient spirometry.  Such tidal volume 

based retrospective sorting method allows for a more patient physiological approach to 

4DCT imaging. 

 

1.3.1 Model-based 4DCT 

Volumetric images of the lung anatomy in time series may yield biomechanical 

information of the thorax region in addition to the position and density of the lung tissues.  

One the early works in this area was performed by McClelland et al., where an average 

respiratory cycle was constructed and a B-spline fitting was employed to generate a 

continuous 4D motion model [47].  To our knowledge, there are two approaches to 

modeling the spatiotemporal motion that do not assume periodicity in breathing pattern.  

Recently, principal component analysis (PCA) based approaches have also been proposed 

[48, 49].  The PCA was used to analyze the underlying data structure of the deformation 

vector fields obtained from deformable image registration processing of the 4DCT image 

data between a reference phase and other phases.  The authors found that three principal 

components were sufficient to describe the respiratory motion based on 4DCT data, with 

the first principal component basis characterizing the regular respiratory motion, while the 

rest of the bases account for the variation caused by image noise, registration error, or 

image reconstruction errors.  The second modeling approach is due to Low et al., which 

formulates the tissue displacement as a linear model of the measured tidal volume and 
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airflow using spirometry [50].  This modeling approach is motivated by breathing 

physiological measurement and allows for the characterization of irregular breathing 

pattern and tissue hysteresis trajectory.  Zhao et al tested the model performance in a large 

group of patients [51].  

 

 

Figure 1. A schematic for constructing a breathing motion model that incorporates external 

surrogate measurement, internal image acquisition, and motion measurement using 

deformable image registration together into a motion model that correlates the between the 

external and internal breathing data. 

 

1.3.2 Lung ventilation imaging 

Radiation can induce tissue material changes in the lung parenchyma and alter respiratory 

mechanics.  This damage can be significant in lung cancer patients with marginal lung 

function and may lead to symptomatic pulmonary dysfunction [52].  Volumetric functional 

lung imaging provides a clinical tool to assess the pulmonary function distribution and 
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optimize radiation treatment planning to avoid regions of high physiological importance.  A 

variety of imaging modalities has been employed for lung functional imaging.  Positron 

emission tomography and single photon emission CT (SPECT) have been introduced 

clinically for assessing the lung function, but are limited by their low spatial resolution 

[53].  Hyperpolarized helium-3 magnetic resonance imaging has been developed for lung 

ventilation imaging [54-56].  While it presents the advantage of no radiation exposure, it is 

too costly for widespread clinical use.  Xe-enhanced CT (Xe-CT) measures regional 

ventilation by comparing the gas wash-in and wash-out rates on the CT images [57].  

Recently, 4DCT respiratory gated imaging together with image processing techniques have 

allowed for ventilation estimation [58]. 

  

1.4 Organization and Objectives 

The dissertation is organized into the following chapters.  

 

Chapter 2 discusses the current problems in clinical 4DCT imaging protocol.  A simulation 

of the 4DCT scanning process was performed using a large set of patient data.  The 

accuracy of the tumor motion estimation was evaluated using the alternative 5DCT 

protocol as reference. 

 

Chapter 3 offers the background information of the framework for performing patient 

imaging and analysis in the subsequent chapters.  The fast helical CT protocol for patient 

imaging and deformable image registration for processing the patient image data are 

presented here. 
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Chapter 4 discusses the validation experiments conducted on the patient cohort that 

underwent the 5DCT protocol.  The reconstructed patient free-breathing images were 

compared against the fast helically acquired CT images, which were taken as ground truths. 

 

Chapter 5 describes the lung tissue density modeling that was constructed from the fast 

helical CT image data acquired under free breathing condition.  We show that the 

correlation of the CT Hounsfield value change to the determinant of the Jacobian can be 

used to characterize the lung tissue density change in quiet breathing. 

 

Chapter 6 gives the account of how ventilation mapping can be obtained using fast helical 

CT protocol.  We show that the range of the Jacobian values of each piece of lung tissue 

indicate how well the gas exchange takes place.  In addition, a comparison study is 

conducted to evaluate the difference in ventilation patterns between the fast helical CT 

protocol and the commercial clinical 4DCT images. 

 

Chapter 7 summarizes this dissertation work and provides an outlook for future research 

directions.  
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Chapter 2 

Problems in 4DCT 

 
Internal target motion can cause large uncertainties in radiation delivery.  It has been 

reported that ~40% of lung tumors have displacement greater than 5 mm and 10-12% of the 

tumors have displacement greater than 1cm [59, 60]. To resolve the temporal changes in 

patient anatomy, 4DCT imaging has been clinically employed to provide spatio-temporal 

consistent image data.  Due to the limitations in CT detector coverage and rotation time, the 

duration of volumetric imaging is typically larger than patient breathing cycle.  Clinical 

4DCT imaging solutions involve the over-sampling of the breathing data at each couch 

position followed by subsequent sorting process that assigns the projection images to the 

pre-defined time intervals of the breathing cycle.  It is generally known that tumor motion 

variability depends on its size, shape, and position.  These variations may lead to risks of 

tumor motion being incorrectly characterized.  This chapter investigates the motion 

estimation by way of realistic CT scanning simulation according to clinical 4DCT scanning 

protocol. 

 

2.1 Introduction 

 

4DCT has been proposed to characterize the patient anatomical changes due to breathing 

motion [44-46]. The integration of 4DCT into treatment planning has the potential of 

reducing tumor position uncertainties due to respiratory motion so that the treatment 

condition can be simulated as realistically as possible.  Inaccurate estimation of breathing 
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motion by 4DCT, however, can yield systematic errors in motion margins and 

inappropriate selection of motion mitigation strategies.  

 The generation of 4DCT images usually involves the simultaneous imaging of the 

anatomical site and the recording of an external surrogate signal.  Analysis of the images or 

CT projections and the breathing cycle is used to generating CT images at pre-defined 

breathing phases. Commercial 4DCT techniques employ either ciné or low-pitch helical 

acquisition, with image reconstruction based on phase binning [44, 45, 61, 62] or amplitude 

binning [46, 50, 63, 64] methods.  In the literature, amplitude binning approaches have 

been shown to be superior in reducing image artifacts than phase binning methods [64-68], 

but are susceptible to insufficient image data at some couch positions if respiratory cycle 

was missing desired amplitude due to irregular breathing.  In spite of these issues, both 

amplitude and phase-based 4DCT protocols are still employed in the commercially 

available 4DCT software. 

 Conventional 4DCT protocols are sensitive to irregular breathing.  Breathing patterns 

depend on the mental and physiological condition of the subject during the scanning 

session, and large variability is often observed.  4DCT image acquisition by low-pitch 

helical CT protocol can lead to motion underestimation due to, e.g. breath pauses or 

overestimation if the subject takes abrupt deep breaths while the tumor is being scanned. 

The image binning process can lead to streaking artifacts, missing image slices, and 

distorted shapes and volume measurements [65, 69]. The limitations of 4DCT pertaining to 

tumor volume definition have been investigated using internal or external breathing 

surrogates, where significant deviation of ciné-mode 4DCT (>50%) from realistic tumor 

motion was reported [11, 70, 71]. 
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 Various techniques have been proposed for retrospective sorting-based approaches with 

the aim of reducing irregular breathing artifacts in 4DCT images [47, 72-75].  In particular, 

Thomas et al demonstrated the acquisition of sorting-artifact-free CT images at arbitrary 

user-selected breathing phases based on a lung motion model [75] first published by Low et 

al [50].  This approach is termed 5DCT (three spatial dimensions along with the breathing 

amplitude and breathing rate).  The 5DCT image acquisition aims at capturing the extent of 

lung tissue motion by performing multiple high-pitch (1.2) helical scans with a 

simultaneously recorded surrogate signal.  The tissue specific displacement is obtained 

through deformable image registration and correlated with the measured surrogate signal 

such that lung tissue positions can be computed at any given breathing signal.  The 

accuracy of the 5DCT technique has been found to be on the order of 2 mm. 

 In this paper, we investigate the variability of tumor motion measurements by low-pitch 

helical 4DCT, in which the CT scanner is run at pitches of approximately 0.06 and 0.1, 

selected to reflect commercial systems, such that it continuously images the mobile 

anatomy.  A simulation was developed to determine the protocol-measured tumor motion 

employing actual breathing traces from 50 patients.  The simulated tumor motion was 

compared against a percentile-based motion magnitude. Such an approach is consistent 

with the 5DCT technique, where the motion is characterized as a function of breathing 

amplitude and breathing rate.  The differences between the simulated and percentile motion 

were used to characterize motion measurement errors due to irregular breathing.  

 

2.2 Methods 
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 A group of 50 patients were recruited in an IRB-approved clinical study; 26 with lung 

cancers and 24 with abdominal cancers. Research 5DCT scans were conducted with the 

patient free breathing. For this work, only the breathing traces were employed.  The 

patient’s breathing trace amplitudes were measured using a pneumatic belt (bellows). The 

bellows was wrapped around the patient’s abdomen and as the patient inhaled and exhaled, 

the bellows was stretched and relaxed, causing the air pressure in the bellows to decrease 

and increase, respectively.  A pressure transducer measured the internal air pressure and 

this was recorded as the breathing surrogate. This signal had been previously shown to be 

linearly related to the tidal volume [76].  The breathing traces were at least 5 minutes long, 

sampled at 100 Hz, and included normal breathing irregularities. The breathing traces had 

been previously corrected for baseline drift and converted to tidal volume.  

A simulation was performed to determine the measured tumor motion amplitude based on 

the breathing trace as though the patient had been scanned using a commercial low-pitch 

helical protocol. For the 4DCT simulation, the scanner parameters were taken from the 16-

slice Philips Big Bore 4DCT protocol: pitch of 0.06, rotation time of 0.5 second, and 

detector width of 2.4 centimeter and the Siemens Somatom Sensation Open that employed 

the same rotation time and detector width but a pitch of 0.1. This translated to irradiation 

times of approximately 8.3 seconds and 0.5s for stationary tissues using the 0.06 and 0.1 

pitches, respectively.  The images were assumed to be reconstructed using 1.5 mm thick 

slices.  

The 4DCT approach was simulated by subdividing the craniocaudal imaging space into 1.5 

mm thick slices (Figure 1).  The scanner was first positioned at one end of the imaging 

space and its position identified at subsequent times according to its velocity and the time. 
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The tumor was positioned sufficiently away from the end of the imaging space so that the 

tumor was always in the field of view. Its position was determined by converting the 

breathing amplitude waveform to a tumor location.  The image space slices corresponding 

to the tumor size and position were identified and if they overlapped the CT scanner 

position, those slices were identified as having imaged the tumor.   

The time-sequence of the simulation was started at a selected point in the breathing cycle. 

Each subsequent simulation was repeated with the subsequent time bin in the breathing 

cycle. The breathing waveform was in the form of the digitized bellows air pressure and 

this needed to be converted to the cranio-caudal motion of the tumor.  To accomplish this 

conversion, we made two assumptions.  First, we assumed that the tumor motion in this 

dimension was linearly proportional to the breathing amplitude.  This motion linearity 

assumption has been previously tested and reported in literature [5, 50, 77].  Further, the 

90th percentile (95th minus the 5th) of the breathing amplitude waveform was employed as 

the definition of the nominal breathing depth.  Our percentile-based approach of 

inhalation/exhalation definition explicitly accounted for the relative frequencies these tidal 

breathing amplitudes occurred and had the additional advantage that breathing statistics 

were less susceptible to the influences of the few extreme shallow or deep breaths [51, 64].  

The breathing waveform was converted to tumor motion by multiplying the waveform by 

the ratio of the nominal tumor motion (e.g. 1 cm) to the 90th percentile waveform 

amplitude. This provided a tumor motion distribution such that the 90th percentile of 

motion was equal to the nominal tumor motion.   

The tumor was moved along the imaging space according to the scaled breathing 

amplitude.  Overlap between the tumor and the CT slices was identified as having imaged 
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the tumor in that location and registered in a binary fashion. The effect of partial overlap 

was expected to be small and average out over the repeated simulations and did not affect 

the resulting  

Figure 1: Schematic of 4D CT simulation model.  The CT detectors move from 

right to left while the tumor moves along its path a distance proportional to the 

breathing amplitude.  The CT slices are set to 0 until the tumor overlaps the 

moving CT detectors.  For each time point, corresponding to the motion of the 

CT by one CT slice, the overlap is assessed and overlapping slices are set to 1.  

When the simulation is completed, the total of the tumor size and breathing 

induced motion is the extent of the imaged tumor.  This process is repeated 

starting at sequential time points 0.1 s apart to build the statistical evaluation of 

the imaged tumor extent as a function of patient, tumor size, and nominal tumor 

motion extent. 

 

estimated tumor motion variation. The time sequence was moved forward until the CT 

scanner had well passed the tumor positions.  The combined overlap envelope was assumed 

to be an amplitude-sorted measure of the total of the tumor motion and size, so the tumor 

size was subtracted from the total envelope to extract the measured tumor motion. To study 

the clinically commonly observable tumor dimension and motion range, the process was 
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repeated for different combinations of nominal tumor motions of 1 cm to 4 cm in 1 cm 

increments and for tumor sizes of 1 cm to 4 cm in 1 cm increments. 

For each patient, there was a distribution of measured motion errors for each tumor size 

and motion magnitude.  Since the typically one-time tumor motion measurement of any 

4DCT would be employed to develop a motion strategy, we treated the measured motion 

errors as systematic errors. Therefore, we elected to examine the greatest over- and 

underestimations of tumor motion by selecting the 5% of outlying cases for each of over- 

and underestimations.  The selection of the outlier distribution was intended to reflect the 

scenarios where the treatment planning performed under such conditions (i.e. with a total of 

a 10% chance of occurring) would be conducted with an erroneous motion measurement 

without feedback to the clinic that this had occurred.  This simulation was implemented and 

analyzed using MATLAB software (Mathworks, Natwick, MA). 

 

2.3 Results 
 

Figure 2 shows histograms of the mean of the estimated tumor motion errors and the 

associated standard deviation as well as the means of the 5% over- and 5% underestimated 

motion errors for each of the 50 patients for the 2 cm tumor size and 2 cm tumor motion 

simulation performed using the pitch of 0.06.  The value of 100% corresponds to the 90th 

percentile breathing amplitude, consistent with the 5DCT approach. The simulated motion 

estimation is compared to the 5DCT motion measurement and the estimation error is 

expressed as percent deviation from the 5DCT approach.  Similar results were observed for 

the other tumor motion magnitudes and tumor sizes.   



20 

 

 

(a) 

(b) 

(c)  (d) 

 

Figure 2: (a) Mean relative breathing amplitude ratio, (b) standard deviation of relative 

breathing amplitude ratio, (c) mean relative breathing amplitude ratio for measured motion 

less than the 5th percentile and (d) mean relative breathing amplitude ratio for measured 

motion greater than the 95th percentile.  These examples are simulated for the 2 cm tumor 

and 2 cm nominal tumor motion magnitude f with a pitch value of 0.06.   

 

Many of the 50 patients breathed quite regularly, so their relative motion measurements 

were close to 100%. This is observed both in the distribution of the mean tumor motion 

estimation (Fig. 2a) and their small uncertainty values (Fig. 2b) as well as in the outlier 

distributions (Fig 2c and 2d).  On the other hand, the maximum and minimum 5% motion 

error ratio distributions, showed that 30% of the patients would have had breathing 

amplitude underestimation of at least 36% while 30% would have had overestimations of 

over 47%.  The 16 trials (4 tumor sizes and 4 tumor motion magnitudes) provided 

essentially identical results due to the fact that the tumor size was subtracted from the 
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overall motion envelope and the motion error was evaluated as the ratio of the subsequent 

motion to the nominal motion magnitude.  

(a) (b) 

(c)  (d) 

 

Figure 3: (a) Mean relative breathing amplitude ratio, (b) standard deviation of relative 

breathing amplitude ratio, (c) mean relative breathing amplitude ratio for measured motion 

less than the 5th percentile and (d) mean relative breathing amplitude ratio for measured 

motion greater than the 95th percentile.  These examples are simulated for the 2 cm tumor 

and 2 cm nominal tumor motion magnitude using a pitch of 0.1.   

 

Figure 3 showed the example breathing motion estimation simulated using a pitch of 0.1.  

Compared with the results using the pitch of 0.06, over-estimation of the imaged tumor 

motion decreased. On the other hand, the distribution of under-estimated tumor motion 

showed more deviation from the true motion amplitude.  Table 1 a. and b. show the mean 

5th tumor motion amplitude of the bottom 30% of the patients by the simulated tumor size 
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and tumor motion for the 0.06 and 0.1 pitch values, respectively.  Similarly, table 1 c. and 

d. show the mean 95th tumor motion amplitude of the top 30% of the examined patients. 

 

 

Table 1a. Mean 5th percentile amplitude of the lowest 30% relative to tumor 

motion in percentage for a pitch of 0.06. 

size\motion 

(cm)\(cm) 
1 2 3 4 

1 70.94 62.56 61.64 61.77 

2 68.06 62.36 62.32 61.88 

3 66.86 64.16 61.61 61.84 

4 70.58 62.72 62.52 61.13 

 

Table 1b. Mean 5th percentile amplitude of the lowest 30% relative to tumor 

motion in percentage for a pitch of 0.1. 

size\motion 

(cm)\(cm) 
1 2 3 4 

1 44.98 37.46 38.48 41.47 

2 37.06 33.26 37.76 42.89 

3 33.98 34.30 39.67 42.30 

4 38.11 35.53 38.88 41.03 
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Table 1c. Mean 95th percentile amplitude of the upper 30% relative to tumor 

motion in percentage for a pitch of 0.06. 

size\motion 

(cm)\(cm) 
1 2 3 4 

1 151.70 147.68 146.51 147.26 

2 154.47 147.35 146.76 147.63 

3 174.07 147.92 147.19 147.18 

4 154.24 148.03 146.43 145.95 

 

Table 1d. Mean 95th percentile amplitude of the upper 30% relative to tumor 

motion in percentage for a pitch of 0.1. 

size\motion 

(cm)\(cm) 
1 2 3 4 

1 140.50 132.75 133.13 134.89 

2 138.76 133.84 134.45 136.01 

3 140.64 134.38 135.71 137.31 

4 145.07 136.38 136.41 137.50 

 

 

2.4 Discussion and Conclusion 
 

Respiratory-gated 4DCT is an indispensable tool for characterizing breathing motion for 

the thorax and upper abdomen.  The breathing pattern of diseased patients is often 

irregular.  Commercial 4DCT techniques are susceptible to irregular breathing patterns, 

which lead to errors in treatment planning and delivery. Since 4DCT is typically performed 

once per patient, any resulting error can cause systematic treatment planning errors. This 
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work simulated the performance of low-pitch helical 4DCT acquisition in a group of 50 

patients. In the examined 50-patient motion error distributions, the mean values of the 

fringe sub-distributions of the largest and smallest 5% of the relative motion errors were 

computed.  For the examined patient cohort, in the worst-case scenario, the breathing 

amplitude was underestimated by as much as 74%, and overestimated by 177%.  Our 

analysis using two different scanning pitch parameters showed stronger underestimation 

across all combinations of simulated tumor size and motion when scanned at a higher pitch 

of 0.1 compared to 0.06, while the opposite was true for overestimations. Explicit 

management of irregular breathing such as is done with the 5DCT protocol has the 

potential for reducing the uncertainty of the relationship between the imaged and actual 

tumor motions.   

The present study investigated the 4DCT tumor motion measurement variability using a 

surrogate signal.  The one dimensional analysis in the superior-inferior direction was 

motivated by the nearly linear relationship between the breathing amplitude and the lung 

tissue displacement, which has been established in literature [50, 78, 79].  Given that lung 

tissue motion tended to be largest in the superior-inferior dimension, the results were likely 

to be similar to the analysis of the 3D motion.  Our simulation technique provided the 

advantage that many 4DCT sessions could be simulated, as opposed to image-based 

assessments where 4DCT data is typically a single set or a limited few.  The statistics 

obtained from our simulations provided insight to the variability of measured tumor motion 

using commercial helically-based 4DCT techniques.   

The technique did not consider motion hysteresis, which affects some tumors.  Breathing 

irregularities for these tumors would be more challenging to model. The technique also 
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used only single breathing traces for each patient, so intra-patient variability over multiple 

sessions was not evaluated.   

Selection of the 95th and 5th percentile breathing surrogate amplitudes to normalize the 

motion was arbitrary. There are no accepted definitions of inhalation and exhalation based 

on percentiles, but given that the results were nearly independent of tumor motion 

magnitude, selection of other percentiles to define the relationship between breathing 

magnitude and tumor motion would have provided similar results.  The choice of 

evaluating the outlying five percent error distributions only served to show the magnitude 

of error in 4DCT motion estimation.  Smaller outlying distributions can exhibit even larger 

errors, while a choice of greater percentiles would show smaller errors.  We conclude that 

commercial clinical 4DCT images should be used with caution for patients with highly 

irregular breathing patterns.  
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Chapter 3 

Framework for Experimental Data 

Acquisition and Analysis 
 
4DCT imaging is an important lung imaging modality that can provide time-resolved 

information on both the lung anatomy and function.  However, in current clinical protocols, 

4DCT images may not accurately reflect the patient anatomy and motion characteristics.  The 

former is caused by the image sorting artifacts that appear frequently as spatial 

inconsistencies in the acquired breathing phase specific images.  The latter issue is related to 

the limitations in the sampling of patient breathing.  Typically, breathing data of a single 

breath was incorporated in the 4DCT image data as the patient thoracic anatomy is imaged 

along the cranio-caudal axis.  However, breathing variations that occur in the course of 

normal breathing are not taken into account.  This chapter presents the novel image 

acquisition technique aimed at addressing these insufficiencies in conventional 4DCT 

imaging as well as the image processing techniques for measuring lung motion. 

 

3.1 Fast Helical CT Protocol 

 

To address the problems in clinical 4DCT imaging, we have proposed a novel CT imaging 

protocol.  The core idea of our proposed image acquisition technique is to capture quasi-

breath hold images from multiple breaths during patient normal breathing.  The acquired set 

of volume images constitutes multiple samples of the lung tissues undergoing breathing 
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motion and allows us to determine the extent of tissue displacement.  Subsequently, the tissue 

motion information will serve as input into a breathing motion model that would parametrize 

the tissue motion and render it in a continuous representation of the thoracic anatomy 

undergoing respiratory motion. 

All patients were scanned using 64-slice CT scanners (Somatom Definition Flash and 

Biograph TruePoint PET∙CT, Siemens Healthcare, Forchheim, Germany).  Images were 

acquired with a nominal beam collimation (longitudinal field of view) of 64 × 0.6 mm (3.84 

cm), a pitch of 1.2 and scanner rotation period of 0.285 second, which amounts to a table 

movement of 46.08 mm per rotation and a table velocity of 161.7 mm/s. Further scanning 

 

 

Figure 1. CT scanner and breathing signal acquisition system. 
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parameter of 120 kV and 40 effective mAs per slice were used, which result in 169 mA for 

this pitch and rotation time.  Images were reconstructed in slice thickness of 1-mm, using the 

standard Siemens reconstruction kernel B30f.  Using this technique, the time to scan the 

entire lungs from apices to bases took approximately 2.5 seconds. In order to adequately 

sample the breathing motion, the complete protocol involved imaging the patient with 25 

individual series (25 separate acquisitions), using alternating scanning directions with 

approximately 2-second delay between acquisitions. The entire scanning sequence took 

approximately 140 seconds. The total computed tomography dose index volume (CTDI vol) 

for the entire scan (all 25 acquisitions) was 4.22 cGy, which is less than a current clinical 

slow-helical 4D-CT protocol (Siemens Sensation Open, 800mAs, spiral pitch of 0.1, CTDI 

vol of 6.9 cGy).  All patients imaged under this protocol were approved by the institutional 

review board. 

 

3.2 Breathing Surrogate Measurement 

Detailed dynamic information of the lungs can be difficult to obtain through imaging due to 

limitations in medical imaging.  For such purposes, breathing surrogates are used to estimate 

the breathing state of the lungs.  Breathing surrogate measurement come in a variety of 

forms, including but not limited to, infrared marker, spirometry, and abdominal belts.  In our 

study, we have elected to use the abdominal pressure belt since it is less prone to the noise 

fluctuations in the breathing signals. 
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Figure 2. (i) The surrogate signal measurement system used for acquiring the breathing signal, 

showing, in the order of signal processing, a. the abdominal belt, b. the pressure gauge for monitoring 

or calibrating the pressure, and c) the pressure transducer that converts the pressure signal into 

electrical voltage signal.  The voltage signal out of the pressure transducer is connected downstream 

to the data synchronization system. (ii) In-house LabVIEW Software interface for acquiring patient 

breathing signal. 
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The patient’s breathing trace amplitudes were measured using a pneumatic bellows 

(Lafayette Instrument). The bellows was wrapped around the patient’s abdomen and as the 

patient inhaled and exhaled, the bellows was stretched and relaxed, causing the air pressure 

in the bellows to decrease and increase, respectively. A pressure transducer measured the 

internal air pressure and generated a voltage output, which was recorded as the breathing 

signal.  Downstream the breathing signal and the CT scanner trigger voltage signal are 

collected by a multi-channel analog signal acquisition device (National Instruments).  The 

bellows signal was synchronized to the CT-on signal from the scanner using the LabVIEW 

software, which allows for correlating the signal to CT slice.  The breathing signal had been 

previously shown to be linearly related to the tidal volume [23].  The derivative of the 

voltage signal with time [V/s] was used as the surrogate measurement of breathing rate.   

  

3.3 Deformable Image Registration 

The acquired image data is processed using deformable image registration.  Image 

registration is performed between a pair of images, typically termed the reference or “fixed” 

image and the “moving” image.  The registration algorithm aligns the “moving” image to the 

“fixed” image while assigning motion vector to each voxel in the reference image.  In 

respiratory motion, the lungs can undergo large and complex deformation.  Accurate 

information on the lung tissue deformation is necessary in many clinical scenarios to ensure 

both accurate diagnostic assessment and treatment delivery.  In radiation therapy, DIR has 

become an indispensable tool for estimating patient-specific motion model, which enables 

accurate margin definition in the treatment planning stage and ensures adequate target dose 

coverage in the radiation delivery.  In addition, lung ventilation profile can be derived by 
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registering CT images at different respiration levels so that clinicians may better understand 

breathing disorders.  Furthermore, image registration of longitudinal scans can be used to 

monitor the disease progression and evaluate treatment efficacy.   

Typical components of a DIR algorithm include a transformation model, a similarity metric, 

and an optimization algorithm, all of which can affect the accuracy in image alignment.  

Achieving high registration accuracy in the lung is challenging due to complex deformations 

that occur during respiration.  These complex deformations present challenges in the form of 

large tissue displacements, the tissue sliding motion on the lung boundaries and the strong 

local intensity variation caused by lung expansion and compression.  In addition to these 

inherent issues, the registration accuracy is also highly dependent on the algorithm parameter 

[80, 81].  This issue has been investigated in Dou et al [82], where significant accuracy gain 

was found using an optimized parameter set over the non-optimized ones.   

To appropriately evaluate the accuracy of the lung DIR algorithms, common data sets and 

comparison criteria should be employed.  For example, the EMPIRE10 challenge was 

designed to evaluate the algorithm performance among the lung DIRs [83].  Each algorithm 

was tested on a variety of datasets and ranked based on boundary alignment, major fissure 

alignment, landmark correspondence, as well as singularities in the deformation fields. 

 

3.4 Description of the deeds algorithm 

The DIR algorithm employed throughout this dissertation was deeds [84-86], based on a 

multi-level B-spline algorithm.  A unique feature of the deeds algorithm is the preservation 

of sliding motion near the lung boundaries, where tissues on opposite sides of the lungs can 

exhibit pronounced discontinuity in motion trajectories.  The implementation of minimum 
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spanning tree derived from voxel intensity effectively separates the tissues on either side of 

the lung boundary and restricts the deformation vector field regularization to only apply to 

the voxels sharing similar intensity characteristics [85, 87].  It is worth noting that deeds 

algorithm accomplishes the registration of tissues near the lung interface without the use of 

segmentation masks and thus avoids the delay related to segmentation in the image 

processing pipeline.  To overcome the challenge resulted from the solution becoming trapped 

in the local minima in the optimization process, the deeds algorithm combines the method of 

dense displacement sampling with a discrete optimization algorithm.  This allows for 

registration optimization to be performed without having to form derivatives of the image 

similarity metric and the need for iterative solution searching.  The image similarity 

evaluation was based on self-similarity context, which was a highly discriminative descriptor 

that contained structural information in the neighborhood of the voxel of interest [84, 86].  

This metric was also shown to be highly discriminative in identifying anatomical features in 

the presence of local varying contrast and image noise during respiration as well as more 

accurate than mutual information, a commonly used similarity metric [86].  The registration 

accuracy performance of deeds has been validated in the recent lung specific deformable 

registration algorithm studies, the EMPIRE10 [83] and against the public DIR-LAB data 

[85].   

 

3.5 Lung Segmentation  

To assess the accuracy in the variety of lung modeling, an accurate delineation of the 

lung boundary is necessary.  In this work, the MEVIS lung segmentation algorithm 

developed at the Fraunhofer Institute, Germany was employed for defining the lung masks 
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[88].  This algorithm was based on region growing method from coarse to fine resolution 

followed by morphological operations to refine the mask boundaries.  The MEVIS algorithm 

was ranked 1st place for segmentation accuracy in the recent LOLA11 challenge. 
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Chapter 4 

Validation Experiments of a Breathing 

Motion Model based 4DCT Technique 

 
Quality assurance of 4DCT scanning can contribute significantly towards minimizing 

systematic errors in high precision radiotherapy of mobile lung tumors. This study 

explicitly tests the robustness of the model prediction accuracy in the image domain by 

simulating the original helically acquired free-breathing scans. The original CT scans are 

considered as ground truths in that they were acquired using quantitative imaging 

techniques that scanned each location within approximately 0.23s, so the localization 

uncertainty of any tissue landmark was minimal. The key distinction of the proposed 

workflow is that the model-based 4DCT protocol would include an accuracy assessment of 

the entire 5DCT workflow. To the best of our knowledge, the proposed 5DCT technique is 

the first respiratory-gated CT technique that explicitly estimates the accuracy of the 

generated breathing phase-specific images using ground truth data. 

 
4.1 Introduction 

 

Respiratory motion presents a significant challenge for radiation therapy because of its 

irregularity and the consequential uncertainty of tumor and normal organ positions, leading 

to larger than necessary target volumes and potentially systematic errors in radiotherapy 

[89].  Four dimensional computed tomography (4DCT) [44-46] has become an 

indispensable tool that measures and characterizes breathing-induced motion, providing 
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breathing phase-specific images for defining target volumes and motion mitigation 

strategies in radiotherapy.  Ideally, incorporating 4DCT into treatment planning provides 

the spatial and temporal information that explicitly accounts for respiratory motion [8, 90-

93].   

Accurate motion estimation by 4DCT holds the potential of improving local control rates 

and normal tissue sparing in high-dose conformal lung radiotherapy [94-96].  However, 

due to breathing irregularities inherent in human quiet respiration, 4DCT is susceptible to 

sorting artifacts, which can cause target delineation errors [68, 74, 97, 98].  Techniques 

have been proposed for retrospective sorting-based approaches with the aim of reducing 

motion artifacts in 4DCT images [47, 72-74, 99-102]. Of these, respiratory motion model 

based techniques have shown promising improvement in mitigating sorting artifacts [47, 

48, 73, 103], besides the additional attractive qualities of their predictive power.  In 

particular, Thomas et al [103] demonstrated the generation of motion artifact-free 4DCT 

images at user-selected breathing phases based on a fast helical CT acquisition technique 

and a deformable lung motion model.  The model was based on Low et al [50], employing 

two surrogates, breathing amplitude and rate, as independent variables. Such models are 

termed here as 5D.  The model-generated 5DCT images, being sorting artifact-free, would 

not convey obvious indications as to whether the motion model prediction accurately 

reflected the phase-specific breathing motion.  Ideally, the accuracy of 5DCT images 

would need to be evaluated prior to their clinical utilization to determine optimal motion 

management strategy.   

In this paper, we present a technique that characterizes the accuracy of the 5DCT 

acquisition and motion modeling process described by Thomas et al [103] and Low et al 
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[104].  We proposed to use the motion model to reconstruct the original free-breathing 

helical CT scans for a direct comparison in the image domain.  The original CT scans were 

considered as ground truths in that they were acquired using quantitative imaging 

techniques that scanned each location within approximately 0.23s, so the localization 

uncertainty of any tissue landmark was minimal.  Using the motion model and the 

breathing surrogate signals measured during the image acquisition, the original CT scan 

geometries were simulated by deforming the reference scan image with the model-derived 

DVF.  The original and simulated scan geometries were compared throughout the lungs 

using a previously validated DIR technique. Both qualitative and quantitative analyses 

were presented for 16 cancer patients with either primary or metastatic lung tumors.   

 

 

 
 

Figure 1. Flowchart of the simulation of the original scans. 
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4.2 Methods 

Image Acquisition and Patient Lung Model Construction 

 

Fig. 1 describes the workflow for the acquisition of the free-breathing scans and the 

reconstruction of these scans using the 5D respiratory motion model.  Sixteen patients were 

imaged under an IRB approved protocol using 64-slice CT scanners (Somatom Definition 

Flash and Biograph TruePoint PET·CT; Siemens Healthcare, Forchheim, Germany).  One 

patient (that would have been the 17th enrolled) was removed from our analysis because a 

rib was missing and the motion model was unable to manage the unusual deformation near 

the missing rib.  To adequately sample the patient anatomy for lung model construction, 25 

acquisitions of the free-breathing thoracic images were performed according to the fast 

helical CT protocol previously reported in [103, 104] with simultaneous recording of a 

breathing surrogate signal.  A pneumatic accordion-shaped bellows tube was wrapped 

around the patient’s abdomen. The tube was sealed and the air pressure in the tube 

monitored using a pressure transducer sampled at 100 Hz.  The bellows air pressure was 

used as the breathing surrogate amplitude, which decreased and increased as the patient 

inhaled and exhaled, respectively. Using the shortest rotation period of 0.28s and pitch of 

1.2, the lung anatomy was scanned through in 2.5s.  Each location on the CT couch was 

imaged for 0.23s, short enough to be considered as essentially static representations of the 

patient’s geometry at the time of scanning each slice.  This allowed us to assign a breathing 

phase to each slice.  The 25 helically acquired scans are termed here as the original scans.   

Each scan spanned a large fraction of the breathing cycle and the scans together reflected 

the extent of motion the lung tissues underwent. The 5DCT approach incorporated the 25 

lung tissue position samples into a patient-specific lung motion model [50, 103, 104].  
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Lung tissue displacements were determined using DIR, where the first original scan was 

arbitrarily chosen as the reference image.  In this common geometry, the resulting 24 

deformation vector fields (DVF) were related on a per-voxel basis to the bellows-measured 

breathing amplitude, �, and its time derivative, the breathing rate, f, by solving the 

following linear equation for the lung motion model parameters [50]: 

     

�� = ������� +  	� ∙ � + �� ∙ �,                                                 (4.1) 

      

where �� was the voxel displacement, ������� the voxel position at a zero amplitude and rate, 	� 

described the motion due to breathing amplitude and �� described the motion due to the 

rate-induced motion hysteresis effect. 

 

Deformable Image Registration 

 

The DIR algorithm employed for the study was deeds [84-86], based on a multi-level B-

spline algorithm.  Contrary to conventional thoracic registration algorithms, which relied 

on segmentation to model the shear motion at the lung boundary, a unique feature of deeds 

was the preservation of the sliding motion using image-adaptive minimum spanning trees 

[85, 87].  The incorporation of deeds-derived DVF into our motion modeling thus allowed 

for a straightforward tracking of the voxel movement on both sides of the pleural cavity.  

The image similarity evaluation was based on self-similarity context, which was a highly 

discriminative descriptor that contained structural information in the neighborhood of the 

voxel of interest [84, 86].  This metric was also shown to be robust in identifying 

anatomical features in the presence of local varying contrast and image noise during 
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respiration, as was typically encountered in the images obtained by our low-dose, free-

breathing acquisition protocol.  In a recent EMPIRE10 study [83], deeds achieved top-

ranked accuracy in terms of landmark correspondence and had also been validated using 

the publicly available DIR-LAB data [85].  The use of such highly accurate DIR was 

essential for reducing the uncertainty in voxel position localization and contributing to the 

overall model parameter determination.  In this work, deeds was used both in the initial 

registration of the free-breathing scans and the evaluation of matching between the 

simulated and original scans. 

 

Reconstruction of Free-Breathing Scans by Lung Motion Model 

 

We proposed that the 5DCT image accuracy be assessed by comparing between the 

original images and the set of simulated images generated by deforming the reference 

image to the same non-reference breathing phases as recorded during image acquisition.  

The original images and their corresponding surrogate breathing curves represented a series 

of respiratory states that the patient underwent during quiet respiration.  Using the motion 

model parameters and the breathing phase information consisting of breathing amplitude 

and rate, the breathing phase-specific DVFs were computed according to equation (4.1) at 

each voxel of dimension 1 mm3.  The model DVFs pointed from the reference scan 

geometry to the other 24 non-reference original scans, as did the vectors obtained by the 

DIR process.  To allow for the generation of the simulated images through resampling the 

reference image, the model DVFs were subsequently inverted using the fixed-point 

algorithm by Chen et al [105].  To compensate for the lung voxel intensity change during 

breathing, the Hounsfield units (HU) were linearly interpolated using the sampled surrogate 

voltages and the resulting HU correction table was applied to the lung region.  The quality 



40 

 

of the DVF inversion was assessed by evaluating the fraction of the negative Jacobian 

values, which corresponded to singularities in the model-generated deformation (Table 1) 

[83, 105].  Lung model generated non-reference images were termed simulated images.   

 

Statistical Analysis 

For accuracy determination, the simulated images were deformably registered to their 

original counterparts and the resulting deformation vector magnitude of each lung voxel in 

the original images was used as misalignment error.  For each patient, the model error was 

characterized using the grand mean, defined as 

      

��� =  ∑ ������
�  ,                                                       (4.2) 

where �� was the mean misalignment error of the ith scan and N the total number of scans.  

To provide an estimate of the worst model prediction, ���� was similarly defined as the 

grand mean of the averaged 95th percentile misalignment error of all scans.  To address the 

potential bias towards a larger proportion of lung tissues of little motion, voxels were 

tracked throughout the 25 scans and ratios of the mean error versus the mean displacement, 

defined as misalignment error ratio, were formed for each lung voxel. Two-dimensional 

histograms that display the misalignment error and the misalignment error ratio 

distributions of the lung voxels with respect to their motion were generated to analyze the 

motion model simulation performance. The above analysis was performed using in-house 

MATLAB (Natwick, MA) and C++ programs.  The approximate computation times were 

15 minutes for model parameter generation, 10 minutes for each deformable registration, 

and 3 minutes for a helical scan simulation. 
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Figure 2. (a) The bellows breathing amplitude between the reference and target original 

scan image in patient 2. Surrogate signals of more negative voltage represents inhalation, 

and vice versa for exhalation breathing phases.  The same convention applies to all other 

figures;  (b) Initial misalignment between the image pair.  The reference scan is displayed 

in green, the target scan in magenta.  (c) Colormap showing the large and locally varying 

magnitude of inverse mapping required to create the target scan according to registration; 

(d) Inverted model deformation vectors overlaid on the reference image and (e) the 

corresponding deformation magnitude; (f) Overlay of the simulated scan onto the original 

scan, and (g) Residual misalignment in terms of registration deformation vector magnitude 

between the model simulated image and the original image. 

 

4.3 Results 

The model errors in terms of the grand mean and the grand mean of averaged 95th 

percentile errors are summarized in Table 1.  The averaged grand mean error across the 16 

patients was 1.15±0.37 mm, with the averaged grand mean of 95th percentile error 

estimated at 2.47±0.78 mm.  Of the evaluated Jacobian values of the model generated 
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DVFs, the mean negative Jacobian fraction was less than 0.05% across all patients, 

suggesting that the inverted model DVFs were well-defined for each transformation.   

Figure 2 illustrates an example of the proposed model-guided image simulation technique.  

For an initial misalignment between the reference scan and target original scan geometries 

characterized by their respective breathing waveforms (Fig 2(a)), the relative deformation 

was found by registering the reference scan to the target original scan.  In this expanding 

lung deformation marked by large diaphragm displacements (Fig 2(b)), large and complex 

deformation was observed towards the base of the lung, where the two lungs expand by 

different amounts (Fig 2(c)).  Subsequently, the motion model-derived DVF specific to the 

target breathing phase was inverted and applied to the reference image for simulating the 

lung deformation (Fig 2(d)).  Fig 2(e) shows that the model generated deformation pattern 

displays a remarkable resemblance to that generated by DIR (Fig 2(c)).  The excellent 

alignment between the original scan and the simulated one can be appreciated in Fig 2(f).  

Lastly, Fig. 2(g) shows the small residual differences found by forming the magnitude of 

the deformation vectors between the simulated and the original images, as contrasted from 

the initial large deformation.   

Figure 3 demonstrates inter-patient examples where the 5D model accurately reproduced 

the tissue motion for large displacements. For 2.5s scans under free-breathing condition, 

diaphragm displacements of as large as 2cm relative to the reference scan geometry were 

accurately modeled as can be visualized by the image overlay between the simulated and 

the original scan.  In addition, detailed lung anatomical features, such as nodules, 

bifurcations, lobe fissures and lung boundary, were also very well aligned.  Misalignments  
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Figure 3. For patient 1 undergoing large inhalation of about 2 cm diaphragm displacement, 

(a) the breathing traces between the reference and target original scan; (b,c,d) the initial 

misalignment, the excellent alignment after applying model deformation to the reference 

scan, and the residual error in the central coronal slice; (e,f,g) the same in right sagittal 

view.  Similar figures for patient 7 (h-n) and patient 13 (o-u), in large expanding 

deformations. 
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of small magnitude show regional variation in the lung and the model simulation accuracy 

can suffer at the lower posterior boundary of the lung.  While the quantitative analysis 

concentrated on tissues within the lungs, the bony structures in the thorax, including the 

spine and ribs, were also correctly aligned due to the employed image-wide DIR technique.   

An example of the shear motion near the lung boundary is shown in Figure 4.  Fig 4(a, b) 

show the positions of a lung vessel in the reference and the target original images where the 

target original scan was selected to reflect tidal inhalation near the diaphragm.  In the close-

up region, the lung vessel moved inferiorly as the lung underwent expansion.  The shear 

motion of the cross-marked vessel within the lung boundary was exemplified by the 

deformation vectors pointing in inferior direction (Fig 4(e)) while the vectors outside 

showed little motion magnitude, displaying motion discontinuity at the chest-wall 

boundary.  The alignment of the lung vessel in the image overlay indicated that the sliding 

motion on either side of the lung was well reproduced by the model. 

Figure 5(a) provides the distribution of the lung voxels binned by their misalignment errors 

and mean voxel displacement and 5(b) the distribution of the misalignment error ratios and 

mean voxel displacement for patient 10.  Figure 5(c) shows the distribution of the 

misalignment errors in patient 10 over the total number of original scans. In 5(d), a 

quantitative description of the error statistics for the sixteen patients was given.  In all 

patient scans examined, the grand mean over the lung region was below 2 mm, while the 

grand mean of averaged 95th percentile misalignment was just slightly over 4 mm. 
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Figure 4. (a) In a patient 9 scan, where the lung is expanding relative to the reference 

geometry, the same lung vessel (in red box) moves in the inferior direction.  A close-up of 

the boxed area and the position marks of the vessel (x) with respect to the neighboring rib 

position (+) in the reference (b) and in the target (c) and together in the overlay image (d).  

(e) The model deformation vectors, plotted in 4mm grid, are overlaid on the reference 

image.  (f) The overlay image of the model simulated image on the target original image.  
 

 

4.4 Discussion 

A technique for characterizing the accuracy of CT images generated by the 5D model has 

been proposed and was tested in sixteen patients.  As illustrated in Figure 5, histograms 

show that the vast majority of the lung voxels exhibit mismatching error on the order of 

millimeter. This suggested that 5DCT technique accurately reproduced the dynamic lung 

deformation associated with the variety of the sampled patient free-breathing states during 

the 2.5-minute scanning session.  In particular, our results showed robustness in simulating 

the large deformation of deep breaths using an arbitrary reference scan.   
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Quality assurance of 4DCT scanning is important for minimizing systematic errors in 

radiotherapy of mobile tumors.  Hurkmans et al evaluated 4DCT imaging accuracy using a 

programmable phantom that moves with periodic breathing cycle and a known motion 

range [106].  The present work assesses the 5DCT workflow accuracy by comparing to the 

high-pitch helical “snapshot” free-breathing scans as ground truth. Such accuracy 

assessment would be valuable in determining the appropriate motion management strategy 

for treatment.  To the best of our knowledge, the proposed 5DCT protocol is the first 

respiratory-gated CT technique that explicitly estimates the accuracy of the generated 

images using patient ground truth data. 

The validity of the original scans as ground truth was limited by the motion-induced 

artifacts due to high tissue motion velocities.  Such artifacts appeared in some images, but 

consisted largely of small structure blurring (<3 mm) and ghosting of the diaphragm 

boundary.  The position of the blurred structures, however, would generally reflect the 

average position of that structure during the 0.23s that the location had been scanned.  We 

examined the CT scans and determined that the motion-induced artifacts led to relatively 

minor errors in the average positions of the lung tissues. 

One of the hallmarks of not using time as an explicit variable was that the complexity of 

human breathing motion could be isolated into time-dependent and time-independent 

variables, where the time-dependent variable was physically measured and the time-

independent variables described the spatial characteristics of the motion.  This allowed 

breathing irregularity to be explicitly managed by the 5D motion model.  The ability of the 

5D motion model to reproduce lung tissue hysteresis was previously demonstrated in 

Thomas et al and Low et al.  [50, 103].  Building on this unique characteristic, the lung 
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Figure 5. Histogram in a logarithmic color scale displaying for patient 10 (a) the 

misalignment error magnitude versus the mean motion magnitude and (b) the lung voxel 

misalignment error ratios versus their mean motion; (c) boxplot showing mean (x), median 

(red line), interquartile range (blue box), and 5th and 95th percentile misalignment error 

(whiskers) for patient 10; (d) distribution of the grand mean (red) and the grand mean of 

averaged 95th percentile (blue) error of all scans per patient, with the error bar showing the 

standard deviation. 

 

modeling realism was here further enhanced by accounting for sliding motion along the 

lung periphery through the use of a lung-segmentation-free DIR technique.  This particular 

modeling feature may be useful for analyzing pathologies where lung tumor is attached to 

the pleura and holds the potential for increased precision of highly conformal radiotherapy.  
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While the 5D formulation can accurately describe lung tissue motion in the examined 

cohort, the accuracy of the simulated tissue alignment was specific to the patient, the 

breathing phase, and also showed local variation throughout the lungs.  For example, the 

larger misalignment errors observed in patient 11 can be attributed to the fact that most 

breathing signals were captured during exhalation phases.  This has compromised the 

model’s ability to extrapolate to the deformation of deeper breaths in this patient.  A 

prospective CT acquisition technique that assures adequate breathing phase sampling for 

each location in the lung will be developed to address this issue.  The measurement noise in 

the surrogate signal is found to be correlated with the increased misalignment error, 

particularly in patients 6, 7, 11, and 13.  The high frequency components in the recorded 

physiological signal introduce uncertainties in the model parameter determination and 

degrade the reproducibility of tissue positions in the original scan images, especially if the 

reference breathing signal suffers from such noise.  Careful placement of the abdominal 

belt and dedicated circuit design can potentially improve the surrogate measurement.  The 

model accuracy suffered towards the posterior lung boundary, likely because the tissue 

motion tended to be greatest in this region with subsequent motion-induced blurring in the 

images acquired during inspiration or expiration. The blurred images would be more poorly 

registered relative to images acquired during peak inhalation or exhalation.  The image 

acquisition-related issues of posterior edge misalignment and artifact errors could in the 

future be minimized by scanning at higher pitches, faster rotation speeds, or using more 

sophisticated image reconstruction.   

 

4.5 Conclusion 
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We have demonstrated a method that evaluated the accuracy of a 5DCT technique by 

comparing the model-simulated images against the ground-truth original scanned images.  

The demonstrated similarity agreement for the examined large deformations during free-

breathing imaging suggested the applicability of the proposed 5DCT technique for a wide 

range of patients.  The proposed ground truth based analysis is unique in CT-based 

breathing motion modeling for radiation therapy and will provide uncertainty estimations in 

the model-based 4DCT breathing motion estimate of tumors and normal organs.   
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Chapter 5 

Characterization of Lung Tissue 

Density Change during Free Breathing 
 

 

 Accurate accounting of dynamic lung density variation is desirable and forms the basis for 

treatment planning calculations. In charged particle radiotherapy, accounting for lung 

density variation is particularly crucial for ensuring accurate treatment delivery. This work 

investigated a functional relationship that calibrates the density change of the human lung 

tissues under free breathing conditions. This was accomplished by processing snapshot 

images of the lung scanned by fast helical CT technique using highly accurate deformable 

image registration. Our proposed density calibration approach couples the motion vector 

field to the tissue density assignment and allows for the tissue density to be assessed 

directly through the computation of the determinant of the Jacobian matrix. The proposed 

density calibration scheme is general, patient-specific, and can be applied to any lung 

motion models that generate lung images using motion vector field. We envision the 

presented method can be applied to SBRT and particle radiotherapy in the thorax and will 

be a key enabling technique for 4D lung treatment planning techniques that require 

accurate lung anatomical and density representation and Monte Carlo based dose 

calculation. In addition, if follow-up fast helical scans become available, our technique can 

potentially be used for dose response modeling. 

 

5.1 Introduction 
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In radiation therapy, the accuracy and precision of the treatment planning process is 

important for achieving adequate target coverage and avoiding healthy tissues.  In thoracic 

radiation therapy, 4D imaging has been introduced to provide lung density information 

over the different breathing phases in the breathing cycle.  However, due to image sorting 

artifacts, irregular patient breathing makes 4DCT prone to inaccurately characterizing lung 

density variations [107].  Human lungs contain significantly heterogeneous tissues with an 

average density one third of that of water.  In a lung phantom study by Aarup et al that 

examined the dependence of dose difference on density variation [108], Monte Carlo 

calculations demonstrated that when decreasing the lung density from 0.4 to 0.1 g/cm3, the 

median dose to the target decreased by up to 15% and more than 20% for 6 MV and 18 MV 

photon beams, respectively.  However, few studies to date have systematically investigated 

lung density changes during quiet respiration using human data.  

Modeling of lung density changes during the breathing cycle has often been performed 

based on the principle of mass conservation. McGurk et al [109] modeled density change 

based on the conservation of global lung mass and applied a mean lung density throughout 

the lungs specific to each breathing phase.  Williams et al [110] proposed a density 

correction scheme by combining the voxel Hounsfield units (HU) values of the reference 

phase image and the volume change was computed using the divergence of deformation 

vectors around the voxel of interest.  Both of these studies were performed using 

computational phantoms.  The accuracy of such density assignment, however, has not been 

validated in humans.   

In this study, we present a technique that characterizes the density change of lung tissues 

during quiet respiration using free-breathing patient data.  A series of free-breathing lung 
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image CT scans were acquired using a fast helical protocol [103, 104] such that the lung 

tissues were imaged with minimal motion-induced blurring or artifacts.  Deformable image 

registration was performed on the image data, and the obtained deformation vector fields 

(DVF) were subsequently used to compute the Jacobian map whose voxel values estimated 

the voxel-specific volume change.  Tissue specific functional relationships that described 

the density change during free breathing were obtained by correlating the set of HU 

intensities with the Jacobian values for each voxel using least square fitting.  Through 

testing the mass conservation assumption, we differentiated the lung tissues according to 

the observed data fitting performance and devised a scheme that separately modeled the 

density variation for each classified tissue types present in the lungs.  The model-generated 

density values were examined with the acquired CT image data and also validated using a 

leave-five-out cross validation method.  To our knowledge, this is the first work that 

models the dynamic local lung tissue density change during quiet breathing based on 

patient image data.  

  

5.1 Methods 

Image Acquisition 

 

The fast helical CT protocol [103, 104] was originally developed to provide multiple 

samples of tissue position during free-breathing for modeling lung tissue motion.  The 

image acquisition was performed using a 64-slice Siemens Definition Flash (Siemens, 

Forchheim, Germany).  Our proposed technique was conducted on a subject that underwent 

the fast helical CT protocol that scanned the lung anatomy 25 times, each scan taking 2.5s.  

The scanning was performed employing a pitch of 1.2 and rotation time of 0.28s so that 
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each piece of lung tissue was imaged for approximately 0.23s and the images were 

reconstructed using the Siemens B30f reconstruction kernel with a voxel size of 1 × 1 × 1 

mm3 [103].  Thus, the images represented the lung anatomy throughout the sampled 

portions of the patient breathing cycle. Each scanned image slice was considered to 

approximate a static snapshot of the lung.  

 

Deformable Image Registration and Jacobian Computation 

 

To provide a common geometry for image analysis, the acquired free-breathing images 

were registered to a reference image, which was arbitrarily assigned as the first scan.  The 

deformable image registration employed for this work was the deeds algorithm [84, 85, 

111].  Using self-similarity context, the algorithm evaluated image similarity based on the 

neighborhood intensity structure around the voxel of interest. Deeds has been validated in 

the recent thoracic deformable registration evaluations using the public DIR-LAB data [85] 

and has achieved the second best target registration error in the EMPIRE10 challenge [83].  

The deformed non-reference images generated by the registration algorithm contained the 

interpolated HU values of each tracked reference image voxel in the non-reference images. 

The Jacobian was calculated for every voxel by estimating the local affine transformation 

matrix, which transformed the reference image coordinates to the deformed image 

coordinates, and calculating the determinant of the resulting affine matrix.  The accuracy of 

the Jacobian computation was validated through the lung volume comparison in the 

registered image pairs.  For a pair of test images that involved 24% volume change, in 

terms of the number of voxels within the lungs, the difference in voxel counts between the 

segmented moving image and the integration of Jacobian values over the deformed moving 

image was 0.2%. 
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Figure 1. An error histogram obtained by applying mass conservation fitting to the 

Jacobian and HU for each lung voxel.  This histogram is plotted in logrithmic scale. 

 

Data Analysis and Density Model  

 

The lungs were segmented using a highly accurate segmentation algorithm [112].  The 

basis of our modeling assumption was that the mass of the voxel content was conserved 

between each pair of reference and non-reference images and only the volume and density 

changed such that ���� =  � � . The physical density of the lung tissue was related to the 

radiological attenuation coefficient [113] as 

� =  !"
1000 + 1.                                                                       (5.1) 

The local volume change due to the deformation could be approximated using the 

determinant of the Jacobian of the transformation field, 
%&
%'

 ≅ det ∇- ≡ / [114].  The local 

mass conservation relationship could therefore be expressed as 
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!" 1000 + 1
!"�1000 + 1

∙ / = 1                                                          (5.2) 

Since the HU value of reference voxel stays the same for our 25 data points, Eq (5.2) was 

simplified to 

(	 ∙ 0 + �) ∙ / = 1,                                                              (5.3) 

where D represented tissue density in HU, 	 had units of 1/HU and � was unitless.  	  and 

� were fitting coefficients that related D to the Jacobian.  To ensure the association of large 

and negative HU values to increasing Jacobian values, 	 and � were obtained by fitting 

!"  and 1// using constrained least square optimization for which 	 > 0.  The term 	 ∙
0 + � expressed the density change ratio relative to each reference image voxel and Eq 

(5.3) imposed the mass conservation relationship on the fitted curve, characterized by 	 

and �. The obtained 	 and � represented the underlying density pattern.  In particular, the 

fit constant 	 determined the curvature of the resulting fitted curve.  The application of Eq 

(5.3) to correlate the Jacobian to the HU values resulted in the error histogram over the 

entire lungs in Fig.1.  The histogram analysis shows that about 80% of the total lung voxels 

have mean errors up to 60 HU.  In addition, the shape of the error distribution indicates that 

mass conservation fitting alone cannot account for the density change and indicate that 

additional modeling is required to describe the density change pattern.  In Fig. 2, a careful 

inspection of the coefficient 	 map led us to classify the voxels with values greater than 

0.001 as type I, values between 0.001 and 0.0001 as type II, and values between 0.0001 and 

zero as type III.    Separate fitting schemes were applied to each region and took on the 

following forms,  
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4567 8:   	 0 +  � =  1
/ ,                                                (5.4:) 

4567 88:    0 = ; / +  <,                                                 (5.4=) 

4567 888:   0 =  >,                                                            (5.4?) 

 

where ; and < represent the linear fitting coefficients, and > the averaged value of the voxel 

HU.  The inverse linearity assumption for type II tissues applied mostly to the region of 

lung vessels.  Our assumption was supported by the volume change of the pulmonary 

vessels reported in literature [14,15].  In particular, Clark et al [14] stated that “Extra-acinar 

vessels, which are embedded within and tethered to the parenchymal tissue, are distended 

axially and radially on inflation, …”.  This physiological observation allowed us to 

correlate the changes in HU with the volume changes in the lung vascular tree.  Type III 

was designated to address the remaining portion of the lung tissues whose density variation 

appear to be independent of the Jacobian values and was modeled to have constant density 

value obtained by averaging all data points.       

To evaluate the accuracy and the variability of our model, one hundred trials of leave-five-

out experiments were performed, where a random subset of 20 out of the 25 scans were 

selected as training data for coefficient estimation, and the Jacobian values from the 

remaining 5 scans were used to calculate and predict the modeled densities via the obtained 

fitting parameters and these compared with the acquired density data.  The mean absolute 

differences between the modeled and experimental HU values were computed for each 

voxel. To assess the intrinsic image noise, a region in the trachea filled with air was 

selected to evaluate the image intensity uniformity and the standard deviation of the HU 

values was found to be around 30 HU.    
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Figure 2. (a) spatial map of the fitting coefficient 	; (b-f) scatter plots of the 25 point pairs 

of Jacobian versus HU for the labeled example voxels on the central coronal slice, plot 

legend specifies the fitting coefficient 	 for tissue classification and the evaluated mean 

model error.  
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The above analysis was performed using the MATLAB software (Natwick, MA). 

 

5.3 Results 

 

In Fig. 2, the distribution of the obtained fit constant 	 showed local variation. The 

magnitude of the fitting coefficients revealed the underlying trend in terms of the 

mechanical properties of the lung tissue, ranging from those that obey the mass 

conservation relationship to those subject to elastic expansion and contraction and finally 

those that are not sensitive to Jacobian change, such as the soft tissues in the interior of the 

large lung vessels. Type I tissues corresponding to lung parenchyma also exhibit different 

density characteristic profiles marked by the different levels of 	 values as shown in Fig 2 

(b-d).  Fig 2(e) and (f) show example voxels of Type II and Type III tissues according to 

our classification scheme by mass conservation fitting and the subsequent modeling and 

accuracy evaluation.            

Fig. 3(a) shows a coronal CT slice through the reference image, 3(b) shows the defined 

tissue types, 3(c) shows the range between the maximum and minimum HU values for each 

voxel, and 3(d) the computed mean absolute error of the density model over the 25 scans.  

Upon comparing Fig 3(a) and 3(b), one can appreciate the rendering of the lung vessel tree 

distribution, suggesting that classification by thresholding the initial mass conservation 

fitting coefficient, 	, can effectively distinguish between the parenchymal and vessel 

tissues.  The intensity distribution in Fig 3(c) indicates that lung vessels undergo greater 

density change than the parenchyma tissues, although the latter can exhibit regional 
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variation.  Fig. 3(d) shows that the mean residual error after applying our calibration 

scheme.   

 

  

Figure 3. In the mid-coronal slice, (a) The reference image; (b) The distribution of the lung 

tissue types, I. parenchyma, II. vasculature, III. soft tissue; (c) The range of lung density in 

HU observed in the 25 fast helical scans; (d) The resulting mean absolute error in the lung 

after applying the density calibration method.   
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Figure 4. The histogram distribution of the mean absolute error in region I (a), II (b), and III (c) 

using data from the 25 scans.  
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Figure 5. Histogram of the mean absolute error in HU for the leave-5-out experiments in region I 

(a), II (b), and III (c).  Histogram of the 95th percentile absolute error in HU for the leave-5-out 

experiments in region I (d), II (e), and III (f).  
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Table 1. Statistics of the validation experiment 

Error mean (HU) 95%-ile (HU) 

Region I 28.31 ± 2.07 55.62 ± 4.06 

Region II 32.32 ± 0.66 62.65 ± 1.60 

Region III 37.05 ± 2.15 78.15 ± 4.85 

Total 30.02 ± 1.67 59.94 ± 3.15 

 

 

Fig. 4 shows the distribution of the model error for each of the three modeled regions.  The 

mean errors for regions I, II, and III were 23.30±9.54 HU, 29.31±10.67 HU, and 

35.56±20.56 HU, respectively.  The error distributions in the three regions appeared to 

peak at around 30 HU.  Both the small mean value of around 30 HU and the small standard 

deviation for each of the distributions indicated the model quality.  Fig. 5 shows the error 

histograms both in mean model error and 95th percentile model error for the hundred 

validation experiments.  The model error statistics are shown in Table 1.  The mean model 

error distributions were found to be centered around 30 HU, confirming the model results 

using the full 25 scans. 

 

5.4 Discussion 

 

Our proposed density calibration approach couples the motion vector field to the tissue 

density assignment and allows for the tissue density to be assessed directly through the 

computation of the determinant of the Jacobian matrix.  The density calibration scheme 

classified the lung tissues into three categories based on their fitting characteristic to the 

mass conservation relationship.  Subsequently, we categorize lung tissues into lung 
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parenchyma (Type I), lung vessels (Type II), and soft tissues or air (Type III), which 

account for, 70%, 20%, and 10% of the total lung volume, respectively, according to the 

employed lung segmentation.  In the parenchyma region, tissues show local variation in 

terms of their fit coefficient 	; as observed in Fig. 2 (b,c,d), the voxels with greater 	 

values exhibit greater volume changes, suggesting their stronger involvement in air 

exchange during respiration, and vice versa for those with smaller 	 values.  The 

correlation of the regional variation in 	 with local ventilation estimation will be the 

subject of a future investigation.  The Type II tissues are modeled to undergo density 

changes that are inverse linearly related to the Jacobian.  The lung vessels here refer to the 

extra-acinar vessels whose dimensions can be detected within the image resolution of our 

imaging protocol.  Our approach is consistent with pulmonary physiology where the elastic 

materials in the lung parenchyma exert tethering forces on the neighboring lung vessels 

[115]. Since the tethering effect applies to both blood vessels and the bronchial airways, we 

do not make a distinction between the two types of vessels in terms of their response to the 

Jacobian values. 

The resulting error distributions appear to be random and without regional dependence. 

Noticeable residual error can sometimes be found along the traces of the vessels, which 

may be caused by the partial volume effect at the steep density gradient vessel-interstitium 

boundary in the interpolation process.  A finer voxel dimension in the image reconstruction 

could perhaps improve the accuracy in these areas.  Another region prone to reduced model 

accuracy is the region near the heart, where cardiac motion may cause imaging artifacts 

that affect the registration accuracy.  This motion-induced error can be mitigated through 

scanning patients using faster couch motion in future generations of the CT scanner.  The 
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sampling of the lung tissue density range can be further improved through prospective CT 

imaging where the image acquisition is gated on the monitored tidal volume. 

The presented lung density analysis concerns a broad spectrum of scientific specialties, 

including but not limited to lung physiology, image acquisition, reconstruction and 

registration, and radiation therapy.  In radiation therapy, accurate accounting of the lung 

density during breathing forms the basis for accurate dosimetric analysis of lung 

radiotherapy. Stereotactic body radiation therapy (SBRT) has shown improved thoracic 

cancer treatment outcomes [3].  However, given the low-density, high-heterogeneity, 

complex nature of the lungs, the high-dose and small field treatment modality of SBRT 

presents a significant challenge for an accurate dose calculation since a) the low-density 

medium allows for high radiation transmission and low radiation interaction and b) small 

radiation field violate the charged particle equilibrium condition. Accurate and precise 

electron density information underlying the lung image intensity is thus desirable for 

treatment planning purposes.  In charged particle radiotherapy, accounting for lung density 

variation is particularly crucial for ensuring accurate treatment delivery [116]. The 

proposed density calibration scheme is general, patient-specific, and can be applied to any 

lung motion models that generate lung images based on modeled motion vector field [104, 

117].  While our proposed methodology would benefit patients in lung radiotherapy, it can 

be utilized in other clinical scenarios that involve radiation delivery through the thoracic 

cavity, such as radiosurgery of the heart or esophagus.  We envision the presented method 

will be a key enabling technique for 4D lung treatment planning techniques [118, 119] that 

require time series’ of accurate lung anatomical and density representation and Monte 
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Carlo based dose calculation.  The application of the proposed density calibration technique 

is currently investigated using a realistic lung motion model.   

 

5.5 Conclusion 

 

Human lung tumors present a serious challenge to radiation therapy because of the 

inhomogeneous tissues present and the large density changes the lungs undergo during 

breathing.  We have presented a technique that uses the geometrical volume change 

information to predict the density change during quiet free breathing.  The density 

calibration model accuracy is demonstrated using a patient CT data and the error is found 

to approach the limit of the background image noise.  The proposed technique provides a 

valuable tool for performing human lung density analysis and may find important 

applications in pulmonary medical physics. 
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Chapter 6 

Characterization of Lung Ventilation 

and Dynamic Lung Ventilation Mapping  
 

 

Recent technical advances in multi-slice detector CT scanner enable unprecedented 

spatiotemporal resolution due to the improvement both in reduced rotation time and 

increased detector coverage. The improved image quality holds great potential for 

investigation in pulmonary functional imaging such that the functional information may be 

corresponded with structural detail. 4DCT provides the spatio-temporal distribution of the 

cancerous tissues. In planning the radiation treatment, the information of pulmonary 

function should be taken into account as it may constitute additional constraint for the dose 

distribution. While studies have shown the feasibility of generating ventilation maps 

directly from 4DCT, such approaches may be limited by the use of only extremal breathing 

phases and image artifacts. This chapter aims at characterizing the regional lung ventilation 

mapping using the multiple fast helical CT scans and presents a robust statistical technique 

for estimating the lung ventilation. In addition, dynamic lung ventilation maps evaluated at 

different tissue expansion levels are also presented.  

 

6.1 Introduction 

The primary function of the lung is gas exchange.  Functional information of the lung, such 

as ventilation and perfusion, is desirable in the patient treatment workflow in that it allows 

for pre-treatment therapy design and post-treatment disease progression monitoring.  To 
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this end, the advance in medical imaging sees different techniques being implemented.  

These include PET, MR, SPECT, and CT, each with its advantages and disadvantages [ref].  

Recently, multiple studies have used 4DCT image series to derive ventilation imaging and 

shown that the lung ventilation profile is highly correlated to that obtained from other 

traditional imaging modalities, such as PET and SPECT [120-123].  4DCT based 

ventilation imaging has also been directly validated against lung functional test [124].  In 

thoracic radiotherapy, ventilation imaging may also yield valuable information for 

treatment planning so that regions of high ventilation can be appropriately accounted for in 

the dose calculation [125, 126].  In addition, 4DCT ventilation imaging has also seen 

application in monitoring changes in pulmonary function following radiation therapy [127].   

4DCT derived ventilation imaging is a promising technique in many clinical applications.  

In comparison to other modalities, 4DCT ventilation imaging has advantages in its high 

resolution pulmonary functional information that directly corresponds to the anatomical 

details, in addition other benefits including high signal to noise ratio, faster imaging time, 

and greater availability to patients.  Prior to its clinical utilization, the accuracy of these 

ventilation images should be evaluated against ground truth.  The generation of ventilation 

images has typically been performed through deformable image registration and 

Hounsfield unit analysis on the peak exhalation and inhalation images [128].  However, the 

image artifacts due to respiratory motion can adversely affect the accurate ventilation 

characterization and remain to be addressed [129].  The purpose of this study was to 

investigate a novel approach to characterizing patient ventilation pattern using a recently 

developed high pitch helical CT protocol and rigorous statistical technique to derive the 

most probable tissue ventilation profile with multiple samples of artifact free image data.  
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In addition, we evaluate the effect of motion artifacts by comparing ventilation images 

obtained using conventional 4DCT approaches and those from our method. 

 

6.2 Methods 

CT Image Acquisition 

Fast helical CT imaging protocol was performed in 10 patients with lung cancer.  A total of 

25 scans were acquired to ensure adequate sampling of the lung anatomy under free-

breathing condition.  The results from one example patient were shown to demonstrate the 

feasibility of our technique.  The scan direction was alternated to ensure fast scan time.  

The CT scanning was performed on 64-slice CT system (Somatom Definition Flash and 

Biograph TruePoint PET∙CT, Siemens Healthcare, Forchheim, Germany), where the 

following scanning parameters were used: collimation width of 3.84 cm, 0.28s gantry 

rotation time, pitch of 1.2, and 120 kVp tube voltage.  Each scan of the patient thorax takes 

about 2.5s, and the irradiation time of each slice was 0.23s.   

 

Deformable Image Registration 

The fast helical CT images were processed using the deeds deformable registration 

algorithm [85].  The deeds algorithm has achieved state-of-the-art registration accuracy in 

the recent lung specific EMPIRE10 Challenge in terms of landmark-based error evaluation.  

It has also been separately validated using the public DIR-LAB 4DCT datasets and 

achieved sub-voxel level error. 

The deeds DIR is a multi-resolution, B-spline based algorithm.  The deeds algorithm 

accounts for the sliding motion that occurs along the lung boundary through the use of 
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minimum spanning tree.  As similarity metric, it employs the self-similarity context, which 

incorporates the intensity information in the local neighborhood for voxel matching 

evaluation.  Thus, SSC is independent of the local contrast and image noise and is highly 

discriminative of different image features.  Furthermore, in the registration optimization 

process, deeds algorithm employs a novel discrete optimization scheme, which allows for 

the solution finding process to be efficient and to avoid the local minima of the cost 

function.  

 

Ventilation Pattern Computation 

Lung ventilation image can be considered as regional mapping of the extent of regional 

tissue expansion under normal breathing condition. To quantify such extent of tissue 

expansion, in the following, we introduce a novel probabilistic formulation for estimating 

regional ventilation from the sampled tissue-specific data. With respect to the voxel in the 

reference image, the set of 24 corresponding Jacobian values, ��, � , … , � A, are different 

sampled values of tissue volume change. We assume that each of the independently 

measured Jacobian values shares the same distribution. Thus, to estimate the lung tissue 

ventilation, we are interested in evaluating the expectation value of the range of �. Let 

��, � , … , � A be independent, identically distributed random variables, each with the same 

cumulative distribution function, BC(D) = E(�� ≤ D). Let Y be the maximum of the 

random variable, 

G ∶= maxL��M.                                                         (6.1) 

The probability function, E, of G at a specific value D is then  

E(G ≤ D) = E(max(��) ≤ D).                                      (6.2) 
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The cumulative probability function, C, can be obtained by  

B(G ≤ D) =  O E(��
�

≤ D),                                                 (6.3) 

where the probability distribution P can be found empirically through  

E(��  ≤ D) =  ∑ 8(��  ≤ 5) A���
24                                             (6.4) 

The same process was repeated to find the minimum of voxelwise Jacobian distribution.  

The expectation value was computed for both the voxel maximum and minimum 

distributions.  The ventilation image was subsequently obtained by taking the difference of 

the expectation values of the maximum and minimum.  The technique of evaluating the 

range of expected Jacobian minimum and maximum values is termed statistical Jacobian 

ventilation. 

 

Ventilation Pattern Comparison 

In literature, besides the Jacobian based metric, the Hounsfield intensity values have also 

been employed for estimating the ventilation properties [85, 122, 130].  In such approaches, 

images at different breathing phases are typically registered to the full exhalation phase.  

The local fractional volume change can be represented by the fraction of air in the CT 

volume element as follows [85], 

∆Q
QRC

=  8RC(D) − 8�T(D + U)
8�T(D + U) + 1000 ,                                                   (6.5) 

where ∆Q represents the local change of lung volume, QRC the exhale volume, 8RC the 

exhalation image and 8�T the inhalation image, U the displacement vector with respect to 

the exhalation image. As this definition follows from the extremal breathing phase 
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definition in 4DCT, the exhale and inhale intensities were taken from the sorted maximum 

and minimum voxel intensities.  The estimated ventilation values were processed using a 

7mm x 7mm x 7mm median filter to remove image noise.  However, it has been found that 

transformation based ventilation estimation was more reproducible than the intensity-based 

approach [131]. 

 

6.3 Results 

 

 

Figure 1. The cumulative probability distribution of the minimum and maximum Jacobian 

value for an example lung voxel. 
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a.

 

b.

 

Figure 2. A comparison of the ventilation profiles between the two approaches: HU vs. 

Jacobian. Both images were normalized to their maximum value. 

 

Figure 1a and 1b show the cumulative probability distributions of the minimum and 

maximum Jacobian values of an example lung voxel, respectively.  Expectation values 

were computed from the inner product of the Jacobian and the probability arrays. 

Figure 2 shows the comparison of the ventilation estimation found through the HU 

approach and the proposed statistical Jacobian approach.  The ventilation pattern between 

the two images shows good regional resemblance.  Our statistical ventilation image also 

correctly showed low level of ventilation where pulmonary blood vessels reside.  As our 

approach does not require the pre-processing of removing blood vessels, HU intensity 

based image shows low ventilation levels in the vicinity of pulmonary vasculature, as 

should be expected.  Our statistical Jacobian ventilation images show a more smooth 

appearance.   

Nonparametric Spearman test shows a correlation score of 0.45 between the two data sets.  

Figure 3 shows a quantitative comparison between the two techniques in terms of 2D 

histogram analysis, normalized each to their maximum values.  The great majority of the 
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evaluated lung voxels shows strong correlation evidenced in the trend of large voxel 

accumulation centered at around 0.5 in the Jacobian metric and 0.25 in the HU based 

metric.   

 

Figure 3. 2D histogram in log scale showing the relative distribution between HU 

derived and Jacobian based lung ventilation estimations. 

 

To obtain voxelwise ventilation pattern, the probability density function of the Jacobian 

was computed through kernel density estimation method, where the Jacobian is considered 

a random variable.  In our computation, the underlying probability density is assumed to be 

Gaussian distributed.  Figure 4 shows examples of the characteristic voxel ventilation 

profiles in terms of their probability distribution of the Jacobian obtained through kernel 
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density estimation.  To estimate the regional ventilation dynamically, Jacobian values 

corresponding to the cumulative probability percentiles are computed.  Measures of volume 

change were computed by taking the ratio of the obtained Jacobian values and the 1%-ile 

Jacobian value.  The lung ventilation maps at different ventilation maps are presented in a 

progression from low to high (Fig. 5).   

 

  

Figure 4. Examples of empirical probability distribution for two lung voxels as estimated 

from the 24 measured Jacobian values. 

 

6.4 Discussion 

Our proposed statistical Jacobian approach generates ventilation image is more robust than 

the conventional 4DCT ventilation images derived from Jacobian method in that a) our 

technique relies on rigorous statistical formulation that draws on volume change data from 

multiple samples instead of just the full exhalation and inhalation scans and b) 4DCT 

image data is prone to image artifact, while our fast helical CT data have temporal 

uncertainty of 0.12s which minimize any motion-induced uncertainty.   

Our statistical Jacobian ventilation images show spatial heterogeneity, which correlates 

moderately well with the ventilation profile independently estimated using the voxel HU 
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directly.  Good correlation between the two metrics was found in regions of high 

ventilation (Fig. 6), indicating good agreement between our proposed technique and 

conventional methodology based on specific volume.  Deviation from the dominant trend 

was found mostly in the regime of low Jacobian values, where the HU based metric shows 

large variation.  Such deviation is likely to be caused by mis-registration as well as cardiac 

motion induced motion uncertainties close to the heart-lung boundary. 

 

 

 

Figure 5. Quantitation of the dynamic ventilation levels of 20%-, 30%-, 50%-, 60%-, 75%-, 

90%-, and 95%-ile from exhalation to inhalation (left to right).  Colorbar gives the scale of 

the volume expansion. 

 

Our dynamic ventilation estimation shows that the underlying ventilation pattern during 

quiet free breathing may not be normally distributed but can take on more complex 

distribution. 

Our analysis shows a direct comparison between the two commonly adopted approaches 

using high quality fast helical CT image data that were processed using highly accurate 
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deformable registration algorithm.  The comparison is presented in the entire lungs without 

potential bias that may be introduced through additional region selection for high ventilated 

region [120] or intensity thresholding [122, 130]. 

The highly heterogeneous ventilation distribution shows that assessing lung injury risks 

under the assumption of homogeneous lung function is susceptible to radiation risks.  Since 

lung is a parallel organ, which is vulnerable to volume effect and late effect, accurate 

functional imaging provides the additional information to determine the optimal target 

coverage [125, 132, 133].  

 

6.5 Conclusion 

This work presented a novel technique for generating lung ventilation images using 

multiple Jacobian values computed through deformable image registration of the fast 

helical CT image data that are virtually free of motion artifacts.  Assuming an identical and 

independent distribution which is unique to each lung voxel, the expectation values of the 

maximum and minimum Jacobian were computed.  The difference between these two was 

computed and used as surrogate for voxel ventilation.  The obtained Jacobian based 

ventilation metric was compared to the conventional HU based metric and good correlation 

was observed.  Separately, voxel-wise ventilation distribution was computed by applying 

the kernel density estimation method on the sampled Jacobian values.  The obtained 

ventilation probability function shows deviation to the normal distribution and the resulting 

ventilation map displays heterogeneity, indicating differences in regional function. 
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Chapter 7 

Conclusion 

 
7.1 Summary and Conclusions 

The aims of this dissertation was to investigate the accuracy of a motion model, to develop 

a free-breathing lung density model, and to characterize the lung ventilation pattern, all 

using the high-pitch helically acquired lung CT data.  Our motivation for the modeling 

works is not only limited to advancing the frontiers of imaging science but also to apply the 

gained knowledge to clinical scenarios where they may find the most diagnostic and 

therapeutic utility. 

Current clinical 4DCT imaging commonly uses low-pitch helical CT protocol that performs 

axial scanning.  In chapter 2, we employed the typical scanning parameters and conducted 

helical CT scanning experiments that simulate, at each couch position, the interplay 

between tumor under respiratory motion in the form of breathing traces and traveling CT 

couch.  The simulated motion estimation was compared to the motion amplitude implied by 

the breathing trace.  The frequencies of selected motion over- and under-estimation were 

compiled for a group of 50 patients.  Our results show the scale of the problem in 

commercial 4DCT motion measurement. 

In chapter 4, validation experiments were conducted that compare the motion model 

generated free-breathing images against the ground truth images of high-pitch helically 

acquired scans.  Using an arbitrary reference image, our results showed the proposed 5DCT 
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technique can accurately reproduce the lung deformations associated with the variety of the 

sampled patient breathing states in the original free-breathing scans. In particular, it is 

robust in simulating the complex lung deformation involving large diaphragm 

displacements.  Image similarity comparison showed that detailed lung anatomical features, 

such as nodules, bifurcations, and lung boundary, were very well aligned.  The 

incorporation of a state-of-the-art deformable registration, deeds, preserves sliding motion 

on the lung boundary.  Thus, the motion model can simulate such sliding motion and was 

made more general.  The proposed ground truth based technique provided voxel-by-voxel 

accuracy analysis that could identify organ or tumor-specific motion modeling errors for 

treatment planning. Despite a large variety of breathing patterns and lung deformations, the 

5DCT technique was able to accurately reproduce the original free-breathing helical CT 

scans, suggesting its wide applicability to lung cancer patients.  Furthermore, such ground 

truth based analysis is unique in CT-based breathing motion modeling for radiation therapy 

and will provide uncertainty estimations in the model-based 4DCT breathing motion 

estimate of tumors and normal organs. 

Chapter 5 investigated lung tissue densitometry through investigating a functional 

relationship that calibrates the density change of the human lung tissues under quiet free 

breathing conditions using unique fast helical CT data and deformable image registration.  

Accurate accounting of dynamic lung density variation is desirable and forms the basis for 

treatment planning calculations. This work applied mass conservation fitting between the 

tissue Hounsfield units and the Jacobian values and showed that there existed differential 

mechanical properties of the lung tissues, allowing for their classification into three broad 

types, namely, parenchyma (Type I), vasculature (Type II) and soft tissues (Type III). The 
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three types of tissues were separately modeled. The density modeling accuracy was 

assessed using large trials of leave-five-out cross validations, and the evaluated error was 

found to be comparable to the CT image noise. The proposed technique provided a 

valuable tool for performing human lung density analysis and will find important 

applications in pulmonary medical physics. 

In chapter 6, lung functional mapping in the form of ventilation imaging was explored.  

Lung ventilation images have been generated based on the specific volume change or 

Jacobian mapping between the extremal phases in the 4DCT image set.  Here we 

investigate a novel ventilation technique that is likewise motivated by the range of the 

regional volume changes as measured by the Jacobian metric.  An algorithm was developed 

that computes the maximum and minimum Jacobian expectation value from the respective 

probability distribution function, which was constructed using the measured Jacobian 

values.  Tissue specific ventilation was subsequently evaluated by taking the difference 

between these extremal values.  The resulting ventilation map was compared with an 

independently generated map using the specific ventilation approach and good correlation 

was observed, especially in regions of high ventilation levels.   

To assess the voxelwise ventilation distribution, a probability function was constructed 

from the set of Jacobian values using kernel density estimation.  The percentile based 

ventilation image was then constructed from the specific volume expansion level.  Such 

images represent the dynamic ventilation image.   

 

7.2 Outlook 
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Figure 1. The essential elements that determine the simulation accuracy of the 

modeled physiological system. 

 

In view of physiological model construction, the modeling framework may be represented 

as the intersection of three components, namely, the tomography imaging, the image 

registration, and the mathematical model.  The tomographic imaging provides data samples 

of the organ under physiological motion; image registration measures the organ 

deformation; the modelling aims at characterizing the dynamic organ motion with a 

mathematical relationship.  The improvement of any combination of the three components 

would make it possible to more accurately approximate the model performance of the 

dynamic system to the physical reality.  This dissertation work presents the state-of-the-art 

tomographic imaging and image processing of the thoracic anatomy.  The presented 

techniques for estimating lung tissue motion, density change, as well as ventilation imaging 

may not only find applications in different treatment modalities in radiation oncology but 
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also can become clinical tools that determine lung physiology and functionality in 

pulmonary medicine.  We envision that the accuracy of our techniques will further improve 

with next generations of CT scanners that will have faster rotation time and couch speed as 

well as more accurate deformable algorithms for image processing in addition to other 

modeling approaches. 

The accuracy level in the validation results for simulating the fast helical CT images with 

the lung motion model shows the great application potential of the model in CBCT 

imaging.  Current clinical solution to on board CBCT imaging suffers in image quality due 

to limited projection sampling.  A promising strategy to improve the CBCT imaging is to 

incorporate the motion model into the CBCT acquisition and reconstruction workflow such 

that the prior motion model parameters obtained through the patient planning session can 

be used to iteratively estimate the current model parameters and reference volume image 

simultaneously through minimizing the difference between the simulated and acquired 

projection images.  If successful, the obtained treatment day CBCT images can be used for 

adaptive treatment planning that takes into account of the changes in the anatomy. 

Lung densitometry and ventilation imaging based on fast helical CT imaging are novel 

techniques for assessing lung function.  Monitoring the changes in density model 

parameters and regional ventilation level may be helpful to assess tissue damage following 

irradiation.  Functional avoidance may be incorporated in the treatment planning process 

that preserves regions which undergo large gas exchange.  In the near future, ventilation 

imaging should be employed in conjunction with perfusion imaging to further provide 

functional mapping to aid clinicians in their diagnosis. 
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